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ABSTRACT 

This thesis presents a generalized framework for predicting dynamic structural response of slender, 

horizontal and line–like structures. This general framework is subsequently adopted and streamlined to 

the Hardanger Bridge which crosses the Hardanger Fjord in Hordaland, Norway. During this process, 

several central arising issues regarding the non–stationary theory is put onto the agenda.   

The thesis itself is formulated in the following way. First, the general multi–mode, frequency 

domain stationary buffeting theory is established in chapter 1, in which many concepts that are also vital 

in the formulation of the non-stationary theory are explained. Chapter 2 presents a detailed description 

of the proposed solutions to the issues that arises when the stationary frequency domain framework 

presented in chapter 1 is adapted to model non–stationary winds. This process consists of three main 

steps in which the first one is to define the mean wind speed as being a deterministic, time varying trend. 

Second, the remaining turbulence component of the non–stationary wind field is modelled as being an 

evolutionary stochastic process. The trends of this evolutionary process are similarly defined to be 

deterministic, time varying functions and are estimated in an appropriate manner. Finally, a good amount 

of attention is given to how the frequency spectrum of the stochastic turbulence components can be 

estimated as accurately and as wisely as possible. This involves the introduction of a simple and intuitive 

spectral data denoising algorithm that together with a weighted least square fit toolbox available in 

MATLAB R2018a that can operate on a user–specified equation, is able to much more accurately 

determine the “true” frequency distribution of a scattered spectral data set. Chapter 3 presents the 

adaptation and streamlining of the established general non–stationary buffeting theory framework to the 

Hardanger Bridge in particular. In order to obtain knowledge about transient effects in the dynamic 

structural response, a simplified SDOF system representing the fundamental mode of the Hardanger 

Bridge is applied from which structural response is calculated via time domain Monte Carlo simulations. 

A comparison between the frequency domain response and simulated time domain response of this 

simplified SDOF system provides the necessary information about when transient effects of the dynamic 

response of the Hardanger Bridge will prevail. The validity of this comparison is based on presented 

specific findings that suggest that horizontal motion at the bridge midspan is completely dominated by 

the fundamental mode alone. 

The results of the case study of the Hardanger Bridge is given in chapter 4 from which discussions 

and conclusions are given in chapters 5 and 6, respectively. The major findings of this thesis are first 

that there exist many valid ways to draw the line between what one defines as being deterministic and 

stochastic, however, the probability distribution of maximum structural response seems to depend 

somewhat less on the location of this deterministic–stochastic separation point. Second, the SDOF 

system is able to show that transient effects will start to become a significant feature of the airflow–

structure interaction picture if the highest included frequency in the deterministic mean wind speed is 

above roughly 1/50th of the fundamental frequency of the Hardanger Bridge. Above this limit, the 

validity of the frequency domain method is violated, and structural response seems to be overestimated.  
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SAMMENDRAG 

Denne masteroppgaven presenterer et generelt teorigrunnlag for beregning av dynamisk respons på 

slanke, horisontale og strek–liknende konstruksjoner. Dette generelle teorigrunnlaget vil så bli tilpasset 

og strømlinjeformet til Hardangerbrua som krysser Hardangerfjorden i Hordaland i Norge. I denne 

tilpasningsprosessen vil flere sentrale problemstillinger som oppstår i forbindelse med et ikke stasjonært 

vindfelt og en følgende ikke–stasjonær responsberegning, bli satt på dagsorden.  

  Selve oppgaven er disponert på følgende måte. Det generelle teorigrunnlaget for fler–modale 

konstruksjonsmodeller utsatt for stasjonær vindturbulens beregnet i frekvensplanet er først etablert i 

kapittel 1, hvor en rekke konsepter som også er vitale i forbindelse med ikke stasjonære betraktninger 

vil bli forklart. Kapittel 2 presenterer deretter en detaljert beskrivelse av hvordan løsningene til 

problemstillingene som oppstår når det stasjonære frekvensplan–teorigrunnlaget i kapittel 1 tilpasses til 

å modellere ikke–stasjonære vindfelt. Denne tilpasningsprosessen består av hovedsakelig tre steg hvor 

det første er å definere den gjennomsnittlige vindhastigheten til å være en deterministisk varierende 

trend. Steg to er å modellere den gjenværende turbulenskomponenten som en evolusjonær, stokastisk 

prosess. Trendene til denne evolusjonære, stokastiske prosessen vil i likhet med den gjennomsnittlige 

vindhastigheten bli definert til å være en deterministisk varierende funksjon og vil bli estimert på en 

passende måte. Til slutt vil en god del oppmerksomhet bli viet til hvordan frekvensspektrumet til de 

stokastiske turbulenskomponentene kan bli estimert på en så klok og nøyaktig måte som mulig. På 

bakgrunn av dette er det utviklet en enkel og intuitiv algoritme for avstøyning av råspektraldata som, 

sammen med en vektet minste kvadraters metode innebygd i MATLAB R2018a som kan tilpasses en 

brukerspesifisert likning, er i stand til å mye mer nøyaktig anslå den ekte og «bortgjemte» 

frekvensfordelingen det spredte råsprektraldatasettet representerer. Kapittel 3 presenterer en 

spesialtilpasning og strømlinjeforming av det nå etablerte ikke–stasjonære generelle frekvensplan–

teorigrunnlaget til Hardangerbroen i særskilthet. For å kunne tilegne kunnskap om 

faseovergangseffekter i den dynamiske responsen på brokonstruksjonen er det etablert et forenklet 

énfrihetsgradsystem som representerer fundamantalegensvingeformen til Hardangerbroen, hvor de 

statistiske karakteristika til dets dynamiske respons blir estimert fra Monte Carlo simuleringer i 

tidsplanet. En sammenlikning av den tidsavhengige variansen av responsen til dette forenklede 

énfrihetsgradsystem beregnet i frekvensplanet og estimert via simuleringer i tidsplanet vil gi den 

nødvendige informasjonen for å fastslå når faseovergangseffekter i den dynamiske responsen på 

Hardangerbroen vil råde. Gyldigheten til dette sammenlikningsgrunnlaget er basert på spesifikke funn 

som fastslår at den horisontale bevegelsen på midspennet til Hardangerbroen er fullstendig dominert av 

fundamentalegensvingeformen alene.  

 Resultatene av eksempelstudiet av Hardangerbroen er gitt i kapittel 4 hvorfra kommentarer og 

tilhørende konklusjoner er gitt i henholdsvis kapittel 5 og 6. Hovedfunnene i denne oppgaven er først at 

det finnes mange gyldige steder for hvor man skal sette grensen mellom hva man definerer til å være 

deterministiske trender og hva man velger å definere som stokastiske prosesser. Imidlertid viser det seg 

at sannsynlighetsfordelingen til den største responsen konstruksjonen vil utvise ikke synes å være sterkt 

preget av nettopp hvor denne deterministisk–stokastiske seperasjonsgrensen settes.  For det andre viser 

det forenklede énfrihetsgradsystemet at faseovergangseffekter vil utgjøre en signifikant del av last–

respons samvirket hvis den høyeste inkluderte frekvensen i den tidsavhengige deterministiske 

gjennomsnittlige vindhastigheten er større enn omtrent 1/50 av fundamentalegensvingefrekvensen til 

Hardangerbroen. Inkluderes frekvensbidrag over denne grensen vil gyldigheten av en responsberegning 

i frekvensplanet bli krenket og den dynamiske responsen til systemet synes i så tilfelle å bli overestimert. 
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1 STATIONARY BUFFETING THEORY 

1.1 DESCRIPTION AND FORMULATION OF A STOCHASTIC WIND FIELD 

1.1.1 Characteristics of structural wind loading 

According to Strømmen (2006, p. 1–3), the interaction between the airflow and the structure can take 

place in primarily two fundamentally different ways. The first one, which may occur for mostly low 

mean wind speeds is called vortex shedding. Vortex shedding takes place when friction and sharp edges 

on the surface of the structure causes the oncoming airflow to separate and being shed into the wake of 

the structure, alternating from side to side at a certain frequency. These “shedded vortices” causes net 

pressure differences over the surface of the structure and thus oscillating structural forces.  

As the mean wind velocity increases, buffeting will eventually become the predominant type of 

flow/structure interaction. Buffeting is simply characterized by the fact that the turbulence in the 

oncoming airflow produces fluctuating forces on the structure in a direct manner rather than in the case 

of vortex shedding, where it is the shedded, alternating vortices in the wake of the structure that produces 

the vortex shedding loads, and not the oncoming airflow itself. If the mean wind speed increases even 

more, motion induced load effects, or self–excited forces, will be present. This phenomenon arises when 

the oscillations of the structure becomes large enough to interact with the turbulence in the oncoming 

airflow such that further forces are generated.  

In this thesis, whose purpose is to examine the effect of non–stationary buffeting winds, the effect 

of vortex shedding is not investigated.   

1.1.2 Stochastic processes 

As in the case of most physical processes, the wind field is a stochastic process. According to Strømmen 

(2006, p. 4), a physical process is labelled stochastic “if its numerical outcome at any time or position 

in space is random and can only be predicted with a certain probability”. Every stochastic process has 

certain characteristics and can therefore be described mathematically by certain parameters. In this 

context, the term “random” indicates that a recording of a certain process is only “one particular set of 

realizations of the process” (Strømmen 2006, p. 4).  

 Strømmen (2006, p. 5) further emphasizes that the wind field as a stochastic process can be treated 

at two levels of randomness, namely time domain statistics (short term), and ensemble statistics (long 

term). Time domain statistics involves the probability distribution of the turbulent part (see chapter 

1.1.5) of the wind field itself, while ensemble statistics has to do with the probability distribution of 

parameters such as the average value, maximum value and variance of a recording with arbitrary length, 

𝑇, both being important concepts in the buffeting theory. 

1.1.3 Stationary processes 

A stationary process is a process whose statistical parameters does not change with time. To determine 

the characteristic parameters of a stochastic wind field recording, first and foremost its mean wind speed 

and variance, an averaging process over a time window of sufficient length must be carried out. 

Obviously, sudden short time variations in the wind speed recording such as gusts will render a relatively 

large variation in the numerical values of the aforementioned parameters if they are calculated over a 

correspondingly short time period, however, stationarity will generally not hold if the averaging period 
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is disproportionally long because weather changes with time. As suggested by Strømmen (2006, p. 54), 

the time period used for determining the mean value and variation of a presumed stationary wind speed 

recording is therefore usually set to 𝑇 = 10 minutes.  

  In thesis, stationarity is not treated as being a binary term in any way, because there is no definite 

boundary that separates stationary recordings from non–stationary ones. The reason for this is that the 

characteristics of the wind field must be put into context because it is the very response of the structure 

onto which it causes dynamic loading that is of particular interest. Therefore, one cannot take for granted 

that if a given wind field with good reason really can be treated as being stationary when action on 

structure A, it can also be treated as being stationary when action on structure B. Structure A and B 

might have widely different eigenfrequencies, hence the relationship between input and output will also 

be different. Clearly, this concept can be illustrated when letting structurs A and B be a long–span, 

slender suspension bridge, and a 10 m telephone line, respectively, in which them both are subjected to 

wind induced loads from the same wind field. Nevertheless, chapter 2 presents the theoretical framework 

for calculating buffeting response when the wind loading is considered as being strictly stationary.  

1.1.4 Homogeneous processes 

Analogous to a stationary process, the input parameters of a homogenous process do not change in space. 

In the case of a bridge, such may sound reasonable since the size of the weather system creating the 

local wind field is usually very large compared to the structure itself. However, since the turbulent part 

of the wind field is created due to friction with the ground, local terrain or nearby obstacles may obstruct 

the wind field such that one can no longer assume constant wind field parameters across the span of a 

long horizontal structure such as a suspension bridge. However, different non–homogeneous effects are 

not included in this thesis and every wind field parameter is therefore set to be constant across the bridge 

span. 

1.1.5 Coordinate system and key definitions 

Strømmen (2006, p. 8) adopts the following definition of the coordinate system used for a stationary 

wind field. The mean wind velocity, 𝑉, is defined as the average value of the wind speed in the direction 

of the respective average wind direction over a period of 𝑇 = 10 minutes. Then, one can introduce an 

airflow specific Cartesian coordinate system in which the 𝑥𝑓–axis (sub index “𝑓” for air flow) is parallel 

to the mean wind direction. Such an orientation is of great convenience because the mean wind speed 

in the 𝑦𝑓–, and 𝑧𝑓–directions thus will be zero, and any wind in these directions is then exclusively 

turbulence. In theory, V will vary in all three special coordinates and time, which renders the general 

expression for the wind speed components, 

 

 𝑈    = 𝑉(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡)   +   𝑢(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡)  

 𝑣    =  𝑣(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡) (1.1) 

 𝑤    =  𝑤(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡)  

Normal practice is to define the mean wind direction to be horizontal and perpendicular to the bridge 

girder. Assuming stationarity and homogeneousness implies 𝑉  to be independent of 𝑡  and 𝑦𝑓 , 

respectively. The effect of the vertical mean wind profile described by Strømmen (2010, p. 53–54.) 

together with the upward facing arc of the bridge girder is also neglected, thus excluding 𝑧𝑓 from the 

variable portfolio in equation 1.1. According to the defined orientation of the wind field coordinate 

system, 𝑥𝑓 is constant along the bridge span, thus making equation 1.1 take the following form, 
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 𝑈    = 𝑉   +   𝑢(𝑦𝑓 , 𝑡)  

(1.2)  v    =  𝑣(𝑦𝑓 , 𝑡) 

 w    =  𝑤(𝑦𝑓 , 𝑡)  

 

    

 

Figure 1.1: Wind field specific–, and structural coordinate system. 

1.1.5.1 Variance 

The variance of a stochastic, zero–mean variable 𝑥 is given by, 

 

𝑉𝑎𝑟(𝑥)    =    𝜎𝑥
2   =    𝐸 [(𝑥(𝑡))

2
]    = 

1

𝑇
∫(𝑥(𝑡))

2
𝑑𝑡

𝑇

0

 (1.3) 

The mean value of the 𝑈–component is obviously not zero, but because being constant, it gives no 

contribution to the total variance. Therefore, 𝑈  must intuitively have the same variance as 𝑢 . The 

variances of the wind components 𝑈, 𝑣 and 𝑤 in equation 1.1 is given by the integral expression in 

equation 1.3 where 𝑥(𝑡) is simply replaced by 𝑢(𝑦𝑓 , 𝑡), 𝑣(𝑦𝑓 , 𝑡) and 𝑤(𝑦𝑓 , 𝑡),  respectively. As before, 

wind field homogeneousness sets the variance as being constant along the bridge span.  

1.1.5.2 Turbulence integral length scales 

The turbulence integral length scales of a wind field are indirect measures of its average local shape. 

Together with the mean value and variance it is an important tool for describing the stochastic 

characteristics of a wind field. According to Strømmen (2006, p. 65) its general definition, having 

assumed stationarity is given by, 

 

𝐿𝑛 =𝑠 1

𝜎𝑛
2 ∫ [

1

𝑇
∫ 𝑛(𝑠, 𝑡)  ∙ 𝑚(𝑠 + ∆𝑠, 𝑡) 𝑑𝑡

𝑇

0

] 𝑑𝛥𝑠

∞

0

,     {
𝑛, 𝑚 = 𝑢, 𝑣, 𝑤
𝑠 =  𝑥𝑓,𝑦𝑓,𝑧𝑓    (1.4) 

The integral expression inside the brackets in equation 1.4 is the cross covariance between the processes 

𝑛 and 𝑚 with a spatial separation, ∆𝑠. Increasing ∆𝑠 from zero to infinity will according to Strømmen 

(2006, p. 65) generally give a corresponding decrease in the cross–covariance function from 𝜎𝑛
2 to zero 

with a shape–wise similarity to an exponential function with a negative argument.  
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There are generally 3 choices for both 𝑛, 𝑚, and 𝑠, rendering 32 = 27 possible different length 

scales. However, flow components 𝑢, 𝑣  and 𝑤  can be considered mutually independent (Strømmen 

2006, p. 64) hence, 𝑛 =  𝑚 is the only interesting consideration. Also, as shall be seen in chapter 

1.1.6.2, the only length scales required to obtain statistical information about the turbulence components 

𝑢 and 𝑤, are 𝐿𝑢
𝑦

 and 𝐿𝑤
𝑦

.  

Equation 1.4 suggests that in order to calculate the relevant turbulence integral length scales one 

must have anemometers installed at a number of points along the s–axis such that integration with 

respect to ∆𝑠  can be performed with sufficient accuracy. However, this is highly inconvenient for 

practical purposes because anemometers can usually only be installed at a single point along the flow 

axis. Nevertheless, length scales 𝐿𝑢
𝑦

 and 𝐿𝑤
𝑦

 can be calculated from single point wind recordings by 

instead introducing a similar parameter, namely the integral time scale. Using this, Strømmen (2006, p. 

61) defines the length scales 𝐿𝑢
𝑦

 and 𝐿𝑤
𝑦

 as the respective integral time scale multiplied with the mean 

wind speed, namely, 

 

𝐿𝑛   =   
𝑦

 𝑉 ∙ 𝑇𝑛    =    𝑉 ∙
1

𝜎𝑛
2 ∫ [

1

𝑇
∫ 𝑛(𝑡)  ∙ 𝑛(𝑡 + ∆𝑡) 𝑑𝑡

𝑇

0

] 𝑑𝛥𝜏

∞

0

,     𝑛 = 𝑢, 𝑤 (1.5) 

1.1.6 Transformation to frequency domain 

1.1.6.1 Motivation 

The solution to a dynamic response problem is usually associated with the time history of the response, 

namely the solution function of the governing differential equations. Frankly, the very time history of 

the response is not the primary interest for a problem like the one at hand, because, “if a physical event 

may mathematically be described by certain laws of nature, a stochastic input will provide a stochastic 

output” (Strømmen, 2006, p. 4). Hence, the output is only one of infinitely many possible realizations 

of the stochastic process it represents. To get around this problem, a more convenient solution strategy 

is introduced, such that the variance of the structural response may be obtained directly, in contrast to 

being estimated from a large number of individual time domain solution functions (so–called Monte 

Carlo simulations). 

The fundamental principle of the aforementioned solution strategy is surprisingly simple and 

intuitive and consists of several steps in which the first one is expressing the fluctuating parts of the 

wind field recording (equation 1.2) as a finite set of orthogonal harmonic components using a Fourier 

decomposition. From then on, the contribution to the total variance of the dynamic response from each 

harmonic component will be established in the form of “intermediary” functions which depend on the 

aerodynamical and dynamic properties of the bridge. The key steps in this procedure will be explained 

in the following. 

1.1.6.2 Power spectral density 

The power spectral density (PSD) of a signal, sometimes denoted by the auto spectral density, is its 

distribution of variance over the frequency axis. The mathematical procedure of obtaining the Fourier 

components of any signal 𝑥(𝑡) is given by equation 1.6:  
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{
𝑎𝑘

𝑏𝑘
}    = 

2

𝑇
∫ 𝑥(𝑡)

𝑇

0

{
cos (𝜔𝑘𝑡)
sin (𝜔𝑘𝑡)

} 𝑑𝑡 where {
𝑘 = 1,2,3, …                  

𝜔𝑘 = ∆𝜔 ∙ 𝑘 =  
2𝜋

𝑇
∙ 𝑘

   (1.6) 

Such that, 

𝑥(𝑡)    = ∑ 𝑎𝑘 cos(𝜔𝑘𝑡) + 𝑏𝑘 sin(𝜔𝑘𝑡)

∞

𝑘=1

 (1.7) 

This general definition in a real format with a signal not necessarily having any symmetries with respect 

to 𝑇 = 0, demands two nonzero constants 𝑎𝑘 and 𝑏𝑘 for each harmonic component. However, what we 

seek is the amplitude, 𝑐𝑘, of each component which can easily be obtained from equation 1.8. 

𝑐𝑘   = √𝑎𝑘
2 +  𝑏𝑘

2 (1.8) 

𝜑𝑘   = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏𝑘

𝑎𝑘
) (1.9) 

The phase lag, 𝜑𝑘, is of no particular interest for the purpose of obtaining the power spectral density 

because it only describes the stochastic properties of the wind field presented in chapter 1.1.2. 

Nevertheless, with the introduction of equations 1.8 and 1.9, eq. 1.7 can be expressed as, 

𝑥(𝑡)    = ∑ 𝑋𝑘(𝜔𝑘𝑡)    =     

∞

𝑘=1

∑ 𝑐𝑘 cos(𝜔𝑘𝑡 +  𝜑𝑘)

∞

𝑘=1

 (1.10) 

The calculation of the variance of harmonic component 𝑋𝑘 is trivial, namely, 

𝑉𝑎𝑟(𝑋𝑘(𝜔𝑘𝑡))    = 𝐸[𝑐𝑘
2 ∙ 𝑐𝑜𝑠2(𝜔𝑘𝑡 +  𝜑𝑘)]  

= 𝑐𝑘
2 ∙

1

𝜋
∫ 𝑐𝑜𝑠2(𝑡)𝑑𝑡

𝜋

0

 (1.11) 

= 
𝑐𝑘

2

2
  

At this moment, one may introduce the very definition of the auto spectral density, namely,  

𝑆𝑥(𝜔𝑘)    ≡ 
𝑉𝑎𝑟(𝑋𝑘(𝜔𝑘𝑡))   

∆𝜔
    =  

𝑐𝑘
2

2 ∙ ∆𝜔
 (1.12) 

where ∆𝜔 obeys the definition in equation 1.6. With this definition, every component will have period 

𝑇, and they will be mutually orthogonal, that is, the covariance between them all is exactly equal to zero. 

This very fact gives birth to the most central property of the PSD function and indeed its mathematical 

convenience, namely that the variance of the sum of all components is equal to the sum of the variances 

of the components themselves, 
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𝜎𝑥
2     ≈    𝑣𝑎𝑟 [∑ 𝑋𝑘

∞

𝑘=1

]     = ∑ 𝜎𝑋
2

𝑘
    =     

∞

𝑘=1

∑ 𝑆𝑥(𝜔𝑘)

∞

𝑘=1

∙ ∆𝜔  (1.13) 

For a stationary recording of infinite length, 𝑇, ∆𝜔 will correspondingly approach zero and thus giving 

the continuously defined counterparts of equations 1.12 and 1.13, namely, 

𝑆𝑥(𝜔)     = lim
∆𝜔 →0

𝑉𝑎𝑟(𝑋(𝜔, 𝑡))   

∆𝜔
    =    lim

∆𝜔 →0
 

𝑐𝑘
2

2 ∙ ∆𝜔
  (1.14) 

     𝜎𝑥
2    = ∫ 𝑆𝑥(𝜔)𝑑𝜔

∞

0

        (1.15) 

 The recent presentation and definition of the power spectral density of an arbitrary stochastic signal 

has been performed in the real number domain, which is nothing but intuitive for the sake of calculating 

the Fourier components of the given signal. Unfortunately, this real–valued formulation is rather 

inconvenient when it comes to establishing a formulation of the dynamic response in the frequency 

domain. If, however, the power spectral density is formulated using the mathematical tool of complex 

numbers, the formulation of the dynamic response calculations becomes much easier to establish. 

Strømmen (2006, p. 36 – 38) presents the deductive reasoning leading up to the complex expression for 

the power spectral density which as from now is defined in the following way: 

𝑥(𝑡)   =  ∑ 𝑎𝑘𝑒𝑖𝜔𝑘𝑡

±𝜔∞

±𝜔1

,            𝑎𝑘  =   ∫ 𝑥(𝑡)

𝑇

0

𝑒−𝑖𝜔𝑘𝑡𝑑𝑡 ,            {
𝑘 = 1,2,3, …

𝜔𝑘 =  
2𝜋𝑘

𝑇
   

 (1.16) 

𝑆𝑥(𝜔𝑘) =  
1

𝜋𝑇
𝑎𝑘 ∙ 𝑎𝑘

∗  
(1.17) 

Taking the limit of equation 1.17 as 𝑇 approaches infinity gives the definition of the power spectral 

density of a stochastic, stationary signal on the format which will be used in the dynamic response 

calculation, namely, 

𝑆𝑥(𝜔)      =  lim
𝑇→∞

1

𝜋𝑇
∙ 𝑎(𝜔) 𝑎∗(𝜔) (1.18) 

where the superscript, *, denotes the complex conjugate.  

 When the PSD of a signal is calculated scatter will always occur, no matter the signal length. The 

convergence–like behaviour that one usually expects to see in many estimation procedures of physical 

quantities are absent in the case of the PSD. This has to do with the properties of the Fourier transform. 

Hence as will be demonstrated in chapter 1.3, a mathematical function that serves as a best–fit 

approximation, is needed. According to Strømmen (2006, p. 62 – 63) many such functions has been 

suggested, however, the expressions suggested by Kaimal (1972) and von Kármán (1948) is often seen 

in literature. Kaimal’s definition is given by, 

𝜔 ∙ 𝑆𝑛(𝜔)

𝜎𝑛
2    =    

𝐴𝑛 ∙ �̂�𝑛

[1 + 1.5 ∙ 𝐴𝑛 ∙ �̂�𝑛]
5

3⁄
 where {

𝑛 = 𝑢, 𝑣, 𝑤     

�̂�𝑛 =  𝜔 ∙
𝐿𝑛

𝑦

𝑈

 (1.19) 
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𝐿𝑛
𝑦

 is the integral length scale of turbulence component 𝑛 in structural coordinate direction 𝑦. von 

Kármán’s spectrum formulae are similar but exhibits a somewhat sharper transition between the 

magnitude of low and high frequency content as well as being specialized to fit the behaviour of 

turbulence components parallel and perpendicular to the mean wind speed direction. They are given by, 

𝜔 ∙ 𝑆𝑢(𝜔)

𝜎𝑢
2    =    

4 ∙ �̂�𝑢

[1 + 70.8 ∙ �̂�𝑢
2]

5
6⁄
 (1.20) 

𝜔 ∙ 𝑆𝑛(𝜔)

𝜎𝑛
2    =    

4 ∙ �̂�𝑛 ∙ [1 + 755.2 ∙ �̂�𝑛
2]

[1 + 283.2 ∙ �̂�𝑛
2]

11
6⁄

 where 𝑛 = 𝑣, 𝑤 (1.21) 

1.1.6.3 Cross spectral density and normalized Co–spectrum 

The cross spectral density between two stochastic processes gives the distribution of covariance between 

their respective Fourier components over the omega axis. When formulated for the specific use in this 

very context, a complex valued method used to define the power spectral density might just as well be 

adopted. Consider two stochastic processes 𝑥(𝑡)  and 𝑦(𝑡) with their respective Fourier component 

expansions, 

{
𝑥(𝑡)

𝑦(𝑡)
}     =   ∑ {

𝑋𝑘(𝜔𝑘, 𝑡)

𝑌𝑘(𝜔𝑘 , 𝑡)
}     = 

±∞

𝑘=±1

   
1

𝑇
∑ {

𝑎𝑋𝑘
(𝜔)

𝑎𝑌𝑘
(𝜔)

} 𝑒𝑖𝜔𝑘𝑡

±∞

𝑘=±1

 (1.22) 

where, 

{
𝑎𝑋𝑘

(𝜔)

𝑎𝑌𝑘
(𝜔)

}    =   ∫ {
𝑥(𝑡)

𝑦(𝑡)
}

𝑇

0

𝑒−𝑖𝜔𝑘𝑡𝑑𝑡 
(1.23) 

Analogous to equation 1.18, the cross spectral density of the two processes 𝑥(𝑡) and 𝑦(𝑡) is given by, 

𝑆𝑥𝑦(𝜔)    =    lim
𝑇→∞

 
1

𝜋𝑇
∙ 𝑎𝑋(𝜔)𝑎𝑌

∗ (𝜔) (1.24) 

 

Due to Fourier component orthogonality, the summation properties in equation 1.13 applies to the total 

covariance between 𝑥(𝑡) and 𝑦(𝑡) in an analogue manner, namely, 

𝐶𝑜𝑣𝑥𝑦
𝑦𝑥

   ≈  𝐶𝑜𝑣 ( ∑
𝑋𝑘

𝑌𝑘
(𝜔𝑘)

±∞

𝜔𝑘 = ±𝜔1

  , ∑
𝑌𝑘

𝑋𝑘
(𝜔𝑘)

±∞

𝜔𝑘 = ±𝜔1

)  

= ∑ 𝐶𝑜𝑣 (
𝑋𝑘

𝑌𝑘
(𝜔𝑘) ,

𝑌𝑘

𝑋𝑘
(𝜔𝑘))

±∞

𝜔𝑘 = ±𝜔1

 (1.25) 
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= ∑ 𝑆𝑥𝑦
𝑦𝑥

(±𝜔𝑘)

±∞

𝜔𝑘 = ±𝜔1

∆𝜔 

 

In the specific case of a suspension bridge onto which a stochastic wind field is creating structural 

loads across its span, what is sought is an expression for the cross spectral density of two stochastic 

wind speed recordings along the span, separated with a given distance, 𝛥𝑠. Wind field homogeneousness 

implies that two such recordings 𝑥(𝑡) and 𝑦(𝑡) at separate locations are simply two unique realizations 

of the same process (Strømmen, 2006, p. 43). The cross spectral density between them is then rewritten 

to the more convenient formulation, 

𝑆𝑥𝑦(𝜔)   =    𝑆𝑥𝑥(𝜔, 𝛥𝑠) (1.26) 

As can be seen from equation 1.24, 𝑆𝑥𝑦(𝜔) itself will generally be complex since 𝑎𝑋(𝜔) is not the 

complex conjugate of 𝑎𝑌(𝜔). According to Strømmen (2006, p. 40), the real part of 𝑆𝑥𝑦(𝜔) is an even 

function of 𝜔 labelled the Co–spectral density, 𝐶𝑜𝑥𝑦(𝜔), or in this case, 𝐶𝑜𝑥(𝜔, 𝛥𝑠). Normal practice 

is to normalize the Co–spectrum with respect to the auto spectral density of the single point process 

𝑥(𝑡), namely, 

�̂�𝑜𝑥(𝜔, 𝛥𝑠)  =    
𝐶𝑜𝑥(𝜔, 𝛥𝑠)

𝑆𝑥(𝜔)
 (1.27) 

thus giving the following expression for the cross spectral density of two spatially separated recordings 

along the bridge span, 

𝑅𝑒[𝑆𝑥𝑥(𝜔, 𝛥𝑠)]    =    𝑆𝑥(𝜔) ∙ �̂�𝑜𝑥(𝜔, 𝛥𝑠) (1.28) 

Strømmen (2010, p. 67) states that the following approximation for the normalized Co–spectrum may 

be used, 

�̂�𝑜𝑥(𝜔, 𝛥𝑠)   =   𝑒𝑥𝑝 (−𝑐𝑛𝑠 ∙
𝜔𝛥𝑠

𝑈
)   where     {

𝑛 = 𝑢, 𝑣, 𝑤      
𝑠 =  𝑥𝑓 , 𝑥𝑓 , 𝑧𝑓   

(1.29) 

 As per now, only the real part of 𝑆𝑥𝑥(𝜔, 𝛥𝑠) has been established. Obviously, the covariance 

between two real valued variables cannot be complex, however, the reason for this complex formulation 

is simply as stated by Strømmen (2010, p. 67) that during the crucial step of the dynamic response 

calculations in the frequency domain called spatial averaging, all imaginary parts cancel out. Hence, 

only the real value of the cross spectrum needs to be included in the first place and is given by equations 

1.28 and 1.29.  
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1.2 ESTABLISHMENT OF BUFFETING LOADS 

1.2.1 Introduction 

Again, it must be emphasized that this thesis investigates the nature and effects of wind buffeting 

exclusively with this being the only existing load effect on the structure, even though such an assumption 

is not always suitable. 

For all practical purposes wind loading is a nonlinear process. A requirement for making the 

transformation to the frequency domain mathematically convenient, is linearizing the wind loading with 

respect to the flow components, 𝑢 and 𝑤. Such an approximation may sound inaccurate and somewhat 

nonshalant, but in the following it will be demonstrated that such is feasible.  

All the calculations, assumptions and simplifications done in chapters 1.2.2–1.2.4 are in direct 

correspondence with the ones done by Strømmen (2010, p. 91–99).  

1.2.2 Displacement components, mean and fluctuating part 

 

Figure 1.2: Mean value of displacement components 

As illustrated in figure 1.2, the displacements of the bridge girder can, similarly to the wind field flow 

components, be split into a constant (average) part and a zero–mean fluctuating part, 

𝒓𝑡𝑜𝑡(𝑥, 𝑡)      =      �̅�(𝑥)  +  𝒓(𝑥, 𝑡)      =       {

𝑟�̅�(𝑥)

𝑟�̅�(𝑥)
𝑟�̅�(𝑥)

}  +  {

𝑟𝑦(𝑥, 𝑡)

𝑟𝑧(𝑥, 𝑡)
𝑟𝜃(𝑥, 𝑡)

} 

 

(1.30) 

The idea behind dividing all time dependent variables into a mean, time invariant part and a zero–

mean fluctuating part is simply because variance and covariance properties can be calculated from the 

fluctuating variables directly. Obviously, a static input gives a static output, and because the governing 

equations of our dynamic system are linear, the fluctuating output can be calculated on the basis of the 

fluctuating input due to the principle of superposition which applies to all linear systems.  
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1.2.3 Calculation of buffeting loads 

 
Figure 1.3: Cross–sectional force resultants 

Initially, the simple schematic situation illustrated in figure 1.3 is considered. When the oncoming air 

molecules meets the bridge girder, they will undergo a change in both speed and direction, thus creating 

net pressure differences across the surface of the bridge girder according to Bernoulli’s principle of 

energy conservation. For simplicity, the drag–, lift–, and pitch moment resultants can each be expressed 

as a constant multiple of the stagnation pressure, 

 

𝒒(𝑥, 𝑡)    =    {

𝑞𝐷(𝑥, 𝑡)

𝑞𝐿(𝑥, 𝑡)

𝑞𝑀(𝑥, 𝑡)
}    =    

1

2
𝜌𝑉𝑟𝑒𝑙

2 {

𝐷 ∙ 𝐶𝐷(𝛼)
𝐵 ∙ 𝐶𝐿(𝛼)

𝐵2 ∙ 𝐶𝑀(𝛼)
} (1.31) 

Where 𝐶𝐷 , 𝐶𝐿  and 𝐶𝑀  are called load coefficients, and are dimensionless numbers obtained from 

practical or numerical experiments. 𝐷, 𝐵 and 𝐵2 is simply included to maintain correct dimensions. As 

one might expect, the load resultants will change with the angle of incidence, 𝛼. For simplicity, this 

behaviour is implemented into the load coefficients, so that only they change with the angle of incidence, 

𝛼. 

 

Figure 1.4: Non–linear load coefficients 

The relationship between the angle of incidence and the load coefficients themselves is not necessarily 

linear, as illustrated in figure 1.4. To meet the requirement of load linearity, they are linearized as a first 

order Taylor series expansion about 𝛼 = �̅�, 
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{

𝐶𝐷(𝛼)
𝐶𝐿(𝛼)
𝐶𝑀(𝛼)

}    ≈    {

𝐶𝐷(�̅�)

𝐶𝐿(�̅�)

𝐶𝑀(�̅�)
} + 𝛼𝑓 ∙

𝜕

𝜕𝛼
{

𝐶𝐷(�̅�)

𝐶𝐿(�̅�)

𝐶𝑀(�̅�)
}    =    {

𝐶�̅�

𝐶�̅�

𝐶�̅�

} + 𝛼𝑓 ∙ {

𝐶𝐷
′

𝐶𝐿
′

𝐶𝑀
′

} (1.32a) 

where 𝛼𝑓 is the fluctuating part of the angle of incidence, 

 𝛼𝑓   =    𝛼 −  �̅�    =    𝛽 +  𝑟𝜃 (1.32b) 

 
Figure 1.5: Wind load actions in local and global coordinate system. 

 

Figure 1.5 considers the same loading actions illustrated in figure 1.3 but now from a global 

perspective. Intuitively, 𝑉𝑟𝑒𝑙 is equal to the closing speed between the airflow and the bridge girder, and 

because the velocity components of structural motion in some cases might reach the same order of 

magnitude as the wind turbulence components, they must equally be included in the expression of 𝑉𝑟𝑒𝑙. 

This very fact gives raise to what in chapter 1.1.1 was labelled as motion induced load effects or self–

excited forces. In accordance with figure 1.5, Pythagoras gives, 

 𝑉𝑟𝑒𝑙
2    =    (𝑉 + 𝑢 − �̇�𝑦)2   +  (𝑤 − �̇�𝑧)2 (1.33) 

As one can see from figure 1.5 the direction of 𝑉𝑟𝑒𝑙 also varies with time as a function of the instant 

values of the fluctuating wind components and structural velocities. Therefore, so will the drag–, lift–, 

and pitch moment. For them to be projected onto the coordinate system in which the structural 

displacements are defined, the following coordinate transform must be applied, 

 

𝒒𝑡𝑜𝑡(𝑥, 𝑡)    =    {

𝑞𝑦,𝑡𝑜𝑡(𝑥, 𝑡)

𝑞𝑧,𝑡𝑜𝑡(𝑥, 𝑡)

𝑞𝜃,𝑡𝑜𝑡(𝑥, 𝑡)

}    =    [
cos 𝛽 − sin 𝛽 0
sin 𝛽 cos 𝛽 0

0 0 1

] {

𝑞𝐷(𝑥, 𝑡)

𝑞𝐿(𝑥, 𝑡)

𝑞𝑀(𝑥, 𝑡)
} (1.34a) 

where, 

 
𝛽  =    arctan (

𝑤 − �̇�𝑧

𝑉 + 𝑢 − �̇�𝑦
) (1.34b) 

 The combination of equations 1.31 – 1.34 will render the general expression for the total buffeting 

load in the structural coordinate system. However, a few more linearizations must be used in order for 
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𝒒𝑡𝑜𝑡 to be linearly dependent on the wind turbulence components and structural velocities. What gives 

raise to such a linearization is the fact that 𝑉 is relatively large in comparison with namely the turbulence 

components and structural velocities. First, consider the fully expanded version of equation 1.33. 

Knowing that when 𝑢, 𝑤, �̇�y, �̇�z and 𝑟θ are small compared to 𝑉, then 𝑢2, 𝑤2 and 𝑢 ∙ 𝑣 etc., will be even 

smaller compared to 𝑉2 thus rendering, 

 

𝑉𝑟𝑒𝑙
2    = (𝑉 + 𝑢 − �̇�𝑦)2   +   (𝑤 − �̇�𝑧)2     ≈    𝑉2 + 2𝑉𝑢 − 2𝑉�̇�𝑦   

 

(1.35) 

As for 𝛽 in equation 1.34b, the denominator is likewise approximated as being constant such that 

the fraction becomes linear. 𝑤 and �̇�𝑧 are still small compared to 𝑉 such that, 

 cos 𝛽  ≈  1 (1.36a) 

 sin 𝛽 ≈ tan 𝛽  ≈  arctan 𝛽 ≈  𝛽 ≈  
𝑤 − �̇�𝑧

𝑉
 (1.36b) 

At this point, all formulas that are to be combined, are successfully linearized. However, when the 

linear formulas are combined, multiplication between linear terms will create nonlinear terms. These 

terms can be omitted similarly as in equation 1.35. The final linearized version of equation 1.34a then 

becomes, 

 

𝒒𝑡𝑜𝑡(𝑥, 𝑡)   =    {

�̅�𝑦(𝑥)

�̅�𝑧(𝑥)
�̅�𝜃(𝑥)

} + {

𝑞𝑦(𝑥, 𝑡)

𝑞𝑧(𝑥, 𝑡)
𝑞𝜃(𝑥, 𝑡)

}   =    �̅� + 𝑩𝑞𝒗 + 𝑪𝑎𝑒�̇� + 𝑲𝑎𝑒𝒓 (1.37a) 

where, 

 𝒗(𝑥, 𝑡)   =    {
𝑢
𝑤

} (1.37b) 

 

�̅�   =    {

�̅�𝑦

�̅�𝑧

�̅�𝜃

}   =    
𝜌𝑉2𝐵

2
∙ �̂�𝑞   =    

𝜌𝑉2𝐵

2
∙ {

(𝐷/𝐵)𝐶�̅�

𝐶�̅�

𝐵𝐶�̅�

} (1.37c) 

 

𝑩𝑞    =    
𝜌𝑉𝐵

2
∙ �̂�𝑞   =    

𝜌𝑉𝐵

2
∙ [

2(𝐷/𝐵)𝐶�̅� (𝐷/𝐵)𝐶𝐷
′ − 𝐶�̅�

2𝐶�̅� 𝐶𝐿
′ + (𝐷/𝐵)𝐶�̅�

2𝐵𝐶�̅� 𝐵𝐶𝑀
′

] (1.37d) 

 
𝑪𝑎𝑒   =    −

𝜌𝑉𝐵

2
∙ [�̂�𝑞 𝟎⏟

(3𝑥1)
] (1.37e) 
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𝑲𝑎𝑒   =    
𝜌𝑉2𝐵

2
∙ [ 𝟎⏟

(3𝑥2)

(𝐷/𝐵)𝐶𝐷
′

𝐶𝐿
′

𝐵𝐶𝑀
′

] (1.37f) 

Equations 1.37a and 1.37c shows that the buffeting loads indeed can be divided into a mean, time–

invariant (static) part, and a zero–mean, fluctuating part. The static part is calculated from the system 

stiffness directly and treated independently of the fluctuating forces.  

The idea behind formulating the motion dependent contributions as 𝑲𝑎𝑒𝒓 and 𝑪𝑎𝑒�̇�, is simply 

because they consequently can be merged with the system stiffness–, and damping matrix, respectively, 

thus effectively changing the total stiffness and damping properties of the system. Hence, 𝑪𝑎𝑒 and 𝑲𝑎𝑒 

are called the aerodynamic damping–, and stiffness matrix. One can see that the name motion induced 

load effects may seem more appropriate to describe the phenomenon than simply just motion induced 

loads, because 𝑪𝑎𝑒 and 𝑲𝑎𝑒 will not be mathematically treated as explicit loading contributions in the 

dynamic response calculations in chapter 1.3.  

1.2.4 Improvements to buffeting load model 

1.2.4.1 Motivation 

The theory and calculations presented in chapter 1.2.3 is only a mathematical description of the 

aerodynamic forces acting on a generalized cross section with an arbitrary orientation, at an arbitrary 

time. Thus, apart from being linear, the formulation of the cross–sectional loads is not particularly 

specialized for a transformation into the frequency domain even though it was formulated and prepared 

for this future transformation. For this reason, it is according to Strømmen (2006, p. 96), “favourable to 

introduce two major improvements”.  

1.2.4.2 Flow induced dynamic loads 

The first improvement is as suggested by Strømmen (2006, p. 96), to let the flow induced dynamic loads, 

𝑩𝑞𝒗, be frequency dependent. Illustratively, Strømmens approach is to multiply the respective entries 

in �̂�𝑞, with “so–called cross–sectional admittance functions”, namely, 

 
�̂�𝑞,𝑖𝑗(𝜔)   =    �̂�𝑞,𝑖𝑗 ∙ 𝐴𝑖𝑗(𝜔)            where            {

𝑖 = 1,2,3 𝑜𝑟 𝑦, 𝑧, 𝜃
𝑗 = 1,2 𝑜𝑟 𝑢, 𝑤      

 (1.38) 

 

However, for the purpose of this thesis, a similar procedure is adopted, but the admittance functions are 

multiplied with the load coefficients directly, 

 𝐶𝑛(𝜔)    =    𝐶𝑛0
∙

1

(1+𝑎𝑛
𝜔𝐵

𝑉
)

𝑏𝑛
            where            𝐶𝑛   =    {𝐶�̅�,�̅�𝐿, 𝐶�̅�, 𝐶𝐷

′ , 𝐶𝐿
′ , 𝐶𝜃

′  (1.39) 

The values of 𝐶𝑛0
, 𝑎𝑛 and 𝑏𝑛 can be found in Appendix C and are of course specific to the cross section 

of the bridge girder in question, in this case, the Hardanger Bridge. As can be seen from equation 1.39, 

𝐶𝑛(𝜔) decreases from 𝐶𝑛0
 to zero as 𝜔 increases from zero to infinity. The motivation behind such a 

behaviour is according to Strømmen (2006, p. 97) to “filter off load contributions at high frequencies”. 
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1.2.4.3 Aerodynamic stiffness and –damping matrices – Aerodynamic derivatives 

The second improvement involves establishing a new set of entries in 𝑪𝑎𝑒 and 𝑲𝑎𝑒 which are more 

suitable in the formulated frequency domain framework. Unlike the flow induced dynamic loads, motion 

induced load effects turns out to be a modal phenomenon, and the shape of the functions which make 

up the entries in 𝑪𝑎𝑒 and 𝑲𝑎𝑒, the so–called aerodynamic derivatives, are best estimated through scaled 

wind tunnel tests where the modes they are associated with are under investigation. According to 

Strømmen (2010, p. 98), the aerodynamic derivates must be extracted as functions of �̂�𝑖 = 𝑉/(𝐵𝜔𝑖) 

because of “similarity requirements between model scale and full–scale conditions”. The formulation 

of 𝑪 𝑎𝑒 and 𝑲𝑎𝑒 is according to Strømmen (2010, p. 99), 

 𝑪𝑎𝑒   =    
𝜌𝐵2

2
∙ 𝜔𝑖(𝑉) ∙ �̂�𝑎𝑒          and          𝑲𝑎𝑒   =    

𝜌𝐵2

2
∙ (𝜔𝑖(𝑉))2 ∙ �̂�𝑎𝑒 (1.40a) 

where, 

 

�̂�𝑎𝑒   =    [

𝑃1
∗ 𝑃5

∗ 𝐵𝑃2
∗

𝐻5
∗ 𝐻1

∗ 𝐵𝐻2
∗

𝐵𝐴5
∗ 𝐵𝐴1

∗ 𝐵2𝐴2
∗

]        and        �̂�𝑎𝑒   =    [

𝑃4
∗ 𝑃6

∗ 𝐵𝑃3
∗

𝐻6
∗ 𝐻4

∗ 𝐵𝐻3
∗

𝐵𝐴6
∗ 𝐵𝐴4

∗ 𝐵2𝐴3
∗

] (1.40b) 

More specifically, it is the dimensionless functions 𝑃𝑘
∗ , 𝐻𝑘

∗  and 𝐴𝑘
∗  in equation 1.40b that is called 

the aerodynamic derivatives. Obviously, because they are extracted from wind tunnel tests, they also 

depend on the cross section in question and is specific to each considered case. For the purpose of this 

thesis and the considered Hardanger bridge, they are defined on the following form, 

 
𝐴𝐷𝑖   =    𝑝1�̂�𝑖

3 + 𝑝2�̂�𝑖
2 + 𝑝3�̂�𝑖 + 𝑝4   ,        {

𝐴𝐷 =  𝑃∗, 𝐻∗, 𝐴∗

 𝑖 = 1,2, … ,6
 (1.41a) 

Where 𝑝1 − 𝑝4 are constants and can be found in Appendix B. 

 
�̂�𝑖   =    

𝑉

𝐵 ∙ 𝜔𝑖(𝑉)
 (1.41b) 

Because the magnitude of the motion induced load effects increases with 𝑉, the eigenfrequencies of the 

system will consequently change with 𝑉 because the effective system stiffness changes. Therefore, 

iterations are required in order for the effective system stiffness and the eigenfrequencies to be in 

agreement with each other. However, as stated by Strømmen (2010, p. 100), “under normal 

circumstances, the effect of 𝑲𝑎𝑒  will only be of significant importance in the velocity region at or 

immediately below an instability limit (…) and the effects of the changes of 𝜔𝑖 with increasing 𝑉 to the 

determination of the aerodynamic derivatives are most often only of minor importance”. For the purpose 

of this thesis, the detection of any instability limits will not be given any attention, and the effect of an 

effective system stiffness that depends on 𝑉 is consequently neglected.  



 

15 

 

1.3 DYNAMIC RESPONSE CALCULATIONS 

1.3.1 Continuous system 

1.3.1.1 Motivation 

The system in question is formulated in a continuous format. The motivation behind this very choice 

can best be illustrated by suggesting the opposite. Namely, if a discrete format is chosen, a mesh of six 

degree–of–freedom beam elements would be given the role to approximate the structural system. The 

minimum number of beam elements is determined based on two major design limitations: 

1. The ability to represent a certain number of eigenmodes with a sufficient level of accuracy. 

2. The ability to represent the loading process across the bridge span with a sufficient level of 

accuracy, taking into account the nature of its expected shape–wise distribution. 

As explained by Strømmen (2006, p. 73), the number of elements needed to adequately describe the 

dynamic response is considerably smaller than the number of elements needed to accurately represent 

the loading process. Hence, for the purpose of a frequency domain buffeting response calculation, using 

a discrete system formulation represents both computational inefficiency and mathematical 

inconvenience.   

With this being said, an initial discrete formulation for the sake of calculating the eigenmodes might 

be highly efficient because of the relatively quick convergence rate that is usually associated with beam 

elements. The shape of the eigenmodes can be determined via finite Fourier series obtained by 

considering the discrete vectors of the relevant lengthwise degrees of freedom.  

 
Figure 1.6: Continuous mode shape components 

1.3.1.2 Formulation 

As mentioned in chapter 1.3.1.1, the mode shapes of a continuously formulated system take the 

form of continuous functions rather than relative displacement vectors, 

 

𝒓(𝑥, 𝑡)    =    {

𝑟𝑦(𝑥, 𝑡)

𝑟𝑧(𝑥, 𝑡)
𝑟𝜃(𝑥, 𝑡)

}    ≈   ∑ {

𝜑𝑖𝑦(𝑥)

𝜑𝑖𝑧(𝑥)

𝜑𝑖𝜃(𝑥)

}

𝑁𝑚𝑜𝑑

𝑖=1

𝜂𝑖(𝑡)    =    𝝓(𝑥)𝜼(𝑡) (1.42a) 

where, 
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 𝝓(𝑥)   =   [𝝋1(𝑥)   𝝋2(𝑥) ⋯ 𝝋𝑁𝑚𝑜𝑑
(𝑥)]     (1.42b) 

 𝜼(𝑡)   =   ⌊𝜂1(𝑡)   𝜂2(𝑡) ⋯ 𝜂𝑁𝑚𝑜𝑑
(𝑡)⌋

𝑇
 (1.42c) 

 

As with any linear system, mode orthogonality and thereby mode superposition applies. Clearly, 

equation 1.42a depend absolutely on these features. An important question is how many eigenmodes 

one must include in order to represent the behaviour of the dynamic system in a satisfactory manner. 

For a short bridge with high stiffness, this number may be limited to only a few, however, in the case of 

a long and slender suspension bridge, several more will have to be included.  

When a sufficiently numerous eigen–value solution is obtained, the dynamic equilibrium equations 

may be expressed in modal coordinates,  

 �̃�0�̈�(𝑡)   +   �̃�0�̇�(𝑡)   +    �̃�0𝜼(𝑡)   =    �̃�(𝑡) (1.43a) 

where, 

 �̃�0   =    𝑑𝑖𝑎𝑔[�̃�𝑖] (1.43b) 

 

�̃�0   =    𝑑𝑖𝑎𝑔[2𝜁𝑖�̃�𝑖𝜔𝑖] (1.43c) 

 

�̃�0   =    𝑑𝑖𝑎𝑔[�̃�𝑖𝜔𝑖
2] (1.43d) 

 

�̃�(𝑡)   =    ∫ 𝝓𝑇(𝑥)𝒒𝑡𝑜𝑡(𝑥, 𝑡)𝑑𝑥

𝐿𝑒𝑥𝑝

0

 (1.43e) 

 

where 𝒒𝑡𝑜𝑡(𝑥, 𝑡) in equation 1.57e corresponds to the fluctuating part of 𝒒𝑡𝑜𝑡(𝑥, 𝑡) in equation 1.51a. 

The subindices “0” in the characteristic matrices of the system simply denotes that the eigen–value 

solution from which they have been obtained is performed such that motion induced effects has zero 

contribution to their content.  

The motion dependent terms in 𝒒𝑡𝑜𝑡(𝑥, 𝑡) (equation 1.37a) might now, according to the purpose of 

their specific formulation, be merged with �̃�0 and �̃�0 to form the mean wind speed dependent effective 

system stiffness and damping matrices. The governing equations of motion now takes the following and 

final form, 

 �̃�0�̈�(𝑡)   +    [�̃�0 − �̃�𝑎𝑒]�̇�(𝑡)   +    [�̃�0 − �̃�𝑎𝑒]𝜼(𝑡)   =    �̃�𝑣(𝑡) (1.44a) 

where, 

 

�̃�𝑎𝑒   =    ∫ 𝝓𝑇(𝑥)𝑲𝑎𝑒𝝓(𝑥)𝑑𝑥

𝐿𝑒𝑥𝑝

0

 (1.44b) 
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�̃�𝑎𝑒   =    ∫ 𝝓𝑇(𝑥)𝑪𝑎𝑒𝝓(𝑥)𝑑𝑥

𝐿𝑒𝑥𝑝

0

 

 

(1.44c) 

 

�̃�𝑣(𝑡)    =    ∫ 𝝓𝑇(𝑥)𝑩𝑞𝒗(𝑥, 𝑡)𝑑𝑥

𝐿𝑒𝑥𝑝

0

 

 

(1.44d) 

1.3.2 Part 1: Cross spectral density of structural response components  

The supreme goal of the dynamic response calculations is to obtain an expression for the variance of the 

structural displacement components, 𝑟𝑦, 𝑟𝑧, 𝑟𝜃 at the desired position 𝑥 = 𝑥𝑟, usually at the midspan. As 

a convenient part of the solution strategy shown in the following, one might just as well define the 

covariance between all displacement components. This is done by introducing a so–called covariance 

matrix, 

 

𝑪𝒐𝒗𝑟𝑟(𝑥𝑟)   =    [

𝜎𝑟𝑦
2 𝐶𝑜𝑣𝑟𝑦𝑟𝑧

𝐶𝑜𝑣𝑟𝑦𝑟𝜃

𝐶𝑜𝑣𝑟𝑧𝑟𝑦
𝜎𝑟𝑧

2 𝐶𝑜𝑣𝑟𝑧𝑟𝜃

𝐶𝑜𝑣𝑟𝜃𝑟𝑦
𝐶𝑜𝑣𝑟𝜃𝑟𝑧

𝜎𝑟𝜃
2

] (1.45) 

Fourier component orthogonality renders, 

 

𝑪𝒐𝒗𝑟𝑟(𝑥𝑟)   =    ∫ 𝑺𝑟𝑟(𝑥𝑟, 𝜔)𝑑𝜔  =  

∞

0

∫ [𝑆𝑟𝑖𝑟𝑗
]

∞

0

𝑑𝜔 ,     (𝑖, 𝑗)  =  𝑦, 𝑧, 𝜃 (1.46) 

Because the governing equations of motion is linear, it is possible to establish a linear relation 

between the cross spectral density matrix, 𝑺𝑟𝑟(𝑥𝑟, 𝜔), and the cross spectral density of the modal loads. 

This starts with considering Fourier series expansions of the structural displacement components and 

the modal coordinates according to equation 1.16, 

𝒓(𝑥, 𝑡)   =    ∑ 𝒂𝑟(𝑥, 𝜔)𝑒𝑖𝜔𝑡 ,       

∞

𝜔=0

𝒂𝑟(𝑥, 𝜔)   =    {

𝑎𝑟𝑦
(𝑥, 𝜔)

𝑎𝑟𝑧
(𝑥, 𝜔)

𝑎𝑟𝜃
(𝑥, 𝜔)

} (1.47a) 

𝜼(𝑡)    =   ∑ 𝒂𝜂(𝜔)𝑒𝑖𝜔𝑡

∞

𝜔=0

, 𝒂𝜂(𝜔)   =    ⌊𝑎𝜂1
(𝜔) ⋯ 𝑎𝜂𝑁𝑚𝑜𝑑

(𝜔)⌋
𝑇
 (1.47b) 

For the purpose of this procedure, the only appropriate thing will be to take these Fourier expansions 

over the same, infinite time period 𝑇, hence the sums will consequently be performed over the same 

values of 𝜔. Hence, when equations 1.47a and 1.47b are inserted into equation 1.42a, the following must 

be true for every value of ω, 

 𝒂𝑟(𝑥, 𝜔)   =    𝝓(𝑥) 𝒂𝜂(𝜔) (1.48) 
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Equation 1.24 gives the definition of the covariance between the structural displacement components 

which indeed are the entries of 𝑺𝑟𝑟(𝑥𝑟, 𝜔). On a matrix format, it is formulated as, 

𝑺𝑟𝑟(𝑥𝑟, 𝜔)    = 

= 

= 

= 

lim
𝑇→∞

 
1

𝜋𝑇
 (𝝓(𝑥) 𝒂𝜂(𝜔))

∗
(𝝓(𝑥) 𝒂𝜂(𝜔))

𝑇
 

lim
𝑇→∞

 
1

𝜋𝑇
 (𝝓∗(𝑥)𝒂𝜂

∗ (𝜔)) (𝒂𝜂
𝑇(𝜔)𝝓𝑇(𝑥)) 

𝝓(𝑥) ( lim
𝑇→∞

 
1

𝜋𝑇
 𝒂𝜂

∗ (𝜔) 𝒂𝜂
𝑇(𝜔)) 𝝓𝑇(𝑥) 

𝝓(𝑥) 𝑺𝜂𝜂(𝜔) 𝝓𝑇(𝑥) 

 

 

(1.49) 

Of course, 𝝓∗(𝑥) = 𝝓(𝑥) because its entries are real.  

 Now, the same procedure will be adopted to 𝑺𝜂𝜂(𝜔) and the governing equations of motion as 

defined in equation 1.44a. Differentiating 𝜼(𝑡) in equation 1.47b with respect to time is trivial because 

𝒂𝜂(𝜔) is time–invariant, hence the expressions for �̇�(𝑡) and �̈�(𝑡) are simply constant multiples of 𝜼(𝑡). 

The Fourier components of equation 1.44a then take the following form, 

 𝒂𝜂(𝜔)    =    �̂�𝜂(𝜔) 𝒂�̂�𝑣
(𝜔) (1.50a) 

where, 

 
�̂�𝜂(𝜔)    =    [𝑰 − 𝜿𝑎𝑒 − 𝑑𝑖𝑎𝑔 [(

𝜔

𝜔𝑖
)

2

] + 2𝑖 ∙ 𝑑𝑖𝑎𝑔 [
𝜔

𝜔𝑖
] ∙ (𝜻 − 𝜻𝑎𝑒)]

−1

 (1.50b) 

 𝒂�̂�𝑣
(𝜔)   =    �̃�0

−1𝒂�̃�𝑣
(𝜔) (1.50c) 

 𝜿𝑎𝑒    =    �̃�0
−1�̃�𝑎𝑒 (1.50d) 

 𝜻𝑎𝑒   =    
1

2
∙ 𝑑𝑖𝑎𝑔[𝜔𝑖] ∙ �̃�0

−1�̃�𝑎𝑒 (1.50e) 

 𝜻  =    𝑑𝑖𝑎𝑔[𝜁𝑖] (1.50f) 

 Analogous to equation 1.48 and 1.49 the relationship between 𝑺𝜂𝜂(𝜔) and 𝑺�̂�𝑣
(𝜔) emerges, 

 𝑺𝜂𝜂(𝜔)    =    �̂�𝜂
∗ (𝜔) 𝑺�̂�𝑣

(𝜔) �̂�𝜂
𝑇(𝜔) (1.51) 

Equation 1.46 and 1.50 finishes the calculation of the relationship between the cross spectral density 

matrix of the structural loads and the covariance matrix of the structural displacement components,  
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𝑪𝒐𝒗𝑟𝑟(𝑥𝑟)    =    𝝓(𝑥𝑟) [∫ �̂�𝜂
∗ (𝜔) 𝑺�̂�𝑣

(𝜔) �̂�𝜂
𝑇(𝜔)𝑑𝜔

∞

0

] 𝝓𝑇(𝑥𝑟) (1.52) 

1.3.3 Part 2: Formulation of cross spectral density of modal loads 

Next up lies the establishment of the cross spectral density matrix for the structural loads, 𝑺�̂�𝑣
(𝜔), 

present in equation 1.52. Analogous to equation 1.48, the Fourier coefficients of 𝑺�̂�𝑣
(𝜔) will then be 

given by, 

 

𝒂�̂�𝑣
(𝑥, 𝜔)    =   �̃�0

−1 ∫  𝝓𝑇(𝑥)𝑩𝑞𝒂𝑣(𝑥, 𝜔)𝑑𝜔

∞

0

 ,       𝒂𝑣(𝑥, 𝜔)   =    {
𝑎𝑢(𝑥, 𝜔)

𝑎𝑤(𝑥, 𝜔)
} (1.53) 

As per definition, 

 
𝑺�̂�𝑣

(𝜔)    =   lim
𝑇→∞

 
1

𝜋𝑇
 �̃�0

−1 [ ∫  𝝓𝑇𝑩𝑞𝒂𝑣
∗ 𝑑𝑥

𝐿𝑒𝑥𝑝

0

] [ ∫ 𝒂𝑣
𝑇𝑩𝑞

𝑇𝝓𝑑𝑥

𝐿𝑒𝑥𝑝

0

] �̃�0
−𝑇 (1.54) 

To advance, a neat and clever reformulation of equating 1.54 is applied. This goes as follows. Since the 

matrix integrands inside the brackets in equation 1.54 is to be evaluated over the same integration 

domain, and then multiplied together, they may instead be multiplied together first and then integrated 

over the area defined by a square with sides 𝐿𝑒𝑥𝑝, namely, 

𝑺�̂�𝑣
(𝜔)  = �̃�0

−1 [ ∫ ∫  𝝓𝑇(𝑥1)𝑩𝑞 ( lim
𝑇→∞

 
1

𝜋𝑇
 𝒂𝑣

∗ (𝑥1, 𝜔)𝒂𝑣
𝑇(𝑥2, 𝜔)) 𝑩𝑞

𝑇𝝓(𝑥2)𝑑𝑥1𝑑𝑥2

𝐿𝑒𝑥𝑝

0

𝐿𝑒𝑥𝑝

0

] �̃�0
−𝑇 (1.55) 

The convenience of expressing equation 1.54 as equation 1.55 is obvious because the cross spectral 

density matrix of the wind field turbulence components, 𝑺𝑣(∆𝑥, 𝜔), consequently may be introduced, 

𝑺�̂�𝑣
(𝜔)  = �̃�0

−1 [ ∫ ∫  𝝓𝑇(𝑥1)𝑩𝑞 𝑺𝑣(∆𝑥, 𝜔)𝑩𝑞
𝑇𝝓(𝑥2)𝑑𝑥1𝑑𝑥2

𝐿𝑒𝑥𝑝

0

𝐿𝑒𝑥𝑝

0

] �̃�0
−𝑇 ,    ∆𝑥  =    |𝑥1 − 𝑥2| (1.56) 

According to Strømmen (2006, p. 132), the spectral density between the components 𝑢 and 𝑤 can be 

assumed to be zero. Thus, 𝑺𝑣(∆𝑥, 𝜔) takes the following form: 

 𝑺𝑣(∆𝑥, 𝜔)    =    𝑑𝑖𝑎𝑔[𝑆𝑢𝑢(∆𝑥, 𝜔)  ,   𝑆𝑤𝑤(∆𝑥, 𝜔)] (1.57a) 

where 𝑆𝑛𝑛(∆𝑥, 𝜔) can be defined from equation 1.28, 

 𝑅𝑒[𝑆𝑛𝑛(∆𝑥, 𝜔)]    =    𝑆𝑢(𝜔) ∙ �̂�𝑜𝑛𝑛(∆𝑥, 𝜔) ,       𝑛 = 𝑢, 𝑤     (1.57b) 

Normal practice is to normalize 𝑩𝑞 can be normalized as in equation 1.37d, and 𝑺𝑣(∆𝑥, 𝜔) as, 
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𝑺𝑣(∆𝑥, 𝜔)    =    𝑉2 ∙ 𝑰𝑣

2 �̂�𝑣(∆𝑥, 𝜔)  ,             𝑰𝑣
2    =    𝑑𝑖𝑎𝑔 [(

𝜎𝑢

𝑉
)

2

, (
𝜎𝑤

𝑉
)

2

] (1.58) 

For the purpose of this thesis, 𝐿𝑒𝑥𝑝 is set equal to 𝐿 and then the dimensionless longitudinal coordinate 

𝑥𝑖 = 𝑥𝑖/𝐿 may be introduced.  

 Because �̃�0
−1is a diagonal matrix, the matrix multiplication �̃�0

−1𝑨�̃�0
−𝑇is equal to dividing every 

row of 𝑨 by the corresponding value �̃�0,𝑖 and as well as every column by �̃�0,𝑗, or equivalently every 

entry of 𝑨  by �̃�0,𝑖 ∙ �̃�0,𝑗 =  �̃�𝑖𝜔𝑖
2 ∙ �̃�𝑗𝜔𝑗

2 (𝑨 is here simply used as an arbitrary notation for the contents 

within the brackets in equation 1.56). Thus, the entry wise contents of 𝑺�̂�𝑣
(𝜔) may more conveniently 

be expressed by, 

                                 𝑆�̂�𝑣,𝑖�̂�𝑣,𝑗
(𝜔)  = (

𝜌𝑉2𝐵𝐿

2
)

2

∙
1

�̃�𝑖𝜔𝑖
2 ∙ �̃�𝑗𝜔𝑗

2
∙ 𝐽𝑖𝑗

2           (1.59a) 

where, 

 

    𝐽𝑖𝑗
2    =    ∫ ∫ 𝝋𝑖

𝑇(�̂�1)�̂�𝑞 [𝑰𝑣
2 �̂�𝑣(∆�̂�, 𝜔)]�̂�𝑞

𝑇𝝋𝑗(�̂�2)𝑑𝑥1𝑑𝑥2

1

0

1

0

 (1.59b) 

and where 𝐽𝑖𝑗
2  is called the joint acceptance function.  

1.4 MEAN RESPONSE 

The static mean response is obtained by inserting equation 1.37e into equation 1.43e to form the static 

modal load vector, �̅�. The mean response vector, �̅�, is obtained by dividing the mean load vector by the 

total system stiffness and subsequently multiplying with the modeshape matrix, namely, 

�̅�(𝑥)   = 𝜱(𝑥) ∙ [𝑰 − 𝜿𝑎𝑒]−1 ∙ 𝑲0
−1 ∙

𝜌𝑉2𝐵𝐿

2
∙ ∫ 𝜱𝑇(𝑥)𝑑𝑥

1

0

 (1.60) 

1.5 DISTRIBUTION OF MAXIMUMS 

From a design perspective, what level of maximum response one might expect during a time period of 

a given length is highly interesting. Equation 1.52 only gives the variance of the structural response, but 

since the response will be stochastic, its maximum value will follow a certain probability distribution. 

Strømmen (2010, ch. 2.3 – 2.4) estimates this distribution together with its expected value and variance 

and a brief summary of the steps involved are presented in the following. First, an expression for the 

average frequency for which a certain threshold of structural response, 𝑎, is crossed, is established. If a 

stochastic structural response function 𝑛(𝑡) is considered, it is given by, 
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𝑓𝑛(𝑎)    =    

1

2𝜋
∙

𝜎�̇�

𝜎𝑛
∙ 𝑒𝑥𝑝 [−

1

2
(

𝑎

𝜎𝑛
)

2

]     =    𝑓𝑛(0) ∙ 𝑒𝑥𝑝 [−
1

2
(

𝑎

𝜎𝑛
)

2

]     (1.61) 

where 𝑓𝑛(𝑎) is the average up–crossing frequency for level 𝑎, and 𝜎𝑛 and 𝜎�̇� is the standard deviations 

of structural response and velocity of component 𝑛 , respectively. 𝑓𝑛(0)  is the so–called zero up–

crossing frequency and is equal to 𝜎�̇�/(2𝜋𝜎𝑛). 𝑓𝑛(𝑎) is intuitively equal to 𝑓𝑛(0) when 𝑎 = 0. 𝜎�̇� can 

be determined together with 𝜎𝑛 simply by exploiting that 𝑆�̇�(𝜔) = 𝜔2 ∙ 𝑆𝑛(𝜔) applies for the derivative 

of 𝑛(𝑡) (Strømmen, p. 43). The term 𝜔2 can thus simply be added as a factor of the integrand inside the 

brackets in equation 1.52 when obtaining 𝑆�̇�(𝜔). Also, a requirement for the validity of equation 1.61 

is that 𝑛(𝑡) and �̇�(𝑡) follow a Gaussian distribution, and that the process 𝑛(𝑡) is relatively narrow 

banded such that for each zero–up crossing event, there exist a corresponding peak event. 

The connection to the distribution of maximums starts with introducing, 

 𝜅   =   𝑓𝑛(𝑎) ∙ 𝑇 (1.62) 

 

where 𝜅 is equal to the number of times threshold 𝑎 is crossed during the time period, 𝑇. If 𝑎 is set equal 

to 𝑛𝑚𝑎𝑥, 𝜅 should on average be equal to unity, signalizing a single occurrence within 𝑇. Further, 𝜅 is 

assumed to have a CDF equal to 𝑒𝑥𝑝(−𝜅)  and the PDF of 𝑛𝑚𝑎𝑥  can thus be calculated from 

differentiating the CDF numerically with respect to 𝑛𝑚𝑎𝑥. The mean value and variance of 𝑛𝑚𝑎𝑥 can 

also be calculated numerically using the PDF. Strømmen does however provide approximate analytic 

expressions for the mean and variance of 𝑛𝑚𝑎𝑥 and they are given by, 

�̅�𝑚𝑎𝑥   = 𝜎𝑛 ∙ [√2 ∙ ln (𝑓𝑛(0) ∙ 𝑇) +
0.5772

√2 ∙ ln (𝑓𝑛(0) ∙ 𝑇)
] (1.63) 

 

𝜎𝑛𝑚𝑎𝑥
2   = 𝜎𝑛

2 ∙
𝜋2

12 ∙ ln (𝑓𝑛(0) ∙ 𝑇)
 (1.64) 

 

 A requirement for the validity of equations 1.63 and 1.64 is that 𝑛(𝑡) is “fairly broad banded” 

(Strømmen, p. 29), thus one must interpret whether one can have simultaneous validity of equations 

1.61, 1.63 and 1.64. Also, since only the turbulence components are considered in this derivation, the 

value of the mean response must be added in order to obtain the measure of distribution the maximum 

of total structural response.  
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2 NON–STATIONARY BUFFETING THEORY 

2.1 INTRODUCTION TO ARISING ISSUES OF NON–STATIONARITY 

Generally, every statistical property of the wind field will be time dependent since weather eventually 

changes with time. However, if these changes progress slowly enough, the wind field may consequently 

be considered as being stationary over a relatively short time window. A problem arises however when 

the assumption of stationarity is challenged when one might have reason to believe that one or more of 

either the mean wind speed, variance and time scales changes from one level to another within the course 

of a recording period as schematically illustrated in figure 2.1.  

 
Figure 2.1: Presumed non–stationary arbitrary wind speed recordings 

 When stationarity is assumed, the convenience of the frequency domain methodology presented in 

chapter 1 is obvious because a single presumed stationary wind speed recording does not per definition 

represent anything unique in a stochastic sense. What is important is its statistical characteristics, namely 

its PSD function, which indeed is common for the infinitely large family of realizations it represents.  

Adopting an equal approach when considering a non–stationary wind speed recording would 

initially be a mere attempt to somehow foresee what storm is next to hit our structure in question. Also, 

embedded into the wording of the term “non–stationary” is really the fact that no non–stationary signal 

is identical because they all generally exhibit their own specific non–stationary characteristics. Hence, 

in order for the convenience of the frequency domain methodology to be utilized, one must define a 

separation between what can be considered as unique to the non–stationary recording in question and 

what can be considered as being stochastic. Consequently, the fundamental building–block of the non–

stationary buffeting theory is letting the mean wind speed be time–dependent, and the corresponding 

(remaining) turbulence components to be described by an evolutionary stochastic process. The key 

challenge in this non–stationary adaptation of the well–established stationary frequency domain 

buffeting theory framework is to determine exactly what can be considered as trends and randomness 

respectively, and also how to define and implement the presumed trends in a wise and appropriate 

manner.  
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2.2 TIME DEPENDENT VERTICAL MEAN WIND SPEED 

The initial step when taking on the task of establishing the per now well mentioned non–stationary 

frequency domain buffeting theory is introducing a minor adaptation to the stationary–specific 

formulation of the wind field coordinate system. Its orientation as presented in chapter 1.1.5 is defined 

directly from the mean wind speed direction such that any perpendicular wind speed component will 

have zero mean value. For the purpose of treating non–stationary features a time–dependent vertical 

mean wind speed, �̅�(𝑡), is introduced. Such is physically reasonable even for a bridge structure over 

flat terrain where the average vertical mean wind speed will be close to zero because of air flow 

compatibility, nevertheless, some variations over a shorter time interval will surely be present. 

 As a consequence, the same definition of the orientation the wind field coordinate system is now 

theoretically invalid since it is now time dependent. However, the vertical mean wind speed, �̅�, has a 

magnitude must less than the horizontal mean wind speed, 𝑉, such that what from now on will be 

denoted as 𝑉  is simply the true and mathematically correct mean wind speed 𝑉  projected onto a 

horizontal line, perpendicular to the bridge girder. Because two flow components now have a time–

varying mean subcomponent, the time–varying means of 𝑈 and 𝑊 is from now on denoted by �̅� and 

�̅�, respectively. Equation 1.2 takes thus the following form, 

𝑈   = 

𝑣   = 

𝑊  = 

�̅�(𝑡) + 𝑢(𝑥, 𝑡) 

𝑣(𝑥, 𝑡) 

�̅�(𝑡) + 𝑤(𝑥, 𝑡) 

 

(2.1) 

 
Figure 2.2: Non–stationary flow–coordinate system formulation 

With the addition of �̅� as an extra component to the vertical flow axis, the calculations leading up to 

the fully expanded version of equation 1.31 must be performed once again with �̅� included. A brief 

summary of the calculations leading up to the now updated versions of equation 1.37 can be found in 

Appendix A. The only implication the inclusion of �̅� has on equation 1.37 that another term is added 

to the expression of the mean wind loading �̅� in equation 1.37c, which now takes the following form, 
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  �̅�   =   {

�̅�𝑦

�̅�𝑧

�̅�𝜃

}    =   
1

2
𝜌𝐵 ∙ [�̅�2 ∙ {

(𝐷/𝐵)𝐶�̅�

𝐶�̅�

𝐵𝐶�̅�

} + �̅��̅� ∙ {

(𝐷/𝐵)𝐶𝐷
′ − 𝐶�̅�

(𝐷/𝐵) + 𝐶𝐿
′

𝐵𝐶𝑀
′

}] (2.2) 

With reference to the calculations in Appendix A.1, it should be mentioned that excluding the terms 

2�̅�𝑤 and −2�̅��̇�𝑧 from equation A.3 is not because of a linearity violation, but rather for simplicity and 

an attempt to omit contributions that is of least importance but will give a disproportionally large 

complexity contribution to the buffeting theory as a whole. Excluding such contributions leaves us only 

with an added contributor to the mean structural loads but this does not represent any mathematical 

inconvenience as shall be shown in chapter 2.3. In fact, it is rather of practical convenience since 

components 𝑈 and 𝑊 now can be treated equally as also will be shown in the following.  

2.3 EXTRACTION OF THE MEAN WIND SPEED 

In literature, several different methods for extracting an appropriate mean wind speed is encountered. 

Extracting trends from signals and processing signals in general is nothing unique to wind engineering 

but rather a large field of study in itself. Hence, some of the methods used in literature to extract trends 

from non–stationary wind speed recordings are not designed with this specific purpose in mind or 

especially to fit in with the other steps making up our non–stationary frequency domain buffeting 

response framework, even though they are highly capable of performing this task exclusively. Namely, 

one must have in mind that the supreme goal of this thesis is to establish a theoretical framework which 

has the ability to predict the response of a structure onto which a storm induces dynamic loads. Hence, 

the method of choice for extracting the mean wind speed must indeed produce a result that is 

mathematically convenient when utilized in the subsequent steps of our model. Extracting the mean 

wind speed is simply a single, yet very important step on the way towards an appropriate solution of the 

dynamic problem in question. 

A particular method that fits the above description well is the so–called discrete wavelet transform 

(DWT). Wang et al. (2016); Ma, Xu and Wang (2016); Tao, Wang and Wu (2016); Wang and Kareem 

(2005) uses the DWT as a part of modelling non–stationary winds. The fact that one must select from a 

variety of wavelets to be used in the DWT, and that modelling the wind field itself is not the exclusive 

goal in this thesis makes the DWT somewhat over–complicated in the context of this thesis despite 

having highly appreciated capabilities in for instance image processing and sound or radio signal 

denoising.  

With the desired property to conveniently fit in with the rest of the mathematical framework 

defining our non–stationary frequency domain buffeting response model, three unique methods are in 

the following taken into consideration. The three methods are presented in chapters 2.3.1 – 2.3.3. With 

all three methods of course being adaptive with respect to how precisely the resulting deterministic trend 

should resemble the non–stationary wind speed recording itself, a wise level of such adaptation is key. 

Obviously, an absolute requirement when defining the mean wind speed is that the resulting time–

varying mean modal loads (equation 2.2) produces a strictly quasi–static mean response, otherwise 

violating the key principle of the buffeting model, namely separating deterministic trends and stochastic 

processes. 

However, assuring a quasi–static mean response is alone not sufficient because the square of the 

mean wind speed is also present as a factor in the expression for the variance of the modal loads in 

equation 1.59. Another key property of the stationary frequency domain buffeting response framework 

is that because input is presumed stationary, the homogeneous solution of the governing differential 
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equations will be damped out. On the contrary, if the frequency–wise distribution of variance in the 

input changes with time, as will generally be the case with a non–stationary wind field, one cannot 

assume the now continuously changing homogeneous solution to be damped out. What will effectively 

happen is that the dynamic system will go through a “transition phase” when settling from one level of 

response to the next resulting from the time–varying characteristics of the input. Such behaviour is 

labelled transient effects and cannot be described by the frequency domain framework that is presented 

in this thesis as the output at any particular moment in time is defined directly from the input at the same 

moment in time.  

Nevertheless, the inertia and dynamic properties of the structure at hand can be taken into 

consideration together with an appropriate level of adaptation in the mean wind speed extraction method 

such that the structure in question will remain in a close to quasi–stationary state of equilibrium such 

that transient effect from winds speed recordings with not too violent non–stationary features is not 

disproportionally large. Such a treatment will be covered in chapter 3.7 by time domain simulations. 

In the following, the workings of the three extraction methods are presented and illustratively 

applied to a generated arbitrary non–stationary wind speed recording displayed in figure 2.3. 

 
Figure 2.3: Arbitrary non–stationary wind speed recording 

The signal in equation 2.3 is generated from a von Kármán spectrum with 𝑉 = 20 m/s, 𝐼𝑢 = 0.16 

and 𝐿𝑢
𝑦

 = 162 m to which a linear function and a Gaussian probability density function is added as to 

represent some non–stationary trends. The magnitude of the turbulence is also scaled with a factor 

proportional to the sum of these two added trends to resemble the fact that the variance usually increases 

with the mean wind speed. 

2.3.1 Weighted moving average method – WMAM 

The simplest and least technical method possible for extracting the mean wind speed is by the means of 

a moving average. Hu, Xu and Huang (2013) uses this method to extract a mean wind speed that is later 

used in dynamic response calculations on the Stonecutters Bridge in Hong Kong. It is simply given by, 

 

�̅�(𝑡)   =     
1

2𝑇𝐴
∙ ∫ 𝑈(𝑡 + 𝜏) 𝑑𝜏

𝑇𝐴

−𝑇𝐴

 (3.3) 

Obviously, the average is centralized such that no time–lag effects will be present.  

Because �̅�(𝑡) is a factor in the expression for the time–varying variance of the structural loads, a 

weighted average version of equation 2.3 is instead used with the purpose being of obtaining a smoother 

curve for �̅�(𝑡) when 𝑇𝐴 is relatively short. The chosen weighting function is simply a parabola which is 

equal to zero at |𝜏| = 𝑇𝐴 and unity at 𝜏 = 0. When using a discrete format to calculate �̅�(𝑡) from a 
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discrete time–series, equation 2.3 takes the form of equation 2.4, having also normalized the weighting 

factors so that their sum is unity, 

 

�̅�(𝑡)   =     ∑ 𝑈(𝑡 + 𝑖𝛥𝑡) ∙ 𝑤𝑖

𝑖=𝑁

𝑖= −𝑁

 (2.4) 

Ma, Xu, Wang (2016) uses a similar procedure when calculating time–varying variance of a non–

stationary turbulence component with the use of the WMAM, however with a Gaussian PDF curve as 

weights because of their different particular purpose and context.   

Figure 2.4 illustrates the behaviour of the WMAM by setting 𝑇𝐴 to 𝑇𝐴 = {1,2,5} min. The Fourier 

spectrum of the resulting turbulence component is also presented so it is visible what the WMAM is 

able to eliminate from 𝑈(𝑡) frequency–wise. Finally, in order for equation 3.4 to be defined on the entire 

length of the recording, the recording itself is only a subset of a longer duration “parent recording” from 

which data can be collected when performing different types of time averaging processes on the 

extremities of the subset recording. 

 

Figure 2.4: WMAM for extracting mean wind speed 

 The scatter visible in the corresponding spectrum data in figure 2.4 forces us to interpret what 

stochastic processes the respective resulting turbulence components represents. Because of the scatter 

itself, a smooth curve is an absolute requirement when performing response calculations due to sharp 

and prominent peaks of the modal frequency response matrix (equation 1.50b) forming around the 

eigenfrequencies. If adopting the Kaimal or von Kármán formulae to the spectrum data via a least square 

fit over the entire frequency axis, unfavourable results might arise in the lower portion of the frequency 

axis. As can be seen from the spectrum data in figure 2.4, the shape of the lowest most portion of the 

frequency axis seem to depend on 𝑇𝐴. Therefore, this effect must be taken into consideration when 

adopting a Kaimal or von Kárman curve fit to the spectrum data, together with the domain of definition 

of such a curve. The advantage with the WMAM is however, as will be shown in chapters 2.4.3.1 and 

2.4.4.1, that also a weighted moving average is used when determining the time–varying variance of the 
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turbulence component of the recording. This is convenient when adapting 𝑇𝐴 to the given the situation 

at hand. 

2.3.2 Empirical mode decomposition – EMD 

Similar to the DWT, the empirical mode decomposition (EMD) which was first proposed by Huang 

et al. (1998) is excellent at extracting a trend from a nonstationary signal, however it was established as 

an attempt to provide time–varying spectral content from non–stationary signals with a higher level of 

accuracy than what was possible at the time via the well–known Fourier transform. The proposed 

method called the Hilbert–Huang Transform (HHT) performs Hilbert spectral analysis (HSA) on the 

individual intrinsic mode functions (IMFs) obtained directly from the EMD.  

The mathematics behind the EMD is also fairly simple and it is similar to the Fourier transform 

because it decomposes a signal into oscillatory functions – IMFs. What is new is however that the IMFs 

are not harmonic functions but rather curves with time–varying frequency and amplitude. Consequently, 

a far less number of components is needed to resemble a signal using the EMD than the Fourier 

transform, which surely is of great convenience given the context within it was designed to operate but 

for the purpose of this thesis, this very fact might be the Achilles’ heel of the EMD since the available 

domain of adaptation is quite limited.  

Thankfully, MATLAB R2018a features for the first time the built–in function emd which extracts 

IMFs from an arbitrary signal given a certain tolerance level. If the generated non–stationary wind speed 

recording in figure 2.3 again is considered, the 10 IMFs that the MATLAB function emd in this case 

produces and the residual function are shown in figure 2.5. 

 

Figure 2.5: Intrinsic mode functions (IMFs) of 𝑈(𝑡) 

 From IMF no. 10 and down the oscillations quickly become too rapid to be suitable as components 

of the mean wind speed. In case of the Hardanger bridge which has a fundamental period of 19.6 

seconds, 91.7 corresponding cycles of this mode will take place within the 30–minute duration of the 

recording now in question. This mode does also have a damping ratio of 0.005 and without any further 

calculations, a mere qualified guess is therefore that the absolute lowest IMF that can be included in the 
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extraction of the mean wind speed in the case of the Hardanger bridge, is IMF no. 8. Figure 2.6 shows 

the extracted mean as a sum of the last 3 IMFs, last 2 IMFs and the last IMF plus the residual together 

with the respective corresponding spectrum for the remaining turbulence components.  

 
Figure 2.6: EMD for extracting mean wind speed 

The results of the EMD looks much like the results from the WMAM with the somewhat arbitrarily 

chosen values of 𝑇𝐴. However with the WMAM, 𝑇𝐴 can be chosen from a practically infinitely fine mesh 

giving it much greater flexibility when it comes to adaptation. Also, much like the WMAM, the EMD 

seems to lack consistency when it comes to the behaviour of the lowest–most portion of the spectrum 

data. Nevertheless, such behaviour does not necessarily represent a big problem in practice since the 

𝑇𝐴–dependent behaviour of this portion only affects a very limited number of frequency components, 

thus potentially having only a small impact compared to the otherwise consistent shape of the spectrum 

data.   

2.3.3 Incomplete Fourier expansion – IFE 

This proposed method is really as simple as its given name suggests, namely to perform a Fourier series 

expansion of the wind speed recording only including components up to a certain frequency. 

Determining this very frequency limit is obviously the method of adaptation in itself, and it will depend 

on the dynamic properties of the structure at hand and will be covered in chapters 3 and 4. 

Apart from its simplicity, this method has one major advantage compared to the previous two which 

is that the mean wind speed and the spectrum is defined via the same mathematical tool, namely the 

Fourier transform. As with the WMAM and EMD three levels of adaptation is considered, now 

expressed as a certain fraction of the fundamental frequency of the Hardanger bridge, 𝜔1 = 0.32 rad/s.  

An important thing to have in mind when adopting the IFE is that all Fourier components of course 

are periodic on the interval onto which they are obtained. Thus, when using an IFE one should preferably 

perform it on the parent recording from which our withdrawn subset recording originates. This is 

especially important with an IFE using few components because the corresponding “commissioning 
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phase” of the extracted curve will be of substantial length if the magnitude of the parent signal starts and 

ends at different levels (ref. the sawtooth curve).  

 

Figure 2.7: IFE for extraction of mean wind speed. The vertical blue line represents 𝜔𝑚𝑎𝑥. 

 By first glance, all three presented methods seem to produce appropriate curves that resemble some 

sort of trend from the non–stationary data, given a user–specified level of precision. The interesting 

aspect is therefore even though their respective shapes look relatively similar, the turbulence component 

spectrum they produce display relatively different characteristics. When looking at the spectrums 

provided by the IFE in particular, the obvious difference from the WMAM and EMD is that there is a 

sharp and definite change in characteristics in the spectral content below and above the highest included 

frequency in the IFE, 𝜔𝑚𝑎𝑥. Specifically, the spectral magnitude below 𝜔𝑚𝑎𝑥 seems to be well–behaved 

and scatter–free and these properties seem also to be independent of 𝜔𝑚𝑎𝑥 itself. This comes as no big 

surprise since the Fourier transform is used both to extract the mean and to produce the resulting 

spectrum of the remaining turbulence component, effectively subtracting frequency content from 𝑈 and 

adding it to �̅� . Hence, the spectral region below 𝜔𝑚𝑎𝑥  contains nothing but “left–overs” from an 

extraction process where the frequency settings used to obtain the spectrum is not equal to the settings 

used to extract the mean wind speed due to the subset–, and parent recording having different lengths. 

(ref. equation 1.6). Consequently, this portion of the spectrum does not have zero magnitude but it can 

simply by neglected because of its magnitude being relatively low compared to the region just above 

𝜔𝑚𝑎𝑥, and because of its very narrow domain of definition along the frequency axis.  

The advantage of using the IFE is namely because the numerical integration procedure required to 

solve a time dependent version of equation 1.52 can be performed by fitting a Kaimal or von Kármán 

curve (equations 1.19 – 1.21) to the portion of the spectrum above ωmax and let integration start from 

here. Such is also neat and tidy because an intuitive mathematical separation between what can be 

regarded as deterministic (time varying mean) and stochastic (turbulence) is clearly defined.  

Finally, it should be mentioned that because the signal in figure 2.3 that was used as a tool to 

illustrate the three methods of extracting the mean wind speed is generated from a stationary spectrum 

to which arbitrary non–stationary trends are added, the resulting spectral data in figures 2.4, 2.6 and 2.7 
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is therefore quite well–behaved. However, the purpose of chapters 2.3.1 – 2.3.3 was to illustrate the 

workings and central features of the three methods and their method of formulation, and no real–life 

recording is needed for this categoric information to be provided. Nevertheless, spectral data from real–

life recordings will generally be more scattered and somewhat less well–behaved when it comes to 

fitting an appropriate trend function onto it, but the behaviour of the WMAM, EMD and IFE will then 

be categorically similar to what was shown in chapters 2.3.1 – 2.3.3.  

2.3.4 Selecting mean wind speed extraction method 

Generally, there is no clear rule that determines which one of the three methods to adopt in the dynamic 

response calculations. All three methods are mutually indistinguishable when it comes to the resulting 

spectral content of the turbulence component for higher frequencies because only a low frequency trend 

is extracted. However, the fact that the IFE is designed from a problem specific perspective and that it 

as a direct consequence is able to define a clear separation between the deterministic trend and the 

stochastic left–overs, is appreciative. Such also makes interpretation much easier when it comes to fitting 

a Kaimal or von Kármán spectral curve to the spectral data as is the topic of chapter 2.4.5. Clearly, the 

WMAM and EMD does not provide any information the IFE cannot provide but rather quite the 

opposite. The IFE will therefore be the only included method for extracting the mean wind speed in the 

non–stationary response calculations.  

2.4 FORMULATION OF THE NON–STATIONARY STOCHASTIC PROCESSES 

2.4.1 Introduction 

With now having established several flexible and intuitive methods for extracting the mean wind speed, 

what remains is proposing a proper procedure for incorporating the remaining, presumed non–stationary 

turbulence components into our frequency domain response calculation framework. When dealing with 

a non–stationary signal, the intuitiveness of the information about its frequency–wise variance 

distribution provided by the Fourier spectrum is challenged since it assumes that the signal is composed 

of a sum of harmonic components whose amplitude and frequency is time–invariant. Obviously, any 

signal, stationary or not, can be expressed as a sum of harmonic components via the Fourier transform, 

however with a severely non–stationary signal, the corresponding Fourier spectrum will probably give 

spurious results if being interpreted in the context of stationarity. Nevertheless, the Fourier spectrum of 

a mildly non–stationary signal may be interpreted as being the average distribution of the variance over 

the frequency axis.  

  Again, the intuitive and compact way the Fourier spectrum describes a stationary stochastic signal 

is of great convenience in our frequency domain buffeting response model. To establish a similar 

procedure for mathematically describing a non–stationary signal is however a more challenging task. 

Priestley (1965) first introduced the idea of an evolutionary spectrum by generalizing the definition of 

the stationary spectrum where instead of letting pure sine and cosine functions represent the orthogonal 

basis of the signal, these are instead modulated by time dependent functions, 𝐴(𝜔, 𝑡), such that the non–

stationary signal can be formulated as follows, 

𝑥(𝑡)     = ∫ 𝐴(𝜔, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑍(𝜔)

∞

−∞

,          𝐸[|𝑑𝑍(𝜔)|2]   =  𝜇(𝜔)𝑑𝜔 (2.5) 

 

The evolutionary power spectral density, EPSD, of the process 𝑥(𝑡) will then be given by, 
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𝑆𝑥(𝜔, 𝑡)     =  |𝐴(𝜔, 𝑡)|2 ∙ 𝜇(𝜔) (2.6) 

where 𝜇(𝜔) (here: “𝑆𝑥(𝜔)”) represents a time–invariant spectrum which is to be modulated with 

𝐴(𝜔, 𝑡) to form the EPSD of 𝑥(𝑡).  

Priestley’s method is mathematically effective in the sense that the only modification required to 

formulate an evolutionary spectrum is to introduce time varying modulation functions to the harmonic 

components which would else form the orthogonal basis of a stationary signal. The drawback is however 

that these modulation functions can never be determined a priori from the non–stationary signal itself, 

and for the method to be implemented in practice, they must be chosen a posteriori (Huang et al, 1998). 

Huang et al. later got around this problem by introducing the recently mentioned Empirical Mode 

Decomposition which together with Hilbert spectral analysis makes up the Hilbert–Huang Transform 

which enables a close to orthogonal set of components with time–varying amplitude and “instantaneous” 

frequency (IMFs) to be obtained directly — a priori, via a sifting process (see figure 2.5).  

At this point however, an important boarder must be drawn between what is considered convenient 

for the exclusive purpose of establishing mathematical expressions for the non–stationary stochastic 

wind field recording itself, and what method is most suitable and convenient if ones supreme objective 

is to calculate the dynamic response of a structure onto which the non–stationary wind induces dynamic 

loads. Of course, there is no reason to question the capabilities of the HHT when it comes to describing 

time–varying variance distribution of non–stationary winds for this purpose only, however, the HHT 

does not conveniently integrate into the “non–stationary modified” frequency domain buffeting response 

framework that will be used in this thesis. Also, an important concept is what level of precision is really 

required when describing non–stationary features of the wind field. The structure itself has certain 

desired frequencies of oscillation — eigenfrequencies, each one having an associated damping ratio 

which together gives raise to the fact that a certain amount of “build–up time” must pass before for the 

output reaches a new level of variance as a result of a rather sudden change in input. Consequently, how 

rapidly one should interpret and thereby model the fluctuations of the non–stationary features of the 

wind field, must be in correspondence with the dynamic properties of the structure in question. 

Due to the argumentation above, Priestley’s (1965) idea of an evolutionary spectrum is adopted in 

which the presumed non–stationarity features of the turbulence components will be treated at three 

“levels of approximation”, namely being modelled as, 

1. Stationary (unmodulated) 

2. Uniformly modulated.  

3. Non–uniformly modulated. 

Common for all these three methods is that a time–invariant (approximated as stationary) or 

“average” spectrum must be calculated. This spectrum is then “modulated” according to equation 2.6, 

and on the format suggested by the above methods 1 – 3. These methods of modulation are presented in 

chapter 2.4.2 – 2.4.4, respectively. The procedure of estimating the time invariant spectrum is presented 

in chapter 2.4.5.  

Finally, a comment on the usage of equation 2.6 must be given. This again regards the desire to 

formulate the EPSD of the wind field with the purpose being of only providing wise and most useful 

information when it comes to calculating structural dynamic response. When multiplying the harmonic, 

orthogonal components of a presumed stationary signal with a chosen set of modulation functions, they 

will generally no longer be mutually orthogonal, hence violating equation 1.13 and subsequently 

equation 1.15, which are indeed fundamental building–blocks of the frequency domain response 

method. However, the fundamental principle of the evolutionary buffeting response calculation method 

proposed in this thesis is that for every unique time instant, 𝑡 = 𝑡𝑖, structural response can be considered 
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a stochastic process that obeys a PSD function which is derived directly from the PSD function that is 

defined to represent the stochastic characteristics of the wind field at 𝑡 = 𝑡𝑖. Such is done for all values 

of 𝑡 such that the EPSD function (here: a discrete matrix) of structural response is calculated from a 

wisely defined EPSD function of the wind field in direct correspondence with equations 1.52 and 1.59. 

Consequently, the modulation function 𝐴(𝜔, 𝑡) no longer needs to be interpreted as a function that is 

supposed to modulate the individual harmonic components of a signal, but a function whose square 

value, |𝐴(𝜔, 𝑡)|2, is supposed to modulate a calculated “average” spectrum in both frequency and time, 

thereby avoiding the orthogonality problem in the first place.  

2.4.2 Stationary turbulence components 

Xu and Chen (2004) uses this approach to treat presumed non–stationary wind speed recordings. Their 

findings suggest that “most of non–stationary wind data can be decomposed into a time–varying mean 

wind speed plus a well–behaved fluctuating wind speed admitted as a stationary random process with a 

Gaussian distribution.” Xu and Chen use the EMD to extract the mean wind speed while the IFE– and 

WMAM method will be used in this thesis due to the reasons mentioned in chapter 2.3.3. Because of 

the much finer mesh of adaptation the IFE and WMAM is able to provide it is assumed for the purpose 

of this thesis that the family of non–stationary wind speed recordings that obeys the aforementioned 

findings of Xu and Chen also will do so if the IFE or WMAM is instead applied.  

In the case of presumed stationary turbulence components, the calculated average spectrum 

mentioned in chapter 2.4.1 is obviously given no modifications because it alone is given the role to fully 

represent the stochastic characteristics of the wind speed recording in question.  

2.4.3 Uniformly modulated turbulence components 

A uniformly modulated process is a process that admits the representation of equation 2.5 and 2.6 but 

whose modulation function, 𝐴(𝜔, 𝑡), does not depend on 𝜔 (Priestley, 1965). The uniform modulation 

function 𝐴(𝑡) is hence common for all harmonic components and if a uniformly modulated process is 

modulated by the inverse of its presumed modulation function, 𝐴(𝑡), the outcome will per definition be 

a stationary process. The notation 𝐴(𝑡) is simply a generalized one but may for convenience be equated 

to the time varying standard deviation of the process itself, such that the stationary process that is being 

modulated by 𝐴(𝑡) = 𝜎𝑛(𝑡) is a zero–mean, unit variance stationary process (Ma, Xu and Wang, 2016). 

The estimation of the square of the time dependent standard deviation, 𝜎𝑛(𝑡), the time varying variance, 

is presented in chapter 2.4.3.1. The mathematical formulation used by Ma, Xu and Wang is given by 

equation 2.7 where the uniformly modulated process 𝑛(𝑡) is considered,  

 𝑛(𝑡)    =   𝜎𝑛(𝑡) ∙ 𝑔𝑛(𝑡) (2.7) 

where 𝜎𝑛(𝑡) is the time varying standard deviation of 𝑛(𝑡), and 𝑔𝑛(𝑡) is a stationary stochastic process 

described by the PSD of 𝑔𝑛(𝑡) = 𝑛(𝑡)/𝜎𝑛(𝑡), namely 𝑛(𝑡) modulated to having constant, unit variance 

from the point of view of the method used to define 𝜎𝑛(𝑡) itself. Analogue to equation 1.48, the Fourier 

transform of 𝑛(𝑡) is equal to a time varying multiple of the Fourier transform of 𝑔𝑛(𝑡), which renders, 

 𝑆𝑛(𝜔, 𝑡)    =    𝜎𝑛
2(𝑡) ∙ 𝑆𝑔𝑛

(𝜔) (2.8) 
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2.4.3.1 Time varying variance  

In contrast to the extraction of the mean wind speed, there is really only one convenient way to define 

the time–varying variance which is using a floating average method, identical to the procedure used to 

define the mean wind speed in chapter 2.3.1. Ma, Xu and Wang (2016) uses a weighted average in which 

a Gaussian distribution function with a “bandwidth parameter” (standard deviation) that corresponds to 

a 95 % confidence interval over a 60 second averaging period represents the weighting function. Their 

argument behind this choice is that recorded wind speed data separated by more than one minute “are 

assumed to be uncorrelated”, and a weighted average should hence be performed over the corresponding 

time interval. A level of 95 % significance is somewhat arbitrary but it is supposed to represent the 

aforementioned correlation properties at a time separation |𝜏| = 𝑇𝐴 = 60 s. The standard deviation, 𝜎, 

in the expression of the Gaussian PDF can be found by setting the value of the CDF at 𝜏 = 𝑇𝐴 to 0.975. 

Quantile values for the Gaussian CDF thus gives 𝜏 = 1.96 ∙ 𝜎. The resulting shape of the weighting 

function itself is displayed in figure 2.8. 

 

Figure 2.8: Relative shape of weighting function used by Ma, Xu and Wang (2016) 

However, the objective of Ma, Xu and Wang is to describe the wind field and the wind field only, 

in which the weighting function is then chosen accordingly. Because of the concept of “build–up time” 

of structural response mentioned in chapter 2.4.1, but also for simplicity, a parabola with identical 

properties as presented in chapter 2.3.1 is instead adopted as the weighting function. Consequently, the 

method for estimating the time–varying variance of the stochastic, zero–mean process 𝑛(𝑡) is analogue 

to the WMAM for extracting the mean wind speed and is defined by, 

 

𝜎𝑛
2(𝑡)    =  ∫ [𝑢(𝑡 + 𝜏)]2 ∙ 𝑤(𝜏)𝑑𝜏 ∙

𝑇𝐴

−𝑇𝐴

[ ∫ 𝑤(𝜏)𝑑𝜏

𝑇𝐴

−𝑇𝐴

]

−1

 (2.9) 

 

where 𝑤(𝜏) is the chosen parabolic weighting function. Adopting a discrete format and normalizing the 

now discrete weighting vector to having unit sum gives, 

𝜎𝑛
2(𝑡)     = 

 

𝑤𝑖    = 

 

∑ [𝑢(𝑡 + 𝑖𝛥𝑡)]2

𝑖 = 𝑁

𝑖 = −𝑁

∙ 𝑤𝑖 

[1 − (
𝑖

𝑁
)

2

] ∙ [ ∑ [1 − (
𝑖

𝑁
)

2

]

𝑁

𝑖 = −𝑁

]

−1

 

 

(2.10) 
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The main purpose of using a weighted average at all is simply to obtain a smoother curve for the 

time–varying variance which is later supposed to be included as a function in the expression for the 

time–varying variance of structural response. The workings of the WHAM for estimating the time–

varying variance is illustrated in figure 2.9 with an arbitrary generated non–stationary wind speed 

recording 𝑛(𝑡). 

 

Figure 2.9: Estimation of time–varying variance (here: standard deviation). 

2.4.4 Non–uniformly modulated turbulence components 

Contrary to the uniformly modulated stationary process, each Fourier component of a non–uniformly 

modulated process is generally modulated with its own unique modulation function 𝐴(𝜔, 𝑡), hence being 

a process that admits the formulation suggested by Priestley (1965) in its most general form.  

As mentioned in chapter 2.4.1, each individual modulation function 𝐴(𝜔, 𝑡) can never be calculated 

a priori in contrast to the Fourier components themselves, because no such method exists. Instead, an 

indirect estimation procedure is adopted in which Kaimal’s and von Kármán’s spectrum formulae in 

equations 1.19 – 1.21 is given the role to estimate the behaviour of the EPSD of the wind speed data by 

letting its parameters be time dependent. This principle of indirect estimation is utilized by Hu, Xu and 

Huang (2013) where time dependent versions of the mean wind speed, variance and integral length scale 

is inserted into the von Kármán spectrum formula to form a time dependent, evolutionary von Kármán 

spectrum. In this thesis a similar, but somewhat generalized method is used in which generalized 

versions of Kaimal and von Kármán spectrums with time dependent parameters takes the job of 

estimating the EPSD of the turbulence components. 

The non–uniformly modulated EPSD is formulated on the format of equation 2.6, but now with a 

slight modification. With base and reference to the uniformly modulated process 𝑛(𝑡)  defined in 

equations 2.7 and 2.8, 𝑔𝑛(𝑡) is now presumed to be evolutionary, and is thereby modelled as non–

uniformly modulated but still with having unit variance, namely, 
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𝑆𝑛(𝜔, 𝑡)    = 

= 

𝜎𝑛
2 ∙ 𝑆𝑔𝑛

(𝜔, 𝑡) 

𝜎𝑛
2 ∙ |𝐴𝑔𝑛

(𝜔, 𝑡)|
2

∙ 𝑆𝑔𝑛
(𝜔) 

 

(2.11) 

The key element is to find a clever way to separate 𝑆𝑔𝑛
(𝜔, 𝑡) into the factors |𝐴𝑔𝑛

(𝜔, 𝑡)|
2
 and 𝜇(𝜔) 

(here: 𝑆𝑔𝑛
(𝜔)). Tao, Wang and Wu (2016) presents such a separation technique which is illustrated in 

the following by considering a presumed evolutionary, zero mean, stochastic process, 𝑛(𝑡), to which 

the spectrum formula proposed by Kaimal (equation 1.19) is fitted (Kaimal: 𝑛 =  {𝑢, 𝑤}). A general 

and explicit expression for a stationary, pre–fitted Kaimal specrum is given by, 

 
𝑆𝑛(𝜔)    =   𝜎𝑛

2 ∙ 𝑆𝑔𝑛
(𝜔)    =   𝜎𝑛

2 ∙
𝐴𝑛 ∙ 𝐿𝑛 ∙ �̅�−1𝑥

[1 + 𝐵𝑛 ∙ 𝐿𝑛 ∙ �̅�−1𝑥 ∙ 𝜔]
5/3

 (2.12) 

As will be argued in chapter 2.4.4.1, the turbulence integral length scales, 𝐿𝑛
𝑥  will be approximated 

by equation 1.5. Inserting equation 1.5 into equation 2.12 cancels out the mean wind speed, �̅�, leaving 

only the integral time scales, 𝑇𝑛. When also adopting an evolutionary format, equation 2.12 takes the 

following form, 

 
𝑆𝑛(𝜔, 𝑡)    =   𝜎𝑛

2(𝑡) ∙
𝐴𝑛 ∙ 𝑇𝑛(𝑡)

[1 + 𝐵𝑛 ∙ 𝑇𝑛(𝑡) ∙ 𝜔]5/3
    =   𝜎𝑛

2(𝑡) ∙ 𝑆𝑔𝑛
(𝜔, 𝑡) (2.13) 

The idea behind the separation technique of Tao, Wang and Wu is to let the time dependent variables 

(here: 𝑇𝑛) of 𝑆𝑔𝑛
(𝜔, 𝑡) fluctuate around their respective average values. 𝑆𝑔𝑛

(𝜔, 𝑡) as defined in equation 

2.13 may then be rewritten to, 

 

𝑆𝑔𝑛
(𝜔, 𝑡)    =    

𝐴𝑛
∗ ∙

𝑇𝑛(𝑡)
𝐸[𝑇𝑛(𝑡)]

[1 + 𝐵𝑛
∗ ∙

𝑇𝑛(𝑡)
𝐸[𝑇𝑛(𝑡)]

∙ 𝜔]
5/3

 (2.14) 

where, 

𝐴𝑛
∗    = 𝐴𝑛 ∙ 𝐸[𝑇𝑛(𝑡)] (2.15a) 

𝐵𝑛
∗    = 𝐵𝑛 ∙ 𝐸[𝑇𝑛(𝑡)] (2.15b) 

Because 𝐸[𝑇𝑛(𝑡)/𝐸[𝑇𝑛(𝑡)]] ≡ 𝐸[𝑇𝑛(𝑡)]/𝐸[𝑇𝑛(𝑡)] = 1, equation 2.14 can be expanded by the factor 

[1 + 𝐵𝑛
∗ ∙ 𝜔]5/3 and subsequently rearranged to, 

 
𝑆𝑛(𝜔, 𝑡)    =    𝜎𝑛

2(𝑡) ∙
𝑇𝑛(𝑡)

𝐸[𝑇𝑛(𝑡)]
∙

[1 + 𝐵𝑛
∗ ∙ 𝜔]5/3

[1 + 𝐵𝑛
∗ ∙

𝑇𝑛(𝑡)
𝐸[𝑇𝑛(𝑡)]

∙ 𝜔]
5/3

∙
𝐴𝑛

∗

[1 + 𝐵𝑛
∗ ∙ 𝜔]5/3

 (2.16a) 

where, 
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|𝐴𝑔𝑛
(𝜔, 𝑡)|

2
  =   

 

𝑆𝑔𝑛
(𝜔)    =    

𝑇𝑛

𝑇𝑛
̅̅ ̅

∙
[1 + 𝐵𝑛

∗ ∙ 𝜔]5/3

[1 + 𝐵𝑛
∗ ∙

𝑇𝑛

𝑇𝑛
̅̅ ̅ ∙ 𝜔]

5/3
 

 

𝐴𝑛
∗

[1 + 𝐵𝑛
∗ ∙ 𝜔]5/3

 

(2.16b) 

 

 

(2.16c) 

 Clearly, equation 2.16a is mathematically identical to equation 2.13 which was the starting point 

when separating 𝑆𝑛(𝜔, 𝑡)  into 𝜎𝑛
2(𝑡) ,  |𝐴𝑔𝑛

(𝜔, 𝑡)|
2

 and 𝑆𝑔𝑛
(𝜔) . Thus, equation 2.16b would 

undoubtedly be correct if equation 2.13 was what we had real and definite knowledge about in advance. 

However, in practice it is of course the other way around because the objective is to modulate a function 

we can estimate and apply a curve fit to, namely 𝑆𝑔𝑛
(𝜔), with the modulation function |𝐴𝑔𝑛

(𝜔, 𝑡)|
2
. 

One must therefore question the validity of the proposed expression of |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 as defined in 

equation 2.16b.  

One could interpret the role of |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 to be to make 𝑆𝑛(𝜔, 𝑡) fluctuate around the average 

value of 𝑆𝑔𝑛
(𝜔) for each setting for 𝜔 = 𝜔𝑖 . After all, 𝑆𝑔𝑛

(𝜔) is a fitted curve to the very Fourier 

transform of the now presumed non–stationary, unit variance normalized recording in question and if 

this is assumed to have slowly evolving characteristics, 𝑆𝑔𝑛
(𝜔) could be interpreted as to represent the 

average characteristics of the process over the considered time interval. Consequently, the expected 

value (average) of |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 for any given setting for 𝜔 should be equal to unity. The background 

for this alternative interpretation of the role of |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 is the fact that the expected value of the 

product of a set of time–dependent variables, 𝑋𝑗(𝑡), is not equal to the product of the expected values of 

the respective stochastic processes,  

 

𝐸 [∏ 𝑋𝑗(𝑡),

𝑁

𝑗=1

]    ≠    ∏ 𝐸[𝑋𝑗(𝑡), ]

𝑛

𝑗=1

 (2.17) 

Because equation 2.16b is defined on the format of the right–hand side of equation 2.17 it will 

consequently have the following mathematical property, namely, 

 𝐸[𝑆𝑔𝑛
(𝜔𝑖, 𝑡)]    ≠    𝐸[𝑆𝑔𝑛

(𝜔)]    (2.18) 

Thus, one might define |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 on the basis of mathematical expectation, namely on the format of 

the left–hand side of equation 2.17. Such is done by simply dividing the product of the time–varying 

parameters in equation 2.16b by its unique expected value for each setting for 𝜔  = 𝜔𝑖 , making 

𝐸 [|𝐴𝑔𝑛
(𝜔𝑖, 𝑡)|

2
] ≡ 1. The modified version of equation 2.16b will then take the following form, 
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|𝐴𝑔𝑛
(𝜔𝑖, 𝑡)|

2
    =   

𝑇𝑛 ∙ [1 + 𝐵𝑛
∗ ∙

𝑇𝑛

𝑇𝑛
̅̅ ̅ ∙ 𝜔𝑖]

−5/3

𝐸 [𝑇𝑛 ∙ [1 + 𝐵𝑛
∗ ∙

𝑇𝑛

𝑇𝑛
̅̅ ̅ ∙ 𝜔𝑖]

−5/3

]

 

 

(2.19) 

 The two distinct methods of defining the non–uniform modulation function |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 given by 

equation 2.16 and 2.19 are labelled by Tao, Wang and Wu (2016) as the “XC–model“ and the “WK–

model”, respectively. XC is short for Xu and Chen and WK is short for Wang and Kareem. Xu and Chen 

(2000) defines |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
 equal to equation 2.16, namely by letting the time–varying variables 

involved fluctuate with respect to their own respective averages. Wang and Kareem (2004) does not 

have an expression for the EPSD but Tao, Wang and Wu labels the format of equation 2.19 the WK–

model because Wang and Kareem generally defines variables that depends on several time dependent 

parameters with respect to the expected value of the entire variable itself. Even though the WK method 

sounds more correct because it is defined from the concept of mathematical expectation, it is by no 

means guaranteed to provide the more correct results when incorporated into the rest of the frequency 

domain buffeting response model. Therefore, both models are included and compared in chapter 3. 

Due to its simple mathematical formula, the Kaimal spectrum was utilized as a tool to illustrate the 

implementation of the non–uniformly modulated model for the wind speed data. However, the von 

Kármán spectrums might or might not be a better approximation to an arbitrary wind speed recording 

and should also be included into a non–uniformly modulated model. Analogue to equation 2.13, the 

generalized, pre–fitted von Kármán spectrum formulae are given by, 

 
𝑆𝑢(𝜔, 𝑡)    =    𝜎𝑢

2(𝑡) ∙
𝐴𝑢 ∙ 𝑇𝑢(𝑡)

[1 + 𝐵𝑢 ∙ [𝑇𝑢(𝑡) ∙ 𝜔]2]5/6
 (2.20a) 

 𝑆𝑤(𝜔, 𝑡)    =    𝜎𝑤
2 (𝑡) ∙

𝐴𝑤 ∙ 𝑇𝑤(𝑡) ∙ [1 + 𝐵𝑤 ∙ [𝑇𝑤(𝑡) ∙ 𝜔]2]

[1 + 𝐶𝑤 ∙ [𝑇𝑤(𝑡) ∙ 𝜔]2]11/6
 (2.20b) 

If the same procedures that was used to obtain equations 2.16 and 2.19 is applied to equation 2.20, their 

XC and WK colleagues are obtained. Of course, the format of equation 2.6 still applies and the difference 

lies in the expression for the modulation function |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
. The four expressions for |𝐴𝑔𝑛

(𝜔, 𝑡)|
2
 

now originating from the von Kármán spectrum is presented in the following. 

Component 𝑢, XC model: 

|𝐴𝑔𝑢
(𝜔, 𝑡)|

2
  = 

 

 

𝑆𝑔𝑢
(𝜔)    = 

𝑇𝑢

𝑇𝑢
̅̅ ̅

∙
[1 + 𝐵𝑢

∗ ∙ 𝜔2]5/6

[1 + 𝐵𝑢
∗ ∙ (

𝑇𝑢

𝑇𝑢
̅̅ ̅ ∙ 𝜔)

2

]

5/6
 

 

𝐴𝑢
∗

[1 + 𝐵𝑢
∗ ∙ 𝜔2]5/6

 

(2.21a) 

 

 

(2.21b) 

Component 𝑤, XC model: 
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|𝐴𝑔𝑤
(𝜔, 𝑡)|

2
  = 

 

 

𝑆𝑔𝑤
(𝜔)    = 

𝑇𝑤

𝑇𝑤
̅̅̅̅

∙

[1 + 𝐵𝑤
∗ ∙ (

𝑇𝑤

𝑇𝑤
̅̅̅̅ ∙ 𝜔)

2

]

[1 + 𝐵𝑤
∗ ∙ 𝜔2]

∙
[1 + 𝐶𝑤

∗ ∙ 𝜔2]11/6

[1 + 𝐶𝑤
∗ ∙ (

𝑇𝑤

𝑇𝑤
̅̅̅̅ ∙ 𝜔)

2

]

11/6
 

 

𝐴𝑤
∗ ∙ [1 + 𝐵𝑤

∗ ∙ 𝜔2]

[1 + 𝐶𝑤
∗ ∙ 𝜔2]11/6

 

(2.22a) 

 

 

(2.22b) 

Component 𝑢, WK model: 

 

|𝐴𝑔𝑢
(𝜔𝑖, 𝑡)|

2
  = 

𝑇𝑢 ∙ [1 + 𝐵𝑢
∗ ∙ (

𝑇𝑢

𝑇𝑢
̅̅ ̅ ∙ 𝜔𝑖)

2

]

−5/6

𝐸 [𝑇𝑢 ∙ [1 + 𝐵𝑢
∗ ∙ (

𝑇𝑢

𝑇𝑢
̅̅ ̅ ∙ 𝜔𝑖)

2

]

−5/6

]

 

 

(2.23) 

 

Component 𝑤, WK model: 

 

|𝐴𝑔𝑤
(𝜔𝑖, 𝑡)|

2
  = 

𝑇𝑤 ∙ [1 + 𝐵𝑤
∗ ∙ (

𝑇𝑤

𝑇𝑤
̅̅̅̅ ∙ 𝜔𝑖)

2

] ∙ [1 + 𝐶𝑤
∗ ∙ (

𝑇𝑤

𝑇𝑤
̅̅̅̅ ∙ 𝜔𝑖)

2

]

−11/6

𝐸 [𝑇𝑤 ∙ [1 + 𝐵𝑛
∗ ∙ (

𝑇𝑤

𝑇𝑤
̅̅̅̅ ∙ 𝜔𝑖)

2

] ∙ [1 + 𝐶𝑤
∗ ∙ (

𝑇𝑤

𝑇𝑤
̅̅̅̅ ∙ 𝜔𝑖)

2

]

−11/6

]

 

 

(2.24) 

 

The corresponding expressions for the time–invariant spectrum, 𝑆𝑔𝑛
(𝜔), in equations 2.23 and 2.24 is 

given by equations 2.21b and 2.22b, respectively.  

2.4.4.1 Integral time scale 

The biggest challenge with the non–uniformly modulated EPSD is how to define the integral length 

scales, 𝐿𝑛
𝑥 . Hu, Xu and Huang (2013) does this by first using a method proposed by Priestley (1965) 

where the EPSD itself can be estimated directly from the discrete convolution of 𝑛(𝑡)  and two 

subsequent window functions. Then, for a selected set of time instants, {𝑡𝑖}, the respective von Kármán 

spectral formulae (equations 1.20 and 1.21) then is fitted to the estimated PSD data of 𝑛 at 𝑡 = 𝑡𝑖 (for 

instance via a least square fit (from now on: “LSF”) algorithm) by varying 𝐿𝑛
𝑥  itself, thus giving time–

varying data for 𝐿𝑛
𝑥 . As illustrated by Hu, Xu and Huang, integral length scales may not only be 

estimated from direct measurements of wind speed data contrary to what its definition in equations 1.4 

and 1.5 suggests. Nevertheless, a slightly modified version of the approximation of equation 1.5 is 

adopted for usage in this thesis, and hence the integral time scale, 𝑇𝑛, is the only parameters that is given 

attention in the following.  

When adopting a time dependent format to equation 1.5 some adjustments must be made. First and 

foremost, integration of the auto covariance coefficient must be performed over the same time interval 

and by using the same weighting function used to derive the time varying variance. This is due to 

compatibility such that the auto covariance coefficient itself is unity at zero time lag. Of course, the auto 
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covariance of a process with zero time lag is identical to the variance of the process. The time dependent 

auto covariance coefficient is now a two variable function and is given by, 

 

𝜌𝑛(𝑡, 𝛥𝑡)     =    
1

𝜎𝑛
2(𝑡)

∙ ∫ 𝑛(𝑡 + 𝜏) ∙ 𝑛(𝑡 + 𝜏 + 𝛥𝑡) ∙ �̂�(

𝑇𝐴

−𝑇𝐴

𝜏)𝑑𝜏 (2.25) 

where 𝜏  is the integration variable, 𝛥𝑡  is the auto covariance time lag, and �̂�(𝜏)  is the weighting 

function which is normalized to have unit are on the interval of integration. The principle of the auto 

covariance coefficient is illustrated in figure 2.10. 

 

Figure 2.10: Calculation of time–varying auto covariance function 

  According to Strømmen (2010, p. 61), the auto covariance coefficient 𝜌𝑛(𝛥𝑡) will taper off from 

unity to zero as the time lag 𝛥𝑡 goes from zero to infinity, much like an exponential function with a 

negative argument, as illustrated in figure 2.11. It is a direct result of this specific behaviour that the 

integral time scale can be calculated by integrating the auto covariance coefficient from zero to infinity 

and hence explaining the formulation of 𝑇𝑛 as in equation 1.5.  

 

Figure 2.11: The auto covariance coefficient and the integral time scale 
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 The shape–wise behaviour of the auto covariance function illustrated in figure 2.11 is probably a 

decent assumption when the radius of the integration domain, 𝑇𝐴, approaches infinity. However, such a 

procedure is not only irrelevant, but also inaccessible when it comes to obtaining time varying 

information about the integral time scale, 𝑇𝑛. The averaging period, 𝑇𝐴, is restricted by the method used 

to calculate the time varying variance, and another method of estimating 𝑇𝑛 than what is suggested by 

equation 1.5 is therefore required. Fortunately, what provides an extra level of freedom is the fact that 

the numerical value of 𝑇𝑛 itself is of zero interest because 𝑇𝑛 always appears as normalized with respect 

to its average value in the expression for |𝐴𝑔𝑛
(𝜔, 𝑡)|

2
. Consequently, the only interesting feature is how 

𝑇𝑛 varies with time with respect to itself. To illustrate how one may calculate 𝑇𝑛 from the time dependent 

auto covariance function, a generated and presumed non–stationary signal with zero mean value is 

considered, from which the auto covariance function 𝜌𝑛(𝑡, 𝛥𝑡) (equation 2.25) is calculated at four 

equally spaced instants in time, with 𝛥𝑡 running from zero to 𝛥𝑡 = 300 s., and with 𝑇𝐴 = 300 s.   

 

Figure 2.12: Δt – history for 𝜌𝑛(𝑡, 𝛥𝑡) 

The middle row of subplots in figure 2.12 clearly illustrates that after having passed the first value 

of 𝛥𝑡  where 𝜌𝑛(𝛥𝑡) = 0, the shape of the curve cannot be used for determining 𝑇𝑛  because of its 

unpredictable fluctuations. However, what is interesting is the shape of the curve up until this point, as 

is illustrated in the bottom row of subplot. These curves are the same as the ones above, only examined 

on another domain.  

From the shape of these curves, the time scales, 𝑇𝑛, can be defined in two different ways. First, 

simply by determining the time lag, 𝛥𝑡 = 𝛥𝑇𝑇𝐻𝑅, that is required to make 𝜌𝑛(𝛥𝑡) drop below a certain 

threshold, 𝜌𝑇𝐻𝑅, for the first time.  Introducing 𝜌𝑇𝐻𝑅 = 0 is an obvious choice, but as the auto covariance 

curves in figure 2.12 illustrates, the irregular shape of the curve may start to form before 𝜌𝑛(𝛥𝑡) has 

reached zero. As with the time varying variance and the mean wind speed, the desired result is a 

relatively smooth curve with the absence of rapid, violent and unpredictable oscillations. Consequently, 

𝜌𝑇𝐻𝑅 can be chosen such that there is assumed to be a small probability for the irregularities in the auto 
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covariance curves to occur before 𝜌𝑛(𝛥𝑡) for the first time reaches 𝜌𝑇𝐻𝑅. If however 𝜌𝑇𝐻𝑅 is set too 

close to unity, a sampling frequency of for instance 0.1 s might be highly significant compared to the 

time lag needed to make 𝜌𝑛(𝛥𝑡) reach 𝜌𝑇𝐻𝑅, resulting in clearly visible “increment–like” behaviour of 

𝑇𝑛(𝑡). Taking these to effects into account, 𝜌𝑇𝐻𝑅 = 0.25 might be a decent choice.  

If the auto covariance curve is well–behaved for 𝛥𝑡 ≤ 𝛥𝑇𝑇𝐻𝑅, the rate at which it decreases from 

zero will be inversely proportional to 𝛥𝑇𝑇𝐻𝑅 . A rapidly decreasing auto covariance function and a 

corresponding short value of 𝛥𝑇𝑇𝐻𝑅 implies that the local “eddy size” of the wind field is being equally 

small, and vice versa. This concept is in direct correspondence with Strømmen’s (2010, p. 61) physical 

interpretation of the integral length (time) scales.  

The second way 𝑇𝑛 can be defined is the area between the auto covariance curve and the horizontal 

line 𝜌𝑛 = 𝜌𝑇𝐻𝑅. A possible advantage with this integral formulation is that if an irregularity forms above 

𝜌𝑇𝐻𝑅  and before 𝛥𝑇𝑇𝐻𝑅 , such would make a larger difference in the value of 𝛥𝑇𝑇𝐻𝑅  than in the 

corresponding area between the auto covariance curve and 𝜌𝑛 = 𝜌𝑇𝐻𝑅 (figure 2.13). Hence, the integral 

method might give more consistent results if 𝜌𝑇𝐻𝑅 is not chosen such that the part of the auto covariance 

curve for 𝛥𝑡 ≤ 𝛥𝑇𝑇𝐻𝑅 will be as good as free of irregularities. The two respective methods are illustrated 

in figure 2.13. 

 

Figure 2.13: Principle of time scale methods (𝜌𝑇𝐻𝑅 = 0.25) 

To illustrate the resulting curves for the time varying time scales when considering both of the two 

aforementioned methods, they are simply applied to the generated signal in the top of figure 2.12. The 

resulting time varying time scales are shown and compared in figure 2.14 with TA = 300 s., ρTHR = 0.25, 

and parabolic weights. 
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Figure 2.14: Threshold–, and integral method. 

2.4.5 Determination of the time–invariant spectrum, 𝑺𝒈𝒏
(𝝎) 

As suggested in chapter 2.4.4, time dependent versions of the spectral formulae proposed by Kaimal and 

von Kármán are given the role to estimate the EPSD of 𝑔𝑛(𝑡), 𝑆𝑔𝑛
(𝜔, 𝑡). In contrast to its definition in 

equations 1.20 – 1.21, also the von Kármán spectrum is set to be free of any pre–determined constants, 

such that only the framework of its mathematical formulation is exploited for the purpose of producing 

a presumably better fit to the spectral dataset of an arbitrary wind speed recording.  

 However, how to select the respective constants, {𝐴𝑛
∗ ,𝐵𝑛

∗,𝐶𝑛
∗}, is by no means an easy task because 

our objective is to somehow interpret what physical process the scattered spectral data is a realization 

of and what physical process it thereby represents. No mathematical formula can provide us with a true 

answer to this question since no such thing exists, only interpretation can give indications towards the 

fact that a proposed solution is a decent one. Theoretically, one could try to fit a Kaimal or von Kármán 

curve by changing {𝐴𝑛
∗ ,𝐵𝑛

∗,𝐶𝑛
∗} manually until the resulting curve fits the spectral dataset in a satisfactory 

manner, however such is usually difficult because the relation between the value of {𝐴𝑛
∗ ,𝐵𝑛

∗,𝐶𝑛
∗} and the 

shape of the resulting curve in the log–log domain is rather abstract, apart from the fact that manual 

fitting is also highly ineffective. Consequently, a method that provides a good candidate for what can 

be regarded as the very physical process the spectral dataset represents, is needed. A method of such 

character is the LSF method where the parameters of a candidate curve is selected such that the sum of 

square deviations between the spectral data set and the candidate curve itself is minimized. Many LSF 

algorithms exists and MATLAB R2018a provides a very user–friendly one with the toolbox “cftool” 

where an iterative LSF process can be performed on a data set with a user specified equation of arbitrary 

format.  

 A fundamental problem that arises when using a LSF method is that one cannot interpret the 

solution of being anything else than the version of the adopted curve format that minimizes the sum of 

the squares. Hence the solution curve from the LSF method and the desired curve that represents the 

physical process in question, are not necessarily equated. The reason for this is that most spectral data 

is quite scattered as well as being spread over several orders of magnitude in both 𝑋  and 𝑌 . To 

compensate for this undesired effect, proposed remedies are presented and discussed in the following, 

in which the first one is an algorithm that denoises spectral data. 
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2.4.5.1 Spectral data denoising algorithm – enhancement of LSF quality 

To illustrate what a “correctly fitted” spectrum curve may look like, an arbitrary stationary signal 𝑛(𝑡) 

(𝑛 =  𝑢, 𝑤) with length 𝑇 = 2 hours is generated from the arbitrarily chosen, dimensionless Kaimal 

spectrum, 𝑆𝑛(�̂�) = 240[1 + 60�̂�]−1.67. The highest included frequency is set to be 𝜔𝑚𝑎𝑥 = 15 rad/s, 

and the Fourier spectrum is calculated from a subset of this recording in order to generate scatter. The 

generated signal is shown in figure 2.15. 

 

Figure 2.15: Generated, stationary Kaimal signal. 

Figure 2.16 shows calculated spectral data from three subset recordings of duration 𝑇 = 70 min. A 

uniformly weighted LSF from the MATLAB toolbox “cftool” is for comparison applied to these spectral 

data sets by using the Kaimal formula. 

 

 

Figure 2.16: Comparisons of spectral data, “true” spectrums and LSF spectrums.  
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Figure 2.16 clearly illustrates the fact that the LSF simply minimizes the sum of the square 

deviations and nothing more, and that the LSF curve and the theoretically “correct” curve hence by no 

means are equated. Clearly, the data points at the lowest most portion of the spectrum does also have 

the largest magnitude and scatter in this region will consequently have a disproportionally large 

influence on the outcome of the LSF. This effect explains the variations int the outcome of the LSF in 

the considered cases illustrated in figure 2.16. 

The impact of these undesired deviations from the theoretically “true” spectrum curves can be 

illustrated via considering the square root of the ratio between the true spectrum curve and the proposed 

LSF spectrum. The square root of this ratio as given by equation 1.12, is per definition proportional to 

the amplitude of the harmonic component with frequency, 𝜔. Hence, if this very ratio for instance equals 

1.10 at 𝜔  = 𝜔𝑘 , such can be interpreted as overestimating the magnitude of the amplitude of the 

harmonic component of the wind speed recording at 𝜔  = 𝜔𝑘  with 10 %. Further, if 𝜔𝑘  lies in the 

frequency–region of one of the eigenmodes of the structure in question, the standard deviation of the 

magnitude of the oscillations from this very mode will also be overestimated by 10 %.  

In reality, being able to estimate the magnitude of wind induced structural oscillations within, say 

10 %, can in many ways be considered as decent from a design perspective considering all the 

uncertainties in the theory, and that a safety margin of much more than 10 % is usually accounted for in 

structural design. However, if we had not known the theoretically correct spectrum of the spectral data 

in advance, which one never does with real life data, there would be difficult to argue in favour of 

discarding especially the LSF curves to the left and to the right in figure 2.16, but if such is obvious, as 

clearly is the case in the middle spectrum plot of figure 2.16, one must find a way to come up with a 

better solution apart from a rather inaccurate manual fit.  

 

Figure 2.17: Magnitude ratio of the standard deviation (amplitude) of harmonic components. 

In order to narrow down the possible outcome of the LSF method, two major improvements are 

proposed, in which the first one is a spectral data denoising method whose principle is based on the 

assumption that the scatter of the spectral data “fluctuates” around its local average in the non–

logarithmic value domain. To estimate this local average a uniformly weighted moving average method 

is applied in which nearby spectral data at 𝜔  = 𝜔𝑖  is averaged. Such a method may initially seem 

intuitive and straight–forward but this is not the case since one major challenge is faced. Namely, since 

the largest magnitude spectral data points represents a very small portion of the total number of spectral 
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data points, they are very influential when it comes to the outcome of the LSF procedure, or generally 

when it comes to interpreting the ideal shape of the spectral curve that best represents the stochastic 

process. Hence, the bandwidth of the aforementioned averaging process should be formulated as a 

function dependent on 𝜔, consequently accounting for the degree of influence of each spectral data 

point. For simplicity, the following function is proposed as to represent the bandwidth function, 𝐵𝑊(𝜔): 

𝐵𝑊(𝜔)    = ⌊𝑛1 + (𝑛2 − 𝑛1) ∙ [
𝑙𝑜𝑔(�̂�) − 𝑙𝑜𝑔(�̂�𝑛1+1

)

𝑙𝑜𝑔(�̂�𝑛2−1
) − 𝑙𝑜𝑔(�̂�𝑛1

)
]

𝑚

⌋,       �̂�  ≥  �̂�𝑛1+1
 (2.26) 

where �̂� is a dimensionless frequency normalized by its own dimension, �̂� = 𝜔/𝜔0 , 𝜔0  = 1 rad/s. 

𝐵𝑊(𝜔) is an exponential function defined on the logarithmic domain which takes the values {𝑛1, 𝑛2} 

at 𝜔 = {𝜔𝑛1+1, 𝜔𝑛2−1} where 𝑛1 and 𝑛2 are index bandwidths, that is, the number of indices left and 

right of 𝜔𝑖  in the 𝜔 settings vector that defines the subset {𝜔𝑖−𝐵𝑊(𝜔𝑖): 𝜔𝑖+𝐵𝑊(𝜔𝑖)} from which the 

uniform average at 𝜔 = 𝜔𝑖 is calculated. 𝑚 is chosen simply by adapting the shape of 𝐵𝑊(𝜔) such that 

the magnitude of the scatter of the averaged spectrum is more or less uniformly distributed over the 

frequency axis. Figure 2.18 shows a plot of 𝐵𝑊(𝜔) with the illustrative values {𝑛1, 𝑛2} = {5, 150} and 

𝑚 = {1.25, 1.5, 2, 3}, together with the right most spectrum in figure 2.16. 

 

Figure 2.18: Bandwidth function 

 Equation 2.26 can obviously not be defined for indices less than 𝑛1 + 1 because the lowest index in 

the corresponding averaging subset cannot be less than 1. Therefore, the rule given by equation 2.27 is 

adopted for this region. 

𝑖 = 1 

2 

3 

⋮ 

𝑖 = 𝑛1 

𝑆𝑛,𝑎𝑣𝑔(𝜔1)    = 

𝑆𝑛,𝑎𝑣𝑔(𝜔2)    = 

𝑆𝑛,𝑎𝑣𝑔(𝜔3)    = 

⋮  

𝑆𝑛,𝑎𝑣𝑔(𝜔𝑛1
)    = 

𝑎𝑣𝑔[𝑆𝑛(𝜔1: 𝜔2)] 

𝑎𝑣𝑔[𝑆𝑛(𝜔1: 𝜔3)] 

𝑎𝑣𝑔[𝑆𝑛(𝜔1: 𝜔5)] 

 

𝑎𝑣𝑔[𝑆𝑛(𝜔1: 𝜔2𝑛1−1)] 

 

 

 

 

  

(2.27) 
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 The second improvement when it comes to utilizing the LSF as a convenient curve fitting tool is 

introducing weighting factors to the now denoised (averaged) spectral dataset. The question is however, 

how the weighting factors should be chosen. Revisiting the fact that scatter in the high magnitude region 

of the spectral data set constitute a disproportionally large contribution to the sum of squares, one might 

compensate for such behaviour by introducing a weighting function which is inversely proportional to 

the square of the denoised spectral value, 

𝑊(𝜔𝑖)   = [𝑆𝑛,𝑎𝑣𝑔(𝜔𝑖)]
−2

 (2.28) 

 

The reason why the square of the denoised spectrum is used in equation 2.38 is because the LSF fits a 

curve by minimizing namely the sum of the square deviations between the proposed curve and the 

dataset. If a method that minimized the absolute value of the de sum of deviations, the exponent in 

equation 2.28 would be set accordingly.  

With the introduction of the two aforementioned improvements to the LSF framework, they are 

now adopted and applied to the stationary generated recording in figure 2.15. The same comparisons 

between the theoretically true spectrum curve and the now enhanced LSF curves are displayed in figure 

2.19.  
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Figure 2.19: Enhanced WLSF procedure 

 Comparing the bottom row of subplots of figure 2.19 to the respective subplots in figure 2.17 

indicates that when instead letting the LSF algorithm use the averaged spectral data as input together 

with the inclusion of the weighting function of equation 2.28, its ability to reveal what stochastic process 

the spectral data originates from, is enhanced. Of course, the fact that the spectral dataset originates from 

the very same function used as the candidate function in the LSF procedure might by slightly 

advantageous for the performance of the enhanced WLSF, however the main purpose of the method is 

clearly illustrated when it much more able to reveal the shape of an unknown virtual function which is 

hidden away by stochastic scatter.  

 The resulting coefficients of the Kaimal spectrum from the ordinary LSF method and the enhanced 

WLSF method is given in table 2.1. 𝑚, 𝑛1 and 𝑛2 are coefficients of the bandwidth function in equation 

2.26. 𝑚 was set equal to 2 since that seemed to produce a relatively uniform distribution of scatter in 

the averaged spectrum curve. Because of the different distribution of the scatter in the first few data 

points of the spectral data set, 𝑛1 was selected such that this region took the form of a as smooth as 
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possible averaged curve, nevertheless, such an adaptation is only of minor effect. Similarly, the 

formulation of the commissioning phase of the average process given by equation 2.27 may also be 

defined elsewise, however, equation 2.27 was defined simply for the sake of convenience and simplicity.  

                    

    Ordinary LSF: Enhanced WLSF:   

                     

    Subset recording: An
*: Bn

*: An
*: Bn

*: m: n1: n2:   

                      

   Tstart = 10 min 262.0 51.68 278.4 65.86 2 5 100   

   Tstart = 25 min 415.4 154.7 210.7 55.27 2 5 100   

   Tstart = 40 min 164.2 48.30 220.8 57.41 2 8 100   

                     
           

Table 2.1: Kaimal curve fit coefficients 

 Throughout this demonstration, the exponent in the Kaimal spectrum was set to −1.67. Tao, Wang 

and Wu (2016, p. 13) states that according to Kolmogrov theory, stationary turbulence can be described 

by the general formula, 

𝑆𝑛(𝜔)    = 
𝐴 ∙ �̂�𝛾−1

[1 + 𝐵 ∙ �̂�𝛼]𝛽
 (2.29) 

where 𝛾, 𝛼 and 𝛽 should follow the rule 𝛾 − 𝛼𝛽 = − 2/3. Given this rule, the derivative of log [𝑆𝑛(𝜔)] 

with respect to log [�̂�] will approach the limit value −5/3 when �̂� approaches infinity. This very relation 

is the very property that derives the exponents in the Kaimal and von Kármán spectrum formulas. 

However, no rule gives information about at when the limit slope of −5/3 is indeed “reached” for any 

given wind field. Consequently, assigning the exponent in the spectrum formula another value prior to 

the WLSF procedure does not violate the fitted curves ability to fit to the spectral data at the high end 

of the frequency axis. The effect this has is only changing the general shape of the fitted curve so it 

becomes less restricted when it comes to fitting the less well–behaved spectral data from real–life wind 

speed recordings.  

When the now presented WLSF procedure will be used in chapter 4 to fit an appropriate spectrum 

curve to real–life wind data, the exponent, 𝛽, is not set to be restricted by 𝛾 − 𝛼𝛽 = − 2/3 but set at 

other values nearby to optimize the shape of the fitted curve. However, introducing 𝛽 as another degree 

of freedom in the WLSF procedure is generally not recommended because such might give spurious 

results. After all, what is the primary goal is finding a curve that by interpretation and common sense 

seems to represent the spectral data appropriately. One must also take into account the location of the 

eigenfrequencies of the structure in question because it is highly important to fit the spectral data as 

accurately as possible in these very regions due to modal dynamic amplification.  
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2.5 DISTRIBUTION OF MAXIMUMS 

Chapter 1.4 showed the derivation of approximated expressions for the expected value and variance of 

the maximum value of the stochastic part of the structural response. As a result of the special case of 

stationarity, approximated analytic expressions for the expected maximum and variance of maximum 

structural response within a time window, T, are derived. These expressions, which are given by 

equations 1.63 and 1.64 are obtain partially via solving the time–invariant up–crossing function given 

by equation 1.61, with respect to the up–crossing level itself. Chen (2015) adopts a time–varying version 

of the up–crossing function where the variance and mean response is time–dependent. Also, the up–

crossing level is defined as being the sum of the time varying mean response and the stochastic response, 

which is contrary to the stationary version where the mean response is added subsequently. The CDF of 

𝑛𝑚𝑎𝑥 is assumed to follow a Gumbel Type 1 distribution at high levels of extreme (Chen, 2015) because 

of its exponential tail that “tapers off” exponentially when 𝑛𝑚𝑎𝑥 approaches infinity. The CDF of 𝑛𝑚𝑎𝑥 

where structural response component, 𝑛(𝑡), is considered, is given by, 

𝐶𝐷𝐹(𝑛𝑚𝑎𝑥)   = 𝑒𝑥𝑝[−𝜅(𝑛𝑚𝑎𝑥)] (2.30a) 

 

where, 

𝜅(𝑛𝑚𝑎𝑥)   = 
1

2𝜋
∫

𝜎�̇�(𝑡)

𝜎𝑛(𝑡)

𝑇

0

∙ 𝑒𝑥𝑝 [−
(𝑛𝑚𝑎𝑥 − �̅�(𝑡))2

2𝜎𝑛
2(𝑡)

] 𝑑𝑡 (2.30b) 

And where �̅�(𝑡) is the time–varying mean value of 𝑛(𝑡).  

The integration procedure in equation 2.30b is intuitive because it considers 𝑛(𝑡) to be a relatively 

narrow banded evolutionary stochastic process where the expected number of occurrences of 𝑛𝑚𝑎𝑥 

within the infinitesimal time window, 𝑑𝑡, is assumed to equate to the up–crossing frequency at level 

𝑛𝑚𝑎𝑥 at this point in time, multiplied with 𝑑𝑡. 𝜅(𝑛𝑚𝑎𝑥) is then, analogue to its stationary counterpart, 

equal to the time–varying, expected number of occurrences of 𝑛𝑚𝑎𝑥 within 𝑑𝑡, summated over 𝑇. 

Obviously, solving equation 2.30 with respect to 𝑛𝑚𝑎𝑥 is for all practical purposes impossible, and 

no closed form expression of the expected value and variance of 𝑛𝑚𝑎𝑥  consequently exists. 

Nevertheless, such is in many ways obsolete because every relevant piece of information can be obtained 

from the CDF itself, especially quantile values which come in handy when estimating return periods for 

𝑛𝑚𝑎𝑥. When implementing equations 2.30a and b, a discrete mesh of values for 𝑛𝑚𝑎𝑥 must anyway be 

used and the PDF can be obtained numerically by numerical differentiation of the CDF using for instance 

the “center–rule” of numerical differentiation, namely, 

𝑃𝐷𝐹(𝑛𝑚𝑎𝑥)   = 

 

≈ 

𝑑

𝑑𝑛𝑚𝑎𝑥
𝐶𝐷𝐹(𝑛𝑚𝑎𝑥) 

 

𝐶𝐷𝐹(𝑛𝑚𝑎𝑥,𝑖+1) − 𝐶𝐷𝐹(𝑛𝑚𝑎𝑥,𝑖−1)

2𝛥𝑛𝑚𝑎𝑥
 

 

 

 

(2.31) 
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3 CASE STUDY – THE HARDANGER BRIDGE 

3.1 INTRODUCTION 

To investigate the effects of non–stationary winds, the theory presented in chapter 1 and 2 is applied to 

the Hardanger Bridge in Hordaland, Norway. In order to solve the very equations that that makes up the 

mathematical model of structural response, several MATLAB routines has been established whose 

supreme purpose is to provide the necessary computing power to solve these mathematical formulas 

when being applied and highly streamlined to the Hardanger Bridge, and the Hardanger Bridge only. 

Consequently, these scripts must be used with great caution since their range of intended applications is 

extremely narrow. The scripts themselves are given in Appendix B. 

 Again, because every bridge is unique, the specific form some of the steps of the mathematical 

framework presented in chapters 1 and 2 will take, will generally vary accordingly. Such variations may 

originate from for instance symmetry– and dynamic properties of the bridge structure in question. For 

such reasons, this chapter is devoted to present a set of arising concepts when applying the general 

buffeting theory framework to the Hardanger bridge specifically. A time domain Monte Carlo simulation 

algorithm that is highly specialized to the Hardanger bridge will also be presented, which will serve as 

a very handy aid when it comes to validating the non–stationary frequency domain buffeting response. 

3.2 PHYSICAL CHARACTERISTICS AND DYNAMIC PROPERTIES 

 

Figure 3.1: The Hardanger Bridge viewed from the North ([17]) 
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Figure 3.2: Sketch of the Hardanger Bridge 

 For the case study in this thesis, 18 eigenmodes are included in the dynamic model of the Hardanger 

bridge. Table 3.1 shows the eigenfrequency, the damping ratio and the respective displacement 

component for each mode. None of the included modes are coupled modes. Figure 3.3 shows the 

corresponding shape of the eigenmodes listen in table 3.1.  

      

 Eigenmode: Type: ωn [rad/s]: ζn: 
 

  

 
1 Horizontal 0.32 .0050 

 

 
2 Horizontal 0.64 .0052 

 

 
3 Vertical 0.71 .0050 

 

 
4 Vertical 0.90 .0051 

 

 
5 Horizontal 1.11 .0062 

 

 
6 Vertical 1.27 .0058 

 

 
7 Vertical 1.36 .0060 

 

 
8 Horizontal 1.56 .0079 

 

 
9 Horizontal 1.66 .0084 

 

 
10 Vertical 1.76 .0077 

 

 
11 Horizontal 1.95 .0100 

 

 
12 Vertical 2.14 .0100 

 

 
13 Torsional 2.25 .0050 

 

 
14 Torsional 3.49 .0052 

 

 
15 Torsional 5.28 .0063 

 

 
16 Torsional 7.00 .0083 

 

 
17 Torsional 8.76 .0112 

 

 
18 Torsional 10.50 .0150 

 
      

Table 3.1: Eigenmode characteristics 

The eigenmodes are in this case calculated using the FEM their length wise shape is subsequently 

obtained by calculating the Fourier components to the resulting discrete vector of DOFs constituting the 

respective mode shape components.  
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Figure 3.3: Relative span wise shape of included eigenmodes. 
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3.3 CALCULATION OF THE JOINT ACCEPTANCE FUNCTION 

A consequence of expressing the eigenmodes as a sum of harmonic components is that the expression 

for the joint acceptance function as given by equation 1.59b can be evaluated analytically. Firstly, 

equation 1.59 may be rewritten to a format more suited to a non–stationary formulation, namely by not 

separating the PSD of the wind field into turbulence intensity and a normalized PSD, 

                                 𝑆�̂�𝑣,𝑖�̂�𝑣,𝑗
(𝜔, 𝑡)   =   (

𝜌𝐵𝐿 ∙ �̅�(𝑡)

2
)

2

∙
1

�̃�𝑖𝜔𝑖
2 ∙ �̃�𝑗𝜔𝑗

2
∙ 𝐽𝑖𝑗

2           (3.1a) 

where, 

     𝐽𝑖𝑗
2    =    ∫ ∫ 𝝋𝑖

𝑇(�̂�1)�̂�𝑞 𝑺𝑣(𝜔, 𝑡, ∆𝑥)�̂�𝑞
𝑇𝝋𝑗(𝑥2)𝑑𝑥1𝑑𝑥2

1

0

1

0

 (3.1b) 

Since 𝐶�̅�, 𝐶𝐷
′  and 𝐶�̅� are all approximated as being zero for the Hardanger Bridge, �̂�𝑞 in equation 

1.37d takes the following entry–wise form, 

�̂�𝑞    = [

𝐵𝑞,11 0

0 𝐵𝑞,22

0 𝐵𝑞,32

] ,         {

𝐵𝑞,11   =   1.4𝑎𝑟          

𝐵𝑞,22   =   𝐶𝐿
′ + 0.7𝑎𝑟

𝐵𝑞,32   =   𝐵𝐶𝑀                
′

 (3.2) 

Hence, the fully expanded and problem specific version of the joint acceptance function will be as 

follows, 

𝐽𝑖𝑗
2 (𝜔, 𝑡)    = ∫ ∫  [                 𝐵𝑞,11

2 ∙ 𝑆𝑢(𝜔, 𝑡) ∙ 𝜑𝑖𝑦(𝑥1) ∙

1

0

1

0

𝜑𝑗𝑦(𝑥2) ∙ �̂�𝑜𝑢(𝜔, 𝑡, ∆𝑥) 

         +               𝐵𝑞,22
2 ∙ 𝑆𝑤(𝜔, 𝑡) ∙ 𝜑𝑖𝑧(𝑥1) ∙ 𝜑𝑗𝑧(𝑥2) ∙ �̂�𝑜𝑤(𝜔, 𝑡, ∆𝑥) 

         +   𝐵𝑞,22 ∙ 𝐵𝑞,32 ∙ 𝑆𝑤(𝜔, 𝑡) ∙ 𝜑𝑖𝑧(𝑥1) ∙ 𝜑𝑗𝜃(𝑥2) ∙ �̂�𝑜𝑤(𝜔, 𝑡, ∆𝑥) 

         +   𝐵𝑞,22 ∙ 𝐵𝑞,32 ∙ 𝑆𝑤(𝜔, 𝑡) ∙ 𝜑𝑖𝜃(𝑥1) ∙ 𝜑𝑗𝑧(𝑥2) ∙ �̂�𝑜𝑤(𝜔, 𝑡, ∆𝑥) 

         +                𝐵𝑞,33
2 ∙ 𝑆𝑤(𝜔, 𝑡) ∙ 𝜑𝑖𝜃(𝑥1) ∙ 𝜑𝑗𝜃(𝑥2) ∙ �̂�𝑜𝑤(𝜔, 𝑡, ∆𝑥) ] 𝑑𝑥1𝑑𝑥2 

(3.3) 

Because the mode shape components, 𝜑𝑛𝑚, are linear sums of harmonic components, 𝐽𝑖𝑗
2  will be a 

sum of constant multiples of functions on the form, 

 

𝐹(𝜔, 𝑡)   =    ∫ ∫ 𝑠𝑖𝑛 (𝑝𝑥1) ∙ 𝑠𝑖𝑛 (𝑞𝑥2)

1

0

1

0

∙ 𝑒𝐶|𝑥1−�̂�2|𝑑𝑥1𝑑𝑥2  ,          {

𝑝 = 𝑃𝜋          
𝑞 = 𝑄𝜋          

𝐶 = −
𝑐𝑛𝑥𝜔𝐿

𝑈(𝑡)

 (3.4) 
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where 𝑃, and 𝑄 are non–zero, positive integers representing the number of “half waves” the respective 

harmonic subcomponent display along the bridge span. The very derivation of the analytical solution to 

equation 3.4 can be found in Appendix A.2 and the result is that 𝐹(𝜔, 𝑡) = 0 for all 𝑃 and 𝑄 having 

opposite parity, and in the case of 𝑃 and 𝑄 having equal parity, 𝐹(𝜔, 𝑡) is given by, 

𝐹(𝜔, 𝑡)   =   
2𝑞

𝑞2 + 𝐶2
[
𝑐𝑜𝑠(𝑝 − 𝑞) − 1

2(𝑝 − 𝑞)
+

𝑐𝑜𝑠(𝑝 + 𝑞) − 1

2(𝑝 + 𝑞)
−

𝑝(1 − 𝑒𝐶 𝑐𝑜𝑠 𝑝)

𝑝2 + 𝐶2
] 

𝐹(𝜔, 𝑡)   =   
2

𝑝2 + 𝐶2
[
𝑝2(1 − 𝑒𝐶 𝑐𝑜𝑠 𝑝)

𝑝2 + 𝐶2
−

𝐶

2
]      

,   𝑝 ≠ 𝑞 

,    𝑝 = 𝑞 

(3.5a) 

 

(3.5b) 

3.3.1 Increasing performance of MATLAB routine 

As indicated in chapter 4.1, the objective is not to produce some sort of universal MATLAB algorithm 

that can calculate the response of any bridge, but rather quite the opposite. In the case of the joint 

acceptance matrix, 𝑱2, which is the very hub of the multi–mode, frequency domain buffeting response 

method, this is not due to the need for human interpretation as is the case when modelling the wind field, 

but rather because of a strong desire to minimize the computational expense associated with establishing 

𝑱2 itself.  

Of course, an ineffective algorithm will restrict the usability of the MATLAB routine when it comes 

to running it several times, which indeed must be done not only to ensure that it works correctly and 

according to its purpose, but also for investigational and learning purposes because such a MATLAB 

script is a very powerful tool when it comes to obtaining knowledge about the phenomenology of wind 

induced dynamic oscillations. Also, in situations where a relatively fine mesh is needed for both time 

and frequency, establishing 𝑱2 for all these combinations of 𝑇 and 𝜔 might take 30 minutes or more if 

no effort is given to optimize the algorithm that establishes 𝑱2 . Thankfully, such an optimization 

procedure is a relatively simple task in the case of the Hardanger Bridge because of three specific 

properties it displays: 

1. Single component eigenmodes. 

Because all 18 included eigenmodes contains only one non–zero displacement component (see 

figure 3.3), there exists only one possible combination of displacement components 𝑚 and 𝑛 such 

that the product of two arbitrary components 𝜑𝑖𝑛 and 𝜑𝑗𝑚 will be non–zero. Because only five out 

of the possible nine combinations are present in the expression for 𝐽𝑖𝑗
2  in equation 3.3, roughly 5/9 

of the entries of 𝑱2 will be non–zero, and where these entries themselves thus are constructed from 

only one of the five terms in equation 3.3.  

2. Structural symmetry with respect to the bridge midspan. 

Because the Hardanger bridge is symmetric with respect to its midspan (or at least, this is the way 

it is indeed modelled), so must be the case of the eigenmodes. Hence, they must all fall into either 

of two categories, namely being oddly symmetric or evenly symmetric with respect to the bridge 

midspan. If this is the case for the eigenmodes themselves so must also be the case for the harmonic 

Fourier components constituting them, i.e. their wavenumbers (𝑃, 𝑄, equation 3.4) must all have 

the same parity, even or odd. This property can be observed directly in the input text file “A.txt” in 

Appendix B and is a general feature of all structures with this exact symmetry property.  
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The impact this symmetry property has on the procedure of establishing 𝑱2 is that all of the 

integral expressions on the format of equation 3.4 that makes up an arbitrary entry 𝐽𝑖𝑗
2  will be zero 

and thereby giving the arbitrary entry 𝐽𝑖𝑗
2  value zero if mode 𝑖 and 𝑗 consists of Fourier components 

with opposite parity. This specific feature, explained by equations A.6 through A.8, can simply be 

considered as a neat biproduct of the procedure of evaluating equation 3.4 analytically, because if 

two separate integral expressions of equation 3.4 instead had been adopted, one below the line 𝑥1 =

𝑥2, and another one above (see figure A.2), the same result would probably reveal itself without 

using the proof presented in equation A.6 which is indeed created from suspiciousness by looking 

at several surface plots of the integrand of equation 3.4.  Nevertheless, the binary outcome of this 

eigenmode “parity test” results in that roughly one half of the portion of entries 𝐽𝑖𝑗
2  that until now is 

presumed to be nonzero due to multiplication between two non–zero mode components will 

integrate to zero because over the areal domain defined by 𝑥1 and 𝑥2, due to opposite mode parity.  

Taking advantage of this and the aforementioned property of the Hardanger Bridge is 

surprisingly easy, because a list of all combinations of modes 𝑖 and 𝑗 that does not integrate to zero 

due to mode parity can be made prior to the loop iterations for time and frequency together with the 

corresponding term in equation 3.3 that is indeed non–zero. This method represents almost zero 

administrative computational expence because 𝑱2 is established only from the very information 

required to obtain it, namely information that anyway has to be collected from the matrix “A.txt” 

and matrices that systematize and organizes the term–wise contents of equation 3.3. 

3. Narrow banded mode shape Fourier components. 

What can also be observed from the mode shape matrix “A.txt” is that the magnitude of some of 

the Fourier components that makes up the respective mode shape components is negligibly small 

compared to the most prominent ones. If one introduces a significance level, 𝜀, such that Fourier 

components with a magnitude smaller than 𝜀 is set to zero, the effectiveness of the establishment of 

𝑱2  is improved even further. The only reason why this measure is implemented is because a 

relatively large number of components can be eliminated without sacrificing any significant 

accuracy from an engineering perspective, especially considering the other uncertainties of the 

linear, frequency domain buffeting response theory.  

Implementing these three properties into the algorithm that establishes 𝑱2 gives a relatively sparse matrix 

𝑱2as illustrated in figure 3.4.  

 

Figure 3.4: Non–zero assignments of 𝐹(𝜔, 𝑡) with 𝜀 = {0, 0.01} 
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The respective numbers in the matrices in figure 3.4 is the number of non–zero assignments to the 

function 𝐹(𝜔, 𝑡) at position 𝑖, 𝑗. To the left is the case with 𝜀 = 0 and to the right, 𝜀 = 0.01. Initially, the 

possible total number of assignments of F(ω, t) is 182 ∙ 5 ∙ 152 = 364500. 𝜀 = 0 and 𝜀 = 0.01 reduces this 

number to 2900 and 488, respectively. 

To illustrate the effect the three abovementioned properties has on script effectiveness an illustrative 

comparison is made to a basically unrefined algorithm which establishes all 182 entries of 𝑱2 one by one 

by calculating every five terms in equation 3.3, in which each of these terms is calculated by evaluating 

the integral expression in equation 3.4 according to equations A.8 and 3.5 by checking Fourier 

component parity for every “non–zero amplitude”–combination of wavenumbers 𝑃  and 𝑄 . To 

investigate the reduction in computational expense for the establishment of 𝑱2 alone is obviously highly 

interesting (“local effect”) but establishing 𝑱2 is only one of several steps within the very MATLAB 

routine that calculates the EPSD of structural response. The very steps that must be performed for every 

instant in time and setting for 𝜔 (= one “loop iteration”) are given below, and the reduction in the elapsed 

time of performing these four steps when only enhancing step no. 3 (“global effect”) is a more correct 

measure of the enhanced effectiveness of the algorithm. 

1. Establish �̂�𝜂(𝜔, 𝑡). 

2. Calculate 𝑆𝑢(𝜔, 𝑡) and 𝑆𝑤(𝜔, 𝑡) from the estimated LSF parameters and the chosen method of 

EPSD modulation (chapters 2.4.2 – 2.4.4). 

3. Establish 𝑱2(𝜔, 𝑡). 

4. Calculate 𝑺𝜂𝜂(𝜔, 𝑡)  and 𝑺𝑟𝑟(𝜔, 𝑡)  and interpolate all EPSDs (structural and wind) for plotting 

purposes. 

The increase in local and global effectiveness when successively implementing property 1, 2, and 3 is 

displayed in table 3.2. The loop above is in this case run for 1000 settings for 𝜔 and the performance of 

the implemented algorithm that establishes 𝑱2 only, is measured by the minimum elapsed time out of the 

1000 trials that established 𝑱2 . Analogue to local performance, global performance is given as the 

minimum elapsed time for the four steps above to be looped 1000 times, from a total of 30 simulations. 

         

  
Local performance (only 𝑱2): Global performance (1 loop iteration): 

 

 Included methods of 

algorithm optimization: 

Minimum   

calculation 

time         

(1000 sims) 

[µs]: 

Incremental 

increase in 

speed [%]: 

Accumulated 

reduction 

factor: 

Minimum 

calculation 

time       

(30 sims.)  

[ms]: 

Incremental 

increase in 

speed [%]: 

Accumulated 

reduction 

factor: 

 

  

 
Non–symmetric 𝑱2 882 –  –  1216  – –  

 

 
Symmetric 𝑱2 537 64.2 1.64 730 66.6 1.67 

 

 
Properties 1. & 2 with: –  – – –  – – 

 

 
𝜀   =   0.000   126 326 7.00 271 169 4.49 

 

 
𝜀   =   0.001   73 71.7 12.0 217 24.9 5.60 

 

 
𝜀   =   0.002   59 22.9 14.8 203 6.90 5.99 

 

 
𝜀   =   0.005   45 32.1 19.5 188 7.98 6.47 

 

 
𝜀   =   0.010   32 41.3 27.6 171 9.94 7.11 

 
         

Table 3.2: Effects of algorithm optimization 
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When comparing the average computational time of executing a single loop iteration by considering 

the best and worst–case scenario in table 3.2, the establishment of 𝑱2 does on average make up roughly 

23 % and 89 % of the total loop iteration time, respectively.  

Because a relatively large number of settings for 𝜔 is required to integrate the response spectrums 

accurately (see chapter 3.5), the establishment of the aerodynamic stiffness– and damping matrices 

contributes negligibly to the total computational expense because they are independent of 𝜔 and the 

integrals of the product of the mode shape components (see equations 1.44b and –c) are time–invariant 

and can thus be calculated prior to the loop iterations. Also, the “administrative” procedure of 

establishing the very matrices that has the purpose of “setting up”, streamline and systematize data for 

the loop iteration process takes only .15 seconds on average. Therefore, the total running time of the 

script is very close to proportional to the third column from the right in table 3.2.  

As a mere example to illustrate the issue regarding the running time of the MATLAB routine, a 

case where structural response shall be calculated from a non–stationary wind speed recording is 

considered. For the purpose being, 1000 settings for 𝜔 is assumed to integrate the response spectrum 

with sufficient accuracy, and 200 discrete settings for time presumably produces a relatively smooth 

time history curve for structural response. Also, if all four methods of EPSD modulation presented in 

chapters 2.4.2 – 2.4.4 shall be included for comparison, and if the average loop iteration time is assumed 

to be 15 % higher than its theoretical minimum limit, the total computational time will be roughly equal 

to 1.216s ∙ 200 ∙ 4 ∙ 1.15 = 1119s ≈ 18.6 min if no symmetry properties are exploited. However, if the 

measures described by the lowest–most row in table 3.2 is applied, the corresponding computational 

time will be reduced roughly by a factor 7.1, to 2 min 40 seconds. Such a calculation must surely be 

performed more than once and a running time of 2 minutes 40 seconds is highly appreciative compared 

to almost 1/3 of an hour.  

Finally, if another structure than the Hardanger Bridge is under investigation in which for instance 

more of its cross–sectional load coefficients is non–zero, more terms will be present in equation 3.3, 

consequently reducing the sparsity of 𝑱2 accordingly. Also, if some of the included eigenmodes contain 

more than one displacement component, the maximum number of terms in 𝐽𝑖𝑗
2  will no longer be one. 

However, such can easily be implemented similarly as is done with the Hardanger Bridge and it 

represents little added complexity to this process, however, the advantage of doing so will be 

considerable smaller.  

3.4 AERODYNAMIC STIFFNESS– AND DAMPING MATRICES 

If equations 1.40b, 1.44b and 1.50d are combined, the entry wise contents of 𝜿𝑎𝑒 can be expressed as, 

 

𝜅𝑎𝑒𝑖𝑗
  =    

𝜌𝐵2𝐿

2�̃�𝑖

∫ 𝝋𝑖
𝑇�̂�𝑎𝑒𝝋𝑗

1

0

𝑑𝑥 (3.6b) 

where 𝐿𝑒𝑥𝑝 is set equal to 𝐿 because wind loading is present along the entire bridge span. Combining 

equations 1.40b, 1.44c and 1.50e, the entry wise content of 𝜻𝑎𝑒 will similarly be as follows, 

 

𝜁𝑎𝑒𝑖𝑗
  =    

𝜌𝐵2𝐿

4�̃�𝑖

∫ 𝝋𝑖
𝑇�̂�𝑎𝑒𝝋𝑗

1

0

𝑑𝑥  (3.6b) 
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In the case of the Hardanger bridge only aerodynamic derivatives 𝑃1
∗, 𝐻1−4

∗  and 𝐴1−4
∗  are non–zero, and 

the fully expanded versions of 𝜅𝑎𝑒𝑖𝑗
 and 𝜁𝑎𝑒𝑖𝑗

 are therefore given by, 

𝜅𝑎𝑒𝑖𝑗
   = 

 

 

 

𝜁𝑎𝑒𝑖𝑗
   = 

𝜌𝐵2𝐿

2�̃�𝑖

∫[             𝐻4
∗

1

0

∙ 𝜑𝑖𝑧(𝑥) ∙ 𝜑𝑗𝑧(𝑥) 

                  +     𝐵𝐻3
∗ ∙ 𝜑𝑖𝑧(𝑥) ∙ 𝜑𝑗𝜃(𝑥) 

                  +     𝐵𝐴4
∗ ∙ 𝜑𝑖𝜃(𝑥) ∙ 𝜑𝑗𝑧(𝑥) 

                  +   𝐵2𝐴3
∗ ∙ 𝜑𝑖𝜃(𝑥) ∙ 𝜑𝑗𝜃(𝑥) ]    𝑑𝑥 

  

𝜌𝐵2𝐿

4�̃�𝑖

∫[              𝑃1
∗

1

0

∙ 𝜑𝑖𝑦(𝑥) ∙ 𝜑𝑗𝑦(𝑥) 

                   +        𝐻1
∗ ∙ 𝜑𝑖𝑧(𝑥) ∙ 𝜑𝑗𝑧(𝑥) 

                   +     𝐵𝐻2
∗ ∙ 𝜑𝑖𝑧(𝑥) ∙ 𝜑𝑗𝜃(𝑥) 

                   +     𝐵𝐴1
∗ ∙ 𝜑𝑖𝜃(𝑥) ∙ 𝜑𝑗𝑧(𝑥) 

                   +   𝐵2𝐴2
∗ ∙ 𝜑𝑖𝜃(𝑥) ∙ 𝜑𝑗𝜃(𝑥) ]    𝑑𝑥  

 

 

 

 

 

 

(3.7a) 

 

 

 

 

 

 

 

 

 

 

(3.7b) 

 The most obvious result that arises when 𝜅𝑎𝑒𝑖𝑗
 and 𝜁𝑎𝑒𝑖𝑗

 is being adopted to the Hardanger Bridge 

is that aerodynamic stiffness only concerns vertical and torsional modes. This very property gives indeed 

raise to the fact that the eigenfrequencies changes with �̅� because the aerodynamic derivatives indeed 

does so, nevertheless, such behaviour is, as was mentioned in chapter 1.2.4, only considered important 

when investigating stability limits. The fact that the apparent frequency location of an eigenfrequency 

is being changed slightly does therefore not have any significant impact on the magnitude of the 

oscillations of the corresponding mode. Similarly, extreme levels of mean wind speeds that reduces total 

modal damping in some cases close to zero is beyond the cope of this study, and therefore a detailed 

investigation into the specific shapes of the non–zero aerodynamic curves is considered unnecessary.   

3.5 CONSTRUCTING A NUMERICAL INTEGRATION SCHEME FOR 𝑺𝜼𝜼(𝒕, 𝝎) 

Establishing an effective numerical integration scheme for 𝑺𝜂𝜂(𝜔, 𝑡) with respect to 𝜔, brings forth a 

few challenges to which satisfactory solutions must be applied. This concerns mainly how to construct 

a wise discretization of the frequency axis. In the case of a well–behaved function that undergoes 

smooth, slow, and predictable changes along the axis in question, an equally spaced mesh of axis settings 

is obvious not only for simplicity but is also usually sufficient from an accuracy perspective. However 

in the case of a response spectrum function where the structure in question generally has low damping, 

quite the opposite curve characteristics prevails. These functions feature narrow and prominent peaks 

that forms in the vicinity of the structures eigenfrequencies who are also very dominant contributors to 

the total area under the spectrum curve itself. Between these narrow peaks are generally low magnitude 
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regions that contribute insignificantly to the area under the spectrum curve. Hence, if an equidistant 

mesh is adopted the value of the constant spacing itself must be determined from what can be considered 

sufficient from an accuracy perspective at the location of the narrow prominent peaks. Of course, such 

is extremely ineffective from a global perspective because a highly superfluous number of settings will 

be allocated to the low magnitude regions in between. Consequently, a discretization with varying 

spacing is needed, as is schematically illustrated in figure 3.5.  

 

Figure 3.5: Varying axis spacing 

 For convenience and simplicity the same discretization is of course adopted for all functions 𝑆𝜂𝑖𝜂𝑗
 

within 𝑺𝜂𝜂 and for all locations across the bridge span, even though 𝑆𝜂𝑖𝜂𝑗
 contains only the sharp peaks 

associated with modes 𝑖 and 𝑗. However, a problem arises because of a specific feature mentioned in 

chapter 3.4, namely that aerodynamic stiffness changes the location at where these prominent peaks 

forms. To try to calculate time varying (mean wind speed dependent) positions of these peaks is deemed 

unnecessary because as equation 1.51 suggests, the common set of peaks present in 𝑺𝜂𝜂  is directly 

related to the location of local maxima in �̂�𝜂(𝜔, 𝑡), or �̂�𝜂(𝜔, �̅�) for this particular purpose. This is 

because of the linear matrix multiplication between �̂�𝜂
∗ ,  𝑺�̂�𝑣

 and �̂�𝜂
𝑇. Because �̂�𝜂 is a complex quantity 

the desired information can be obtained by visually interpreting a surface plot of the base–10 logarithm 

of the magnitude of the determinant of �̂�𝜂 as is shown in figure 3.6. For this exclusive purpose, 𝜻𝑎𝑒 is 

omitted from �̂�𝜂 because the location of the changing prominent peaks caused by 𝜿𝑎𝑒 is the supreme 

interest. 
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Figure 3.6: Surface plot of 𝑙𝑜𝑔10[𝑎𝑏𝑠|�̂�𝜂(𝜔, �̅�)|] with 𝜻𝑎𝑒 = 0 

The surface plot in figure 3.6 clearly illustrates the aforementioned issues of sharp peaks whose 

location changes with the mean wind speed, and even though this is not the function itself that shall be 

integrated over the frequency axis, the evolutionary response spectrums will contain peaks at a subset 

of these exact same locations if they are calculated at an arbitrary position across the bridge span. The 

magnitude of �̂�𝜂 itself must therefore not be interpreted as the dynamic amplification factor of the entire 

MDOF system analogue to the dynamic amplification factor of a SDOF system because the determinant 

of �̂�𝜂 is basically a product of the modal dynamic amplification factors, each with its own resonant 

frequency, eigenfrequency. The fact that the magnitude of �̂�𝜂 is so small at the region of the torsional 

modes is simply because the dynamic amplification factor of most of the other modes is very small at 

the very high end of the frequency domain considered, far away from their respective eigenfrequencies. 

Consequently, the barely detectable increase in �̂�𝜂 around the eigenfrequencies of the highest torsional 

modes does not imply that so is also the case with the response spectrums at the same location. �̂�𝜂 must 

therefore only be interpreted in the context of information it is able to provide, namely the very location 

of these peaks. 

To treat the effect of the changing locations of peaks, one may introduce a solution strategy that is 

not perfect in terms of effectiveness but is at least convenient and simple to implement, namely letting 

the regions of closely separated frequency settings cover the entire domains that the respective sharp 

peaks changes within. What can also be seen from figure 3.6 is that the extremities of these very regions 

seem to be given by �̅� = 0 and �̅� = 50 m/s because the peaks that change location seem to move in the 

same direction from �̅� = 0 to �̅� = 50 m/s. Figure 3.7 illustrates the workings of this proposed method 

where regions of narrowly spaced settings for 𝜔 cover the domain the peaks changes within. The blue 

and red line in figure 3.7 are simply snapshots of the surface plot in figure 3.6 at �̅� = 0 and �̅� = 50 m/s, 

respectively. These somewhat arbitrary aforementioned values for �̅� are simply chosen as conservative 

envelopes of the mean wind speed domain that is covered for the purpose of this thesis.  



 

61 

 

 

Figure 3.7: Principle of integration scheme 

The discretization of the frequency axis itself is done by simply assigning a predetermined number 

of subdivisions to each of the “sectors” along the frequency axis. The locations of these sectors are 

determined as is illustrated in figure 3.6 and 3.7, simply by visually considering the domain of change 

of the peaks themselves. The importance of making sure that the sharp peaks indeed are included within 

these very regions is fundamental and a corresponding margin of error should therefore be applied. 

How one defines the initial number of “elements” within each sector is based on interpretation and 

is a question to which there is no definite answer. Such should also be determined from considering 

actual plots of response spectrums because the magnitude and especially the sharpness of the 

corresponding response spectrum peaks varies from eigenfrequency to eigenfrequency, and a surface 

plot of �̂�𝜂 is actually not a very good tool for providing this very information. Therefore, the density of 

frequency settings in the different sectors may advantageously be individualized. What information 

response spectrums also provides is the relative variance contribution from each mode. By knowing the 

general characteristics of this picture, one may with good reason allocate the most integration accuracy 

to the most prominent modes, and vice versa, which ever modes these may be for the structure in 

question. For the Hardanger Bridge, such a variance distribution is shown in chapter 3.6. 

On whatever way one defines the different frequency setting sectors, an absolute demand is 

nevertheless that mesh refinement must be both intuitive and trivial. This can simply be done by 

introducing a refinement factor, 𝑓𝑟, such that the initial distribution of the number of sector subdivisions 

can be multiplied with 𝑓𝑟 and rounded up to the nearest integer. For this matter, 𝑓𝑟 could generally take 

values of both sides of unity. Hence, the initial level of sector subdivision is not important but rather the 

frequency setting density ratio between the different sectors in which one should take into account the 

aforementioned features of the shape of the evolutionary response spectrums. The file “OS2.txt” is 

attached in appendix B and gives the initial sector subdivisions together with the corresponding 

frequencies that defines the boarders between the sectors themselves. A cut–off is also applied to the 
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lowest most frequency region in accordance with the properties of the wind field turbulence spectrum 

presented in chapter 2.3.  

3.5.1 Higher order integration elements 

When having established a decent discretization of the frequency axis, the area under the response 

spectrum curves can be determined (estimated) using for instance the trapezoidal method in which 

trapezoids approximates the generally unknown curve shape between the calculated data points. The 

trapezoidal method has quadratic convergence, which means that the error is bounded from above by a 

factor inversely proportional to 𝑁2 where 𝑁 is the number of elements within the domain in question. 

Quadratic convergence is by no means a poor attribute, but it is possible to obtain more accurate result 

with less computational expense using a higher order method of numerical integration, first and foremost 

Simpson’s method. Simpson’s method uses instead parabolas to approximate the curve defined by sets 

of three and three data points, and has quartic convergence, that is the error is bounded by a factor 

inversely proportional to 𝑁4. 

The two methods are illustratively compared by using them to determine the variance of horizontal 

structural response of the Hardanger Bridge induced by the stationary wind field given by the Kaimal 

spectrum in appendix C for a mean wind speed of 25 m/s. Table 3.3 shows the estimated variance for 

different values of the refinement factor, 𝑓𝑟, as given in chapter 3.5 together with the total number of 

data points on the frequency axis. The lowest and highest frequency is set to be {0,12} rad/s.  

         

  
Trapezoidal method Simpson's method 

 

 
𝑓𝑟: 𝜎𝑟𝑦

2   [𝑚2]: 𝑙𝑜𝑔10[𝐸]: 𝑛{𝜔}: 𝜎𝑟𝑦
2   [𝑚2]: 𝑙𝑜𝑔10[𝐸]: 𝑛{𝜔}:  

 0.25 0.277 796 851 –0.91 131 0.249 756 947 –1.93 261  

 0.5 0.256 909 898 –1.39 261 0.247 462 567 –2.61 503  

 1 0.249 824 400 –1.92 503 0.246 945 433  –3.43 1005  

 2 0.247 665 174 –2.48 1005 0.246 863 264 –4.43 2009  

 4 0.247 063 742 –3.07 2009 0.246 854 751 –5.55 4017  

 8 0.246 906 999 –3.67 4017 0.246 854 098  –6.73 8033  

 16 0.246 867 323 –4.27 8033 0.246 854 054 –7.95 16065  

 32 0.246 857 372 –4.87 16065 0.246 854 052 –∞ 32129  
         

Table 3.3: Trapezoidal method and Simpson's method 

 Table 3.3 clearly shows the effectiveness of Simpson’s method because it requires only half of the 

total number of frequency settings to provide an accuracy level within one percent. The error itself is 

defined on the basis of simply equating the presumed exact value of 𝜎𝑟𝑦
2  to its estimated value when 

using Simpson’s method and 𝑓𝑟  = 32. The significance threshold, 𝜀 , of the inclusion of Fourier 

components of the mode shapes discussed in chapter 3.3.1 was set to 𝜀  = 0.01 when computing table 

3.3. If for comparison 𝜀 is set to zero, the comparative values of 𝜎𝑟𝑦
2  are roughly 0.55 % lower for both 

the trapezoidal method and Simpson’s method, as well for all chosen values of 𝑓𝑟.  

Simpson’s method is obviously a better choice than the trapezoidal method when integrating the 

response spectrums but a similar trend does not prevail when applying even higher order integration 

elements that uses a higher order polynomial to approximate the curve segments. The reason for this is 

that the length of the integration element of a higher order method quickly becomes larger than the 

characteristic length of the sharp and prominent peaks in the response spectrums, consequently 
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producing spurious results. Simpson’s method seems therefore to be an optimum point when considering 

several schemes of numerical integration of the specific response spectrums in question. 

Finally, to check that the constructed and flexible integration scheme works according to its 

purpose, convergence can be checked for conservative “envelope” values for the mean wind speed as is 

done in table 3.4. Considering the mentioned characteristics of the change of the locations of the 

prominent peaks in the response spectrums in chapter 3.5, convergence is intuitively guaranteed between 

the envelopes if one experiences proper convergence at the envelopes themselves. This is because the 

regions of narrowly spaced frequency settings is set to “wrap around” the domain of which each 

prominent peak in the response spectrum forms as a result of varying �̅�. Table 3.4 is computed for the 

bridge midspan and only the eigenmodes that is not zero at this location is included in the corresponding 

check for convergence. This convergence check procedure can and should also be performed for other 

locations at the bridge span if structural response at these locations is to be investigated.  

         

 
�̅� = 5 𝒎/𝒔 �̅� = 50 𝑚/𝑠  

 
𝑓𝑟: 

𝜎𝑟𝑦
2    

[10−3 𝑚2]: 

𝜎𝑟𝑧
2    

[10−3 𝑚2]: 

𝜎𝑟𝜃
2    

[10−6 𝑟𝑎𝑑2]: 

𝜎𝑟𝑦
2    

[𝑚2]: 

𝜎𝑟𝑧
2    

[𝑚2]: 

𝜎𝑟𝜃
2    

[10−3 𝑟𝑎𝑑2]:  

 0.25 0.114 479 0.019 600 0.011 258 5.458 733 0.501 500 0.965 018  

 0.5 0.113 919 0.019 193 0.011 259 5.383 558 0.501 522 0.964 555  

 1 0.113 830 0.019 216 0.011 259 5.366 588 0.501 525 0.964 626  

 2 0.113 816 0.019 215 0.011 259 5.363 934 0.501 525 0.964 626  

 4 0.113 815 0.019 215 0.011 259 5.363 663 0.501 525 0.964 626  

 8 0.113 815 0.019 215 0.011 259 5.363 643 0.501 525 0.964 626  

 16 0.113 815 0.019 215 0.011 259 5.363 642 0.501 525 0.964 626  

 32 0.113 815 0.019 215 0.011 259 5.363 642 0.501 525 0.964 626  
         

Table 3.4: Convergence check for integration scheme (Simpson’s method) 

3.6 FREQUENCY LIMIT OF ENSURING QUASI–STATIC MEAN WIND RESPONSE 

In chapter 2.3 the importance of ensuring not only a quasi–static mean response, but also a quasi–

stationary response was mentioned. In the following a demonstration will be made that determines the 

location of the frequency region where the mean structural response goes from being as good as quasi–

static to no longer being able to be approximated as being so. Together with a time domain simulation 

algorithm uniquely specialized to the Hardanger Bridge that will be presented in chapter 3.7, it defines 

an important set of tools that one can use to define an indicative valid domain for the value of the highest 

included frequency in the mean wind speed. Such will be demonstrated in chapter 4 where time varying 

structural response from a real–life wind speed recording will be predicted.  

First, to determine the upper frequency limit of quasi–static mean response, consider the Hardanger 

Bridge to be subjected to a deterministic and homogeneous wind loading induced by �̅�  itself as 

illustrated in figure 3.8.  
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Figure 3.8: Mean wind speed considration 

What shall be investigated in particular is the difference between the time varying static response 

and the steady–state solution (“particular solution”) to equation 1.43a when the loading is constituted 

by �̅�(𝑡)  only. For this particular purpose, only horizontal motion will be considered because the 

fundamental mode of the Hardanger Bridge is in horizontal displacement. Hence, if the mean horizontal 

structural response indeed is quasi–static, such must intuitively also be the case for vertical and torsional 

motion since the modes constituting such motion have higher eigenfrequencies. Modal damping varies 

much less than model eigenfrequency for lowest set of modes and makes thus no difference in context 

of this argumentation. Obviously, homogeneousness implies that only even modes (evenly symmetric 

wrt. bridge midspan – odd wavenumbers) contribute to the mean response since the odd modes (even 

wavenumbers) makes the respective modal loads integrate to zero over the bridge span according to 

equations 1.37a, 1.37c and 1.43e. However, homogeneousness is not a necessary requirement for the 

validity of only considering horizontal motion because mode 1 will anyway be the most significant 

contributor to the mean response if mildly non–homogeneous features are present. Nevertheless, in the 

case of homogeneousness, mode 1, 5 and 9 is the only contributors to the mean horizontal response 

because mode 2, 8 and 11 integrates to zero.  

Aerodynamic stiffness is zero for all horizontal motion and aerodynamic damping is for simplicity 

excluded because time varying damping cannot be incorporated into the procedure of obtaining the 

steady state solution of equation 1.43a. Not letting the governing differential equations have constant 

coefficients will generally violate the fact that their particular solution is harmonic functions. Excluding 

aerodynamic damping will also be a conservative measure because the aerodynamic derivative 𝑃1
∗ which 

is associated with horizontal aerodynamic damping increases system damping with 𝑈 hence increasing 

the upper frequency limit for quasi–static response, since increased damping reduces modal dynamic 

amplification. Nevertheless, one might anyway discuss whether it is correct to include aerodynamic 

damping when considering slow varying deterministic loading since the aerodynamic derivatives that 

describes this very phenomenon are obtained from wind tunnel testing when considering modal 

oscillations from turbulent wind. Taking the abovementioned concepts into consideration, the relevant 

modal versions of equation 1.43a and corresponding mean loads from equation 1.43c is given by, 

 �̃�𝑖�̈�𝑖   +   2�̃�𝑖𝜁𝑖𝜔𝑖�̇�𝑖   +   𝜔𝑖
2�̃�𝑖𝜂𝑖   =   �̅̃�𝑖(𝑡)  ,        𝑖 =  {1,5,9} (3.8a) 

where, 
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�̅̃�𝑖(𝑡)  =   𝐶𝑄 ∙
𝐷

𝐵
∙ 𝐶�̅� ∙ ∫ 𝜑𝑖𝑦(𝑥)𝑑𝑥

1

0

∙ [�̅�(𝑡)]2  ,         𝐶𝑄 =  
1

2
𝜌𝐵𝐿  (3.8b) 

 By utilizing the principle of superposition, the steady–state solution of equation 3.8a can be 

expressed as the sum of the steady–state solutions of the same system subjected to the respective Fourier 

components of equation 3.8b. Expressing equation 3.8b in terms of a Fourier series expansion of 

[�̅�(𝑡)]2 renders, 

�̅̃�𝑖(𝑡)   = 𝐹𝐶𝐷,𝑖 [(∑ 𝑎𝑘sin (𝜔𝑘𝑡) +

𝑁

𝑘=1

𝑏𝑘cos (𝜔𝑘𝑡)) +  𝑈2̅̅ ̅̅ ]  (3.9a) 

where, 

𝐹𝐶𝐷,𝑖    = 

 

 

𝑈2̅̅ ̅̅    = 

𝐶𝑄 ∙
𝐷

𝐵
∙ 𝐶�̅� ∙ ∫ 𝜑𝑖𝑦(𝑥)𝑑𝑥

1

0

  

1

𝑇
∫[�̅�(𝑡)]2𝑑𝑡

𝑇

0

 

(3.9b) 

 

(3.9c) 

Equation 3.8a takes the following form when considering Fourier component, k, of equation 3.9a, 

 �̃�𝑖�̈�𝑖𝑘 + 2�̃�𝑖𝜁𝑖𝜔𝑖�̇�𝑖𝑘 + 𝜔𝑖
2�̃�𝑖𝜂𝑖𝑘   =   𝐹𝐶𝐷,𝑖[𝑎𝑘 sin(𝜔𝑘𝑡) + 𝑏𝑘 cos(𝜔𝑘𝑡) + 𝑈2̅̅ ̅̅ ] (3.10) 

Superposition from contributions 𝑎𝑘 sin(𝜔𝑘𝑡) and 𝑏𝑘 cos(𝜔𝑘𝑡) makes up the steady–state solution of 

equation 3.10, 

𝜂𝑖𝑘(𝑡)   = 
𝐹𝐶𝐷,𝑖

�̃�𝑖

∙ [𝐴𝑖𝑘 cos(𝜔𝑘𝑡) + 𝐵𝑖𝑘 sin(𝜔𝑘𝑡) + 𝑈2̅̅ ̅̅ ] (3.11a) 

where, 

𝐴𝑖𝑘   = 

 

𝐵𝑖𝑘   = 

 

𝜉𝑖𝑘   = 

[1 − 𝜉𝑖𝑘
2 ]𝑎𝑘 − [2𝜉𝑖𝑘𝜁𝑖]𝑏𝑘

[1 − 𝜉𝑖𝑘
2 ]

2
+ [2𝜉𝑖𝑘𝜁𝑖]2

 

[2𝜉𝑖𝑘𝜁𝑖]𝑎𝑘 + [1 − 𝜉𝑖𝑘
2 ]𝑏𝑘

[1 − 𝜉𝑖𝑘
2 ]

2
+ [2𝜉𝑖𝑘𝜁𝑖]2

 

𝜔𝑘

𝜔𝑖
 

(3.11b) 

 

(3.11c) 

 

(3.11d) 

Strømmen (2014, p. 69) provides the derivation of equation 3.11b and the same procedure is used when 

deriving equation 3.11c. The steady–state response of mode 𝑖 is simply obtained by summing equation 

3.11 over the components {𝑘} and the steady state response at relative position 𝑥 at the bridge span is 

obtained be summing modal contributions {𝑖}, namely, 
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𝑦(𝑡, 𝑥)   = ∑ [𝜑𝑖𝑦(𝑥) ∙ ∑ 𝜂𝑖𝑘(𝑡)

𝑁

𝑘=1

]

𝑖=1,5,9

 (3.12) 

 When producing the Fourier series expansion of [�̅�(𝑡)]2 it is important not to include frequencies 

that extend far beyond the highest included frequency used to extract �̅�(𝑡) itself. The reason for this is 

that if such frequency content reaches within proximity of 𝜔1, the possibly large dynamic amplification 

of these Fourier components will give a strong spurious contribution to 𝑦(𝑡, 𝑥) hence violating the 

validity and interpretability of the comparison that this chapter is supposed to present. However, if the 

highest frequency that was used to extract �̅�(𝑡) is also set as being the highest frequency used in the 

Fourier series expansion of [�̅�(𝑡)]2, it will in fact quite well resemble �̅�(𝑡) itself. Small deviations in 

amplitude will be present but the characteristic frequency at which [�̅�(𝑡)]2  oscillates is very much 

preserved, obviously because the highest frequency used in the Fourier series expansion of [�̅�(𝑡)]2 is 

very similar. Frequency preservation is anyway the only important feature because dynamic 

amplification is what is being investigated, not the numeric value of the amplitude by any means.  

Thankfully, the problem of what upper limit of frequency content to include in the Fourier series 

expansion of [�̅�(𝑡)]2 solves itself when using the IFE to extract the mean. However, if one for some 

reason chooses to use the WMAM or EMD to extract the mean, extraordinary caution must be taken 

when resembling [�̅�(𝑡)]2 in terms of a sum of harmonic components, because the WMAM and EMD 

produces curves for the mean wind speed that has no kinship to harmonics at all.  

The arbitrary generated non–stationary recording in figure 3.9 is used as the basis for comparing 

static and dynamic mean response of the Hardanger Bridge. As before, the recording viewed in figure 

3.9 is only a withdrawn subsection of a longer parent recording from which �̅�(𝑡) is extracted.  

 

Figure 3.9: Arbitrary generated wind speed recording 

As an initial illustration of the comparison between the static and steady–state dynamic response, 

the mean wind speed is extracted from the recording in figure 3.9 at a maximum included frequency of 

𝜔1/10 and [�̅�(𝑡)]2 , the Fourier series expansion of [�̅�(𝑡)]2 , the corresponding static response and 

steady–state dynamic response is all shown in figure 3.10. Again, the static response and the steady–

state dynamic response is of course both defined from the Fourier series expansion of [�̅�(𝑡)]2. 
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Figure 3.10: Static and steady–state response comparison 

 Subplot (3,2) in figure 3.10 shows how well the Fourier series expansion of [�̅�(𝑡)]2 resembles 

[�̅�(𝑡)]2 itself. The instant ratio of their respective magnitudes is given in subplot (3,5) and they deviate 

with roughly 0.67 % at the most. This seems also to be the only significant difference between the two 

since their characteristic frequencies is seemingly identical and the IFE of [�̅�(𝑡)]2 shows therefore a 

more than good enough resemblance to [�̅�(𝑡)]2 itself. Subplot (3,1) shows the very comparison between 

the static and steady–state dynamic response induced by the IFE of [�̅�(𝑡)]2 . The curves are 

indistinguishable since the maximum relative deviation between the two is roughly 0.11 %. Obviously, 

the mean response is as good as quasi–static for 𝜔𝑚𝑎𝑥 = 𝜔1/10. 

Table 3.5 shows the result of the same procedure shown above but with a larger set of fractions of 

𝜔1 as being the highest included frequency when extracting �̅�(𝑡) from the wind speed recording in 

figure 3.9. For comparison the dynamic amplification factor, �̂�(𝜔𝑚𝑎𝑥/𝜔1) for a SDOF system with the 

same damping as mode 1 is included.  
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 𝜔1

𝜔𝑚𝑎𝑥
 𝑙𝑜𝑔10 [𝑚𝑎𝑥 |1 −

[�̅�(𝑡)]2

𝐼𝐹𝐸[�̅�(𝑡)]2|]  𝑙𝑜𝑔10 [𝑚𝑎𝑥 |1 −
𝑦𝑆.𝑆.

𝑦𝑠𝑡𝑎𝑡𝑖𝑐
|]  𝑙𝑜𝑔10 [�̂� (

𝜔1

𝜔𝑚𝑎𝑥
)]  

 

  

 52.385 –2.47 –4.43 –3.44  

 45.837 –2.67 –4.40 –3.32  

 40.744 –2.35 –4.24 –3.22  

 36.669 –2.46 –4.18 –3.13  

 30.558 –2.44 –4.19 –2.97  

 26.192 –2.19 –3.83 –2.84  

 20.372 –2.62 –3.79 –2.62  

 15.279 –2.11 –3.27 –2.37  

 12.223 –2.28 –3.03 –2.17  

 10.186 –2.18 –2.96 –2.01  

 8.149 –2.03 –2.67 –1.82  

 6.011 –1.91 –2.27 –1.55  

 5.023 –1.72 –1.99 –1.38  

 4.527 –1.91 –2.03 –1.29  

 4.030 –1.68 –1.83 –1.18  

 3.526 –1.63 –1.67 –1.06  

 3.006 –1.35 –1.36 –0.90  

 2.601 –1.53 –1.41 –0.76  

 2.209 –1.63 –1.24 –0.59  

 1.910 –1.31 –0.83 –0.42  

 1.755 –1.44 –0.92 –0.32  

 1.503 –1.50 –0.67 –0.10  

 1.405 –1.35 –0.47 0.01  

 1.300 –1.40 –0.46 0.16  

 1.202 –1.50 –0.45 0.35  

 1.101 –1.24 0.01 0.67  

 1.051 –1.21 0.15 0.98  

 1.021 –1.27 0.27 1.35  

 1.010 –1.25 0.29 1.64  

 1.002 –1.26 0.33 1.97  
      

 

Table 3.5: Multimode dynamic amplification of mean horizontal response. 

 The second column from the right shows the maximum relative difference in magnitude between 

the static mean response and the steady–state dynamic mean response. How to decide the limiting value 

of the maximum deviation between the two is simply a matter of definition and interpretation but if a 

tolerance threshold of 1 % is adopted, the corresponding value of 𝜔1/𝜔𝑚𝑎𝑥 seems to be somewhere 

between 4.5 and 5.0. A tolerance threshold of 0.1 % seems to give 𝜔1/𝜔𝑚𝑎𝑥 ≈ 11. It is obvious from 

table 3.5 that �̂� is a bad tool for assessing the limit value of 𝜔1/𝜔𝑚𝑎𝑥 since not only does it overestimate 

dynamic amplification, but the magnitude of this very overestimation also varies drastically with 

𝜔1/𝜔𝑚𝑎𝑥, hence making it unable to provide any useful information.  

It must also be emphasized that because the maximum deviation is used as a measure of 

resemblance, the data in table 3.5 is lightly scattered. To obtain smoother data longer recording can be 
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used, but the general trend is clearly visible by using the 30–minute recording in figure 3.9. Also, the 

data present in table 3.5 is of course obtained from the specific recording used in this illustration. 

However, the way the mean wind speed curve follows the local variations in the wind speed recording 

is dependent on the highest frequency it includes and less on what recording that is in fact used. Hence, 

another recording with relatively similar characteristics will produce very similar data as displayed in 

table 3.5, given that the recording is of sufficient length. 

3.7 TIME DOMAIN SIMULATIONS 

3.7.1 Introduction 

So far, the frequency domain buffeting theory has been thoroughly presented and when extended to treat 

non–stationary wind speed recordings, arising problems has been addressed and to which proposed 

solutions has been presented. The advantages and convenience with the frequency domain approach is 

clearly its ability to effectively treat the stochastic features of the dynamic problem at hand, but it has 

one major disadvantage when it comes to non–stationarity because it completely lacks the ability of 

treating transient effects. Hence, using the now well–established tool of the non–stationary frequency 

domain buffeting theory framework without considering transient effects at all would be an almost 

blindfolded approach when trying to predict the stochastic characteristics of structural response induced 

by a particular non–stationary wind field. A time domain simulation treats transient effects perfectly 

fine since structural response is calculated directly via numerical integration of the governing differential 

equations themselves. However, since structural response is stochastic because the wind field inducing 

it indeed is so, a single realization of structural response gives really no useful and interpretable piece 

of information in this context. In order to be able to see a clear picture of the time varying variance of 

structural response at all, numerous simulations must therefore be carried out in which only the average 

of all these simulations is able to illustrate the transient effects.   

3.7.2 Background for time domain simulation algorithm 

Theoretically, the time domain equivalent of the multimode spatial averaging process that is performed 

in the frequency domain buffeting theory is establishing the modal loads by numerical integration from 

considering the instant wind velocity at every point across the bridge span, and subsequently solving the 

system of governing differential equations defined by equation 1.44a, for every time step throughout the 

considered time window. In practice, it is not necessary to record wind speed data at every point across 

the bridge span because wind speed recordings at given spatial separations across the bridge span can 

be generated such that they obey the coherence properties that is characteristic to the process they 

represent. At how many points across the bridge span such wind speed recordings should be generated 

depends on the local shape of the wind field and the length of the bridge span. In the case of the 

Hardanger Bridge, 100 equidistant points should be more than sufficient (Associate Prof. Ole Øiseth, 

April 27th, 2018) to accurately describe the spatial variations of the wind field.  

Strømmen (2010, ch. A.3) derives the process of generating arbitrary realizations of simultaneous 

recordings processes across the bridge span. The expression for such a stochastic process is given by, 

𝑥𝑚(𝑡)    = ∑ ∑|𝐺𝑚𝑛(𝜔𝑗)| ∙ √2𝑆𝑥(𝜔𝑗)𝛥𝜔 ∙ cos(𝜔𝑗𝑡 − 𝜑𝑛𝑗)

𝑁

𝑗=1

𝑚

𝑛=1

 (3.13a) 
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where, 

�̂�𝑥(𝜔, 𝛥𝑠)    = 

𝑅𝑒[𝑆𝑥𝑚𝑥𝑛
(𝜔, 𝛥𝑠)]     = 

�̂�𝑥𝑥(𝜔, 𝛥𝑠) ∙ �̂�𝑥𝑥
∗𝑇 (𝜔, 𝛥𝑠) 

𝑆𝑥(𝜔) ∙ �̂�𝑜𝑥(𝜔, 𝛥𝑠) 

(3.13b) 

(3.13c) 

where �̂�𝑥𝑥 is the Cholesky decomposition of �̂�𝑥 and 𝜑𝑛𝑗 is an arbitrary phase angle that is uniformly 

distributed on the interval [0,2𝜋]. Similar to equation 1.28, 𝑺𝑥(𝜔, 𝛥𝑠) can advantageously be split up 

into the the auto spectrum and normalized Co–spectrum such that �̂�𝑥𝑥 only contains spatial coherence. 

In the case of non–stationarity all simultaneous realizations {𝑥𝑚(𝑡)} may then together be modulated 

according to chapters 2.4.3 – 2.4.5 in order to resemble the non–stationary wind field in question. 

Simulating the wind field across the bridge span by producing a set of for instance 𝑚  = 100 

equidistant realizations 𝑥𝑚(𝑡) is a quite computational expensive task. To obtain 𝑥𝑚(𝑡), 𝑚 different 

time series must be generated and added in accordance with equation 3.13a. Hence, to produce for 

instance 100 realizations (𝑚 = 100) of 𝑥(𝑡), 0.5∙100∙101 = 5,050 individual time series must in total be 

generated. This procedure must also be performed for every single simulation, and a total of 1,000 

simulations or more might be necessary to produce a sufficiently converged curve for the time–varying 

variance of structural response such that it is accurate enough and indeed interpretable when it comes to 

providing any desired information at all. Given the general method of simulating structural response 

induced by a discretely generated wind field presented in chapter 3.7.2, one might start to get an idea of 

the truly vast number of calculations that must be performed in order to obtain any useful information 

at all about what transient effects the dynamic structural response might display.  

However, this sought information can in fact be obtained via a much more effective and streamlined 

procedure. This procedure is based on the idea of comparing the frequency domain buffeting response 

and the simulated time domain buffeting response of a single–degree–of–freedom (SDOF) system. The 

idea behind this method and its validity is presented in the following. First, consider the Hardanger 

Bridge to be subjected to a stationary wind field described by the Kaimal spectral formula and the 

associated parameters given in Appendix C, for �̅� = {20, 30, 40} m/s. The corresponding response 

spectrums for horizontal motion at the bridge midspan is shown in figure 3.11. 

 

Figure 3.11: Response spectra and cumulative associated variance density functions 
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The response spectrums in figure 3.11 are calculated via the attached MATLAB script in chapter B.1.3 

with a Fourier component threshold 𝜀 = 0.010, and by using the frequency axis discretization given by 

the text file “OS.txt” with a refinement factor 𝑓𝑟 = 2. The dashed curves in figure 3.11 are the cumulative 

variance density functions, 𝐶𝑉𝐷𝐹(𝜔)  of the associated spectral curves and gives the relative 

accumulated variance as a function of 𝜔 and is defined by, 

𝐶𝑉𝐷𝐹(𝜔)    = [ ∑ 𝑆(�̃�)𝛥�̃�

�̃�=𝜔

�̃�=𝜔0

] ∙ [ ∑ 𝑆(�̃�)𝛥�̃�

�̃�=𝜔𝑛

�̃�=𝜔0

]

−1

 (3.14) 

where 𝜔0  and 𝜔1  denotes the starting– and ending point of the numerical integration of 𝑆𝑟𝑦
(𝜔) , 

respectively. In this particular case, 𝜔0 = 0.0105 and 𝜔𝑛 = 11.5 was used.  

The cumulative variance density functions in figure 3.11 shows that as good as all of the total 

variance of the process has been accumulated when integrating 𝑆𝑟𝑦
(𝜔) just past the eigenfrequency of 

the first mode. Selecting a frequency limit 𝜔𝐿 = 0.5 rad/s gives 𝐶𝑉𝐷𝐹(𝜔𝐿) = {0.9974, 0.9967, 0.9960} 

for �̅� = {20, 30, 40} m/s, respectively. Less than half a percent of the total variance of the process does 

thus originate from the frequency region past 𝜔 = 0.5 rad/s. Consequently, to illustrate transient effects 

of structural response only the first horizontal mode needs to be considered since this makes up almost 

all variance of horizontal motion. Also, how rapidly the solution of a homogeneous second order linear 

differential equation dampens out is proportional to the product of the modal damping ratio and modal 

eigenfrequency (Strømmen, 2014, p. 66), and this product is clearly smallest for the fundamental mode 

of the Hardanger Bridge. Consequently, only horizontal motion needs to be considered because transient 

effects will hence be largest for the very displacement component that houses the fundamental mode, 

namely horizontal motion. Thus, if transient effects are present at a certain degree for horizontal motion, 

the prominence of transient effects will always be less for vertical and rotational motion because these 

displacement components house modes whose product of modal damping ratio and eigenfrequency is 

larger, hence reducing the time it takes for structural response to settle at a new level of variance.  

It should be mentioned that this example only takes into consideration a single specific wind field. 

Nevertheless, it is probably very unlikely that another spectral function that represents a real wind field 

displays spectral content which is such that a significantly less fraction of the total structural variance 

originates from the first mode. To illustrate this fact the integral length scale in the spectral formula used 

to produce the response spectrum in figure 3.11 for �̅� = 30 m/s is multiplied with the factors 2.5 and 

0.4, respectively. The resulting response spectrums for the Hardanger Bridge is shown in figure 3.12. 
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Figure 3.12: Response spectrums from wind spectrums with different time scales (�̅� = 30 m/s) 

It is obvious to see that changing integral length scales will alter the distribution of the variance in 

the response spectrum but this has close to zero effect on the variance contribution from the first mode. 

Namely when scaling the average integral length scale by the factors 2.5 and 0.4, the cumulative variance 

distribution function takes the respective values 0.9952 and 0.9974 at 𝜔𝐿 = 0.5 rad/s. However as can 

be seen from figure 3.12, reducing the integral length scale has the effect of moving some of the quasi–

static variance contributions in the wind field spectrum over to the frequency regions containing the 

eigenfrequencies consequently making the variance distribution somewhat more capable of creating 

resonance. Illustratively, the standard deviation of horizontal structural displacement for �̂�𝑢 = 2.5 and 

�̂�𝑢 = 0.4 is 0.664 m and 0.748 m, respectively. Time–varying spectral content might therefore only be 

important to consider when trying to quantify the magnitude of structural response, but it clearly does 

not affect the validity of using a SDOF system to investigate transient effects. 

Secondly, another simplification that is extremely effective in terms of computational expense is to 

let the SDOF system be subjected to a wind field that is spatially invariant along the bridge span, 

consequently needing only a single wind speed recording to define it. Such initially seems very 

nonchalant since it is far from correct when it comes to predicting the very magnitude of the response 

of the bridge because of the very fact that the wind speed varies across the bridge is completely ignored. 

However, the important thing is to keep in mind what piece of information one really wants to acquire. 

After all, the primary objective of establishing a time domain simulation scheme is nothing but to check 

that the fluctuations of the time varying variance of structural response calculated by the frequency 

domain buffeting theory indeed makes sense and thus can seem likely from a structural perspective when 

considering the eigenfrequency and damping ratio of the fundamental mode. Clearly, the spatial 

variations in the wind field across the bridge span has of course a large influence on the very magnitude 

of structural response. However, it has almost no influence on how fast its variance settles from one 

level to another since the fundamental mode completely dominates the picture of oscillation. Hence, 

generating a set of simultaneous realizations allocated to the corresponding set of equidistant points 

across the bridge span with the purpose being of preserving the coherent properties of the wind field 

such that spatial averaging can be approximated, is of absolutely no benefit when it comes to 

investigating transient effects of the structure exclusively. Such a mathematical model is simply another 

way of determining structural response in which its natural and automatic capability of modelling 

transient effects is simply a neat biproduct that happens to be desirable in this very context.  
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The logical result of the argumentation presented so far is therefore that the transient effects of the 

response of the Hardanger Bridge when being subjected to a non–stationary wind field can accurately 

be investigated by comparing the frequency domain and the simulated time domain buffeting response 

of a SDOF system that is equated to the fundamental mode of the Hardanger Bridge. This concept of 

using another path than the most obvious one between the starting point and the specific goal in question 

is illustrated in figure 3.13 and is nothing new to problem solving in general.  

 

Figure 3.13: Principle of SDOF consideration 

3.7.3 Formulation of SDOF time domain simulation algorithm 

When carrying out the comparison between the frequency domain– and the simulated time domain 

buffeting response of the SDOF system, the wind field is for simplicity modelled as being uniformly 

modulated. The reason for this is to focus only on the issues that matters the most, namely the time 

varying link via variance of the input and output of the system. As will be shown in chapter 4, the curve 

of the time varying standard deviation of horizontal structural response will generally have shape–wise 

similarities to the curves of the time varying horizontal mean (quasi–static) response. This is because 

the very variable present in the expression for the response spectrum that generally displays the by far 

largest fluctuations in time is indeed the square of the mean wind speed. The time varying variance and 

especially the integral time scale in particular produce far smaller variations when it comes to structural 

response to which they consequently will be relatively modest contributors.  
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Generating a uniformly modulated signal involves a level of computational expense that is 

negligibly higher than that of a stationary signal. However, a non–uniformly modulated signal requires 

the time history of the modulation function to be calculated for every frequency setting used to establish 

the signal, and computational expense will consequently increase significantly. To use a uniformly 

modulated signal is therefore somewhat of a virtual optimum point when considering computational 

expense and accuracy for the purpose in question.  

3.7.3.1 Frequency domain buffeting response for SDOF system 

Deriving the expression for the response spectrum of the SDOF system starts with considering the modal  

version of equation 1.44. Again, aerodynamic stiffness is zero for horizontal motion and the governing 

equation of motion for the SDOF system is thus given by, 

 �̃�1�̈�(𝑡)   +   [�̃�1 − �̃�1,𝑎𝑒(𝑡)]�̇�(𝑡)   +   �̃�1𝜂(𝑡)    =   �̃�1(𝑡) (3.15a) 

where, 

�̃�1    = 

 

 

= 

 
𝜌𝑉𝐵

2
∙ 2 ∙

𝐷

𝐵
∙ 𝐶�̅� ∙ 𝐿 ∙ ∫ 𝜑1𝑦(�̂�) ∙ 𝑢(𝑡)𝑑𝑥

1

0

 

 

𝐶�̃� ∙ 𝑢(𝑡)  ,     𝐶𝑄  =   �̅�(𝑡) ∙ 𝜌𝐷𝐶�̅�𝐿 ∙ ∫ 𝜑1𝑦(�̂�)𝑑𝑥

1

0

 

 

 

 

 

(3.15b) 

The fact that the “virtual” turbulence component 𝑢(𝑡) is set as being constant along the bridge span, 

eliminates the need for spatial averaging to obtain the expression for the modal load �̃�1. Consequently, 

the Fourier components of the modal coordinate, 𝜂, can be obtained from the Fourier components of 

𝑢(𝑡) directly,   

𝑎𝜂(𝜔, 𝑡)    =   �̂�𝜂(𝜔, 𝑡) ∙  𝐶�̂� ∙ 𝑎𝑢(𝜔, 𝑡) ,     𝐶�̂� =  
𝐶�̃�

�̃�1

 (3.16a) 

where, 

�̂�𝜂(𝜔, 𝑡)    =  

 

𝜉1   = 

 

 𝜁𝑡𝑜𝑡   = 

1 − 𝜉1
2 − 2𝑖𝜁𝑡𝑜𝑡

[1 − 𝜉1
2]2 + [2𝜉1𝜁𝑡𝑜𝑡]2

 

 

𝜔

𝜔1
 

 

 

𝜁1 − 𝜁1,𝑎𝑒(𝑡) 

(3.16b) 

 

 

(3.16c) 

 

 

(3.16d) 

Only the first term of the fully expanded version of the aerodynamic camping coefficient 𝜁𝑎𝑒𝑖𝑗
 defined 

by equation 3.7b will be present for the SDOF system defined by mode 1. The aerodynamic derivative 
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𝑃1
∗ who gives it time varying properties is given in Appendix C and when combining it with equations 

3.7b and 3.16d, the total time varying SDOF damping ratio is given by, 

 𝜁𝑡𝑜𝑡(𝑡)    = 𝜁1    +   �̅�(𝑡) ∙
𝜌𝐷𝐶�̅�𝐿

2𝜔1�̃�1

∙ ∫ 𝜑1𝑦
2 (𝑥)𝑑𝑥

1

0

 
(3.17) 

 Further, equations 3.16a and 1.18a are combined to obtain the (evolutionary) power spectral density 

of the modal coordinate, 𝜂, and when formulating 𝑢(𝑡) as being uniformly modulated the EPSD of u(t) 

will obey the definition of equation 2.8, 

𝑆𝜂(𝜔, 𝑡)    = 𝐶�̂�
2 ∙ 𝜎𝑢

2(𝑡) ∙ |�̂�𝜂(𝜔, 𝑡)|
2

∙ 𝑆𝑔(𝜔) (3.18) 

Analogue to equations 1.49 and 1.52, the time varying variance of the SDOF response at the bridge 

midspan is given by, 

𝜎𝑟𝑦
2 (𝑥, 𝑡)    = 𝜎𝑢

2(𝑡) ∙ 𝜑1𝑦
2 (𝑥) ∙ 𝐶�̂�

2 ∙ ∫ |�̂�𝜂(𝜔, 𝑡)|
2

∙ 𝑆𝑔(𝜔)

𝜔𝐿

0

𝑑𝜔 (3.19a) 

where, 

𝑥    = 

 

𝜔𝐿   = 

 

|�̂�𝜂(𝜔, 𝑡)|
2

  = 

0.5 

 

0.5 rad/s 

 

1

√[1 − 𝜉1
2]2 + [2𝜉1𝜁𝑡𝑜𝑡]2

 

 

(3.19b) 

(3.19c) 

 

(3.19d) 

A similar numerical integration scheme to what is illustrated in figure 3.5 is used to solve equation 

3.19a. The chosen frequency settings are incorporated into the script “SDOFresponse.m” that is attached 

in Appendix B. The frequency limit 𝜔𝐿  = 0.5 rad/s is based on the mentioned behaviour of the 

cumulative variance distribution function of the spectrum plots in figure 3.11 and 3.12.  

The time varying mean response is as before assumed to be quasi–static given the chosen level of 

fluctuations in 𝜎𝑢(𝑡)  and  [�̅�(𝑡)]2  (ref. chapters 2.3.3, 2.4.3.1 and 3.6) and is simply obtained by 

multiplying equation 3.8b with 𝜑1𝑦(�̂�) and dividing by the modal stiffness, namely, 

�̅�𝑦(𝑡)   = 𝜑1𝑦(�̂�) ∙
𝜌𝐷𝐶�̅�𝐿

2�̃�1

∙ ∫ 𝜑1𝑦(�̂�)𝑑𝑥

1

0

∙ [�̅�(𝑡)]2 (3.20) 

3.7.3.2 Establishment of Monte Carlo simulation algorithm 

The algorithm that is given the role to validate the frequency domain response of the SDOF system 

presented in chapter 3.7.3.1 will be presented in the following. The algorithm itself is relatively straight–
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forward since it is really no secret what it fundamentally does. Nevertheless, a single simulation of 

structural response contains the consecutive steps: 

1. Generate an arbitrary stationary wind speed recording, 𝑔(𝑡), with unit variance from the same 

spectrum as 𝑆𝑔(𝜔) in equation 3.18. 

2. Modulate 𝑔(𝑡) according to equation 3.15b to represent the stochastic process �̃�1(𝑡).  

3. Solve the initial value problem using an appropriate differential equation solver. 

4. Estimate time varying variance and add it to the average and collect other relevant data. 

A specific set of measures are applied to the individual steps above in order to enhance the 

performance of the entire algorithm as much as possible. These measures are generally specialized to 

the characteristics of the Hardanger Bridge in particular and may not be equally valid or convenient 

when applied to another structure. Nevertheless, the individual measures are presented in the following. 

1. Reducing sampling frequency when generating the unit–variance signals  

The wind speed recordings from the Hardanger Bridge that will be used in chapter 4 has a sampling 

frequency of 20 Hz. However, with the highest included frequency in the generated recording, 𝑔(𝑡), 

being 0.5 rad/s which equates to a period of roughly 12.5 seconds, sampling 𝑔(𝑡) at 20 Hz would be 

ineffective in terms of algorithm performance. This is because the inertia of the bridge is so large that 

its motion will remain almost unaffected by the fact that �̃�1(𝑡) has a somewhat discontinuous slope 

resulting from the discrete sampling process of 𝑔(𝑡). One might therefore take advantage of this fact by 

sampling 𝑔(𝑡) at for instance 5 Hz, 4 Hz or 2.5 Hz and interpolate back to 20 Hz after all frequency 

components have been added, as is illustrated in figure 3.14 with a single harmonic function with period 

12.5 s and a sampling frequency of 4 Hz. 

 

Figure 3.14: Reduced sampling frequency of generated signal 

By mere eye–balling, one can see that the relative error associated with the interpolation procedure 

illustrated in figure 3.14 seems to be within a quarter of a percent which is more than sufficient for the 

purpose in question. 

2. Method for solving the dynamic initial value problem 

MATLAB R2018a features many highly effective built–in algorithms for solving initial value problems, 

for instance the function ode45. These built–in functions generally feature adaptive step–size algorithms 

that is based on the rate of change of the variables and time varying coefficients of the differential 

equation in question. However, a necessary requirement for these algorithms to work according to their 

intended purpose is that the coefficients of the differential equation are differentiable mathematical 

functions. In the case of equation 3.15a, �̃�1,𝑎𝑒(𝑡) and �̃�1(𝑡) are discrete vectors and therefore violates 

this requirement. Consequently, using built–in functions to solve equation 3.15a is not necessarily a 
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good idea based on the format of �̃�1,𝑎𝑒(𝑡) and �̃�1(𝑡). The fourth order Runge−Kutta method (RK4) for 

systems (Kreyszig, 2006, p. 904) is therefore instead adopted. Since equation 3.15a is of second order, 

it must first be expressed as a system of two mutually dependent first order differential equations,  

�̇�1   =    𝑓1(𝑡)   = 

 

�̇�2   =    𝑓2(𝑡)   = 

𝜂2 

1

�̃�1

∙ [�̃�1(𝑡) − �̃�𝑡𝑜𝑡(𝑡)𝜂2 − �̃�1𝜂1] 

, 

𝜂1(0) = 𝜂0 

 

𝜂2(0) = �̇�0 

(3.21) 

The RK4 method works by obtaining four auxiliary quantities from which a final, weighted slope is 

determined and then given the role to estimate 𝜂1 and 𝜂2 at the next time step, namely, 

𝜼𝑛+1   = 𝜼𝑛 +
1

6
[𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4] (3.22a) 

where, 

𝒌1   = 

𝒌2   = 

𝒌3   = 

𝒌4   = 

𝛥𝑡 ∙ 𝒇(𝑡𝑛, 𝒚𝑛) 

𝛥𝑡 ∙ 𝒇(𝑡𝑛 + 0.5𝛥𝑡, 𝒚𝑛 + 0.5𝒌1) 

𝛥𝑡 ∙ 𝒇(𝑡𝑛 + 0.5𝛥𝑡, 𝒚𝑛 + 0.5𝒌2) 

𝛥𝑡 ∙ 𝒇(𝑡𝑛 + 𝛥𝑡,               𝒚𝑛 + 𝒌3) 

 

(3.22b) 

For compatibility purposes only, the computed time history for the modal coordinate 𝜂1  must be 

multiplied with 𝜑1𝑦(�̂�)  to represent horizontal displacement at 𝑥  and such that it indeed can be 

compared with equation 3.19a.  

The RK4 method is of fourth order and has thereby quartic convergence rate. The reason why it is 

used instead of for instance an explicit or implicit Euler method (first order) is because it is much less 

prone to amplitudinal drift at a sampling frequency of 20 Hz. After all, almost 100 cycles of the first 

mode will take place within a one hour time window and amplitudinal drift might therefore be present 

as a very undesired effect.  

3. Commissioning phase of simulated structural response  

Simply for convenience, the SDOF system is initially set to be at rest, thus equating 𝜂0  and �̇�0  in 

equation 3.21 to zero at the point of initialization. However, because of the great inertia of the bridge 

structure, a significant amount of time must pass before it is no longer visible that the variance of 

structural response was in fact initialized by these very initial values. If this “commissioning phase” is 

progressing within the very interval one wants to compare frequency domain and simulated time domain 

response, the very section affected by this stabilization process is more or less useless when it comes to 

interpreting the difference between the two methods. Therefore, a “commissioning phase interval” with 

length 𝑇𝐶𝑃 prior to what defines 𝑡 = 0 is introduced where the time varying variance of the modal load, 

𝜎�̃�1

2 (𝑡), is set to be constant and equal to its value at 𝑡 = 0. The value of 𝑇𝐶𝑃 is chosen a posteriori such 

that the time varying variance of structural response seems to have stabilized sufficiently at 𝑡 = 0. A 

post interval elongation of 𝜎�̃�1

2 (𝑡) of length 𝑇𝐴 is also chosen but with the purpose being of being able 

to define the time varying variance of structural response at 𝑡 = 0 and 𝑡 = 𝑇, analogue to what is done 

with the time varying variance and integral time scales of the wind turbulence components. The design 

of this feature is schematically illustrated in figure 3.15. 
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Figure 3.15: Commissioning phase and averaging interval for MC simulations 

4. Estimation procedure of time varying variance of simulated structural response: 

This procedure is similar as the one used to estimate the time varying variance of the wind turbulence 

components. However, its effectiveness can be enhanced by a large amount due to the relatively 

predictable local shape of the time history of the response itself. As a direct result from the fact that 

almost all variance of structural response originates from frequencies in the close vicinity of the 

eigenfrequency, 𝜔1 , the SDOF system will indeed oscillate at a characteristic, “instant” frequency very 

close to the eigenfrequency itself. Consequently, the time varying variance of structural response can be 

calculated via a uniform average spanning half a period to either side of 𝑡 = 𝑡𝑖. Since 2𝜋/𝜔1 = 19.64 s 

≈ 20 s, the averaging period is set to 𝑇𝐴 = 10 s, as shown in figure 3.16.  

 

Figure 3.16: Estimation technique of time varying variance 

Also due to shape regularity, and as is done in figure 3.16, sampling can be done at 1 Hz and the variance 

contribution from each of the 20 corresponding “sections” can be calculated from integrating the square 

of the interpolated linear curves shown to the right in figure 3.16, namely, 
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∫ [𝑎 + (𝑏 − 𝑎) ∙
𝑡 − 𝑡𝑗

𝛥𝑡
]

2

𝑑𝑡  =

𝑡𝑗+𝛥𝑡

𝑡𝑗

 
𝛥𝑡

3
∙ [𝑎2 + 𝑎𝑏 + 𝑏2] 

 

(3.23) 

such that, 

𝜎𝑟𝑦
2 (𝑡)  = 

𝛥𝑡

6𝑇𝐴
∙ ∑[𝑎𝑗

2 + 𝑎𝑗𝑏𝑗 + 𝑏𝑗
2]

20

𝑗=1

 (3.24) 

3.7.4 Remarks and illustrative examples 

Figure 3.17 shows an illustration of a single loop iteration of the now proposed Monte Carlo simulation 

algorithm. The spectrum formula 𝑆𝑔 = 40.8 ∙ [1 + 50.2 ∙ 𝜔]−1.6 was used to generate a realization of 

𝑔(𝑡), and 𝑔(𝑡) was subsequently modulated with 𝜎𝑢 = 𝐼𝑢 ∙ �̅�(𝑡) to form 𝑢(𝑡) where the mean wind 

speed is illustrated in the uppermost subplot and defined by �̅�(𝑡) = 15 + 20 exp [(
𝑡−30

12.5
)

2
].  The 

resulting modal load �̃�1(𝑡) is shown in the middle subplot. The bottom subplot shows the time domain 

response of the SDOF system induced by �̃�1(𝑡) in which 𝜎𝑟𝑦
(𝑡) is determined according to equation 

3.24. 𝑇𝐶𝑃 was set equal to 10 min and the time window shown in figure 3.17 does therefore start 10 

minutes after the initialization of the time domain response calculation. 

 

Figure 3.17: Illustrative loop–wise workings of Monte Carlo simulation algorithm 

Figure 3.17 clearly illustrates the stochastic behaviour of structural response, resulting from the fact that 

at which moments the loading and the structural motion are in and out of phase can be considered to be 

stochastic. From this very reason, structural response exhibits rather characteristic “beats” and it is 
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therefore generally very difficult to determine the shape of the time varying standard deviation of 

structural response by considering only the time history from a single simulation, because the location 

of these beats can also be considered to be stochastic. Another consequence of this property is that 

estimating 𝜎𝑟𝑦
2 (𝑡) from a wider time interval than 20 seconds (roughly one period) does not seem to 

make the averaged time history of 𝜎𝑟𝑦
2  converge any faster. Because the location of the characteristic 

beats will vary randomly from simulation to simulation, selecting a longer averaging period produces 

only a locally smoother curve for 𝜎𝑟𝑦
(𝑡) at that particular simulation, and nothing more. Hence, what is 

most effective is therefore letting the pure number of simulations itself do the work when it comes to 

convergence.  

To illustrate some transient effects the response of the SDOF system might exhibit, three individual 

sets of 𝑁 = 2500 simulations of �̃�1(𝑡) and the resulting 𝑟𝑦(𝑡) is performed. A comparison between the 

standard deviations of the frequency domain response and the simulated average time domain response 

is shown in figure 3.18. In each of the three cases, the virtual storm that induces structural response is 

the same as the one shown in the uppermost subplot in figure 3.17 but now generalized to �̅�(𝑡) = 15 +

20 exp [(
𝑡−30

𝐵𝑊
)

2
] where 𝐵𝑊 = {12.5 min, 5 min, 2 min} from top to bottom in figure 4.18, respectively. 

Turbulence intensity is still constant at 𝐼𝑢 = 0.16, and the duration of the commissioning phase is still 

kept at 𝑇𝐶𝑃 = 10 min. The “bandwidth” parameter, 𝐵𝑊, determines the sharpness of the mean wind 

speed time history of the oncoming storm and by assigning it different values, the concept of “build–up 

time” of the standard deviation of structural response is clearly illustrated. 

 

Figure 3.18: Monte Carlo simulation (𝑁 = 2500) of structural response in time domain. 

First and foremost, it is clear that the inertia of the SDOF system has the expected effect of giving 

the variance of the simulated time domain response limited ability to follow sudden and sharp changes 
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in the variance of the modal loads. If the modal load exhibits gentle variations with time, which is 

nothing but a decent description of the storm described by 𝐵𝑊 = 12.5 min, the effect is less, and the 

magnitude of the time varying variance seems to be almost conserved but with a significant time lag 

being present. In the contrary, 𝐵𝑊 = 2 min seems to be a type of storm whose duration is not long 

enough and whose variance does not change gently enough in time to allow the variance of structural 

response to remain in a close to quasi–stationary state of equilibrium, as indeed seems to be the case 

with 𝐵𝑊 = 12.5 min. Hence, if the case with 𝐵𝑊 = 2 min truly represents a real storm, the frequency 

domain calculation approach cannot accurately describe the time varying structural response since 

transient effects dominates the input–output relationship. In chapter 4, the frequency domain approach 

and the now established SDOF time domain simulation approach will be compared when processing 

real–life wind data.   

The rightmost column in figure 3.18 shows the probability distributions of maximum structural 

response from the considered 60–minute time window. In the case of the frequency domain response, 

the distribution function (red curve) is calculated directly from equations 2.29 and 2.30. In the case of 

the time domain simulations, the maximum value of 𝑟𝑦(𝑡) is collected for every single simulation and a 

discrete density plot of these maximum values numerically estimates their distribution function. The 

approximated distribution function (blue curve) is determined from a LSF using the Type 1 Gumbel 

distribution function where the mean value can be calculated in advance such that the variance will be 

the only degree of freedom.  
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4 RESULTS 

4.1 PRELIMINARIES 

Real–life wind speed data recorded at the midspan of the Hardanger Bridge between 17:30 and 23:00 

UTC+01:00 on January 29th, 2016 is given the role to illustrate the theory established in chapters 1, 2 

and 3 and is shown in figure 4.1. The first and last 20 minutes of this parent recording acts only as a 

commissioning phase for the IFE–extracted mean wind speed and as a data base when time varying 

variance and integral time scales are calculated at the extremities of the resulting subset recording. 

Hence, the very subset recording onto which every time varying variable consequently can be defined 

starts and ends at 17:50 and 22:40 UTC+01:00, respectively, and is highlighted in deep red colour in 

figure 4.1. 𝑈(𝑡) in figure 4.1 is indeed the instant wind speed perpendicular to the bridge girder in the 

horizontal plane. The sampling frequency of the recording is 20 Hz.  

 

Figure 4.1: Real–life wind speed recording at the Hardanger Bridge 

 The results presented in this chapter are based on a statistical resemblance of the wind speed 

recording in figure 4.1 at four different levels, namely by extracting the mean wind speed using four 

different levels of the highest–most included frequency, 𝜔𝑚𝑎𝑥 in the IFE. For the sake of convenience 

and compatibility, the characteristic frequency at which the mean wind speed, the time varying variance 

and the integral time scales fluctuates in time may logically be attempted to be kept as similar as possible 

which for the calculations in this chapter is done by adopting the following rule, 



 

83 

 

𝑇𝐴   = 
𝜋

𝜔𝑚𝑎𝑥
 (4.1) 

such that the averaging time span, 2 ∙ 𝑇𝐴, equates the period of a harmonic component with frequency 

𝜔𝑚𝑎𝑥. The values of 𝜔𝑚𝑎𝑥 that is chosen in each of the four cases, together with the corresponding 

values of 𝑇𝐴 in accordance with equation 4.1 is given in table 4.1 

       

 
 Case 1: Case 2: Case 3: Case 4: 

 

 
𝜔1/𝜔𝑚𝑎𝑥 100.8 77.6 50.4 30.6 

 

 
𝑇𝐴 [s] 980 740 490 290 

 
       

Table 4.1: Considered characteristics of wind speed recording resemblance 

 For each of the four presented cases in table 4.1, the following arithmetics are performed on the 

wind speed recording in figure 4.1, 

1. Extract the mean wind speeds �̅�(𝑡), �̅�(𝑡) using the IFE with 𝜔𝑚𝑎𝑥 from table 4.1. Define the 

turbulence components 𝑢(𝑡) , 𝑤(𝑡)  by subtraction. 𝑢(𝑡) , 𝑤(𝑡)  should consequently have zero 

mean.  

2. Calculate 𝜎𝑢
2(𝑡) , 𝜎𝑤

2 (𝑡)  using the corresponding value of 𝑇𝐴  in table 4.1 and the parabolic 

weighting function in equation 4.10. 

3. Define the normalized turbulence components 𝑔𝑢(𝑡), 𝑔𝑤(𝑡). 𝑔𝑢(𝑡) and 𝑔𝑤(𝑡) should follow a 

Gaussian distribution with zero mean and unit variance.  

4. Calculate integral time scales, 𝑇𝑢(𝑡) and 𝑇𝑤(𝑡) using the integral (area) method illustrated in figure 

2.13. 𝜌𝑇𝐻𝑅 is set at 0.25. 

5. Calculate the time–invariant Fourier frequency spectrums 𝑆𝑔,𝑢(𝜔) and 𝑆𝑔,𝑤(𝜔) from 𝑔𝑢(𝑡) and 

𝑔𝑤(𝑡). The highest included frequency is set to 𝜔 = 12 rad/s. 

6. Smooth 𝑆𝑔,𝑢(𝜔) and 𝑆𝑔,𝑤(𝜔) using the proposed smoothing algorithm in chapter 2.4.5.1. 

7. With the help of the built–in WLSF MATLAB toolbox cftool, and the weighting function of 

equation 2.29, determine the parameters of the spectral formula that is the presumed best fit to the 

smoothed spectral data.  

The above steps 1 – 7 establishes all relevant information for the dynamic response calculations in which 

the following procedures is carried out, 

1. For every of the four methods of turbulence component modulation proposed in chapter 2.4, 

calculate time varying variance of structural response according to equations 1.52 and 1.59, using 

the proposed solution methods presented in chapters 3.3 and 3.5. The significance level, 𝜀, of mode 

shape Fourier components is set to 𝜀 =  0.010 and the refinement factor, 𝑓𝑟 , in the numerical 

integration scheme is set to 𝑓𝑟 = 2.  

2. Calculate the time varying (quasi-static) mean structural response using to equations 1.60 and 2.2. 

3. Calculate the probability density functions of the maximum structural response for the four methods 

of turbulence components modulation and for the three displacement components using equations 

2.30 and 2.31. 

4. Compare frequency domain response and simulated time domain response (here: 𝑁 = 4000 sims.) 

for the equivalent SDOF system to investigate transient effects. Calculate probability density 

function of maximum response numerically, and by using equations 2.30 and 2.31. 
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4.2 WIND DATA ANALYSIS AND RESPONSE CALCULATIONS 

4.2.1 Case 1 

Wind field calculations: 

 

Figure 4.2: Wind speed calculations, case 1. 
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U (𝒏 = 𝒖): W (𝒏 = 𝒘): 

 

 
  min: avg.: max: min: avg.: max: 

 

 
Mean wind speed [m/s] 14.38 22.33 28.39 0.53 0.83 1.16 

 

 
Turbulence, 𝒏(𝒕):             

 

 
 - 𝐸[𝑛(𝑡)] [m/s] - 0.007 - - 0.001 - 

 

 
 - RMS [m/s] - 3.036 - - 1.104 - 

 

 
 - 𝜎𝑛(𝑡) [m/s] 1.983 3.042 3.943 0.721 1.103 1.276 

 

 
Normalized turbulence, 𝒈𝒏(𝒕):             

 

 
 - 𝐸[𝑔𝑛(𝑡)] [m/s] - 0.002 - - 0.001 - 

 

 
 - RMS [m/s] - 0.983 - - 0.995 - 

 

 
 - ∑ 𝑆𝑔,𝑛,𝑟𝑎𝑤(𝜔𝑖)𝛥𝜔12

𝜔𝑚𝑎𝑥
 - 0.986 - - 0.969 - 

 

 
 - ∫ 𝑆𝑔,𝑛,𝑊𝐿𝑆𝐹(𝜔)𝑑𝜔

12

𝜔𝑚𝑎𝑥
 - 0.820 - - 0.908 - 

 

 
𝑇𝑛(𝑡) [s] 5.27 14.62 29.26 0.54 0.95 1.33 

 
         

Table 4.2: Relevant extracted data from wind field calculations, case 1. 

Dynamic response calculations, frequency domain: 

 

Figure 4.3: Frequency domain structural response, case 1. 
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Extreme value distribution: 

 
         

 
  𝑟𝑦(𝑡) [m]: 𝑟𝑧(𝑡) [m]: 𝑟𝜃(𝑡) [10-3 rad]: 

 

 
Modulation method: Expected: CDF = .99 Expected: CDF = .99 Expected: CDF = .99 

 

  

Stationary 1.695 2.048 0.440 0.644 18.0 21.1 
 

Uniform 1.792 2.178 0.544 0.684 18.9 22.4 
 

Non-uniform, XC 1.837 2.265 0.518 0.670 18.6 22.0 
 

Non-uniform, WK 1.813 2.231 0.522 0.672 18.6 22.0 
 

         

Table 4.3: Expected maximums and extreme levels with 1% probability of exceedance 

SDOF system comparison: 

Figure 4.4 shows the comparison between the frequency domain response and the simulated time 

domain response of the simplified, equivalent SDOF system. The bold black line is the time varying 

mean response. The distribution of maximum response for the frequency domain approach (analytical) 

and the time domain approach (simulated) is shown to the left in figure 4.4. The bottom plot shows the 

simulated probability distribution for the moment in time for when the maximum response take place.  

 

Figure 4.4: SDOF comparison, case 1 (𝑁 = 4000). 
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4.2.2 Case 2 

Wind field calculations: 

 

Figure 4.5: Wind speed calculations, case 2. 
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U (𝒏 = 𝒖): W (𝒏 = 𝒘): 

 

 
  min: avg.: max: min: avg.: max: 

 

 
Mean wind speed [m/s] 14.28 22.33 29.26 0.55 0.83 1.27 

 

 
Turbulence, 𝒏(𝒕):             

 

 
 - 𝐸[𝑛(𝑡)] [m/s] - 0.012 - - 0.002 - 

 

 
 - RMS [m/s] - 3.006 - - 1.102 - 

 

 
 - 𝜎𝑛(𝑡) [m/s] 1.703 3.008 3.969 0.705 1.102 1.290 

 

 
Normalized turbulence, 𝒈𝒏(𝒕):             

 

 
 - 𝐸[𝑔𝑛(𝑡)] [m/s] - 0.001 - - 0.003 - 

 

 
 - RMS [m/s] - 0.982 - - 0.991 - 

 

 
 - ∑ 𝑆𝑔,𝑛,𝑟𝑎𝑤(𝜔𝑖)𝛥𝜔12

𝜔𝑚𝑎𝑥
 - 0.985 - - 0.967 - 

 

 
 - ∫ 𝑆𝑔,𝑛,𝑊𝐿𝑆𝐹(𝜔)𝑑𝜔

12

𝜔𝑚𝑎𝑥
 - 0.870 - - 0.906 - 

 

 
𝑇𝑛(𝑡) [s] 4.99 13.75 32.56 0.53 0.94 1.39 

 
         

Table 4.4: Relevant extracted data from wind field calculations, case 2. 

Dynamic response calculations, frequency domain: 

 

Figure 4.6: Frequency domain structural response, case 2. 
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Extreme value distribution: 

         

 
  𝑟𝑦(𝑡) [m]: 𝑟𝑧(𝑡) [m]: 𝑟𝜃(𝑡) [10-3 rad]: 

 

 
Modulation method: Expected: CDF = .99 Expected: CDF = .99 Expected: CDF = .99 

 

  

Stationary 1,734 2,105 0,478 0,657 18,4 21,7 
 

Uniform 1,853 2,280 0,567 0,705 19,4 23,2 
 

Non-uniform XC 1,913 2,402 0,547 0,688 19,1 22,6 
 

Non-uniform WK 1,876 2,349 0,550 0,689 19,1 22,6 
 

         

Table 4.5: Expected maximums and extreme levels with 1% probability of exceedance 

 

SDOF system comparison between frequency domain and simulated time domain response: 

 

Figure 4.7: SDOF comparison, case 2 (𝑁 = 4000). 
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4.2.3 Case 3 

Wind field calculations: 

 

Figure 4.8: Wind speed calculations, case 3. 
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U (𝒏 = 𝒖): W (𝒏 = 𝒘): 

 

 
  min: avg.: max: min: avg.: max: 

 

 
Mean wind speed [m/s] 13.81 22.33 30.00 0.32 0.84 1.46 

 

 
Turbulence, 𝒏(𝒕):             

 

 
 - 𝐸[𝑛(𝑡)] [m/s] - 0.007 - - -0.001 - 

 

 
 - RMS [m/s] - 2.812 - - 1.095 - 

 

 
 - 𝜎𝑛(𝑡) [m/s] 1.591 2.812 3.937 0.712 1.095 1.326 

 

 
Normalized turbulence, 𝒈𝒏(𝒕):             

 

 
 - 𝐸[𝑔𝑛(𝑡)] [m/s] - 0.002 - - -0.001 - 

 

 
 - RMS [m/s] - 0.981 - - 0.988 - 

 

 
 - ∑ 𝑆𝑔,𝑛,𝑟𝑎𝑤(𝜔𝑖)𝛥𝜔12

𝜔𝑚𝑎𝑥
 - 0.984 - - 0.965 - 

 

 
 - ∫ 𝑆𝑔,𝑛,𝑊𝐿𝑆𝐹(𝜔)𝑑𝜔

12

𝜔𝑚𝑎𝑥
 - 0.890 - - 0.905 - 

 

 
𝑇𝑛(𝑡) [s] 2.55 9.22 32.99 0.40 0.92 1.43 

 
         

Table 4.6: Relevant extracted data from wind field calculations, case 3. 

Dynamic response calculations, frequency domain: 

 

Figure 4.9: Frequency domain structural response, case 3. 
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Extreme value distribution: 

         

 
  𝑟𝑦(𝑡) [m]: 𝑟𝑧(𝑡) [m]: 𝑟𝜃(𝑡) [10-3 rad]: 

 

 
Modulation method: Expected: CDF = .99 Expected: CDF = .99 Expected: CDF = .99 

 

  

Stationary 1,728 2,100 0,543 0,694 19,6 23,5 
 

Uniform 1,845 2,298 0,587 0,720 20,1 23,9 
 

Non-uniform XC 1,926 2,392 0,575 0,707 19,8 23,5 
 

Non-uniform WK 1,887 2,341 0,577 0,709 19,8 23,5 
 

         

Table 4.7: Expected maximums and extreme levels with 1% probability of exceedance 

SDOF system comparison between frequency domain and simulated time domain response: 

 

Figure 4.10: SDOF comparison, case 3 (𝑁 = 4000). 
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4.2.4 Case 4 

Wind field calculations: 

 

Figure 4.11: Wind speed calculations, case 4. 
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U (𝒏 = 𝒖): W (𝒏 = 𝒘): 

 

 
  min: avg.: max: min: avg.: max: 

 

 
Mean wind speed [m/s] 13.72 22.34 31.56 0.16 0.83 1.59 

 

 
Turbulence, 𝒏(𝒕):             

 

 
 - 𝐸[𝑛(𝑡)] [m/s] - 0.000 - - 0.000 - 

 

 
 - RMS [m/s] - 2.584 - - 1.082 - 

 

 
 - 𝜎𝑛(𝑡) [m/s] 1.465 2.584 3.901 0.703 1.082 1.444 

 

 
Normalized turbulence, 𝒈𝒏(𝒕):             

 

 
 - 𝐸[𝑔𝑛(𝑡)] [m/s] - 0.001 - - -0.001 - 

 

 
 - RMS [m/s] - 0.977 - - 0.988 - 

 

 
 - ∑ 𝑆𝑔,𝑛,𝑟𝑎𝑤(𝜔𝑖)𝛥𝜔12

𝜔𝑚𝑎𝑥
 - 0.981 - - 0.964 - 

 

 
 - ∫ 𝑆𝑔,𝑛,𝑊𝐿𝑆𝐹(𝜔)𝑑𝜔

12

𝜔𝑚𝑎𝑥
 - 0.881 - - 0.903 - 

 

 
𝑇𝑛(𝑡) [s] 1.88 6.41 29.59 0.33 0.85 1.46 

 
         

Table 4.8: Relevant extracted data from wind field calculations, case 4. 

Dynamic response calculations, frequency domain: 

 

Figure 4.12: Frequency domain structural response, case 4. 
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Extreme value distributions: 

         

 
  𝑟𝑦(𝑡) [m]: 𝑟𝑧(𝑡) [m]: 𝑟𝜃(𝑡) [10-3 rad]: 

 

 
Modulation method: Expected: CDF = .99 Expected: CDF = .99 Expected: CDF = .99 

 

  

Stationary 1,765 2,166 0,580 0,726 20,5 24,6 
 

Uniform 1,880 2,359 0,609 0,753 20,9 24,9 
 

Non-uniform XC 1,998 2,528 0,597 0,736 20,6 24,4 
 

Non-uniform WK 1,959 2,475 0,600 0,740 20,6 24,5 
 

         

Table 4.9: Expected maximums and extreme levels with 1% probability of exceedance 

SDOF system comparison between frequency domain and simulated time domain response: 

 

Figure 4.13: SDOF comparison, case 4 (𝑁 = 4000). 

4.2.5 WLSF spectrum parameters 

In the above cases 1 – 4, only the Kaimal spectrum was used to fit the respective spectrum data because 

it had a far higher capability of doing so when compared to the von Karmán spectrum formulae. The 

coefficients obtained from the WLSF procedure is shown in table 4.6 in which 𝐴𝑛
∗  and 𝐵𝑛

∗  is the 

coefficients of the Kaimal spectrum given on the format of equation 2.16c, and where 𝛽 is the slope 

coefficient from equation 2.29 which simply replaces the exponent 5/3 in the denominator of equation 

2.16c. 𝑚, 𝑛1 and 𝑛2 is the coefficients from the bandwidth function in equation 2.26. 
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 𝑆𝑔,𝑢: 𝑆𝑔,𝑤: 

 

 
Case: 𝐴𝑢

∗ : 𝐵𝑢
∗: 𝛽: 𝑛1: 𝑛2: 𝑚: 𝐴𝑤

∗ : 𝐵𝑤
∗ : 𝛽: 𝑛1: 𝑛2: 𝑚:  

 1 27.59 51.75 1.58 5 200 1.5 3.703 9.300 1.35 5 200 1.5  

 
2 33.83 57.75 1.58 5 200 1.5 3.715 9.318 1.35 5 200 1.5 

 

 
3 31.06 49.83 1.58 5 200 1.5 3.649 9.077 1.35 5 200 1.5 

 

 
4 21.95 33.54 1.60 5 200 1.5 3.158 7.273 1.38 5 200 1.5 

 
               

Table 4.10: WLSF parameters and Kaimal spectrum coefficients. 

4.2.6 Stationary data analysis and response calculation 

Wind field calculations: 

 

Figure 4.14: Presumed stationary wind speed recordings. 

     

   U: W: 
 

 
Mean wind speed [m/s] 22,34 0,83 

 

 
RMS, turbulence component [m/s] 4,989 1,120 

 

 
      

Table 4.11: Relevant extracted data from wind field calculations, stationary consideration. 
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Spectrum fitting: 

In contrast to the spectrum data in cases 1 – 4, Kaimal’s spectrum formulae has a very limited ability to 

fit the calculated spectral data of the turbulence components in figure 4.14. The reason for this is that 

the rate at which the slope of the smoothed spectrum changes in the log–log domain when moving from 

low to high frequencies, is to low compared to what the Kaimal spectrum is able to exhibit. This the 

same reason as to why the von Kármán spectrum is unable to fit the spectrum data in case 1 – 4 well. 

Nevertheless, this problem is overcome by instead using the following spectrum formula, 

𝑆𝑛(𝜔)    = 
𝐴𝑛

∗

[1 + 𝐵𝑛
∗ ∙ √�̂�]

3.2 (4.2) 

Table 4.12 gives the results from the identical WLSF procedure as used earlier. 

     

 
  U (𝑛 = 𝑢): W (𝑛 = 𝑤): 

 

 
𝐴𝑛

∗  22180 27.77 
 

 
𝐵𝑛

∗ 13.11 2.67 
 

     
Table 4.12: Spectrum parameters of enhanced stationary spectrum formula 

Figure 4.15 gives the result of the spectrum fitting process. 

 

Figure 4.15: WLSF for turbulence component spectrum 

Response: 

      

 
  𝑟𝑦(𝑡) [m]: 𝑟𝑧(𝑡) [m]: 𝑟𝜃(𝑡) [10-3 rad]: 

 

 
Mean 0,369 0,0827 3,48 

 

 
Standard deviation 0,356 0,0899 2,68 

 

 
𝐸[𝑟𝑚𝑎𝑥] 1,777 0,2794 17,3 

 

 
CDF = .99  2,141 0,5934 19,8 

 
      

Table 4.13: Structural response from a stationary consideration 
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4.2.7 Case comparisons 

Distribution of maximum structural response: 

 

Figure 4.16: Case comparison for maximum response levels. 
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5 COMMENTS ON THE RESULTS AND DISCUSSIONS 

5.1 WIND SPEED RECORDING CALCULATIONS 

When studying figures 4.2, 4.5, 4.8, 4.11 and 4.14 together with the associated statistical parameters 

given in tables 4.2, 4.4, 4.6, 4.8 and 4.11, the following remarks are the most interesting observations: 

1. The average value of the mean wind speeds �̅�(𝑡) and �̅�(𝑡) within the sub–recording in question 

are almost exactly equal to the average wind speeds within the same time interval (table 4.11), and 

the average values of the turbulence components is consequently as good as being zero. This 

indicates that the 20–minute commissioning phase mentioned in chapter 4.1 is of sufficient length 

and that the curves representing the extracted mean wind speeds �̅�(𝑡) and �̅�(𝑡) by no means seem 

to be characterized by the fact that they are indeed periodic on the time interval of the parent 

recording from which the investigated sub–recording is withdrawn.  

2. Similar to above, the average value of the estimated time varying standard deviation is almost 

exactly equal to the square root of the mean square value (RMS) of the turbulence components. 

However, when dividing the turbulence components 𝑢(𝑡) and 𝑤(𝑡) by their estimated time varying 

standard deviation, the RMS value of the normalized turbulence components 𝑔𝑢(𝑡) and 𝑔𝑤(𝑡) 

seems to end up slightly below unity. The reason for this small negative deviation from unity is that 

the time varying standard deviation, 𝜎𝑛(𝑡), which is defined from the time varying variance, 𝜎𝑛
2(𝑡), 

which indeed varies with time. Consequently, the mean of the square root of the time varying 

variance is slightly larger than the square root of the mean time varying variance, namely, 

√𝐸[𝜎𝑛
2(𝑡)]       < 𝐸 [√𝜎𝑛

2(𝑡)]  (5.1) 

Hence, this non–linear method of normalization (standard deviation is not a linear function of the 

variance) makes the RMS value of 𝑔𝑢(𝑡) and 𝑔𝑤(𝑡) end up just below unity. The magnitude of this 

negative deviation from unity progresses from 1.7 % to 2.3 % for 𝑔𝑢(𝑡) and from 0.5 % to 1.2 % 

for 𝑔𝑤(𝑡) for cases 1 – 4, respectively. This makes sense because the averaging period, 𝑇𝐴, for the 

calculation of 𝜎𝑛
2(𝑡) is decreases for case 1 through 4, and the magnitude of the fluctuations in 

𝜎𝑛
2(𝑡) will consequently be larger, thus amplifying the difference between the right and left–hand 

side of equation 5.1.  

The abovementioned effect is not spurious or undesirable by any means because the processes 

𝑔𝑢(𝑡) and 𝑔𝑤(𝑡) will anyway be modulated “back” with 𝜎𝑢(𝑡) and 𝜎𝑢(𝑡) themselves according to 

the methods described in chapters 2.4.2 – 2.4.4, thus cancelling the effect described by equation 

6.1 when it comes to comparing the RMS value of the generated wind speed recording with the 

RMS value of the original recording.  

3. 𝑔𝑢(𝑡) and 𝑔𝑤(𝑡) seems to be close to normally (Gaussian) distributed. The deviation between the 

observed data and the zero mean, unit variance, Gaussian probability density curve shown in the 

figures cannot alone be explained from the variance deviation from unity, but also the fact that they 

do not perfectly fit such a distribution function in the first place. This effect seems to be smaller 

when increasing 𝜔𝑚𝑎𝑥, and the opposite is clearly visible in the case of the stationary consideration 

in figure 4.14 where the non-stationary features of turbulence component 𝑢(𝑡) clearly distorts this 

image. 
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4. Another, but much larger deviation is the difference between the area under the fitted spectrum 

curves and the raw spectrum data. Ideally, they should roughly equate each other but the deviation 

shown in the tables are not arbitrary or spurious, but indirectly deliberate. The reason for this is 

simply the importance of applying a curve that fits the smoothed spectrum as well as possible in 

the very regions this matters the most, namely in the vicinity of the eigenfrequencies. Because of 

the structural variance distribution properties explained in chapter 3.7.2 through figures 3.11 and 

3.12, the variance of horizontal structural response of the Hardanger Bridge in particular is as good 

as directly dependent on how consistently the applied spectrum curve fits the spectrum data in the 

relatively narrow region surrounding the lowest eigenfrequency, 𝜔1 = 0.32 rad/s. Nevertheless, 

using the initially suggested spectral limit slope 𝛽 = 5/3 will in this particular case strongly violate 

the ability of the applied spectrum curve to fit the high–magnitude spectrum data in the low 

frequency region. These frequency components will be quasi-static in terms of structural response, 

but since their magnitudes are very large compared to the ones around 𝜔1, an attempt to apply a 

spectrum curve that also fits them relatively well, is desirable. Hence, the value of the area under 

the fitted spectrum curve generally represents little physical importance because the relation 

between the variance of the wind field and variance of structural response is close to being non–

existing when not taking into account the location of the eigenfrequencies of the structure in 

question.  

5.2 RESPONSE CALCULATIONS 

5.2.1 Method of EPSD modulation 

When studying the time histories of the standard deviation of structural response in figures 4.3, 4.6, 4.9 

and 4.12, some interesting observations immerge. The most obvious one is that the three fundamentally 

different methods of modulating the turbulence components (chapters 2.4.2 – 2.4.4; stationary, 

uniformly, and non–uniformly) differ the most for horizontal displacement. This effect seems also to be 

independent of 𝜔𝑚𝑎𝑥. The reason for why the modulation methods differ the most for horizontal motion 

is that 𝜎𝑛(𝑡)  and 𝑇𝑛(𝑡)  exhibits the largest fluctuations in time for 𝑛 =  𝑢(𝑡) , thus creating more 

violently fluctuating modulation functions for 𝑢(𝑡) than for 𝑤(𝑡).  

 When studying the difference between the modulation methods a bit closer, it can be seen that the 

dynamic response curves originating from the uniformly modulated, and the non–uniformly modulated 

(both XC and WK) turbulence components clearly stands out when compared to the curve originating 

from stationary turbulence components. This is nothing but logical, and clearly as expected because 

when equating the time varying standard deviation to its average value, which indeed is how the 

stationary turbulence components are “modulated”, the resulting standard deviation of dynamic 

structural response will clearly tend towards the average over the time window considered. The 

characteristic frequency at which the curves fluctuate is quite similar, which is simply because the mean 

wind speeds are present as terms in their mathematical expressions, but the magnitude of the fluctuations 

are significantly less.  

 Finally, the XC model and WK model are almost indistinguishable by visually considering the plots 

in the figures. However, introducing non-uniform modulation functions in one form or the other has the 

effect of “automatically” or “indirectly” interpreting whether to treat a relatively short fluctuation in the 

wind speed time history that goes under the radar during the extraction of the mean wind speed, as being 

a local change in the time varying variance of the signal, or as being a local change in the frequency 

content. This can be well illustrated by considering the time history for 𝑈(𝑡) at the moment in time right 

before 19:00 UTC+01:00 in case 2 (figure 4.5). At this point, a large peak in the integral time scale 
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occurs almost simultaneously as a local maximum in the time varying variance. Obviously, a uniformly 

modulated process interprets this only as being an increase in the variance of the signal and a 

corresponding peak in the variance of structural response is the result (upper–most subplot, figure 4.6). 

However, since variance is divided by integral time scale in the Kaimal modulation function for 𝑢(𝑡) 

(equation 2.16), the increase in integral time scale compensates for the increase in variance and instead 

allocates variance contributions from high to low frequency regions in the spectrum.  

Features like this are exactly what separates the non-uniformly modulated processes and the 

uniformly modulated ones. However, this is a feature that is created a posteriori when trying to establish 

a simple mathematical formula (Kaimal) that is able to take into account spectral content and it operates 

therefore on an indirect level. 

5.2.2 Extreme value distribution 

Equation 2.30 suggests that the moments in time for when both the mean structural response and the 

variance of dynamic structural response is large will by far have the greatest influence on the resulting 

CDF function for maximum response. This concept is also confirmed by the simulated PDFs for the 

moment in time for when maximum structural response occurs (figures 4.4, 4.7, 4.10, and 4.13), 

however with the additional information that it seems to be a relatively rare event that the maximum 

response originates from elsewhere. Consequently, which method of turbulence component modulation 

that gives the largest expected value of structural response seems to depend on which method that 

produces the largest maximum value of the standard deviation of dynamic response. 

From the deductive reasoning above, it is clear that the method of stationary turbulence component 

modulation will produce the lowest maximum value for the expected maximum response as well as the 

quantile values, because the resulting time varying standard deviation of dynamic response will deviate 

less from its average value compared to the resulting response from the other methods, hence restricting 

the possibility for producing high levels of structural response. When comparing the response curves 

originating from uniform–, and non–uniform modulation, it is somewhat arbitrary what curves produces 

the largest expected maximum response because it is equally arbitrary what curve that displays the 

largest maximum value within the considered time window. After all, such has to do with how the time 

varying variance of the turbulence components, their integral time scale, and indeed how the mean wind 

speed varies in time, an even though they generally seem to produce local maxima at the same locations, 

no general rule regarding the magnitude and prominence of the respective local maxima can be 

established.  

Nevertheless, the differences between the PDF curves are relatively small for the uniformly 

modulated–, and the non–uniformly modulated turbulence components, and the case with stationary 

turbulence components clearly stands out in comparison, especially when considering horizontal 

motion. This statement is based on the PDF curves from cases 1 and 2 exclusively because interpreting 

the relationship between the different PDF curves for cases 3 and 4 cannot be considered equally valid 

because transient effects is being much more characteristic to the picture of airflow – structure 

interaction as can be seen in figures 4.10 and 4.13.  

In the case of modelling the wind speed recording in figure 4.1 as being stationary, it is 

fundamentally difficult to compare the resulting PDF to the PDFs in the non-stationary cases because 

the spectrum fit in figure 4.15 is alone given the task to represent the now presumed stochastic trend 

that in the non-stationary theory is treated as a deterministic trend. To accurately resemble this trend in 

terms of a spectral expression is very difficult because of the large magnitude scatter in the low 

frequency region which is hard to interpret in terms of what process it represents. The average of the 

scatter may thus deviate vastly from its “true” value because the number of scatter points is very low in 

the low frequency region. 
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The maximum value distribution for the SDOF system from the frequency domain approach shows 

very similar characteristics to the PDF of maximum horizontal response using uniformly modulated 

turbulence components. The same is logically the case when comparing the time history of the standard 

deviation of dynamic response and the mean response. This similarity is no surprise at all due to the 

modal response variance distribution properties illustrated in figures 3.11 and 3.12. The magnitude of 

the response itself however is slightly larger for the SDOF system because spatial averaging is excluded. 

This is because the instant wind speed across the bridge span fluctuates in phase hence producing a 

larger modal load (ref eq. 1.43e). What is interesting is that the time domain simulated expected value 

of the maximum response of the SDOF seems to stay at almost the same level in cases 1 through 4. The 

only thing that seems to change is the variance and consequently the high–end quantile values of the 

maximum response. This has to do with the fact that transient effects become more prominent in cases 

1 through 4, which will be covered in chapter 5.2.3. At which specific areas the SDOF system is 

comparable to the multimode, spatial averaging model of the Hardanger Bridge can be debated, 

however, it was indeed introduced and formulated because the midspan response of multimode, spatial 

averaging model was completely dominated by the first mode. Hence, the SDOF system can be 

considered as being a good candidate at providing information about the behaviour of the maximum 

response distribution at the bridge midspan when transient effects are included. 

Finally, the equivalent SDOF system that was adopted with the exclusive purpose being 

investigating the nature of transient effects suggests that the analytical probability distribution obtained 

from the time varying variables of structural response seems to slightly overestimate the real (simulated) 

probability distribution of maximum horizontal response (see figure 4.16). This can be considered valid 

since the SDOF system very well resembles the behaviour of horizontal motion of the Hardanger Bridge, 

when not considering the magnitude of the response itself. Obviously, it would have been somewhat 

surprising if the analytical PDF distribution in equation 2.30 and 2.31 estimated the simulated PDF 

spon–on, especially when considering the fact that according to Strømmen (2010, p. 29), a necessary 

requirement in the derivation of equation 2.30 is that the process is “fairly broad banded”, which 

certainly is not the case for structural response. Nevertheless, the deviation between the two is not vast 

and the analytical distribution is not a bad measure.  

 

5.2.3 Time domain simulations – transient effects 

The response of the SDOF system in cases 1 and 2 indicates that transient effects play a relatively small 

role when predicting the time varying standard deviation of structural response in these particular cases. 

The simulated curve for the time varying standard deviation seems to resemble its frequency domain 

collague very well in terms of shape with an almost perfect conservation of magnitude, and where only 

a short and enevitable time–lag is present. However, when decreasing the extraction frequency ratio 

𝜔1/𝜔𝑚𝑎𝑥 to 50.4 and 30.6 as is done in cases 3 and 4, such is no longer the case. As can be seen in 

figures 4.10 and 4.13, the simulated time domain standard deviation of dynamic response is 

characterized by not being given a sufficient amount of “build–up” time to settle at its “steady–state” 

level suggested by the frequency domain method. The latter response solution will simply fluctuate too 

rapidly in time for this to be possible.  

The frequency limit at which transient effects starts to become a significant feature of structural 

response seems therefore to be somewhere in the vicinity of 𝜔𝑙𝑖𝑚,𝑡𝑟𝑎𝑛𝑠 =  𝜔1/50. Of course, this 

depends on what level of accuracy one defines to be sufficient in order to characterize transient effects 

as not being a significant feature of structural response, but the difference between cases 1 and 2, and 3 

and 4 is clear in terms of the presence of transient effects. If one extracts the mean wind speed in which 

the highest included frequency component has a frequency above 𝜔𝑙𝑖𝑚,𝑡𝑟𝑎𝑛𝑠, the frequency domain 
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buffeting response framework will not be able to predict time varying variance (standard deviation) of 

the dynamic response because of its missing ability to model transient effects, and a full–scale time 

domain simulation algorithm according to equation 3.13 must be applied.  

5.2.4 Defining the characteristics of the wind speed recording 

Regardless whether a time domain simulation scheme or the frequency domain approach established in 

this thesis is adopted, the stochastic and deterministic features of the wind speed recording in question 

must anyway be clearly defined. This procedure is indeed based on interpretation because there exists 

no general rule that gives the proper separation point between the deterministic time varying mean wind 

speed and the remaining stochastic turbulence components. When choosing this separation point by 

assigning 𝜔𝑚𝑎𝑥 and 𝑇𝐴 numerical values, the infinitely large family that the wind speed recording in 

question now per definition is a member of, defines the basis from which we can determine expected 

values and probability distributions of structural response parameters. To briefly illustrate what impact 

such a choice has on the typical characteristics of the resulting defining family of recordings, three 

arbitrary realizations are generated from the subrecording of 𝑈(𝑡) in figure 4.1. 𝜔𝑚𝑎𝑥 and 𝑇𝐴 is selected 

in accordance with chapters 4.2.4 (case 4), 4.2.1 (case 1), and 4.2.6 (stationary), and with applying a 

non-uniform modulation according to the XC–model to 𝑢(𝑡). First, the most “accurate” method of 

resemblance covered in this thesis is shown in figure 5.1, namely by assigning 𝜔𝑚𝑎𝑥 and 𝑇𝐴 the same 

values as was done in case 4. 

 

Figure 5.1: Arbitrary realizations of wind speed recording according to case 4. 

Secondly, three arbitrary realizations of 𝑈(𝑡) in figure 4.1 according to the chosen definitions in case 1 

are shown in figure 5.2. 
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Figure 5.2: Arbitrary realizations of wind speed recording according to case 1. 

Finally, the same procedure is repeated when modelling 𝑈(𝑡) as being stationary and is shown in figure 

5.3. 

 

Figure 5.3: Arbitrary realizations of wind speed recording when assuming stationarity. 

Clearly, the levels at which the realizations in figures 5.1 – 5.3 resemble the process they indeed 

are defined to represent is strongly dependent on 𝜔𝑚𝑎𝑥 and 𝑇𝐴 in which increasing 𝜔𝑚𝑎𝑥 and reducing 

𝑇𝐴 increases the level of resemblance. The realizations in figure 5.1 are defined to produce the closest 

resemblance to the original recording, which is clearly visible where only small local deviations are 

visible from this presented perspective. However as shown in chapter 4.2.4 (figure 4.13), transient 
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effects prevail at this level of resemblance and the proposed non–stationary frequency domain buffeting 

theory framework is therefore unable to accurately describe the airflow–structure interaction.  

The realizations in figure 5.2 which are defined from the characteristics defined in chapter 4.2.1 

originates from a process whose statistical characteristics varies slowly enough in time such that 

transient effects do not prevail (see figure 4.4). However, this process does not locally resemble the 

original wind speed recording as good as the ones in figure 5.1 but only over a wider time window. The 

response calculation in chapter 4.2.1 can therefore be interpreted as introducing an evolutionary wind 

field that exhibit similar shape at a wider time perspective such that the frequency domain method can 

predict the resulting response with good accuracy.  

The same story goes for the presumed stationary consideration, but this method effectively 

characterizes the wind speed recording in question in a very general sense without preserving local shape 

at all. This idea may seem convenient at first because characterizing the storm in question as simply one 

of many sounds effective and neat, but accuracy is generally very difficult to guarantee because of the 

reasons mentioned about its raw spectral data characteristics in chapter 5.2.2 (see figure 4.15). Adopting 

a stationary statistical formulation onto an obviously non–stationary wind speed recording as the one in 

figure 4.1 is therefore not a particularly good idea because it seems to be nothing but safe to extract a 

deterministic trend at at least the level used in case 1, and not doing so might therefore be a bit naive.  

 The concepts above clearly illustrate the fact that it is initially not clear and intuitive where one 

should draw the line between what should be considered to be stochastic and what should not. There are 

also many equally valid separations from a structural point of view, each resulting in its own and unique 

time history for the variance of dynamic response. Hence, one might question whether the local values 

of the calculated time history of the variance of dynamic response does make any sense at all because it 

is dependent on user specified information and can therefore never be estimated from a single wind 

speed recording exclusively. Hence, it should there for not be interpreted as anything more than a tool 

that is needed to calculate the probability distribution of the maximum structural response resulting from 

a particular storm that is being modelled.  
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6 CONCLUSIONS 

The investigation into the associated issues of non–stationary winds and the accordingly adapted 

frequency domain buffeting theory framework reveals several interesting observations.  

First, the most appropriate method to extract a time varying, deterministic trend from the presumed 

non-stationary wind speed recording in question is found to be an incomplete Fourier series expansion 

(IFE). The IFE abled deductive reasoning to establish the general fact that in order for the extracted 

mean wind speed to produce a quasi–static mean structural response, which indeed is a necessary 

requirement for the separation between mean–, and stochastic dynamic structural response to be valid, 

the highest possible included frequency component in the IFE was roughly 1/5th the frequency of the 

lowest structural mode that is evenly symmetric with respect to the midspan.  

Second, it is found that the proposed frequency domain buffeting response approach is only able to 

determine the expected time varying variance of dynamic structural response with decent accuracy when 

the highest included frequency component in the IFE extraction of the mean wind speed is below roughly 

1/50th of the frequency of the fundamental mode of the Hardanger Bridge. Extracting the mean wind 

speed at frequencies above this limit is found to violate the validity of the obtained frequency domain 

solution because transient effects becomes a predominant part of the airflow–structure interaction 

picture. If such from some reason nevertheless is considered desirable, time domain simulations should 

instead be used to calculate the expected dynamic structural response. 

Third, the time varying variance of structural response in particular is found to not be a physical 

property that makes any sense to a local observer because the local shape of its time history is strongly 

dependent on how one chooses to resemble the statistical properties of the wind speed recording from 

which one wants to estimate the expected structural response. However, what is probably the most 

interesting observation from this thesis is that the probability distributions of maximum structural 

response do not seem to be strongly dependent on what maximum frequency is used to extract the mean 

wind speed, or equally, which averaging period, 𝑇𝐴, is used to calculate the time varying variance of the 

wind field turbulence components. This is of high convenience because it solves part of the problem of 

what highest frequency one should include in the mean wind speed, given that such eliminates transient 

effects in the first place. This means that the great inertia of the Hardanger Bridge gives raise to the fact 

that if ones supreme goal is to mathematically predict the distribution of maximum structural response 

from a particular wind field, it is not necessary to define the time varying statistical properties of the 

wind field with an excessive level of accuracy. The most important action is to withdraw a suitable, time 

varying trend, exhibiting gentle changes in time. 

Fourth, whether one chooses to modulate the turbulence components uniformly or non–uniformly 

seems to be of relatively minor importance in terms of maximum response distribution.  
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7 FURTHER WORK 

The part of the airflow–structure interaction that has only been briefly investigated in this thesis are 

transient effects of structural response. As demonstrated, this effect is a very important one to consider 

when performing a non–stationary assessment of the airflow–structure interaction. Therefore, the most 

important suggestion for further work is to establish a full MDOF, spatial averaging model that is able 

to provide exactly the same statistical information as the proposed non–stationary frequency domain 

framework, but instead obtained from time domain simulations. Such an approach will be able to 

investigate every feature of transient effects of the response of any system, regardless of its modal 

properties. Such an approach will also be able to validate the analytical probability distribution functions 

for maximum structural response to a greater degree than what the simplified SDOF system is able to 

provide information about.  

Also, one must not forget that this thesis isolates non–stationary effects, and in real life complex 

terrain will generally always challenge the assumption of wind field homogeneousness, and for a mild 

storm, vortex shedding might also represent a significant part of the total wind loading process.  
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APPENDIX A – ADDITIONAL CALCULATIONS 

A.1 INCLUSION OF MEAN VERTICAL WIND SPEED 

 
Figure A.0.1: Non–stationary colleague of figure 1.5 

The wind angle 𝛽 simply gets another term added to it, namely, 

 
𝛽  =    arctan (

�̅� + 𝑤 − �̇�𝑧

�̅� + 𝑢 − �̇�𝑦
)    ≈    

�̅� + 𝑤 − �̇�𝑧

�̅�
 (A.1) 

The expression for the fluctuating part of the angle of incidence, 𝛼𝑓, undergoes an analogue change, 

 
𝛼𝑓   =    𝑟𝜃  +  𝛽  =    𝑟𝜃  +  

�̅�

�̅�
 +  

𝑤

�̅�
 −  

�̇�𝑧

�̅�
  (A.2) 

�̅�  will logically be much smaller than the fluctuations from which it is supposed to represent a 

withdrawn trend, hence nothing happens to the expression of 𝑈𝑟𝑒𝑙  to which �̅� would have given only a 

negligible contribution, 

𝑈𝑟𝑒𝑙
2    = (�̅� + 𝑢 − �̇�𝑦)2   +  (�̅� + 𝑤 − �̇�𝑧)2     ≈    �̅�2 + 2�̅�𝑢 − 2�̅��̇�𝑦   

 

(A.3) 

If the linearization of the load coefficients as shown in equation 1.30a is substituted back into equation 

1.29 and equation 1.29 subsequently is multiplied with the coordinate transformation matrix in equation 

1.32a, the following emerges, 

 

{

𝑞𝑦

𝑞𝑧

𝑞𝜃

}   =   
1

2
𝜌𝐵𝑈𝑟𝑒𝑙

2 ∙ [

𝑎𝑟(𝐶�̅� + 𝛼𝑓𝐶𝐷
′ ) − 𝛽(𝐶�̅�+𝛼𝑓𝐶𝐿

′)

𝑎𝑟𝛽(𝐶�̅� + 𝛼𝑓𝐶𝐷
′ ) + (𝐶�̅�+𝛼𝑓𝐶𝐿

′)

𝐵(𝐶�̅�+𝛼𝑓𝐶𝑀
′ )

] , 𝑎𝑟 =  
𝐷

𝐵
 

      

(A.4) 

Because linearity is a requirement when establishing the expression for the buffeting loads, 𝛽 and 𝛼𝑓 

cannot exist as factors of a product since this would violate linearity. However, because their magnitude 

in most practical purposes is quite modest, terms containing them as mutual factors can be neglected as 

is the case with the rightmost term for 𝑞𝑦 in equation A.4. 

If equation A.2 and A.3 is inserted into equation A.4 the final, but for now somewhat cluttered 

expression for the buffeting loads is obtained. As before, linearity must be maintained, hence terms that 

is nonlinear in either u, v, �̇�𝑦, �̇�𝑧 or 𝑟𝜃 must be omitted, however their magnitude in most practical cases 

gives their absence a negligible global implication. For the record, this calculation will be shown for 

each entry of 𝒒, starting with 𝑞𝑦,  
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2

𝛽𝐵
𝑞𝑦  = 

= 

𝑈𝑟𝑒𝑙
2 ∙ [ 𝑎𝑟𝐶�̅� + 𝑎𝑟𝐶𝐷

′ 𝑟𝜃 +
𝑎𝑟𝐶𝐷

′

�̅�
(�̅� + 𝑤 − �̇�𝑧) −

𝐶�̅�

�̅�
(�̅� + 𝑤 − �̇�𝑧)] 

 

�̅�2𝑎𝑟𝐶�̅� + �̅��̅�[𝑎𝑟𝐶𝐷
′ − 𝐶�̅�] + �̅�[𝑎𝑟𝐶𝐷

′ − 𝐶�̅�]𝑤 + �̅�[2𝑎𝑟𝐶�̅�]𝑢 + �̅�[−2𝑎𝑟𝐶�̅�]�̇�𝑦 

+ �̅�[𝑎𝑟𝐶𝐷
′ + 𝐶�̅�]�̇�𝑧 + �̅�2[𝑎𝑟𝐶𝐷

′ ]𝑟𝜃 

 

 

 

(A.5a) 

 

𝑞𝑧, 

 

2

𝛽𝐵
𝑞𝑧  = 

= 

𝑈𝑟𝑒𝑙
2 ∙ [ 

𝑎𝑟𝐶�̅�

�̅�
(�̅� + 𝑤 − �̇�𝑧) + 𝐶�̅� + 𝐶𝐿

′𝑟𝜃 −
𝐶𝐿

′

�̅�
(�̅� + 𝑤 − �̇�𝑧)] 

 

�̅�2𝐶�̅� + �̅��̅�[𝑎𝑟 + 𝐶𝐿
′] + �̅�[𝑎𝑟 + 𝐶𝐿

′]𝑤 + �̅�[2𝐶�̅�]𝑢 + �̅�[−2𝐶�̅�]�̇�𝑦 

+ �̅�[−𝑎𝑟𝐶�̅� − 𝐶𝐿
′ ]�̇�𝑧 + �̅�2[𝐶𝐿

′]𝑟𝜃 

 

 

 

(A.5b) 

 

𝑞𝜃, 

2

𝛽𝐵
𝑞𝜃  = 

= 

𝑈𝑟𝑒𝑙
2 ∙ [ 𝐵𝐶�̅� + 𝐵𝐶𝑀

′ 𝑟𝜃 +
𝐵𝐶𝑀

′

�̅�
(�̅� + 𝑤 − �̇�𝑧)] 

 

�̅�2𝐵𝐶�̅� + �̅��̅�[𝐵𝐶𝑀
′ ] + �̅�[𝐵𝐶𝑀

′ ]𝑤 + �̅�[2𝐵𝐶�̅�]𝑢 + �̅�[−2𝐵𝐶�̅�]�̇�𝑦 

+ �̅�[−𝐵𝐶𝑀
′ ]�̇�𝑧 + �̅�2[𝐵𝐶𝑀

′ ]𝑟𝜃 

 

 

 

(A.5c) 

If equations A.5a–c are organized onto matrix form the exact the same result as shown in equation 1.37 

emerges, apart from equation 1.37c which takes the form of equation 2.2.  

A.2 ANALYTICAL CALCULATION OF EQUATION 3.4 

The analytical calculation of equation 3.4 starts by exploiting a neat symmetry property with respect to 

the line 𝑥1 = 𝑥2. This symmetry property is illustrated by introducing the virtual coordinate system 

shown in figure A.2.  

 

Figure A.0.2: Virtual coordinate system 
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The exponential function in equation 3.4 is obviously symmetric about 𝑥1 = 𝑥2 and needs no further 

investigation. However, the harmonic part of the integrand, 𝑓ℎ(�̂�1, 𝑥2), will undergo the following 

transformation when the coordinate substitution in figure A.2 is applied: 

𝑓ℎ(�̂�1, 𝑥2)   = 

= 

 

= 

= 

𝑠𝑖𝑛(𝑝(1 − �̃�1)) 𝑠𝑖𝑛(𝑞(1 − �̃�2)) 

  [𝑠𝑖𝑛(𝑝) 𝑐𝑜𝑠(−𝑝 �̃�1) − 𝑐𝑜𝑠(𝑝) 𝑠𝑖𝑛(−𝑝�̃�1)] 

∙ [𝑠𝑖𝑛(𝑞) 𝑐𝑜𝑠(−𝑞 �̃�2) − 𝑐𝑜𝑠(𝑞) 𝑠𝑖𝑛(−𝑞�̃�2)]     (Rottmann, 2010, s. 87) 

𝑐𝑜𝑠(𝑝) 𝑐𝑜𝑠(𝑞) ∙ 𝑠𝑖𝑛(𝑝�̃�1) 𝑠𝑖𝑛(𝑞�̃�2)                   

𝛾 ∙ 𝑓ℎ(�̃�1, �̃�2) ,            𝛾 = {
1,    𝑃, 𝑄 both even or both odd    

−1,    𝑃, 𝑄 even, odd or odd, even       
    

 

 

 

 

(A.6) 

Together with the fact that the normalized Co–spectrum is symmetric with respect to 𝑥1 = 𝑥2 , the 

following must be true, 

∫ ∫ 𝑓(𝜔, 𝑡) 𝑑𝑥2𝑑𝑥1     = 

𝑥1

0

1

0

 𝛾 ∙ ∫ ∫ 𝑓(𝜔, 𝑡) 𝑑𝑥2𝑑𝑥1 

1

𝑥1

1

0

 (A.7) 

Which subsequently implies that, 

 𝐹(𝜔, 𝑡)   =    2 ∫ ∫ 𝑠𝑖𝑛(𝑝𝑥1) ∙ 𝑠𝑖𝑛(𝑞𝑥2) ∙ 𝑒𝐶(𝑥1−�̂�2)𝑑𝑥2𝑑𝑥1,       𝛾 =  1

𝑥1

0

1

0

 

𝐹(𝜔, 𝑡)   =    0,                                                                                         𝛾 =  −1 

(A.8a) 

 

 

(A.8b) 

The procedure of obtaining the analytical solution to equation A.8a requires two distinct cases to 

be taken into consideration, in which the first demands 𝑝2 ≠  𝑞2. Because 𝑝 and 𝑞 are already known to 

be positive according to the definition of the mode shapes in “A.txt” in Appendix C, 𝑝 ≠  𝑞 will be 

sufficient. This first case is initialized by expressing equation A.8a as, 

 𝐹(𝜔, 𝑡)   =    2 ∫ 𝑠𝑖𝑛(𝑝𝑥1) 𝑒𝐷𝑥1 [∫ 𝑠𝑖𝑛(𝑞𝑥2)𝑒−𝐶𝑥2

�̂�1

𝑜

𝑑𝑥2] 𝑑𝑥1

1

0

 (A.9) 

Rottmann (2010, p. 144, eq. 132) provides the necessary information to evaluate the integral inside the 

bracket parenthesis in equation A.9, and after a few steps of rearrangement, equation A.8 can be 

expressed as, 

 

𝐹(𝜔, 𝑡)   =   −
2

𝑞2 + 𝐶2
[𝐶𝐼1 + 𝑞𝐼2 − 𝑞𝐼3] (A.10a) 

where, 
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{

𝐼1

𝐼2

𝐼3

}    =    ∫ {

𝑠𝑖𝑛(𝑝𝑥1) 𝑠𝑖𝑛(𝑞𝑥1)

𝑠𝑖𝑛(𝑝𝑥1) cos(𝑞𝑥1)

𝑠𝑖𝑛(𝑞𝑥1)𝑒𝐶𝑥1

} 𝑑𝑥1

1

0

 (A.10b) 

Hass, Weir and Thomas (2009, p. T–3, eqs. 62a and b) provides the solution to 𝐼1 and 𝐼2, respectively, 

𝐼1   = 

𝐼2   = 

= 

1

2
[
𝑠𝑖𝑛(𝑝 − 𝑞)𝑥1

𝑝 − 𝑞
−

𝑠𝑖𝑛(𝑝 + 𝑞)𝑥1

𝑝 + 𝑞
]

0

1

   =    0 

−
1

2
[
𝑐𝑜𝑠(𝑝 − 𝑞)𝑥1

𝑝 − 𝑞
+

𝑐𝑜𝑠(𝑝 + 𝑞)𝑥1

𝑝 + 𝑞
]

0

1

 

1

2
[
1 − 𝑐𝑜𝑠(𝑝 − 𝑞)

𝑝 − 𝑞
+

1 − 𝑐𝑜𝑠(𝑝 + 𝑞)

𝑝 + 𝑞
] 

 

(A.11a) 

 

 

 

(A.11b) 

Rottmann (2010, p. 144, eq. 132) does also provide the solution to 𝐼3, namely, 

 

𝐼3   =   
𝑝

𝑝2 + 𝐶2
[1 − 𝑒𝐶 𝑐𝑜𝑠 𝑝] (A.11c) 

The final expression for the solution to equation A.8a when 𝑝 ≠  𝑞  is given by, 

𝐹(𝜔, 𝑡)   =   
2𝑞

𝑞2 + 𝐶2
[
𝑐𝑜𝑠(𝑝 − 𝑞) − 1

2(𝑝 − 𝑞)
+

𝑐𝑜𝑠(𝑝 + 𝑞) − 1

2(𝑝 + 𝑞)
−

𝑝(1 − 𝑒𝐶 𝑐𝑜𝑠 𝑝)

𝑝2 + 𝐶2
] (A.12)  

The case 𝑝 =  𝑞 involves an identical solution strategy as shown above. However, when setting 

𝑞 =  𝑝, equation A.10a and A.10b takes the following form:  

 

𝐹(𝜔, 𝑡)   =   −
2

𝑝2 + 𝐶2
[𝐶𝐼1 + 𝑝𝐼2 − 𝑝𝐼3] (A.13a) 

where, 

 
{

𝐼1

𝐼2

𝐼3

}    =    ∫ {

sin2(𝑝𝑥1)

𝑠𝑖𝑛(𝑝𝑥1) cos(𝑝𝑥1)

𝑠𝑖𝑛(𝑝𝑥1)𝑒𝐶𝑥1

} 𝑑𝑥1

1

0

 (A.13b) 

Obviously, 𝐼1 = 1/2. 𝐼2 = 0 because 𝑠𝑖𝑛(𝑝𝑥1) cos(𝑝𝑥1) also will have period 1 and zero mean when 

this is the case with 𝑠𝑖𝑛(𝑝𝑥1) and cos(𝑝𝑥1). 𝐼3 is identical as in the case 𝑝 ≠  𝑞, and given by equation 

A.10c, except that 𝑞 is now substituted with 𝑝. Thus, when 𝑝 =  𝑞, equation A.8a will take the form, 
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𝐹(𝜔, 𝑉)   =   
2

𝑝2 + 𝐶2
[
𝑝2(1 − 𝑒𝐶 𝑐𝑜𝑠 𝑝)

𝑝2 + 𝐶2
−

𝐶

2
] (A.14)  
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APPENDIX B – MATLAB SCRIPTS 

The MATLAB scripts given in this chapter is produced with the exclusive purpose being of providing 

the necessary computing power to solve the very problems associated with this very thesis. The majority 

of the result presented in this thesis are obtained via cross runs of several of the scripts below, where 

output data of one script serves as being input data to another. Hence, no effort is done to provide general 

information of how to use them. They must therefore be used with the greatest of care.  

B.1 SCRIPTS 

B.1.1 Wind speed recording calculations 

% 

clear 

plotmode = 1; 

includespectrum = 0; 

meanmethod = 1; % For extractions of mean. -1: Stationary, 0: Do not extract, 1: Fourier, 2: 

EMD, 3: MAM 

guwtype = 1; % Calculate spectrum of 1: gu(t) and gw(t) 2: u(t) and w(t) 

istart = 24001; % Extraction index extremeties for recordings. Only plot for this interval! 

iend = 372001;  

nuaxinit = 300; % number of compartments in PDF for turbulence components 

avgspant = 450; % [s] 

rhoTHR = 0.25; % for T char 

nL = 201; % number of turbulence length scale claculations 

ncolL = 0; % collect rho function at ncolL number of places. 

omegamaxUM = 0.32/100; 

% 

imunit = sqrt(-1); 

% time-series, U, W: 

tic 

dt = 0.05; % SAMPLING FREQUENCY 

U = load('UHardanger29012016.txt')'; 

W = load('WHardanger29012016.txt')'; 

T = 0:dt:((length(U)-1)*dt); % Corresponing time values of sample series 

nU = length(U); 

nW = length(W); 

if nW ~= nU 

    disp(' vectors U ans W are not the same length!') 

    return 

end 

TU = (nU-1)*dt; % Sample duration 

T = 0:dt:TU; % Corresponing time values of sample series 

TUSE = (dt*round(iend-istart)); % Sub recording duration 

Tplot = 0:dt:TUSE; % T hub for chosen sub recording 

nTUSE = length(Tplot); % elementlength of the chosen sub recording vector 

disp(['Load:     ' num2str(round(toc,3,'significant')) ' s']) 

% Extracting time-varying mean: 

tic 

Uavg = (0.5*(U(1)+U(nU)) + sum(U(2:nU-1)))*dt/TU; 

Wavg = (0.5*(W(1)+W(nU)) + sum(W(2:nU-1)))*dt/TU; 

domega = 2*pi/TU; 

omegasettings = domega:domega:omegamaxUM; 

NOset = length(omegasettings); 

omegamaxUM = omegasettings(NOset); 

Umean = zeros(2,nU); 

if meanmethod == -1 

    Uavg = (0.5*(U(istart)+U(iend)) + sum(U(istart+1:iend-1)))*dt/TUSE; 

    Wavg = (0.5*(W(istart)+W(iend)) + sum(W(istart+1:iend-1)))*dt/TUSE; 

    Umean = [Uavg;Wavg]*ones(1,nU); 

elseif meanmethod == 1 

    for wn = 1:NOset 

        omega = omegasettings(wn); 

        ak = U.*cos(omega*T); 

        ak = (dt/TU)*(ak(1)+ak(end)+2*sum(ak(2:end-1))); 

        bk = U.*sin(omega*T); 
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        bk = (dt/TU)*(bk(1)+bk(end)+2*sum(bk(2:end-1))); 

        Umean(1,:) = Umean(1,:) + ak*cos(omega*T) + bk*sin(omega*T); 

    end 

    Umean(1,:) = Umean(1,:) + Uavg; 

    for wn = 1:NOset 

        omega = omegasettings(wn); 

        ak = W.*cos(omega*T); 

        ak = (dt/TU)*(ak(1)+ak(end)+2*sum(ak(2:end-1))); 

        bk = W.*sin(omega*T); 

        bk = (dt/TU)*(bk(1)+bk(end)+2*sum(bk(2:end-1))); 

        Umean(2,:) = Umean(2,:) + ak*cos(omega*T) + bk*sin(omega*T); 

    end 

    Umean(2,:) = Umean(2,:) + Wavg; 

elseif meanmethod == 2 

    [imf,residual] = emd(U); 

    imfcomps = [10]; 

    Umean(1,:) = residual'; 

    for i = imfcomps 

        Umean(1,:) = Umean(1,:) + (imf(:,i))'; 

    end 

    [imf,residual] = emd(W); 

    imfcomps = [10]; 

    Umean(2,:) = residual'; 

    for i = imfcomps 

        Umean(2,:) = Umean(2,:) + (imf(:,i))'; 

    end 

elseif meanmethod == 3 

    TUavgP = 720; 

    ispanmean = round(TUavgP/dt); 

    weightsmeanON = 1; 

    WUM = 1-(((-ispanmean+0.5):(ispanmean-0.49))/ispanmean).^2; 

    WUM = WUM/sum(WUM);     

    if weightsmeanON == 0 

        Umean(1,ispanmean+1) = dt*sum(0.5*(U(1:2*ispanmean)+U(2:2*ispanmean+1))); 

        Umean(2,ispanmean+1) = dt*sum(0.5*(W(1:2*ispanmean)+W(2:2*ispanmean+1))); 

        for i = ispanmean+2:(nU-ispanmean) 

            Umean(1,i) = Umean(1,i-1) - 0.5*dt*((U(i-ispanmean-1)+U(i-ispanmean))-

(U(i+ispanmean-1)+U(i+ispanmean))); 

            Umean(2,i) = Umean(2,i-1) - 0.5*dt*((W(i-ispanmean-1)+W(i-ispanmean))-

(W(i+ispanmean-1)+W(i+ispanmean))); 

        end 

        Umean = Umean/(2*TUavgP); 

    elseif weightsmeanON == 1 

        MMU = 0.5*(U(1:2*ispanmean)+U(2:2*ispanmean+1)); 

        MMW = 0.5*(W(1:2*ispanmean)+W(2:2*ispanmean+1)); 

        Umean(1,ispanmean+1) = sum(MMU.*WUM); 

        Umean(2,ispanmean+1) = sum(MMW.*WUM); 

        for i = ispanmean+2:(nU-ispanmean) 

            MMU = [MMU(2:end) 0.5*(U(i+ispanmean-1)+U(i+ispanmean))]; 

            MMW = [MMW(2:end) 0.5*(W(i+ispanmean-1)+W(i+ispanmean))]; 

            Umean(1,i) = sum(MMU.*WUM); 

            Umean(2,i) = sum(MMW.*WUM); 

        end 

    end     

end 

Umeanavg = (Umean(1,istart)+Umean(1,iend)+2*sum(Umean(1,istart+1:iend-1)))*0.5/(nTUSE-1); 

Wmeanavg = (Umean(2,istart)+Umean(2,iend)+2*sum(Umean(2,istart+1:iend-1)))*0.5/(nTUSE-1); 

uwmat = [U - Umean(1,:);W - Umean(2,:)]; 

disp(['Mean:     ' num2str(round(toc,3,'significant')) ' s']) 

% Time-varying variance: 

tic 

ispan = round(avgspant/dt);  

weightsON = 1; % 1: Vektet tids-offset, 0: ikke vektet. 

varuw = zeros(2,nTUSE); % [var(u);var(w)] 

varcomps = zeros(2,2*ispan); 

if weightsON == 1 

    b = ispan/1.96; % 95 % conf. interval 

    weights = zeros(1,2*ispan); 

    for i = -ispan:(ispan-1) 

        weights(i+ispan+1) = 1-((i+0.5)/ispan)^2; 

    end 

    weights = weights/sum(weights); % normalized, sum = 1 

end 

for v = 1:2 

    for i = (istart-ispan):(istart+ispan-1) 

        a = uwmat(v,i); 

        b = uwmat(v,i+1); 
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        varcomps(v,i+1-(istart-ispan)) = ((a^2)+(a*b)+(b^2))/3; 

    end 

    if weightsON == 1 

        varuw(v,1) = sum(varcomps(v,:).*weights); 

    else 

        varuw(v,1) = sum(varcomps(v,:)); 

    end 

    if weightsON == 1 

        for i = istart+1:iend 

            a = uwmat(v,i+ispan-1); 

            b = uwmat(v,i+ispan); 

            vari = ((a^2)+(a*b)+(b^2))/3; 

            varcomps(v,:) = [varcomps(v,2:2*ispan) vari]; 

            varuw(v,i-istart+1) = sum(varcomps(v,:).*weights); 

        end 

    else 

        for i = istart+1:iend 

            a = uwmat(v,i+ispan-1); 

            b = uwmat(v,i+ispan); 

            vari = ((a^2)+(a*b)+(b^2))/3; 

            varcomps(v,:) = [varcomps(v,2:2*ispan) vari]; 

            varuw(v,i-ispan) = sum(varcomps(v,:)); 

        end 

        varuw(v,:) = varuw(v,:)/(2*ispan); 

    end 

end 

uwvarcontrol = [0;0]; % calculated variance from time series of u(t) 

uwavgcontrol = [0;0]; %                                         w(t) 

for v = 1:2 

    for i = 2:nTUSE 

        a = uwmat(v,i-2+istart); 

        b = uwmat(v,i-1+istart); 

        uwvarcontrol(v) = uwvarcontrol(v) + ((a^2)+(a*b)+(b^2))/3; 

        uwavgcontrol(v) = uwavgcontrol(v) + (a+b)/2; 

    end 

    uwvarcontrol(v) = uwvarcontrol(v)/(nTUSE-1); 

    uwavgcontrol(v) = uwavgcontrol(v)/(nTUSE-1); 

end 

if guwtype == 1  

    guw = [uwmat(1,istart:iend)./sqrt(varuw(1,:));uwmat(2,istart:iend)./sqrt(varuw(2,:))]; % 

g: zero mean, unit variance; 

elseif guwtype == 2 

    guw = [uwmat(1,istart:iend);uwmat(2,istart:iend)]; % g: zero mean 

end 

if guwtype == 1 

    guwvarcontrol = [0;0]; % calculated variance from time series of gu(t) 

    guwavgcontrol = [0;0]; %                                         gw(t) 

    for v = 1:2 

        for i = 2:nTUSE 

            a = guw(v,i-1); 

            b = guw(v,i); 

            guwvarcontrol(v) = guwvarcontrol(v) + ((a^2)+(a*b)+(b^2))/3; 

            guwavgcontrol(v) = guwavgcontrol(v) + (a+b)/2; 

        end 

        guwvarcontrol(v) = guwvarcontrol(v)/(nTUSE-1); 

        guwavgcontrol(v) = guwavgcontrol(v)/(nTUSE-1); 

    end 

end 

varuwavg = (varuw(:,1)+varuw(:,nTUSE)+2*sum(varuw(:,2:nTUSE-1),2))*0.5/(nTUSE-1); 

% propability density, guw(1:2,:): 

dgax = (max(guw,[],2)-min(guw,[],2))/nuaxinit; 

gax(1,1:nuaxinit) = (min(guw(1,:))+(dgax(1)/2)):dgax(1):(max(guw(1,:))-(dgax(1)/2.5)); % 

midpoint values 

gax(2,1:nuaxinit) = (min(guw(2,:))+(dgax(2)/2)):dgax(2):(max(guw(2,:))-(dgax(2)/2.5)); % 

midpoint values 

ngax = size(gax,2); 

probdensguw = zeros(2,ngax); 

for v = 1:2 

    for i = 1:(iend-istart) 

        y = 0.5*(guw(v,i)+guw(v,i+1)); 

        j = sum((min(abs((y-gax(v,:))))==abs((y-gax(v,:)))).*(1:ngax)); 

        probdensguw(v,j) = probdensguw(v,j) + 1; 

    end 

end 

scaleg = sum(probdensguw,2).*dgax; 

probdensguw(1,:) = probdensguw(1,:)/scaleg(1); 

probdensguw(2,:) = probdensguw(2,:)/scaleg(2); 
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pdfgauss1 = zeros(2,nuaxinit); 

pdfgauss2 = zeros(2,nuaxinit); 

sumvar1 = [0;0]; 

sumvar2 = [0;0]; 

avg1 = [0;0]; 

avg2 = [0;0]; 

for v = 1:2 

    for i = 1:(iend-istart) 

        a = guw(v,i); 

        b = guw(v,i+1); 

        sumvar1(v) = sumvar1(v) + ((a^2)+(a*b)+(b^2))/3; 

    end 

    if guwtype == 1 

        avg1(v) = guwavgcontrol(v); 

    else 

        avg1(v) = uwavgcontrol(v); 

    end     

    sumvar1(v) = sumvar1(v)/(iend-istart) - (avg1(v)^2); 

    % 

    sumvar2cands = 0.2*sumvar1(v):0.001:3*sumvar1(v); 

    avg2(v) = sum(gax(v,:).*probdensguw(v,:))*dgax(v); 

    for i = 1:size(sumvar2cands,2) 

        sigmasq = sumvar2cands(i); 

        SSD = sum((1/sqrt(2*pi*sigmasq)*exp(-0.5/sigmasq*(gax(v,:)-avg2(v)).^2) - 

probdensguw(v,:)).^2); 

        if i == 1 

            SSDmin = SSD; 

            sigmasqmin = sigmasq; 

        else 

            if SSD < SSDmin 

                SSDmin = SSD; 

                sigmasqmin = sigmasq; 

            end 

        end 

    end 

    sumvar2(v) = sigmasqmin; 

    % 

    pdfgauss1(v,:) = 1/sqrt(2*pi*sumvar1(v))*exp(-0.5/sumvar1(v)*(gax(v,:)-avg1(v)).^2); 

    pdfgauss2(v,:) = 1/sqrt(2*pi*sumvar2(v))*exp(-0.5/sumvar2(v)*(gax(v,:)-avg2(v)).^2); 

end 

disp(['Variance: ' num2str(round(toc,3,'significant')) ' s']) 

% Characteristic time, Tchar: 

if meanmethod ~= 0 

    tic 

    iL = round((istart:(iend-istart)/(nL-1):(iend+0.01))); % indices in u for calculation L(t) 

    TL = (iL-istart)*dt; % corresponding time values of timeseries of L(t) 

    nTL = length(TL); 

    itmattau = zeros(3,nTL,2); % % [index for cov = rhoTHR;int(rho(tau),0,tau_0)], layers: u;w 

    icolL = round(1:((nTL-1)/(ncolL-1)):(nTL+0.01)); % indices in u at which rho function is 

to be calculated 

    rhotaucollect = zeros(1,1,2); 

    Tchar = zeros(2,nTL,2); % rows: methods, cols: time, layers: u;w 

    Tcharavg = zeros(2,2); % rows: u;w, cols: methods 1 and 2 

    if weightsON == 0 

        weights = ones(1,2*ispan)/(2*ispan); 

    end 

    for v = 1:2 

        Icomps = zeros(1,2*ispan); 

        for i = 1:nTL 

            iu = iL(i); % index in u 

            ut = uwmat(v,iu-ispan:iu+ispan); % indices in u for u(t) 

            tau = -dt; 

            ispantau = 0; 

            itau = 0; 

            variu = varuw(v,iu-istart+1); % calculated variance at t = T(iu); 

            rhoutau = 1; % rho(tau) function 

            rhou = 1; 

            while (rhou>=rhoTHR) && (iu+ispan+ispantau<nU) 

                itau = itau + 1; 

                tau = tau + dt; 

                ispantau = round(tau/dt); % shift in index in u 

                utau = uwmat(v,iu-ispan+ispantau:iu+ispan+ispantau); % indices for u(t+tau) 

                for j = 1:(2*ispan) 

                    a = ut(j); 

                    b = ut(j+1); 

                    c = utau(j); 

                    d = utau(j+1); 
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                    Icomps(j) = ((a*d)+(b*c))/2 + (b-a)*(d-c)/3; 

                end      

                rhou = (sum(Icomps.*weights))/variu; % should be exactly 1 for first iteration 

(tau = 0)! 

                rhoutau(itau) = rhou;         

            end  

            I = - rhoTHR*tau; 

            for j = 2:itau 

                I = I + 0.5*(rhoutau(j-1)+rhoutau(j))*dt; % trapezoidal integration method 

            end 

            itmattau(1:2,i,v) = [itau;I]; 

            if rhou > rhoTHR 

                itmattau(3,i,v) = 1; % index out of bound before rho could reach rhoTHR! 

OTHERWISE: 0 

            end 

            [ismemb,icol] = ismember(i,icolL); 

            if ismemb == 1 

                rhotaucollect(icol,1:itau,v) = rhoutau; 

            end 

        end 

        Tchar(1,1:nTL,v) = dt*itmattau(1,:,v); % time until correlation coefficient <= rhoTHR 

        Tchar(2,1:nTL,v) = itmattau(2,:,v); % integral method 

    end 

    TcharIP(1:2,1:nTUSE,1) = [Tchar(:,1,1),zeros(2,nTUSE-1,1)]; % rows: M1;M2, layers: u;w 

    TcharIP(1:2,1:nTUSE,2) = [Tchar(:,1,2),zeros(2,nTUSE-1,1)]; 

    for i = 2:nL % interpolation onto the sizes of uwmat and varuw 

        di = 1/(iL(i)-iL(i-1)); 

        ipf = di:di:1; 

        j0 = iL(i-1) + 2 - istart; 

        j1 = iL(i) + 1 - istart; 

        for v = 1:2 

            TcharIP(:,j0:j1,v) = TcharIP(:,j0-1,v) + (Tchar(:,i,v)-Tchar(:,i-1,v))*ipf; 

        end 

    end 

    for v = 1:2 

        for meth = 1:2 

            Tcharavg(v,meth) = (Tchar(meth,1,v)+Tchar(meth,nTL,v)+2*sum(Tchar(meth,2:nTL-

1,v)))/(2*(nTL-1)); 

        end 

    end 

    disp(['T char:   ' num2str(round(toc,3,'significant')) ' s']) 

end 

% Calculate spectrum of g(t) 

if includespectrum == 1 

    tic 

    domegaSg = 2*pi/TUSE; % 2*pi/T 

    omegamaxSg = 12; 

    omegasettingsSg = domegaSg:domegaSg:omegamaxSg;     

    NOsetSg = length(omegasettingsSg); 

    LSFimin = min(setdiff((omegasettingsSg>=omegamaxUM).*(1:NOsetSg),0)); 

    omegasettingsSgLSF = omegasettingsSg(LSFimin:NOsetSg); 

    Sguw = zeros(2,NOsetSg); 

    for v = 1:2 

        for wn = 1:NOsetSg 

            omega = omegasettingsSg(wn); 

            ak = exp(-imunit*omega*Tplot).*guw(v,:); 

            ak = 0.5*dt*(ak(1)+ak(end)+2*sum(ak(2:end-1))); 

            Sguw(v,wn) = (ak*ak')/(TUSE*pi); 

        end 

    end  

    SguLSF = Sguw(1,LSFimin:NOsetSg); 

    SgwLSF = Sguw(2,LSFimin:NOsetSg); 

    NOsetSgLSF = NOsetSg - LSFimin + 1; 

    disp(['Spectrum: ' num2str(round(toc,3,'significant')) ' s']) 

end 

% 

B.1.2 Spectrum smoothing algorithm 

% 

CO = 0; % cut-off  

v = 1; 

Sg = Sguw(v,1+CO:end); 

omegasettingsSg = omegasettingsSg(1+CO:end); 

NOsetSg = NOsetSg - CO; 

nn1 = 5; 
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nexp = 1.5; 

nn2 = 200; 

nx = zeros(1,NOsetSg-nn2); 

nx(nn1+1:NOsetSg-nn2) = nn1 + (nn2-nn1)*((log(omegasettingsSg(nn1+1:NOsetSg-nn2))-

log(omegasettingsSg(nn1+1)))/(log(omegasettingsSg(NOsetSg-nn2))-

log(omegasettingsSg(nn1+1)))).^nexp; 

nx = floor(nx); 

omegasettingsSgsmoothed = omegasettingsSg(1:NOsetSg-nn2); 

Sgsmoothed = zeros(1,NOsetSg-nn2); 

comissioningavg = 2*(1:nn1) - 1; 

comissioningavg(1) = 2; 

for i = 1:nn1 

    Sgsmoothed(i) = sum(Sg(1:comissioningavg(i)))/comissioningavg(i); 

end 

for i = (nn1+1):(NOsetSg-nn2) 

    nxi = nx(i); 

    Sgsmoothed(i) = sum(Sg(i-nxi:i+nxi))/(2*nxi+1); 

end 

weightsomegaSg = (1./Sgsmoothed).^2; 

if v == 1 

    ysmoothed1 = 22180*(1+27.77*omegasettingsSgsmoothed.^0.5).^-3.2; 

elseif v == 2 

    ysmoothed1 = 13.11*(1+2.669*omegasettingsSgsmoothed.^0.5).^-3.2; 

end 

ysmoothed1 = SgP(rowSP,(3*(v-1))+1)*(1+SgP(rowSP,(3*(v-

1))+2)*omegasettingsSgsmoothed.^1).^SgP(rowSP,(3*(v-1))+3); 

% 

 

B.1.3 Frequency domain response calculations 

% 

% SCRIPT SETTINGS: 

colors = 'rbgm'; 

calctype = 1; 

Tcharmethod = 2; % 1: Duration method, 2: Integral method 

modulationtypes = [1 2 3 4]; % Non-stationary modulation methods  

spectrumtype = 1; % 1: Kaimal, 2: von Kármán, 3: avgerage Kaimal, von K 

xresponse = 0.5; % relative length coordinate for response output! 

refinementfactor = 2; % relative bridge span coordinate for response calc. 

Etype = 2; % Elementtype for numerical integration 

rfT = 1; % number og time data points (also for calctype = 2 !) 

nipomegainit = 1; % interpolation refinement at omega_1 

nipEPSDt = 1; % interpolation factor t axis (# sub points) 

eliminationfactor = 0.010; % significant subcomponent amplitude threshold 

% 

if calctype == 1 

    % WLSF spectrum coefficients:     

    SP = load('SPECTRUMPARAMS.txt'); 

    SgKu = [SP(rowSP,1),SP(rowSP,2),SP(rowSP,3)]; % A B n 

    SgKw = [SP(rowSP,4),SP(rowSP,5),SP(rowSP,6)]; % A B n 

    SgvKu = [6.148 75.52 -0.833]; % A B n 

    SgvKw = [0.3757 14.09 3.775 -1.833]; % A B C n 

elseif calctype == 2 % for surface plot of |H(omega,V)|^2. 

    V1 = 0.01; 

    V2 = 50; 

    Vsettings = V1:(V2-V1)/(rfT-1):V2; 

    omegasettingsH = 0.000:0.001:12.00; 

    NOsetH = length(omegasettingsH); 

    Hplot = zeros(rfT,NOsetH); 

end     

    % Mathematical constants: 

imagunit = sqrt(-1); 

    % geometrical characteristics: 

L = 1310; % [m] 

B = 18.3; % [m] 

D = 3.25; % [m] 

ar = D/B; % "Aspect Ratio" 

    % Wind field parameters: 

rho = 1.25; % [kg/m^3] 

Cux = 1.4*L;  

Cwx = 1.0*L;  

    % Load coefficients: 

CD = 0.7; 

dCL0 = 5; 
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AndCL = 3.2*B; 

bndCL = 0.5; 

dCM0 = 1.5; 

AndCM = 2.4*B; 

bndCM = 0.5; 

    % Mode characteristics: 

modechar = load('MC.txt'); % modal mass (m tilde), frequency, damping 

modeshapes = load('A.txt'); % modal fourier component matrix 

Nmod = size(modechar,1); % Number of MODes 

kmax = size(modeshapes,2); % Highest wavenumber of all mode components 

modmass = modechar(:,1); % MODal MASS, m_tilde 

eigenfreq = modechar(:,2); % modal EIGENFREQuencies 

moddamping = modechar(:,3); % MODal damping ratio 

for i1 = 0:(Nmod-1) % Calculation modal masses M tilde 

    i = (i1*4)+1; 

    modmass(i1+1) = modmass(i1+1)*sum(sum((modeshapes(i:(i+3),:)).^2)); 

end 

modmass = modmass*0.5*L; 

modstiffn = (eigenfreq.^2).*modmass; 

if calctype == 1 

    % Discretization of omega axis 

    omegamaxUM = 2*pi/TUSE; 

    elements(1,1:3) = [1  1  2]; % trapezoidal method 

    elements(2,1:4) = [1  4  1  6]; % simpson's method 

    elements(3,1:6) = [7 32 12 32 7 90]; % Boole's rule 

    elementnN = [2;3;5]; 

    NelN = elementnN(Etype); 

    elemchoice = elements(Etype,1:NelN);        

    intscheme = load('OS2.txt'); 

    intscheme(:,2) = ceil(refinementfactor*intscheme(:,2)); 

    i = max(1,min(setdiff(((omegamaxUM<=intscheme(:,1)).*(1:size(intscheme,1))'),0)) - 1); 

    intscheme(i,1) = omegamaxUM; 

    intscheme = intscheme(i:end,:); 

    omegasettings = intscheme(1,1); 

    Nsections = size(intscheme,1) - 1; 

    NOsetR = 1; % Number of Omega SETtings 

    omegaweights = zeros(1,1+(NelN-1)*intscheme(1,2)); % corresponding weighting values for 

num. int. 

    for i = 1:Nsections 

        startsection = intscheme(i,1); 

        endsection = intscheme(i+1,1); 

        sectionlength = endsection - startsection; 

        Nsel = intscheme(i,2); % Number of Section ELements 

        elemscaling = sectionlength/(Nsel*elements(Etype,NelN+1)); 

        sectionweights = elemchoice; 

        Nsn = NelN; % Number of Section Nodes 

        for el = 2:Nsel 

            sectionweights = [sectionweights,zeros(1,NelN-1)]; 

            sectionweights(Nsn:Nsn+NelN-1) = sectionweights(Nsn:Nsn+NelN-1) + elemchoice; 

            Nsn = Nsn + NelN - 1; 

        end 

        sectionweights = sectionweights*elemscaling; 

        if i ~= 1 

            omegaweights = [omegaweights,zeros(1,Nsn-1)]; 

        end 

        omegaweights(NOsetR:NOsetR+Nsn-1) = omegaweights(NOsetR:NOsetR+Nsn-1) + 

sectionweights; 

        NOsetR = NOsetR + Nsn - 1; 

        deltaomegaset = sectionlength/(Nsn-1); 

        omegasection = (startsection+deltaomegaset):deltaomegaset:endsection; 

        omegasettings = [omegasettings omegasection]; 

    end 

end 

    % Modeshapes: 

mstmp = modeshapes; 

modeshapes = zeros((Nmod*3),kmax); 

for i = 1:Nmod % Eliminates cable displacement mode components 

    i1 = (3*i) - 2; 

    i2 = (4*i) - 3; 

    modeshapes(i1:(i1+2),:) = [mstmp(i2,:);mstmp(i2+2,:);mstmp(i2+3,:)]; 

end 

for i = 1:Nmod*3 

    Amax = eliminationfactor*max(abs(modeshapes(i,:))); 

    for j = 1:kmax 

        if abs(modeshapes(i,j)) <= Amax 

            modeshapes(i,j) = 0; 

        end 
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    end 

end 

zerocol = 1; 

while zerocol == 1 

    if sum(modeshapes(:,kmax)) == 0 

        kmax = kmax - 1; 

    else 

        zerocol = 0; 

    end 

end 

modeshapes = modeshapes(:,1:kmax); 

for i = 1:(Nmod*3) % Control of consistent mode component parity 

    wavenumbersi = 0.5*setdiff((modeshapes(i,1:kmax)~=0).*(1:kmax),0); 

    parity = sum(wavenumbersi==round(wavenumbersi)); 

    if (parity ~= 0) && (parity ~= length(wavenumbersi)) 

        disp([' OBS! Mode ' num2str(ceil(i/3)) ', component ' num2str(i-floor(i/3))]) 

        disp('       consists of terms with different parity!') 

        return 

    end 

end 

modeparM = zeros(3,Nmod); % "MODE PARity Matrix" 

for i1 = 1:Nmod % Production of "modeparmat"! 

    for i2 = 1:3 

        i = (3*(i1-1)) + i2; 

        j = 1; 

        while (j <= kmax) 

            if modeshapes(i,j) == 0 

                j = j + 1; 

            else 

                if floor(j/2) == (j/2) % j even 

                    modeparM(i2,i1) = 2; 

                else % j odd 

                    modeparM(i2,i1) = 1; 

                end 

                break  

            end             

        end 

    end 

end 

PHIrx = zeros(3,Nmod); 

for j = 1:Nmod % Production of modal matrix evaluated at "xevaluation" 

    for i = 1:3 

        if modeparM(i,j) ~= 0 

            row = ((j-1)*3) + i; 

            f = 0; 

            for k = 1:kmax 

                f = f + (modeshapes(row,k))*sin(k*pi*xresponse); 

            end 

            PHIrx(i,j) = f; 

        end 

    end 

end 

indexMJ = [1 1;2 2;2 3;3 2;3 3];  

numnzeJ = 0; % NUMber of Non Zero Entries in J 

snzeJ = []; % "Specified Non Zero Components of (phi,i)'*Sqq*(pji,j)"  

for i = 1:Nmod % Collecting nonzero terms of Jij (upper part + diagonal) 

    for j = i:Nmod 

        nzt = 0; % "index for possible nonzero term" 

        for k = 1:5 

            parcheck = (modeparM(indexMJ(k,1),i))*(modeparM(indexMJ(k,2),j)); 

            if (parcheck == 1) || (parcheck == 4) % equal parity and non-zero 

                nzt = k; % add term number for further investigation 

                break % only one is possible for every pair {i,j} 

            end 

        end 

        if nzt ~= 0 % term with equal parity at position i,j 

            numnzeJ = numnzeJ + 1; 

            snzeJ(numnzeJ,1:3) = [i j nzt];             

        end 

    end 

end  

if calctype == 1 

    % Mean response prerequisites: 

    indexmatRM = (modeparM'==1); 

    ImatRM = zeros(Nmod,3); 

    infomatRM = []; 

    pseudosumcomps = sum(indexmatRM.*[ones(Nmod,1),2*ones(Nmod,1),3*ones(Nmod,1)],2); 
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    for i = 1:Nmod 

        if pseudosumcomps(i) ~= 0 

            infomatRM = [infomatRM;pseudosumcomps(i)]; 

        end 

    end 

    infomatRM = [setdiff(sum(indexmatRM,2).*(1:Nmod)',0),infomatRM]; 

    for i = 1:size(infomatRM,1) 

        rowMS = (3*(infomatRM(i,1)-1))+infomatRM(i,2); 

        I = 0; 

        for j = 1:2:kmax % odd modes only (even integrates to zero) 

            I = I + (2/(j*pi))*modeshapes(rowMS,j); 

        end 

        ImatRM(infomatRM(i,1),infomatRM(i,2)) = I; 

    end 

    qmeancoeff = [[ar*CD;0;0],[0;ar+dCL0;B*dCM0]]; 

end 

disp('   Prelim. calcs. done!') 

    % Aerodynamic derivatives, aerodynamic stiffness and damping: 

adcKae = load('adcoeffKae.txt'); 

adcKae = diag([1 B B (B^2)])*adcKae; 

adcCae = load('adcoeffCae.txt'); 

adcCae(1,3) = -2*CD*ar; % "CD" needs no scaling since an = bn = 0 

adcCae = diag([1 1 B B (B^2)])*adcCae; 

% 

CCae = 0.25*rho*(B^2); 

CKae = 0.5*rho*(B^2); 

indexMAE = [1 1;2 2;2 3;3 2;3 3]; 

termCae = []; % NUMber of non zero TERMS at CAE,ij 

resptermsCae = []; % respective non zero TERMS at CAE,ij 

respICae = []; % Respective Non Zero Integrals at CAE,ij 

numenCae = 0; % NUMber of non zero ENtries in CAE 

termKae = []; % NUMber of non zero TERMS at KAE,ij 

resptermsKae = []; % respective non zero TERMS at KAE,ij 

respIKae = []; % Respective Non Zero Integrals at KAE,ij 

numenKae = 0; % NUMber of non zero ENtries in KAE 

% Collection, systematization, and descr. of nonzero terms in Cae and Kae 

for i = 1:Nmod  

    Mi = modmass(i); 

    factorCae = CCae/(Mi*eigenfreq(i)); 

    factorKae = CKae/Mi; 

    for j = 1:Nmod 

        nt = 0; % Non zero Terms at cae,ij 

        rrI = 0; % respective Row Integral at cae,ij 

        rrt = 0; % respective Row Term at cae,ij\ 

        for k = 1:5  

            parcheck = (modeparM(indexMAE(k,1),i))*(modeparM(indexMAE(k,2),j)); 

            if (parcheck == 1) || (parcheck == 4) % True: Possibly terms with equal 

wavenumber! 

                nt = 1; 

                rrt = k; 

                break 

            end 

        end 

        if nt == 1 % True: Possibly nonzero term. Further investigation needed              

            rowik = ((i-1)*3) + indexMAE(rrt,1);  

            rowjl = ((j-1)*3) + indexMAE(rrt,2);  

            I = 0; 

            for i1 = 1:kmax 

                ampik = modeshapes(rowik,i1); 

                if ampik ~= 0 

                    for j1 = 1:kmax 

                        ampjl = modeshapes(rowjl,j1); 

                        if (ampjl ~= 0) && (i1 == j1) 

                            I = I + ampik*ampjl; 

                        end                         

                    end 

                end 

            end 

            I = 0.5*L*I; 

            if I ~= 0 % Term is non-zero by integral test! 

                numenCae = numenCae + 1; 

                termCae(numenCae,1:3) = [i j rrt]; 

                respICae(numenCae,1) = I*factorCae; 

                if rrt >= 2 % not also a non-zero term in Kae!      

                    numenKae = numenKae + 1; 

                    termKae(numenKae,1:3) = [i j (rrt-1)]; 

                    respIKae(numenKae,1) = I*factorKae; 
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                end  

            end             

        end 

    end 

end 

if (calctype==1) && (ismember(4,modulationtypes)==1) 

    % Averages, WK model: 

    npavg = 500; 

    avgirr = [1,round(nTUSE/(npavg-1):nTUSE/(npavg-1):nTUSE)]; 

    if (spectrumtype == 1) || (spectrumtype == 3) % Kaimal 

        Ekaimalu = 

sum(((TcharIP(Tcharmethod,avgirr,1)).*((1+SgKu(2)*(omegasettings')*TcharIP(Tcharmethod,avgirr,

1)/Tcharavg(1,Tcharmethod)).^SgKu(3))),2)/npavg; 

        Ekaimalw = 

sum(((TcharIP(Tcharmethod,avgirr,2)).*((1+SgKw(2)*(omegasettings')*TcharIP(Tcharmethod,avgirr,

2)/Tcharavg(2,Tcharmethod)).^SgKw(3))),2)/npavg; 

    end 

    if (spectrumtype == 2) || (spectrumtype == 3) % von Kármán 

        Evonkarmanu = 

sum(((TcharIP(Tcharmethod,avgirr,1)).*((1+SgvKu(2)*((omegasettings')*TcharIP(Tcharmethod,avgir

r,1)/Tcharavg(1,Tcharmethod)).^2).^SgvKu(3))),2)/npavg; 

        Evonkarmanw = 

sum(((TcharIP(Tcharmethod,avgirr,1)).*(1+SgvKw(2)*((omegasettings')*TcharIP(Tcharmethod,avgirr

,1)/Tcharavg(1,Tcharmethod)).^2).*((1+SgvKw(3)*((omegasettings')*TcharIP(Tcharmethod,avgirr,1)

/Tcharavg(1,Tcharmethod)).^2).^SgvKw(4))),2)/npavg; 

    end 

end 

% 

CSetaRM = rho*B*L/2; 

kappaae = zeros(Nmod); 

zetaae = zeros(Nmod); 

Hsub = zeros(Nmod); 

omegamat1 = diag(1./eigenfreq); 

omegamat2 = omegamat1.^2; 

moddampM = diag(moddamping).*omegamat1; 

IDmat = eye(Nmod); 

KiKj = (diag(1./modstiffn)*ones(Nmod)).*(ones(Nmod)*diag(1./modstiffn)); 

% 

if calctype == 1 

    irr = [1,round(nTUSE/(rfT-1):nTUSE/(rfT-1):nTUSE)]; 

    TR = Tplot(irr); 

    UWmeanR = Umean(:,istart-1+irr); 

    Rmean = zeros(3,rfT); 

    varTmat = zeros(3,rfT,max(modulationtypes)); 

    varTmatdr = varTmat; 

    CovmatR = zeros(3,NOsetR); 

    CovmatdR = CovmatR; 

    % 

    ipft = (1/nipEPSDt):(1/nipEPSDt):1; 

    IPtEPSDplot = zeros(1,(rfT-1)*nipEPSDt+1); 

    IPomegaEPSDplot = omegasettings(1); 

    IPFmatomega = zeros(2,NOsetR); 

    kIPomega = nipomegainit*IPomegaEPSDplot/(omegasettings(2)-omegasettings(1)); 

    for wn = 2:NOsetR 

        omega = omegasettings(wn-0); 

        domegawn = omegasettings(wn) - omegasettings(wn-1); 

        nipfomega = ceil(domegawn*kIPomega/omega); 

        IPFmatomega(wn) = nipfomega; 

        ipfomega = (1/nipfomega):(1/nipfomega):1.00001; 

        IPomegaEPSDplot = [IPomegaEPSDplot,omegasettings(wn-1) + (omegasettings(wn)-

omegasettings(wn-1))*ipfomega]; 

    end 

    nIPomegaEPSDplot = length(IPomegaEPSDplot); 

    for ti = 2:rfT 

        i1 = nipEPSDt*ti - (2*nipEPSDt) + 2; 

        i2 = i1 + nipEPSDt - 1; 

        IPtEPSDplot(i1:i2) = TR(ti-1) + (TR(ti)-TR(ti-1))*ipft; 

    end 

    % 

    uEPSD = zeros((rfT-1)*nipEPSDt+1,nIPomegaEPSDplot,4); % x:omega, y:t, stacks: methods of 

moduation 

    wEPSD = uEPSD; % verical turbulence component 

    RyEPSD = uEPSD; % horizontal response 

    RzEPSD = uEPSD; % vertical response 

    RthetaEPSD = uEPSD; % torsional response 

end 

% 
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if calctype == 1 

    Test = rfT*NOsetR/971; 

    disp(['Estimated computational time:  ' num2str(Test) ' seconds']) 

    disp(['Estimated completion at:       ' num2str(datestr(datenum(clock + [0 0 0 0 0 

Test])))]) 

elseif calctype == 2 

    Test = rfT*NOsetH/67276; 

    disp(['Estimated computational time:  ' num2str(Test) ' seconds']) 

    disp(['Estimated completion at:       ' num2str(datestr(datenum(clock + [0 0 0 0 0 

Test])))]) 

end 

tic 

return 

WNtime = zeros(4,NOsetR); 

for ti = 1:rfT 

    if calctype == 1 

        V = UWmeanR(1,ti); % Mean wind speed, U 

        W = UWmeanR(2,ti); % Mean wind speed, W 

        varu = varuw(1,irr(ti)); % variance, u 

        varw = varuw(2,irr(ti)); % variance, w 

        TCu = TcharIP(Tcharmethod,irr(ti),1); % Time scale 

        TCw = TcharIP(Tcharmethod,irr(ti),2); % Time scale 

        TCurel = TCu/Tcharavg(1,Tcharmethod); % Relative time scale 

        TCwrel = TCw/Tcharavg(2,Tcharmethod); % Relative time scale     

    elseif calctype == 2 

        V = Vsettings(ti); 

    end 

    Vreli = (V/B)./eigenfreq;     

    CSeta = ((rho*V*B*L/2)^2);     

    % Establishment of "zetaae" 

    Vih = Vreli(termCae(1,1)); 

    Vihmat = [(Vih^3);(Vih^2);Vih;1]; 

    coeffzeta = adcCae*Vihmat; % columnvector 

    iprev = termCae(1,1); 

    for row = 1:numenCae  

        i = termCae(row,1); 

        if i ~= iprev % True: Arriving new row in "zetaae"! Refresh coefficients! 

            Vih = Vreli(i); 

            Vihmat = [(Vih^3);(Vih^2);Vih;1]; 

            coeffzeta = adcCae*Vihmat;  

            iprev = i; 

        end 

        zetaae(i,termCae(row,2)) = respICae(row)*coeffzeta(termCae(row,3)); 

    end 

    % Establishment of "kappaae" 

    Vih = Vreli(termKae(1,1)); 

    Vihmat = [(Vih^3);(Vih^2);Vih;1]; 

    coeffkappa = adcKae*Vihmat; 

    iprev = termKae(1,1); 

    for row = 1:numenKae % Production of "kappaae" 

        i = termKae(row,1); 

        if i ~= iprev % True: Arriving new row in "kappaae"! Refresh coefficients! 

            Vih = Vreli(i); 

            Vihmat = [(Vih^3);(Vih^2);Vih;1]; 

            coeffkappa = adcKae*Vihmat; % columnvector 

            iprev = i; 

        end 

        kappaae(i,termKae(row,2)) = respIKae(row)*coeffkappa(termKae(row,3)); 

    end      

    if calctype == 1 

        for modform = modulationtypes 

            for wn = 1:NOsetR 

                WNT1 = toc; 

                omega = omegasettings(wn); 

                omegasq = omega^2; 

                omegarel = omega/V;                           

                % Establishment of dynamic amplification matrix, H: 

                for i = 1:Nmod 

                    Hsub(i,i) = omegamat2(i,i)*omegasq; 

                end 

                H = inv(IDmat - kappaae - Hsub + 2*imagunit*omega*(moddampM - zetaae));  

                WNtime(1,wn) = toc - WNT1; 

                WNT2 = toc; 

                % Production of the joint acceptance function matrix 

                if modform == 1 % stationary turbulence components 

                    if (spectrumtype == 1) || (spectrumtype == 3) % Kaimal 

                        Su1 = uwvarcontrol(1)*SgKu(1)*(1+SgKu(2)*omega)^SgKu(3); 
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                        Sw1 = uwvarcontrol(2)*SgKw(1)*(1+SgKw(2)*omega)^SgKw(3); 

                    end 

                    if (spectrumtype == 2) || (spectrumtype == 3) % von Kárman 

                        Su2 = uwvarcontrol(1)*SgvKu(1)*(1+SgvKu(2)*omegasq)^SgvKu(3); 

                        Sw2 = 

uwvarcontrol(2)*SgvKw(1)*(1+SgvKw(2)*omegasq)*((1+SgvKw(3)*omegasq)^SgvKw(4)); 

                    end                                           

                elseif modform == 2 % uniformly modulated turbulence components 

                    if (spectrumtype == 1) || (spectrumtype == 3) % Kaimal 

                        Su1 = varu*SgKu(1)*(1+SgKu(2)*omega)^SgKu(3); 

                        Sw1 = varw*SgKw(1)*(1+SgKw(2)*omega)^SgKw(3); 

                    end 

                    if (spectrumtype == 2) || (spectrumtype == 3) % von Kárman 

                        Su2 = varu*SgvKu(1)*(1+SgvKu(2)*omegasq)^SgvKu(3); 

                        Sw2 = 

varw*SgvKw(1)*(1+SgvKw(2)*omegasq)*((1+SgvKw(3)*omegasq)^SgvKw(4)); 

                    end 

                elseif modform == 3 % non-uniformly modulated, XC model 

                    if (spectrumtype == 1) || (spectrumtype == 3) % Kaimal 

                        Su1 = varu*SgKu(1)*TCurel*((1+SgKu(2)*TCurel*omega)^SgKu(3));  

                        Sw1 = varw*SgKw(1)*TCwrel*((1+SgKw(2)*TCwrel*omega)^SgKw(3));  

                    end 

                    if (spectrumtype == 2) || (spectrumtype == 3) % von Kárman 

                        Su2 = varu*SgvKu(1)*TCurel*(1+SgvKu(2)*((TCurel*omega)^2))^SgvKu(3);  

                        Sw2 = 

varw*SgvKw(1)*TCwrel*(1+SgvKw(2)*((TCwrel*omega)^2))*((1+SgvKw(3)*((TCwrel*omega)^2))^SgvKw(4)

);  

                    end                     

                elseif modform == 4 % non-uniformly modulated, WK model 

                    if (spectrumtype == 1) || (spectrumtype == 3) % Kaimal 

                        Su1 = 

varu*TCu*((1+SgKu(2)*TCurel*omega)^SgKu(3))/Ekaimalu(wn)*SgKu(1)*((1+SgKu(2)*omega)^SgKu(3));  

                        Sw1 = 

varw*TCw*((1+SgKw(2)*TCwrel*omega)^SgKw(3))/Ekaimalw(wn)*SgKw(1)*((1+SgKw(2)*omega)^SgKw(3));  

                    end 

                    if (spectrumtype == 2) || (spectrumtype == 3) % von Kárman 

                        Su2 = 

varu*TCu*((1+SgvKu(2)*(TCurel*omega)^2)^SgvKu(3))/Evonkarmanu(wn)*SgvKu(1)*((1+SgvKu(2)*omegas

q)^SgvKu(3));  

                        Sw2 = 

varw*TCw*(1+SgvKw(2)*(TCwrel*omega)^2)*((1+SgvKw(3)*(TCwrel*omega)^2)^SgvKw(4))/Evonkarmanw(wn

)*SgvKw(1)*(1+SgvKw(2)*omegasq)*((1+SgvKw(3)*omegasq)^SgvKw(4));  

                    end  

                end 

                % Use the average of Kaimal and von Karman spectral values! 

                if spectrumtype == 1 

                    Su = Su1; 

                    Sw = Sw1; 

                elseif spectrumtype == 2 

                    Su = Su2; 

                    Sw = Sw2; 

                elseif spectrumtype == 3 % Average 

                    Su = 0.5*(Su1+Su2); 

                    Sw = 0.5*(Sw1+Sw2); 

                end       

                WNtime(2,wn) = toc - WNT2; 

                WNT3 = toc; 

                dCL = dCL0/((1+(AndCL*omegarel))^bndCL); 

                dCM = dCM0/((1+(AndCM*omegarel))^bndCM); 

                CoeffJij = zeros(5,1); 

                CoeffJij(1,1) = Su*4*ar*(CD^2); 

                CoeffJij(2,1) = Sw*(dCL+(ar*CD))^2; 

                CoeffJij(3,1) = Sw*B*dCM*(dCL+(ar*CD)); 

                CoeffJij(4,1) = CoeffJij(3,1); 

                CoeffJij(5,1) = Sw*(B*dCM)^2; 

                CCo = -omegarel*[Cux;Cwx;Cwx;Cwx;Cwx]; 

                J = zeros(Nmod);                 

                for row = 1:numnzeJ  

                    i = snzeJ(row,1); 

                    j = snzeJ(row,2); 

                    term = snzeJ(row,3); % rowvector 

                    Coeff = CoeffJij(term); % columnvector 

                    rowik = ((i-1)*3) + indexMJ(term,1);  

                    rowjl = ((j-1)*3) + indexMJ(term,2);  

                    c = CCo(term); 

                    csq = c^2; 

                    epc = exp(c); 
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                    I = 0; 

                    for i1 = 1:kmax % a 

                        Aik = modeshapes(rowik,i1); 

                        if Aik ~= 0 

                            a = pi*i1; 

                            asq = a^2; 

                            f1 = 1/(asq+csq); 

                            f2 = 1-epc*cos(a); 

                            for j1 = 1:kmax % b  

                                Ajl = modeshapes(rowjl,j1); 

                                if Ajl ~= 0 

                                    b = pi*j1; 

                                    if i1 == j1 

                                        I = I + 2*Aik*Ajl*f1*(asq*f1*f2-c/2); 

                                    else 

                                        aplusb = (a+b); 

                                        aminusb = (a-b); 

                                        I = I + Aik*Ajl*(((cos(aminusb)-

1)/aminusb+(cos(aplusb)-1)/aplusb)/2+a*f1*f2)*2*b/((b^2)+csq); 

                                    end     

                                end 

                            end 

                        end 

                    end 

                    term = I; 

                    J(i,j) = term*Coeff; 

                    if i ~= j  

                        J(j,i) = term*Coeff; 

                    end             

                end  

                WNtime(3,wn) = toc - WNT3;           

                WNT4 = toc; 

                J = J.*KiKj;   

                SRR = CSeta*PHIrx*real(transpose(H')*J*transpose(H))*transpose(PHIrx); 

                SdRR = SRR*omegasq; 

                Sry = SRR(1,1); 

                Srz = SRR(2,2); 

                Srtheta = SRR(3,3); 

                Sdry = SdRR(1,1); 

                Sdrz = SdRR(2,2); 

                Sdrtheta = SdRR(3,3); 

                CovmatR(1:3,wn) = [Sry;Srz;Srtheta]; 

                CovmatdR(1:3,wn) = [Sdry;Sdrz;Sdrtheta]; 

                % Interpolation of all EPSDs 

                tiIP = nipEPSDt*ti - nipEPSDt + 1; 

                if wn == 1 

                    Suprev = Su; 

                    Swprev = Sw; 

                    Sryprev = Sry; 

                    Srzprev = Srz; 

                    Srthetaprev = Srtheta; 

                    uEPSD(tiIP,1,modform) = Su; 

                    wEPSD(tiIP,1,modform) = Sw; 

                    RyEPSD(tiIP,1,modform) = Sry; 

                    RzEPSD(tiIP,1,modform) = Srz; 

                    RthetaEPSD(tiIP,1,modform) = Srtheta; 

                    i2 = 1; 

                else 

                    nipfomega = IPFmatomega(wn); 

                    ipfomega = (1/nipfomega):(1/nipfomega):1.00001; 

                    i1 = i2 + 1; 

                    i2 = i1 + nipfomega - 1; 

                    uEPSD(tiIP,i1:i2,modform) = Suprev + (Su-Suprev)*ipfomega; 

                    wEPSD(tiIP,i1:i2,modform) = Swprev + (Sw-Swprev)*ipfomega; 

                    RyEPSD(tiIP,i1:i2,modform) = Sryprev + (Sry-Sryprev)*ipfomega; 

                    RzEPSD(tiIP,i1:i2,modform) = Srzprev + (Srz-Srzprev)*ipfomega; 

                    RthetaEPSD(tiIP,i1:i2,modform) = Srthetaprev + (Srtheta-

Srthetaprev)*ipfomega; 

                    Suprev = Su; 

                    Swprev = Sw; 

                    Sryprev = Sry; 

                    Srzprev = Srz; 

                    Srthetaprev = Srtheta; 

                end       

                WNtime(4,wn) = toc - WNT4;           

            end 

            if ti >= 2 
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                i1 = nipEPSDt*ti - (2*nipEPSDt) + 2; 

                i2 = i1 + nipEPSDt - 1; 

                uEPSD(i1:i2-1,:,modform) = uEPSD(i1-1,:,modform) + ((ipft(1:end-

1))')*(uEPSD(i2,:,modform)-uEPSD(i1-1,:,modform)); 

                wEPSD(i1:i2-1,:,modform) = wEPSD(i1-1,:,modform) + ((ipft(1:end-

1))')*(wEPSD(i2,:,modform)-wEPSD(i1-1,:,modform)); 

                RyEPSD(i1:i2-1,:,modform) = RyEPSD(i1-1,:,modform) + ((ipft(1:end-

1))')*(RyEPSD(i2,:,modform)-RyEPSD(i1-1,:,modform)); 

                RzEPSD(i1:i2-1,:,modform) = RzEPSD(i1-1,:,modform) + ((ipft(1:end-

1))')*(RzEPSD(i2,:,modform)-RzEPSD(i1-1,:,modform)); 

                RthetaEPSD(i1:i2-1,:,modform) = RthetaEPSD(i1-1,:,modform) + ((ipft(1:end-

1))')*(RthetaEPSD(i2,:,modform)-RthetaEPSD(i1-1,:,modform)); 

            end   

            varTmat(:,ti,modform) = CovmatR*(omegaweights'); 

            varTmatdr(:,ti,modform) = CovmatdR*(omegaweights'); 

        end 

    elseif calctype == 2 

        for wn = 1:NOsetH 

            omega = omegasettingsH(wn); 

            omegasq = omega^2; 

            omegarel = omega/V;                           

            % Establishment of dynamic amplification matrix, H: 

            for i = 1:Nmod 

                Hsub(i,i) = omegamat2(i,i)*omegasq; 

            end 

            Hplot(ti,wn) = (abs(1/det(IDmat - kappaae - Hsub + 2*imagunit*omega*(moddampM - 

zetaae)))); 

        end 

    end 

    if calctype == 1 

        Rmean(:,ti) = CSetaRM*PHIrx*inv(IDmat-

kappaae)*inv(diag(modstiffn))*ImatRM*((V^2)*qmeancoeff(:,1)+(V*W)*qmeancoeff(:,2)); 

    end 

end 

grosstime = toc; 

% CDF and pdf of maximum reponse: 

drymax = 0.001; 

drzmax = 0.0002; 

drthetamax = (10^-3)*0.01; 

RYmax = 1.3:drymax:2.8; 

RZmax = 0.4:drzmax:0.85; 

RTHETAmax = 0.014:drthetamax:0.028; 

CDFRy = zeros(4,length(RYmax)); 

CDFRz = zeros(4,length(RZmax)); 

CDFRtheta = zeros(4,length(RTHETAmax)); 

pdfRy = 0; 

pdfRz = 0; 

pdfRtheta = 0; 

for j = modulationtypes 

    if rfT == 1 

        for i = 1:length(RYmax) 

            CDFRy(j,i) = exp(-

TUSE*(1/(2*pi))*(sqrt(varTmatdr(1,:,j))./sqrt(varTmat(1,:,j))).*exp(-0.5*((RYmax(i)-

Rmean(1,:)).^2)./varTmat(1,:,j))); 

        end 

        for i = 1:length(RZmax) 

            CDFRz(j,i) = exp(-

TUSE*(1/(2*pi))*(sqrt(varTmatdr(2,:,j))./sqrt(varTmat(2,:,j))).*exp(-0.5*((RZmax(i)-

Rmean(2,:)).^2)./varTmat(2,:,j))); 

        end 

        for i = 1:length(RTHETAmax) 

            CDFRtheta(j,i) = exp(-

TUSE*(1/(2*pi))*(sqrt(varTmatdr(3,:,j))./sqrt(varTmat(3,:,j))).*exp(-0.5*((RTHETAmax(i)-

Rmean(3,:)).^2)./varTmat(3,:,j))); 

        end 

    else 

        for i = 1:length(RYmax) 

            amat =  (1/(2*pi))*(sqrt(varTmatdr(1,:,j))./sqrt(varTmat(1,:,j))).*exp(-

0.5*((RYmax(i)-Rmean(1,:)).^2)./varTmat(1,:,j)); 

            CDFRy(j,i) = exp(-0.5*(amat(1) + amat(end) + 2*sum(amat(2:end-1)))*TUSE/(rfT-1)); 

        end 

        for i = 1:length(RZmax) 

            amat =  (1/(2*pi))*(sqrt(varTmatdr(2,:,j))./sqrt(varTmat(2,:,j))).*exp(-

0.5*((RZmax(i)-Rmean(2,:)).^2)./varTmat(2,:,j)); 

            CDFRz(j,i) = exp(-0.5*(amat(1) + amat(end) + 2*sum(amat(2:end-1)))*TUSE/(rfT-1)); 

        end 

        for i = 1:length(RTHETAmax) 
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            amat =  (1/(2*pi))*(sqrt(varTmatdr(3,:,j))./sqrt(varTmat(3,:,j))).*exp(-

0.5*((RTHETAmax(i)-Rmean(3,:)).^2)./varTmat(3,:,j)); 

            CDFRtheta(j,i) = exp(-0.5*(amat(1) + amat(end) + 2*sum(amat(2:end-1)))*TUSE/(rfT-

1)); 

        end 

    end 

    for i = 2:(length(RYmax)-1) 

        pdfRy(j,i-1) = 0.5*(CDFRy(j,i+1)-CDFRy(j,i-1))/drymax; 

    end 

    for i = 2:(length(RZmax)-1) 

        pdfRz(j,i-1) = 0.5*(CDFRz(j,i+1)-CDFRz(j,i-1))/drzmax; 

    end 

    for i = 2:(length(RTHETAmax)-1) 

        pdfRtheta(j,i-1) = 0.5*(CDFRtheta(j,i+1)-CDFRtheta(j,i-1))/drthetamax; 

    end 

end 

% Quantiles and expected values: 

q = 0.99; 

Ey = zeros(4,1); 

Ez = Ey; 

Etheta = Ey; 

Qy = Ey; 

Qz = Ey; 

Qtheta = Ey; 

for i = modulationtypes 

    Ey(i) = sum(pdfRy(i,:).*RYmax(2:end-1)*drymax); 

    Ez(i) = sum(pdfRz(i,:).*RZmax(2:end-1)*drzmax); 

    Etheta(i) = sum(pdfRtheta(i,:).*RTHETAmax(2:end-1)*drthetamax); 

    Qy(i) = RYmax(setdiff((abs(CDFRy(i,:)-q)==min(abs(CDFRy(i,:)-q))).*(1:length(RYmax)),0)); 

    Qz(i) = RZmax(setdiff((abs(CDFRz(i,:)-q)==min(abs(CDFRz(i,:)-q))).*(1:length(RZmax)),0)); 

    Qtheta(i) = RTHETAmax(setdiff((abs(CDFRtheta(i,:)-q)==min(abs(CDFRtheta(i,:)-

q))).*(1:length(RTHETAmax)),0)); 

end 

% 

B.1.4 Quasi-static mean response control 

% 

% Fourier series expansion of U^2 and UW: 

Usq(1,1:nU) = (Umean(1,:)).^2; 

Usq(2,1:nU) = Umean(1,:).*Umean(2,:); 

omegamaxUMR = omegamaxUM; 

omegasettingsUMR = domega:domega:omegamaxUMR; 

NOsetUMR = length(omegasettingsUMR); 

compmatUMR = zeros(NOsetUMR,4); 

Usqavg(1:2,1) = [Usq(1,1)+Usq(1,nU)+2*sum(Usq(1,2:end-

1));Usq(2,1)+Usq(2,nU)+2*sum(Usq(2,2:end-1))]*0.5/(nU-1); 

UmeanFSE = zeros(2,nU) + [Usqavg(1,1);Usqavg(2,1)].*ones(2,nU); % Umean Fourier Series 

Expansion 

for wn = 1:NOsetUMR 

    omega = omegasettingsUMR(wn); 

    for v = 1:2 

        ak = 0; 

        bk = 0; 

        for j = 2:nU 

            t0 = T(j-1); 

            t1 = T(j); 

            s = (Usq(v,j)-Usq(v,j-1))/dt; 

            p = Usq(v,j-1) - s*t0; 

            ak = ak + p/omega*sin(omega*t1)+s/(omega^2)*(omega*t1*sin(omega*t1)+cos(omega*t1)) 

- (p/omega*sin(omega*t0)+s/(omega^2)*(omega*t0*sin(omega*t0)+cos(omega*t0))); 

            bk = bk + s/(omega^2)*(sin(omega*t1)-omega*t1*cos(omega*t1))-p/omega*cos(omega*t1) 

- (s/(omega^2)*(sin(omega*t0)-omega*t0*cos(omega*t0))-p/omega*cos(omega*t0)); 

        end 

        ak = ak*2/TU; 

        bk = bk*2/TU; 

        compmatUMR(wn,(v-1)*2+[1,2]) = [ak,bk]; 

        UmeanFSE(v,:) = UmeanFSE(v,:) + ak*cos(omega*T) + bk*sin(omega*T);         

    end 

end 

% Quasistatic mean: 

rfT = 1500; 

irr = [1,round(nTUSE/(rfT-1):nTUSE/(rfT-1):nTUSE)]; 

TR = T(istart-1+irr); 

TRplot = TR-TR(1); 

UsqR = UmeanFSE(:,istart-1+irr); % [U^2;UW] 
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RmeanQS = zeros(3,rfT); 

CSetaRM = rho*B*L/2; 

IDmat = eye(Nmod); 

for ti = 1:rfT 

    RmeanQS(:,ti) = 

CSetaRM*PHIrx*IDmat*inv(diag(modstiffn))*ImatRM*((UsqR(1,ti))*qmeancoeff(:,1)+(UsqR(2,ti))*qme

ancoeff(:,2)); 

end 

% Steady-state mean: 

Cdmat = CSetaRM*[ar*0.7;ar+dCL0;B*dCM0]; 

rows = [1 4 5 6 9 10 13 15 17]; % non-zero contributing modes 

cols = [1 3 1 3 1  3  3  3  3]; % start column in compmatUMR 

comp = [1 2 1 2 1  2  3  3  3]; % component 

nzcM = length(rows); 

etaR = zeros(Nmod,rfT); 

for i = 1:nzcM 

    row = rows(i); 

    A = Cdmat(comp(i))*ImatRM(row,comp(i)); 

    K = modstiffn(row); 

    etaR(row,:) = Usqavg((comp(i)==1)+2*(comp(i)>=2))*ones(1,rfT); 

    zeta = moddamping(row); 

    omeganat = eigenfreq(row); 

    col = cols(i); 

    for k = 1:NOsetUMR 

        omega = omegasettingsUMR(k); 

        xi = omega/omeganat; 

        Hsq = 1/(((1-(xi^2))^2)+((2*xi*zeta)^2)); 

        aki = compmatUMR(k,col); 

        bki = compmatUMR(k,col+1); 

        alphaki = aki*(1-(xi^2))-bki*2*zeta*xi; 

        betaki = aki*2*zeta*xi+bki*(1-(xi^2)); 

        for ti = 1:rfT 

            t = TR(ti); 

            etaR(row,ti) = etaR(row,ti) + Hsq*(alphaki*cos(omega*t)+betaki*sin(omega*t)); 

        end                

    end 

    etaR(row,:) = etaR(row,:)*A/K; 

end 

RmeanSS = PHIrx*etaR; 

% 

B.1.5 Monte Carlo simulation of time domain SDOF system response 

% 

inputmethod = 2; % 1: U(t) and var(t) from UEMDWD. 2: U(t) function and turbulence intensity 

constant 

Tscalemethod = 2; % 1: Duration, 2: Integral. (only for inputmethod = 1 and modulationmethod = 

2!) 

% 

ASg = 40.8; 

BSg = 50.2; 

nSg = -1.6; 

% 

ipfF = 3; % interpolatoin factor for F 

Ta = -1200; % "initial stabilazatoin set-off [s] 

Tavgspan = 10; % averaging span for response variance calculation [s] 

varavgres = 1; % time resolution of response variance averaging [s] 

rft = 500; % # time points for freq. dom. variance calc. 

MCsimpoints = 4000;  

domega = 2*pi/1500; 

omegamin = omegamaxUM; 

omegamax = 0.5; 

omegasettingsMC = 

unique([omegamin:domega:0.31,0.31:(domega/2):0.317,0.317:(domega/4):0.319,0.319:(domega/8):0.3

21,0.321:(domega/4):0.323,0.323:(domega/2):0.33,0.33:domega:omegamax]); 

domegamatMC = omegasettingsMC(2:end) - omegasettingsMC(1:end-1); 

omegasettingsMC = 0.5*(omegasettingsMC(1:end-1)+omegasettingsMC(2:end)); % midpoint rule 

NOsetMC = length(omegasettingsMC); 

% U(t) function (inputmethod == 2): 

BW = [12.5 5 2]; 

if inputmethod == 2     

    TUSE = 3600; 

    Tplot = 0:dt:TUSE; 

    nTUSE = length(Tplot); 

    U2 = 15 + 20*exp(-((Tplot-1800)/(60*BW(ijk))).^2); 

    Iu = 0.16; 
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end 

%  Frequency domain response: 

PHIrx = 1.0365; % mode shape value at midspan 

omega1 = 0.32; 

I1 = 0.64450921; 

I2 = 0.50073574; 

irr = round(1:(nTUSE-1)/(rft-1):(nTUSE+1.1)); 

TplotSDOF = (irr-1)*dt; 

if inputmethod == 1 

    zeta = 0.005 + rho*CD*D*L*I2*Umean(1,istart-1+irr)/(2*omega1*modmass(1)); 

elseif inputmethod == 2 

    zeta = 0.005 + rho*CD*D*L*I2*U2(irr)/(2*omega1*modmass(1)); 

end 

mM = modmass(1); 

mK = mM*(omega1^2); 

ryvarT = zeros(1,rft); % structural displacement 

dryvarT = ryvarT; % structural velocity 

for i = 1:rft 

    if inputmethod == 1 

        V = Umean(1,istart-1+irr(i)); 

        varu = varuw(1,irr(i)); 

    elseif inputmethod == 2 

        V = U2(irr(i)); 

        varu = (V*Iu)^2; 

    end 

    CT = (PHIrx^2)*((rho*V*D*L*CD*I1/mK)^2)*varu; 

    int1 = 0; 

    int2 = 0; 

    for wn = 1:NOsetMC 

        omega = omegasettingsMC(wn); 

        ksi = (omega/omega1); 

        Hsq = 1/(((1-(ksi^2))^2)+((2*zeta(i)*ksi)^2)); 

        Sg = ASg*((1+BSg*omega)^nSg); 

        int1 = int1 + Hsq*Sg*domegamatMC(wn); 

        int2 = int2 + (omega^2)*Hsq*Sg*domegamatMC(wn); 

    end 

    ryvarT(i) = CT*int1; 

    dryvarT(i) = CT*int2; 

end 

if inputmethod == 1 

    rymeanT = (0.5*PHIrx*I1*rho*D*CD*L/mK)*(Umean(1,istart:iend).^2); 

elseif inputmethod == 2 

    rymeanT = (0.5*PHIrx*I1*rho*D*CD*L/mK)*(U2.^2); 

end 

% MC simulation: 

ispanavg = Tavgspan/varavgres; 

avgspanratio = varavgres/dt; 

kCD = PHIrx*rho*D*CD*L*I1; 

TF1 = unique([Ta:dt*ipfF:0,Tplot(1:ipfF:end),TUSE:dt*ipfF:TUSE+Tavgspan]); % Time values for 

F1 

nTF1 = length(TF1); 

TF = Ta:dt:(TUSE+Tavgspan); 

if inputmethod == 1 

    Uhist = [ones(1,round(-

Ta/dt))*Umean(1,istart),Umean(1,istart:iend),ones(1,round(Tavgspan/dt))*Umean(1,iend)]; 

elseif inputmethod == 2 

    Uhist = [ones(1,round(-Ta/dt))*U2(1),U2,ones(1,round(Tavgspan/dt))*U2(end)]; 

end 

mC = 2*0.005*mM*omega1 + rho*CD*D*L*I2*Uhist; 

nTF = nTUSE + round(-Ta/dt) + round(Tavgspan/dt); 

TFvaravg = 0:varavgres:TUSE; % center time values for resposne variance calc. 

ipf = (1/ipfF):(1/ipfF):1.001; 

istartavg = -(Ta/dt) + 1; 

iendavg = istartavg + nTUSE - 1; 

varR = zeros(1,(nTUSE-1)/avgspanratio+1); 

MCvarR = varR; 

maxrespvect = zeros(1,MCsimpoints); 

tic 

Test = MCsimpoints*(TUSE-Ta)/6000*0.38; 

disp(['Estimated computational time:  ' num2str(Test) ' seconds']) 

disp(['Initialized at:                ' num2str(datestr(datenum(clock)))]) 

disp(['Estimated completion at:       ' num2str(datestr(datenum(clock + [0 0 0 0 0 Test])))]) 

for i = 1:MCsimpoints 

    % Generate unit variance signal 

    F1 = zeros(1,nTF1);     

    for wn = 1:NOsetMC 

        omega = omegasettingsMC(wn); 
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        domega = domegamatMC(wn); 

        pha = 2*pi*rand; 

        c = sqrt(2*domega*ASg*((1+BSg*omega)^nSg)); 

        F1 = F1 + c*sin(omega*TF1-pha); 

    end 

    % Interpolate onto dt 

    F = [F1(1),zeros(1,round((TUSE+Tavgspan-Ta)/dt))]; 

    j1 = 1; 

    for j = 2:nTF1 

        j1 = j1 + ipfF; 

        F(j1-ipfF+1:j1) = F1(j-1) + ipf*(F1(j)-F1(j-1));   

    end 

    % Scale wrt. V and variance 

    if inputmethod == 1 

        F = kCD*F.*Uhist.*[ones(1,round(-

Ta/dt))*sqrt(varuw(1,1)),sqrt(varuw(1,1:nTUSE)),ones(1,round(Tavgspan/dt))*sqrt(varuw(1,nTUSE)

)]; 

    elseif inputmethod == 2 

        F = kCD*Iu*F.*(Uhist.^2); 

    end 

    R = [0.0,zeros(1,(TUSE+Tavgspan-Ta)/dt);zeros(1,1+(TUSE+Tavgspan-Ta)/dt)]; % Response from 

F 

    % Calculate response 

    for j = 2:nTF 

        u11 = R(1,j-1); 

        u12 = R(2,j-1); 

        k1 = dt*[u12;(F(j-1)-mC(j-1)*u12-mK*u11)/mM]; 

        u21 = u11 + 0.5*k1(1); 

        u22 = u12 + 0.5*k1(2); 

        F2 = 0.5*(F(j-1)+F(j)); 

        mC2 = 0.5*(mC(j-1)+mC(j)); 

        k2 = dt*[u22;(F2-mC2*u22-mK*u21)/mM]; 

        u31 = u11 + 0.5*k2(1); 

        u32 = u12 + 0.5*k2(2); 

        k3 = dt*[u32;(F2-mC2*u32-mK*u31)/mM]; 

        u41 = u11 + k3(1); 

        u42 = u12 + k3(2); 

        k4 = dt*[u42;(F(j)-mC(j)*u42-mK*u41)/mM]; 

        R(:,j) = R(:,j-1) + (k1+(2*k2)+(2*k3)+k4)/6; 

    end 

    % find maximum response: 

    [maxR,locmaxR] = max(R(1,istartavg:iendavg)+rymeanT); 

    maxrespvect(i) = maxR;   

    maxrespvectT(i) = (locmaxR-1)*dt; 

    % estimate variance: 

    varcomps = zeros(1,2*ispanavg); 

    j1 = 0; 

    for j = (istartavg-Tavgspan/dt):avgspanratio:(istartavg+(Tavgspan-varavgres)/dt) 

        a = R(1,j); 

        b = R(1,j+avgspanratio); 

        j1 = j1 + 1; 

        varcomps(j1) = ((a^2)+(a*b)+(b^2))/3; 

    end 

    varR(1) = sum(varcomps); 

    j1 = 1; 

    for j = (istartavg+avgspanratio):avgspanratio:iendavg 

        j1 = j1 + 1; 

        a = R(1,j); 

        b = R(1,j+avgspanratio); 

        vari = ((a^2)+(a*b)+(b^2))/3; 

        varcomps(:) = [varcomps(2:2*ispanavg) vari]; 

        varR(j1) = sum(varcomps); 

    end 

    varR = varR/(2*ispanavg); 

    MCvarR = MCvarR + varR; 

end 

MCvarR = MCvarR/MCsimpoints(end); 

% 

% pdf for maximums from frequency domain parameters: 

a = round(0.8*min(maxrespvect),3); % smallest possible value for Rmax 

dRmax = 0.0005; 

Rmaxkappa = a:dRmax:1.2*round(max(maxrespvect),3); 

n = length(Rmaxkappa); 

CDFR = zeros(1,n); 

rymeanTkappa = rymeanT(irr); 

for i = 1:n 
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   amat =  (1/(2*pi))*(sqrt(dryvarT)./sqrt(ryvarT)).*exp(-0.5*((Rmaxkappa(i)-

rymeanTkappa).^2)./ryvarT); 

   CDFR(i) = exp(-0.5*(amat(1) + amat(end) + 2*sum(amat(2:end-1)))*TUSE/(rft-1)); 

end 

varRmaxFD = 0; % "Frequency Domain" 

avgRmaxFD = 0;  

pdfR = zeros(1,n-2); 

for i = 2:n-1 

    pdfR(i-1) = 0.5*(CDFR(i+1)-CDFR(i-1))/dRmax; 

    avgRmaxFD = avgRmaxFD + 0.5*(CDFR(i+1)-CDFR(i-1))*Rmaxkappa(i); 

end 

for i = 2:n-1 

    varRmaxFD = varRmaxFD + 0.5*(CDFR(i+1)-CDFR(i-1))*(Rmaxkappa(i)^2); 

end 

varRmaxFD = varRmaxFD - (avgRmaxFD^2); 

% pdf for r max for Monte Carlo simulation: 

nuaxinit = round(MCsimpoints/20); % number of compartments 

dgax = (max(maxrespvect)-min(maxrespvect))/nuaxinit; 

gax = 0; 

gax(1,1:nuaxinit) = (min(maxrespvect)+(dgax/2)):dgax:(max(maxrespvect)-(dgax/2.5)); % midpoint 

values 

ngax = size(gax,2); 

probdensRmax = zeros(1,ngax); 

for i = 1:MCsimpoints 

    y = maxrespvect(i); 

    j = min(setdiff((abs(gax'-y)==min(abs(gax'-y))).*((1:ngax)'),0)); 

    probdensRmax(j) = probdensRmax(j) + 1; 

end 

scaleg = sum(probdensRmax).*dgax; 

probdensRmax = probdensRmax/scaleg; 

Rmaxavg = sum(maxrespvect)/MCsimpoints; 

% estimate variance of Rmax from a LSF procedure with fixed average 

varstart = 0.001; 

varend = 1.000; 

vardiscr = varstart:(varend-varstart)/9999:varend; 

for i = 1:length(vardiscr) 

    vari = vardiscr(i); 

    my = Rmaxavg-0.5772*vari; 

    z = (gax-my)/vari; 

    lsf = sum(((1/vari)*exp(-(z+exp(-z)))-probdensRmax).^2); 

    if i == 1 

        Rmaxvar = vari; 

        lsfmin = lsf; 

    else 

        if lsf < lsfmin 

            Rmaxvar = vari; 

            lsfmin = lsf; 

        end 

    end 

end 

my = Rmaxavg-0.5772*Rmaxvar; 

PDFextR = min(gax):0.001:max(gax); 

z = (PDFextR-my)/Rmaxvar; 

PDFest = (1/Rmaxvar)*exp(-(z+exp(-z))); 

% pdf for location of r max for Monte Carlo simulation: 

nuaxinitLOC = 300; % number of compartments 

dgaxLOC = TUSE/(nuaxinitLOC-1); 

gaxLOC = 0; 

gaxLOC(1,1:nuaxinitLOC) = 0:dgaxLOC:TUSE; % midpoint values 

ngaxLOC = size(gaxLOC,2); 

probdensLOCRmax = zeros(1,ngaxLOC); 

for i = 1:MCsimpoints 

    y = maxrespvectT(i); 

    j = min(setdiff((abs(gaxLOC'-y)==min(abs(gaxLOC'-y))).*((1:ngaxLOC)'),0)); 

    probdensLOCRmax(j) = probdensLOCRmax(j) + 1; 

end 

scalegLOC = sum(probdensLOCRmax).*dgaxLOC; 

probdensLOCRmax = probdensLOCRmax/scalegLOC; 

% 

QV = []; 

i = 0; 

for quant = [0.900 0.990 0.999] 

    i = i + 1; 

    QV(i) = Rmaxavg - Rmaxvar*0.5772 - Rmaxvar*log(-log(quant)); 

end 

% 

disp(['Calculation complete at:       ' num2str(datestr(clock))]) 
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disp(['Elapsed computational time:    ' num2str(toc) ' seconds']) 

% 

B.2 INPUTFILES 

“A.txt”: 
 

1       0       0.0383  0      -0.0021  0       0.0004  0      -0.0001  0       0       0       0       0       0       0 

0.8955  0      -0.0287  0       0.0048  0      -0.0016  0       0.0006  0       -0.0003 0       0.0001  0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       1       0       0.0402  0      -0.004   0       0.0008  0      -0.0002  0       0.0001  0       0       0       0 

0       0.4818  0      -0.0555  0       0.0128  0      -0.005   0       0.002   0      -0.001   0       0.0005  0      -0.0003 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       1       0      -0.0058  0      -0.0009  0      -0.0002  0      -0.0001  0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

-0.801  0       1       0       0.0521  0       0.0141  0       0.0054  0       0.0025  0       0.0013  0       0.0007  0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0.1416  0       1       0       0.0198  0      -0.0026  0       0.0006  0      -0.0002  0       0       0       0       0 

0.4937  0       0.2171  0      -0.0444  0       0.0118  0      -0.0048  0       0.0021  0      -0.0011  0       0.0005  0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

1       0       0.8131  0      -0.2185  0      -0.0439  0      -0.0157  0      -0.007   0       -0.0036 0     -0.002    0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0.0058  0       1       0      -0.0004  0      -0.0001  0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0      -0.1817  0      -0.2059  0       0.006   0      -0.0012  0       0.0003  0      -0.0001  0       0       0       0 

0       1       0       0.1406  0      -0.0206  0       0.0073  0      -0.0028  0       0.0014  0      -0.0007  0       0.0004 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

-0.2884 0       0.1161  0       0.011   0      -0.0015  0       0.0003  0      -0.0001  0       0       0       0       0 

0.8232  0       1       0      -0.0239  0       0.0073  0      -0.0024  0       0.0012  0      -0.0005  0       0.0003  0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0.1572  0       0.0742  0       1       0      -0.0194  0      -0.0057  0      -0.0024  0      -0.0012  0      -0.0006  0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0      -0.1016  0       1       0       0.212   0      -0.0035  0       0.0009  0      -0.0003  0       0.0001  0       0 

0       0.386   0       0.5646  0      -0.0712  0       0.0225  0      -0.0091  0       0.0041  0      -0.0021  0       0.0011 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0.0009  0       0.0004  0       1       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

1       0      -0.0297  0      -0.0056  0      -0.002   0      -0.0009  0      -0.0005  0      -0.0003  0       0.0002  0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0.0297  0       1       0     -0.003    0       0.0009  0      -0.0004  0      -0.0002  0      -0.0001  0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0.0057  0       0.0028  0       1       0      -0.0008  0      -0.0003  0      -0.0001  0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 

0       0       0       0       0       1       0       0       0       0       0       0       0       0       0       0    

 

“adcoeffCae.txt”: 

  0           0           0           0  

  0.0025     -0.0670     -3.5945      0.4179 

 -0.0620     -0.5221      0.2902     -0.0299 

 -0.0322      0.1028     -0.7196     -0.0614 

 -0.0174     -0.1663      0.0899      0.0009 

“adcoeffKae.txt”: 

 -0.3174      1.6264     -2.6660      -0.3497 

 -0.7465      5.7567     -1.7383      -0.2249 

  0.0025     -0.1056      0.0216       0.0365 

  0.1984      0.6324      0.0948      -0.0512 
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“MC.txt”: 

12199   0.32    0.005 

10090   0.64    0.0052 

12937   0.71    0.005 

12937   0.9     0.0051 

10284   1.11    0.0062 

12937   1.27    0.0058 

12937   1.36    0.006 

59547   1.56    0.0079 

73761   1.66    0.0084 

12937   1.76    0.0077 

10885   1.95    0.01 

12937   2.14    0.01 

427243  2.25    0.005 

427243  3.49    0.0052 

427243  5.28    0.0063 

427243  7.00    0.0083 

427243  8.76    0.0112 

427243  10.50   0.015 

“OS2.txt”: 

0.0050  3 

0.0384  6    

0.30   6 

0.34   5    

0.625  5    

0.655  3    

0.695  4    

0.725  4    

0.88  6    

0.92  4    

1.10  6    

1.12  3    

1.27  6    

1.29  3    

1.35  6    

1.375 4    

1.55  6    

1.57  3    

1.65  6    

1.67  3    

1.75  4    

1.77  4    

1.92  4 

1.96  6   

2.13  20  

2.26  10     

3.40  15   

3.58  15    

5.20  15   

5.33  15    

6.92  15   

7.08  16    

8.69  10   

8.85  8    

10.30 8    

10.60 8    

12    0 
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APPENDIX C – INPUT VALUES OF THE HARDANGER BRIDGE 

 

Geometridata Vinddata 

B 18.3 m 

H 3.25 m 

L 1310 m 

Lexp L 

 

 

                        1.25 kg/m3 

Iu                       0.16 

Iw                       0.08 
xLu=100*(zf/10)0.3=    162 m 
xLw=xLu/12=      13.5 m 

Au                        1.08 

Aw                        1.5 

Cux                          1.4 

Cwx                          1 

 

( )

( )
2 5/ 3

ˆ

ˆ1 1.5

n n n

n n n

S A

A

  

 
=

+
    hvor: 

ˆ

u eller w

x f
n nL V

n

  = 


=

 

( ) ( )    −  ˆ , exp /nn nxCoh x C x V   hvor: 

=  eller n u w  

 

Lastkoeffisientdata Svingeformdata 

0nC : na : nb : 

DC : 0.7 0 0 

DC : 0 0 0 

LC : 0 0 0 

LC : 5 3.2 0.5 

MC : 0 0 0 

MC : 1.5 2.4 0.5 

 

 

( )
( )




=
+

0

ˆ1

n

n bn
n

C
C

a
 

 

hvor: nC =  DC , DC , LC , LC , 

 MC  eller MC  

 

og: ˆ B V =  

 

Svingeform nr. 1 18i = −  

 

im : i :        i : 

12199 0.32 0.005 

10090 0.64 0.0052 

12937 0.71 0.005 

12937 0.9        0.0051 

10284 1.11 0.0062 

12937 1.27 0.0058 

12937 1.36 0.006 

59547 1.56 0.0079 

73761 1.66 0.0084 

12937 1.76 0.0077 

10885 1.95 0.01 

12937 2.14 0.01 

427243 2.25 0.005 

427243 3.49 0.0052 

427243 5.28 0.0063 

427243 7.00 0.0083 

427243 8.76 0.0112 

427243 10.50 0.015 

im , 1 12i = −  har enhet kg/m 

im , 13 18i = −  har enhet kgm2/m 
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Aerodynamisk deriverte 

 

 

 
3 2

1 2 3 4
ˆ ˆ ˆ

i i i iAD p V p V p V p= + + +  

 

hvor: 

 

iAD  er aerodynamisk 

deriverte 

*
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j
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j

P

H

A

 
 
 
 
 
 

, 

 

 1 6j = − , 

 

som er assosiert med 

 

svingeform nr. i  

 

 

og hvor: ˆ
i iV V B=  

 

 

 

 

           1p :    2p :     3p :  4p : 

*
1P : 0  0  2 DC D B−  0 

*
2P : 0  0  0  0 

*
3P : 0  0  0  0 

*
4P : 0  0  0  0 

*
5P : 0  0  0  0 

*
6P : 0  0  0  0 

*
1H :0.0025 –0.0670  –3.5945 0.4179 

*
2H :–0.0620  –0.5221  0.2902  –0.0299 

*
3H :–0.7465  5.7567  –1.7383      –0.2249 

*
4H :–0.3174  1.6264  –2.6660      –0.3497 

*
5H :      0  0  0  0 

*
6H :      0  0  0  0 

*
1A : –0.0322     0.1028   –0.7196 –0.0614 

*
2A : –0.0174    –0.1663 0.0899 0.0009 

*
3A : 0.1984     0.6324 0.0948 –0.0512 

*
4A : 0.0025    –0.1056 0.0216 0.0365 

*
5A : 0  0  0  0 

*
6A : 0  0  0  0 
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