
A study of Machine Learning for
Predictive Maintenance
A topic and programming guidance

Kåre Hartlapp Lærum

Master of Science in Mechanical Engineering

Supervisor: Amund Skavhaug, MTP

Department of Mechanical and Industrial Engineering

Submission date: June 2018

Norwegian University of Science and Technology

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

Address: Org.nr. 974 767 880

NO-7491 TRONDHEIM

Norway

Email:

mtp-info@mtp.ntnu.no

https://www.ntnu.edu/mtp

MASTER’S THESIS SPRING 2018

FOR

STUD.TECHN. Kåre H. Lærum

A study of Machine Learning for
Predictive Maintenance

A topic and programming guidance

This Master thesis aims to provide an introduction and to be practical start guide for those interested in

using Machine Learning for Predictive Maintenance. To achieve this, firstly, the topics Predictive

Maintenance (PdM), Machine Learning (ML) and Transfer Learning (TL) are presented. Then, the

thesis aims to provide an understanding towards ML and to give an introduction to the questions; what

is ML, how does it work, and how can one build an ML model to start with initial testing?

Contact:

At the department (supervisor): Professor Amund Skavhaug, Department of Mechanical and Industrial

Engineering, NTNU

mailto:mtp-info@mtp.ntnu.no
https://www.ntnu.edu/mtp

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

i

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

ii

i. ABSTRACT

A significant potential and interest is found for Predictive Maintenance (PdM) and Machine

Learning (ML). Both fields are under development and need further research. Through

collaboration with the Norwegian maintenance company, Karsten Moholt, two areas of special

significance for this thesis where found. Firstly, finding more information regarding the ML

approach and especially the potential of Transfer Learning (TL), and secondly, understanding

and building an ML model for PdM.

This thesis aims to provide an introduction and to be practical start guide for those interested in

using ML for PdM. To achieve this, necessary background information has been collected, and

to further learn about ML, several online courses have been completed. The online course,

books and several web-guides are used to build and develop two ML models to find Remaining

Useful Life (RUL) on the Turbofan Engine Degradation Data Set provided by NASA. The

information and code are presented to enable the reader to understand ML and to provide a tool

to start building ML models.

PdM is presented as a technique for monitoring operating condition to provide data that can

ensure the maximum interval between repairs and minimize the number and cost of

unscheduled machine failures. ML is con sidered as an important and powerful tool for finding

patterns and make predictions from a vast amount of data where Neural Networks (NN) is the

main technique for implementing ML. TL is considered as a powerful idea, where knowledge

from one NN can be transferred to another.

Further, the topic of NN is presentment and explained with examples. To enable the reader to

start programming, needed tools such as Python, Jupyter, Numpy, Pandas and Keras are

presented, used and recommended. The first model provides a guide on how to program an NN

oneself, and includes the elements; “prepare data”, “initialize weights and biases”, “forward

propagation”, “calculating cost”, “backpropagation” and “update parameters”. The second

model presents how to program the same model with Keras, an NN framework, also enabling

one to build an ML model with few lines of code.

This guide provides examples and tools that can be used for simple demonstrations of ML for

regression problems. The thesis provides arguments and justification for the need for further

research. It enables a foundation for further development of ML models for different PdM RUL

scenarios.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

iii

ii. SAMMENDRAG

Et betydelig potensiale og interesse er funnet for Prediktivt Vedlikehold (PdM) og Maskin

Læring (ML). Begge feltene er under utvikling og trenger videre forskning. Gjennom samarbeid

med det norske vedlikeholdsselskapet, Karsten Moholt, er det funnet to områder av spesiell

betydning for denne oppgaven. Det første er å finne mer informasjon om tilnærmingen ML og

spesielt potensialet til «Transfer Learning (TL)», eller overførbar læring, og for det andre, å

forstå og bygge en ML-modell for PdM.

Denne oppgaven har som mål å gi en introduksjon og være en praktisk startguide for de som er

interessert i å bruke ML for PdM. For å oppnå dette er nødvendig bakgrunnsinformasjon samlet,

og for å lære mer om ML har flere nettbaserte kurs blitt gjennomført. Nettkurset, bøkene og

flere nettguider er brukt til å bygge og utvikle to ML-modeller for å finne «Remaining Useful

Life (RUL)», gjenværende levetid, på «Turbofan Engine Degradation Simulation Data Set»

gjort tilgjengelig av NASA. Informasjonen og koden er presentert for å gjøre det mulig for

leseren å forstå ML og å gi verktøy for å kunne begynne å bygge ML-modeller.

PdM presenteres som en teknikk for overvåking av driftstilstanden for å gi data som kan sikre

maksimalt intervall mellom reparasjoner og minimere antall og kostnader for uforutsette

maskinfeil. ML er funnet som et viktig og kraftig verktøy for å finne mønstre og lage

spådommer fra en stor mengde data, der «Neural Networks (NN)», nevrale nettverk, er den

viktigste teknikken for implementering av ML. TL er funnet som et konsept med stort

potensiale, hvor kunnskap fra ett NN kan overføres til ett annet.

Videre er temaet NN presentert og forklart med eksempler. For å gjøre det mulig for leseren å

starte programmering, er det presentert nødvendige verktøy som Python, Jupyter, NumPy,

Pandas og Keras. Den første modellen gir en veiledning om hvordan man programmerer et NN

selv, og inkluderer elementene; “prepare data”, “initialize weights and biases”, “forward

propagation”, “calculating cost”, “backpropagation” og “update parameters”. Den andre

modellen presenterer hvordan man programmerer samme modell med Keras, et NN-

rammeverk, som også gir et eksempel på hvordan man kan bygge en ML-modell med få linjer

kode.

Guiden gir eksempler og verktøy som kan brukes til enkle demonstrasjoner av ML for

regresjonsproblemer. Master oppgaven gir argumenter og begrunnelser for behovet for

videreutvikling av nevnte tema. Oppgaven gir et grunnlag for videreutvikling av ML-modeller

for forskjellige PdM RUL-scenarier.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

iv

iii. PREFACE

This thesis started with the task of building an Industry 4.0 system for a Predictive Maintenance

case. The system was to be based on a developed algorithm, threating components in a

production line differently based on measurements found. When working with the algorithm,

the machine learning case came up early as a good solution. Further, Karsten Moholt was

contacted to base the system on a real-life case study. Through them, the topic of machine

learning became increasingly interesting and significant for this thesis.

I would first and foremost like to thank my supervisor, Professor Amund Skavhaug. I am

grateful for his weekly guidance and helpful advice towards this thesis and towards current and

future lifestyle. I would also like to thank Stian, Yapi and Ashutosh from Karsten Moholt for

their time, interest and valuable help in making this thesis. Last, but not least, I must thank my

family and friends for their advice and motivation, especially my dear Lisa Marie, for always

being there for me.

Kåre H. Lærum – Trondheim Juli 2018

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

i

iv. TASK DESCRIPTION

Title: A study of Machine Learning for Predictive Maintenance - A topic and programming

guidance

Task given: February 6th 2018

Deadline: June 26th 2018

Supervisor: Professor Amund Skavhaug, Department of Mechanical and Industrial

Engineering, NTNU

Student: Kåre H. Lærum

This Master thesis aims to provide an introduction and to be practical start guide for those

interested in using Machine Learning for Predictive Maintenance. To achieve this, firstly, the

topics Predictive Maintenance (PdM), Machine Learning (ML) and Transfer Learning (TL) are

presented. Then, the thesis aims to provide an understanding towards ML and to give an

introduction to the questions; what is ML, how does it work, and how can one build an ML

model to start with initial testing?

The candidate shall amongst other:

1. Study necessary background on Predictive Maintenance, Machine- and Transfer

learning

2. Build and develop code to find Remaining Useful Life (RUL) on the Turbofan Engine

Degradation Data Set provided by NASA

3. Present information and code as an introduction and to be a practical start guide

4. Evaluate the presented guide and the built ML model

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

ii

v. TABLE OF CONTENTS

i. Abstract ... ii

ii. Sammendrag .. iii

iii. Preface .. iv

iv. Task Description .. i

v. Table of Contents .. ii

vi. List of Figures .. vi

vii. List of Tables ... vii

viii. Abbreviations ... viii

1 Introduction ... ii

 Objectives and Aims .. ii

 Scope .. iii

 Intended Audience .. iii

 Report Structure .. iii

2 Theory ... 2

 Predictive Maintenance ... 2

 What is PdM ... 2

 Preventive Maintenance vs. Predictive Maintenance ... 2

 Predictive Maintenance today .. 2

 Machine Learning .. 3

 Machine Learning .. 3

 Machine Learning vs. Deep Learning vs. AI ... 4

 Machine Learning types ... 5

 Machine Learning in Predictive Maintenance ... 6

 Transfer Learning .. 7

 What is Transfer Learning? .. 7

 Transfer Learning challenges: .. 8

3 Neural Networks ... 10

 The build of Neural Networks ... 11

 Predicting house prices - A simple Neural Network example 12

 The weights and biases of a neural network .. 13

 Forward propagation .. 14

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

iii

 Loss and Cost function .. 16

 Gradient decent .. 17

 Backpropagation .. 19

 Pre-processing and Data Treatment ... 19

4 Tools for Making a Machine Learning Model .. 20

 Programming Language .. 20

 Python ... 20

 Packages and libraries ... 20

 Anaconda .. 20

 Libraries ... 20

 Machine Learning Frameworks ... 21

 Keras ... 21

 TensorFlow ... 21

 H2O .. 21

 Data and Training Sets .. 21

 Databases to get datasets for training ... 21

 The Turbofan Engine Degradation Simulation Data Set.................................... 21

5 Building a Machine Learning Model .. 22

 Tools Used ... 23

 Overall Model Description .. 25

 Prepare data ... 26

 The Turbofan Engine Degradation Simulation Data Set.................................... 26

 Splitting the txt-file and converting to csv-file .. 27

 Load data from csv-file .. 29

 Load N number of motors .. 31

 Standardize values .. 32

 Final code for loading treated data ... 33

 Initialize weights and biases .. 34

 Forward Propagation ... 36

 Calculate Cost .. 37

 Back Propagation ... 38

 Update parameters ... 40

 Model 1 .. 40

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

iv

 Running Model 1 ... 42

 Keras .. 45

 Set hyperparameters and load training and test data: ... 45

 Building the Keras model ... 46

6 Discussion ... 52

 Sources ... 52

 The Potential and Interest of PdM, ML and TL .. 53

 Understanding Machine Learning ... 53

 Building and Programming an ML model ... 55

 Usefulness .. 56

7 Conclusion .. 58

8 Further work .. 60

References: ... 62

APPENDIX A: Turbofan Engine Degradation Simulation Data Set, Readme – From zipfile

downloaded from NASA. ... 66

APPENDIX B: Backpropagation - Mathematical calculation of 𝒅𝑾 and 𝒅𝒃 68

APPENDIX C - Code ... 72

APPENDIX A: Turbofan Engine Degradation Simulation Data Set, Readme – From zipfile

downloaded from NASA.

APPENDIX B: Backpropagation - Mathematical calculation of 𝑑𝑊 and 𝑑𝑏

APPENDIX C: Code

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

v

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

vi

vi. LIST OF FIGURES

Figure 1: AI vs ML vs DL. From Copeland [28] ... 4

Figure 2: To the left: NN in training. To the right: A trained NN ... 10

Figure 3: A NN with a single neuron ... 11

Figure 4: An example of a anN from Nielsen [8] .. 11

Figure 6: Graphical- and NN representation of predicting price with size. From Ng [6] 12

Figure 7: Drawn NN with several features predicting house price. From Ng [6] 12

Figure 8: NN with several features predicting house price. From Ng [6] 13

Figure 9: NN with three inputs and one neuron. From Ng [6] ... 14

Figure 10: To the left: Sigmoid activation function. To the right: ReLU activation function.

Their respective functions can be found in formula 3.3 and 3.4. From Nielsen [8] 15

Figure 11: Forward Propagation over one neuron. From Ng [6] ... 15

Figure 12: To the left: Two-layered NN, with four neurons in the hidden layer. To the right:

equations 𝑧 and 𝑎 in the hidden layer. From Ng [6] .. 15

Figure 13: Gradient Descent example. From Ng (2017) [6] .. 17

Figure 14: Visualisation example of J(w). From Ng [6] .. 18

Figure 15: Steps in a general ML model .. 22

Figure 16: Steps in a general Keras model ... 22

Figure 17: Screenshot from Environments in Anaconda Navigator .. 23

Figure 18: Simple visualisation of the NN ... 25

Figure 19: Model 1, A two-layered NN, with two neurons in hidden layer and one in the output

layer .. 25

Figure 20: Steps in a basic ML model: Prepare Data ... 26

Figure 21: The first four and last three rows in Turbofan Engine Degradation Simulation Data

Set txt-file FD001 ... 26

Figure 22: Finding corresponding RUL from Cycle Number .. 27

Figure 23: Folder and file-structure after running after running code to split data 29

Figure 24: The first and last three rows in motor1.csv, from folder train_FD001 in folder

train_data. The first row contains headers for each column. By using Pandas DataFrame an

unnamed column is automatically added, containing numbers for each row. 29

Figure 25: Elements in a basic ML model: Initialize W and b ... 34

Figure 26: Steps in a basic ML model: Forward Propagation .. 36

Figure 27: Steps in a basic ML model: Calculate Cost .. 37

Figure 28: Steps in a basic ML model: Backpropagation .. 38

Figure 29: Steps in a basic ML model: Update Parameters ... 40

Figure 30: Print of cost of Model 1 trained with different hyperparameters 44

Figure 31: Print of cost from Keras model trained with different hyperparameters 49

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

vii

vii. LIST OF TABLES

Tabell 1: Number of Neurons in each layer in Figure 4 ... 11

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

viii

viii. ABBREVIATIONS

PdM: Predictive Maintenance

ML: Machine Learning

TL: Transfer Learning

NN: Neural Networks

RUL: Remaining Useful Life

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

1

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

ii

1 INTRODUCTION

The rise of digitization brings with it many different possibilities. One of them is Predictive

Maintenance (PdM). Through the use of sensors, changes and faults can be detected, algorithms

can translate the changes into recommended actions and machines or humans can take the

necessary action to prevent problems, all of which are important elements in PdM. In an article

from IIOT World, Saar Yoskovitz, Augury's CEO, mentions connected sensors and Machine

Learning (ML) as two main trends taking hold in the PdM space [1].

In a paper by Cline et al. [2], they demonstrated the potential of ML techniques for enhancing

the operations of an Oil and Gas equipment service department. In a paper by Li et al. [3], they

developed ML techniques for railway PdM. The models are being applied against both

historical and real-time data to predict conditions leading to failure.

A Norwegian company implementing ML for PdM is Karsten Moholt. They are one of the

world leaders in electromechanical machinery and has over 72 years of combined experience

with service, maintenance and condition monitoring. With their PdM program, skAIwatch,

Karsten Moholt intends to provide the customers with an end to end solution from detection of

potential failure to smart maintenance [4]. Working with Karsten Moholt two areas of special

significance for this thesis where found. Firstly, finding more information regarding the ML

approach and especially the potential of Transfer Learning (TL). Secondly, understanding and

building an ML model for PdM.

In their book, “Building Machine Learning Systems with Python”, Coelho and Richert [5]

explain the “how” behind the machine learning model. Through their efforts in learning about

ML both Authors experienced that much of the information behind ML was "black art", and

not usually taught in standard textbooks.

Several books, guides, courses and webpages are made to help others get started with ML. Some

of them are the course by Ng [6], a webpage by Brownlee [7] and books from Nilsen [8] and

Coelho and Richert [5]. But, few of them are focusing on regression and other practical ML

implementations for PdM.

 OBJECTIVES AND AIMS
This Master thesis aims to provide an introduction and to be practical start guide for those

interested in using Machine Learning for Predictive Maintenance. To achieve this, firstly, the

topics Predictive Maintenance (PdM), Machine Learning (ML) and Transfer Learning (TL) are

presented. Then, the thesis aims to provide an understanding towards ML and to give an

introduction to the questions; what is ML, how does it work, and how can one build an ML

model to start with initial testing?

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

iii

 SCOPE
This thesis focuses on providing information for the topics PdM, ML and TL. The ML system

presented is mainly focused on supervised learning. The guide and code are presented in the

light of a RUL (Remaining Useful Life) regression problem, using the Turbofan Degradation

Data Set by NASA, where the aim is to predict remaining cycles until failure. The process is

explained by both theory and code. One ML model is programmed to show how to build a

Neural Networks (NN) oneself and another is programmed to show how one can build an NN

with Keras, a neural networks API. The code is not directly optimized for the dataset, but

instead, intend to demonstrate how to build an ML model to get initial results and thus to start

with initial testing.

 INTENDED AUDIENCE
This thesis is mainly intended for students, and others, with a technical background, who are

interested in using supervised ML for regression problems connected to RUL and PdM. It is

assumed that the reader has little experience with ML. Some, but not excessive knowledge of

programming is assumed.

 REPORT STRUCTURE
Chapter 1 – Introduction

Chapter 2 – Theory: Predictive Maintenance, Machine Learning and Transfer Learning

This chapter present the general theory behind each topic. It focuses on the status of each topic

today, along with their possibilities and challenges. The aim is to present the general

characteristics of each topic and to provide arguments for the case of PdM, ML and TL.

Chapter 3 –The Neural Network This chapter presents the theory behind the build and

components of an NN, and thus ML. The theory focuses on NN used for regression. It aims to

answer the question of what ML is, and how ML works, by providing background information

and examples for understanding how NN work, and by presenting the general elements to

consider when building an ML model.

Chapter 4 – Tools for making a Machine Learning model This chapter present programs,

libraries, tools and elements that are used and recommended for building the ML Model.

Among them are the programming language Python, the mathematical library Numpy, the data

structure library Pandas, and Keras, a high-level NN API. The aim of this chapter is to present

tools that are necessary and helpful and when building a neural network.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

iv

Chapter 5 – Building a Machine Learning Model This chapter presents the process of

building and programming an ML model with python. Firstly, the process, along with code, for

editing and prepare the data is presented, then a basic ML model, and lastly a model built using

Keras. Both models are built to find RUL form the Turbofan Degradation Dataset.

Chapter 6 – Discussion This chapter discusses topics and elements presented in the thesis. It

discusses the three topics, PdM, ML and TL, the code and the guide solution presented.

Chapter 7 – Conclusion

References: The references used in the master thesis.

APPENDIX A: Turbofan Engine Degradation Simulation Data Set, Readme – From zip-file

downloaded from NASA.

APPENDIX B: Backpropagation - Mathematical calculation of 𝑑𝑊 and 𝑑𝑏

APPENDIX C: Code

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

1

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

2

2 THEORY

This chapter presents the general theory behind Predictive Maintenance (TL), Machine

Learning (ML) and Transfer Learning (TL). It focuses on the status of each topic today, along

with their possibilities and challenges. The aim is to present the general characteristics of each

topic and to provide arguments for the case of PdM, ML and TL.

 PREDICTIVE MAINTENANCE

 What is PdM

Predictive Maintenance (PdM) has many definitions. In their article, Cheng et al. [9] state that

the goal of Predictive Maintenance is to save money and increase equipment reliability.

Amruthnath and Gupte[10] state that the main purpose of PdM is to reduce unscheduled

downtime and consequently improve productivity and reduce production cost. The book, “An

introduction to predictive maintenance” by Mobley[11], present several more definitions. PdM

can be summarized to be a technique for monitoring operating condition to provide data that

can ensure the maximum interval between repairs and minimize the number and cost of

unscheduled outages created by machine failures.

 Preventive Maintenance vs. Predictive Maintenance

Sciban [12] states in his article the importance of distinguishing between predictive and

preventative maintenance as then often can be mixed.

All Preventive Maintenance management programs are time-driven. Machine repairs or

rebuilds are scheduled based on the MTTF statistics Mobley [11]. In other words, preventive

maintenance seeks to decrease the likelihood of a machine’s failure through the performance of

regular maintenance. Predictive Maintenance relies on data to determine a machine’s

likelihood of failure before that failure occurs. The manufacturer can then use a policy to predict

and fix. [12]

 Predictive Maintenance today

In a report from IoT Analytics, a leading provider of market insights for Internet of Things [13]

[1], it is found that maintenance strategies move from Condition-based Maintenance to

Analytics-and IoT-enabled PdM [13] [1]. The report forecasts an annual growth rate for PdM

of 39% between 2016-2022, and with annual technology spending reaching almost 11 Billion

dollars by 2022.

In his article, Sciban [12] , present two key reasons for rise of PdM. The first reason being that

modern machinery often comes with embedded computer chips for reading and control,

enabling a potential for data capture. Secondly, that the cost of implementing embedded sensors

and other new information technologies has and continues to be significantly reduced.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

3

As mentioned, PdM is a process to ensure the maximum interval between repairs and minimize

the number and cost of unscheduled outages created by machine failures. Going into detail,

PdM techniques help operators and technicians to characterize the condition of equipment and

give them warnings and alerts automatically in case of potential problems. Through their “Call

for papers”, IEEE [14] mention several benefits. Being aware of which equipment will need

maintenance, "unplanned stops" can turn into shorter and fewer "planned stops", giving a

benefit of increased availability. Other benefits mentioned is increased equipment lifetime,

plant safety, a decrease of accidents and, as a consequence, of the negative impact on the

environment, as well as optimized spare parts handling. Through their study, Mulders and

Haarman [15] surveyed 280 companies in Belgium, Germany and the Netherlands. They have

found few at a level where they are fully implementing PdM, but many that are interested and

ambitious to use and improve their PdM solution.

From an article by Nowitz [16] has found most Predictive Maintenance techniques not scalable

in to must facilities. Although there are numerous Predictive Maintenance solutions with

varying costs and levels of effectiveness, there is no one solution that applies to an entire

facility. A further limiting factor mentioned by Mowitz [16] the access to data. There are often

third-party machine vendors or other factors restricting operational access to the data. In their

study Mulders and Haarman [15] has also challenges connected to few reference cases, data

network capacity, and hazardous industrial environments demand an IoT to mention some.

 MACHINE LEARNING

 Machine Learning

In his article Kelly [17] lists three big breakthroughs that have greatly affected the ML

evolution; Cheap parallel computing - GPUs, Big Data, and better algorithms. Through his

online course at Coursera, Ng[6] mentions similar reasons. He believes Deep Learning is taking

off due to digitization, the large amount of data available, and the development of Neural

Networks (NN). There is a fast evolution of research areas affected by machine learning with

close-to-weekly publications of research [18]. The vast collection of data containing images,

texts, videos, location, social network activities and more, has given the opportunity for

computers to look for patterns and structures that could not be found in smaller data sets. Deep

Learning is one of the new methods of finding structures and patterns through multiple levels

of abstractions [19], and is currently used in most research involving machine learning [20].

ML and NN can compute any possible function [8]. In an article on Forbes, Marr [21] presents

27 examples of ML in practice. ML is helping in finance, healthcare, energy and manufacturing

to mention some. ML has also a significant potential for PdM [15, 16, 22, 23].

In the Crowdflower’s 2017 Data Scientist report [24] participants where asked to identify the

biggest bottleneck in successfully completing AI projects. Over half the respondents named

issues related to training data such as “Getting good quality training data or improving the

training dataset”.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

4

 Machine Learning vs. Deep Learning vs. AI

Machine learning is a subsection, or sub-discipline, of Artificial Intelligence (AI), and Deep

Learning a subsection of ML [10, 25-28].

In his article Marr [25] also want to present ML as the current state-of-the-art in the field of AI,

and the technique is showing the most promise at providing tools that industry and society can

use to drive change. In turn, Deep Learning is the cutting-edge of ML. In other words, Deep

Learning is the most common technique in ML, and ML the most common technique in AI.

Figure 1: AI vs ML vs DL. From Copeland [28]

2.2.2.1 AI

AI was first introduced by a handful of computer scientists at the Dartmouth Conferences in

1956. The aim was to construct complex machines that possessed the same characteristics of

human intelligence. This is today the concept of “General AI”, machines that have all of human

senses, reason, and intellect. [28]

2.2.2.2 Machine Learning — An Approach to Achieve Artificial Intelligence

Machine Learning at its most basic the practice of using algorithms to parse data, learn from it,

and then decide or predict. Opposite from hand-coding software routines with a specific set of

instructions to then accomplish a particular task, the machine is “trained” using large amounts

of data and algorithms that give it the ability to learn the correlation between input and desired

output and thus how to perform the task. [28, 29]

2.2.2.3 Deep Learning — A Technique for Implementing Machine Learning

Deep Learning can be presented as ML on a “deeper” level and is built on an algorithmic

approach called Artificial Neural Networks. Neural Networks(NN) are inspired by our

understanding of the biology of our brains and built with layers, connections, neurons, and

directions of data propagation. [6, 28, 29]

http://www.nvidia.com/object/machine-learning.html

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

5

In 2012, Andrew Ng, at Google, took the NN drastically increased their size. He increased the

layers and the neurons, and then run massive amounts of data through the system to train it,

images from 10 million YouTube videos. Copeland [28] credits Ng with putting the “deep” in

deep learning, with deep describing all the layers in a deep NN.

Through his course, Ng [6] presents and talk about NN, Deep Learning and ML practically the

same thing.

 Machine Learning types

Learning in ML refers to the process of describing or modeling the available data. ML is mainly

divided into three distinct types of learning; supervised-, unsupervised- and reinforcement

learning.

2.2.3.1 Supervised Learning

Definition from Encyclopaedia of the Sciences of Learning [30]
“Supervised Learning is a machine learning paradigm for acquiring the input-output

relationship information of a system based on a given set of paired input-output training

samples. As the output is regarded as the label of the input data or the supervision, an

input-output training sample is also called labeled training data, or supervised data.”

Supervised learning problems are generally categorized into "regression" and "classification"

problems. In a regression problem, the aim is to predict results within a continuous output or to

map input variables to some continuous function. In a classification problem, the aim is instead

to predict results to a discrete output, or in other words, map input variables into discrete

categories. [6]

There are different types of neural network. One example is Convolution Neural Network

(CNN) often used for image application. Another is Recurrent Neural Network (RNN). Often

used for one-dimensional sequence data such as translating English to Chinses or a temporal

component such as text transcript. As for the autonomous driving, it is a hybrid neural network

architecture. Almost all the economic value created by neural networks has been through

supervised learning. [6]

2.2.3.2 Unsupervised learning

Definition from Encyclopaedia of the Sciences of Learning [31]

“Unsupervised learning is when a model or system is not supplied with any explicit

feedback. The system has to learn patterns or structures in the data on its own.”

Unsupervised learning problems can be further grouped into clustering and association
problems [32]. Clustering is the process of finding the inherent groupings in the data, an
example being customers grouped by purchasing behavior. For association the aim is to find
rules that describe large portions of the data, an example being people that buy X also tend
to buy Y.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

6

A comment from an interview with Geoffrey Hinton [6]

“… in the long run, I think unsupervised learning is going to be absolutely crucial. But

you have to sort of face reality. And what's worked over the last ten years or so is

supervised learning.”

2.2.3.3 Reinforcement learning

From Encyclopaedia of the Sciences of Learning [33]
“Reinforcement learners interact with their environment and use their experience to

choose or avoid certain actions based on their consequences. Actions that led to high

rewards in a certain situation tend to be repeated whenever the same situation recurs,

whereas choices that led to comparatively lower rewards tend to be avoided.”

The essence of Reinforcement Learning is learning through interaction. Practically this is

implemented by setting the machine in a certain state, then have it take an action, bringing it to

another state. Further, the essence of Reinforcement Learning is to define the final aim or final

desired state. If the action the system took brings it nearer the final state, it is stored as a positive

action, if it brings it further away, it is stored as a negative action. [34]

Another learning type often mentioned is semi-supervised learning. It is a hybrid of supervised

and unsupervised learning where some data is labeled. Obtaining labeled data for supervised

learning can be costly, but often large amounts of unlabeled data can be obtained cheaply. Semi-

supervised learning exploits both at once and is useful when only limited labeled data is

available. [35]

 Machine Learning in Predictive Maintenance

Irwin, MSV and Nowitz [16, 22, 23] all argue ML to be highly relevant for PdM. Irwin argues

PdM as one of the most relevant areas where ML can be implemented in the industrial sector.

Nowitz [16] states PdM as one of the biggest opportunities identified for the Smart Factory.

With ML algorithms asset degradation and breakdowns can be detected ahead of time, and

resources can be shifted away from unnecessary maintenance.

Through their study for PwC and Mainnovation, Mulder and Haarman [15] mention the large

amount of data as both a challenge and an opportunity. For humans, the data amount could

easily be overwhelming. Advancement in ML algorithms is found to be particularly crucial to

make use of the data and to make models to improve the case of maintenance. Every subsequent

amount of data is then used to refine that model and improve its predictive powers.

Building on this, Cline et al. [2] have through their study found that ML provides a

complementary approach to maintenance planning. By analysing significant datasets of

individual machine performance and environment variables, it can identify failure signatures

and profiles, and provide an actionable prediction of failure for individual parts.

In another study, Susto [36] proposes an ML system for the case of PdM. As new information

is available for processed components, the system uses ML and regularized regression methods,

to refine Remaining Useful Life estimates (RUL) and associated costs.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

7

In their Call for papers, the 15th IEEE International Conference on Networking, Sensing and

Control [14], presents a need for papers on PdM and ML. They wish to identify challenges

related to the application of ML techniques to PdM systems.

 TRANSFER LEARNING

 What is Transfer Learning?

From Ng[37]

“One of the most powerful ideas in deep learning is that you can take knowledge the neural

network has learned from one task and apply that knowledge to a separate task”

Definition from Encyclopaedia of the Sciences of Learning [38]

“Transfer refers to the influence of earlier learning on later learning. Some kinds of

transfer take the form of simple stimulus generalization, while in more complex learning

situations transfer may depend on the acquisition of rules or principles that apply to a

variety of different circumstances. Learning can be viewed as intermediate between

simple generalization and the more complex transfer phenomena involved in

hierarchically organized skills. “

An example of TL in ML can be found in the article by Masashi, and Pan and Yang [39, 40].

Given the scenario of predicting overall positivity or negativity, sentiment analysis, of digital

camera reviews, but there are too few reviews to train on. In this case, there exists an abundance

of labeled data from food reviews. By using food reviews as input for training and predict

results on digital cameras, the predictions will most likely be poor. With TL, the idea is to

“transfer” the similarities, or characteristics, from the scenario with abundant of examples to

the scenario with few examples. Both reviews can be said to be written in textual form using

the same language, and they both express views about a purchased product. Transferring these

characteristics and training the Neural Network on the digital camera reviews can improve the

results [40].

Through his webpage, the Ph.D. student Ruder [41] describes TL as the next frontier in ML for

the industry, and a solution to mitigate several challenges found for ML in the industry, one of

them being the case where machines often meet a different environment in the field than during

testing.

An example of TL in PdM can be found at the Maintenance Company Mtell [42]: They use TL

to find signature features of a type of machine. By transferring these signatures this they can

re-train the algorithm, or ML model, to fit the new motors specific normal and failure

signatures.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

8

 Transfer Learning challenges:

For TL, Pan and Yang [40] present three main research issues: what to transfer, how to transfer,

and when to transfer.

What to transfer asks which part of knowledge or information can be transferred across

domains or tasks. Some knowledge is specific for an individual domain, other knowledge may

be common between different domains. Such common knowledge may improve the

performance of the target domain or task.

When to transfer asks in which situations transferring should be done, or not done. In some

situations, when the source domain and target domain are not related to each other, they have

no common “knowledge”, transfer degrades the performance of learning in the target domain.

This situation is often referred to as negative transfer.

How to transfer relates to the issue of, once after finding when and which knowledge can be

transferred, learning algorithms need to be developed to transfer the knowledge.

Avoiding Negative transfer

As one of the main limiting factors of TL, it is important to avoid negative transfer. Pan and

Yang [40] suggest studying the transferability between source domains and target domains.

Further to define the transferability, a criterion to measure the similarity between domains needs

to be defined. Based on the distance measures, one can then cluster domains or tasks, which

may help measure transferability, which again can reduce or remove negative transfer.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

9

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

10

3 NEURAL NETWORKS

This chapter presents the theory behind the build and components of a Neural Network (NN).

The theory focuses on NN used for regression. It aims to answer the question of what ML is,

and how ML works. It does this by providing background information and examples for

understanding how NN works, and by presenting the general elements to consider when

building an NN.

Ng [6] describes NN as powerful learning algorithm inspired by how the brain works. NN can

be said to be one of the main drivers behind ML. As previously mentioned, when talking about

NN or ML, one is generally talking about the same thing [6].

The goal of an NN is to predict a desired outcome based on input values x. This outcome can

be a value or several values. For a regression problem it can be any number, for a classification

problem the value, or values, are in-between 0 and 1.

In general, a trained NN can be visualized as a box or system that take input values and output

a predicted value, see Figure 2. When training the supervised NN, from a training dataset, the

predicted value is measured against the real value. This measure is then used to train and

improve the NN. After the NN is trained, a dataset independent of the training set called test set

is used to evaluate how good the network is at predicting. With a low score, the process is to

go back, edit the NN, train and then test again. Through this process, one can, hopefully, make

an NN that is good at predicting the desired outcome. Once a model is sufficiently trained and

tested, it can then be used as a prediction application for the given specific area. [6]

Neural

Network
Input X

Predicted Value vs.

True Value

Neural

Network
Input X Predicted value 𝑌

Figure 2: To the left: NN in training. To the right: A trained NN

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

11

 THE BUILD OF NEURAL NETWORKS
The simplest NN is just a single neuron, also called node or unit, as seen in Figure 3. A larger

NN is then formed by taking many of the single neurons and stacking them together. The

process of going from input through the node and to output is similar for all neurons in the

network. [6]

 Figure 3: A NN with a single neuron

The general NN has an input layer, hidden layers and an output layer. Each layer has a given

number of neurons or nodes in them. Hidden layers are all layers that is not an output or input

layer. The output layer corresponds to the predicted values or values. The input is mainly noted

as x or X and the output often as �̂� or 𝑌 . [6, 8]

Figure 4 shshowsn example of 3-layered NN. The input layer is not counted. This 3-layered

NN has six neurons in the input layer, four neurons for the first hidden layer, or first layer, three

neurons in the second layer and one neuron in the third layer, or output layer.

Figure 4: An example of a anN from Nielsen [8]

Input layer Hidden Layer Output

layer

First Layer Second Layer Third

Layer

Six neurons Four neurons Three neurons One neuron

Tabell 1: Number of Neurons in each layer in Figure 4

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

12

 Predicting house prices - A simple Neural Network example

In the Coursera online course by Andrew Ng, an example is presented to get an intuitive

understand about neural networks [6].

Starting simple, the price is only decided by the size of the house. Plotting some values into a

graph then, mathematically, the relationship between size of house and price may be estimated

as 𝑃𝑟𝑖𝑐𝑒 = 𝑆𝑜𝑚𝑒𝑉𝑎𝑙𝑢𝑒 ∗ 𝑆𝑖𝑧𝑒 + 𝑆𝑜𝑚𝑒𝑆𝑡𝑎𝑟𝑡𝑉𝑎𝑙𝑢𝑒 as seen in left Figure 5. For an NN, this

can be illustrated with a single neuron seen to the right in Figure 5. Here 𝑥 represents the input

size, and the predicted output 𝑦 is the price. As mentioned, the predicted output is normally

noted as �̂�, but for easier notation it will be noted as 𝑦 in this example.

Figure 5: Graphical- and NN representation of predicting price with size. From Ng [6]

To build on this, there may be other features than size that can indirectly affect the price. One

of them can be the number of bedrooms. This may be relevant for a family of a given size.

Another one can be the zip- or postal code. Depending on location there may be a long or short

walk to a potential school, grocery stores or other essential places. A fourth feature can be the

general wealth of the neighborhood. This may again effect how good the school is. Based on

these features, size and number of bedrooms may say something about the family size. Based

on the zip code, walkability may be found. The combination of zip code and wealth may

estimate the school quality. For this example, the best estimate for the prize may then be decided

by the combination of family size, walkability, and school quality, see Figure 6.

Figure 6: Drawn NN with several features predicting house price. From Ng [6]

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

13

To summarize, this example can be described as an NN with four inputs, or features, the size,

number of bedrooms, the zip- or postal code, and the wealth of the neighbourhood. Given these

input features, the job of the neural network will be to predict the price y. Each of circles drawn

in Figure 6 are examples of neurons in the neural network. In the example, the arrows are drawn,

and it is already decided which features effects what. When setting up an NN, each of the

neurons takes in inputs from all four input features, see Figure 7. Rather than saying the first

node represents family size and family size depends only on the features X1 and X2. Instead,

the NN will decide.

A comment by Ng (2017) [6]

“the remarkable thing about neural networks is that, given enough data about x and y,

given enough training examples with both x and y, neural networks are remarkably good

at figuring out functions that accurately map from x to y.”

Figure 7: NN with several features predicting house price. From Ng [6]

 THE WEIGHTS AND BIASES OF A NEURAL NETWORK
To explain the thought behind weights and biases, the housing example, Figure 7, is again used.

When finding the prize, some of the features may be more relevant than others. Thus, weights

(w or W) are introduced. They are real numbers expressing the importance of the change of the

respective inputs to the output [8]. Another scenario is when a given feature is important,

independent of the feature value. For this scenario bias (b) is added.

For each neuron in the network, the output is pendent on the combination of input values,

weights and biases. The mathematical formula with one input over each neuron in the NN

network is:

 𝑦 = 𝑤 ∗ 𝑥 + 𝑏

(3.1)

When setting up a NN, all weighs and biases in the network is given an initial value. For initial

testing, the biases can usually be set to zero and the weights set to a random number [6].

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

14

 FORWARD PROPAGATION
Forward propagation is the process of going from input values x, through the NN and to the

predicted value �̂�. Figure 8 show a scenario with input of one training example, x1, x2, x3,

going through one neuron and giving a predicted output �̂�.

Figure 8: NN with three inputs and one neuron. From Ng [6]

With 𝑥 = 𝑥1, 𝑥2, 𝑥3, forward propagation can be written as

 �̂� = 𝑤 ∗ 𝑥 + 𝑏

(3.2)

Where w is a vector containing w1, w2, w3 each a value corresponding to 𝑥. Usually t,he value

found in each neuron is noted as 𝑧, where the 𝑧 value of the output layer is equal to the predicted

value, �̂�.

Activation function

An important implementation in NN is the activation function. The general idea behind it is that

the value found in the given neuron, value 𝑧, must be higher than a given threshold for the

neuron to be activated. If over, the neuron will “fire” and give output one, if lower, the neuron

will stay dormant and output zero. For many other NN it is desirable to have the neuron output

other values than just zero or one. There are many different activation functions. Two typically

mentioned functions are the Sigmoid-, converting z to a number between 0 and 1, and ReLU

(Rectified Linear Unit) activation function, outputting the highest of either zero or 𝑧. Their

equations are presented in (3.3) and (3.4) and visualized in Figure 9.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =

1

1 + 𝑒−𝑧

(3.3)

 𝑅𝑒𝐿𝑈 = max(0,𝑤 ∗ 𝑥 + 𝑏) = max(0, 𝑧) (3.4)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

15

Figure 9: To the left: Sigmoid activation function. To the right: ReLU activation function. Their respective functions can be

found in formula 3.3 and 3.4. From Nielsen [8]

Continuing with the example of an NN with one neuron, Figure 8, the general step over one

neuron can visualise as seen in Figure 10 and can be written mathematically as (3.5) and (3.6).

Figure 10: Forward Propagation over one neuron. From Ng [6]

 𝑧 = 𝑤𝑇 ∗ 𝑥 + 𝑏

(3.5)

 𝑎 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑧) = 𝜎(𝑧)

(3.6)

To further illustrate the process of forward propagation, a new layer is added to the model, see

Figure 11. This new layer contains four neurons. It can now be a challenge to track each function

with correct notation. A common notation is to use higher-case for the layer number and lower-

case number for each neuron in each layer. For the scenario in Figure 11 the value 𝑎 found in

the first neuron in the first layer is noted 𝑎1
[1]

.

Figure 11: To the left: Two-layered NN, with four neurons in the hidden layer. To the right: equations 𝑧 and 𝑎 in

the hidden layer. From Ng [6]

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

16

Instead of writing the functions 𝑎 and 𝑧 for each of neurons, they can be written as a vector for

each layer. Giving (3.7) and (3.8) for the first layer and (3.9) and (3.10) for the second.

 𝑧[1] = 𝑊[1] ∗ 𝑥 + 𝑏[1],

 𝑎[1] = 𝜎(𝑧[1])

(3.7)

(3.8)

 𝑧[2] = 𝑊[2] ∗ 𝑎[1] + 𝑏[1]

 𝑎[2] = 𝜎(𝑧[2])

(3.9)

(3.10)

From this, the generalized equation over each layer in the NN is noted as (3.11) and (3.12).

Where 𝑎 is the output of one layer and input for the next, and 𝑎[0] is equal to 𝑥.

 𝑧[𝑙] = 𝑊[𝑙] ∗ 𝑎[𝑙−1] + 𝑏[𝑙]

(3.11)

 𝑎[𝑙] = 𝜎(𝑧[𝑙]) (3.12)

Until now, all examples are done with one training example. For m training examples the

equation over one layer is

 𝑍[𝑙] = 𝑊[𝑙] ∗ 𝐴[𝑙−1] + 𝑏[𝑙], and 𝐴[𝑙] = 𝜎(𝑍[𝑙])

(3.13)

Where each of the parameters 𝑍[𝑙], 𝐴[𝑙] ,𝑊[𝑙] and 𝑏[𝑙] are matrices and a vector containing all

values in each layer for all training example. As it initially may be more intuitive to think about

the parameters only containing the numbers from each example and then loop through the

number of examples, later one might see the matrices as more intuitive. When training the NN

the process of computing is at least several times quicker when using matrices. [6]

 LOSS AND COST FUNCTION
To train the NN, it is important to define and give a value, or cost, to how good the NN is at

predicting the right value. Loss, 𝐿, or sometimes called error function, is a function that measure

how good our output �̂� fit the true label 𝑦. One example of a loss function may be the quadratic

error function [6].

 𝐿 = (𝑦 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

(3.14)

Another one logistic loss

 𝐿 = −(𝑦 ∗ log �̂� + (1 − 𝑦) ∗ log(1 − �̂�)) (3.15)

The cost function, sometimes noted as 𝐽, other times as 𝐶, is the average over the sum of the

loss function applied to each of the training examples. An example is the quadratic cost

function, or also known as mean squared error or MSE.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

17

𝐽(𝑤, 𝑏) = 𝐶(𝑤, 𝑏) =

1

2𝑚
∑(𝑦 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑚

(3.16)

When training the ML model, the aim is to minimize the overall cost of the system such that

the predicted �̂� and true label 𝑦 are as similar as possible. [6, 8]

 GRADIENT DECENT
As the aim in training the NN is to minimize the cost function, the aim can also be formulated

as to finding the weights and biases which minimizes the cost function, 𝐽(𝑤, 𝑏). To achieve

this, the first step is to find how a change in 𝑤 and 𝑏 change the cost. Then we use these changes

to update w and b. [6, 8]

A cost function, 𝐽(𝑤, 𝑏), is shown in Figure 12. The horizontal axes represent the spatial

parameters, 𝑤 and 𝑏. In practice, 𝑤 can be higher dimensions, but for plotting, 𝑤 and 𝑏 are

represented as single real numbers. The cost function 𝐽(𝑤, 𝑏) is then, some surface above the

horizontal axes. In other words, the height of the surface at a certain point represents the value

of 𝐽(𝑤, 𝑏). The aim thus becomes to find the value of 𝑤 and 𝑏 that corresponds to the global

minimum of the cost function.[6]

Figure 12: Gradient Descent example. From Ng (2017) [6]

In Figure 12, one can see the cost function J is a convex function, and where the global

minimum is. In other scenarios, the cost function can be non-convex and have many different

local minimums. For non-convex functions, the global minimum can be hard to find both

mathematically and visually. [6]

To find the global minimum, gradient descent starts at an initial point and then takes a step in

the steepest downhill direction. After several iterations, one has, hopefully, reached the global

minimum. [6, 8]

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

18

For further illustration, the cost function is set to be dependent on w, giving J(w), see Figure

13. The first task is to find how much J changes with a change in w, in other words, the slope

of the function,
𝑑𝐽(𝑤)

𝑑𝑤
. Gradient descent does updates w by subtracting the slope multiplied with

a given learning rate as see in (3.17). This is done repeatedly until the algorithm converges as

illustrated. [6]

𝑤 = 𝑤 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗

𝑑𝐽(𝑤)

𝑑𝑤

(3.17)

Figure 13: Visualisation example of J(w). From Ng [6]

Initializing parameters

To initialize the dimensions of the parameters 𝑊 and 𝑏 correctly, Ng [6] presents (3.18) and

(3.19). Where is the number 𝑛[𝑙] of neurons in the given layer and 𝑛[𝑙−1] is the number of

neurons in the previous layer.

 𝑊[𝑙]: [𝑛[𝑙], 𝑛[𝑙−1]]

(3.18)

 𝑏[𝑙]: [𝑛[𝑙], 1]

(3.19)

The initialization of values can greatly affect the process of gradient decent and thus the training

process of NN. To initialize 𝑊 with zeros will cause a problem called symmetry breaking

problem, resulting in the NN being equivalent to a linear model. A common procedure is to

initialize 𝑊 with random numbers and then multiplying it with a low number such as 0.01. 𝑏 is

usually initialized with zeros, as they do no cause the symmetry breaking problem. The values

of initialization are dependent on the system and activation function. An example is the typical

sigmoid function where higher values of Z, in other words, higher values of W and b, see (3.9),

will result in a slow gradient descent and thus slow learning. [6]

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

19

 BACKPROPAGATION

Gradient decent illustrate how the partial derivatives
𝑑𝐽

𝑑𝑊
 and

𝑑𝐽

𝑑𝑏
 can be used to find the

minimized cost. Backpropagation is the process to compute the partial derivatives
𝑑𝐽

𝑑𝑊
 and

𝑑𝐽

𝑑𝑏
 of

the cost function [6, 8]. The general process is to use the chain rule to derivate over each layer.

In his online book Nielsen [8] warn readers

“Be warned, though: you shouldn't expect to instantaneously assimilate the equations. Such

an expectation will lead to disappointment. In fact, the backpropagation equations are so

rich that understanding them well requires considerable time and patience as you gradually

delve deeper into the equations.”

 PRE-PROCESSING AND DATA TREATMENT
The general state of the data available may not be formatted and ready for the ML model. The

data thus often need treatment. In his article, Tunkelang [43] states that ML is only as good as

the data given to it. Both Brownlee [44] and Ng [6] states the importance of data-treatment for

ML. To methods of data-treatment is feature scaling, and feature selection.

Feature scaling through standardization can be an important step for data pre-processing and

for the ML model especially if there is a high variance between the features. Standardization is

the process of rescaling the features such that all values have a mean of zero and unit variance.

Standardization is a pre-processing step that almost always improves the ML system. [6, 45,

46]

Feature selection is a data pre-processing strategy. Li et al. [47] state feature selection as

essential to datamining and ML applications and a proven method that is effective and efficient

in preparing high-dimensional data. The objectives of feature selection include; making models

simpler and more comprehensible, improving the performance of data mining, and preparing

clean and understandable data.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

20

4 TOOLS FOR MAKING A MACHINE LEARNING MODEL

This chapter present programs, libraries, tools and elements that is used and recommended for

building an ML Model. The aim of this chapter is to give a brief presentation of each tool and

its use.

 PROGRAMMING LANGUAGE

 Python

Coelho and Richert [5] present ML and Python as a dream team. They state the ML approach

as an iterative process, and that it is exactly this that makes Python such a good language for

ML. Python is an open-source language that is widely used in the industry or for academical

purposes. Python has several useful libraries for easier operations such as NumPy, Pandas,

Sklearn and SciPy. It also has several deep learning frameworks that run on top of Python, sutch

as Tensorflow, Keras, PaddlePaddle. [6]

Jupyer
Jupyter Notebook App is a notebook editing and running python documents via a web browser

[48]. Through their webpage, a course [49] describes Jupyter as a tool where one can

interactively work with code. Jupyter notebook is also used through Ng’s[6] online course. With

Jupyters cell structure it enables one to run one cell at a time, enabling quick testing and

prototyping.

 PACKAGES AND LIBRARIES

 Anaconda

Anaconda Distribution includes 250+ popular data science packages. Anaconda enables the

possibility to install, run, and upgrade data science and ML environments an libraries like

Scikit-learn, TensorFlow, Keras, and Numpy [50]. Anaconda Navigator is a desktop graphical

user interface that allows launch of applications and management of packages, environments

and libraries [51]. Guide for download is found through their webpage found through the

reference.

 Libraries

In Python, NumPy and SciPy enable off-load number crunching tasks to the lower layer in the

form of C or FORTRAN extensions [5]. NumPy provides support of highly optimized

multidimensional arrays. SciPy uses those arrays to provide a set of fast numerical recipes. In

their book, Coelho and Richert [5] present matplotlib as the most convenient and feature-rich

library to plot high-quality graphs using Python. Pandas [52] provide high-performance, easy-

to-use data structures and data analysis tools for the Python programming language [53]. Pandas

offer matrix visualization matrix treatment. Sklearn is the python name for Scikit-learn. Scikit-

learn is built on NumPy, SciPy and matplotlib. It is built as an efficient and simple tool for

handling data, among them data pre-processing and analysis [54].

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

21

 MACHINE LEARNING FRAMEWORKS

 Keras

Keras is a high-level neural networks API, written in Python and capable of running on top of

TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation

with easy and fast prototyping. Being able to go from idea to result with the least possible delay.

[55]

 TensorFlow

TensorFlow is an open-source software library for high-performance numerical computation.

Its flexible architecture allows deployment of computation across a variety of platforms (CPUs,

GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices. It is

originally developed by researchers and engineers from the Google Brain team within Google’s

AI organization. It comes with strong support for ML. [56]

 H2O

On their webpage, H2O.ai describes itself as the leader in AI with its visionary open source

platform, H2O. They advertise that more than 12,600 companies use their open-source platform

for Finance, Insurance, Healthcare, Retail, Telco, Sales, and Marketing. In February 2018,

Gartner named H2O.ai, as a Leader in the 2018 Magic Quadrant for Data Science and Machine

Learning Platforms. H2O.ai partners with leading technology companies such as NVIDIA,

IBM, AWS, Azure and Google and is proud of its growing customer base which includes

Capital One, Progressive Insurance, Comcast, Walgreens and Kaiser Permanente. [57]

 DATA AND TRAINING SETS

 Databases to get datasets for training

For training and exercises, it is important to have datasets to train on. Two of them are NASA’s

Open Data Portal and Kaggle. NASA’s data portal has several datasets collected and free to

download. The Turbofan Engine Degradation Simulation DataSet is found through NASA[58,

59]. Kaggle’s public data platform has several datasets and regular competitions to make the

best algorithms on given datasets. [60]

 The Turbofan Engine Degradation Simulation Data Set

This dataset is one of the few available datasets that are available for public use. It is made

available by NASA through their prognostic data repository [58][59][53], and made by Saxena

et al. in 2008 [61]. It is an engine degradation simulation, that was carried out using C-MAPSS

tool, containing four different sets that were simulated under different combinations of

operational conditions and fault modes. The four set each contains a given number of motors

run until failure. The Turbofan dataset can be used to train models to enable better predictions

on the PHM08 Challenge Data Set [58].

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

22

5 BUILDING A MACHINE LEARNING MODEL

This chapter presents how to build and program two types of python ML models for initial

testing. Firstly, code for data-treatment is presented, then a basic ML model and at the end, an

ML model using Keras. Both models and the data-treatment are built to predicting Remaining

Useful Life (RUL) for the Turbofan Engine Degradation Simulation DataSet from NASA.

Mean Squared Error (MSE) and Sigmoid is implemented as cost- and activation functions. The

libraries NumPy, Sklearn, Pandas, and matplotlib are used. All code is made and run in the

python notebook jupyter.

The general ML model can be said to be composed of six steps, as illustrated in Figure 14.

When building a model with Keras, the setup is different, see Figure 15, but it still contains the

same elements and ideas. Coelho and Richert [5] state that ML approach is never a waterfall-

like process, but a process of going back and forth.

Figure 14: Steps in a general ML model

 Prepare
Data

Figure 15: Steps in a general Keras model

When building an ML model, the first aim is to get the model to fit the training set. Once one

has sufficient results, one can then test the data on an independent test set. As this guide focuses

on the first sub-step of initial testing, code for testing is not presented for Model 1, but can be

found in Appendix C. As it is easy to implement and as an example, predicting from a trained

Keras model is briefly presented.

A significant part of the code is inspired and guided by other sources. Karsten Moholt have

been a part since the beginning. The code is further guided by Ng (2017)[6] through his online

course, by Brownlee [7] through his webpage and from Nilsen[8] and Coelho and Richert [5]

through their respective books. The documentations from NumPy, Sklearn, Pandas and

matplotlib is also used.

All code used can also be found in APPENDIX C

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

23

 TOOLS USED
All tools, platforms and libraries used are acquired through Anaconda Navigator. The python

notebook Jupyter is installed as a part of the Anaconda Navigator installation. To find and

download other libraries, one needs to make and sign into an Anaconda Cloud account. Once

this is done, one can start adding libraries, through “Environments”, “base(root)” and then

search in the top right corner. When the given library is found, right-click it, or mark it, for

installation, see Figure 16.

Figure 16: Screenshot from Environments in Anaconda Navigator

For this guide, these libraries are used and installed:

• Numpy

• Pandas

• Sklearn

• Matplotlib

• Keras

Libraries

Through this guide, code from four files are presented. At the beginning of each of these files,

relevant libraries are imported. The imported libraries for each file are listed below.

For data-split, txt to csv and creation of file and folders, for file “Split_data”

#Import pandas to load and treat data

import pandas as pd

#Import NumPy for array treatment and matrix multiplication

import numpy as np

#Import os for file and folder treatment

import os

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

24

For data-treatment, for file “Data_treatment”

#Import sklearn for mathematical computation

import sklearn

from sklearn import linear_model

from sklearn import preprocessing

#Import NumPy for array treatment and matrix multiplication

import numpy as np

#Import pandas to load and treat data

import pandas as pd

To program the basic ML model, for file “NN_2_Layered”

#Import numpy for array treatment and matrix multiplication

import numpy as np

#Import sklearn for mathematical computation of MSE of (pred-Y)

import sklearn

from sklearn.metrics import mean_squared_error

#Import matplotlib to visualize results

import matplotlib.pyplot as plt

#Import own code for data-treatment and to load training and test

 set

from Data_treatment import *

To program the Keras Model, for file “Keras”

#Import Keras to build and train ML model

from keras.models import Sequential

from keras.layers import Dense

#Imort sklearn for mathematical computation of MSE of (pred-Y)

from sklearn import metrics

#Import matplotlib to visualize results

from matplotlib import pyplot as plt

#Import own code for data-treatment and to load training and test

 set

from Data_treatment import *

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

25

 OVERALL MODEL DESCRIPTION
The ML model aims to take in setting- and sensor data given from the Turbofan DataSet and

predict the RUL in number of cycles left until motor failure. This NN can be visualized in

Figure 17.

Neural

Network

Setting- and

Sensordata RUL in Cycles

Figure 17: Simple visualisation of the NN

As an initial ML model, the basic model, from here on called Model 1, is built as a two-layered

NN, with two neurons in the hidden layer and one neuron in the output layer, giving the NN

seen in Figure 18. The activation function Sigmoid is to be used in the hidden layer. As the

output is to predict the RUL, no activation function is chosen for the output layer.

𝑋 𝑌

Figure 18: Model 1, A two-layered NN, with two neurons in hidden layer and one in the output layer

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

26

 PREPARE DATA

Figure 19: Steps in a basic ML model: Prepare Data

Before building a Supervised ML mode, one need labeled data for training and testing. The data

is seldom in a format where it can be directly used by an NN. Thus, the first step is to prepare

and edit the data.

The dimension through the network is a common source of error. Thus, one of the initial goals

for treating the data is making sure that the dimensions of the input 𝑋 and labeled values 𝑌 are

correct. For most NN the input 𝑋 is of dimensions [#features, #examples] or its transpose

[#examples, #features], and the labelled values 𝑌 of shape [#examples, 1]. Another element of

data-treatment is to make sure that each training or test example has a correct and corresponding

𝑌 value. For further treatment, standardizing all values will almost always improve the NN [6].

 The Turbofan Engine Degradation Simulation Data Set

The dataset is given as txt-files containing values as seen in Figure 20: The first four and last

three rows in Turbofan Engine Degradation Simulation Data Set txt-file FD001. The dataset is

further described in sub-chapter 4.4.2 and in APPENDIX A

Figure 20: The first four and last three rows in Turbofan Engine Degradation Simulation Data Set txt-file FD001

For this guide, relevant information regarding the dataset is extracted to be:

• The dataset format:

o Each txt-file has rows representing a training example.

o Column 1 is “Unit Number”

o Column 2 is “Cycle”

o Column 3 to 5 are “Settings”

o Column 6 to 26 are “Sensor Measurements”

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

27

• Both the training- and test set are divided into four txt-files. Each containing a number

of motors run.

• Measurements from each motor start with cycle one and measurements are taken for

each cycle until failure. The measurements at each cycle corresponds to an example.

• Each example has no direct corresponding RUL. In other words, 𝑋 has no direct

corresponding 𝑌-values.

From this information, some tasks for data treatment can be found. Firstly, loading 𝑋 from txt-

file into the notebook, then to find a corresponding 𝑌 for 𝑋 and, thirdly, delete column “Unit

Number” and column 2 “Cycle”, as they are not features related to RUL.

To find the 𝑌 corresponding to 𝑋, the first number, “unit number”, in the dataset, or txt-file,

corresponds to a motor. The “cycle” number always start with number one on each new motor

and increases with one for each cycle the motor runs, until failure. Inverting the cycle column

for each motor gives each example a corresponding RUL, or remaining cycle, value. To

illustrate this, the measurements from the first motor, running 192 cycles, can be used.

Extracting the column containing the cycle numbers, then inverting it, the first example, or row,

get the corresponding label 192. The second 191, and so on, until the last cycle corresponding

to the last example. This is also illustrated in Figure 21.

Unit Number Cycle Number
1 1
1 2
1 3
o o

o o
o o

1
2

192
1

Unit Number Cycle Number
1 192
1 191
1 190
o o
o o
o o

1
2

1
287

Figure 21: Finding corresponding RUL from Cycle Number

 Splitting the txt-file and converting to csv-file

To make the data easier to work with and correctly fit 𝑌 to a corresponding 𝑋, each of the

training and test txt-files FD001 to FD004 are added to their respective folder and then split

into a number of different csv-files where each file corresponds to one motor or unit number.

The code below defines two functions remove_unnamed() and split_data(). Then two arrays

containing folder names are created. In the end, a “for loop” goes through each of the folders

and with the function split_data() add the different csv-files, each containing data and

measurements from one motor. As the aim of this code is file and folder treatment, its elements

are not explained in detail. The process of loading data is explained later. To run code in Jupyter,

click into the cell where the code is, then click shift+enter.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

28

#Libraries used

import pandas as pd

import numpy as np

import os

#Function for removing unnamed columns

def remove_unnamed(df):

 return df.loc[:, ~df.columns.str.contains('^Unnamed')]

#Function for splitting txt-file into several csv-files containing a

 motor each

def split_data(file_folder):

 data_type = file_folder[0].split('_')[0]

 column1 = ['unit','cycle', 'setting1', 'setting2', 'setting3']

 column2 = ['sensor{}'.format(i) for i in range(1,22)]

 cols = column1+column2

 os.makedirs('{}_data'.format(data_type))

 for file in file_folder:

 folder = file.split('.')[0]

 print("creating folder data/{}".format(folder))

 os.makedirs('{}_data/{}'.format(data_type,folder))

 # process files

 for j,file_name in enumerate(file_folder):

 path = "{}".format(file_name)

 data = open(path).readlines()

 my_new_data = list(map(lambda line: line.strip('\n').split(' ')

 [:-2], data))

 for k in list(range(1,101)):

 new_array = list(filter(lambda x: x[0]=='{}'.format(k), my_

 new_data))

 df = pd.DataFrame(new_array, columns=cols)

 print("processing file {} folder {}_FD00{} mortor{} data"

 .format(file_name,data_type,j+1,k))

 df.to_csv('{}_data/{}_FD00{}/motor{}.csv'.format(data_type,

 data_type,j+1,k))

#Array containing the string names of train and test txt-files

training_files = ['train_FD00{}.txt'.format(k) for k in range(1,5)]

test_files = ['test_FD00{}.txt'.format(k) for k in range(1,5)]

#Run through test and training txt-files to split data

for file_folder in [training_files,test_files]:

 split_data(file_folder)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

29

The result of running the code can be seen in Figure 22 and Figure 23. The data is split into

folders test_data and train_data. Both train and test folders are again divided into four folders.

In each of these folders, the number of csv-files are divided by the motor unit number. As the

data has gone through pandas “DataFrame”, an unnamed index column has been added to each

csv-file.

Figure 22: Folder and file-structure after running after running code to split data

Figure 23: The first and last three rows in motor1.csv, from folder train_FD001 in folder train_data. The first row

contains headers for each column. By using Pandas DataFrame an unnamed column is automatically added,

containing numbers for each row.

 Load data from csv-file

From here on, the rest of the code and functions connected to data-treatment are collect into the

python file “Data_treatment.py”.

To run the code in “Data_treatment.py” the libraries listed in the code below are imported.

#Import NumPy for array treatment and matrix multiplication

import numpy as np

#Import Sklearn for mathematical computation

import sklearn

from sklearn import preprocessing

from sklearn.preprocessing import Standardscaler

#Import Pandas to load and for data treatment

import pandas as pd

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

30

There are several ways to load the dataset from either txt or csv. Through this guide, pandas

pd.read_csv() is used. After running the code presented in the previous chapter, the dataset is

split by commas and the first row contain headers for each column. With this format,

pd.read_csv() will automatically split values by comma and headers are added to each column.

The following code takes in the string-variable path containing the string

“train_data/train_FD001/motor1.csv”. The code returns a matrix 𝑋 and list 𝑌.

#Function to remove the unnamed column added to dataset through the

code for splitting the original dataset.

def remove_unnamed(df):

 return df.loc[:, ~df.columns.str.contains('^Unnamed')]

#Loads data from path. Return Matrix X with shape[#examples, #features]

and a list Y.

def load_data(path):

 #Reads the CSV file and removes unnamed columns

 data = remove_unnamed(pd.read_csv(path))

 #Makes a list with cycle numbers. From 1 to n cycles before failure

 Y = list(list(data['cycle']))

 #Reverse the list to make Y corresponding to RUL for each example

 in X

 Y.reverse()

 #Retrieves values from columns “setting1” to “sensor21”.

 Does not retrieve unit number and cycle

 X = data.loc[:,'setting1':'sensor21'].as_matrix()

 return X, Y

Additional explanation:

• remove_unnamed: Takes in a dataframe df and with df.loc runs through all columns

and removes columns with header “Unnamed”

• Path is set to: “train_data/train_FD001/motor1.csv”

• pd.read_csv will automatically split each value in each row into its corresponding

columns because each value is split by “,”.

o delim_whitespace=True: Split the values in each row into its corresponding

column. Option to be added to pd.read_csv.

o header=None: Tells code that there is no header. Without “header” or with

“header=True” will set the first row as header.

o Ex: pd.read_csv(“data.txt”, delim_whitespace=True, header = None)

• Y is selected as a list because the function Y.reverse() and to make it easier to add

later motors.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

31

 Load N number of motors

In the previous code for loading data only loads data for one motor. For better training, one may

want to add more motors. As the input 𝑋 has to contain all training examples, and Y all

correlated label examples, each motor csv-file has to be split, and the respective parts added

into the matrix 𝑋 and list 𝑌. Through this guide, the matrices are of type NumPy array.

In the previously presented code 𝑌 was a list with dimensions [#examples,]. To change this

into a NumPy array of dimension [#examples, 1], the 𝑌 data is treated by the function np.array()

and np.reshape(). With NumPy the dimensions are described as shapes. Through reshape one

can change the dimensions, with shape combined with the print() function, the dimensions of

a given array can be printed. Ex: print(𝑋.shape) will print out the dimensions of 𝑋.

The following code shows how to load a given number of motors and thus a given number or

training examples with corresponding labels. It takes in a given number and returns NumPy

arrays 𝑋 and 𝑌, training and test.

#Load n number of motors. Return array X and Y in format

 [number of examples, 24], [number of examples, 1]

def load_n_motors(num_motor):

 #Create two arrays containing string names for train and test FD001

 training_folders = ['train_FD00{}'.format(i) for i in range(1,5)]

 test_folders = ['test_FD00{}'.format(i) for i in range(1,5)]

 #Folder number. Here: train_FD001 or test_FD001

 k = 0

 #Make an empty Y train and test list

 Y_train = []

 Y_test = []

 #Load num_motor X and Y training- and test-sets

 for i in range (1, num_motor+1):

 #Create training and test path

 train_path = 'train_data/{}/motor{}.csv'.format(

 training_folders[k],i)

 test_path = 'test_data/{}/motor{}.csv'.format(

 test_folders[k],i)

 #Load temporary X and Y sets

 X_train_temp, Y_train_temp = load_data(train_path)

 X_test_temp, Y_test_temp = load_data(test_path)

 #Build the Y list

 Y_train = Y_train + Y_train_temp

 Y_test = Y_test + Y_test_temp

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

32

 #Convert Matrix X to a pandas dataframe

 X_train_temp_df = pd.DataFrame(X_train_temp)

 X_test_temp_df = pd.DataFrame(X_test_temp)

 #For the first loop

 if (i == 1):

 X_train_df = X_train_temp_df

 X_test_df = X_test_temp_df

 #Append/add new motors to set

 else:

 X_test_df = X_test_df.append(X_test_temp_df)

 X_train_df = X_train_df.append(X_train_temp_df)

 #Convert X and Y to NumPy arrays

 X_train = X_train_df.values

 Y_train = np.array(Y_train)

 X_test = X_test_df.values

 Y_test = np.array(Y_test)

 #Reshape Y arrays from [examples,] to [example1, 1]

 Y_train = Y_train.reshape([Y_train[0], 1])

 Y_test = Y_train.reshape([Y_test[0], 1])

 return X_train, Y_train, X_test, Y_test

Additional Explaination:

- training_folders = ['train_FD00{}'.format(i) for i in range(1,5)] create an array

containing the string names “train_FD001 to train_FD004
- Append add values from one “DataFrame” to another

- Y_train[0] = #examples

 Standardize values

With the data split into desired files and code ready for loading a given number of examples,

one could start building the rest for the ML model. Still, some treatment of the values is

recommended.

As seen in both Figure 20 and Figure 23, the values between the different settings and sensors

have a high variance. As mentioned in sub-chapter 3.7, it is then recommended to standardize

the values, rescaling the features such that all values have a mean of zero and unit variance.

This can be easily be done through the Sklearn Standardscaler() and fit_transform()

#Standardscaler

def standardize(data):

 d = preprocessing.StandardScaler().fit_transform(data)

 return d

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

33

 Final code for loading treated data

The last step is to implement both load_n_motors() and standardize() together into one

function. For easy notation sets for training are noted as 𝑋 and 𝑌, and sets for testing are noted

as 𝑋𝑡 and 𝑌𝑡 . Both the 𝑋 training and test sets are transposed ([#features, #examples] ->

[#examples, #features]) for the shape to fit the NN in Model 1.

Load treated data by normalization and robust scaling

def load_treated_data(num_motor):

 #Load train- and testset

 X, Y, Xt, Yt = load_n_motors(num_motor)

 #Standardize values in X and Xt

 X = standardize(X)

 Xt = standardize(X)

 #Transpose X and Xt from [features, examples] to

 [examples, features]

 X = X.T

 Xt = Xt.T

 return X, Y, Xt, Yt

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

34

 INITIALIZE WEIGHTS AND BIASES

Figure 24: Elements in a basic ML model: Initialize W and b

With the data treated and ready, the next step is to start building the Model 1. All code presented

for Model 1 is collected into the file “NN_2_Layer”.

Libraries used:

#Import NumPy for array treatment and matrix multiplication

import numpy as np

#Import Sklearn for mathematical computation of MSE

import sklearn

from sklearn.metrics import mean_squared_error

#Import matplotlib to visualize results

import matplotlib.pyplot as plt

#Import own code for data-treatment and to load training and test

 set

from Data_treatment import *

To load functions for loading or treating data, the python file Data_treatment.py, made in

previous chapters, is imported. A thing to note is, when working in Jupyter, all files are saved

as “.ipynb”. To import files, they must be of format “.py”, meaning the “.ipynb” files must be

saved as or converted to “.py” files.

As mentioned in the NN chapter, each layer as a set of weights and biases. The collection of all

the weights and biases through the NN are the parameters is to be optimized to find the

minimized cost function. As mentioned through gradient descent, correct initialization can

speed up the process of achieving a minimized cost.

To initialize the parameters, one needs the dimensions of the NN. Here, the function takes in;

n_x: input layer, n_h: hidden layer and n_y: output layer, with the corresponding number of

neurons in each layer. In the code below the dimensions follow the formulas 3.18 and 3.19 that

are given in sub-chapter 3.5. The weights are initialized with random numbers and multiplied

with 0.01 as suggested by Ng [6]. The biases are initialized with zeros.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

35

#Initialize Parameters W1, b1, W2 and b2 as NumPy arrays

#Input: n_x: #features from training set | n_h: #hidden layers | n_y:

 number of nodes in output layer

def initialize_parameters(n_x, n_h, n_y):

 #NumPy array of dimension [n_h, n_x] with random numbers

 W1 = np.random.randn(n_h, n_x)*0.01

 #NumPy array of dimension [n_h, 1] with zeros

 b1 = np.zeros((n_h, 1))

 #NumPy array of dimension [n_y, n_h] with random numbers

 W2 = np.random.randn(n_y, n_h)*0.01

 #NumPy array of dimension [n_y, 1] with zeros

 b2 = np.zeros((n_y,1))

 return W1, b1, W2, b2

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

36

 FORWARD PROPAGATION

Figure 25: Steps in a basic ML model: Forward Propagation

With 𝑊 and 𝑏 initialized, the next step is to enable the process of going from input 𝑋 to

predicted value 𝑌 . To achieve this one can program the output A from each layer or make a

function that enables forward propagation over one layer. In the following code, the latter is

chosen and made from the mathematical function 3.13 presented in sub-chapter 3.3. As the NN

has Sigmoid activation in the hidden layer and none in the output, the function also takes in a

string with either “Sigmoid” or “None” deciding the activation for the given layer.

#Forward propagation over one layer: Calculating Z and A(Z)

def forward_prop(W, b, A_prev, a_function):

 # Z = W * A_prev + b

 Z = np.dot(W, A_prev)+b

 if a_function == "Sigmoid":

 A = 1/(1+np.exp(-Z)) #A = Sigmoid(Z)

 elif a_function == "None":

 A = Z #No activation give A = Z

 return A, Z

Additional Explanation:

- np.dot (W, A_prev) = ∑(𝑤 ∗ 𝑎_𝑝𝑟𝑒𝑣) = W*A_prev

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

37

 CALCULATE COST

Figure 26: Steps in a basic ML model: Calculate Cost

The Mean Squared Error (MSE) cost function is a common function for regression problems.

With two layers, the 𝐴 matrix found after the second layer, 𝐴2, is the same as the predicted

Yhat (𝑌). Through the calculations set up in forward_propagation(), Yhat is of dimensions [1,

#examples], thus to correctly calculate (Y-Yhat), the Y array ([#examples,1]) is transposed.

Takes in Y and the predicted value from NN and forward propagation,

and calculates the cost with Mean Squared Error(MSE)cost function

#Both Y and Yhat are NumPy arrays of dimensions [number of examples, 1]

def cost_func(Y, Yhat, m):

 #MSE cost function

 cost = (1/(2*m) * np.sum((Y.T-Yhat)**2)

 # Turns the dimensions of cost from [[17]] into 17).

 cost = np.squeeze(cost)

 assert(cost.shape == ())

 return cost

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

38

 BACK PROPAGATION

Figure 27: Steps in a basic ML model: Backpropagation

To implement gradient descent and to find the minimized cost, the first step is backpropagation.

The process of finding the change in cost by the change in each of its parameters, and the second

is to update the parameters through iterations. For the first step, the aim thus becomes to find
𝑑𝐶

𝑑𝑊[2] ,
𝑑𝐶

𝑑𝑏[2] ,
𝑑𝐶

𝑑𝑊[1] and
𝑑𝐶

𝑑𝑏[1]. Through the use of chain rule from calculus each of these are found

from the MSE cost function given as the mathematical formula 3.16 in sub-chapter 3.4. The

full calculations the be viewed in APPENDIX B.

The partial derivatives found are

𝑑𝑊2 =

𝑑𝐶

𝑑𝑊[2]
=

𝑑𝐶

𝑑𝐴[2]
∗
𝑑𝐴[2]

𝑑𝑍[2]
∗

𝑑𝑍[2]

𝑑𝑊[2]

 =
1

𝑚
 ((𝐴2 − 𝑌) ∘ 𝐴1)

(5.7)

𝑑𝑏2 =

𝑑𝐶

𝑑𝑏2
=

𝑑𝐶

𝑑𝐴[2]
∗
𝑑𝐴[2]

𝑑𝑍[2]
∗
𝑑𝑍[2]

𝑑𝑏[2]

 =

1

𝑚
∑((𝐴2 − 𝑌))

(5.8)

𝑑𝑊1 =

𝑑𝐶

𝑑𝑊1
=

𝑑𝐶

𝑑𝐴2
∗
𝑑𝐴2

𝑑𝑍2
∗
𝑑𝑍2

𝑑𝐴1
∗
𝑑𝐴1

𝑑𝑍1
∗

𝑑𝑍1

𝑑𝑊1

 =

1

𝑚
∑((𝐴2 − 𝑌) ∗ 1 ∗ 𝑊2 ∗ 𝐴1 ∗ (1 − 𝐴1) ∗ 𝑋)

(5.9)

𝑑𝑏1 =

𝑑𝐶

𝑑𝑏1
=

𝑑𝐶

𝑑𝐴2
∗
𝑑𝐴2

𝑑𝑍2
∗
𝑑𝑍2

𝑑𝐴1
∗
𝑑𝐴1

𝑑𝑍1
∗
𝑑𝑍1

𝑑𝑏1

 =
1

𝑚
∑(((𝐴2 − 𝑌) ∗ 1 ∗ 𝑊2)) ∗ 𝐴1 ∗ (1 − 𝐴1))

(5.10)

The sequence and dimensions, transposed or not, of the components used for calculating 𝑑𝑊

and 𝑑𝑏 are set as they are to enable correct dimensions of 𝑑𝑊 and 𝑑𝑏.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

39

def backprob(Yhat, Y, A1, X, W2, m):

 #Partial derivatives

 dCost_dYhat = (Yhat-Y.T) #dCost/dYhat

 dYhat_dW2 = A1 #dYhat/dW2

 dYhat_dA1 = W2 #dYhat/dA1

 dA1_dZ1 = A1*(1-A1) #dA1/dZ1 = Derivative of sigmoid(Z1)

 dZ1_dW1 = X #dZ1/dW1

 #Calculating dW1 and db1

 dW2 = (1/m) * np.dot(dCost_dYhat, dYhat_dW2.T)

 db2 = (1/m) * np.sum(dCost_dYhat, axis=1, keepdims=True)

 #Calculating dW1 and db1

 dW1 = (1/m) * np.dot((np.dot(dYhat_dA1.T, dCost_dYhat) * dA1_dZ1),

 X.T)

 db1 = (1/m) * np.sum((np.dot(dYhat_dA1.T, dCost_dYhat) * dA1_dZ1),

 axis=1, keepdims=True)

 return dW1, db1, dW2, db2

Additional Explanation:

- np.sum: To keep the correct dimensions of db the elements axis=1 and

keepdim=True are added.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

40

 UPDATE PARAMETERS

Figure 28: Steps in a basic ML model: Update Parameters

The last step of gradient descent is to update the parameters. Differently from the previously

presented code, this element is not written as a function but directly implemented into the final

model code. Through each iteration, the parameters are updated.

#Update Parameters

W1 = W1 - learning_rate *dW1

W2 = W2 - learning_rate *dW2

b1 = b1 - learning_rate *db1

b2 = b2 - learning_rate *db2

 MODEL 1
Finally, all steps can be implemented to build the ML model. This model takes in the datasets

𝑋 and 𝑌, and the hyperparameters learning_rate and epoch, where epoch corresponds to the

number of iterations, or training cycles. Hyperparameters are parameters one can manually

change to try to improve how well the built ML model predicts [6]. The model returns the final

parameters, 𝑊 and 𝑏, found through training. These parameters can then be used for testing and

later as a part a finished ML model.

Other elements implemented are n_x, n_h and n_y. An alternative could be to take them in as

an input, as one may want to change the number of neurons in the hidden layer. 𝑚 is defined as

the number of training examples. 𝑐𝑝 is an array defined to store the found cost in each iteration.

It is defined to present a model of the cost.

Model 1

def model(X, Y, learning_rate, epoch):

 # Set the number of neurons in each layer

 n_x = X.shape[0] #Input layer

 n_h = 2 #Hidden layer

 n_y = 1 #Output layer

 m = Y.shape[0] #Number of examples

 cp = np.zeros((epoch-1)) #Array for storing cost in each epoch

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

41

 #Initialize parameters

 W1, b1, W2, b2 = initialize_parameters(n_x, n_h, n_y)

 #Iterate and update parameters epoch number of times

 for i in range(1,epoch):

 #Forward propagation through two layers

 #Sigmoid activation in the first/hidden layer

 A1, Z1 = forward_prop(W1, b1, X, "Sigmoid")

 #No activation in the second/output layer

 A2, Z2 = forward_prop(W2, b2, A1, "None")

 #Cost function. Mean Squared Error

 cost = cost_func(Y, A2, m)

 #Store cost for later plotting

 cp[i-1] = cost

 #Backward propagation, finding the weights and biases

 dW1, db1, dW2, db2 = backprob(A2, Y, A1, X, W2, m)

 #Update Parameters

 W1 = W1 - learning_rate * dW1

 W2 = W2 - learning_rate * dW2

 b1 = b1 - learning_rate * db1

 b2 = b2 - learning_rate * db2

 #Stores the parameters found after training.

 parameters = [W1, b1, W2, b2]

 # Using matplotlib to illustrate the cost in each iteration.

 plt.plot(cp)

 plt.title('model cost')

 plt.ylabel('Cost')

 plt.xlabel('epoch')

 plt.legend(['train'], loc='upper left')

 plt.show()

 #Print the final and the rooted value of the cost

 print("Final Cost: ", cost)

 print("Final Cost: ", sqrt(cost))

 return parameters

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

42

 RUNNING MODEL 1
With the model finished it is time to run it. If all elements are correctly implemented, the matrix

dimensions are correct for all matrices, there are no typos, then the model will, hopefully, run,

and one has successfully made an ML model for initial testing. As a check, before running the

model, the dimensions of 𝑋 and 𝑌 are printed. As mentioned, for the built system to work, the

dimensions of 𝑋 and 𝑌 needs to be

• X: [#features, #examples]

• Y: [#examples, 1]

There may be a need to check the dimensions several times. Because of this, it can be

recommended to make a function taking in the four datasets and printing out their dimensions

along with descriptive text.

#Print the dimensions

def print_shapes(X,Y,Xt,Yt):

 print("X shape: " + str(X.shape))

 print("Y shape: " + str(Y.shape))

 print("Xt shape: " + str(Xt.shape))

 print("Yt shape: " + str(Yt.shape))

For the check, some initial values for the hyperparameters are set, 𝑋 and 𝑌 training and test data

are loaded, and then the different dimensions are printed.

#Set hyperparameters

learning_rate = 0.1

epoch = 3

num_motor=1

#Load X and Y training set and Xt and Yt test set.

X, Y, Xt, Yt = load_treated_data(num_motor)

#Print the dimensions of different datasets

print_shapes(X, Y, Xt, Yt)

X shape: (24, 192)

Y shape: (192, 1)

Xt shape: (24, 31)

Yt shape: (31, 1)

From the print, one can see that the dimensions are correct. One can then move on to the final

step. For the first test, epoch is set to 3, the learning_rate is set to a typical initial value; 0.1,

and num_motors to 1. This is done to see that the model works and that the cost is reduced

through each iteration. When running the model again, one may “comment out (#)” the

print_shapes() function.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

43

#Set hyperparameters

learning_rate = 0.1

epoch = 3

num_motor=1

#Load X and Y training set and Xt and Yt test set.

X, Y, Xt, Yt = load_treated_data(num_motor)

#Print the dimensions of different datasets

#print_shapes(X, Y, Xt, Yt)

#Run Model 1

parameters = model(X, Y, learning_rate, epoch)

Final Cost: 5913.893948849516

Final Squared Cost: 76.90184619922668

The result is illustrated above. The cost can be seen to go down, and the final squared cost is a

value that is in the range of what to expect. With a working model, some further testing with

different hyperparameters is done to see how the cost changes and can be seen in Figure 29. A

thing to note is the value presented from cost squared. It can be used to as an estimate for the

average difference between the predicted value and the correct value. Because of the
1

2𝑚

element in the cost function, it is value is not exact, but still a good estimation.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

44

Further tests

learning_rate = 0.001

epoch = 100

num_motor=5

Final Cost: 4558.1684

Final Squared Cost: 67.5142

learning_rate = 0.01

epoch = 100

num_motor=5

Final Cost: 2608.1477

Final Squared Cost: 51.0700

learning_rate = 0.01

epoch = 100

num_motor=50

learning_rate = 0.05

epoch = 50

num_motor=100

Final Cost: 1100.40837

Final Squared Cost: 33.1724

Final Cost: 1101.41217

Final Squared Cost: 33.1875

Figure 29: Print of cost of Model 1 trained with different hyperparameters

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

45

 KERAS
The Keras model is built to be similar to Model 1, see Figure 18. There are two neurons in the

hidden layer and one neuron in the output layer. The first layer has a Sigmoid activation

function, and the output layer has none. The weights are initialized randomly, and the biases

are initialized as zero. All of the presented code for Keras are implemented into the same file

“Keras”.

Libraries used:

#Import Keras to build and train ML model

from keras.models import Sequential

from keras.layers import Dense

#Imort sklearn for mathematical computation of MSE

from sklearn import metrics

#Import matplotlib for visualization of results

from matplotlib import pyplot as plt

#Import own code for data treatment and to load training and test set

from Data_treatment import *

 Set hyperparameters and load training and test data:

As in Model 1, num_motors, epochs and learning_rate need to be set, with Keras it is also

common to implement batch_size, a common optimization algorithm for speeding up training,

where the number of training examples are split into training batches, where batch sizes of 2x

are often better [6].

As mentioned, the shape of the input data variates from system to system. With Keras the

dimensions of train and test X needs to be [#examples, #features], and train and test Y

[#examples, 1]. All of them also need to be of type NumPy array. To test the model the

hyperparameters are set to a low value. To load data the function load_treated_data() from

“Data_treatment” and sub-chapter 5.2.6 is used. To check that the dimensions of 𝑋, 𝑌, 𝑋𝑡 and

𝑌𝑡 are correct, they are printed using the print_shapes() function.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

46

#Set hyperparameters

num_motors = 1

batch_size = 1

learning_rate = 0.1

epochs = 15

#Load datasets for training and testing

X, Y, Xt, Yt = load_treated_data(num_motors)

#Print the dimensions of different datasets and number of features

print_shapes(X, Y, Xt, Yt)

X shape: (24, 192)

Y shape: (192, 1)

Xt shape: (24, 31)

Yt shape: (31, 1)

Not all dimensions match. To correct this, one can see that 𝑋 and 𝑋𝑡will match after they are

transposed. By printing out “𝑋.shape[1]”, one can also check that one has the correct notation

for the number of features from input 𝑋.

#Transposing X(train) and Xt(test)

X = X.T

Xt = Xt.T

#Print the dimensions of different datasets and number of features

print_shapes(X,Y,Xt,Yt)

print("Input shape: ",X.shape[1])

x shape: (192, 24)

y shape: (192, 1)

xt shape: (31, 24)

yt shape: (31, 1)

Input shape: 24

After running the code, all dimensions are now in the desired format.

 Building the Keras model

The process of setting up a Keras Model for initial testing can be divided into five steps, Figure

15. In Keras there are several functions that can be added in each step.

5.11.2.1 Select Model Type

The model type Sequential() is used and is a good choice for building simple NN. Sequential()

is model where one stack the layers, or in other words, add one and one layer.

#Keras ML model

#input format: [num_ex, num_features]

model = Sequential()

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

47

5.11.2.2 Add layers

In the process of adding layers to the model, one also specifies the characteristics of each layer.

First, one set the number of neurons in the layer. For the first layer in Keras one adds the number

of features found in X. With kernel_initializer and bias_initializer one set the initial values for

the weights and biases. In the end, the activation function is added.

#First hidden layer

model.add(Dense(2, #Neurons in layer

 input_dim=X.shape[1], # Features from input X

 kernel_initializer='random_uniform', #Initialize W

 bias_initializer='zeros', #Initialize b

 activation='sigmoid' #Activation function

))

#Output layer

model.add(Dense(1,

 kernel_initializer='random_uniform',

 bias_initializer='zeros'

))

5.11.2.3 Compile

When all desired layers are added, and the NN is built, one configuration its learning process

with compile. As with Model 1, mean squared error is chosen as loss function. For the Keras

model one has to add an optimizer. There are several optimizers available. For this model, an

optimizer is chosen and edited to only take in the learning rate.

Compile model

#Define optimizer: Only learning rate is set.

sgd = optimizers.SGD(lr = learning_rate)

#Compile model with loss function and optimizer

model.compile(loss='mean_squared_error', optimizer='sgd')

5.11.2.4 Traning the model with model.fit

Through “Fit” the model trains the NN. It takes in both 𝑋 and 𝑌, and as with Model 1, through

gradient decent, it trains itself to fit the predicted value from 𝑋 to the labeled value 𝑌. Epochs

and batch_size are hyperparameters already set. Verbose is a Keras function providing the

option to visualize the progress of training. Verbosity mode 0 = silent, 1 = progress bar and 2

= one line per epoch. Setting history equal to model.fit() saves the results to history.

Fit/ train the model

history = model.fit(X, Y, epochs= epochs, batch_size = batch_size,

 verbose=0)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

48

Printing out the lowest loss from history give the lowest MSE found through training.

#Plot cost/ loss in each epoch

plt.plot(history.history['loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

print('Train lowest mse: ' + str(min(history.history['loss'])))

print('Train lowest sqrt(mse): ' +

 str(np.sqrt(min(history.history['loss']))))

Train lowest mse: 977.9868474650478

Train lowest sqrt(mse): 31.272781255671006

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

49

Further tests

num_motors = 5

batch_size = 1

learning_rate = 0.01

epochs = 100

Train lowest mse: 1956.2362

Train lowest sqrt(mse): 44.22936

num_motors = 10

batch_size = 4

learning_rate = 0.05

epochs = 50

Train lowest mse: 1277.85963

Train lowest sqrt(mse): 35.74716

num_motors = 25

batch_size = 8

learning_rate = 0.08

epochs = 50

Train lowest mse: 1467.785452

Train lowest sqrt(mse): 38.3116

num_motors = 100

batch_size = 256

learning_rate = 0.01

epochs = 25

Train lowest mse: 1952.45685

Train lowest sqrt(mse): 44.186

Figure 30: Print of cost from Keras model trained with different hyperparameters

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

50

5.11.2.5 Evaluate

If one manages to make a NN that sufficiently good at predicting, the next step is to evaluate

how good the model is at predicting the RUL value for an independent test set. Through the

function predict(), Keras use the model built to find predicted values on the test dataset Xt.

Through sklearn the MSE is calculated over all examples in 𝑋𝑡 and 𝑌𝑡. To find the rooted score,

the value found is squared.

#predict:

pred = model.predict(Xt)

evaluate the model

score = metrics.mean_squared_error(pred, Yt)

print("Test score: ", score)

score_root = np.sqrt(score)

print("Rooted test score: ", score_root)

Score: 4336.704481331986

Rooted score: 65.85365958951701

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

51

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

52

6 DISCUSSION

 SOURCES
Web pages

In this thesis, several of the sources used are web pages, web-articles and web guides. Many of

them, written by authors with Ph.D. in programming, NN, ML or deep learning. These sources

are used to get an idea about the usefulness and popularity of PdM, ML and TL. They are used

to understand both common and specific topics and as guidance for building the two ML

models.

By using webpages, there can be said to be a degree of risk for a biased author or an author

presenting misunderstood or false information. To mitigate this, each web-article are mainly

used as one of several to show a common opinion. In other cases, the publisher or the

background of the writer is evaluated.

Several of the articles and guides found are also written in an informal style. On the positive

side, this makes the description and explanation of difficult topics more figurative and easier to

understand. Through his course, Ng repeatedly states that it is often more important to

intuitively understand what is happening in an NN and to exactly know everything that happens.

A negative side is that the authors own understanding and opinions are often expressed and the

information shared is less generalized. This results in topics being explained in several different

ways. It can thus be hard to find the common thread or to choose one explanation. Still, a benefit

found is the presentation of personal experiences, problems and solutions, which are applicable

to one’s own problem.

Coursera Online Course by Andrew Ng [6]

One of the main sources used in this thesis is the online course “Neural Networks and Deep

Learning” at Coursera, mainly presented and made by Andrew Ng. Even though only one

source, it can be argued to be a reliable source. Andrew Ng has a long experience working with

ML, NN and deep learning. As mentioned, he is credited as one of the main drivers behind deep

NN. He has worked as head of Baidu AI and Google brain and has given several presentations

about ML, his Coursera course being one of the latest ones.

Still, as Ng[6] is one source, to verify, similar and corresponding information can be found in

the book by Coelho and Richert [5], by Nielsen [8], and in the many web articles used. One of

the main differences experienced, also the main reason for choosing Ng as a main source. He

is a recommended source for the overall presentation of ML and to give intuitive information

enabling one to easier understand the topic.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

53

 THE POTENTIAL AND INTEREST OF PDM, ML AND TL
As described in this thesis and referenced in several articles and web articles, there is an

arguably potential and interest for PdM, ML and TL. With the aim of PdM of predicting faults

and failures before it happens, there is a possibility to greatly reduce, or even remove, the case

of unplanned downtime, or failure. This aim is in and of itself an argument, as unplanned

downtime can be extremely costly. Another question then becomes if the aim of PdM is

realistic. The report by IoT Analytics can be said to answer this. Through studying several

maintenance companies from several countries, they have found many believing in its potential.

This can also be seen by their prediction of an annual growth rate of 40% for PdM and annual

technology spending reaching of almost 11 Billion by 2022. Without arguing about the

correctness of the numbers, the report still presents a considerable interest. Further interest is

found in the study by Mulders and Haarman [15], where few already employ people and tools

needed, but many are ambitious about its potential.

Several authors argue ML to be highly relevant for PdM. An aim of ML is to predict or decide

based input data. An aim of PdM to predict potential faults from sensor data. These two aims

can be said to be similar and show that ML can be an enabler of PdM. As computational power

increases, the ML tools are improved, and companies are digitalized, there is a rising potential

and market for ML. For PdM one of the most common arguments through the articles read is

that ML is crucial to make use of data collected and thus enabling PdM.

A challenge presented by Karsten Moholt is that there is much data collected from running

machines, but comparably little data connected from faults, thus little training data. A solution

could be to share the data, but as the much of the data is sensitive to one company, it is not

easily shared. A solution may be TL. By being able to transfer data from one motor to another,

one can predict failure without having registered failure data for that exact machine, thus

enabling one to train an NN with less available data. TL can also be said to bring with it a

possibility where companies are willing to shear their data to build and train ML models that in

return can be useful to them.

Through the theory chapter 2.1.3, there is an arguably need for research on ML for PdM. One

of the first arguments are the findings from the study by Mulders and Haarman (2017). They

have found many interested in implementing PdM, but few having reached a level of PdM.

They state few reference cases as one of the main challenges. IEEE has also sent out a call for

papers regarding ML and PdM, further arguing the case of PdM and thus ML for PdM needing

research.

 UNDERSTANDING MACHINE LEARNING
This thesis aims to be an introduction and to provide a practical start-guide for ML. To achieve

this, this thesis give an introduction to what ML is, how it works, and how one can build an ML

model to start with initial testing. These questions are answered in four steps, firstly in the

theory chapter and the in the following three chapters. This setup is done to answer the questions

and to present the topic by starting wide and to stepwise going into the details, down to code

and practical examples. It is also done to make the learning process an iterative process.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

54

ML itself can be argued to be a stepwise and iterative process. Also mentioned by Ng [6] and

Coelho and Pedro [5], ML is not only iterative when training itself, its use and the process of

achieving good results is also an iterative process. One has to test the different hyperparameters

and see which ones give the best result. The process of learning and understanding ML can also

be argued to be iterative. Thus, the process of presentation of information is done through

iterative steps.

Another choice could have been to present the topic thoroughly, from start to finish, by

presenting all the elements along with general code. This could have been a better solution as

it could have given an easier way to thoroughly understand each sub-topic or element of ML.

Instead of explaining an element, then another, and only to in the next chapter explain it again.

The stepwise and iterative solution was still chosen. There were several reasons for this. One

of them is that there are many elements to introduce and to consider when understanding and

building an ML model. When presenting all of them one after another, the information may be

confusing as it becomes hard to see how it is all connected or to understand how one is to

practically implement this information.

When starting to present the topic of ML, several of its elements may seem like black art. As

also experienced by Coelho and Pedro [5]. Starting by presenting code or by using the NN

libraries as Keras or Tensorflow, one might get a system working but may not understand why

it is not giving good results. By not understanding how ML works, it may also be hard to

understand other articles presenting ideas and solutions for how to improve the network. On the

other hand, by only reading theory, there may be several concepts that are hard to understand

without practical experience. To learn and understand ML it is thus recommended to first get

some intuitions about what ML and how it works. Even if some elements are unclear, it is

recommended to move on and get some practical experience by programming and see how the

learning and training process of the NN works. Then one can go back and read the theory again.

Hopefully, the theory is now more understandable, and one can learn how to make an improved

model.

To understand ML and to know the answers to either one of the presented questions, one is

likely to need some understanding about all three questions. It may be hard to understand what

ML is without knowing how it works. Moreover, it may be hard to know how it works without

knowing how to build. Thus, only by understanding all three questions may one understand

ML.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

55

 BUILDING AND PROGRAMMING AN ML MODEL
When building an ML model, there are many different choices to make regarding which tools

to use, how to handle data and how to build and design the NN. First, there are several choices

for which programming language to use. Then one can choose a framework like Keras or

Tensoflow if one is to use a framework at all. Thirdly, libraries for visualization, data treatment,

number operations and matrix operation, to mention some, must also be implemented. Further,

there are many choices to make regarding the ML system itself.

To download python, needed environments, libraries and frameworks the Anaconda Navigator

was used. The reason for this was that it enables all ML relevant tools to be collected at one

place. It contains applications as python and python notebooks, environments, libraries and

frameworks, along with the option to download missing libraries. An alternative could have

been to download the needed libraries through command. If one is used to work with command,

this approach may be quicker to work with and does not require one to download a navigator.

For python programming, the web-based notebook Jupyter is used. It has some shortcomings;

as it is run from the browser, it is challenging to structure longer code and the file-format is

“.ipynb” instead of the standard python format, “.py”. One effect that bcan be experienced when

implementing code and functions from other files, as done with the “Data_treatment”. Still, for

initial testing and exploration Jupyter is recommended. As the code is structured in a cell format

and each cell can be run independently, it is used to continuously test different elements of the

code, and thus build one and one element.

To program a basic NN oneself has both benefits and drawbacks and can be said to depend on

the goal of building an NN. One of the main benefits to mention is that it gives an increased

understanding of how the NN works, and how one can improve the system. The basics of an

NN can be said to be equal for almost all other NN and ML models. A negative side is that it

takes time to learn and get a sufficient understanding of all elements in an NN. There is also a

certain need to know how python works, how to treat matrices, and generally to know calculus.

As an example, Nielsen mentions in his book that finding the correct formulas for

backpropagation is both difficult and frustrating. Thus, using premade libraries as Tensorflow

and Keras may be a better choice for making good ML models.

Through Keras’s webpage, they advertise Keras as an NN API for easy and fast prototyping.

As shown through the programming example, this can be argued to be true. With few lines of

code, one can start with initial testing. For improved models, one can easily add several more

layers or change the number of neurons in a layer. A major benefit with Keras, also found in

Tensorflow, is that they have backpropagation built into their libraries. With this, one does not

have to mathematically find the partial derivatives of the cost function, which becomes

increasingly complex as one increases the number of layers. A popular alternative to Keras is

Tensorflow. It is the most popular deep learning library. Compared to Keras, Tensorflow offers

more freedom in designing and building ML models and offers more advanced operations. With

Tensorflow one also has a higher degree of insight into what is happening in the NN. One aim

of this thesis is to provide a guide for initial testing. Thus Keras was chosen as it offers easy

and fast prototyping and is a good tool to start building M models.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

56

 USEFULNESS
As an introduction and start-guide this thesis main usefulness is, hopefully, towards the

intended readers, to help with a better understanding about ML, and as a guide towards building

ML models. By replicating the code presented in this guide, one has a basis model that one can

build on, and, hopefully, an understanding about NN and ML. With this, one may have a better

understanding towards implemented solutions and ideas presented by others.

A limiting factor is that the thesis presents ML up to the point of running the first test on the

training data. There are thus many elements of ML that are not presented in this thesis that are

important in the process to further develop the ML model. Another limiting factor is that the

thesis is not tested and evaluated by the intended reader group or validated by experts in the

field of ML. This could have enables the guide and code to have better credibility and to work

better as an introduction and start guide.

Still, as a start guide for ML, this thesis can be argued to stand out. As previously mentioned,

and used in this thesis, there are several other books, guides, courses and webpages presenting

the topic of ML. Working with theses guides, most are found to focus on classification

problems. The general case is also that a guide either presents the code or the theory. Thus, to

be a start guide for those interested, but without excessive knowledge of programming, this

thesis presents both elements. None of the other guides are found to focus on presenting the

topic and to be a practical start guide for ML for PdM. As there is a rising interest and need for

research on the combination of these fields, there is arguably also a need to make guides to

these specific cases. This is also the focus of this thesis, and arguably where it stands out.

Thus, this thesis can be used in different cases and settings where there is an interest in learning

about ML and its practical implementation. One scenario may be for classes taught to

maintenance engineers or others, where it can be used as an exercise document. Another is to

help other master students and researchers relatively quickly get started on building ML models,

to develop them further and to use ML in case studies. A third scenario is for the maintenance

company Karsten Moholt, or other companies, where it can be used to increase the knowledge

about ML or enable them to get started with ML.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

57

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

58

7 CONCLUSION

In this thesis Predictive Maintenance (PdM), Machine Learning (ML) and Transfer Learning

(TL) are presented and answers are provided to the questions; what is Machine Learning, how

does it work, and how can one build a Machine Learning model to start with initial testing.

Through is an introduction and a practical start guide for those interested in using ML for PdM,

is provided.

PdM is presented as a technique for monitoring operating condition to provide data that can

ensure the maximum interval between repairs and minimize the number and cost of

unscheduled machine failures. ML is found as an important and powerful tool for finding

patterns and make predictions from a vast amount of data, where Neural Networks (NN) is the

main technique for implementing ML. TL is found as a powerful idea, where knowledge from

one NN can be transferred to another. All these topics are found to have considerable future

potential and are in need of development and research.

The second part of this thesis provides answers to the given questions and, hopefully, enables

an understanding towards ML. Theory from several sources are collected and presented

providing a guide for information and background about ML and NN. To enable the reader to

start programming, tools such as the programming language Python, the notebook Jupyter, the

mathematical library NumPy, data structure library Pandas, and the high-level NN API, Keras

are presented, used and recommended. Two ML models are programmed for a Remaining

Useful Life (RUL) regression problem on the Turbofan Degradation Dataset by NASA. The

first model provides a guide on how to program an NN oneself, thus getting a better

understanding toward ML, and includes the elements; “prepare data”, “initialize weights and

biases”, “forward propagation”, “calculating cost”, “backpropagation” and “update

parameters”. The second model presents how to program the same model with Keras, enabling

one to program ML models with few lines of code.

The guide enables a foundation for further development of ML models for different PdM

scenarios. The thesis provides arguments and justification for the need of further development

of ML solutions and research connected to PdM. It is recommended to work iteratively with

the topic of ML, to program a basic ML model to understand the process and system and to

continue testing and prototyping with Keras.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

59

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

60

8 FURTHER WORK

As an introduction and start-guide for ML in PdM this thesis is the first iteration. For further

work, several further iterations are recommended. An important step, not done in this thesis, is

to present the document to experts in ML and the intended target group. Through feedback and

the code and information can be further developed and improve the thesis as a guide. This

enables the guide and code to have better credibility and to work better as an introduction and

start guide.

Another case is to further develop the guide by adding information. One example is to add a

guide on the popular NN platform TensorFlow. A second exampl could be to provide a guide

on how to build more advanced NN for PdM. There are several implementations, functions and

solutions available that can improve the NN. By implementing this, the guide may not only

work as an introduction to get started, but also as a document to presenting how to build finished

ML models for PdM.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

61

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

62

REFERENCES:

1. Fogoros, L. Connected sensors & machine learning – two current trends in predictive
maintenance. [cited 2018 09.03]; Available from: http://iiot-world.com/predictive-
maintenance/connected-sensors-ml-two-current-trends-in-predictive-maintenance/.

2. Cline, B., et al. Predictive maintenance applications for machine learning. in 2017 Annual
Reliability and Maintainability Symposium (RAMS). 2017.

3. Li, H., et al., Improving rail network velocity: A machine learning approach to predictive
maintenance. Transportation Research Part C: Emerging Technologies, 2014. 45: p. 17-26.

4. Moholt, K. [cited 2017 18.12.17]; Available from: http://karstenmoholt.com/About.
5. Coelho, L.P. and W. Richert, Building machine learning systems with Python. 2015: Packt

Publishing Ltd.
6. A. Ng, K.K., Y. B. Mourri, Neural Networks and Deep Learning 2017, Coursera:

www.coursera.org.
7. Brownlee, J. Machine Learning Mastery. [cited 2018 22.06]; Available from:

https://machinelearningmastery.com.
8. Nielsen, M.A., Neural Networks and Deep Learning ed. D. Press. 2015.
9. Chiu, Y.-C., F.-T. Cheng, and H.-C. Huang, Developing a factory-wide intelligent predictive

maintenance system based on Industry 4.0. Journal of the Chinese Institute of Engineers, 2017.
40(7): p. 562-571.

10. Amruthnath, N. and T. Gupta, A Research Study on Unsupervised Machine Learning Algorithms
for Fault Detection in Predictive Maintenance. 2018.

11. Mobley, R.K., An introduction to predictive maintenance. 2002: Butterworth-Heinemann.
12. Sciban, R. 6 Tools for a Successful Predictive Maintenance Program. 2017 [cited 2018 06.06];

Available from: https://us.hitachi-solutions.com/blog/6-tools-for-a-successful-predictive-
maintenance-program/.

13. Scully, P. New Report Indicates US$11 Billion Predictive Maintenance Market By 2022, Driven
By IoT Technology And New Services. 2017 [cited 2018 06.06]; Available from: https://iot-
analytics.com/report-us11-billion-predictive-maintenance-market-by-2022/.

14. 2018, I.I. Special Sessions Call for Papers. 2016 [cited 2018 15.05]; Available from:
https://icnsc2018.jnu.edu.cn/MLPAIA.html.

15. M. Mulders, M.H. Predictive Maintenance 4.0 - Predict the unpredictable. 2017.
16. Nowitz, A. The Economics of the Smart Factory How does Machine Learning Lower the Cost of

Asset Maintenance Part 1. 2017 [cited 2018 05.06]; Available from:
http://www.presenso.com/single-post/2017/05/24/the-economics-of-the-smart-factory-
how-does-machine-learning-lower-the-cost-of-asset-maintenance-part-1/.

17. Kelly, K. The Three Breakthroughs That Have Finally Unleashed AI on the World. 2014 [cited
2018 06.06]; Available from: https://www.wired.com/2014/10/future-of-artificial-
intelligence/.

18. Andre, E., et al., Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 2017. 542(7639): p. 115.

19. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521: p. 436.
20. Øverlier, L. and A. Aspelund, Intellectual Property and Machine Learning: An exploratory study.

2017.
21. Marr, B. 27 Incredible Examples Of AI And Machine Learning In Practice. 2018 [cited 2018

20.06]; Available from: https://forbes.com/sites/bernardmarr/2018/04/30/27-incredible-
examples-of-ai-and-machine-learning-in-practice/#49d1faaf7502.

http://iiot-world.com/predictive-maintenance/connected-sensors-ml-two-current-trends-in-predictive-maintenance/
http://iiot-world.com/predictive-maintenance/connected-sensors-ml-two-current-trends-in-predictive-maintenance/
http://karstenmoholt.com/About
www.coursera.org
https://machinelearningmastery.com/
https://us.hitachi-solutions.com/blog/6-tools-for-a-successful-predictive-maintenance-program/
https://us.hitachi-solutions.com/blog/6-tools-for-a-successful-predictive-maintenance-program/
https://iot-analytics.com/report-us11-billion-predictive-maintenance-market-by-2022/
https://iot-analytics.com/report-us11-billion-predictive-maintenance-market-by-2022/
https://icnsc2018.jnu.edu.cn/MLPAIA.html
http://www.presenso.com/single-post/2017/05/24/the-economics-of-the-smart-factory-how-does-machine-learning-lower-the-cost-of-asset-maintenance-part-1/
http://www.presenso.com/single-post/2017/05/24/the-economics-of-the-smart-factory-how-does-machine-learning-lower-the-cost-of-asset-maintenance-part-1/
https://www.wired.com/2014/10/future-of-artificial-intelligence/
https://www.wired.com/2014/10/future-of-artificial-intelligence/
https://forbes.com/sites/bernardmarr/2018/04/30/27-incredible-examples-of-ai-and-machine-learning-in-practice/#49d1faaf7502
https://forbes.com/sites/bernardmarr/2018/04/30/27-incredible-examples-of-ai-and-machine-learning-in-practice/#49d1faaf7502

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

63

22. Irwin, R. Predictive Maintenance and Machine Learning Revolutionizing Reliability. [cited 2018
05.06]; Available from: https://reliabilityweb.com/articles/entry/predictive-maintenance-
and-machine-learning-revolutionizing-reliability.

23. MSV, J. How Machine Learning Enhances The Value Of Industrial Internet of Things. 2017 [cited
2018 05.06]; Available from: https://www.forbes.com/sites/janakirammsv/2017/08/27/how-
machine-learning-enhances-the-value-of-industrial-internet-of-things/#6ed43b163f38.

24. Ovenden, J. Machine Learning Top Trends In 2017. 2017 [cited 2018 05.06.18]; Available from:
https://channels.theinnovationenterprise.com/articles/machine-learning-top-trends-in-
2017.

25. Marr, B. What Is The Difference Between Deep Learning, Machine Learning and AI? 2016 [cited
2018 06.06]; Available from: https://www.forbes.com/sites/bernardmarr/2016/12/08/what-
is-the-difference-between-deep-learning-machine-learning-and-ai/#7aa2d60e26cf.

26. Buczkowski, A. What’s the difference between Artificial Intelligence, Machine Learning and
Deep Learning? 2018 [cited 2018 06.06]; Available from: http://geoawesomeness.com/whats-
difference-artificial-intelligence-machine-learning-deep-learning/.

27. Reese, H. Understanding the differences between AI, machine learning, and deep learning.
2017 [cited 2018 06.06]; Available from:
https://www.techrepublic.com/article/understanding-the-differences-between-ai-machine-
learning-and-deep-learning/.

28. Copeland, M. What’s the Difference Between Artificial Intelligence, Machine Learning, and
Deep Learning? 2016 [cited 2018 06.06]; Available from:
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-
learning-deep-learning-ai/.

29. Parrish, K. Deep learning vs. machine learning: what's the difference between the two? 2018
[cited 2018 06.06]; Available from: https://www.digitaltrends.com/cool-tech/deep-learning-
vs-machine-learning-explained/2/.

30. Liu, Q. and Y. Wu, Supervised Learning, in Encyclopedia of the Sciences of Learning, N.M. Seel,
Editor. 2012, Springer US: Boston, MA. p. 3243-3245.

31. Unsupervised Learning, in Encyclopedic Reference of Genomics and Proteomics in Molecular
Medicine. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1972-1972.

32. Brownlee, J. Supervised and Unsupervised Machine Learning Algorithms. 2016.
33. Izquierdo, L.R. and S.S. Izquierdo, Reinforcement Learning, in Encyclopedia of the Sciences of

Learning, N.M. Seel, Editor. 2012, Springer US: Boston, MA. p. 2796-2799.
34. Arulkumaran, K., et al., Deep Reinforcement Learning: A Brief Survey. IEEE Signal Processing

Magazine, 2017. 34(6): p. 26-38.
35. Semi-supervised Learning, in Encyclopedia of the Sciences of Learning, N.M. Seel, Editor. 2012,

Springer US: Boston, MA. p. 3036-3036.
36. Susto, G.A., et al., An adaptive machine learning decision system for flexible predictive

maintenance. Vol. 2014. 2014. 806-811.
37. A. Ng, K.K., Y. B. Mourri, Improving Deep Neural Networks: Hyperparameter tuning,

Regularization and Optimization. 2017, Coursera: www.coursera.org.
38. Transfer Learning, in Encyclopedia of the Sciences of Learning, N.M. Seel, Editor. 2012, Springer

US: Boston, MA. p. 3337-3337.
39. Weiss, K., T.M. Khoshgoftaar, and D. Wang, A survey of transfer learning. Journal of Big Data,

2016. 3(1): p. 9.
40. Pan, S.J. and Q. Yang, A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data

Engineering, 2010. 22(10): p. 1345-1359.
41. Ruder, S. Transfer Learning - Machine Learning's Next Frontier. 2017 [cited 2018 12.06];

Available from: http://ruder.io/transfer-learning/.

https://reliabilityweb.com/articles/entry/predictive-maintenance-and-machine-learning-revolutionizing-reliability
https://reliabilityweb.com/articles/entry/predictive-maintenance-and-machine-learning-revolutionizing-reliability
https://www.forbes.com/sites/janakirammsv/2017/08/27/how-machine-learning-enhances-the-value-of-industrial-internet-of-things/#6ed43b163f38
https://www.forbes.com/sites/janakirammsv/2017/08/27/how-machine-learning-enhances-the-value-of-industrial-internet-of-things/#6ed43b163f38
https://channels.theinnovationenterprise.com/articles/machine-learning-top-trends-in-2017
https://channels.theinnovationenterprise.com/articles/machine-learning-top-trends-in-2017
https://www.forbes.com/sites/bernardmarr/2016/12/08/what-is-the-difference-between-deep-learning-machine-learning-and-ai/#7aa2d60e26cf
https://www.forbes.com/sites/bernardmarr/2016/12/08/what-is-the-difference-between-deep-learning-machine-learning-and-ai/#7aa2d60e26cf
http://geoawesomeness.com/whats-difference-artificial-intelligence-machine-learning-deep-learning/
http://geoawesomeness.com/whats-difference-artificial-intelligence-machine-learning-deep-learning/
https://www.techrepublic.com/article/understanding-the-differences-between-ai-machine-learning-and-deep-learning/
https://www.techrepublic.com/article/understanding-the-differences-between-ai-machine-learning-and-deep-learning/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.digitaltrends.com/cool-tech/deep-learning-vs-machine-learning-explained/2/
https://www.digitaltrends.com/cool-tech/deep-learning-vs-machine-learning-explained/2/
www.coursera.org
http://ruder.io/transfer-learning/

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

64

42. Jillian, S. How is Mtell Able to Transfer Learned Behaviors from One Machine to Another, While
Some Claim all Machines are Unique? 2013 [cited 2018 15.06]; Available from:
http://mtell.com/transfer-learning-for-machines.

43. Tunkelang, D. 10 Things Everyone Should Know About Machine Learning. 2017 [cited 2018
20.06]; Available from: https://medium.com/@dtunkelang/10-things-everyone-should-know-
about-machine-learning-15279c27ce96.

44. Brownlee, J. Discover Feature Engineering, How to Engineer Features and How to Get Good at
I. 2014 [cited 2018 20.06]; Available from: https://machinelearningmastery.com/discover-
feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/.

45. learn, s. 4.3. Preprocessing data. [cited 2018 21.06]; Available from: http://scikit-
learn.org/stable/modules/preprocessing.html.

46. learn, s. Importance of Feature Scaling. [cited 2018 20.06]; Available from: http://scikit-
learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html.

47. Li, J., et al., Feature Selection: A Data Perspective. Vol. 50. 2016.
48. Jupyter. What is the Jupyter Notebook? [cited 2018 22.06]; Available from: http://jupyter-

notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html.
49. Oslo, U.i. Jupyter Notebook og Jupyterhub. 2017 [cited 2018 22.06]; Available from:

https://uio.no/studier/emner/matnat/ibv/BIOS1100/h17/ressurser/jupyterhub.md.
50. Anaconda. What is Anaconda. [cited 2018 20.06]; Available from:

https://www.anaconda.com/what-is-anaconda/.
51. Anaconda. Anaconda Navigator. [cited 2018 20.06]; Available from:

https://anaconda.org/anaconda/anaconda-navigator.
52. pandas. pandas 0.23.0 documentation. [cited 2018 11.06]; Available from:

http://pandas.pydata.org/pandas-docs/stable/index.html.
53. pandas. The pandas project. [cited 2018 11.06]; Available from:

https://pandas.pydata.org/about.html.
54. Scikit-learn. Home. [cited 2018 22.06]; Available from: http://scikit-

learn.org/stable/index.html#.
55. Keras. Keras: The Python Deep Learning library. [cited 2018 11.06]; Available from:

https://keras.io/.
56. TensorFlow. Aboudt TensorFlow. 2018 [cited 2018 10.04.18]; Available from:

https://www.tensorflow.org/.
57. H2O. About Us. [cited 2018 11.06]; Available from: https://www.h2o.ai/about/.
58. NASA. PCoE Datasets. [cited 2018 11.06]; Available from:

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
59. NASA. NASA's Open Data Portal. [cited 2018 05.06.18]; Available from:

https://data.nasa.gov/stories/s/e3dt-gtde.
60. kaggle. Get data. [cited 2018 05.06]; Available from:

https://www.kaggle.com/about/datasets/get.
61. Saxena, A., et al. Damage propagation modeling for aircraft engine run-to-failure simulation.

in Prognostics and Health Management, 2008. PHM 2008. International Conference on. 2008.
IEEE.

http://mtell.com/transfer-learning-for-machines
https://medium.com/@dtunkelang/10-things-everyone-should-know-about-machine-learning-15279c27ce96
https://medium.com/@dtunkelang/10-things-everyone-should-know-about-machine-learning-15279c27ce96
https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/
https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/
http://scikit-learn.org/stable/modules/preprocessing.html
http://scikit-learn.org/stable/modules/preprocessing.html
http://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
http://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
https://uio.no/studier/emner/matnat/ibv/BIOS1100/h17/ressurser/jupyterhub.md
https://www.anaconda.com/what-is-anaconda/
https://anaconda.org/anaconda/anaconda-navigator
http://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/about.html
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
https://keras.io/
https://www.tensorflow.org/
https://www.h2o.ai/about/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://data.nasa.gov/stories/s/e3dt-gtde
https://www.kaggle.com/about/datasets/get

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

65

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

66

APPENDIX A: TURBOFAN ENGINE DEGRADATION

SIMULATION DATA SET, README – FROM ZIPFILE

DOWNLOADED FROM NASA.

Data Set: FD001

Train trjectories: 100

Test trajectories: 100

Conditions: ONE (Sea Level)

Fault Modes: ONE (HPC Degradation)

Data Set: FD002

Train trjectories: 260

Test trajectories: 259

Conditions: SIX

Fault Modes: ONE (HPC Degradation)

Data Set: FD003

Train trjectories: 100

Test trajectories: 100

Conditions: ONE (Sea Level)

Fault Modes: TWO (HPC Degradation, Fan Degradation)

Data Set: FD004

Train trjectories: 248

Test trajectories: 249

Conditions: SIX

Fault Modes: TWO (HPC Degradation, Fan Degradation)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

67

Experimental Scenario

Data sets consists of multiple multivariate time series. Each data set is further divided into

training and test subsets. Each time series is from a different engine – i.e., the data can be

considered to be from a fleet of engines of the same type. Each engine starts with different

degrees of initial wear and manufacturing variation which is unknown to the user. This wear

and variation is considered normal, i.e., it is not considered a fault condition. There are three

operational settings that have a substantial effect on engine performance. These settings are also

included in the data. The data is contaminated with sensor noise.

The engine is operating normally at the start of each time series, and develops a fault at some

point during the series. In the training set, the fault grows in magnitude until system failure. In

the test set, the time series ends some time prior to system failure. The objective of the

competition is to predict the number of remaining operational cycles before failure in the test

set, i.e., the number of operational cycles after the last cycle that the engine will continue to

operate. Also provided a vector of true Remaining Useful Life (RUL) values for the test data.

The data are provided as a zip-compressed text file with 26 columns of numbers, separated by

spaces. Each row is a snapshot of data taken during a single operational cycle, each column is

a different variable. The columns correspond to:

1) unit number

2) time, in cycles

3) operational setting 1

4) operational setting 2

5) operational setting 3

6) sensor measurement 1

7) sensor measurement 2

...

26) sensor measurement 26

Reference: A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage Propagation Modeling

for Aircraft Engine Run-to-Failure Simulation”, in the Proceedings of the Ist International

Conference on Prognostics and Health Management (PHM08), Denver CO, Oct 2008.

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

68

APPENDIX B: BACKPROPAGATION - MATHEMATICAL

CALCULATION OF 𝒅𝑾 AND 𝒅𝒃

𝐴2 is found through two steps of forward propagation in Model 1.

 𝐴[2] = 𝜎(𝑊[2] ∗ 𝜎(𝑊[1] ∗ 𝑋 + 𝑏[1]) + 𝑏[2]),

𝜎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Mean Squared Error cost function:

𝐶 = 𝐶𝑜𝑠𝑡 =

1

2𝑚
∗ ∑(𝐴[2] − 𝑌)

2
𝑚

𝑖=1

Inserting 𝐴2 into the cost function

 𝐶 =
1

2𝑚
∗ ∑ (𝜎(𝑊[2] ∗ 𝜎(𝑊[1] ∗ 𝑋 + 𝑏[1]) + 𝑏[2]) − 𝑌)

2𝑚
𝑖=1

Using partial derivatives

𝑑𝑊2 =

𝑑𝐶

𝑑𝑊[2]
=

𝑑𝐶

𝑑𝐴[2]
∗
𝑑𝐴[2]

𝑑𝑍[2]
∗

𝑑𝑍[2]

𝑑𝑊[2]

 𝑑𝐶

𝑑𝐴[2]
=

2

2𝑚
∑(𝐴[2] − 𝑌)

𝑑𝐴[2]

𝑑𝑍[2]
= 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

There is no activation function in second/ output layer give

 𝑑𝐴[2]

𝑑𝑍[2]
= 1, 𝐴[2] = 𝑍[2]

 𝑑𝑍[2]

𝑑𝑊[2]
= 𝐴1

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

69

Finding dW2

𝑑𝐶

𝑑𝑊[2]
=

1

𝑚
∑((𝐴2 − 𝑌) ∗ 1 ∗ 𝐴1)

 𝑑𝐶

𝑑𝑊[2] =
1

𝑚
((𝐴2 − 𝑌) ∘ 𝐴1) , der ∑(𝑎 ∗ 𝑏) = 𝑎 ∘ 𝑏

Finding db2

𝑑𝑏2 =
𝑑𝐶

𝑑𝑏2
=

𝑑𝐶

𝑑𝐴[2]
∗
𝑑𝐴[2]

𝑑𝑍[2]
∗
𝑑𝑍[2]

𝑑𝑏[2]

 𝑑𝑍2

𝑑𝑏2
= 1

 𝑑𝐶

𝑑𝑏2
=

1

𝑚
∑((𝐴2 − 𝑌) ∗ 1 ∗ 1)

Finding dW1

𝑑𝑊1 =
𝑑𝐶

𝑑𝑊1
=

𝑑𝐶

𝑑𝐴2
∗
𝑑𝐴2

𝑑𝑍2
∗
𝑑𝑍2

𝑑𝐴1
∗
𝑑𝐴1

𝑑𝑍1
∗

𝑑𝑍1

𝑑𝑊1

 𝑑𝑍2

𝑑𝐴1
= 𝑊2

 𝑑𝐴1

𝑑𝑍1
= 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝑑𝐴1

𝑑𝑍1
= 𝐴1 ∗ (1 − 𝐴1)

 𝑑𝑍1

𝑑𝑊1
= 𝑋

𝑑𝑊1 =

1

𝑚
∑((𝐴2 − 𝑌) ∗ 1 ∗ 𝑊2 ∗ 𝐴1 ∗ (1 − 𝐴1) ∗ 𝑋)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

70

Finding db1

𝑑𝑏1 =
𝑑𝐶

𝑑𝑏1
=

𝑑𝐶

𝑑𝐴2
∗
𝑑𝐴2

𝑑𝑍2
∗
𝑑𝑍2

𝑑𝐴1
∗
𝑑𝐴1

𝑑𝑍1
∗
𝑑𝑍1

𝑑𝑏1

 𝑑𝑍1

𝑑𝑏1
= 1

𝑑𝑏1 =

1

𝑚
∑(((𝐴2 − 𝑌) ∗ 1 ∗ 𝑊2)) ∗ 𝐴1 ∗ (1 − 𝐴1))

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

71

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

72

APPENDIX C - CODE

Code from “Split_data.ipynb” and “Split_data.py”

#Import Pandas to load and for data

import pandas as pd

#Import NumPy for array treatment and matrix multiplication

import numpy as np

#Import os for file- and folder-treatment

import os

#Function for removing unnamed columns

def remove_unnamed(df):

 return df.loc[:, ~df.columns.str.contains('^Unnamed')]

#Function for splitting txt-file into several csv-files containing a mot

or each

def split_data(file_folder):

 data_type = file_folder[0].split('_')[0]

 column1 = ['unit','cycle', 'setting1', 'setting2', 'setting3']

 column2 = ['sensor{}'.format(i) for i in range(1,22)]

 cols = column1+column2

 os.makedirs('{}_data'.format(data_type))

 for file in file_folder:

 folder = file.split('.')[0]

 print("creating folder data/{}".format(folder))

 os.makedirs('{}_data/{}'.format(data_type,folder))

 # process files

 for j,file_name in enumerate(file_folder):

 path = "{}".format(file_name)

 data = open(path).readlines()

 my_new_data = list(map(lambda line: line.strip('\n').split(' ')[

:-2], data))

 for k in list(range(1,101)):

 new_array = list(filter(lambda x: x[0]=='{}'.format(k), my_n

ew_data))

 df = pd.DataFrame(new_array, columns=cols)

 print("processing file {} folder {}_FD00{} mortor{} data".fo

rmat(file_name,data_type,j+1,k))

 df.to_csv('{}_data/{}_FD00{}/motor{}.csv'.format(data_type,

data_type,j+1,k))

#Array containing the string names of train and test txt files

training_files = ['train_FD00{}.txt'.format(k) for k in range(1,5)]

test_files = ['test_FD00{}.txt'.format(k) for k in range(1,5)]

#Run through test and training txt-files to split data

for file_folder in [training_files,test_files]:

 split_data(file_folder)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

73

Code from “Data_treatment.ipynb” and “Data_treatment.py”

#Import NumPy for array treatment and matrix multiplication

import numpy as np

#from sklearn import linear_model

import sklearn

from sklearn import preprocessing

from sklearn.preprocessing import StandardScaler

#Import Pandas to load and for data

import pandas as pd

#Function to remove the unnamed column added to dataset through the code

 for splitting the original dataset.

def remove_unnamed(df):

 return df.loc[:, ~df.columns.str.contains('^Unnamed')]

#Loads data from path. Return Matrix X with shape [#examples, #features]

 and a list Y.

def load_data(path):

 #Reads the CSV file and removes unnamed columns

 data = remove_unnamed(pd.read_csv(path)) #Reads the CSV file and rem

oves unnamed columns

 Y = list(list(data['cycle'])) #Makes a list containing the cycle num

bers. From 1 to n cycles before failure

 Y.reverse() #Reverse the list to make Y corresponding to RUL for eac

h example in X.

 #Retrieve a list containing values from columns setting1 to sensor21

 X = data.loc[:,'setting1':'sensor21'].as_matrix()

 return X, Y

#Load n number of motors. Return array X and Y with dimensions [num_ex,

24],[num_ex,]

def load_n_motors(num_motor):

 #Create two arrays containing string names for train and test FD001

 training_folders = ['train_FD00{}'.format(i) for i in range(1,5)]

 test_folders = ['test_FD00{}'.format(i) for i in range(1,5)]

 # Folder number. Here: train_FD001 or test_FD00

 k = 0

 #Make an empty Y train and test list

 Y_train = []

 Y_test = []

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

74

 #Load num_motor X and Y training- and test-sets

 for i in range (1, num_motor+1):

 #Create training and test path

 train_path = 'train_data/{}/motor{}.csv'.format(training_folders

[k],i)

 test_path = 'test_data/{}/motor{}.csv'.format(test_folders[k],i)

 #Load temporary X and Y sets

 X_train_temp, Y_train_temp = load_data(train_path)

 X_test_temp, Y_test_temp = load_data(test_path)

 #Build Y train and test list

 Y_train = Y_train + Y_train_temp

 Y_test = Y_test + Y_test_temp

 #Convert Matrix X to a pandas dataframe

 X_train_temp_df = pd.DataFrame(X_train_temp)

 X_test_temp_df = pd.DataFrame(X_test_temp)

 #Initialize first motor

 if (i == 1):

 X_train_df = X_train_temp_df

 X_test_df = X_test_temp_df

 #Append/add new motors

 else:

 X_test_df = X_test_df.append(X_test_temp_df)

 X_train_df = X_train_df.append(X_train_temp_df)

 #Convert X and Y to type array

 X_train = X_train_df.values

 Y_train = np.array(Y_train)

 X_test = X_test_df.values

 Y_test = np.array(Y_test)

 #Transfor Y train ans test dimensions from [number of examples,] to

 [number og examples, 1]

 Y_train = Y_train.reshape((Y_train.shape[0],1))

 Y_test = Y_test.reshape((Y_test.shape[0],1))

 return X_train, Y_train, X_test, Y_test

#Standardscaler

def standardize(data):

 d = preprocessing.StandardScaler().fit_transform(data)

 return d

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

75

Load treated data

def load_treated_data(num_motor):

 #Load train- and testset

 train_x, train_y, test_x, test_y = load_n_motors(num_motor)

 #Normalize the values in X train and test

 train_norm_x = normalize(train_x)

 test_norm_x = normalize(test_x)

 #Run the normalized values through a robust scaler

 train_norm_rob_x = robust_scaler(train_norm_x)

 test_norm_rob_x = robust_scaler(test_norm_x)

 #Delete columns with std lower than ...

 #train_norm_rob_x, test_norm_rob_x = del_col(train_norm_rob_x, test_

norm_rob_x)

 return train_norm_rob_x.T, train_y, test_norm_rob_x.T , test_y

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

76

Code from “NN_2_Layer.ipynb”

#Imort numpy for array treatment and matrix multiplication

import numpy as np

#Imort sklearn for mathematical computation of MSE

import sklearn

from sklearn.metrics import mean_squared_error

#Import matplotlib to visualize results

import matplotlib.pyplot as plt

#Import own code for data-treatment and to load training and test set

from Data_treatment import *

#Initialize Parameters W1, b1, W2 and b2 as numpy arrays

#Input: n_x: #features from training set | n_h: #hidden layers | n_y: nu

mber of nodes in output layer

def initialize_parameters(n_x, n_h, n_y):

 #Initialize numpy arrays

 W1 = np.random.randn(n_h, n_x)*0.1 # Numpy array of dimension [n_h,

 n_x] with random numbers

 b1 = np.zeros((n_h, 1)) # Numpy array of dimension [n_h

, 1] with zeros

 W2 = np.random.randn(n_y, n_h)*0.1 # Numpy array of dimension [n_y,

 n_h] with random numbers

 b2 = np.zeros((n_y,1)) # Numpy array of dimension [n_y

, 1] with zeros

 return W1, b1, W2, b2

#Forward propagation over one layer: Calculating Z and A(Z)

def forward_prop(W,b,A_prev,a_function):

 Z = np.dot(W,A_prev)+b #For first layer, ex: Z = W * X + b

 if a_function == "Sigmoid":

 A = 1/(1+np.exp(-Z)) #A = Sigmoid(Z)

 elif a_function == "None":

 A = Z #No activation function in the last layer gives A = Z

 return A, Z

Takes in Y and the predicted value from NN and forward propagation,

and calculates the cost with Mean Squared Error(MSE)cost function

#Both Y and Yhat are numpy arrays of dimensions [number of examples, 1]

def cost_func(Y, Yhat, m):

 #MSE cost function

 cost = (1/(2*m)) * np.sum((Yhat-Y.T)**2)

 cost = np.squeeze(cost) # Turns the dimension of cost from [[17

]] into 17).

 assert(cost.shape == ())

 return cost

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

77

def backprob(X, Y, A1, Yhat, W2, m):

 #Part derivatives

 dCost_dYhat = (Yhat-Y.T) #dCost/dYhat

 dYhat_dW2 = A1 #dYhat/dW2

 dYhat_dA1 = W2 #dYhat/dA1

 dA1_dZ1 = A1*(1-A1) #dA1/dZ1 = Derivative of sigmoid(Z1)

 dZ1_dW1 = X #dZ1/dW1

 #Calculating dW1 and db1

 dW2 = (1/m) * np.dot(dCost_dYhat, dYhat_dW2.T)

 db2 = (1/m) * np.sum(dCost_dYhat, axis=1, keepdims=True)

 #Calculating dW1 and db1

 dW1 = (1/m) * np.dot((np.dot(dYhat_dA1.T,dCost_dYhat) * dA1_dZ1),X.T

)

 db1 = (1/m) * np.sum((np.dot(dYhat_dA1.T,dCost_dYhat) * dA1_dZ1), ax

is=1, keepdims=True)

 return dW1, db1, dW2, db2

def model(X, Y, learning_rate, epoch):

 # Set the number of neurons in each layer

 n_x = X.shape[0] #Input layer

 n_h = 2 #Hidden layer

 n_y = 1 #Output layer

 m = Y.shape[0] # number of examples

 cp = np.zeros((epoch-1)) #Numpy array for storing cost from each epo

ch

 #Initialize parameters

 W1, b1, W2, b2 = initialize_parameters(n_x, n_h, n_y)

 #Iterate and update parameters epoch number of times

 for i in range(1,epoch):

 #Forward propagation through two layers,

 A1, Z1 = forward_prop(W1, b1, X, "Sigmoid") #Sigmoid activation

 in the first/hidden layer

 A2, Z2 = forward_prop(W2, b2, A1, "None") #No activation in t

he second/output layer

 #Cost function: Mean squeared error

 cost = cost_func(Y,A2,m)

 #Register cost for plot

 cp[i-1] = cost

 #Backward propagation, finding the weigth and biases

 dW1, db1, dW2, db2 = backprob(X, Y, A1, A2, W2, m)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

78

 #Update Parameters

 W1 = W1 - learning_rate *dW1

 W2 = W2 - learning_rate *dW2

 b1 = b1 - learning_rate *db1

 b2 = b2 - learning_rate *db2

 parameters = [W1, b1, W2, b2]

 # summarize history for loss

 plt.plot(cp)

 #plt.plot(history.history['accuracy'])

 #plt.plot(scores)

 plt.title('model loss')

 plt.ylabel('loss')

 plt.xlabel('epoch')

 plt.legend(['train'], loc='upper left')

 plt.show()

 print("Final Cost: ", cost)

 print("Final Squared Cost: ", np.sqrt(cost))

 return parameters

#Set hyper parameters

learning_rate = 0.012

epoch = 500

num_motor=100

X, Y, Xt, Yt = load_treated_data(num_motor)

#print_shapes(X,Y,Xt,Yt)

Run Model 1

parameters = model(X, Y, learning_rate, epoch)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

79

#Define function to test trained NN on Xt and Yt

def test(parameters, Xt, Yt):

 # Set the number of neurons in each layer

 n_x = Xt.shape[0] #Input layer number of features or input neurons

 n_h = 2 #Hidden layer

 n_y = 1 #Output layer

 m = Yt.shape[0] # number of examples

 #Initialize parameters

 W1, b1, W2, b2 = parameters

 #Forward propagation through two layers,

 A1, Z1 = forward_prop(W1, b1, Xt, "Sigmoid") #Sigmoid activation in

 the first/hidden layer

 A2, Z2 = forward_prop(W2, b2, A1, "None") #No activation in the s

econd/output layer

 #Cost function: Mean squeared error

 c = (Yt.T-A2)

 d = np.sqrt((Yt.T-A2)**2)

 cost = (1/m)*np.sum(np.sqrt((A2-Yt.T)**2))

 print("Final Cost: ", cost)

 return cost

Run test on Model 1

cost = test(parameters, Xt, Yt)

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

80

Code from “Keras.ipynb”

#Import Keras to build and train ML model

import keras

from keras import optimizers

from keras.models import Sequential

from keras.layers import Dense

#Imort sklearn fir mathmatical computation of MSE of pred-Y

import sklearn

from sklearn import metrics

#Import matplotlib for visualisation of results

import matplotlib

from matplotlib import pyplot as plt

#Import own kode for datatreatment and to load training and test set

from Data_treatment import *

#Ser hyperparemeters

num_motors = 100

batch_size = 128

learning_rate = 0.01

epochs = 25

#Load datasets for training and testing

X, Y, Xt, Yt = load_treated_data(num_motors)

#print_shapes(X,Y,Xt,Yt)

#print("Number of features: " + str(X.shape[1]))

X = X.T

Xt = Xt.T

#print_shapes(X,Y,Xt,Yt)

#print("Number of features: " + str(X.shape[1]))

create model input format: [num_ex, num_features]

model = Sequential()

#First hidden layer

model.add(Dense(2,

 input_dim=X.shape[1], # Features from input X

 kernel_initializer='random_uniform', #Initialize W

 bias_initializer='zeros', #Initialize b

 activation='sigmoid' #Activation function

))

#Output layer

model.add(Dense(1,

 kernel_initializer='random_uniform',

 bias_initializer='zeros'

))

 Date: 26.06.18

Faculty of Engineering

Department of Mechanical and Industrial Engineering

81

#Define optimizer: Only learning rate is set.

sgd = optimizers.SGD(lr=learning_rate)

#Compile model with loss function and optimizer

model.compile(loss='mean_squared_error', optimizer = 'sgd')

Fit/ train the model

history = model.fit(X, Y, epochs= epochs, batch_size= batch_size, verbos

e=0)

print('Train lowest mse: ' + str(min(history.history['loss'])))

print('Train lowest sqrt(mse): ' + str(np.sqrt(min(history.history['loss

']))))

Summarize history for loss

plt.plot(history.history['loss'])

#plt.plot(history.history['accuracy'])

#plt.plot(scores)

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

#print(history.history['mean_squared_error'])

print('Train lowest mse: ' + str(min(history.history['loss'])))

print('Train lowest sqrt(mse): ' + str(np.sqrt(min(history.history['loss

']))))

#predict:

pred = model.predict(Xt)

evaluate the model

score = metrics.mean_squared_error(pred, Yt)

print("Score: ", score)

score_root = np.sqrt(score)

print("Rooted score: ", score_root)

	overskrift
	start

