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Abstract

The power system is, in an increasing manner, subject to uncertainties, and the traditional
method of analyzing power systems using the deterministic load flow (DLF) is increasingly
proving to be insufficient to handle the challenges of the modern power system. The modern
power system is characterized by integration of renewable energy sources whose generation
is fluctuating and uncontrollable in nature; even on the demand side, an increased flexibility
related to the development of smart grids and power systems is expected to increase the
uncertainties. Probabilistic load flow (PLF) techniques provide engineers the opportunity to
include these uncertainties in the analysis of power systems.

In this thesis, a review of the current state of the PLF research is presented, with focus
on analytical and approximate methods available today. Two of the most commonly used
and promising methods are the Cumulant method (CM) and the Point estimate method
(PEM). These methods are studied in further detail and demonstrated on three different test
systems. A major contribution of this study has been to provide a pedagogical presentation
of the theoretical framework and methodogical procedure, and thus one of the test cases
includes thorough step-by-step illustrations of both methodologies. The aim of this master’s
project has also been to create in-house tools with which to conduct probabilistic load flow
studies. This tool has been applied to yet another two test systems, in order to provide
validation and to demonstrate the application on two test systems that are widely used in
reliability studies.

The scope of this study has been the analytical and approximate methods of PLF, hence
no simulation methodologies such as the Monte Carlo (MC) methods have been implemented.
This has restricted the validation of the results from case studies in this thesis to comparison
with results from previous research, whose availability is often limited.

The case studies of this thesis address uncertainties associated with load demand, as well
as conventional and renewable generation. Correlation between different random variables
in the system is an important part of these uncertainties, and is also studied in detail.
Uncertainties related to outages and resulting changes in the network topology are aspects
of the PLF that are not considered in this thesis, but rather left as a possibility of future
work on the subject.
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Sammendrag

Kraftsystemet er i stadig økende grad utsatt for usikkerheter og den tradisjonelle metoden
for å analysere kraftsystemer ved å benytte deterministisk kraftsystemanalyse, viser seg i
mange sammenhenger å være utilstrekkelig. Det moderne kraftsystemet kjennetegnes ved
integrasjon av fornybare energikilder, hvis produksjon er fluktuerende og ukontrollerbar av
natur. Også på lastsiden er økt fleksibilitet relatert til utviklingen av smarte nett og kraft-
systemer forventet å bidra til å øke usikkerheten. Metoder for Probabilistisk Lastflytanalyse
(PLF) gir ingeniører muligheten til å inkludere disse usikkerhetene i analyser av kraftsys-
temet.

Denne oppgaven vil gi en oversikt over forskning gjort innen probabilistisk lastflytanalyse,
med fokus på analytiske og omtrentlige metoder. To av de mest brukte og lovende metodene
er Kumulantmetoden (CM) og Pointestimatmetoden (PEM). Disse metodene vil bli studert
nærmere og demonstrert på tre forskjellige testystemer. Et viktig bidrag fra denne studien
har vært å gi en pedagogisk presentasjon av det teoretiske rammeverket og de metodologiske
aspektene. Ett av case-studiene inkludert i oppgaven er derfor grundige trinnvise beskrivelser
av metodene. Målet med denne masteroppgaven har også vært å implementere interne verk-
tøy for å gjennomføre probabilistiske lastflytanalyser. Dette verktøyet har blitt benyttet på
ytterligere to ulike testsystemer for validering og demonstrasjon av metodene på testsystemer
som er mye brukt i pålitelighetsstudier.

Omfanget av denne studien har inkludert analytiske og omtrentlige metoder for PLF,
derfor har ingen simuleringsbaserte metoder, slik som Monte Carlo (MC) simuleringer blitt
implementert. Dette har begrenset mulighetene for validering av resultatene fra casestudiene
i denne oppgaven, til sammenligning med resultater fra tidligere forskning, hvis tilgjengelighet
ofte er begrenset.

Casestudiene i denne oppgaven adresserer usikkerhet knyttet til lastbehov, i tillegg til både
konvensjonell kraftproduksjon og fornybare energikilder. Korrelasjon mellom ulike variable
i et system er en viktig del av slike usikkerheter og blir også studert i detalj. Usikkerheter
knyttet til utfall av linjer og andre nettverksendringer er forhold som ikke har blitt vurdert
i denne oppgaven, men som blir foreslått som en mulighet for videre arbeid innen emnet.
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1 | Introduction

1.1 Motivation

The modern power system is subject to a large amount of uncertainties, especially and
increasingly so with regards to power injections due to load and generation at the system’s
buses. For a power system even approaching a realistic size, it is soon obvious that it is
impractical to assess all possible values of these. If additionally the probabilities of the
different states are not accounted for, the result will provide an unrealistic picture of the
power system.

By adopting a probabilistic approach to the load flow analysis, engineers are able to
provide a more realistic description of the operational state of the power system at a given
time. Whichever method is used for PLF, simulation-based or analytical, the results are based
on the probabilistic distribution of the random variables that represent the uncertainties in
the system. States of the system that are most dominant from a probabilistic point of view,
can be assigned the heaviest weight in planning and operational decision-making.

There are several factors that support predictions about increasing uncertainties in the
future power system, and thus there is an increased need for probabilistic methods in power
system assessment. The penetration of fluctuating, uncontrollable renewable sources such as
wind power and solar energy is one of the main challenges. Introduction of smart grids is
another, and the impact of this is perhaps even harder to predict. The increased flexibility
that follows from smart grid solutions may be able to change the consumption pattern and
thus create a far more complex demand pattern than what is seen today.

1.2 Scope of work

The objective of this thesis has been to investigate analytical and approximate methods of
probabilistic load flow. Simulation methodologies (Monte Carlo techniques) represent an
important field of research within probabilistic load flow, but are disregarded in the scope
of this thesis. Leaving the simulation techniques out of the picture does however put some
limitations on the case studies in this thesis, as simulation-based PLF is often used as a source
of validation of the results obtained from approximate and analytical methods. Using an MC
technique and running enough simulations for the method to converge and thus provide the
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Chapter 1. Introduction

exact solution to the problem, serves as a validation of the non-simulation technique as well
as a measurement of the accuracy of the results. Leaving out the MC tecniques in this
thesis thus limits the validation of the case studies in this thesis to making use of previously
published and validated work.

There are several uncertainties associated with the modern power system, and this thesis
will look into a number of them. Uncertainties associated with load demand and conventional
generation are discussed and modelled in detail. Correlation between these variables imposes
an additional factor of uncertainty and is also investigated in case studies. Generation by
renewable energy sources represent an increasingly important uncertainty factor in the power
system, and probabilistic modelling of wind power is discussed and implemented to some
extent. However, through all case studies in this thesis, a constant network topology is
assumed, i.e. uncertainties associated with line outages or other incidents causing the physical
network to change, are not taken into account in the case studies here.

1.3 Contributions

• This thesis aims to provide a framework for analytical and approximate methods for
PLF by investigating the current state of the research field and providing closer insight
into a select-few representative methodologies from the literature. Emphasis has been
laid on providing pedagogical clarity of the fundamental and methodogical aspects.

• Two well-established, yet fundamentally different methods have been chosen for close
investigation in this thesis. These are the Point Estimate method (PEM) and the
Cumulant method (CM). Together they represent both main groups of non-simulation
methodologies - the approximate and analytical methods, respectively. The following
aspects of uncertainties associated with the power system have been studied in this
thesis:

– Load demand uncertainties. Both continuous and discrete distributions describ-
ing the uncertainties of load demands have been included in the case studies of
chapter 4.

– Generation uncertainties. Modelling of the uncertainty related to forced outage
of conventional generators has been included in case studies. The fluctuating
production and large uncertainty associated with wind turbines have also been
modelled with appropriate random distributions and included in case studies.

– Ways of handling correlation between variables, both loads and generation units
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1.4 Report structure

have been studied in detail in chapter 3 for both methodologies, and are also
included in several case studies carried out in chapter 4.

• In-house programming codes have been developed for all case studies in this thesis and
are used for further use and research at the Department of Electric Power Engineering.

1.4 Report structure

Chapter 1 - Introduction, provides an introduction to the motivational background and a
presentation of the scope, limitations and contributions of this project.

Chapter 2 - Literature review, presents a review of existing research and literature available
on the subject of probabilistic load flow methods. It also includes an introduction to basic
concepts of power flow analysis and statistics that are considered necessary theoretical back-
ground for the reader.

Chapter 3 - General methodology, presents the theoretical background and derivation of the
two PLF methods that are studied thoroughly in this thesis – the Point estimate method
(PEM) and the Cumulant method (CM).

Chapter 4 - Case studies applies the PEM and CM to three different test systems in order to
demonstrate different aspects of uncertainties and methodologies. Discussions of the results
from the different cases are also included in this chapter.

Chapter 5 - Conclusions, includes a discussion of the conclusions drawn with regards to the
two methods studied in this thesis, from case studies and existing literature.

The thesis builds on a specialization project undertaken during Autumn 2017. I order to
make the thesis self-contained, for narrative clarity, portions of the specialization report have
been extensively made use of in the presentation of chapter 2 and portions of chapter 3.

3
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2 | Literature Review

The first proposal of PLF was done in 1974 [5][29], and was based on the motivation of
obtaining a better foundation for decision making for planning problems, by computing a
probabilistic distribution of branch power flows corresponding to probabilistic nodal power
injections. All the while keeping a fixed network configuration, such that only variation in
load demand and generation were considered uncertainties in the system. Since this first
proposal, the PLF has been developed further to be applied also in normal operation, short-
and long-term planning, and in several other areas [8]. Various methodologies exist now,
being able to also handle uncertainties such as branch outages and other network changes,
and include aspects like correlation between the stochastic variables. In recent years, the
focus has also increasingly been towards improving efficiency of algorithms, application in
power system planning and inclusion of voltage control devices [8].

The basic problem that all PLF methods try to solve is the same; namely to most efficient,
yet sufficiently accurate obtain the probabilistic distribution of the state vectors and line flows
for each node and branch in the system [29]. The various PLF methods can now be divided
into three main groups according to whether they are aiming to solve the problem numerically
(i.e. using a Monte Carlo method), analytically (i.e. performing a conventional convolution
technique) or approximately (i.e. using a combination of the two preceding techniques) [17].

MC simulation methods involves selecting a number of values for the input variables
from their respective probability distribution, performing DLF for each of these, and finally
obtaining the probabilistic distribution of the state variables from the results of the repeated
simulations. Several thousand simulations are usually necessary to obtain meaningful results.
Although accurate and relatively simple, the computational burden of this method is a major
drawback for practical purposes. Real power systems are usually of such a size that MC
methods are impractical and costly, and most researchers only use it for comparison purposes
[29]. This thesis will not go further into MC methods, but rather focus on analytical and
approximate methods

2.1 Analytical methods

The analytical methods are far more computationally effective than the numerical methods,
but obviously require some mathematical assumptions to be made, in order to simplify the
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Chapter 2. Literature Review

problem. In the wake of the first proposal of PLF in 1974, several different methods were
proposed to solve it. The use of conventional convolution techniques were dominant in the
first methods that were developed. Other techniques such as Fast Fourier Transform (FFT)
and the cumulant method were later also proposed [20].

The conventional convolution techniques require that the output variables (i.e. state
vector and line power flows) are represented as linear combinations of the input variables.
Assuming also independence between variables, a convolution technique can be applied to
obtain the PDFs of the output variables. The major drawback of the convolution technique
is the great amount of storage and time necessary to handle the large amount of impulses
resulting from functions represented by many impulses being convoluted with each other [29].
The impact of this problem increases with the size of the power system, so for real-size power
systems, the convolution methods can therefore be unattractive. Reference [2] addresses this
problem and propose to use a convolution technique by applying FFT, and with that achieve
greater accuracy and reduction in computational speed. However, the convolution technique
still forms the basis of this method, and the problem can thus not entirely be overcome.

The cumulant method is another analytical method that quite remarkably avoids the
convolution technique by utilizing some important properties of cumulants. In this way, the
CM is able to obtain statistical parameters of state variables and line flows by algebraic
operations rather than convolution operations. In recent literature, the cumulant method
has been recommended for large transmission systems due to the low computation burden
and relatively high accuracy [3][24]. Th CM is therefore chosen as the analytical method to
be investigated further in this thesis.

In its most fundamental approach, the CM is dependent upon both the linearization
and independence between variables that is also seen in the convolution methods. The
linearization of the power flow equations will obviously cause the method to perform best for
random variables that have distributions concentrated around the mean. In fact, [10] shows
that the CM performs rather poorly when the PDFs of the input variables have dominant
points away from the mean. For load demand distributions, this will rarely pose as a problem,
as the load variation, whether it being a short-time daily variation or a longer yearly variation,
can often be approximated by distributions close to the normal distribution. However, on
the generation side of the transmission network, the ever increasing integration of renewable
sources like wind turbines and photovoltaic systems represent a challenge to this assumption.
Due to the uncontrollable nature of the primal sources (wind speed and solar irradiation,
respectively), the PDFs of these power injections tend to indeed have dominant points far
from the mean. As the presence of renewable sources in transmission system are generally
expected to be only increasing, several proposals have been made to overcome this issue.
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2.1 Analytical methods

Reference [20] proposes an enhanced cumulant method where variables whose distributions
are active at points far away from the mean are treated separately and decomposed into
component parts. The results from this study prove very promising, at least if one is willing
to make a compromise to some point between speed and accuracy when choosing the cumulant
method over MC or approximate methods with much higher computational burden.

Several enhancements have also been proposed to attempt to work around the inde-
pendence requirement of the CM. Considerable correlation exist in both the demand and
generation part of the transmission system, and is sometimes of such importance that it can
not be overlooked. On the load demand side, the seasonal and daily variations of temper-
ature, social factors such as the daily cycle, holidays and so on, will cause residential loads
in a neighbouring area to increase and decrease in a similar manner. On the generation
side, the correlation is, like for the linearization issues discussed above, mainly an issue with
the uncontrollable renewable sources. Especially in neighbouring wind farms the generation
correlation is very strong [6], but this obviously also accounts for solar irradiation. In an
extensive review of ways to handle variable correlation in PLF, [6] summarizes two methods
possible for the cumulant method. The most common one being to model the correlated
input variables as a function of independent random variables by some methods further de-
scribed in references and in section 3.2 where one such methodology is introduced. The
second possibility outlined in [6] is to make use of, in addition to self cumulants, also joint
cumulants of the input random varibles. A drawback of the latter is that the procedure is
quite computationally complex and may not serve as the best option, as the CM is often
chosen as the preferred method because of its high computational efficiency. A method for
handling correlation based on cumulants and DC load flow is proposed in [25] and also show
promising results, in this case leaving the computation time unaffected when correlation is
taken into account.

The raw output of the CM is, as previously mentioned, cumulants of the output vari-
ables, that is the state vector and the line power flows. The different order cumulants in
themselves does usually not represent the statistical information that is of interest for the
output. However, a lot of statistical data lies in the cumulants, and the more cumulants
(i.e. of higher order) that are computed for each variable, the more statistical information
can be extracted for that variable. In some cases, basic properties like the expected value
and standard deviation will give a sufficient representation of the output variables. These
properties are easily determined from the first few cumulants, as described in section 2.4.5.
More often however, a more complex representation of the distribution is desirable and thus
the CM is often used in conjunction with some extension series to form a PDF or CDF
of the output random variables. Depending on the type of distribution, different expansion
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schemes are recommended. Gram-Charlier and Corner-Fisher expansion are two possibilities,
and [24] concludes with the first mentioned performing best for unimodal distributions that
relate well to the normal distribution. Thus, the GC would be a good choice for expanding
results from a PLF with power injections modelled with the normal distribution. For a PLF
including input variables with non-Gaussian distributions (for instance for a system having
wind power generation), the CF series is recommended in [24].

2.2 Approximate methods

First-order second-moment methods (FOSMM) and point estimate methods (PEM) stand
out in this group of PLF methods [17].

The FOSMM starts off in a similar manner as the analytical methods, but it avoids
the mathematical complexity of the convolution technique and can thus only approximate
the output variables. Compared to MC methods, it drastically reduces the computation
time, as only one DLF is required. The FOSMM outlined in [27], linearizes the power flow
equations by using the first two terms of the Taylor expansion series, and is thus able to
approximate the mean and standard deviation of the output variables directly, without the
use of any convolution operations. [27] show promising results for this method, and despite its
necessitity for linearization, the method is capable of handling correlated variables directly.
Drawbacks of the method is the linearization requirement, and also its inability to produce
more statistical data than only the mean and standard deviation of the output variables.

PEMs pose as well-suited alternatives to the FOSMM, though they have a quite different
approach to the approximation of output variables. While the FOSMM can be seen closely
related to the analytical methods, the PEM shares its main concepts with MC methods. As
an analytical method has already been chosen to be more closely studied, the PEM will be
the approximate method to be investigated further in this thesis. In the PEM, a limited
number of simulations are done in strategic points for each of the input random variables to
provide an approximate description for the statistical parameters of the output. The aim of
the PEM is to drastically reduce the computation burden compared to a MC method, but
to still run as many simulations necessary to obtain a sufficient accuracy for the results. The
major difference from MC methods thus lies in the selection of points in which to run the
DLFs, as they are not chosen randomly.

Because DLF routines are used to solve the PLF, the PEM does not have the challenges
related to linearization of the power flow equations that the analytical methods and the
FOSMM has. Also it is advantageous in the sense that perfect knowledge of the distribution
of the input variables (i.e. a PDF) is not necessary; only the mean, variance, skewness and
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kurtosis of the input variables are utilized in order to approximate the PDFs of the output
variables.

Several different methods have been proposed in the family of PEMs. They mainly differ
in number of DLFs to be performed (i.e. computation burden) and in types of variables they
are able to handle (correlation and asymmetric variables) [17]. The general idea common
for all these methods, is that each input random variable will produce a number of locations
in which DLFs are being conducted. Each location will be assigned a weight based on the
current variable’s statistical properties, and the weighted sum of the results from the DLFs
in all the different locations represent the final results for the output variables. The first
method was developed by Rosenbleuth in 1975, and the final Rosenbleuth method proposed
in 1981 was able to handle both correlated and unsymmetric random variables. However,
the number of DLFs required with this method increase exponentially with the number of
probabilistic inputs, so for real-size power systems the computational burden (which can in
some cases even exceed the MC methods), make this method unattractive.

Since Rosenbleuth’s method, several different PEMs have been developed. In this thesis,
possible application on large power systems is emphasized, so only those methods that show
efficiency in large scale systems are considered further. In that department, [17] points out
two methods after a comparison between the main available techniques, namely Harr’s and
Hong’s method, first proposed in 1989 and 1998, respectively. They both show high efficiency
for large systems, but differ in what types of variables they are able to handle. Harr’s method
handles correlated variables, but not unsymmetric ones, Hong’s method works the other way
around. In this thesis, as in [17] and the dominant part of more recent literature [12][13][9],
Hong’s method is chosen for further investigation.

The main challenges with Hong’s method is now its efficiency (as for all PEMs), its
accuracy, and its inability to handle correlated variables. The computation burden (i.e.
efficiency) and accuracy are obviously closely related and depend on the type of simulation
scheme that is used (i.e. how many locations are produced and thus how many simulations
necessary). Several schemes are investigated in [17] and are further discussed in section 3.1
of this thesis.

As it was outlined in the review of analytical methods, the ability to handle correlated
variables is increasingly important when handling the modern power system. As for the
analytical methods, several proposals have been made as to how to work around the inde-
pendence requirement in the PEM. In [18] an improvement to the method later used in this
thesis, is made by the use of orthogonal transformation and Cholesky decomposition. This
method is adopted for the handling of correlation in this thesis, and is outlined in detail in
section 3.1.2. Studies on the use of this method show promising results, especially for systems
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where the uncertainty level is rather small [18]. An alternative to the orthogonal transfor-
mation is to adopt a discrete PEM as proposed in [1]. This method makes the PEM able
to directly handle correlated variables without the need of transformation to the orthogonal
space, but is in return rather computationally complex.

As for the CM, the raw output of the PEM will not necessarily be of the form that is
of interest. The PEM produces various order moments of the output variables, so also here
expansion series like the GC or CF series are often utilized. As is shown in section 2.4, the
cumulants of a random variable are directly related to the moments and vice versa, so the
discussion of extension series in section 2.1 equally applies to the PEM.

Based on this literature review, the following two sections will present some basics of
power flow and statistics that are considered to be necessary theoretical background for the
reader.

2.3 Basic power flow

Even in the probabilistic environment, most methods of power flow analysis still require
running a number of deterministic iterations at different stochastic locations. This section
will therefore present some relevant basics of deterministic power flow analysis, much inspired
by the presentation of the subject in [22].

In PFA, four quantites, namely the voltage magnitude |V |, voltage angle δ, and real
and reactive net power injections P and Q respectively, are associated with each bus in the
system. The buses are then classified into one of the following three categories:

1. The Slack bus is the bus chosen as reference for the voltage angle δ, and has specified
value for voltage magnitude |V |. The slack bus makes up for the differences in scheduled
loads and generated power in the network.

2. APV bus (also known as a generator bus) has specified values for active power injection
P and voltage magnitude |V |. The injected reactive power Q and bus voltage angle δ
are unknown variables to be determined in the analysis.

3. A PQ bus (also known as a load bus) has specified values for active and reactive
power injections P and Q, respectively. The bus voltage magnitude |V | and angle δ
are unknown variables to be determined.

Now let Y denote the admittance matrix describing the network typology and relating the
currents and voltages of all buses such that

I = Y ×V (2.1)
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where I and V are vectors of injected bus currents and bus voltages, respectively. Each
element Yij of Y can be written in terms of its magnitude and angle as |Yij|∠θij. Equivalently,
each entry Vj of V is expressed as |Vj|∠δj. From (2.1), the current injection at bus i may
then be written as a sum of these polar representations of Yij and Vj;

Ii =
n∑
j=1

|Yij||Vj|∠(θij + δj) (2.2)

Defining the complex power injection at bus i as Si = Pi − jQi and making use of the
relationship S = V ∗i Ii, we then achieve:

Pi − jQi = |Vi|∠(−δi)×
n∑
j=1

|Yij||Vj|∠(θij + δj) (2.3)

Separating into real and imaginary part produces the two equations much referred to as the
power flow equations, making the base for power flow analysis:

Pi =
n∑
j=1

|Vi||Vj||Yij| cos(θij − δi + δj) (2.4)

Qi = −
n∑
j=1

|Vi||Vj||Yij| sin(θij − δi + δj) (2.5)

Now consider a simple, three-bus system as the one in figure 2.1 to support the further
explanation of PFA. The specified values for each bus are indicated, making bus 1 the slack
bus, and buses 2 and 3 load and generator buses respectively.

1 2 3

|V1|, δ1 P2, Q2 P3, |V3|

Figure 2.1: A simple, three-bus system with specified parameters indicated for each bus

The power flow equations are a set of non-linear equations and several different solution
strategies exist for solving such equation systems simultaneously. The Newton-Raphson
method is the most widely used method for this purpose, and it has also proved to be the
most efficient and practical method for large power systems [22]. Based on this, the NR is
the only methodology that will be introduced and used for deterministic power flow in this
thesis.
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The NR is an iterative method which takes an initial estimate of the unknown variables
(hereafter state variables), expanding the power flow equations in Taylor’s series above this
estimate and obtaining a set of linear equations (refer to appendix A.4 for the linearization
procedure). This linear set is then solved, and a new estimate for the state variables is
obtained. This process is iterated until an acceptable value of mismatch between specified
and calculated values of powers is reached. The linear equation set may be formulated as[

∆P

∆Q

]
=
[
J
] [ ∆δ

∆|V|

]
⇔ ∆W = J∆X (2.6)

where J denotes the Jacobian matrix of the state variables. The left-hand side matrix is the
power mismatch vector ∆W and contains the difference between scheduled and calculated
powers, for the specified injected powers. ∆X represents the incremental change to be made
to the state variables before moving to the next iteration. In the case of the system in figure
2.1, we get ∆W = [∆P2 ∆P3 ∆Q2]

T . The right-hand side vector is the state vector
∆X, consisting of the unknown voltage magnitudes and powers. For figure 2.1, ∆V =

[∆δ2 ∆δ3 ∆|V2|]T .
The solution of the load flow problem is obtained after running a sufficient number of

iterations such that the mismatch ∆W is at an acceptable value after the last iteration. The
iterative procedure can be formulated as follows:

∆X(k) = J−1∆W (2.7)

X(k+1) = X(k) + ∆X(k) (2.8)

where k is the iteration step. Starting at iteration step 0, the incremental increase of the
state variables are found from eq. (2.7), then the state variables are updated with these values
according to eq. (2.8). When each entry of the power mismatch vector ∆W has reached a
value less than the maximum accepted error, the load flow calculation is concluded with the
state variables set to the value of the current iteration step.

2.4 Basic statistics

This section will present some basics of statistics that is considered necessary background
for the reader. The emphasis is laid on giving a general introduction of the most important
concepts relevant for this thesis. Some additional expressions for selected probability distri-
butions relevant for the types of random variables used in the case studies of chapter 4 can
be found in appendix A.1.
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2.4.1 Random variables

In the field of statistics, results of repeated experiments on selected individuals, are used
to make inferences of the behaviour of a large group of individuals. The smaller group of
randomly selected variables are often referred to as samples, and constitute the information
that is used together with fundamental laws of probability and statistical interference, to
draw conclusions about the larger group of individuals. This group is the collection of all
individuals from which the samples were taken, often referred to as a population or a sample
space. [26, 4]

It is often advantageous to provide a numerical description of the outcome of the repeated
experiments, and hence the concept of random variables is introduced. A random variable,
let it be denoted X, is actually rather a function, that assigns a real number X(s) to each
sample s in the sample space S. Dependent on the underlying sample space, the random
variables can further be either discrete or continuous [4]. For a discrete random variable,
the sample space consists of finite number of discrete values of which the random variable
can take. The sample space of a continuous random variable however, contains an infinite
number of values, represented by the number of points on a line segment. [26]

2.4.2 Distribution functions

Having defined a random variable X, the rule for describing the probability measures associ-
ated with X is called a probability distribution. There are different ways in which to describe
the probability distribution, one is by using the cumulative distribution function (CDF) [4]

FX(x) = P (X ≤ x) (2.9)

Where the uppercase X denotes the random variable and the corresponding lowercase x
denotes particular values in the range of X. P (·) represents the probability of an event. The
probability is by definition a value restricted between 0 and 1, and consequently so will the
CDF FX(x). The limits of 0 and 1 are approached by the CDF when the values of x approach
the extremas −∞ and ∞, respectively. [4]

The CDF can be defined for both discrete and continuous random variables. For the
discrete variable, the CDF will change its value in jumps corresponding to the discrete values
x that the random variable X can take. The CDF of a continuous variable is a continuous
function, which must be obtained from integration of some function able to describe P (X = x)

for all x.
This function is the probability density function (PDF) for the continuous random variable,

13



Chapter 2. Literature Review

and the probability mass function (PMF) for the discrete random variable. These functions
aim to describe the probability of X taking the value of x, i.e. P (X = x), and to gather all
these probabilities in a function. For the discrete variable, only able to take a finite number
of different values, the PMF will be a sequence of probabilities P (X = xi). For convenience,
this sequence will be denoted p(xi). The PMF of any discrete random variable will then
satisfy the following two simple properties [4]:

0 ≤ p(xi) ≤ 1, i = 1, 2, ..., n∑
i

p(xi) = 1
(2.10)

where n is the finite number of discrete values xi that the discrete random variable X is able
to take.

IfX is a continuous random variable, the probabilities are associated with intervals on the
real number line, rather than points as for the discrete variable. Consequently, the probability
of X taking the discrete value x is equal to zero [4]. So for the continuous variable, it makes
more sense to describe the probability of X taking a value within some interval (a, b). From
this reasoning, the probability density function fX(x) of the continuous random variable X
is defined as the function that, when being integrated from a to b, yields the probability of
X taking a value in the interval (a, b):

P (a < X ≤ b) =

∫ b

a

fX(x)dx (2.11)

From the definition of the PDF fX(x), it has to satisfy the following conditions: [4]

fX ≥ 0, for all x∫ ∞
−∞

fX(x)dx = 1
(2.12)

Some expressions for the CDF, PMF and PDF of distributions relevant for the case studies
in this thesis are provided in appendix A.1.

2.4.3 Characteristic measures of random variables

The distribution functions introduced in the previous section provide a complete description
of the probability distribution of the random variable X. Some times, however, it is neither
necessary nor desired to describe a random variable by its density function. In practical
engineering problems it is often more convenient to describe the random variable by some
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measures that give a better insight into the properties of the variable’s distribution that are
actually of interest.

The mean or expected value is one such measure, and as the name implies, the mean is
the value that the random variable is expected to take in the long run, i.e. when a sufficient
number of experiments are performed on a sample such that the difference from using different
samples is negligible. In a more mathematical sense, the mean is the weighted average of
the values of the random variable, where the "weights" are the probabilities. Note that by
using an average value, the mean does not necessarily need to be in the range of possible
values of X; this will often occur when the random variable is discrete. It will however give
an indication as to the location of the probability distribution or density, as the mean value
will be the value of X that has the highest probability of occurring [4].

Although the mean value gives some indication about the probability distribution of X,
it is alone not necessarily very descriptive, as it provides no information about the dispersion
of the distribution around the mean. Such information can be obtained from the variance
of the distribution. Denoting the mean of X by µX , the variance is defined as a weighted
average of (x − µX)2. The more likely an occurrence of x is, the larger weight is assigned
to it. Note that squaring this measure places the variance in a different dimension as the
random variable itself, and hence the variance is not always an easily intuitive measure of the
dispersion. The square root of the variance is defined as the standard deviation of X, often
denoted σX . Being a weighted sum of the quantity (x− µX), it is often more convenient to
use, at it has the same dimension at the random variable [4].

The mean and standard deviation will in many cases provide a sufficient amount of in-
formation to describe the randomness of a variable for a particular purpose. In this thesis,
quantitative results for output random variables in the case studies will be provided by means
of these two measures only. Much more information can be provided for a random variable
by for instance calculating its moments and cumulants, which will be introduced in the sub-
sequent section. However, these measures does not always have an intuitive meaning, and
to create such a meaning some manipulation has to be performed to the moments and cu-
mulants calculated directly from the variable’s probability distribution. Two such measures,
easily obtained from the moments of the distribution, are the skewness and kurtosis. The
skewness is a measure of the distribution’s asymmetry about the mean, where a nonzero
value indicates that there exists asymmetry. The kurtosis makes some indication as to the
shape of the tails of the distribution, i.e. when the values of x approach −∞ and ∞. [26]

In this thesis, the mean and standard deviation will be used to present quantitative results,
and the skewness and kurtosis will be used to obtain more information about the shape of the
distribution, in order to approximate the CDFs of the random variables obtained by PLF.
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2.4.4 Moments

The analytical and approximate methods presented in this thesis greatly makes use of the
concepts of statistical moments, thus this will be the main focus of the following introduction.
The moments of a probability distribution are important properties of the distribution, and
in many cases a certain number of moments are enough to give a sufficient description of
the distribution for that specific purpose. Let X be a continuous or discrete probabilistic
variable with its probability distribution described by f(x). Let further µ, σ and ν denote
the expected value, standard deviation and variation of X, respectively. The r-th order raw
moment of X is defined as:

µr = E[Xr] =


∫ ∞
−∞

xrf(x)dx, X continuous∑
X

xrp(x), X discrete
(2.13)

where the first-order raw moment equals the definition of the expected value or mean,
m1 = µ. We further define the r-th order central moment as the raw moment about the
mean:

mr = E[(x− µ)r] =


∫ ∞
−∞

(x− µ)rf(x)dx, X continuous∑
X

(x− µ)rp(x), X discrete
(2.14)

The second-order central moment is the coefficient of variance ofX,m2 = ν. The standard
deviation is then found from the second central moment as σ =

√
ν. An alternative, often

preferred way of determining the variance (and consequently also the standard deviation)
uses only the first two orders of the raw moments: [26]

ν = σ2 = E[X2]− µ2 (2.15)

Other important properties of a distribution can be achieved from the n-th order standard
central moment, defined as the ratio of central moment to the standard deviation,

λn =
mn

σn
(2.16)

By definition, the third an fourth-order standard central moment correspond to the distri-
bution’s skewness and kurtosis, respectively.
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2.4.5 Cumulants

Cumulants are another sort of property of a probabilistic distribution, posing as an alternative
to the moments. The moments and cumulants determine each other in the sense that two
distributions with the same set of moments will also have identical sets of cumulants, and
vice versa. The cumulants can be found from the moments, or directly from the cumulant
generated function CX . The latter is defined as the logarithm of the moment generating
function MX , and the cumulant of order n is found by evaluating the derivative of the CGF
at t = 0:

MX(t) = E[etX ] =

∫ ∞
−∞

etxf(x)dx (2.17)

CX(t) = ln(MX) (2.18)

κn =
d(n)KX(t)

dtn

∣∣∣∣
t=0

(2.19)

Alternatively, the cumulants can be found from the distribution’s moments from the following
relationship:

κ1 = m1

κn = mn −
n−1∑
i=1

(
n− 1

i

)
·mi · κn−i

(2.20)

In this thesis, the first six cumulants of random distributions will be used, and they are found
from equation (2.20) an expressed in terms of the first six raw moments below [28]:

κ1 = µ1

κ2 = µ1 − µ2

κ3 = µ3 − 3µ2µ3 − 2µ3
1

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1

κ5 = µ5 − 5µ4µ1 − 10µ3µ2 + 20µ3µ
2
1 + 3 + µ2

2µ1 − 60µ2µ
3
1 + 24µ5

1

κ6 = µ6 − 6µ5µ1 − 15µ4µ2 + 30µ4µ
2
1 − 10µ2

3 + 120µ3µ2µ1 − 120µ3µ
3
1

− 270µ2
2µ

2
1 + 360µ2µ

4
1 − 120µ6

1

(2.21)

The much used measures mean and standard deviation can easily be found directly from
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the two first cumulants by the relationships [28]

µ = κ1

σ =
√
κ2

(2.22)
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This chapter will present the theoretical background and derivation of the two PLF methods
that are studied thoroughly in this thesis: the Point estimate method (PEM) and the Cu-
mulant method (CM). Each method is first presented in its simplest form with uncorrelated
variables, then modified to include the possibility of having correlated input random vari-
ables. The output of each method is raw moments or cumulants for the random variables,
and some adjustment to this raw output is usually of interest. Common statistical properties
like mean and standard deviation are easily obtained from the moments and cumulants, as
shown in the following sections. If an approximation to the CDF of the random variable is
desired, this can be achieved by using an expansion series, the procedure for which is outlined
in section 3.3.

3.1 Point estimate method

The point estimate method will first be introduced in section 3.1.1 with the assumption of
uncorrelated input random variables. Then a modified version able to handle correlated input
variables is outlined in section 3.1.2.

3.1.1 Independent input random variables

The input to the PEM is a set of random variables, let these be denoted xi(i = 1, 2, ..., n),
where n is the total number of input random variables. Assume for now these to be inde-
pendent. In the scope of this thesis, xi can be a generation unit or a load.

As in the deterministic load flow described in section 2.3, the output variables are the
unknown state variables and the power flow in each line of the system. Unlike in the DLF,
these will be of random nature when the input variables are random. The PEM is an
approximate method, so based on knowledge of the random nature of the input variables, it
approximates the random behaviour of the output variables. This approximation is achieved
on the basis of a weighted sum of the results achieved by a number of DLFs run for strategic
states with regards to the input variables.

These strategic states are determined based on information about the random distribution
of the input variables. Based on certain criteria, each input variable xi will produce K points
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for which to run a DLF. Each of these K points is further made up of two parts; one is the
value, or the new location for the input variable in question, the other one is the corresponding
weight that the results from the DLF run at this location is to be given when all DLF results
are summed up to give the final solution.

Now let a probabilistic output Y be defined by Y = F (x1, x2, ..., xn) such that F is the
function expression relating the input and output variables. Following the above conceptual
introduction to the PEM, the random output Y is approximated by evaluating F (which
then represents a regular DLF) in K points for each of the n input variables (x1, ..., xn).

Several different schemes have been proposed for the PEM, depending on how many points
K are generated for each input variable. As the function F has to be evaluated K×n times,
the value of K is obviously strongly influencing the efficiency of the method. Reference [17]
investigates several different such schemes, finding that a 2× n scheme is not well suited for
systems of a scale of realistic power systems, while a 2 × n + 1 scheme overcomes many of
these issues by only requiring one additional evaluation of F . Thus, the latter strikes a good
balance between accuracy and efficiency when a large number of input variables is used, and
will be the scheme used further in this thesis. The following derivation and solution method
of the PEM is referred to as Hong’s method, and the derivation is much inspired by [14] and
[17].

Each point k of the total K points generated from input variable xi can be viewed as a
pair consisting of a location xi,k and a weight wi,k. Let the k-th location be defined by

xi,k = µi + ξi,kσi (3.1)

where µi and σi are the mean and standard deviation of xi, and ξi,k is the standard location,
yet to be determined.

Now let r denote the order of the moment of xi, such that the r-th standard central
moment is written as

λi,r =
mi,r

σri
(3.2)

where, in accordance with section 2.4.4, mi,r is the r-th order central moment of xi and σri
is the standard deviation of xi. The weight of the location (i, k) is then found by combining
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the expressions of (3.3)

K∑
k=1

wi,k =
1

n

K∑
k=1

wi,kξ
r
i,k = λi,r (r = 1, 2, ..., 2K − 1)

(3.3)

Once the location and weight for all input variables are found, the r-th order moment of the
output Y is found from

mY,r = E[Y r] =
n∑
i=1

K∑
k=1

wi,kY
r
i,k (3.4)

where Yi,k is the function expression evaluated at the mean of all variables except xi, whose
mean is replaced by location xi,k, i.e. Yi,k = F (µ1, µ2, ..., xi,k, ..., µn).

As previously mentioned, the 2n+ 1 scheme is chosen for the PEM in this thesis. In this
scheme, K = 3 because three locations are considered for each variable xi. However, the
third location xi,3 is set to be equal to the mean value of xi. To obtain this situation, it is
obvious from eq. (3.1) the third standard location, ξi,3 has to be zero. Using K = 3 and
ξi,3 = 0 in eq. (3.3), yields, for the standard locations and weights of xi:

ξi,k =
λi,3
2

+ (−1)3−k
√
λi,4 −

3

4
λ2i,3, (k = 1, 2)

ξi,3 = 0

(3.5)

wi,k =
(−1)3−k

ξi,k(ξi,1 − ξi,2)
, (k = 1, 2)

wi,3 =
1

n
− 1

λi,4 − λ2i,3

(3.6)

The location of the k-th point produced by xi is found from (3.1), but note that setting
ξi,3 = 0 results in xi,3 = µi for all values of i; in other words, for every xi, the third location is
fixed to its mean value. According to (3.4), F will then be evaluated at the same point once
for each input variable. Obviously, this is unnecessary, so instead F will be evaluated once
with all variables at their expected values µi(i = 1, ..., n), with the corresponding weight w0

equal to the sum of the third-location weights of all variables:

w0 =
∑
i

wi,3 = 1−
n∑
i=1

1

λi,4 − λ2i,3
(3.7)

The above result reduces the required number of evaluations of F to 2n + 1, even though
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three locations are used for each of the n input variables.
When all locations and weights are found from equations (3.1) and (3.5) - (3.6), respec-

tively, the random output variables can be formulated as the weighted sum of the DLF results.
The solution of the DLF at location k for variable xi is defined as

Yi,k = F (µ1, µ2, ..., xi,k, ..., µn) (3.8)

where Yi,k is the output variable of interest, which in the context of PLF can be a voltage
magnitude, a voltage angle or the active or reactive power flow in a line. The current output
Yi,k is now used to estimate the raw moments of the final output random variable Y :

E[Y j] =
∑
i,k

wi,k(Yi,k)
j (3.9)

where E represents the expected value, such that E[Y j] is the j-th order raw moment of Y .
The statistical characteristics of Y can be obtained from its raw moments of various

order according to equations (2.13) - (2.16). In many cases the expected value (equal to
the first raw moment) and the standard deviation (equal to the second central moment) will
provide sufficient amount of information about the probability distribution for that specific
purpose. Calculating even higher-order moments will provide more information and gives a
more correct and detailed image of the distribution.

Implementation procedure

A qualitative description of the computational procedure is presented here. A flow chart of
the procedure is also included in fig. 3.1.

1. Quantify the statistical properties of the input random variables that are necessary
to calculate the locations and weights. Let the expected values be represented by the
vector

µ = [µ1, ..., µn]T (3.10)

and equivalently the standard deviation, skewness and kurtosis by the vectors σ, λ3

and λ4, respectively.

2. By use of the available information in the above four vectors, calculate for all variables
xi

(a) The standard locations ξi,k according to (3.5)

(b) The weights wi,k and w0 according to (3.6)
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3.1 Point estimate method

(c) The locations xi,k according to (3.1)

Save the locations and weights to appropriate vectors.

3. For each value of i and k, replace the value of xi with location xi,k and run a DLF.
For each DLF, update the raw moments of the random output variables Y of interest,
according to equation (3.9).

4. Run one DLF with all variables at their expected values. Update the raw moments of
each Y according to equation (3.9), replacing wi,j with w0.

5. If an approximation of the PDF and/or CDF of the output random variables is desirable,
make use of an extension series to accomplish this. Extension series are discussed in
section 3.3.

Initialize:
i = 1, E[Y r] = 0

Compute for all k:
ξi,k, wi,k

k = 1

Compute location xi,k:
xi,k = µi + ξi,kσi

Run deterministic load flow by NR
method with µi replaced by xi,k:
Yi,k = F (µ1, . . . , xi,k, . . . , µn)

Update raw moments of orders r of interest:
E[Y r] = E[Y r] + wi,k(Yi,k)

r

k = K?

i = n?

Extract statistical data of interest from the
moments of the objective function Z.

k = k+1

i = i+ 1

no

yes

no

yes

Figure 3.1: Flow chart of the point estimate method for independent input random variables
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3.1.2 Correlated input random variables

Before starting off the derivation, some assumptions regarding the correlation schemes in the
system are made in order to keep the derivation comprehensive and relevant for the case
studies in this thesis. In principle, correlation can exist between power injections at the
same bus, and/or between power injections at different buses. Additionally, correlation can
exist between generation units and loads. In this thesis, only correlation of power injections
between different buses is studied, so this assumption is made throughout the whole report.
Also, generation units and loads are always assumed independent of each other, i.e. corre-
lation can only exist between a number of loads in the system and/or between a number of
generation units. Thus, if there exists correlation between both loads and generation units,
there are two sets of correlated variables, each set described by a specific correlation matrix.
The following derivations of modified PEM and eventually CM, will address one such set,
i.e. the correlated random variables are assumed to be either loads or generation units. The
other set is treated equivalently in a separate process.

Hong’s method as outlined in section 3.1.1 requires the input random variables to be
independent of each other. When correlation exists, some modification needs to be done to
the methodology for it to give an accurate approximation of the randomness of the output
variables. In this thesis, an analytical approach based on orthogonal transformation of the
correlated variables [18] is chosen for handling correlated variables in the PEM.

By orthogonal transformation, the set of correlated input random variables are converted
into a corresponding set of independent variables. The points in which to run DLFs are
calculated from equations (3.1) and (3.5) - (3.6), but using the statistical properties of the
independent variables rather than the original correlated ones. Once all these points are
properly defined, they are transformed back into the original space before the DLFs are run
in each point.

Let x be a vector of correlated random input variables such that

x = [x1, ..., xm]T , m ≤ n (3.11)

where T denotes the transpose of a vector,m is the number of correlated random variables and
n is the total number of input random variables. As in the regular PEM, the expected values,
standard deviations, skewness and kurtosis of the now correlated input random variables may
be represented by the vectors µx, σx, λ3,x and λ4,x, respectively.

The correlation between the input variables is described by a covariance-matrix Cx (refer
to appendix A.2). By definition, this matrix is symmetric, and thus there always exists a
matrix B through which the set x of correlated variables can be orthogonally transformed
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3.1 Point estimate method

into a set z of independent variables:

z = B · x (3.12)

Decomposing Cx into a lower and an upper triangular matrix by Cholesky decomposition,
yields

Cx = LLT (3.13)

Now the inverse of the lower triangular matrix L is exactly the matrix B that is needed for
the orthogonal transformation, i.e.

B = L−1 (3.14)

The covariance matrix Cz of the new set of independent variables is equal to the identity
matrix I. Please refer to appendix A.3 for an introduction to the orthogonal transformation
and derivation of eqs. (3.12)–(3.14).

Now, to find the locations and weights of the independent variables in accordance with
equations (3.1) and (3.5) - (3.6), µz, σz, λ3,z and λ4,z, i.e. the expected values, standard
deviations, skewness and kurtosis of the independent variables, z needs to be determined.
Under the assumption that the crossed-order moments of an order higher than two are equal
to zero, the coefficients of skewness and kurtosis of the correlated variables can be represented
in matrices such that the values of λ3,x and λ4,x are located on the diagonal of an elsewhere
zero matrix:

λ3,x = diag(λ3,x1 , ..., λ3,xm)

λ4,x = diag(λ4,x1 , ..., λ4,xm)
(3.15)

Then, according to [18], all the necessary statistical properties of the transformed, indepen-
dent variables can be found from the following formulas:

µz = Bµx (3.16)

λ3,zi =
m∑
r=1

B3
irλ3,xrσ

3
xr (3.17)

λ4,zi =
m∑
r=1

B4
irλ4,xrσ

4
xr (3.18)

where µz is a vector of the expected values of the transformed variables, λ3,zi and λ4,zi are
the skewness and kurtosis of variable zi, respectively. Recall that the covariance matrix Cz
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is the identity matrix and according to appendix A.2, the standard deviation of zi is then

σzi =
√

Cz(i, i) = 1 (3.19)

When locations and weights have been generated from the transformed variables, 2×m+ 1

points are created in the independent space, each point having one variable zi replaced by
location zi,k and the remaining variables of z at their expected values given by µz. Then
these points are transformed back into the original space by the inverse of the orthogonal
transformation from equation 3.12 before DLFs are run in the resulting transformed points.

Implementation procedure - correlated variables

1. Given a correlation coefficient matrix Cρ, create the covariance matrix Cx according
to the expressions provided in appendix A.2. Calculate matrices L and B by equations
(3.13) and (3.14), respectively.

2. Obtain for the transformed variables µz, σz, λ3,z and λ4,z from eqs. (3.16)–(3.19). If
m < n, calculate these properties also for the uncorrelated input random variables
(xm+1, ..., xn).

3. For all variables, including the transformed variables zi(i = 1, ...,m) and the uncorre-
lated variables xi(i 6= 1, ...,m), calculate standard locations ξi,k, weights wi,k and w0

and locations zi,k and xi,k, respectively, according to eqs. (3.1), (3.5) and (3.6).

4. For the transformed variables, create 2×m+ 1 points on the form (µz1 , ..., zi,k, ..., µzm)

and store the points in appropriate vectors.

5. Transform each point in the independent space defined above, back to the original space
by applying the inverse orthogonal transformation, x = B−1z

6. For i = 1, ...,m, run 2×m DLFs in each of the points defined in point 5 above, all the
while updating random output variable Y with wi,j according to eq. (3.9). For i > m,
run DLFs according to the procedure outlined in section 3.1.1, continuing to update Y .

7. Run one DLF for all variables at their expected values, updating Y with w0. Note that
the expected values for the correlated variables were obtained in point 5.

8. If an approximation of the PDF and/or CDF of the output random variables is desirable,
make use of an extension series to accomplish this. Extension series are discussed in
section 3.3.
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3.1 Point estimate method

A flow chart of the point estimate method as it was outlined in this section, is included in
figure 3.2.

Initialize:
i = 1, E[Y j] = 0, k = 1

Correlation
exists?

Compute for all (i, k):
ξi,k, wi,k, xi,k

Run DLF with µi replaced by xi,k:
Yi,k = F (µ1, . . . , xi,k, . . . , µn)

Update raw moments of orders r of
interest: E[Y j] = E[Y j] + wi,k(Yi,k)

j

k = K?

i = n?

Extract statistical data of interest
from the moments of the output

random variable Y .

k = k+1

i = i+ 1

k = 1

Transform variables, obtain
µz, σz, λ3,z λ4,z

Compute for all (i, k):
ξi,k, wi,k, zi,k

Create 2m+ 1 points on the form
(µz1 , ..., zi,k, ...µzm)

Transform 2m+ 1 points
back to original space

Run DLF in point (i, k):
Yi,k = F (i, k)

Update raw moments of orders j of
interest: E[Y j] = E[Y j] + wi,k(Yi,k)

j

k = K?i = m? k = k+1

i = i+ 1

k = 1

no

yes

no

no yes

yes

yes

yes no

no

Figure 3.2: Flow chart of the point estimate method, including the option of correlated variables.
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3.2 Cumulant method

Equivalently as for the PEM, the CM is introduced in section 3.2.1 assuming independent
input random variables, then in section 3.2.2 the method is modified to accept correlated
input variables.

3.2.1 Independent input random variables

The CM is based on linearization of the power flow equations. Recall that the linearized
power flow equations are also what make up the basis for each iterative step of the NR
methodology of solving the deterministic load flow problem. With reference to section 2.3,
the linearized power flow equations can therefore be expressed as

∆X = S∆W (3.20)

where S = J−1. In the deterministic load flow described in section 2.3, ∆X represented the
incremental change in the state variables necessary to reduce the power mismatches of ∆W

before the next iteration step. In this context, ∆X will be interpreted in a slightly different
way. The following derivation of the CM is mainly inspired by [28].

Let X still represent the state (output) variables and W the input variables (known power
injections). However, the power injections at n buses are now random variables, let them
be denoted ui(i = 1, 2, .., n) and initially assumed independent of each other. Thus, some
(or all) entries of W are now random variables and consequently the output variables X are
random as well.

Now let W0 denote the input variable vector in the case that all random input variables
are located at their respective mean values. Assume that there exists a vector X0 which is
the solution to the DLF problem with W = W0, thus representing the mean of the random
output variables. Further, the randomness of the input variables W can be modelled as
disturbances ∆W around their respective means W0. According to eq. (3.20), ∆X represents
the change in the output variables due to this disturbance ∆W in the input variables. In
other words, ∆X describes the randomness of the output variables due to the randomness
of the input variables:

∆X = S0∆W (3.21)

where S0 is the sensitivity matrix relating X0 and W0, i.e. the inverse of the Jacobian matrix
corresponding to the solution of the DLF problem with W = W0.

The above paragraph summarizes the general idea on which the CM is built, and the
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3.2 Cumulant method

linearization requirement that was briefly discussed in section 2.1 becomes evident at this
point. The randomness of the output variables is calculated using a sensitivity matrix S0

that is actually a linear approximation to the original load flow equations at the mean of
each random input variable. Consequently, the relationship in eq. (3.21) is only valid for
disturbances, i.e. random variations, relatively close to the mean. This fact can explain the
generally poor performance of the CM in its most basic form, if random variables with large
variation and/or dominant points are far from the mean. Thus, caution should be taken
regarding the random distribution of the input variables when the CM is used.

When performing load flow analysis, the active and reactive power flows in the branches
of the system are usually of interest. Hence an equivalent relationship as for the voltage
magnitudes and angles in eq. (3.21) is of interest for the line power flows as well. Equivalently
as for the bus power injections, the line power flows can be described by the following set of
nonlinear equations:

Pij = ViVj(Gijcosθij +Bijsinθij)− tijGijBijV
2
i (3.22)

Qij = ViVj(Gijsinθij −Bijcosθij) + (tijBij − bij0)V 2
i (3.23)

where t and b0 represent the off-nominal transformer tap value and ground susceptance,
respectively. Notice that these equations can be expressed as functions of the state variables
X, so let the active and reactive power flows in each line of the system be represented by the
vector Z = g(X). Linearizing the line power flow equations around the mean of the state
variables X0 yields (refer to appendix A.4 for the derivation of eq. (3.24)):

∆Z = D0∆X (3.24)

where D0 is the sensitivity matrix relating a random variation in the state variables X to the
corresponding change in the power flows Z. Because ∆X in this sense are deviations away
from the mean X0, D0 is calculated with respect to these mean values:

D0 =
∂Z

∂X

∣∣∣∣
X=X0

(3.25)

In order to get a direct relation between the output variables that are now the line power
flows Z, and the input random variables W, eq. (3.20) is substituted into eq. (3.24), yielding

∆Z = T0∆W (3.26)

with T0 = D0S0. Now finally, the following set of linear equations describes the random
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variation of state variables and line power flows respectively, due to random variation in the
bus power injections:

∆X = S0∆W (3.27)

∆Z = T0∆W (3.28)

The above set of equations forms the foundation of the CM, but the way in which to
describe the randomness ∆W of the input variabels is yet to be introduced. The distribu-
tion of a random variable can be quantified in different ways, depending on the amount of
information available and the necessary accuracy of the description. The 2n + 1 scheme of
the PEM, as it was outlined in section 3.1, represents each random variable by four quantities
obtained from its first four raw moments. In the CM, cumulants of the distribution of each
random variable are used to quantify the randomness of that variable. The reason for this
choice is related to some important properties of cumulants that will be explained shortly.
Cumulants were introduced in section 2.4.5 and are directly related to the moments of a
distribution. Properties like mean, standard deviation, skewness and kurtosis can thus easily
be obtained from this relation.

Now to the properties of the cumulants that make the CM able to perform the calcu-
lation of the randomness of the output variables in a single operation. The mathematical
relationships are summarized below: [28, 14]

1. Let ut be a random variable that is a sum of two independent random variables u1
and u2. Let the r-th order cumulants of the latter two be given by K

(r)
u1 and K

(r)
u2

(r = 1, 2, ..., k). Then the r-th order cumulant of ut is

K(r)
ut = K(r)

u1
+K(r)

u2
(3.29)

The above relationship can be generalized to account for a situation where ut is a sum
of n independent random variables, such that its r-th order cumulant is given by

K(r)
ut =

n∑
i=1

K(r)
ui

(3.30)

2. Let h = au + b (a 6= 0) where u is a random variable. Then the r-th order cumulant
of h is

K
(r)
h =

aK
(r)
u + b (r = 1)

arK
(r)
u (r ≥ 2)

(3.31)
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Recall at this point that the random variables ui(i = 1, 2, ..., n) that constitute the input
to the CM are net bus power injections. The net active injection to bus i is the difference
between generated power PGi and load demand power PDi at that bus; similarly for the
reactive injection. If both the generation and load are random variables, the active power
injection Pi is the sum of the two random variables PGi and PDi . When cumulants are used
to quantify the randomness of these variables, property 1 above simplifies this process to a
simple summation of the various-order cumulants of PGi and PDi . Generalizing this case to
include active and reactive power injections at all buses, gathered in the input vector ∆W

yields:
∆W(r) = ∆Wg

(r) + ∆Wd
(r) (3.32)

where ∆W(r) contains the r-th order cumulant of all entries of the input (net power injection)
vector W. Equivalently, the r-th order cumulants of the corresponding generation and load
demands are represented in ∆Wg

(r) and ∆Wd
(r), respectively.

Now that the cumulants of the input variables have been found, property 2 above can
be used to obtain an expression for the cumulants of the output variables. Recall that the
relations between the input variables and the two sets of output variables are described by
eqs. (3.27) and (3.28), respectively. Looking closely at these equations, each output variable
is in fact a linear sum of all random input variables. Thus, combining properties 1 and
2 above, the following relationship between the r-th order cumulants of input and output
variables is valid: [28]

∆X(r) = S0
r∆W(r)

∆Z(r) = T0
r∆W(r)

(3.33)

where S0
r and T0

r are obtained by element-wise operations, i.e. any element (i, j) of S0
r is

equal to
Sr0(i, j) = (S0(i, j))

r (3.34)

and correspondingly for T0
r.

The CM is concluded with eq. (3.33) as the final output, which is the cumulants of state
variables and line flow, are obtained. Statistical data like standard deviations of these output
variables can easily be obtained by taking the square root of the second cumulant (according
to section 2.4.5). The expected values are already found in X0 and Z0, respectively. Knowl-
edge of higher-order cumulants is necessary in order to obtain an even better image of the
probability distribution. In those cases extension series like the Gram-Charlier series may be
used to obtain an approximation to the distribution.
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Implementation procedure

A qualitative description of the computational procedure is presented below. Refer to sec-
tion 4.1.3 for a more detailed step-by-step demonstration.

1. Obtain the expected values X0 and Z0 of the output variables by running one DLF
with all random variables at their expected values. Save the last version of the Jacobian
matrix J0 and obtain S0 by inverting J0.

2. Compute the cumulants of the random input variables ui(i = 1, 2, ..., n), ui being
the active or reactive part of the power generation or load demand at bus i. The
cumulants can be found directly from the random variable’s raw moments, as described
in section 2.4.5.

3. Compute the cumulants of the net power injections according to eq. (3.32). Save the
cumulants of all input variables to a matrix with increasing cumulant order along the
columns.

4. Obtain sensitivity matrix D0 according to eq. (3.25). In this thesis, ready-made soft-
ware in MATPOWER was used to do this calculation.

5. Calculate the cumulants of the output variables according to eq. (3.33), starting with the
second cumulant and repeating the matrix operation for as many orders of cumulants
that was calculated for the input variables in step 2. The first-order cumulants of the
output variables are equal to their respective mean values, which were obtained in step
1.

6. If an approximation of the PDF and/or CDF of the output variables is desirable, make
use of an extension series to obtain this.

A flow chart of the cumulant method as it was outlined in this section, is included in
figure 3.3 (inspired by [28]).
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Set value of all random variables to
respective mean values

Compute load flow using NR method.
Obtain X0, Z0, J0 and S0

Compute cumulants of the desired number of orders of
generation and load power at each bus, according to (2.21)

Solve for different order cumulants of midmatch vector ∆W:
∆W(r) = ∆Wg

(r) −∆Wd
(r)

Solve for different order cumulants of state variables ∆X:
∆X(r) = S0

(r)∆W(r)

Obtain D0 and T0 from (3.25) and (3.26). Solve for different
order cumulants of branch flows ∆Z:

∆Z(r) = T0
(r)∆W(r)

Extract statistical data of interest for state variables and
branch flows, from their respective cumulants

Figure 3.3: Flow chart of the CM for independent input random variables

3.2.2 Correlated input random variables

The methodology outlined in section 3.2 requires independent input variables, and in the
following section some enhancements will be introduced to make the CM able to handle cor-
related variables. This enhanced CM was first introduced in [7] and the following derivation
is much inspired by this. Note that this derivation is for the most general case, i.e. it in-
cludes the possibility of having some input variables that are not random, and also correlation
between only some of the random variables.

Let W = [w1, ..., wl] be the power injections at each bus in the system, l being the
total number of buses. Each power injection consists of a generation and load part, i.e.
wi = wGi − wLi(i = 1, ..., l).

Now let ui(i = 1, ..., n) denote the random input variables, n being the total number of
random variables and ui representing either a generation unit or a load. Let further m of
these random variables be correlated, such that

u = [u1, ..., um], m ≤ n (3.35)

denote the the correlated random variables.
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The idea of the modified methodology is to model the correlated variables as a function of
several independent ones. The independent variables are obtained through orthogonal trans-
formation that will be explained shortly. In the calculation of the cumulants of the output
variables, the independent variables are used together with modified sensitivity matrices S0

and T0.
The process of orthogonal transformation in this modified CM is similar to the methodol-

ogy used to transform the correlated variables in the modified PM described in section 3.1.2,
as it also done on the basis of decomposing a correlation matrix by Cholesky’s decomposition.
However, in this section, the correlation coefficient matrix Cu (as opposed to the covariance
matrix utilized in the modified PEM) is decomposed by Cholesky decomposition, yielding

Cu = LLT (3.36)

where L is an inferior (lower) triangular matrix and T denotes the transpose of a matrix. Cu

is a symmetric matrix, so by definition there always exist a matrix B that will transform the
correlated variables of u to a vector of independent variables v:

v = Bu (3.37)

The transformation matrix B is, according to appendix A.3, equal the the inverse of the
inferior matrix of the decomposed correlation matrix:

B = L−1 (3.38)

Now the orthogonal transformation can also be interpreted in the way that the vector of cor-
related random variables u is modelled as a function of several independent random variables

u = B−1v = Lv (3.39)

Again, refer to appendix A.3 for a more detailed derivation of the above relations. The
orthogonal transformation is the basis of the methodology of the modified CM, and up until
this step, the modifications to the CM are equivalent to the modifications done to the PEM
in section 3.1.2. In section 3.1.2, the necessary statistical properties of the transformed input
variables were calculated analytically. In the case of the CM however, the statistical prop-
erties, that is the cumulants, of the transformed input variables will be calculated from a
large selection of random numbers generated from the probability distribution of each vari-
able. This methodology avoids complex analytical cumulant calculation and can in principle
handle the cumulant calculation of input variables with complex distribution functions.

34



3.2 Cumulant method

The general idea is to first obtain random numbers of each of the correlated variables.
Then these numbers are transformed by the orthogonal transformation outlined above, to ob-
tain random numbers of the corresponding independent variables. Raw moments and finally
cumulants of the independent variables are then easily obtained from the random numbers
representing the distribution of each random independent variable. The transformed, in-
dependent variables are used directly as input variables when the cumulants of the output
variables are calculated, together with modified sensitivity matrices. The final, modified CM
equations will be presented in their entirety by the end of this section. First, the methodology
for generating random numbers will be presented.

The methodology for generation of random numbers used in this modified CM was first
proposed by [18], then adopted to the CM in [7]. In [18] the obtained random numbers are
used as input to MC simulation, so the methodology is referred to as an MC technique in
[7]. The random numbers of the correlated variables are generated by first making use of a
transformation methodology known as the Nataf transformation [15]. The Nataf transfor-
mation transforms a set of correlated random variables to a corresponding set of correlated
standard normal variables 1. Random numbers are then generated from each of these stan-
dard normal distributions before being transformed back to the original space. The purpose
of performing the transformation to the standard normal space is to be able to handle any
type of probability distribution in the input variables; the random numbers are generated
from the simple standard normal distribution in any case. This makes this modified CM a
very versatile methodology, as it is able to handle correlation between variables described by
a large variety of different probability distributions. A possible drawback of the methodology
is that perfect knowledge of the CDFs of the input variables is required. This can sometimes
pose a challenge when the data on which the probabilistic modelling is based, is limited.
From this qualitative introduction follows a more detailed step-by-step description of the
MC technique. The derivation is mainly inspired by [7, 18].

1. For the correlated random variables u with correlation matrix Cu, let F denote a vector
containing the marginal CDFs of the variables in u. Further, let z = [z1, ..., zm] denote
the set of correlated standard normal variables obtained by marginal transformation of
u [18]:

z = Φ−1(F(u)) (3.40)

where Φ contains the marginal CDFs of z, i.e. for each variable the CDF of the
standard normal distribution. As will turn out obvious from the successive steps, it is
not necessary to actually carry out the calculation of eq. (3.40), it is merely included

1The standard normal distribution is a normal distribution with µ = 0 and σ = 1
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here to illustrate the relation between u and z.

2. Start with determining the correlation matrix Cz. It has the same physical interpreta-
tion as any other correlation matrix, so the elements along the diagonal are all equal to
1. The off-diagonal elements turn out to be related to the corresponding elements of the
original correlation matrix, Cu. Let, in accordance with appendix A.2, the elements of
Cu and Cz be denoted ρuij and ρzij , respectively. Then the following relationship can
be established [15]:

ρzij = Hρuij (3.41)

where H is a function that is dependent on ρuij and the marginal distributions of ui
and uj. Reference [15] provides expressions for calculating H for a number of different
probability distributions associated with ui and uj. In the special case that the two
variables in question are normal distributed, which is the only case relevant for the case
studies on the CM in this thesis, the value of H is equal to unity.

3. Once the elements of Cz have been obtained, the process of orthogonal transformation
as outlined in the beginning of this section is again made use of. In this case, it will
be used to transform a set of samples Es generated from a vector e of independent
standard normal variables, into the corresponding set of samples Zs from the vector
z of correlated standard normal variables.2 The relationship between correlated and
independent variables in the orthogonal transformation was described by eq. (3.39),
and can be adopted to also account for this case, yielding:

Zs = LzEs (3.42)

where Lz is an inferior, triangular matrix obtained by Cholesky decomposition of the
correlation matrix Cz of the correlated standard normal variables z. At this point,
make note of the fact that the actual generation of random numbers is done for a set
of independent standard normal variables. Considering a set of m variables, m random
samples, each of the desired sample size N , are generated independently from the stan-
dard normal distribution to obtain the matrix Es. This type of sampling is a common
function that is included in most available software for statistical analysis [18], includ-
ing MATLAB that was used for implementation in this thesis. By using expressions
for H provided in [15], the correlation matrix Cz and hence the transformation matrix

2The subscript s will in the context of this section indicate that the matrix in question contains random
numbers (samples) generated from each of the random variables represented in the matrix. As an example,
if N samples were to be generated for m random variables, these would be represented in an m×N matrix,
denoted with subscript s.
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3.2 Cumulant method

Lz can be obtained for input variables characterized by a large selection of probability
distributions.

4. Once the random numbers Zs of correlated standard normal variables are found, ran-
dom numbers Us of the original correlated variables u, can be obtained by marginal
transformation of Zs. Recall that the CDFs of u and z were given by F and Φ, and
that the relation between the two sets of variables were given by eq. (3.40). Then, using
the inverse of the marginal transformation of eq. (3.40), with the random numbers of
the standard normal variables as input to Φ, yields:

Us = F−1(Φ(Zs)) (3.43)

Us is now a m × N matrix containing N random numbers for each of the total of m
correlated random variables. If a MC method was used to perform the PLF, these
numbers would constitute the points in which to run the simulations [18]. In the
modified CM however, these samples will be used to finally obtain cumulants of an
independent set of random variables.

Orthogonal transformation and cumulant calculation

Given a matrix Us of random numbers of the correlated input variables u, the transformation
from correlated to independent variables outlined in the beginning of this section can finally
be performed. The goal of this transformation is to obtain a corresponding matrix Vs

of random numbers representing the probability distribution of the independent variables
v = [v1, ..., vm]. The orthogonal transformation from u to v is described by eq. (3.37) and
repeated below:

v = Bu (3.44)

In Vs and Us, each column contains one random number of each of the corresponding random
variables v and u, respectively. Adopting eq. (3.44) to this situation, each column of Vs is
obtained by performing the orthogonal transformation on the corresponding column of Us.
Thus, N simple matrix calculations are performed on each of the columns in Us, to obtain
the final matrix Vs of random numbers of the independent variables.

Each row i of Vs can now be interpreted as a discrete distribution describing the random-
ness of independent random variable vi. Thus, the cumulants of vi can easily be obtained by
the expressions provided in section 2.4. Let the r-th order cumulant of the elements of v be
denoted v(r).

At this point, recall that the input variables to the CM are various-order cumulants of the
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Chapter 3. General methodology

net power injections at each bus, that is the difference between generation and demand. In
accordance with the assumptions made in the introduction of section 3.1.2, u and v represent
a set of variables that are all either generation units or loads, and they are all located at
different buses. Assume for now that u (and consequently also v) are load variables and
denote their elements uLi(i = 1, ...,m) and vLi(i = 1, ..,m), respectively. Assume that no
correlation exist between the generating units in the system, but that the generating units
are considered random variables, denoted uGi . Then, the r-th order cumulant of the net
power injection at bus i in the system is given by:

∆w
(r)
i =

{
u
(r)
Gi

+ v
(r)
Li
, i = 1, ...,m

u
(r)
Gi

+ u
(r)
Li
, i = m, ..., n

(3.45)

where the first case refers to buses at which a correlated load is located, and the second
case to the buses with random variables that are not correlated to any other variables. Note
that in both cases, the random variables involved in the subtraction are independent of each
other, thus the r-th order cumulants can be added or subtracted (refer to section 3.2.1).
When ∆w

(r)
i is calculated for all values of i, the vector of r-th order cumulants of all bus

power injections is represented by ∆W(r), as before. Note that the power injections at all
buses are included in W, not only the ones corresponding to the state variables, as is the
case for the deterministic NR load flow calculation and also the original CM of section 3.2.1.
This is done in order to simplify the calculation of the modified sensitivity matrices, and will
be explained further in the next subsection.

If there now was correlation also between c generating units at different buses, the proce-
dure that has been outlined in this section for handling correlation would have to be repeated
separately for these variables to finally obtain a set of independent variables. Then, at the
buses where these units are located, the correlated generation unit uGi in eq. (3.45) would
be replaced by its corresponding independent variable vGi .

Modified CM equations

As for the case of uncorrelated variables outlined in section 3.2.1, the first step of this modified
CM is also to run deterministic DLF for all variables located at their expected values. From
this step, X0, Z0, J0, S0 and G0 are obtained, exactly as before.

However, in order to be able to use the transformed, independent variables v directly in
the input variables, some modifications need be made to the sensitivity matrices S0 and T0

that are used in the calculation of the cumulants of the output variables. Let the modified
matrices be denoted S1 and T1. At this point an important note should be made: in the
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3.2 Cumulant method

modified CM as proposed in [7], the voltage magnitudes and angles at all buses in the system
are included in the output vector X, just as it was earlier noted that all net power injections
are included in the input vector W. This is simply an alternative way of doing the calculations
(instead of including only the state variables in X), but it requires the sensitivity matrices to
be modified accordingly. The sensitivity matrix S0 describes the sensitivities of the cumulants
of voltage magnitudes and angles to changes in the cumulants of power injections. Including
all voltage magnitudes and angles in X instead of just the state variables, corresponds to
inserting zeros into the rows and columns corresponding to the non-state variables. Similar
steps are carried out for G0, to be able to produce the correct matrix T0.3

Once the full sensitivity matrices have been obtained, the following expressions can be
used to obtain the elements of the modified sensitivity matrices S0 and T0:[7]

sij1 =
m∑
k=j

sik0lkm, tij1 =
m∑
k=j

tik0lkm j = 1, ...,m

sij1 = sij0, tij1 = tij0, j 6= 1, ...,m

(3.46)

where sij0, sij1, tij0 and tij1 are elements of S0, S1, T0 and T1, respectively. lkm is element
(k,m) of the triangular matrix L obtained by Cholesky decomposition of the correlation
matrix.

Eventually, the final equations of the modified CM can be formulated. Having obtained
the elements of the r-th order input variable vector ∆W by eq. (3.45) and the full sensitivity
matrices by eq. (3.46), the r-th order cumulants of the output variables are finally obtained
by [7]:

∆X(r) = S1
r∆W(r)

∆Z(r) = T1
r∆W(r)

(3.47)

where S1
r and T1

r are obtained by element-wise operations, i.e. any element (i, j) of S1
r is

equal to
Sr1(i, j) = (S1(i, j))

r (3.48)

3The use of the full sensitivity matrices (and including all voltage magnitude, angles and input power
injections in the equations) is not explicitly stated in [7], but after some investigation of the equations this
conclusion is drawn for the purpose of this thesis. This conclusion is also supported by [28], where the basic
CM (without correlated variables) is described. Here, the sizes of the sensitivity matrices are explicitly given
as 2n×2n and 2b×2n for S0 and T0 respectively, b being the number of branches in the system. Using the full
sensitivity matrices as described above and including all variables in the CM equations for the uncorrelated
case as described in section 3.2.1, will produce the exact same results as using the reduced sensitivity matrices.
Both these cases have been implemented for the uncorrelated case, and can be investigated in the available
Matlab codes.
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Chapter 3. General methodology

and correspondingly for T1
r.

Implementation procedure - modified CM

A qualitative description of the computational procedure is presented below. Refer to sec-
tion 4.1.3 for a more detailed step-by-step demonstration.

1. Obtain the expected values X0, Z0, J0 and S0 from DLF by the NR method, with all
random variables located at their respective mean values. Obtain D0 by eq. (3.25).
Expand S0 and D0 to full sensitivity matrices.

2. Identify the correlation coefficient matrix Cu of the correlated variables. Calculate the
correlation matrix Cz of the correlated standard normal variables by eq. (3.41). Obtain
Lz by Cholesky decomposition of Cz.

3. Generate random numbers Es of m independent standard normal variables. Obtain
random numbers Zs of correlated standard normal variables by the orthogonal trans-
formation in eq. (3.42).

4. Obtain random numbers Us of the original, correlated random variables u by the
marginal transformation in eq. (3.43).

5. Obtain random numbers Vs of independent variables v by the orthogonal transforma-
tion in eq. (3.44). Compute the cumulants of v from the random numbers representing
each vi in Vs.

6. Compute the r-th order cumulant ∆w
(r)
i of the net power injection wi at bus i by

eq. (3.45). Represent ∆w
(r)
i for all buses i = 1, ..., n in ∆W(r).

7. Obtain the modified sensitivity matrices S1 and T1 by eq. (3.46).

8. Calculate the higher-order cumulants of the output variables according to eq. (3.47).
The first-order cumulants of the output variables are equal to their respective mean
values obtained in step 1.

9. If an approximation of the PDF and/or CDF of the output variables is desirable, make
use of an extension series to obtain this.
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3.3 Gram-Charlier expansion

3.3 Gram-Charlier expansion

The Gram-Charlier expansion is chosen in this thesis to perform the approximation of the
CDFs of the output random variables.

Let u be a random variable, which in the context of this thesis will be a voltage magnitude,
voltage angle, active or reactive power flow. Denote the mean and standard deviation of u by
µ and σ, respectively. As described in appendix A.1.1, u can be expressed as a standardized
variable z, by denoting

z =
u− µ
σ

(3.49)

Let the CDF and PDF of the standardized variable be denoted F (x) and f(x), respectively.
Further let the CDF and PDF of the standard normal distribution (refer to appendix A.1.1)
be denoted by Φ and φ, respectively. By Gram-Charlier expansion (GCE), the distribution
functions of the standardized random variable are [29]:

F (z) = Φ(z) +
c1
1!

Φ′(z) +
c2
2!

Φ′′(z) +
c3
3!

Φ(3)(z) + ...

f(z) = φ(z) +
c1
1!
φ′(z) +

c2
2!
φ′′(z) +

c3
3!
φ(3)(z) + ...

(3.50)

The constants ci are found from the central moments mr (where r denotes the moment order)
of the random variable u. The first six such constants are given below as [29]:

c0 = 1

c1 = c2 = 0

c3 = −m3

σ3

c4 = −m4

σ4
− 3

c5 = −m5

σ5
+ 10

m3

σ3

c6 =
m6

σ6
− 15

m4

σ4
+ 30

(3.51)

Now the constants ci can be found directly from eq. (3.51), but as will soon be shown,
they can also be expressed in terms of the cumulants of u. In the context of this thesis,
using the cumulants rather than the central moments is very advantageous. When using
the PEM to conduct the PLF, the output random variables will be expressed in terms of
their raw moments of various orders. The cumulants of that variable is then easily obtained
from eq. (2.21), which relates the cumulants and the raw moments of a distribution. When
conducting PLF by the CM, the output random variables are represented by their various-
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order cumulants, which can then be used directly as input to the GCE. The relationship
between central moments mr and cumulants κr are [21]:

m1 = 0

m2 = κ2 = σ2

m3 = κ3

m4 = κ4 + 3κ2

m5 = κ5 + 10κ2κ3

m6 = κ6 + 15κ2κ4 + 10κ23 + 15κ32...

(3.52)

Now inserting eq. (3.52) into eq. (3.51), eq. (3.50) can be expressed as [21]:

F (z) = Φ(z)− C1

6
Φ(3) +

C2

24
Φ(4)(z)− C3

120
Φ(5) +

C4 + 10C1

720
Φ(6)...

f(z) = φ(z)− C1

6
Φ(3) +

C2

24
Φ(4)(z)− C3

120
Φ(5) +

C4 + 10C1

720
Φ(6)...

(3.53)

where the the parameters G1 and G2 turn out to be the skewness and kurtosis of the stan-
dardized varibale. These are determined in terms of the original variable u as [21]:

C1 = κ3,z =
κ3,u

(κ2,u)3/2

C2 = κ4,z =
κ3,u

(κ2,u)2

(3.54)

where κr, u denotes the r-th order cumulant of the random variable u.
Reference [21] further uses Hermite polynomials to improve the approximation of the

unknown distribution, and is then able to get an expression for the PDF and CDF of u
directly in terms of the standardized variable z:

f(z) = φ(z)

[
1 +

C1

6
(z3 − 3z) +

C2

24
(z4 − 6z2 + 3) +

C2
1

72
(z6 − 15z4 + 45z2 − 15)

]
F (z) = Φ + φ(z)

[
1 +

C1

6
(z2 − 1) +

C2

24
(z3 − 3z) +

C2
1

72
(z5 − 10z3 + 15z)

] (3.55)
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This chapter presents the case studies done in this thesis. Three different test systems have
been used; a simple 3 bus system, the IEEE 14 bus system, and the IEEE 24 bus Reliability
test system (RTS). All case studies were implemented in Matlab [16] and MATPOWER 6.0
[30] was utilized to do deterministic load flow computations and some other operations.

4.1 Step-by-step demonstration

This chapter will utilize a small 3-bus system simple enough to demonstrate the PEM and
CM in a step-by-step manner. For both methodologies, it is the modified versions able
to handle correlation between variables (described in sections 3.1.2 and 3.2.2, respectively)
that are demonstrated here. However, both methods are also implemented for the case of
independent variables, according to the procedures outlined in sections 3.1.1 and 3.2.1. The
results for the exact same system and probabilistic modelling, but with no correlation between
variables, are presented in appendix D.1. A quantitative validation of the methodology with
independent variables is provided in section 4.2.

4.1.1 3-bus test system modelling

The base case case system (without probabilistic modelling) is the same as the one in [19]
and its one-line diagram is presented in figure 4.1. It includes one load bus and two generator
buses where bus 1 is defined as the slack bus. Base case data and line data for the system
are given in tables 4.1 and 4.2, respectively.

1 2

3

Figure 4.1: 3-bus test system for step-by-step demonstration
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Table 4.1: Base case data for 3-bus test system

Bus i Type |Vi| δi PLi QLi PGi QGi

1 Slack 1.05 0 0 0 - -
2 PV 1.03 - 50 20 20 -
3 PQ - - 60 25 0 0

Table 4.2: Line data for 3-bus test system

From To R X bij0
bus bus (p.u.) (p.u.) (p.u.)

1 2 0.08 0.24 0
1 3 0.02 0.06 0
2 3 0.06 0.018 0

The probabilistic modelling is based on the following:

• Loads: the loads at buses 2 and 3 are considered to be random variables. They are
normal distributed with mean values µ equal to the base case values from table 4.1 and
standard deviations σ equal to 10% of such mean values.

• Generating units: The generator at bus 2 is modelled with a capacity of 22 MW and a
forced outage rate (FOR) of 0.09.

• Correlation: The loads at buses 2 and 3 are correlated with correlation factor ρ = 0.4.
Loads and generating units are assumed independent.

4.1.2 Point Estimate Method: step-by-step solution

Having one generation unit and two complex loads as input random variables yields a total
of n = 5 probabilistic inputs, of which m = 4 of these are correlated. According to the 2n+1

scheme, DLF needs to be performed in 11 different locations.

Step 1: Quantify necessary statistical information

The expected value, standard deviation, skewness and kurtosis are the statistical properties of
the input random variables that are necessary to calculate in order to apply the PEM. These
are summarized for loads and generation in table table 4.3 below, based on the statistical
modelling presented in section 4.1.1 and the properties of the various distributions, which can
be found in appendix A.1. For convenience, the input random variables have been assigned
numbers in the leftmost column of table 4.3.

Step 2: Calculate transformation matrices
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4.1 Step-by-step demonstration

Table 4.3: Statistical data for application of PEM

i xi µxi σxi λ3,xi λ4,xi
1 PL2 50 5 0 3
2 PL3 60 6 0 3
3 QL2 20 2 0 3
4 QL3 25 2.5 0 3
5 PG2 20.02 6.3 -0.1337 1.3662

The correlation matrix between buses 2 and 3 is given as:

Cρ =

[
1 0.4

0.4 1

]
(4.1)

For simplicity, the active and reactive parts of the complex loads at each bus are treated
separately. Recall that as long as the same standard locations and weights are used for PLi
and QLi , they can be treated as if they were independent of each other [14]. In this case, both
loads are normal distributed and therefore the active and reactive parts will always produce
the same standard locations and weights.

The covariance matrix between the buses is calculated according to appendix A.2. For
the active and reactive parts of the loads respectively, we get

CxP
=

[
σ2
PL2

σPL2PL3

σPL2PL3
σ2
PL3

]
=

[
25 12

12 36

]
(4.2)

CxQ
=

[
σ2
QL2

σQL2QL3

σQL2QL3
σ2
QL3

]
=

[
4 2

2 6.25

]
(4.3)

where the values of σ are in MW.
Further, the matrix L, whose inverse is the transformation matrix B, is found through

Cholesky’s decomposition 1. For the active parts of the load:

LP =

[
5 0

2.4 5.5

]
, BP = LP

−1 =

[
0.2 0

−0.0837 0.1818

]
(4.4)

Equivalently, the matrices LQ and BQ for the reactive parts of the loads are easily found
from decomposition of CxQ

.

Step 3: Obtain statistical data of transformed input random variables
1In this thesis, MATLAB is used to do the calculations, and the built-in MATLAB function chol is used

for the Cholesky’s decomposition in this example
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µz, σz, λ3,z and λ4,z, i.e. the statistical data for the transformed variables are found from
eqs. (3.16)–(3.19). The calculations are shown for selected variables below, and summarized
for all variables in table table 4.4.

µz is easily obtained directly for all the transformed variables through a simple matrix
operation. For the active parts:

µz = Bµx = BP

[
µx1
µx2

]
=

[
10

6.55

]
(4.5)

Further, σzi is equal to 1 for all i, due to the covariance matrix of the transformed variables
being equal to the identity matrix I.

The skewness and kurtosis of the transformed variables are calculated according to eqs. (3.17)
and (3.18), respectively. The calculation is shown for z1 = PL2 below, and is done equivalently
for all other variables:

λ3,z1 =
2∑
r=1

B3
1rλ3,x1σ

3
x1

= (0.2)3(0)(5)3 + (0)3(0)(5)3 = 0 (4.6)

λ4,z1 =
2∑
r=1

B4
1rλ4,x1σ

4
x1

= (0.2)4(3)(5)4 + (0)4(3)(5)4 = 3 (4.7)

Table 4.4: Statistical data for transformed variables

i zi µzi σzi λ3,zi λ4,zi
1 PL2 10 1 0 3
2 PL3 6.55 1 0 4.3605
3 QL2 10 1 0 3
4 QL3 6.55 1 0 4.3605

Step 4: Calculate locations and weights for all variables

Due to the fact that the active and reactive parts of the load have equal correlation matrices
and equal percentage-wise random variation, the orthogonal transformation produces equal
random variables for the active and reactive parts in the independent space, as is obvious
from table 4.4. Thus, as the same standard locations and weights are used for the active and
reactive parts of normal distributed loads, the final locations zi,k will also turn out equal in
the independent space, according to eq. (3.1).

Calculation of standard locations, weights and locations are shown for the transformed
variable z1, representing the active part of the load at bus 2, is shown below. Calculation
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is done equivalently for the other variables. For the non-correlated variable that is the
generation at bus 2, the locations and weights are calculated based on its statistical data of
table 4.3. The locations and weights are all summarized in table table 4.5.

ξz1,1 =
λ3,z1

2
+ (−1)2

√
λ4,z1 −

3

4
λ23,z1 =

0

2
+

√
3− 3

4
· 02 = 1.7321

ξz1,2 =
λ3,z1

1
+ (−1)2

√
λ4,z1 −

3

4
λ23,z1 =

0

2
−
√

3− 3

4
· 02 = −1.7321

w1,1 =
(−1)2

ξz1,1(ξz1,1 − ξz1,2)
=

1

1.7321(1.7321− (−1.7321))
= 0.1667

w1,2 =
−1

ξz1,2(ξz1,1 − ξz1,2)
=

−1

−1.7321(1.7321− (−1.7321))
= 0.1667

z1,1 = µz1 + ξz1,1σz1 = 10 + 1.7321 · 1 = 11.7321

z1,2 = µz1 + ξz1,2σz1 = 10− 1.7321 · 1 = 8.2679

(4.8)

Table 4.5: Locations and weights for all variables

i zi zi,1 wi,1 zi,2 wi,2

1 PL2 11.73 0.1667 8.27 0.1667
2 PL3 8.63 0.1147 4.45 0.1147
3 QL2 11.73 0.1667 8.27 0.1667
4 QL3 8.63 0.1147 4.45 0.1147
5 PG2 26.92 0.3921 12.28 0.3495

Step 5: Create 2m+ 1 points

Based on the locations and weights from table 4.5, 2m + 1 points are created on the form
(µz1 , ..., zi,k, ..., µzm) and are all summarized in table 4.6.

Step 6: Transform points back to the original space

Recall now that the active and reactive parts of the loads have different transformation
matrices BP and BQ, respectively. Thus, the columns representing active parts, in this case
variables z1 and z2, are transformed using B−1P , while variables z3 and z4 are transformed
with B−1Q .
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Table 4.6: Transformed points

Point PL2 PL3 QL2 QL3 Weight
(z1) (z2) (z3) (z4)

1 z1,1 µz2 µz3 µz4 w1,1

11.73 6.55 10 6.55 0.1667

2 z1,2 µz2 µz3 µz4 w1,2

8.27 6.55 10 6.55 0.1667

3 µz1 z2,1 µz3 µz4 w2,1

10 8.63 10 6.55 0.1147

4 µz1 z2,2 µz3 µz4 w2,2

10 4.45 10 6.55 0.1147

5 µz1 µz2 z3,1 µz4 w3,2

10 6.55 11.73 6.55 0.1667

6 µz1 µz2 z3,2 µz4 w3,2

10 6.55 8.27 6.55 0.1667

7 µz1 µz2 µz3 z4,1 w4,1

10 6.55 10 8.63 0.1147

8 µz1 µz2 µz3 z4,2 w4,2

10 6.55 10 4.45 0.1147

9 µz1 µz2 µz3 µz4 w0

10 6.55 10 6.55 -0.8670

As an example, the transformation of point 1 from table 4.6 is shown below.[
x1

x2

]
= B−1P

[
z1

z2

]
=

[
5 0

2.4 5.5

][
11.73

6.55

]
=

[
58.66

64.16

]
(4.9)[

x3

x4

]
= B−1Q

[
z3

z4

]
=

[
2 0

1 2.29

][
10

6.55

]
=

[
20.00

25.00

]
(4.10)

Performing equivalent calculations for the remaining eight points of table 4.6, yields the
actual points in which to run the DLFs, transformed back to the original space. These are
summarized in table 4.7. Recall that there is yet one probabilistic input in the system that
is not correlated to the others, namely the generation at bus 2, PG2 , of which locations and
weights were included in table 4.5. In table 4.7 PG2 is included at its expected value for
all the back-transformed points, while points 9-10 are added with PG2 at the two different
locations, keeping the final point 11 to all variables at their expected values, weighted with
w0. The locations and weights of PG2 are calculated from eqs. (3.5) and (3.6) just as for the
load variables. The mean, standard deviation, skewness and kurtosis constituting the input
to eqs. (3.5) and (3.6) are found for generators by the expressions provided in appendix A.1.2.

48



4.1 Step-by-step demonstration

Table 4.7: Points for which to run DLFs. All values of active and reactive power in MW and
MVAr, respectively.

Point PL2 PL3 QL2 QL3 PG2 Weight
(x1) (x2) (x3) (x4) (x5) (wi,j)

1 58.66 64.16 20 25 20.02 0.1667
2 41.34 55.84 20 25 20.02 0.1667
3 50 71.48 20 25 20.02 0.1147
4 50 48.52 20 25 20.02 0.1147
5 50 60 23.46 26.73 20.02 0.1667
6 50 60 16.54 23.27 20.02 0.1667
7 50 60 20 29.79 20.02 0.1147
8 50 60 20 20.22 20.02 0.1147
9 50 60 20 29.79 26.92 0.3921
10 50 60 20 29.79 12.28 0.3495
11 50 60 20 29.79 20.02 -0.8670

Step 7: Run DLF at all points and update random output variable Yi,j

In this thesis, MATPOWER has been utilized to run the DLFs. For each DLF, the results
are used to update the first five raw moments of the random output variable Y , as these are
used further in the Gram-Charlier expansion. A selection of load flow results is shown in
table 4.7.

Table 4.8: Selected DLF results at selected points

Point (i, k)
V3i,k δ3i,k P13i,k Q13i,k wi,k
(p.u.) (degrees) (MW) (MVAr)

1 (1,1) 1.0334 -2.0929 78.4308 4.5914 0.1667
2 (1,2) 1.0301 -1.7490 60.2177 15.5907 0.1667
3 (2,1) 1.0303 -2.4004 78.7933 9.8383 0.1147
6 (3,2) 1.0320 -2.1027 69.4343 9.5008 0.1667
9 (5,1) 1.0300 -1.9068 64.7730 14.3909 0.3921

After each DLF, the random output variable Y is updated with the weighted result of
the current DLF added to its previous value according to eq. (3.9). Note that Y can take the
form of the state variables V3, δ2 and δ3, and the active and reactive power flow in each line.
Further, let the raw moment order j of Y be denoted Y (j). To illustrate the calculation of
output variables Y , consider the first and second raw moments of V (j)

3 , which after running
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DLF in the first three points have the values:

V
(1)
3 = w1,1V31,1 + w1,2V31,2 + w2,1V32,1

= 0.1667 · 1.0334 + 0.1667 · 1.0301 + 0.1147 · 1.0303 = 0.4622

V
(2)
3 = w1,1V

2
31,1

+ w1,2V
2
31,2

+ w2,1V
2
32,1

= 0.1667 · 1.03342 + 0.1667 · 1.03012 + 0.1147 · 1.03032 = 0.4767

(4.11)

Continuing to update V3 and the other output variables of interest in an equivalent manner
for the remaining 7 DLF runs, yields the final raw moments of the various output random
variables. For V3, the final first and second order raw moments are

V
(1)
3 =

5∑
i=1

2∑
k=1

wi,kV3i,k = 1.0317

V
(2)
3 =

5∑
i=1

2∑
k=1

wi,kV
2
3i,k

= 1.0645

(4.12)

Step 8: Extract statistical data of output random variables

The previous step concludes the PEM in the sense that the output from the method, which
is the raw moments of the output random variables, is obtained. These raw moments can
then be utilized to present the results in the desired format, in this thesis by the expected
values and standard deviation of each output variable. Then PDFs and CDFs have been
approximated by Gram-Charlier expansion series, described in the next step.

Calculation of expected value and standard deviation is shown for output variable V3
below, and summarized for all output variables in table 4.9. Please refer to eq. (4.12) for the
values of first and second order raw moments of V3 and to section 2.4 for the expressions for
mean and standard deviation:

µV3 = V
(1)
3 = 1.0317 p.u. (4.13)

σV3 =

√
V

(2)
3 − (V

(1)
3 )2 = 0.00201 p.u. (4.14)
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Table 4.9: PLF results by PEM on 3-bus test system

Vi δi
Bus i µ σ µ σ

1 1.05 0.0 0.0 0.0
2 1.03 0.0 -2.7441 0.5073
3 1.03173 0.00201 -2.0928 0.300

From To Pij Qij

bus i bus j µ σ µ σ

1 2 22.2010 3.6444 1.8840 1.0230
1 3 69.3084 8.0871 10.0949 5.1189
2 3 -8.1548 4.8421 17.6988 5.8059

4.1.3 Cumulant Method: step-by-step solution

Step 1: Run a NR load flow to obtain X0, Z0, J0 and S0. Obtain D0 and expand S0 and
D0 to full sensitivity matrices.

A regular NR load flow analysis is run for the base case, i.e. the case of table 4.1. From this
load flow, obtain the mean values of the state variables X0

2 and line power flows Z0, and
the Jacobian and sensitivity matrices J0 and S0, respectively. The variables included in the
vectors X and Z in the NR load flow, as well as values of X0 and Z0 are given below:

X =

δ2δ3
V3

 , Z =



P12

P13

P23

Q12

Q13

Q23


, X0 =

−2.7430−2.0923
1.03174

 , Z0 =



22.1885

69.2745

−8.1713
1.8701

10.0677

17.6634


(4.15)

where the values of V and δ are given in p.u. and degrees, respectively. Equivalently, the
values of P and Q are in MW and MVAr.

S0 is obtained by inverting J0, as shown below.

J0 =

 8.6762 −4.6899 −15.8019
−5.0590 21.1003 20.3530

16.1927 −22.1990 19.9665

 , S0 = J0
−1 =

 0.0951 0.0484 0.0259

0.0469 0.0467 −0.0105
−0.0250 0.0127 0.0174

 (4.16)

The matrix D0 is found by evaluating ∂Z/∂X at X = X0. In this thesis, ready-made
2 Please note the meaning of state variables (X0) in this context as being consistent with the definition

stated in section 2.3 (i.e. V and δ for PQ-buses and δ for PV -buses).
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software [30] is used to do this calculation.3 Note that only partial derivatives with respect
to the state variables are included in the calculation of this matrix:

D0 =



∂P12
∂δ2

∂P12
∂δ3

∂P12
∂V3

∂P13
∂δ2

∂P13
∂δ3

∂P13
∂V3

∂P23
∂δ2

∂P23
∂δ3

∂P23
∂V3

∂Q12

∂δ2
∂Q12

∂δ3
∂Q12

∂V3
∂Q13

∂δ2
∂Q13

∂δ3
∂Q13

∂V3
∂Q23

∂δ2
∂Q23

∂δ3
∂Q23

∂V3


=



−4.1157 0 0

0 −16.4360 −4.6715
4.6899 −4.6899 −15.8019
1.1562 0 0

0 4.8198 −15.9312
−16.3034 16.3034 −4.5456


(4.17)

Now, having established the matrices in the reduced form that is used in the NR load flow,
the sensitivity matrices are expanded to include sensitivities with respect to all variables
in the system. This is done mainly in order to simplify the calculation of the modified
sensitivity matrices S1 and T1. The non-state variables are constant throughout the whole
LF calculation, so including those in the output variables is equivalent to inserting zeros
into the rows and columns representing the non-state variables in a full sensitivity matrix.
Investigating the construction of D0 in eq. (4.17), it is easily seen that one column of zeros
needs to be inserted before the first column (corresponding to δ1), and two columns of zeros
between the second and third column (corresponding to V1 and V2) of D0 as defined in
eq. (4.17). Doing an equivalent analysis of the construction of J0 yields the following final
versions of S0 and G0:

S0 =



0 0 0 0 0 0

0 0.0951 0.0484 0 0 0.0259

0 0.0469 0.0467 0 0 −0.0105
0 0 0 0 0 0

0 0 0 0 0 0

0 −0.025 0.0127 0 0 0.0174


, D0 =



0 −4.1157 0 0 0 0

0 0 −16.4368 0 0 −4.6715
0 4.6899 −4.6899 0 0 −15.8019
0 1.1562 0 0 0 0

0 0 4.8198 0 0 −15.9312
0 −16.3034 16.3034 0 0 −4.5456


(4.18)

The matrix T0, equal to the product of S0 and D0 is then

T0 = S0D0 =



0 −0.3914 −0.1992 0 0 −0.1067
0 −0.6542 −0.8277 0 0 0.092

0 0.6209 −0.193 0 0 −0.1033
0 0.11 0.056 0 0 0.03

0 0.6241 0.0228 0 0 −0.3273
0 −0.6723 −0.085 0 0 −0.6731
0 −0.025 0.0127 0 0 0.0174


(4.19)

3The MATPOWER function dSbr_dV computes partial derivatives of power flows w.r.t. voltages (angles
and magnitudes). Please see Matlab code enclosed to this thesis for the full implementation.
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4.1 Step-by-step demonstration

Step 2: Initialize u and correlation matrix Cu. Obtain Cz and decompose it by Cholesky
decomposition

The correlated variables u are the loads at buses 2 and 3, each load consisting of an active
and reactive part. Both the active and reactive parts of each load are correlated by the
same correlation coefficient matrix to the other load. Let the active and reactive parts of the
correlated variables be denoted uP and uQ, respectively:

uP =

[
uP1

uP2

]
=

[
PL2

PL3

]
, uQ =

[
uQ1

uQ2

]
=

[
QL2

QL3

]
(4.20)

Equivalently, the correlated standard normal variables z will have an active part zP and a
reactive part zQ.

With a correlation coefficient of 0.4 between the two buses, the correlation coefficient
matrix Cu of the original correlated variables is: (refer to appendix A.2)

Cu =

[
1 0.4

0.4 1

]
(4.21)

For the correlation matrix Cz of the correlated standard normal variables z, recall from
section 3.2.2 that the diagonal elements of Cz are equal to 1, while the off-diagonal elements
are related to the elements of the original correlation matrix Cu by a function H. As also
stated in section 3.2.2, H has a value of 1 when the variables are normal distributed, so
eq. (3.41) yields:

ρzij = ρuij ⇒ Cz = Cu =

[
1 0.4

0.4 1

]
(4.22)

Cz is now decomposed by Cholesky decomposition according to eq. (3.36), in order to obtain
the inferior triangular matrix L. The elements of L can be calculated from the expressions
provided in appendix A.3 or by using some ready-made function in available software: 4

Lz =

[
1 0

0.4 0.9165

]
(4.23)

Step 3: Generate random numbers Es, and get random numbers Zs by orthogonal trans-
formation.

4In this thesis, the built-in Matlab function chol was used to decompose Cz
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Recall from section 3.2.2 that Es are random numbers of independent, standard normal vari-
ables. These numbers will in their entirety be transformed between different spaces to finally
obtain random numbers Vs of independent variables to be used directly as input to the CM
equations. What first needs to be established, is the sample size (i.e. the number of random
numbers) N . In this thesis a value of N = 10 000 is chosen for all the case studies on CM
involving correlation. A sample size of about 10 000 is a widely-used choice for the MC
simulation used for comparison in many papers investigating analytical and approximate
methods. In [7], which is the main source for the derivation of the modified CM, 10 000
samples are used for both the comparative MC simulations and for the modified CM. In [18]
and [14], two other important sources for the derivation of methodologies, 15 000 and 10 000
samples, respectively, are used for the MC simulations.

The generation of the samples making out Es is in this thesis done using a built-in function
in Matlab5. Due to space limitations, the matrices containing the random numbers will not
be written out explicitly, only the matrix operations will be shown.

Es is in this case a 2 × 10000 matrix because there are two loads that are correlated.
Each row represents the distribution of a standard normal variable, and the two variables
represented in Es are independent. After Es is obtained, the next step is to take into con-
sideration the correlation of the two loads. This is done by orthogonal transformation of the
samples in Es, resulting in the matrix of random numbers of the correlated standard normal
variables Zs. Recall that the transformation matrix of the orthogonal transformation is the
inferior triangular matrix obtained by Cholesky decomposition of the transformed variable’s
correlation matrix. The latter is now the correlation matrix Cz, which was decomposed
to obtain Lz in the previous step. Then, according to eq. (3.42), the random numbers of
correlated standard normal variables are obtained by

Zs = LzEs (4.24)

where Zs is a 2× 10000 matrix containing the random numbers of each correlated standard
normal variable zi along the rows.

Step 4: Obtain random numbers Us by marginal transformation and get random numbers
Vs by orthogonal transformation

The random numbers Us of the original correlated variables u are now obtained through a
marginal transformation utilizing the CDFs of the variables in u and v. The CDFs of the
variables in v are the CDFs Φ of the standard normal distributions, which can be found

5The built-in Matlab function normrnd generates random numbers for the normal distribution, taking
expected value µ and standard deviation σ as input variables. These are specified to the values of 0 and 1
respectively, to obtain the standard normal distribution.
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4.1 Step-by-step demonstration

in appendix A.1.1. The variables in u are in this case normal distributed, and CDFs of
the normal distribution, also provided in appendix A.1.1, are gathered in F. Note that in
F, unlike in Φ, the elements will be different functions, because the CDF of the normal
distribution depends on the actual values of µ and σ for that particular variable. Due to
different values of µ and σ, the active and reactive parts of each load variable are treated
in separate matrices. Denote the vector of CDFs of the active part by FP and the CDFs of
the reactive parts FQ. Then, according to eq. (3.43), the random numbers of the original
correlated variables are obtained by:

UsP = FP
−1(Φ(Zs)) (4.25)

UsQ = FQ
−1(Φ(Zs)) (4.26)

where UsP and UsQ are the random numbers of uP and uQ, respectively. Again, explicit
expressions are not provided here due to space limitations.

The random numbers of UsP and UsQ still represent correlated variables, so the numbers
need to be transformed from the correlated space to the independent space before being used
as input to the cumulant method. The transformation between correlated and independent
space is once again performed by orthogonal transformation. This time, the correlation
matrix of whose decomposition yields the transformation matrix, is Cu. Decomposing Cu

yields:

L =

[
1 0

0.4 0.9165

]
(4.27)

Then, according to eq. (3.44), the random numbers VsP and VsQ of the independent variables
are obtained by

VsP = L−1UsP (4.28)

VsQ = L−1UsQ (4.29)

(4.30)

where VsP and VsQ are now 2× 10000 matrices.

Step 5: Compute the r-th order cumulants of the independent variables v represented by
Vs

The random numbers in each row of VsP and VsQ can now be considered to be discrete
distributions representing the corresponding independent variables vPi and vQi. The easiest
way to obtain the cumulants of these variables is then to first find the raw moments by
eq. (2.13), and then find the cumulants from those raw moments according to eq. (2.21). In
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this case study, the final presentation of the results will be in the form of mean and standard
deviation of each variable. Notice that the mean values of the output variables have already
been obtained in step 1, so actually, in accordance with eq. (2.22), only the second order
cumulant needs to be calculated for each random variable.

For the active power at bus 2, denoted vP1, the first- and second-order raw moments are
calculated from eq. (2.13), yielding

E[vP1 ] = −0.5001

E[v2P1
] = 0.2525

(4.31)

where the values are given in p.u. Then, according to eq. (2.21), the second-order cumulant
of vP1 is

∆v
(2)
P1

= E[v2P1
]− E[vP1 ] = 0.0025 (4.32)

The second-order cumulants of the active parts of both loads is then given by the vP
(2),

similarly for the reactive parts:

∆vP
(2) =

[
−0.0025

−0.0035

]

∆vQ
(2) =

[
−0.0004

−0.0006

] (4.33)

where all values are given in p.u.

Step 6: Compute the cumulants ∆w
(r)
i of the net power injections at each bus and represent

∆w
(r)
i for all buses in ∆W(r)

The cumulants of the net power injections are calculated by eq. (3.45). At this point, recall
that there is yet another random input variable in the system that is not correlated to any
other variables, that is the generation at bus 2, uG2 . So to obtain the cumulants of the net
power injection at bus 2, the cumulants of uG2 need be obtained. Referring to appendix A.1.2,
the first- and second order raw moments of uG2 are calculated from eq. (A.10):

E[uG1 ] = 0.22 · (1− FOR) = 0.22 · (1− 0.09) = 0.2002

E[u2G1
] = 0.222 · (1− FOR) = 0.222 · (1− 0.09) = 0.0440

(4.34)
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4.1 Step-by-step demonstration

Then, using eq. (2.21), the second-order cumulant of uG1 is

∆u
(2)
G1

= E[u2G1
]− E[uG1 ] = 0.0040 (4.35)

Then finally the cumulants ∆w
(r)
i of the net power injections can be calculated by adding

the cumulants of generation and load. For the active power at bus 2:

∆w
(2)
2 = ∆u

(2)
G1

+ ∆vPL2 = 0.0040 + 0025 = 0.0065 (4.36)

For this particular system, at all buses except bus 2, ∆w
(r)
i = ∆v

(r)
i . Gathering the second-

order cumulants for the active and reactive net power injections at all buses in ∆W(2) =

[∆WP
(2)∆WQ

(2)]T , yields:

∆W(2) =



0

0.0064

0.0035

0

0.0004

0.0006


(4.37)

where rows 1 and 3 correspond to the slack bus.

Step 7: Obtain the modified sensitivity matrices S1 and T1

The elements of the modified sensitivity matrices are obtained from eq. (3.46), resulting in:

S1 =



0 0 0 0 0 0

0 0.1145 0.0444 0 0.0104 0.0238

0 0.0656 0.0428 0 −0.0042 −0.0096
0 0 0 0 0 0

0 0 0 0 0 0

0 −0.0199 0.0116 0 0.0069 0.0159


,

T1 =



0 −0.4711 −0.1826 0 −0.0427 −0.0978
0 −0.9853 −0.7586 0 0.0368 0.0843

0 0.5437 −0.1769 0 −0.0413 −0.0947
0 0.1324 0.0513 0 0.012 0.0275

0 0.6332 0.0209 0 −0.1309 −0.2999
0 −0.7063 −0.0779 0 −0.2693 −0.6169



(4.38)
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Step 8: Calculate the cumulants of the output variables

The cumulants of the output variables are now calculated according to eq. (3.47). Recall
that the first-order cumulants, equal to the mean values, were obtained in step 1. The
second-order cumulants are then calculated by

∆X(2) = S1
2∆W(2)

∆Z(2) = T1
2∆W(2)

(4.39)

Resulting in, for the voltages and line power flows:

∆X(2) =



∆δ
(2)
1

∆δ
(2)
2

∆δ
(2)
3

∆V
(2)
1

∆V
(2)
2

∆V
(2)
3


=



0

0.0052

0.0020

0

0

0.0002


, ∆Z(2) =



∆P
(2)
12

∆P
(2)
13

∆P
(2)
23

∆Q
(2)
12

∆Q
(2)
13

∆Q
(2)
23


=



0.0016

0.0083

0.0020

0.0001

0.0026

0.0035


(4.40)

where the units for V , P and Q are p.u. and the unit for δ is radians. The standard deviations
for all variables are now easily found as the square root of the second-order cumulant. Con-
verting to conventional units of MW, MVAr and degrees for P , Q and δ after this operation,
yield the final results presented in table 4.10.

Table 4.10: PLF results by CM on 3-bus test system

Vi δi
Bus i µ σ µ σ
1 1.05 0.0 0.0 0.0
2 1.03 0.0 -2.743 0.5481
3 1.03174 0.00179 -2.0923 0.3351

From To Pij Qij

bus i bus j µ σ µ σ
1 2 22.1885 3.9373 1.8701 1.1061
1 3 69.2745 9.0997 10.0677 5.1368
2 3 -8.1713 4.4892 17.6634 5.9064
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4.2 IEEE 14 bus validation

The IEEE 14 bus test system has been used in order to validate the implementation of the
two methods for the base case, which is a system with no correlation between variables and
only conventional generation. Validation is based on the results obtained in [28], where PLF
by the Cumulant method, as it was outlined in section 3.2 of this thesis, was performed
on an identical system. The complete raw and probabilistic data of the system is therefore
identical to [28] and provided in appendix C.1. A summary of the test system modelling is
given below:

• Loads: The system includes 11 independent loads. 10 of these are normal distributed
with mean and standard deviation specified in table C.2 for the active and reactive
parts of each load separately. The load at bus 9 is given by a discrete distribution for
its active and reactive parts in table C.3.

• Generation: The system includes 12 generators distributed over buses 1 and 2. Each
generator is modelled by a Bernoulli distribution based on its FOR (refer to ap-
pendix A.1.2). Probabilistic data for generators may be found in table C.4. Reactive
power limits on generators are not enforced.

• Correlation: No correlation exists between loads, between generators, or between gen-
erators and loads anywhere in the system.

PEM and CM are run for the same test system, and some results for voltages and line flows
are presented in tables 4.11 and 4.12, respectively. All values of active and reactive powers
are given in MW and MVAr, respectively. ε represents the percentage-wise error relative to
the results from [28]. The complete results from [28] can be found in appendix D.2.

Table 4.11: Voltage results for IEEE 14 bus system

Var.
PEM εPEM CM εCM

µ σ εµ εσ µ σ εµ εσ

V1 1.06 0 0.00 0.00 1.06 0 0.00 0.00
V2 1.045 0 0.00 0.00 1.045 0 0.00 0.00
V3 1.01 0 0.00 0.00 1.01 0 0.00 0.00
V4 1.01708 0.002 0.01 0.99 1.01714 0.00202 0.00 0.00
V5 1.01868 0.00162 0.00 1.22 1.01873 0.00164 0.00 0.00
V6 1.07 0 0.00 0.00 1.07 0 0.00 0.00
V7 1.06121 0.00283 0.01 1.05 1.06128 0.00286 0.00 0.00
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Table 4.11 – continued

Var.
PEM εPEM CM εCM

µ σ εµ εσ µ σ εµ εσ

V8 1.09 0 0.00 0.00 1.09 0 0.00 0.00
V9 1.05561 0.00515 0.01 0.98 1.0557 0.00519 0.00 1.76
V10 1.05072 0.00438 0.01 0.68 1.05079 0.00441 0.00 0.00
V11 1.05676 0.00229 0.00 0.87 1.05681 0.00231 0.00 0.00
V12 1.05518 0.00069 0.00 0.00 1.05519 0.00069 0.00 0.00
V13 1.05034 0.00119 0.00 0.83 1.05035 0.00120 0.00 0.00
V14 1.03532 0.00366 0.01 0.54 1.03538 0.00368 0.00 0.00

δ1 0 0 0.00 0.00 0 0 0.00 0.00
δ2 -4.9855 0.443 0.02 0.00 -4.9855 0.4432 0.02 0.05
δ3 -12.7343 0.9976 0.03 0.00 -12.7317 0.9978 0.01 0.02
δ4 -10.3113 0.6898 0.03 0.00 -10.3097 0.6903 0.01 0.07
δ5 -8.7672 0.5791 0.03 0.05 -8.7658 0.5796 0.01 0.13
δ6 -14.2241 0.8483 0.04 0.14 -14.2201 0.85 0.01 0.06
δ7 -13.3603 0.974 0.03 0.13 -13.3572 0.9756 0.01 0.03
δ8 -13.3603 0.974 0.03 0.13 -13.3572 0.9756 0.01 0.03
δ9 -14.94 1.1476 0.03 0.17 -14.936 1.1499 0.01 0.03
δ10 -15.099 1.0957 0.03 0.16 -15.095 1.0978 0.01 0.03
δ11 -14.7928 0.9697 0.03 0.15 -14.7889 0.9715 0.01 0.04
δ12 -15.0794 0.8818 0.04 0.14 -15.0753 0.8835 0.01 0.05
δ13 -15.1592 0.9071 0.03 0.15 -15.1552 0.9089 0.01 0.05
δ14 -16.0362 1.0596 0.03 0.15 -16.032 1.0616 0.01 0.03

Table 4.12: Line power flow results for IEEE 14 bus system

Var.
PEM εPEM CM εCM

µ σ εµ εσ µ σ εµ εσ

P1−2 156.9366 13.3959 0.00 0.01 156.9714 13.4 0.02 0.04
P1−5 75.4682 4.7904 0.00 0.07 75.4748 4.7931 0.01 0.13
P2−3 73.2721 5.7569 0.00 0.00 73.2709 5.7575 0.00 0.01
P2−4 56.1419 3.3316 0.00 0.01 56.1393 3.3343 0.00 0.08
P2−5 41.522 2.4122 0.00 0.12 41.5187 2.4155 0.01 0.25
P3−4 -23.2535 4.4614 0.00 0.01 -23.2545 4.4623 0.00 0.01
P4−5 -61.0946 4.4956 0.00 0.13 -61.0969 4.4931 0.00 0.07
P4−7 28.0606 3.572 0.00 0.01 28.0599 3.5716 0.00 0.00
P4−9 16.0705 2.0382 0.00 0.07 16.07 2.0367 0.00 0.00
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Table 4.12 – continued

Var.
PEM εPEM CM εCM

µ σ εµ εσ µ σ εµ εσ

P5−6 44.111 2.6566 0.00 0.26 44.112 2.6636 0.00 0.00
P6−11 7.3663 1.4715 0.00 0.29 7.3668 1.4758 0.01 0.00
P6−12 7.789 0.4152 0.00 0.07 7.7909 0.4156 0.02 0.02
P6−13 17.7556 1.2323 0.00 0.14 17.7543 1.2338 0.01 0.02
P7−8 0 0 0.00 0.00 0 0 0.00 0.00
P7−9 28.0607 3.572 0.00 0.01 28.0599 3.5716 0.00 0.00
P9−10 5.215 1.5646 0.00 0.05 5.2145 1.5654 0.01 0.00
P9−14 9.4161 1.2497 0.00 0.05 9.4153 1.2503 0.01 0.00
P10−11 -3.7978 1.4453 0.00 0.10 -3.7982 1.4467 0.01 0.00
P12−13 1.6172 0.3681 0.00 0.11 1.6192 0.3686 0.12 0.03
P13−14 5.654 1.0977 0.00 0.22 5.6548 1.1001 0.01 0.00

Q1−2 -18.8902 3.1279 0.23 0.05 -18.9418 3.1305 0.04 0.03
Q1−5 5.5466 0.4912 0.81 2.81 5.502 0.5058 0.00 0.08
Q2−3 4.7826 0.5663 0.63 0.21 4.7527 0.5652 0.00 0.02
Q2−4 -0.3723 0.6449 9.04 1.78 -0.4075 0.6566 0.44 0.00
Q2−5 2.6202 0.4909 1.11 1.90 2.5931 0.5005 0.07 0.02
Q3−4 4.6012 2.0624 1.12 0.15 4.5517 2.0654 0.04 0.00
Q4−5 16.0677 1.4392 0.07 0.01 16.0785 1.4392 0.00 0.01
Q4−7 -9.8102 0.8538 0.19 0.54 -9.827 0.8586 0.02 0.02
Q4−9 -0.4712 0.7833 3.66 0.79 -0.4871 0.7895 0.41 0.00
Q5−6 12.0911 0.5577 0.10 0.16 12.1022 0.5603 0.00 0.30
Q6−11 3.6289 1.0282 0.65 0.23 3.608 1.0306 0.07 0.00
Q6−12 2.5182 0.1954 0.37 0.05 2.515 0.1954 0.24 0.05
Q6−13 7.2496 0.6792 0.14 0.19 7.2366 0.6804 0.04 0.01
Q7−8 -17.3371 1.6614 0.20 0.75 -17.3058 1.674 0.02 0.00
Q7−9 5.7912 2.335 0.47 0.35 5.7699 2.3431 0.10 0.00
Q9−10 4.1659 1.0617 0.23 0.05 4.1726 1.0612 0.06 0.00
Q9−14 3.5768 0.6855 0.14 0.06 3.5792 0.6851 0.07 0.00
Q10−11 -1.6704 1.009 0.71 0.02 -1.6612 1.0088 0.15 0.00
Q12−13 0.7679 0.1823 1.12 0.05 0.7652 0.1822 0.76 0.00
Q13−14 1.7904 0.6718 0.86 0.10 1.7778 0.6725 0.15 0.00

The results of the CDF approximations by Gram-Charlier expansion (GCE) for a select-
few variables are included below. The GCE is not carried out in [28], but the figures are
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included here for illustrative purposes.
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Figure 4.2: CDF approximations by GCE for the voltage at bus 4

6 6.5 7 7.5 8 8.5 9 9.5
0

0.2

0.4

0.6

0.8

1

Active power flow [MW]

C
um

ul
at
iv
e
pr
ob

ab
ili
ty

PEM
CM

(a) Active power flow in line 6− 12 (P6−12)

2 2.5 3
0

0.2

0.4

0.6

0.8

1

Reactive power flow [MVAr]

PEM
CM

(b) Reactive power flow in line 6− 12 (Q6−12)

Figure 4.3: CDF approximations by GCE for power flows in line 6− 12

4.2.1 Discussion

As a first note it should be emphasized that [28] runs PLF by the cumulant method, such
that only the results from the CM in this case study are directly comparable by means of
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both test system modelling and methodology. The results from the PEM case study are
therefore compared to [28] on the basis of using a fundamentally different methodology to
solve the same problem for an identical system model.

As can be observed from tables 4.11 and 4.12, the errors with respect to [28] are generally
small for both methodologies. For the PEM, the relative errors are below 10%, and for
the CM all errors are below 2%. This tendency is expected, as results from conducting the
PEM are not available in [28], but how much deviation that should actually be expected
from comparison of the two methods, is not necessarily easy to establish. It should also be
mentioned here that a validation of the results obtained by the CM in [28] is not available,
that is the results are not compared to those obtained by a simulation method providing
the exact solution. Being an analytical method limited by the linearization of the power
flow equations, the results obtained from the CM will always to some degree deviate from
the definite solution. Thus, the results obtained from the PEM in this thesis are compared
to results in [28] that are already to some extent deviating from the exact solution, so the
percentage-wise errors in tables 4.11 and 4.12 do not necessarily provide a correct indication
to the accuracy compared to the exact solution. As no discussion of the accuracy of the
results is included in [28], it is not possible to determine in which direction the deviation
occurs.

A second source of validation to this particular case study is reference [14], and although
the extent of quantitative results available in this paper are very limited, it is useful to include
in this discussion. In [14] case studies are performed for the PEM and CM, including also
a MC method for validation of the results. One of the systems on which these studies are
performed is the exact same system as the one in [28]. The results from these studies show
that both the PEM and CM provide good results compared to the MCS. By investigation of
the limited selection of numerical results provided in [14] it is apparent that the two methods
often deviate from the exact solution in different directions. A maximum relative error of
about 10% between the PEM and CM is present in the particular selection of results provided
in [14], which can indicate that the results obtained by the PEM in this thesis are deviating
from the CM by an acceptable amount. Nonetheless, as the complete numerical results for all
variables in the system are not included in [14] this is merely an indication, and no definite
conclusions can be drawn with regards to an acceptable level of relative error between the
two methodologies from this source.

If a MC simulation method had been implemented for this particular case study, analyses
of sensitivities with regards to the load variation level (i.e. the ratio of standard deviation to
mean value for the loads) could have posed as an additional source of validation. In reference
[14] the impacts from varying the load variation level are investigated in terms of accuracy of
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the results obtained from the two non-simulation methodologies. A source of validation of the
in-house implementation in this thesis, could be to investigate whether the same tendencies
could be observed when the load variation level was adjusted equivalently. Reference [14]
shows that the average error increases for both methodologies when the load variation level
is increased, but that the increase is more obvious for the CM. This phenomenon is closely
related to the fundamentals of the methodologies, as the CM is based on linearization of the
load flow equations, and thus will be expected to struggle when the random variation about
the mean increases. Having available in this case study a tool like the MC simulation to
obtain the exact solution, would make a qualitative validation of these tendencies possible.

In conclusion for this case study, the deviation between the two methodologies are gener-
ally below a few percent, which should in most cases be considered acceptable. Comparison
to source providing the exact results would serve as an even better validation, making possi-
ble an evaluation of which method actually performs best in terms of accuracy with respect
to the exact solution.

4.3 IEEE RTS base case

The IEEE Reliability test system (RTS) [11] is utilized in the remaining case studies, in order
to demonstrate the methodologies on a slightly larger system and to have available a tool to
conduct PLF on a widely-used test system for reliability studies. In this section, results for
the base case, i.e. the case with no correlation between variables or unconventional generation
is presented. The implementation of the methodologies is equal as in the previous case study
of section 4.2, and is described in sections 3.1.1 and 3.2.1.

The line data and raw load data of the IEEE RTS are provided in appendix C.2. In this
section, only load demands will be modelled as probabilistic inputs in order to keep the base
case model simple. In the case studies of the two subsequent sections, this model will be kept
as a constant basis when correlation between loads and correlated unconventional generation
units are introduced in sections 4.4 and 4.5, respectively.

The probabilistic modelling can be summed up as follows:

• Loads: All loads in the system are considered random variables. They are normal
distributed with means equal to the values of the deterministic base case system, which
can be found in table C.5 of appendix C.2. The standard deviation of each load is equal
to 5% of the corresponding mean value. This load model is inspired by [18].

• Generation: No probabilistic modelling of generation in this base case model.

• Correlation: No correlation between any random variables in this base case model.
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4.3 IEEE RTS base case

Complete results represented by mean values and standard deviations of voltages and line
power flows are included in appendix D.3. The results of the CDF approximation by GCE
is provided for selected variables below.
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Figure 4.4: CDF approximations by GCE for the voltage at bus 6
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Figure 4.5: CDF approximations by GCE for power flows in line 15− 16
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4.3.1 Discussion

The IEEE RTS is a slightly larger system than the IEEE 14 bus system of the previous
section. Nonetheless, the exact same procedure has been used in the implementation of the
two methods, and in that sense, the results from this case study can pose as an additional
validation of the implementation of the base case methodology.

Investigating the numerical results included in appendix D.3, the deviation between the
two methods is negligibly small; never exceeding 0.1% in either mean values or standard
deviations. Despite not having available the exact results for this PLF problem, the fact that
two methodologies that are so fundamentally different produce results with differences that
are almost negligible, is a source of validation in itself. In addition, the selected results for
CDF approximations in figs. 4.4 and 4.5 gives some indication to the deviation between the
higher-order characteristics (moments and cumulants) obtained by the two methods. The
GCE implemented in this thesis makes use of the mean, standard deviation, skewness and
kurtosis in order to make an approximation of the CDF. The relatively small deviations in
the approximated functions indicate that also these quantities, obtained from the third- and
fourth-order moments or cumulants, differ within what can be considered acceptable limits.

4.4 IEEE RTS Correlation

In this section, case studies on the IEEE RTS with correlation between variables are carried
out. The implementation is done in accordance with the descriptions of the modified versions
of the PEM and CM, outlined in sections 3.1.2 and 3.2.2, respectively. The step-by-step
demonstrations in section 4.1 also describes the exact same procedure that is performed for
the case of this study, excluding the probabilistic modelling of generation. The base case
system from section 4.3 is retained in terms of the probabilistic modelling. Correlation is
initially added between the loads and extended also to generation when wind turbines are
added to the system in section 4.5.

Now, while retaining the probabilistic modelling of the system in section 4.3 correlation is
added to the system by defining a value ρij by which the loads at buses i and j are correlated
(refer to appendix A.2). For the case studies in this section, all loads are correlated by the
same correlation coefficient ρ in order to retain a simple system that can also be used to
demonstrate some simple sensitivity analyses. Consider first all loads to be correlated by a
coefficient of ρ = 0.2. The CDF approximations to the same variables as were presented in
section 4.3 are given in figures (REF) below.
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Figure 4.6: CDF approximations by GCE for the voltage at bus 6
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Figure 4.7: CDF approximations by GCE for power flows in line 15− 16

In order to study the impact of increasing correlation between the variables, a simple,
qualitative sensitivity analysis with regards to the correlation coefficient ρ will be performed.
The results using the original value of ρ = 0.2 will be compared to the results when ρ = 0.5

and ρ = 0.9. The results for the active power flow in line 15− 16 are presented for the PEM
and CM in figs. 4.8a and 4.8b, respectively.
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Figure 4.8: Sensitivities of ρ on the active power flow in line 15− 16

4.4.1 Discussion

The correlation scheme selected for these case studies is a simple one; all loads are correlated
by the same correlation coefficient ρ. It is of course possible to relate different buses by
different coefficients to create a more complex correlation scheme, for instance by dividing the
RTS into two regions as is done in the case studies of [18]. Creating a more complex scheme
is a fairly simple task, as the changes are only made to the correlation coefficient matrix,
whose construction is intuitive and straight-forward. In order to keep the system simple,
and to be able to perform a sensitivity analysis that can be interpreted in an qualitative and
intuitive way, this simplest possible correlation scheme was chosen for these case studies.

The deviation between the results obtained from the PEM and CM is definitely increasing
in this case compared to the previous one. This observation can be made directly from
investigating the CDF approximations in figs. 4.6 and 4.7. For all variables, the CDFs have
been plotted in the range of −4σ to +4σ with respect to the mean value. By observing
that in all the plots of figs. 4.6 and 4.7, the plotted line corresponding to the CM results
is shorter than the corresponding PEM line, it is obvious that the standard deviation and
thus in general the random variation of the results obtained from the CM is smaller than for
the PEM. Investigation of the tails of the distribution, i.e. the shape of the curves when the
values approach infinity, indicates that also the higher-order characteristics of the distribution
are deviating more than in the previous case study of the base case.

In figs. 4.8a and 4.8b sensitivities with regards to the correlation coefficient ρ are inves-
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tigated. For the PEM case of fig. 4.8a it can easily be observed that the variation, by means
of the standard deviation, is increasing in a linear manner, as the length of the plotted lines
increases with the correlation coefficient. This behaviour is expected, as a higher correlation
coefficient must lead to a higher level of uncertainty in the random variables.

However, by inspection of fig. 4.8b, the same tendency is not apparent for the CM, which
can indicate that the modified CM, as it was implemented in these case studies, is not behav-
ing as it should when the coefficient of correlation is varied. When varying ρ and comparing
the results from using the modified PEM and the modified CM, the differences between the
obtained results tend to increase with ρ. In itself, this is not necessarily an unexpected phe-
nomena, as the two methodologies are fundamentally different and are expected to behave
accordingly. However, by investigation of fig. 4.8, it is obvious that this increased difference
is mainly caused by the PEM results changing according to the intuitive understanding of
the correlation coefficient sensitivity, while the CM is reacting significantly slower to the
variation in correlation coefficient. In addition, there is the non-intuitive development of the
coefficient of variation subject to the changes in the correlation coefficient that was noted
above. These observations added together, gives a fairly strong indication that the imple-
mentation of the modified CM, outlined in section 3.2.2 and demonstrated on the small test
system in section 4.1.3, is not entirely correct.

From literature, this suspicion is supported by a similar analysis on the correlation coef-
ficient performed in [7], the main source of the modified CM utilized in these case studies.
By using the same general procedure for modified CM, the standard deviation is found to
be increasing in a manner almost proportional to the increasing correlation coefficient. This
tendency is apparent for all output variables, including the active power flows.

The modified CM outlined in section 3.2.2 is a complex methodology and the possible
errors in the implementation of the method will not be discussed in any further detail here.
The extensive description of the general methodology in section 3.2.2 together with the
detailed step-by-step demonstration should provide sufficient insight to the interpretation of
the methodology and the computational steps to make possible a more extensive investigation
of the possible sources of error in the implementation.

4.5 IEEE RTS Wind power

In this section, the system model developed in the two preceding sections is retained in terms
of the probabilistic modelling of the loads (section 4.3) and the correlation between those
loads (section 4.4). The inclusion of wind farms into the IEEE RTS is done with inspiration
from [24], where two wind farms are placed at buses 17 and 22, replacing the conventional

69



Chapter 4. Case studies

generation at those buses. This is the only adjustment that is made to the RTS system as
it is described in [11]. Inspired by [18], the two wind farms are correlated with a correlation
coefficient of ρ = 0.9.

The wind farms are modelled as probabilistic inputs in accordance with the procedure
outlined in appendix B. Inspired by [24], the rated power Pr of the two wind farms are 600 MW
(bus 17) and 900 MW (bus 22) respectively. The parameters used to model the wind speed
(i.e. the Weibull distribution shape and scale parameters) and the parameters describing the
speed-power curve (i.e. the cut-in, cut-out and rated speeds) are not explicitly given in [24].
Inspiration as to the determination of these values is rather obtained from [23], where all
the aforementioned parameters are provided, along with a presentation of the procedure for
handling the uncertainty of WTs which was the main inspiration for appendix B.

In [23], the Weibull parameters determining the distribution describing the wind speed
at the two sites are c = 8.78 and k = 1.75 (refer to appendix A.1.3). The characteristics of
the wind turbines utilized in [23] are

vci = 3 m/s

vr = 13 m/s

vco = 25 m/s

(4.41)

where vci, vr and vco are, in accordance with appendix B, the cut-in, cut-out and rated speeds
respectively, of the given wind turbines.

Now, to model the uncertainty, a random sample of size N is generated from the Weibull
distribution describing the wind speed at the site, and then passed through the speed-power
curve of eq. (B.1). In [23] a sample size of N=10 000 is used, and is also adopted for the case
of this study. A histogram of the wind speed at the site, represented by those 10 000 samples
from the Weibull distribution with c = 8.78 and k = 1.75 is included in figure fig. 4.9. After
the 10 000 values making out the distribution of fig. 4.9 are passed through the speed-power
curve of eq. (B.1), an equivalent histogram can be used to describe the distribution of the
power output of the wind farm. The power output of the 600 MW wind farm at bus 17 is
presented in fig. 4.10 together with the speed-power curve resulting from using the values in
eq. (4.41) with the expression for the idealized speed-power curve in eq. (B.1).
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Figure 4.10: Calculation of generated power from wind farm

Now that the moments, skewness and kurtosis are easily found from the distribution in
fig. 4.10 (as described in appendix B), the wind farm is included into the PEM just as any
other random variable with given values of mean, standard deviation, skewness and kurtosis.
The wind power case has only been implemented for the PEM in this thesis. The results for
the selected variables also presented in the previous sections are included in (REF)
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Figure 4.11: CDF approximations by GCE for the voltage at bus 6
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Figure 4.12: CDF approximations by GCE for power flows in line 15− 16

4.5.1 Discussion

The case for the system including wind power has only been implemented for the PEM in
this thesis, and the implementation for the CM is left as an option for future work. Due to
the trouble with the behaviour of the CM in the presence of correlated variables, as discussed
in section 4.4, meaningful results were not obtained for the CM when the same procedure
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as outlined above was performed. The trouble with the CM for this kind of case model can
of course also be partly due to the linearization requirement of the method. As discussed in
chapter 2, the CM is expected to perform poorly when handling input variables with a large
coefficient of variation, as the equations for nodal power injections and line power flows are
linearized around the mean value. The Weibull distribution used to model the wind speed
in this section is a distribution with a large coefficient of variation it is expected that the
results from the CM are prone to be less accurate than those from the PEM where original
load flow equations are retained. However, with the correct implementation, it should be
possible to produce meaningful results, as case studies of wind farm correlation is exactly
what is studied in reference [7], which was the main source for the derivation of the modified
version of the CM in section 3.2.2. In these studies, the Weibull distribution was also used
to model the wind speeds, but due to lacking information about the parameters used in the
speed-power curve and insufficient data of the test system, it was not considered possible to
replicate these results.

Instead the test system used in [24] was chosen for these case studies, as it is a modified
version of the IEEE RTS that was already used for the cases in the two preceeding sections.
However, in [24] the probabilistic model of the wind speed is not explicitly given, only the
rated an mean values of the final electrical output of the wind farm were provided. As this
is not sufficient information to input to the model of the wind farm, the data for the wind
speed modelling was collected elsewhere, as described in the results section above.

In all, there are no meaningful grounds of comparison for validation of the results obtained
from these case studies, from [7, 24]. However, the implementation of the PLF methodology
is unchanged, and thus validation of the methodology in itself is based on the discussions in
the previous sections of this chapter. Only the generator inputs on those buses containing
wind farms are changed compared to the case study model in section 4.4. Further, those
inputs are treated in the PEM exactly equally as any other random inputs: by means of the
mean, standard deviation, skewness and kurtosis. Hence no changes have been done with
regards to the methodological steps.

The probabilistic modelling of each wind farm can be validated on a qualitative level
using reference [23]. Recall that both the parameters of the Weibull distribution used to
model the wind speed, and the cut-in rate, rated speed and cut-out speed that constitute the
speed-power curve are identical in this case study and [23]. Only the rated electrical power
output Pr is different as a single wind turbine is modelled in [23], but the output of a full
wind farm is modelled in this case study. However, investigating eq. (B.1), the rated power is
only a scaling factor and will not affect the shape of the distribution. The distribution of the
wind speed, the speed power curve and the resulting electrical power output of figs. 4.9, 4.10a
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and 4.10b, respectively, are included also in [23]. Recall that figs. 4.9 and 4.10b are obtained
from using a random sample from the Weibull distribution, so the results from two different
samples will always deviate slightly; but from a qualitative point of view, differences in the
the shapes of the curves and the number of occurences in the histograms are negligible.

The general conclusion that can be drawn from the results of this case study is that
the uncertainty in the output variables has increased drastically. The plots in figs. 4.11
and 4.12 are still plotted in the range of 4σ away from the mean in both directions. By
comparison of figs. 4.11 and 4.12 to the corresponding results in figs. 4.6 and 4.7, it is
obvious that the standard deviation and hence also the coefficient of variation has indeed
increased drastically, as the range of the x-axis is much larger. These results are expected, as
the Weibull distribution and more intuitively, the wind speed, is associated with high levels
of uncertainty. This will consequently affect all variables in the system and result in a higher
risk of limitation of transmission line capacities and other security assessment measures in
the power system.

4.6 Overall discussion

In the preceding sections of this chapter, different case studies have been performed on various
test systems in order to demonstrate the performance of the in-house implementation of the
PEM and CM. In the case studies, emphasis has been laid on obtaining validation of the
results, at least to the extent possible with available data from existing literature. This
form of validation has proved challenging, due to the difficulties of encountering numerical
results and sufficient information about test systems and input data in existing research. A
quantitative validation of the base case methodologies outlined in sections 3.1.1 and 3.2.1 has
been possible due to available results, data and sufficiently detailed methodology description
in reference [28]. This validative case study was performed in section 4.2 and it has been
concluded that both methodologies provide good results when compared to the results in [28].
An additional source of validation for the implementation of the most basic methodologies,
was obtained in section 4.3, where a very simple probabilistic model of the IEEE Reliability
Test System was utilized, and the average deviation between the results obtained from the
two different methods was close to negligible.

The final two case studies of sections 4.4 and 4.5 investigated the possibility of including
correlation between random variables in the methodologies. These studies show promising
results for the PEM, but indicate some challenges with the implemented modified version of
the CM. Possible sources for this were not discussed in any detail, but further investigation
of the modified version of the CM that was chosen for this thesis, will rather be left as a
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4.6 Overall discussion

possibility for future work. In the final case study of section 4.5, two correlated wind farms
were included in the system model from section 4.4 in order to investigate the impact of
introducing a variable associated with very high levels of uncertainties into the system. The
consequences were, as expected, that the uncertainty associated with the output voltages
were increased drastically.
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5 | Conclusions

The aim of this thesis has been to create in-house tools for conducting probabilistic load flow
studies by analytical methods. Two methodologies that together represent the main groups
of non-simulation techniques - the Point estimate method and the Cumulant method, have
been investigated in their methodological concepts and through application in case studies
using various test systems. Besides creating the in-house programming tools, emphasis has
been laid on providing pedagogical clarity of the methodological theory, and to demonstrate
the calculation procedures in sufficient detail to make possible reproduction of the results
obtained in the case studies of chapter 4.

The possibility of validation of the results from the case studies in chapter 4 has been
somewhat limited due to the fact that no MC simulation methodology has been implemented
to serve as a source of validation. Quantitative validation of the results has only been
found possible for the base case system, i.e. where there is no correlation between random
variables and no unconventional generation sources. As the modified version of the PEM
and CM that are able to handle correlation between variables have not been validated on
a quantitative level, a case study including detailed step-by-step demonstrations of these
modified methodologies have been performed, in order to at least provide transparency of
the computational procedure.

Due to the difficulties related to validation of results, very few conclusions can be drawn
from the case studies in this thesis, as to which method is best suited for a given purpose. To
be able to do such analyses, a MC technique should be implemented to provide the possibility
of irrefutable validation. Then extensive analyses could be performed on the sensitivities of
load variation levels, correlation between variables and different types of distributed random
variables, in order to investigate which method performs best compared to the exact solution
of the problem.

However, several other researchers have addressed these issues, and some general con-
clusions as to the applications of the two methods can be obtained from existing literature.
Reference [14] investigates the two methodologies studied in this thesis, including compari-
son with the results of a MC method providing what can be considered exact results of the
problem. An important conclusion drawn by [14] is that when the level of uncertainty in-
creases, so does the average error in the results obtained from both methodologies. However,
the phenomena is more obvious for the CM, as it is limited by linearization of the load flow

77



equations. Consequently, if high levels of uncertainty are associated with the input variables,
it is generally recommended that the PEM be used. A possible drawback of the PEM how-
ever, can be with regards to the computation time. In the choice between the PEM and
CM, one can assume that the computational efficiency is of importancee, or else the more
accurate MC simulation methods should be chosen to perform the PLF. The computational
effort of the PEM is directly related to the system size, while the CM solves the problem
in a single operation. So dependent on the size of the system, in terms of the number of
random variables considered, different conclusions could be made to whether the PEM or
CM is recommended.

In conclusion, for non-simulation methods like the PEM and CM, some compromise be-
tween speed and accuracy always has to be made. The best suited method for a specific
purpose is dependent on the system size, the weightage of accuracy vs efficiency, and also on
the level of uncertainty associated with the random variables in the system.

5.1 Future work

The most obvious suggestion for future work following from the discussions of the case stud-
ies, would be to make available a MC simulation method for the different cases studied in
chapter 4. This would make possible a much wider range of case studies and an efficient way
to validate results. More importantly, the work done in this thesis on the cumulant method,
for the case with correlated variables, could be fine tuned for reliable results. Tendencies
in the results obtained from PEM and CM by different sensitivity analyses can then be an-
alyzed, providing better grounds for actually determining which method is best suited for
different purposes.

In chapter 3, some assumptions were made regarding the possibilities of correlation be-
tween variables. To provide a relatively simple introduction to the complex methodologies,
correlation was assumed to exist only between power injections at different buses, and only
between loads or between generators (i.e. not between loads and generators). The applica-
tions of the methodologies would be extended even further if possibilites to include correlation
between power injections at the same bus, or between loads and generators.

Finally, an important source of uncertainty in the power system that has not been ad-
dressed in this thesis are uncertainties related to network outages and other types of structural
changes in the physical network. Studies including these types of uncertainties are important
in reliability assessments and studies of security of supply.
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A | Some background theory

A.1 Some probability distributions

A.1.1 Normal distribution

The normal or gaussian distribution is the most important continuous distribution in the
whole field of statistics [26]. In this thesis, it is used to model the majority of the nodal load
demands present in the test systems utilized in the case studies. The following introduction
to the normal distribution is inspired by [4, 26].

Let a random variable X be normal distributed, with expected value µ and standard
deviation σ (refer to section 2.4 for an introduction of these quantities). The PDF of X is
then [4]

f(x) =
1√
2πσ

exp
(
−(x− µ)2

2σ

)
, −∞ ≤ x ≤ ∞, σ > 0 (A.1)

Note from eq. (A.1) that the PDF of the normal distribution is dependent on µ and σ. A short
term for the distribution is N(µ,σ). This makes it hard to obtain the CDF from integration
of eq. (A.1), because it cannot be integrated in closed form for every pair of limits a and b,
respectively [4]. Instead, probabilities of the normal distribution are usually rather obtain
from the CDF of the standard normal distribution. The standard normal distribution is a
normal distribution with µ = 0 and σ = 1, i.e. N(0,1). To demonstrate this relation, make a
change of variables by denoting

z =
x− µ
σ

(A.2)

Inserting this into eq. (A.1) and integrating up to a value of x to obtain the CDF, yields:

F (x) =
1√
2π

∫ x−µ
σ

−∞
exp

(
−z

2

2

)
dz (A.3)

From eq. (A.3), we can express F (x) when µ = 0 and σ = 1, i.e. the CFD Φ of the standard
normal distribution as:

Φ(z) =
1√
2π

∫ z

−∞
exp

(
−t

2

2

)
dt (A.4)
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Now, by combining eqs. (A.3) and (A.4), the CDF of the normal distribution N(µ,σ) is

FX(x) = Φ

(
x− µ
σ

)
(A.5)

A.1.2 Bernoulli distribution

The Bernoulli distribution is a special case of the discrete binomial distribution. In the
binomial distribution n experiments or trials are performed, with the outcome of each trial
being either success or failure. The trials often referred to as Bernoulli trials must satisfy
the following assumptions: [4]

1. There are only two possible outcomes for each trial; success and failure.

2. The probability of success of each event is the same for each trial.

3. Different trials of a given type are statistically independent.

Now assume that the above assumptions are satisfied and that from n trials, the probability
of success is p and conversely the probability of failure is q = 1 − p. The probability mass
function (PMF) expressing the probability k of successes in those n trials, is given by [4]

P (X = k) =

(
n

k

)
pk(1− p)n−k (A.6)

where
(
n
k

)
= n!/[k!(n−k)!] is the binomial coefficient. The mean and variance of the binomial

distribution is further

µ = np

σ2 = npq
(A.7)

Now consider the case where the number of trials n, is equal to 1. Then the probability
of success in this single trial is

P (X = 1) =

(
1

1

)
p1(1− p)1−1 = p (A.8)

The only other possible outcome of this single trial is failure, i.e. the number of successes k
is equal to zero. eq. (A.6) yields for this case:

P (X = 1) =

(
1

0

)
p0(1− p)1−0 = 1− p (A.9)
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The binomial distribution with only n = 1 trial is what is known as the Bernoulli disribution
[26]. From the expressions provided in section 2.4, raw moments, cumulants and other
statistical measures can easily be found for the Bernoulli distribution. Let Y be a random
variable that is a function of the Bernoulli distributed random variable X such that Y = bX.
Referring to eq. (2.13), the r-th order raw moment of the Bernoulli distributed variable Y is:

E[yr] =
∑
Y

yrp(y) =
∑
X

(bx)rp(x) = br
∑
X

xrp(x) = br(1 · p+ 0 · (1− p)) = brp (A.10)

From the raw moments, the r-th order cumulants of Y can easily be obtained from eq. (2.21).
From eq. (A.7), the mean and standard deviation of Y are

µY = bp

σY = b
√
pq

(A.11)

Using eq. (2.16), the skewness λ3 and kurtosis λ4 are easily obtained as

λ3Y = b
1− 2p
√
pq

λ4Y = b
1− 6pq

pq

(A.12)

In the context of this thesis, b will typically be the capacity of a generator, and X will
describe the randomness of the generator’s operation, based on its FOR. The FOR of a
generator can be viewed as the probability of failure, and thus q, as it is defined here, is equal
to the FOR:

p = 1− q = 1− FOR

q = FOR
(A.13)

A.1.3 Weibull distribution

The Weibull distribution is a continuous, two-parameter distribution, which will in this thesis
be used to describe the wind speed at a given location. Given the Weibull parameters k and
c, often referred to as the scale and shape parameter respectively, the PDF of the Weibull
distributed random variable X is given by [23]

fX(x) =

(
k

c

)(x
c

)k−1
exp

[
−
(x
c

)k]
, x > 0 (A.14)
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Integrating fX(x) to a value x, yields the CDF of X

FX(x) =

∫ x

−∞

(
k

c

)(x
c

)k−1
exp

[
−
(x
c

)k]
dx = 1− e−(

x
c
)k (A.15)

A.2 Correlation and covariance

Correlation between random variables can be described by the means of different measures.
Covariance and correlation coefficient are two measures most relevant for this thesis, hence
this section will focus on providing an introduction of those concepts. For the most general
case, let X and Y be two correlated random variables with joint probability distributions
described by f(x, y). The covariance σXY of X and Y is then: [26]

σXY = E[(X − µX)(Y − µY ]

=


∑
x

∑
y

(x− µX)(y − µY )f(x, y), X and Y discrete∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )f(x, y)dxdy, X and Y continuous

(A.16)

where E[·] is the expected value operator and µX and µY are the expected values of X and
Y , respectively. In accordance with the general introduction of basic statistics in section 2.4,
the uppercase X denotes the random variables, while the corresponding lowercase x denotes
a particular value in the range of X. Equivalently for Y and y.

The covariance σXY is a measure of the the nature of correlation between X and Y . The
sign of σXY indicates whether the correlation is positive (i.e. large values of X result in large
values of Y ) or negative (i.e. large values of X result in small values of Y ).

From the covariance σXY , the correlation coefficient ρXY can easily be obtained as

ρXY =
σXY
σXσY

(A.17)

The correlation coefficient is a dimensionless size restricted between the values −1 and 1.
When the two variables are independent, σXY = 0, and consequently so is ρXY , according to
eq. (A.17). A value of ρXY = 1 or ρXY = −1 corresponds to complete linear dependency, the
sign dependent on the linear expression relating X and Y .

When considering a set of random variables, the correlation between the variables of that
set can be described by the use of a correlation matrix. Let a set of n correlated random
variables be represented by the vector X = [X1, ..., Xn]. The correlation between the variables
can be described by a matrix of which the rows corresponds to X and the columns to XT .
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A covariance matrix then describes the covariance between the variables in X:

Cx(σ) = cov(X,XT ) =


σ2
X1

σX1X2 . . . σX1Xn

σX2X1 σ2
X2

. . . σX2Xn
...

... . . . ...
σXnX1 σXnX2 . . . σ2

Xn

 (A.18)

where cov(·, ·) is the covariance operator. Notice that the diagonal element (i, i) becomes
the square of the the standard deviation σXi , also referred to as the variance νXi (refer to
section 2.4.4). This can be derived from eq. (A.17), noticing that the correlation coefficient ρ
of a variable Xi with itself is equal to 1 (complete dependency). Then, according to eq. (A.17)

σXiXi = 1 · σXiσXi = σ2
Xi

(A.19)

If it is desirable to describe the correlation between the variables of X by their respective
correlation coefficients, the correlation coefficient matrix is defined in a similar way:

Cx(ρ) = ρ(X,XT ) =


1 ρX1X2 . . . ρX1Xn

ρX2X1 1 . . . ρX2Xn
...

... . . . ...
ρXnX1 ρXnX2 . . . 1

 (A.20)

where ρ(·, ·) is the correlation coefficient operator. Notice that in this case, the diagonal
elements becomes unity, also in accordance with eq. (A.17)

ρXiXi =
σ2
Xi

σXiσXi
= 1 (A.21)

A.3 Orthogonal transformation

The orthogonal transformation as it is utilized in this thesis, transforms a set u of correlated
variables to a set v of independent variables:

v = Bu (A.22)

where B is the transformation matrix yet to be determined. The following derivation is
mainly inspired by [7]. Let Cu be the correlation coefficient matrix describing the correlation
between the variables in u. In most engineering applications, this matrix is positive definite,
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which makes it possible to decompose it by Cholesky decomposition, obtaining:

Cu = LLT (A.23)

where L is an inferior, triangular matrix. The elements of L can be calculated by: [7]

lkk = (ρukk −
k−1∑
m=1

l2km)1/2, k = 1, 2, ..., n

lik =

ρuik −
k−1∑
m=1

limlkm

lkk
, i = k + 1, k + 2, ..., n

(A.24)

where n is the number of variables in u and lkk, lik, lkm and lkk are elements of the matrix
L. ρukk and ρuik are, in accordance with appendix A.2, elements of the correlation coefficient
matrix Cu.

For the set of transformed variables v to be independent, obviously their correlation
coefficient matrix Cv has to be equal to the identity matrix I. In the identity matrix,
all off-diagonal elements are zero, indicating in the correlation coefficient matrix that the
correlation coefficient ρij = 0 for all buses i and j. Let now ρ(·, ·) denote the correlation
coefficient operator as it was described in appendix A.2. Then, expressing Cv by the use of
eqs. (A.22) and (A.23), yields

Cv = ρ(v,vT ) = ρ(Bu,uTBT ) = Bρ(u,uT )BT = BCuBT

= B(LLT )BT = (BL)(BL)T = I
(A.25)

From eq. (A.25), an expression for the transformation matrix B can be found, as

(BL)(BL)T = I ⇒ B = L−1 (A.26)

So eq. (A.22) can be expressed in terms of the decomposed correlation coefficient matrix Cu:

v = L−1u (A.27)

Taking the inverse of the transformation in eq. (A.27), allows the correlated variables u to
be modelled as a linear combination of the independent variables in v:

u = Lv (A.28)

An equivalent derivation can be done if the covariance matrix (refer to appendix A.2)
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was used instead of the correlation coefficient matrix to describe the correlation between the
variables in u. Then in eq. (A.25), the covariance operator cov(·, ·) is used instead of the
correlation coefficient operator.

A.4 Linearization of power flow equations

Linearization of the line power flow equations forms the basis of the methodology of the CM.
When both the state variables X and the line power flows Z are of interest, both the nodal
power equations and the line power flow equations need to be linearized in order to be used
in the CM. The following derivation is inspired by [28], where the nodal power equations
were linearized.

Let the vector W = f(X), where X are the state variables, contain the nodal power
equations for all buses, including both active and reactive power. The nonlinear nodal power
equations for bus i are given by

Pi =
n∑
j=1

|Vi||Vj||Yij| cos(θij − δi + δj) (A.29)

Qi = −
n∑
j=1

|Vi||Vj||Yij| sin(θij − δi + δj) (A.30)

where the meaning of the variables are defined equivalently as in section 2.3. Let equivalently
Z = g(X) denote the nonlinear line power flow equations,

Pij = ViVj(Gijcosθij +Bijsinθij)− tijGijBijV
2
i (A.31)

Qij = ViVj(Gijsinθij −Bijcosθij) + (tijBij − bij0)V 2
i (A.32)

where all variables are defined equivalently as in section 3.2.2.

The aim of the linearization procedure is to obtain a set of linear equations that are valid
within a range of small disturbances with respect to some defined starting point. Let this
point be denoted X0 for the state variables. In the context of this thesis, X0 represents the
expected values of random variables contained in X. We now want to linearize the nodal
power equations around W0 = f(X0). Applying a small disturbance to the state variables X

will result in a corresponding change in the nodal power injections, which can be described
by:

W0 + ∆W = f(X0 + ∆X) (A.33)
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Applying Taylor series expansion to eq. (A.33) yields:

W0 + ∆W = f(X0) + f ′(X0)∆X + f ′′(X0)(∆X)2 + f ′′′(X0)(∆X)3 + ... (A.34)

where f ′ denotes the first-order derivative of f . Assume now that the disturbance is sufficiently
small for terms of (∆X)2 or higher to safely be ignored. Then eq. (A.34) simplifies to:

W0 + ∆W = f(X0) + f ′(X0)∆X (A.35)

Substituting W0 = f(X0) into eq. (A.35) yields

f(X0) + ∆W = f(X0) + f ′(X0)∆X

m
∆W = f ′(X0)∆X

(A.36)

In power flow analysis studies, it is usually the nodal power injections W that are the known
input values, leaving the state variables X to be the output variables. Using eq. (A.36) to
express the state variables yields:

∆X = (f ′(X0))
−1

∆W = J0
−1∆W (A.37)

where J0 is the Jacobian matrix, calculated by

f ′(X0) =
∂f(X)

∂X

∣∣∣∣
X=X0

(A.38)

and
S0 = J0

−1 (A.39)

is the sensitivity matrix relating changes in the nodal power injections to the corresponding
changes in the state variables. Then eq. (A.37) can be expressed as

∆X = S0∆W (A.40)

Now consider performing the exact same procedure in eqs. (A.33)–(A.36) for the line
power flow equations Z = g(X). eq. (A.36) then yields, for the line power flows

∆Z = g′(X0)∆X (A.41)
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where
g′(X0) =

∂g(X)

∂X

∣∣∣∣
X=X0

(A.42)

Denoting the sensitivity matrix relating changes in the state variables to corresponding
changes in the line power flows D0, yields

∆Z = D0∆X (A.43)

91



92



B | Probabilistic modelling of wind tur-
bines

The generated power from a wind turbine (WT) obviously highly depends on the wind speed
at the site where the turbine is located. The wind power is further associated with a high
level of uncertainty and needs to be modelled as a random variable. The Weibull distribution
is used to model the wind speed uncertainty in the majority of the sources including wind
power modelling that are referred to in this thesis [23, 18, 24, 7] and is also chosen to model
the wind speed uncertainty in the case studies of chapter 4. Expressions for the PDF and
CDF of the Weibull distribution are provided in appendix A.1.3.

Notice that it is the wind speed that is Weibull distributed, not the generator output from
the wind turbine. The WT power output is dependent on several other factors that also need
be taken into account. For reasons related to the construction of the turbine, the WT will
not produce any power if the wind speed is below a certain minimum value vci or above a
maximum value vco. These speed limits are often referred to as the cut-in and cut-out speeds
of the WT, depicting the wind speeds at which the WT goes in to production and falls out
of production, respectively. When the cut-in speed vci is reached and increasing, the power
output from the WT will generally increase linearly with the wind speed v up to a certain
point vr. vr will be referred to as the rated speed, and is the maximum speed the WT is
constructed to retain. This means that as the wind speed increases above the rated speed,
the speed of the WT will not increase, and consequently neither will the power output of the
WT. The power output is thus kept constant for increasing wind speed, until a wind speed
of vco is reached, and the WT is shut down completely.

The above reasoning can be modelled by a speed-power curve relating the wind speed
v to the generator power output P . The speed-power curve will generally vary between
different manufacturers of WTs [18], but an idealized curve can provide a sufficiently good
model for studies such as the ones performed in chapter 4 in this thesis. A typical, idealized
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speed-power curve can be written as follows [23]:

P =



0, if v ≤ vci
v − vci
vr − vci

Pr, if vci ≤ v ≤ vr

Pr, if vr ≤ v ≤ vco

0, if v ≥ vco

(B.1)

The speed-power curve of eq. (B.1) is not a continuous function of v and there is no straight-
forward way to easily relate the probability distribution of the wind speed to the power output
of the WT. The most obvious way to handle this issue, is to simply generate a random sample
from the Weibull distribution with specified parameters k and c, and then to run all values
from the sample through the speed-power curve in eq. (B.1). This procedure is described in
[23] and also adopted in this thesis.

When the sample from the Weibull distribution has been run through the speed-power
curve, a sample of the same size N is obtained for the WT power output. By viewing this
sample as a discrete distribution, raw moments, cumulants and properties like standard devi-
ation, skewness and kurtosis can easily be found from the expressions provided in section 2.4.
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C | Complete data of test systems

C.1 IEEE 14 bus test system

Base case data and probabilistic data for the IEEE 14 bus test system used for case studies
in section 4.2 is presented here. All data is identical to [28]. R and X are the resistance and
reactance of the line, respectively. bij0 is the susceptance to ground (given in table C.1 as
half the value of the full line susceptance) and tij is the transformer tap value.

Table C.1: Line data for IEEE 14 bus test system

From To R X bij0 tij
bus bus (p.u.) (p.u.) (p.u.)

1 2 0.01938 0.05917 0.0528 0
1 5 0.05403 0.22304 0.0492 0
2 3 0.04699 0.19797 0.0438 0
2 4 0.05811 0.17632 0.034 0
2 5 0.05695 0.17388 0.0346 0
3 4 0.06701 0.17103 0.0128 0
4 5 0.01335 0.04211 0 0
4 7 0 0.20912 0 0.978
4 9 0 0.55618 0 0.969
5 6 0 0.25202 0 0.932
6 11 0.09498 0.1989 0 0
6 12 0.12291 0.25581 0 0
6 13 0.06615 0.13027 0 0
7 8 0 0.17615 0 0
7 9 0 0.11001 0 0
9 10 0.03181 0.0845 0 0
9 14 0.12711 0.27038 0 0
10 11 0.08205 0.19207 0 0
12 13 0.22092 0.19988 0 0
13 14 0.17093 0.34802 0 0

Probabilistic modelling of the loads is presented in tables C.2 and C.3. In table C.2 mean
values µ are given in MW and MVAr (active and reactive power, respectively), and standard
deviations σ in percentage of the corresponding mean value.

Data for probabilistic modelling of generation is given in table C.4.
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Table C.2: Probabilistic load data for normal distributed loads of IEEE 14 bus test system

Pi Qi

(MW) (MVAr)

Node µ σ µ σ

1 0.0 0.0 0.0 0.0
2 21.74 0.09 12.7 0.092
3 94.20 0.10 19.0 0.105
4 47.8 0.11 -3.9 0.097
5 7.60 0.09 1.6 0.05
6 11.20 0.06 7.5 0.063
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
10 9.0 0.10 5.8 0.10
11 3.5 0.095 1.8 0.095
12 6.1 0.076 1.6 0.086
13 13.5 0.105 5.8 0.095
14 14.9 0.086 5.0 0.086

Table C.3: Probabilistic distribution of discrete load at bus 9 of the IEEE 14 bus system

Active power (MW) 13.4 19.6 30.2 34.8
Probability 0.10 0.15 0.30 0.25 0.20

Reactive power (MVAr) 7.5 11.0 17.0 19.6 21.0
Probability 0.10 0.15 0.30 0.25 0.20

Table C.4: Probabilistic modelling of generation in the IEEE 14 bus system

Bus Capacity No. of FOR
no. (MW) units

1 25 10 0.08
2 22 2 0.09

C.2 IEEE RTS

In this section, base case load demand data and line data for the IEEE RTS (24 bus case)
is presented explicitly. For additional data, including generator data, refer to [11]. For the
probabilistic modelling of the load demands, refer to the various cases in chapter 4.
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Table C.5: Base case load demand data for the IEEE RTS

Bus Pi Qi

i (MW) (MVAr)

1 108 22
2 97 20
3 180 37
4 74 15
5 71 14
6 136 28
7 125 25
8 171 35
9 175 36
10 195 40
11 0 0
12 0 0
13 265 54
14 194 39
15 317 64
16 100 20
17 0 0
18 333 68
19 181 37
20 128 26
21 0 0
22 0 0
23 0 0
24 0 0

Table C.6: Line data for IEEE RTS

From To R X bij0 tij
bus bus (p.u.) (p.u.) (p.u.)

1 2 0.0026 0.0139 0.4611 0
1 3 0.0546 0.2112 0.0572 0
1 5 0.0218 0.0845 0.0229 0
2 4 0.0328 0.1267 0.0343 0
2 6 0.0497 0.192 0.052 0
3 9 0.0308 0.119 0.0322 0
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Table C.6 – continued

i j R X bij0 tij

3 24 0.0023 0.0839 0 1.03
4 9 0.0268 0.1037 0.0281 0
5 10 0.0228 0.0883 0.0239 0
6 10 0.0139 0.0605 2.459 0
7 8 0.0159 0.0614 0.0166 0
8 9 0.0427 0.1651 0.0447 0
8 10 0.0427 0.1651 0.0447 0
9 11 0.0023 0.0839 0 1.03
9 12 0.0023 0.0839 0 1.03
10 11 0.0023 0.0839 0 1.03
10 12 0.0023 0.0839 0 1.03
11 13 0.0061 0.0476 0.0999 0
11 14 0.0054 0.0418 0.0879 0
12 13 0.0061 0.0476 0.0999 0
12 23 0.0124 0.0966 0.203 0
13 23 0.0111 0.0865 0.1818 0
14 16 0.005 0.0389 0.0818 0
15 16 0.0022 0.0173 0.0364 0
15 21 0.0063 0.049 0.103 0
15 21 0.0063 0.049 0.103 0
15 24 0.0067 0.0519 0.1091 0
16 17 0.0033 0.0259 0.0545 0
16 19 0.003 0.0231 0.0485 0
17 18 0.0018 0.0144 0.0303 0
17 22 0.0135 0.1053 0.2212 0
18 21 0.0033 0.0259 0.0545 0
18 21 0.0033 0.0259 0.0545 0
19 20 0.0051 0.0396 0.0833 0
19 20 0.0051 0.0396 0.0833 0
20 23 0.0028 0.0216 0.0455 0
20 23 0.0028 0.0216 0.0455 0
21 22 0.0087 0.0678 0.1424 0
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D | Additional results from case studies

D.1 3-bus test system

Results for the case studies with correlation were presented in sections 4.1.2 and 4.1.3 for PEM
and CM, respectively. As a complement, the results for the special case with no correlation
is presented here.

Table D.1: Results of PLF for PEM on 3-bus test system without correlation

Vi δi

(p.u.) (deg)

Bus i µ σ µ σ

1 1.0500 0.00000 0.0000 0.0000
2 1.0300 0.00000 -2.8239 0.3534
3 1.0321 0.00163 -2.1322 0.1874

Pij Qij

Line ij (MW) (MVAr)

i j µ σ µ σ

1 2 22.7722 2.5396 1.7151 0.7091
1 3 70.259 4.8154 9.1575 3.9431
2 3 -9.078 3.9452 18.6747 4.3283

Table D.2: Results of PLF for CM on 3-bus test system without correlation

Vi δi

(p.u.) (deg)

Bus i µ σ µ σ

1 1.05 0 0 0
2 1.03 0 -2.743 0.3509
3 1.03174 0.00162 -2.0923 0.1862

Pij Qij

Line ij (MW) (MVAr)
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i j µ σ µ σ

1 2 22.1885 2.5203 1.8701 0.7081
1 3 69.2745 4.7827 10.0677 3.9199
2 3 -8.1713 3.923 17.6634 4.2903

D.2 IEEE 14 bus

PLF results for voltages and power flow in lines from [28] are presented in tables D.3 and D.4,
respectively. These values are the basis for comparison of the corresponding values obtained
from the case studies in section 4.2.

Table D.3: PLF results for voltages from [28], IEEE 14 bus

Vi δi

(p.u.) (deg)

Bus i µ σ µ σ

1 1.06 0 0 0
2 1.045 0 -4.98429 0.44298
3 1.01 0 -12.73054 0.99757
4 1.01714 0.00202 -10.30872 0.68979
5 1.01873 0.00164 -8.76485 0.57883
6 1.07 0 -14.219 0.84952
7 1.06128 0.00286 -13.35621 0.97527
8 1.09 0 -13.35621 0.97527
9 1.05571 0.0051 -14.93501 1.14956
10 1.0508 0.00441 -15.09401 1.09751
11 1.05681 0.00231 -14.78788 0.97113
12 1.05517 0.00069 -15.07309 0.88307
13 1.05035 0.0012 -15.15407 0.90842
14 1.03539 0.00368 -16.03092 1.06123

Table D.4: PLF results for line power flows from [28], IEEE 14 bus

Pij Qij

Line ij (MW) (MVAr)

i j µ σ µ σ

1 2 156.9366 13.3943 -18.9334 3.1295

100



Table D.4 – continued

Pij Qij

i j µ σ µ σ

1 5 75.4682 4.7871 5.502 0.5054
2 3 73.2721 5.7571 4.7525 0.5651
2 4 56.1419 3.3318 -0.4093 0.6566
2 5 41.522 2.4094 2.5914 0.5004
3 4 -23.2535 4.4619 4.5501 2.0654
4 5 -61.0946 4.4898 16.0791 1.4391
4 7 28.0606 3.5716 -9.8291 0.8584
4 9 16.0705 2.0367 -0.4891 0.7895
5 6 44.111 2.6636 12.1028 0.5586
6 11 7.3663 1.4758 3.6053 1.0306
6 12 7.789 0.4155 2.5089 0.1953
6 13 17.7556 1.234 7.2398 0.6805
7 8 0 0 -17.3021 1.674
7 9 28.0607 3.5716 5.7639 2.3431
9 10 5.215 1.5654 4.1753 1.0612
9 14 9.4161 1.2503 3.5818 0.6851
10 11 -3.7978 1.4467 -1.6587 1.0088
12 13 1.6172 0.3685 0.7594 0.1822
13 14 5.654 1.1001 1.7751 0.6725

D.3 IEEE RTS base case

In this section, results are presented for the case studies of the base case IEEE RTS. Refer
to section 4.3 for a description of the probabilistic modelling.

The results for voltage magnitudes are provided in table D.5 with all values of µ and
σ in p.u. In table D.6 results for voltage angles are provided, all values of µ and σ in
degrees. tables D.7 and D.8 present the results for active and reactive power flows, all values
given in MW and MVAr, respectively. In all the aforementioned tables, the percentage-wise
deviation ε between the results obtained from the PEM and the CM are included in the last
two columns.
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Table D.5: Voltage magnitude results for IEEE RTS base case

Bus i
PEM CM ε

µ σ µ σ εµ εσ

1 1.035 0 1.035 0 0.000 0.000
2 1.035 0 1.035 0 0.000 0.000
3 0.98932 0.00196 0.98938 0.00196 0.006 0.000
4 0.9979 0.00112 0.99794 0.00112 0.004 0.000
5 1.0185 0.00092 1.01853 0.00092 0.003 0.000
6 1.01234 0.00198 1.0124 0.00198 0.006 0.000
7 1.025 0 1.025 0 0.000 0.000
8 0.99261 0.00138 0.99266 0.00138 0.005 0.000
9 1.00127 0.00114 1.00133 0.00114 0.006 0.000
10 1.0284 0.00137 1.02846 0.00137 0.006 0.000
11 0.98986 0.00069 0.98989 0.0007 0.003 1.449
12 1.00249 0.00092 1.00253 0.00092 0.004 0.000
13 1.02 0 1.02 0 0.000 0.000
14 0.98 0 0.98 0 0.000 0.000
15 1.014 0 1.014 0 0.000 0.000
16 1.017 0 1.017 0 0.000 0.000
17 1.03855 0.00008 1.03855 0.00008 0.000 0.000
18 1.05 0 1.05 0 0.000 0.000
19 1.02324 0.00031 1.02325 0.00031 0.001 0.000
20 1.03849 0.00018 1.03849 0.00018 0.000 0.000
21 1.05 0 1.05 0 0.000 0.000
22 1.05 0 1.05 0 0.000 0.000
23 1.05 0 1.05 0 0.000 0.000
24 0.97783 0.00135 0.97786 0.00135 0.003 0.000

Table D.6: Voltage angle results for IEEE RTS base case

Bus i
PEM CM ε

µ σ µ σ εµ εσ

1 -7.2827 0.7541 -7.2779 0.7541 0.066 0.000
2 -7.3746 0.7522 -7.3698 0.7521 0.065 0.013
3 -5.5877 0.7904 -5.5838 0.7904 0.070 0.000
4 -9.6942 0.6782 -9.6899 0.6782 0.044 0.000
5 -9.9683 0.69 -9.964 0.69 0.043 0.000
6 -12.4252 0.711 -12.4207 0.7109 0.036 0.014
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Table D.6 – continued

Bus i
PEM CM ε

µ σ µ σ εµ εσ

7 -7.3637 1.0743 -7.3575 1.0743 0.084 0.000
8 -11.0937 0.938 -11.0881 0.938 0.050 0.000
9 -7.4381 0.5773 -7.4349 0.5773 0.043 0.000
10 -9.5063 0.5993 -9.5028 0.5993 0.037 0.000
11 -2.1555 0.3898 -2.1541 0.3898 0.065 0.000
12 -1.5187 0.3151 -1.5175 0.3151 0.079 0.000
13 0 0 0 0 0.000 0.000
14 2.2568 0.6218 2.2584 0.6218 0.071 0.000
15 11.5641 0.8695 11.5658 0.8695 0.015 0.000
16 10.4471 0.7747 10.4487 0.7747 0.015 0.000
17 14.9297 0.8796 14.9313 0.8796 0.011 0.000
18 16.2902 0.9368 16.2919 0.9368 0.010 0.000
19 8.916 0.6586 8.9174 0.6586 0.016 0.000
20 9.5285 0.5332 9.5296 0.5332 0.012 0.000
21 17.1156 0.9099 17.1173 0.9099 0.010 0.000
22 22.7643 0.8981 22.7659 0.898 0.007 0.011
23 10.5712 0.4576 10.5723 0.4576 0.010 0.000
24 5.2972 0.8089 5.2992 0.8089 0.038 0.000

Table D.7: Active power flow results for IEEE RTS base case

Pij PEM CM ε

i j µ σ µ σ εµ εσ

1 2 11.9402 3.9042 11.9399 3.9042 0.003 0.000
1 3 -7.9648 3.0441 -7.9667 3.044 0.024 0.003
1 5 60.0246 3.1059 60.0268 3.1058 0.004 0.003
2 4 38.4351 2.6804 38.4358 2.6804 0.002 0.000
2 6 48.5011 2.493 48.5005 2.4929 0.001 0.004
3 9 22.8935 4.9078 22.898 4.9078 0.020 0.000
3 24 -211.2061 5.2481 -211.2063 5.2481 0.000 0.000
4 9 -36.155 3.2023 -36.1514 3.2023 0.010 0.000
5 10 -11.7184 3.5024 -11.7139 3.5024 0.038 0.000
6 10 -88.595 5.5946 -88.5923 5.5947 0.003 0.002
7 8 115 6.25 115 6.25 0.000 0.000
8 9 -36.9262 5.3095 -36.9233 5.3094 0.008 0.002
8 10 -21.1993 5.4466 -21.1944 5.4466 0.023 0.000
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Table D.7 – continued

Pij PEM CM ε

i j µ σ µ σ εµ εσ

9 11 -105.936 4.7567 -105.9186 4.7567 0.016 0.000
9 12 -120.4846 5.4672 -120.4663 5.4672 0.015 0.000
10 11 -151.1934 5.7423 -151.1769 5.7423 0.011 0.000
10 12 -166.7559 6.1753 -166.7391 6.1753 0.010 0.000
11 13 -86.1921 14.1755 -86.1459 14.1755 0.054 0.000
11 14 -171.7625 10.7729 -171.7731 10.7729 0.006 0.000
12 13 -60.5561 11.708 -60.5143 11.708 0.069 0.000
12 23 -227.6969 4.0886 -227.7015 4.0886 0.002 0.000
13 23 -225.2697 9.3335 -225.3026 9.3335 0.015 0.000
14 16 -367.5468 9.8568 -367.551 9.8567 0.001 0.001
15 16 112.296 12.0858 112.3009 12.0858 0.004 0.000
15 21 -214.9188 3.884 -214.9193 3.8839 0.000 0.003
15 21 -214.9188 3.884 -214.9193 3.8839 0.000 0.003
15 24 215.5416 5.4765 215.5378 5.4765 0.002 0.000
16 17 -322.6704 9.3272 -322.6765 9.3272 0.002 0.000
16 19 115.0675 12.176 115.0826 12.176 0.013 0.000
17 18 -186.938 9.2541 -186.9409 9.2541 0.002 0.000
17 22 -139.088 0.3959 -139.0883 0.3959 0.000 0.000
18 21 -60.2885 3.993 -60.2892 3.993 0.001 0.000
18 21 -60.2885 3.993 -60.2892 3.993 0.001 0.000
19 20 -33.1846 6.3611 -33.175 6.3611 0.029 0.000
19 20 -33.1846 6.3611 -33.175 6.3611 0.029 0.000
20 23 -97.2998 6.692 -97.2881 6.6919 0.012 0.001
20 23 -97.2998 6.692 -97.2881 6.6919 0.012 0.001
21 22 -156.4641 0.3999 -156.4638 0.3999 0.000 0.000

Table D.8: Reactive power flow results for IEEE RTS base case

Qij PEM CM ε

i j µ σ µ σ εµ εσ

1 2 -26.9196 0.7238 -26.9206 0.7238 0.004 0.000
1 3 21.6041 1.086 21.5654 1.0863 0.179 0.028
1 5 4.8755 1.0635 4.8289 1.0642 0.956 0.066
2 4 19.1896 0.8774 19.1509 0.8779 0.202 0.057
2 6 -1.0018 0.8897 -1.0381 0.8901 3.623 0.045
3 9 -16.9874 1.0229 -17.0094 1.0231 0.130 0.020
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Table D.8 – continued

Pij PEM CM ε

i j µ σ µ σ εµ εσ

3 24 6.1091 1.5072 6.117 1.5072 0.129 0.000
4 9 5.455 0.9192 5.4277 0.9194 0.500 0.022
5 10 -9.5901 1.1069 -9.6279 1.1073 0.394 0.036
6 10 -130.2706 1.2218 -130.3052 1.222 0.027 0.016
7 8 26.9401 2.542 26.8396 2.5419 0.373 0.004
8 9 3.3929 1.5055 3.3576 1.5055 1.040 0.000
8 10 -17.9705 1.3417 -18.0058 1.3417 0.196 0.000
9 11 -12.776 0.801 -12.7652 0.801 0.085 0.000
9 12 -25.6909 1.0988 -25.6897 1.0987 0.005 0.009
10 11 36.0207 1.0329 36.0287 1.0328 0.022 0.010
10 12 23.1781 1.2746 23.1771 1.2745 0.004 0.008
11 13 -54.9832 2.116 -54.9653 2.116 0.033 0.000
11 14 48.1282 2.5177 48.193 2.5181 0.135 0.016
12 13 -33.3478 1.4787 -33.3016 1.4791 0.139 0.027
12 23 -6.0989 1.438 -6.0666 1.4382 0.530 0.014
13 23 5.1277 3.0118 5.0972 3.0119 0.595 0.003
14 16 -23.7456 2.7362 -23.7658 2.7362 0.085 0.000
15 16 -32.5902 1.2981 -32.6033 1.298 0.040 0.008
15 21 -41.9655 0.888 -41.9691 0.888 0.009 0.000
15 21 -41.9655 0.888 -41.9691 0.888 0.009 0.000
15 24 48.6557 2.5176 48.587 2.5178 0.141 0.008
16 17 -33.8432 2.2634 -33.8591 2.2633 0.047 0.004
16 19 -43.3121 1.619 -43.3542 1.6191 0.097 0.006
17 18 -58.6991 0.7999 -58.6945 0.7998 0.008 0.013
17 22 4.2772 0.077 4.2786 0.077 0.033 0.000
18 21 5.1209 0.5673 5.1191 0.5673 0.035 0.000
18 21 5.1209 0.5673 5.1191 0.5673 0.035 0.000
19 20 -39.3138 0.9706 -39.3188 0.9706 0.013 0.000
19 20 -39.3138 0.9706 -39.3188 0.9706 0.013 0.000
20 23 -44.3555 0.9981 -44.3445 0.9982 0.025 0.010
20 23 -44.3555 0.9981 -44.3445 0.9982 0.025 0.010
21 22 20.1235 0.092 20.1234 0.092 0.000 0.000
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E | Matlab scripts

(Restricted public access)
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