@NTNU

Norwegian University of
Science and Technology

Detecting and Localizing Cell Nuclei in
Medical Images.

Johan Scott Loudon

Master of Science in Computer Science
Submission date: July 2018
Supervisor: Kerstin Bach, IDI

Norwegian University of Science and Technology
Department of Computer Science

This master thesis is dedicated to the fantastic free education system of Norway and
everyone who has fought to make and keep it that way, which has allowed me to get a
good degree of almost completely my own choice practically free of charge.

Summary

In this master thesis we have adapted and implemented Mask R-CNN (He et al., 2017)
to the task of detecting and localizing nuclei in medical imaging. Mask R-CNN, which
does instance segmentation, was chosen as the architecture to implement, based on a
literature review. Our best Mask R-CNN model achieved a Fl-score of 0.385 on the
validation set and 0.460 on the test set. This thesis was inspired by and a part of the
Kaggle 2018 Data Science Bowl'. We did not complete our implementation in time
to enter the competition, but if we had, this score would have lead to 291st place out
of 738 participating individuals or teams in the Kaggle competition. The differences
between our implementation and the second-placed implementation, which also imple-
mented Mask R-CNN, were mainly a different backbone and heavy data augmentation.
This shows that our approach was competitive, and with modifications could have been
competing for the top placements in the competition. The code is available at: https:
//github.com/jolohan/detectron2.git

"https://www.kaggle.com/c/data-science-bowl-2018

https://github.com/jolohan/detectron2.git
https://github.com/jolohan/detectron2.git
https://www.kaggle.com/c/data-science-bowl-2018

Sammendrag

I denne masteroppgaven har vi adaptert og implementert Mask R-CNN (He et al., 2017)
for & detektere og lokalisere cellekjerner pa medisinske bilder. Vi valgte a implementere
Mask R-CNN, som utfgrer forekomst-segmentering, pa bakgrunn av en litteraturstudie pa
dette feltet. Var beste Mask R-CNN modell oppnadde en Fl-score pa 0.385 pa valider-
ingssettet og 0.460 pa testsettet. Denne oppgaven ble inspirert av og var en del av Kaggle
2018 Data Science Bowl?. Vi fullfgrte ikke implementasjonen var i tide til 4 bli med i
konkurransen, men hvis vi hadde det, ville var score ha holdt til 291. plass ut av 738
deltakende individer og lag. Forskjellene mellom var lgsning og 2. plass’ lgsning, som
ogséd implementerte Mask R-CNN, var hovedsakelig en annen og dypere modell av Mask
R-CNN, og mye dataforbedring. Dette viser at var tilneerming var konkurransedyktig, og
med modifikasjoner kunne ha konkurrert om de gverste plassene i denne konkurransen.
Koden er tilgjengelig pd: https://github.com/jolohan/detectron2.git

’https://www.kaggle.com/c/data-science-bowl-2018

il

https://github.com/jolohan/detectron2.git
https://www.kaggle.com/c/data-science-bowl-2018

Preface

This thesis was written in the spring semester of 2018 for the Department of Computer
and Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU). The subject for this thesis was defined in cooperation with my supervisor Kerstin
Bach. I would like to thank my supervisor Kerstin Bach for giving very helpful feedback
and assistance.

iii

iv

Table of Contents

Summary i
Sammendrag ii
Preface iii
Table of Contents vi
List of Tables vii
List of Figures ix
Abbreviations X
1 Introduction 1
1.1 Motivation o e e e e e e 1
1.2 Researchquestions 1
1.3 Researchmethods 2
1.4 Thesis Structure v v v v e e e e e 2

2 Literature Review
2.1 Search methodology
2.1.1 Google scholarsearch
212 CVPRI17search.
2.1.3 Alconferencessearch
2.2 Summaries of literature
2.2.1 Google Scholarsearch
222 CVPRI7search.
2.2.3 Alconferencessearch
224 Other e e
2.3 Discussion of the state of theart
2.3.1 General instance segmentation and object detection

[celie BENEEN BN Y IV IV B N 7

2.3.2 Instance segmentation of large objects in medical imaging
2.3.3 Instance segmentation of small objects in medical imaging

2.3.4 Cell centroid localization in medical imaging
3 Method
3.1 Generaloverviewoffield
32 MaskR-CNN
33 Data e e
34 Models
3401 Trainingo
3.4.2 Inference and post-processing
3.5 Frameworkso

4 Experiment

41 Setup ..o e e
42 Evalutation L
4.2.1 Evaluationmetrics
422 Evaluationscript
43 Results.
43.1 Validationset
432 Testset: Kaggle.
5 Discussion
5.1 Literature reviewo .o uu e e
5.2 Method
53 Results. e
54 ComparisontoKaggle,
5.4.1 Winner of competition
5.4.2 Other top placements in the competition
5.4.3 Comparison of winner and 2nd place

6 Conclusion and future work
6.1 Conclusion e
6.2 Futurework

Bibliography
Appendix A

Appendix B

el

11
11
12
12
13
14
14
15

17
17
17
17
18
18
19
19

21
21
22
22
23
23
24
25

27
27
27

29

33

34

vi

List of Tables

2.1 Searchtermproposals.
2.2 Google scholar searchresults
2.3 CVPRI7searchresults
24 Alconferencessearchresults

vii

viii

List of Figures

3.1

32

4.1

6.1

Three arbitrarily picked images from stagel _test, showing the diversity in
colour and shape the model needs to handle. 13
Framework implemented and tested on Kaggles 2018 Data Science Bowl 16

Results from test set: Fl-score 19

The top 20 entries on the stage 2 leaderboard of Kaggles Data Science
Bowl 2018 e 33

iX

Abbreviations

Rol = Region of Interest

IoU = Intersection over Union

CS = Compressed Sensing or Computer Science
CNN = Convolutional Neural Network

ENet = Efficient Neural Network

MTL = Multi-Task Learning

WSI = Whole-Slide Images

FCN = Fully Convolutional Network

HNM = Hard Negative Mining

CAD = Computer-Aided Diganosis

DCAN = Deep Countor-Aware Network
HoG = Histogram of oriented Gradients
WBCs = White Blood Cells

PGSA = Plant Growth Simulation Algorithm
TP = True Positive

FP = False Positive

FN = False Negative

RRC = Rolling Recurrent Convolution

RPN = Region Proposal Network

Chapter

Introduction

1.1 Motivation

Detecting and localizing cell nuclei in medical images is an important tool for diagnosing
many diseases like heart disease, cancer and diabetes, to name a few. This work can be
time consuming and difficult to do accurately. It would therefore be beneficial to automate
this process, to reduce workload and increase accuracy.

Visual computing has made big leaps forward in recent years inspired by machine
learning and convolutional networks. The more traditional approach of extracting features
and feeding them into a classifier has come up short when faced with complex shapes,
colours and backgrounds. With the advancement of different architectures based on CNNss,
these problems no longer require the same amount of expertise in selecting which features
to extract. CNNs implicitly encode patterns, shapes and other features and reduce the need
for selecting features.

Due to this, the task of automatically locating nuclei is one of many tasks that now
have become suited for machine learning. This is why this spring, the consulting company
Booz Allen Hamiltion as organizers in cooperation with the host Kaggle, have made this
the task of the Kaggle 2018 Data Science Bowl'. Arranging a competition for solving this
problem provides Kaggle with many different solutions. Crowdsourcing the problem and
offering prizes to the best solution(s) can often lead to state-of-the-art solutions. An open
dataset lets people and teams from all over the world compete and try to design the best
solution. In addition, their discussion forum is a helpful resource which facilitates sharing
of advice and ideas.

1.2 Research questions

The overall goal is to implement a competitive system for localizing nuclei in medical
imaging. This problem can often be very sparse. The target nuclei often occupy a small

"https://www.kaggle.com/c/data-science-bowl-2018

https://www.kaggle.com/c/data-science-bowl-2018

Chapter 1. Introduction

part of the image. This leads to class imbalance between the foreground and background
of the images that contain the content to be classified. This overall goal will lead the liter-
ature search. The state-of-the-art method(s) from the literature search will be adapted and
applied on solving the nuclei localization problem. The results from this implementation
will be evaluated and discussed. Our implementation and its results will then be compared
to the best implementations in the Kaggle competition.

In order to achieve the overall goal the following four research questions were formu-
lated:

1. What are the state-of-the-art methods for detecting and localizing nuclei in medical
imaging?

2. How can the state-of-the-art methods be applied on the task of localizing nuclei?
3. How will the chosen method perform in the described task?

4. How will the chosen method compare to the best implementations in Kaggle’s Data
Science Bowl 2018: Localizing nuclei in medical imaging?

1.3 Research methods

To find the state-of-the-art methods we have conducted a literature search which is de-
scribed in detail in chapter 2. After finding the state-of-the-art methods we have modified
and implemented them. Then, we have evaluated their performance in respect to a set of
metrics that are described in section 4.2.

1.4 Thesis structure

Chapter 2 will describe our literature search and its results. Chapter 3 will contain some
background theory in addition to a description of the data and implementation, before we
report the evaluation and results in chapter 4. Thereafter the results will be discussed in
chapter 5. And in the end we will summarize the thesis and describe future work that can
be done in chapter 6.

Chapter

Literature Review

2.1 Search methodology

To find the state-of-the-art method(s) for detecting and localizing nuclei in medical imag-
ing we have conducted a semi-structured literature review. To conduct this review we first
had to come up with search terms to find papers that are relevant to the research topic
of this thesis. The search terms were found by googling the problem and picking the
most relevant terms in consideration to both recall and precision. The search term sugges-
tions were split into three categories in table 2.1: problem-related; medicine and the two
method-related categories; computer vision and artificial intelligence.

The search results in the next section had to be filtered for non-relevant papers. To filter
efficiently we read the title, evaluated if it was about detection, segmentation or localiza-
tion of 2D images. Many papers were filtered out because of their focus on classification
or 3D images. If it was not filtered out by the title, we skimmed the paper for pictures
of what kind of images they had worked with and read the abstract to find out if it dealt
with instance segmentation of small objects. Many papers do not specify if they focus on
separating foreground instances from each other or only separate foreground from back-
ground. Others only handle large objects that occupy most of the pixel space. Also, the
images in the paper often show very precisely what they are hoping to accomplish, and
can be very helpful if there are many advanced medical terms in the paper. Based on this
filtering we get the results in the Relevant column of tables 2.2, 2.3, 2.4. Classifying it as
relevant, only means that based on title and abstract, it most likely can not be classified as
non-relevant, not that it definitely is relevant.

In addition, we have found some papers through other sources. This has not been part
of the structured search. The papers found through other sources that have been deemed
relevant are three papers and have been summarized in subsection 2.2.4.

Chapter 2. Literature Review

Medicine Al Computer vision

cellular subunits | deep learning detection

imaging convolution segmentation

nuclei ensemble pixel space

cell LSTM compressed sensing

medical image recognition | image processing
localization

Table 2.1: Search term proposals

Table 2.2: Google scholar search results

Search input Year Relevant
No filter \ 2016-2018
nuclei detection imaging deep learning | 48 000 19 500 N/A

nuclei detection localization
imaging deep learning
“nuclei detection” ”localization”
. e e 33 31 8
image recognition

32500 16 000 N/A

convolutional”

2.1.1 Google scholar search

The first domain that was searched was Google Scholar!. The search terms were nuclei,
detection, imaging, deep learning, localization, image recognition, convolutional. The
results from these search terms can be found in table 2.2. Here the focus was shifted from
field-related to method-related, since we want to find the state-of-the-art method. This led
to the results in table 2.2. The reason the search was limited to papers from 2016 and
onward is the huge steps computer vision has taken recently because of CNNs. We then
read the titles or/and abstracts of every one of these to determine if they were relevant to
the thesis. After this filtering, 8 reports were left. These will be summarized in the next
section.

2.1.2 CVPRI17 search

The most prominent and renown conference, CVPRI7 in the field of visual computing
was included in this literature review. We searched for the search terms over the paper
titles. Then filtering by title, and sometimes abstract and images in the paper, was applied
to determine what papers could be relevant. Table 2.3 shows the number of hits and the
hits that were potentially relevant. Most of the papers that went through filtering were not
relevant.

1https://scholar.google.com

4

https://scholar.google.com

2.2 Summaries of literature

Table 2.3: CVPR17 search results

Search term | Hits | Filter by title/abstract

localization 20 0
cell 0 -
nuclei 0 -
detect 67 0
recognition 57 0
convolution 58 1
ensemble 2 0
LSTM 5 0
Medical 4 0
Sum 213 | 1

Table 2.4: Al conferences search results

Search term | Hits | Filter by title/abstract

localization 5 0
cell 0 -
nuclei 0 -
detect 38 2
recognition 36 0
convolution 23 0
ensemble 7 0
LST™M 7 0
Medical 3 0
Sum 119 | 2

2.1.3 Al conferences search

Two of the biggest Al conferences, IJCAI 2017 and AAAI 2017, were also included in
this literature review. After going through titles and abstracts of the first results, it was
discovered that a large percentage of the papers were not relevant for this thesis. Therefore
the vast majority of papers were only filtered by the titles to decide if they could potentially
be relevant. The remaining papers were filtered using the same filtering procedure as
described in section 2.1. We get similar results in table 2.4 as in table 2.3.

2.2 Summaries of literature

2.2.1 Google Scholar search

In (Khoshdeli and Parvin, 2018) the authors tackle nuclei segmentation in stained his-
tology sections by using a combination of colour decomposition, fusion of three CNNs
(ENets) and Watershed (Beucher and Meyer, 1992). Watershed is an edge detector algo-

5

Chapter 2. Literature Review

rithm that simulates a flooding process of the image where the intensity of a pixel represent
its height. The three ENets have different tasks. The region- and boundary-ENets segment
foreground/background and mark the borders of the nuclei. Then the third ENet combines
the output of the two first ENets to separate joined instances of nuclei.

The same researchers show in (Khoshdeli and Parvin, 2018) that using a feature-based
representation as input to a shallow CNN can be effective at detecting nuclei. The feature-
based representation improves colour decomposition by using the Laplacian of Gaussian
(LoG) which focuses on blob-shaped objects. Their best Fl-score is achieved with the
LoG of the non-negative matrix factorization (NMF) of the LoG fed as input to the shallow
CNN.

In (Kainz et al., 2017) the authors attempt to segment and classify colon glands. Their
method is two distinct CNNs; one for separating foreground and background and one for
separating joined foreground instances. This second CNN is their big contribution. They
use a quite old CNN implementation, LeNet-5 (LeCun et al., 1998). Our opinion is that
replacing the LeNet-5 with a more advanced backbone would increase their accuracy.

(Xie et al., 2018) achieve better than state-of-the-art results in locating cell centroids.
Their method is a fully residual CNN with structured regression that outputs a proximity
map with higher values for pixels closer to centroids. It performs well partly because it
combines the structured regression with a proximity map that is not down-scaled. Because
of this, they do not suffer any loss of accuracy due to loss of spatial information, which
they would suffer with max pooling.

Others have focused on detection and classification in stead of centroid localization.
In (Wang et al., 2016) the authors achieve state-of-the art scores in 2016 for localizing
tumors and classifying them in Whole-Slide Images (WSI) in order to identify metastatic
breast cancer. They combine two deep models, one with high sensitivity to get candidates
and one with low sensitivity to select candidates. The highlight of this paper is that they
do not get the same errors as the pathologist, so when they combine their system with a
pathologist the error rate is reduced by 85 %.

(Lin et al., 2017a) also focus on localizing and classifying tumors in WSI, in order to
detect metastatic breast cancer. Their method is a Fully Convolutional Network (FCN)
combined with asynchronous sample prefetching and hard negative mining (HNM). HNM
is their chosen method for handling the class imbalance in this problem. Their imple-
mentation uses the predicted false positives from the previous trained classifier as negative
training examples for the current one. They achieve state-of-the-art scores in tumor local-
ization.

To segment object instances in histology images novel, (Chen et al., 2017) propose a
deep contour-aware network (DCAN) combined with unified MTL. Their best results are
with the contour-aware component, but they impressively receive superior to state-of-the-
art results even without it.

In (Tareef et al., 2017) they attempt to accurately segment cervical nuclei and cyto-
plasm in pap smear images with DL and dynamic shape modeling. They achieve perfor-
mance competitive to that of state-of-the-art methods, with a CNN combined with dynamic
shape prior. They perform especially well in separating highly overlapping cells.

6

2.2 Summaries of literature

2.2.2 CVPRI17 search

Single-stage detectors are simpler to apply and require less parameter tuning and exper-
tise but have been lacking in performance, mainly because they do not produce good
enough bounding boxes. In (QiongYan and LiXu, 2017) this issue is addressed by us-
ing Rolling Recurrent Convolution (RRC). RRC aggregates contextual information across
feature maps and achieved state-of-the-art results in KITTI detection, becoming the first
single-stage-detector to do so.

2.2.3 Al conferences search

Even though CNNs have become the most common method for computer vision prob-
lems, there are other Al methods; e.g. genetic algorithms like Plant Growth Simulation
Algorithm (PGSA). (Bhattacharjee and Paul, 2017) apply a bio-inspired genetic algorithm,
PGSA, for detecting white blood cells (WBCs). The authors solve it as a circle detection
problem and the fitness is computed by comparing candidate solutions to the edge pixels
found in the pre-processing step. It is the first use of PGSA applied to detection of WBCs,
and it achieves 98.3 % TP rate and 1.7 % FP rate.

Traditionally, edge detection and object detection have been separate tasks. (Lu and
Shapiro, 2017) try to unify these problems. This led to improvements in both tasks. Initial
object proposals from the first stage are used as input to stage two to improve boundaries,
which in turn, improve the object proposals in stage three, and this process is repeated
until convergence. They achieve close to state-of-the-art results even though their method
is unsupervised.

2.2.4 Other

(He et al., 2017) won best paper award at one of the most renown visual computing con-
ferences, ICCV 2017. They add a small change to Faster R-CNN (Ren et al., 2015) and get
state-of-the-art results in instance segmentation, bounding box object detection and person
keypoint detection. The small change is a branch for predicting a object mask on each Re-
gion of Interest (Rol) in parallel with classification and bounding box regression. In order
for this to work the spacial alignment has to be preserved, and therefore a quantization-free
layer, RoIAlign, is introduced. RoIAlign has a big impact and improves mask accuracy by
10 - 50 %, with bigger gains for higher IoU thresholds. They also define L, s so that
masks across classes do not compete.

(Lin et al., 2017b) won the best student paper award at the same conference. They
focus on why single-stage detectors have not matched the accuracy of two-stage detectors,
especially in dense object detection. They discover that the reason for this is the class
imbalance between foreground and background cases. This imbalance causes training
to focus to heavily on easy classifiable examples. To rectify this, they change the loss
function so that it penalizes miss-classified examples proportionally to how “hard” they
are.

In (Xue and Ray, 2017) the authors attempt to detect and localize cells in microscopy
images by marking the centroid of each cell. Their method is compressed sensing (CS)

7

Chapter 2. Literature Review

combined with a CNN. They use CS to address the class imbalance issue they face, be-
cause the cell centroids represent a very small part of each image. They implement CS as
random projections of the output space, which contains target cells. CS makes the method
easy to ensemble, and their implementation is robust to system prediction errors because
the resulting encoding has redundant values. They also implement Multi-Task Learning
(MTL) to combine cell detection and cell counting to further increase performance.

2.3 Discussion of the state of the art

In this section we will discuss the relationship between the findings of the literature search
and the objectives of this thesis.

2.3.1 General instance segmentation and object detection

In (Lin et al., 2017b) they design a detector they call RetinaNet. This model is included
in Detectron (Girshick et al., 2018) which is the main framework in this thesis. The tar-
get cells often occupy a small portion of the image leading to class imbalance between
background and foreground. Since it addresses class imbalance, this would make this ar-
chitecture suited to this thesis. The problem with running this architecture in this thesis
is that it is an object detector and therefore only outputs bounding boxes. This is not
sufficient when the desired output is masks.

Similarily to (Lin et al., 2017b), (Bhattacharjee and Paul, 2017) deals with detection,
but it focuses on detection of WBCs which is highly relevant for this thesis. Since the
PGSA starts with candidate solutions, it could be combined with another approach and
used as post-processing. By feeding candidate masks from e.g. a CNN to PGSA, PGSA
could be used to separate TPs and FPs.

Like in (He et al., 2017), (Lu and Shapiro, 2017) performs well by combining bounding
box detections and edge detection. The method here could be added as a post-processing
step to e.g. a CNN, by feeding candidate masks in as initial object proposals. This could
refine the masks further and lead to a higher accuracy, especially for high IoU thresholds.

Contrary to many of the other papers, (He et al., 2017) deal with instance segmentation
which the Kaggle competition is an example of. That is why this is the paper we have
chosen our model from. The backbone that performs best with Mask R-CNN is ResNeXt-
101-FPN (He et al., 2017). Since it is effective in most tasks, it generalizes well. This
should make it able to perform on localizing nuclei, which are smaller objects than the
data, COCO dataset (Lin et al., 2014), often used in comparison metrics for more general
architectures. Their layer RolAlign, improves accuracy, especially when there are higher
IoU thresholds.

2.3.2 Instance segmentation of large objects in medical imaging

(Lin et al., 2017a) uses HNM to boost performance. This could be implemented in this
thesis by using false positives with no overlap with ground truths as negative examples.

8

2.3 Discussion of the state of the art

The results from (Wang et al., 2016) are old and have been beaten since in (Lin et al.,
2017a). Therefore this paper is not very relevant any more. This goes to show that filtering
by year is a necessity in a literature review in this field.

2.3.3 Instance segmentation of small objects in medical imaging

(Tareef et al., 2017)s work of separating highly overlapping cells is interesting. They
achieve this with dynamic shape prior, which is something that could be implemented in
this thesis.

In (Chen et al., 2017) they achieve very good results on the same task as in this thesis.
The unified MTL that uses contour information and complementary appearance informa-
tion could be of relevance to this thesis.

Another method that could be relevant is the combining of CNNs that have separate
subtasks into one instance segmentor. This shows promising results in (Khoshdeli and
Parvin, 2018).

2.3.4 Cell centroid localization in medical imaging

(Xue and Ray, 2017) demonstrates that CNNs can be combined with compressed sensing
for a potential performance boost. Since the data used for this thesis also is sparse in target
locations and therefore faces class imbalance issues, compressed sensing could be relevant
to experiment with in this thesis.

(Khoshdeli and Parvin, 2018)s feature-based representation could be implemented as
pre-processing in this thesis. Taking the LoG og the NMF of the LoG for accentuating
blob-shaped objects, could make it easier to distinguish nuclei from the background. This
could then be fed as input to the backbone model of this thesis.

In (Xie et al., 2018) they achieve superior to state-of-the-art results in cell centroid lo-
calization. The dense proximity map they output could be relevant if it could be combined
with a model that outputs masks. The proximity map could be used to evaluate positives
as true or false at inference time.

Chapter 2. Literature Review

10

Chapter

Method

3.1 General overview of field

Identifying the nuclei and their borders is an instance segmentation problem. Most of the
earlier approaches for identifying nuclei have been based on locating cell centroids. Tra-
ditionally, classical image processing techniques have been the method for solving this.
Classical image processing techniques, like intensity thresholding and feature detection,
are an intuitive way of detecting edges. HoG transform (McConnell, 1986) was also used
for edge detection, and LoG (Kong et al., 2013) advanced blob detection results. Tradi-
tionally these simple feature extractors have been used in combination with a classifier that
based on the values in the feature vector, determines if a region is a cell or not.

The feature extractor combined with a classifier is intuitive, but suffers from a lack of
generality. Also, it often demands a certain level of expertise in the field of the problem
to pick the correct feature extractor(s). Because of this, artificial neural nets and more
specifically CNNs have become the common methods. The advantage of neural nets are
that they can extract the features implicitly themselves, so expertise in the field is not as
essential, and they are good at generalizing, because of the implicit feature extraction. An
advantage of CNNss is that they are good at recognizing the same object even if it is a
different size or in a different place in the image.

Some of the most recent advances have combined CNNs (Kainz et al., 2017; Khoshdeli
and Parvin, 2018; Khoshdeli and Parvin, 2018; Wang et al., 2016) that have different sub-
tasks to achieve better performance on the main task. Others have used different meth-
ods, like compressed sensing (Xue and Ray, 2017), colour decomposition (Khoshdeli and
Parvin, 2018), LoG of NMF (Khoshdeli and Parvin, 2018), to transform the input before
feeding it into a CNN.

Chapter 3. Method

3.2 Mask R-CNN

The state-of-the-art method in instance segmentation is Mask-RCNN from (He et al.,
2017). It generalizes well. This is an important reason for picking it and adapting it to
nuclei segmentation. Mask R-CNN is a type of Region-based CNN and more specifically
an extension of Faster R-CNN, which in turn is an improvement on Fast R-CNN (Girshick,
2015). As described in (He et al., 2017), the difference between it and Faster R-CNN is
the addition of “(..) a branch for predicting segmentation masks on each Region of Interest
(Rol), in parallel with the existing branch for classification and bounding box regression.
The mask branch is a small FCN (Long et al., 2015) applied to each Rol, predicting a seg-
mentation mask in a pixel-to-pixel manner”. This transforms Faster R-CNN which uses
pooling, into a model that has pixel-to-pixel alignment between input and output in the net-
work. Mask R-CNN achieves this with a quantization-free layer, RoIAlign. This is critical
when the evaluation metric has high IoU thresholds and is therefore a big reason for Mask
R-CNNs superior results. Another change from Faster R-CNN is their decoupling of mask
and class prediction. For every Rol, they predict one mask per class independently from
the other masks.

Mask R-CNN is built on Faster R-CNN, which consists of two stages: a Region Pro-
posal Network (RPN) and basically Fast R-CNN. The firste stage, RPN, outputs candidate
object bounding boxes. In Faster R-CNN, the second stage takes these as input and pre-
dicts classes and bounding boxes in parallel. While in Mask R-CNN, this second stage
also predicts masks in parallel. This leads to MTL during training with the loss being
defined as in equation 3.1.

L = Les + Lioz + Limask (3.1)

L5 and Lypyx are unchanged from Fast R-CNN. L, is new in Mask R-CNN and is
defined only for the mask that corresponds to the ground truth class for the ground truth
mask. L, is the average binary cross-entropy loss of the per-pixel sigmoid of the masks
pixels. This is what makes Mask R-CNN able to decouple mask and class prediction, so
that masks across classes do not compete.

To counter the spatial aggregation problems RolPool introduces, Mask R-CNN adds
a layer called RolAlign. This layer, in contrast to RoIPool, does not quantisize the Rol
boundaries or bins. It uses bilinear interpolation (Jaderberg et al., 2015) to compute the
input feature values.

Mask R-CNN works well with several backbone architectures, but especially with
ResNet-FPN. During training, an Rol is considered positive and L5 is defined, if the
IoU with a ground-truth box is 0.5 or higher. The training is image-centric (Girshick,
2015).

Our contribution will be applying Mask R-CNN to the problem of instance segmenta-
tion of nuclei.

3.3 Data

The image set BBBC038v1 was used for training and testing. It is available from the Broad
Bioimage Benchmark Collection (Ljosa et al., 2012), and was the standard dataset for the
Kaggle competition. The dataset is annotated by humans, so there are errors there, but

12

3.4 Models

Figure 3.1: Three arbitrarily picked images from stagel_test, showing the diversity in colour and
shape the model needs to handle.

there should not be any big systematic errors. All the images in the dataset have a height
between 256 and 524 pixels and a width of between 161 and 696 pixels. The number
of nuclei varies greatly; from only a couple to several hundred. The images have been
captured under different conditions. They vary in color and lighting, and the cells vary in
type of cell. This can be seen in figure 3.1.

The dataset consists of a training set of 670 images. On average there are 29461/670
= 44 nuclei per training image. This means that even though 670 images is not a lot, there
are close to 30 000 training cases before doing any data augmentation.

Since the Kaggle competition was split into two stages, the test set for stage 1 was used
as a validation test set. This set consists of 65 images with 4152 nuclei for an average of
64 nuclei per image. So this set had almost 50 % more nuclei per image than the training
set. A common size for a validation set is 10 % of the training set, which this set is.

The test set for stage 2 of the competition consists of 3019 images. This will be used as
the test set for this thesis. Since Kaggle have not released the solutions for this set the only
way to get a score on this test set is to run results through the submission page on Kaggle'.
Therefore it is unknown how many nuclei there are on average in the test set. A result we
submitted online at Kaggle which got a score of 0.455, had 81167 nuclei proposals, which
makes for an average of 27 nuclei proposals per image. Equation 4.5 puts an upper bound
at 27/0.455=59 and a lower bound at 27%0.455=12 of how many nuclei there are per image
in the test set.

In order to use Detectron (Girshick et al., 2018) the data needed to be converted to
COCO-.json format. The data was re-structured into the correct directory tree. Then we
edited pycococreator (waspinator, 2018) and ran it, to create .json-annotation files for the
data set: one file for training, one for testing stage 1, the validation set, and one for testing
stage 2, the test set.

3.4 Models

The best model available for this task is Detectrons Mask R-CNN with Bells & Whistles;
e2e_mask renn_X-152-32x8d-FPN-IN5k_1.44x. The model with pre-trained weights is
available from the overview of the models>. When trying to train it from scratch or run
inference on the pre-trained model, it runs out of memory on the GPU used in this thesis.

Thttps://www.kaggle.com/c/data-science-bowl-2018/submit
2https://github.com/facebookresearch/Detectron/blob/master/MODEL_Z0O.md

13

https://www.kaggle.com/c/data-science-bowl-2018/submit
https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md

Chapter 3. Method

This is a know error’, since the model needs to run on a 16 GB GPU, even though this is
not specified in Detectrons overview of the models. For the experiments in this thesis, we
have only used a 12 GB GPU.

Therefore we have run the experiment on our second-choice model: the end-to-end
version of e2e_mask_rcnn_X-101-64x4d-FPN_1x. This is according to the same overview
of the models, the model with the second-best performance on mask prediction. All mod-
els have been tested on (Lin et al., 2014), and Mask R-CNN with Bells & Whistles achieves
a mask AP score of 41.5, while our second-choice receives a score of 37.5. This means
that the model with Bells & Whistles is close to 11 % better. The chosen model has been
adapted to the problem, including changing the number of classes to two, one for nuclei
and one for background. Some modifications have also been applied to make the model
more suited for nuclei detection and localization. These are described in the next subsec-
tions.

3.4.1 Training

The training is very similar to training Faster R-CNN (Ren et al., 2015). The difference
is that it predicts candidate masks in parallel with classification and bounding boxes. This
leads to the loss in equation 3.1. For every image batch, the proposals for masks, classes
and bounding boxes are evaluated against the ground truth and the loss is calculated. Then
this loss is propagated back trough the network and the hyper-parameters weight the learn-
ing.

The learning rate is set to 0.0025 with Gamma as 0.1. We train for 180 000 iterations on
a single GPU and weight decay is 0.0001. Since we have less than 700 training images, we
have decided to go with pre-trained weights. The pre-trained weights* from the overview
of the models have been used as start weights when training.

We have trained the same model twice, but with some adjustments. The two models’
configurations files can be found in Appendix B 6.2. The model is adjusted to better
adapt to the specific problem of nuclei segmentation. The model with adjustments will be
referred to as the modified model, while the model without adjustments will be referred
to as the standard model. The main differences between the models are the increase of
importance of the Ly, by 20 % by adding MRCNN.WEIGHT_LOSS_MASK: 1.2 to the
configuration file, and the increase in number of detections per image from 100 to 500. We
have also added different scales during training, so that the training images are re-sized so
the shorter side varies between 700, 800, 900 and 980 pixels. This is effectively a way to
data augment.

3.4.2 Inference and post-processing

In addition, since the Kaggle competition does not allow overlapping instances, some post-
processing had to be done. We used a script from (gangadher, 2018) and modified it. This

Jhttps://github.com/facebookresearch/Detectron/issues/35

‘https://s3-us—-west-2.amazonaws.com/detectron/36494496/12_2017_
baselines/e2e_mask_rcnn_X-101-64x4d-FPN_1x.yaml.07_50_11.fkwVtEvg/output/
train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_
final.pkl

14

https://github.com/facebookresearch/Detectron/issues/35
https://s3-us-west-2.amazonaws.com/detectron/36494496/12_2017_baselines/e2e_mask_rcnn_X-101-64x4d-FPN_1x.yaml.07_50_11.fkwVtEvg/output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl
https://s3-us-west-2.amazonaws.com/detectron/36494496/12_2017_baselines/e2e_mask_rcnn_X-101-64x4d-FPN_1x.yaml.07_50_11.fkwVtEvg/output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl
https://s3-us-west-2.amazonaws.com/detectron/36494496/12_2017_baselines/e2e_mask_rcnn_X-101-64x4d-FPN_1x.yaml.07_50_11.fkwVtEvg/output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl
https://s3-us-west-2.amazonaws.com/detectron/36494496/12_2017_baselines/e2e_mask_rcnn_X-101-64x4d-FPN_1x.yaml.07_50_11.fkwVtEvg/output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl

3.5 Frameworks

script removes overlapping pixels from the last added mask. It also removes all masks
under a certain certainty threshold, masks that are too small or masks that overlap with all
other masks more than a certain threshold. The certainty threshold, describing how certain
the model is that the mask actually is a nucleus, is set to 0.5. The size threshold is set
to 15, so that all masks that are smaller than 15 pixels are discarded. The mask-overlap
threshold is set to 0.3, so at least 70 % of the mask needs to be non-overlapping with the
union of all the other masks.

3.5 Frameworks

In this thesis we have used Facebooks Detectron (Girshick et al., 2018). It is built on
caffe? (caffe2, 2018) and is primarily an object detection tool. Caffe2 is a deep learning
framework that works with a python APL The rest of the scripts we have written for this
thesis are python and shell scripts. In order to run Detectron on the remote GPU and
maintain all its dependencies, Docker (Merkel, 2014) was used.

The full overview is presented in figure 3.2. The model runs a type of Mask R-CNN
and takes as input a configuration file specifying settings. During training the model takes
as input the training data. When it is finished training, it takes the test data as input and
runs inference on the images in the dataset. Inference is run by feeding the images into the
model. The model outputs candidate segmentations in a .json-file. These segmentations
are then post-processed to separate instances and remove unlikely candidates as described
in subsection 3.4.2. The results from the post-processing are then evaluated against the
ground truth using the evaluation metrics from section 4.2, leading to a F1-score which
tells us the accuracy of the model.

If the model is run on the test set for the Kaggle leaderboard, there is no ground truth
file available for evaluating the results locally. The only way to get an evaluation is to sub-
mit the post-processed results file online at Kaggle. The results, F1-score, are calculated
as described in section 4.2.

Chapter 3. Method

Docker container

Training
data

Model:
fully trained

v

Training

Model:
pre-trained
weights

¥
Post-
processing

Mask R-CHN Config file

Detectron
Caffe2

Figure 3.2: Framework implemented and tested on Kaggles 2018 Data Science Bowl

16

Chapter

Experiment

4.1 Setup

The experiments were run on a GeForce GTX TITAN X with 12 GB memory. Since this
was run on a shared machine, the model was run inside a Docker container. To be able to
edit the code locally and then quickly run it, the Detectron source code with models was
located on the shared machine and mounted locally for editing. A guide for how to do this
can be found here!.

4.2 Evalutation

4.2.1 Evaluation metrics

The evaluation used in this thesis is the same one as the one used in the Kaggle competi-
tion, which is described at the competition web page”. The evaluation is based on a average
of Fl-scores at different Intersection over Union (IoU) thresholds. To evaluate how well
a single mask does at marking the ground truth its IoU score is computed in equation 4.1.
This penalizes both marking pixels as false positives and false negatives equally. Thereby
it balances recall and precision. The same is true for equation 4.2.

ANB
I0U(A,B) = 4.1
The thresholds range from 0.5 to 0.95 with a step size of 0.05. For every threshold
t the score from equation 4.2 is calculated by finding the number of true positives, false
positives and false negatives.

Thttps://www.digitalocean.com/community/tutorials/how-to-use-sshfs-to-mount-remote-file-systems-over-
ssh
2https://www.kaggle.com/c/data-science-bowl-2018#evaluation

https://www.kaggle.com/c/data-science-bowl-2018#evaluation

Chapter 4. Experiment

TP(t)
TP(t)+ FP(t) + FN(t)
A predicted mask is considered a true positive when it matches a ground truth mask
with an IoU above the threshold. False positives are true positives subtracted from all

positive results 4.3. False negatives are true positives subtracted from all ground truths
4.4.

4.2)

FP(t) = AllPositives — TP(t) (4.3)

FN(t) = AllGroundTruths — T P(t) 4.4)

The total score for an image then becomes the average of the F1-score at all the differ-
ent thresholds in equation 4.5.

1 TP(t)
[thresholds| zt: TP(t)+ FP(t) + FN(t) 4.5

Then to get the Fl-score for the whole image set, the average of all the individual
image scores is computed.

4.2.2 [Evaluation script

In order to get the results from the stagel test set, we wrote our own evaluation script fol-
lowing the same metrics. To speed this up, the floating point mask scores were converted
to integers that correspond to at how many thresholds they would be considered a hit 4.6.
E.g. a score of 0.69 would translate to 4 hits, since it would be a hit at thresholds 0.5, 0.55,
0.6 and 0.65.

score — 0.5)“ @.6)

: (
ber_of _hits_ =
number_of_hits_score [0.05

Then, instead of looping through each threshold, the number_of_hits_score for each
mask were added up and counted as the number of hits. This meant that the number of
all positives and number of ground truths had to be multiplied by 10, the total number of
thresholds, for equation 4.3 and equation 4.4 to still be valid. Equation 4.5 then becomes
equation 4.7.

2 TP()
24 TP() + 32, FP(t) + 3, FN(t)

A7)

4.3 Results

The training of the modified and standard model took around 50 h each on our setup 4.1.
Both models were trained for 180 000 iterations. The reason for there being not that many
datapoints, is that Detectron does not do any testing while training. Instead it saves the
model at certain steps, which can be specified in its configuration file. Then after training

18

4.3 Results

F1-score on validation set during training

Modified model

0.38 —Standard model

Q
w
o

Q
w
o

F1-score

Q
[¥8]
=

/v

0.33 —7

0.32

20k 40k 60k 80k 100k 120k 140k 160k 180k
Iteration

Figure 4.1: Results from test set: F1-score

inference can be run on the saved models to get the accuracy on the validation set at every
selected step of the training. The standard in Detectron is to save a model every 20 000
iterations. For the modified model we changed this to every 10 000 iterations.

4.3.1 Validation set

Figure 4.1 shows that the score from the validation set converges to 0.34-0.35 for the
modified model and 0.33-0.34 for the standard model. The best score on the validation
set, 0.385, is the result from the modified model after 10 000 iterations. The standard
models best score is 0.346. On average for all the saved models, the modified model with
an average Fl-score of 0.351, performs 0.014 better than the standard model, which has
an average F1-score of 0.337. This is a 4 % increase in performance.

4.3.2 Test set: Kaggle

The ground truth of the test set used for the Kaggle competition is not publicly available.
The only way to get a performance score is to submit results online and let Kaggle do the
evaluation of your results. The model that had the best performance on the validation set
was the modified model saved after 10 000 iterations. When we run inference on the test
set with this model and submit online at Kaggle, we achieved an F1-score of 0.460. We did
not complete our implementation in time to enter the competition, but if we had, this score
would put us at 291st place of the 738 participating teams and individuals that entered the
leaderboard for stage 2. For stage 1, there were more than 2000 participants, but most
of them probably skipped stage 2 due to subpar performance on stage 1. Also a lot of

19

Chapter 4. Experiment

individual competitors joined a team of competitors, reducing the number of leaderboard
entries.

20

Chapter

Discussion

5.1 Literature review

The literature search showed that there are several different state-of-the art methods for
detecting and localizing nuclei. (Lin et al., 2017b) and (Bhattacharjee and Paul, 2017)
perform very well on detection, but do not output masks. (Lu and Shapiro, 2017) demon-
strate the effectiveness of combining object proposals and edge detection, but they utilize
unsupervised training, so we are unsure if it would have been competitive to implement
in this thesis. Others (Lin et al., 2017a) have focused on detecting tumors and classifying
them, while this thesis does not focus on classification.

The feature-based representation utilized in (Khoshdeli and Parvin, 2018) shows promise
as a pre-processing method, but the most difficult problem in constructing good masks for
the data in this thesis is separating overlapping nuclei. Therefore we are unsure if this
feature-based representation would help with this issue, since it is mainly a tool for accen-
tuating nuclei from the background. (Xie et al., 2018; Xue and Ray, 2017) both focus on
cell detection by outputting a cell centroid and not a mask. Therefore they would require
adaption if they were to be used for this thesis.

However, we discovered when finished with the literature review, that this problem is
an instance segmentation problem. If we were to do the literature review again, we would
add the term ”instance segmentation” and maybe remove some of the less fitting terms,
like detection and localization. This could have lead to a more precise search with less
non-relevant papers.

There are several state-of-the-art methods for instance segmentation in medical imag-
ing. (Tareef et al., 2017) and (Khoshdeli and Parvin, 2018) focus on overlapping cells. To
solve this, (Tareef et al., 2017) utilize dynamic priors, while (Khoshdeli and Parvin, 2018)
fuse deep CNNs. They have annotated their own dataset which they use for evaluation, so
there are no comparable results. (Chen et al., 2017) design a deep contour-aware network.
Their method and (Tareef et al., 2017)s method achieve state-of-the-art results on their
respective datasets. The difference between these and (He et al., 2017) is that Mask R-
CNN does not focus on medical imaging and is not as heavily engineered. Mask R-CNN

21

Chapter 5. Discussion

is a single model and is therefore easier to adapt and implement. It is the state-of-the-art
for more general instance segmentation. In addition, it is interesting to experiment with
adapting a general instance segmentation model to the specific problem of instance seg-
mentation of nuclei in medical imaging. The results from (Tareef et al., 2017; Khoshdeli
and Parvin, 2018; Chen et al., 2017; He et al., 2017) are difficult to compare since they
have not been evaluated on the same datasets. We chose Mask R-CNN as our model since
it generalizes well, is easy to adapt and has, to our knowledge, not been experimented with
for solving instance segmentation of nuclei. In the next subsections we will show that the
chosen model performs well, is competitive and could have been competitive against the
best performing approaches in the Kaggle competition with some modifications.

5.2 Method

To apply Mask R-CNN in this thesis some modifications had to be done, including chang-
ing the number of classes to two, one for nuclei and one for background. Other modifi-
cations were made to the standard model to make the modified model more suited for the
problem in this thesis. These were mainly increasing the weighting of Ly, by 20 % and
the number of detections per image from 100 to 500. The increased weight of Ly, also
implicitly decreases the importance of Ljygification- 1his can increase performance, since
the classification branch of Mask R-CNN is not very important for performance when
segmenting instances of only one type.

5.3 Results

The reason the scores are so low for this problem, is the way the score is calculated in
section 4.2. Since the evaluation only counts a mask overlapping 50 % with a ground truth
value as a hit at one threshold, the evaluation metric severely punishes bad separation of
overlapping nuclei and small inaccuracies in mask borders. It also punishes both false
positives and false negatives, which also contributes to Fl-scores being below what is
considered “normal” accuracy values in other ML problems.

In figure 4.1 we see that the modified model performs better than the standard model.
On average, the modified model performs 4 % better than the standard model. This in-
dicates that our modifications led to a performance increase, but only a very slight one.
Since the performance increase is small, we can not rule out that there is a probability of
the increase being a coincidence.

The modified model seems to overfit the data a little bit as the training proceeds. Its
highest F1-scores are 0.385 and 0.376 from the 10k and 30k iterations models, and the
score converges to below 0.35 after around 140k iterations. The standard model does not
seem to overfit, but also converges, to a score of almost 0.34. Since the modified model
does some data augmentation, it should be less susceptible to overfitting. With this in
mind, and the standard model seemably not overfittig, it might be just a coincidence that
the modified model achieves its best scores after 10k and 30k iterations.

We are missing the 100 k iterations model for the standard model, due to memory
failure while saving the model during training, and we have saved a model twice as often

22

5.4 Comparison to Kaggle

during training of the modified model. This is why we have 19 datapoints for the modified
model and 9 for the standard. If we had collected the same amount of data points for the
modified model (at 20k, 40k, 60k, ...), the graph would be smoother, with higher lows and
lower highs. This also supports that it is a coincidence that the modified model seems to
be overfitting.

The results also indicate that we do not need to train for 180 k iterations, when our best
results are achieved after 10 k and 30 k iterations. This is probably the standard number of
iterations due to the models normally being trained on bigger datasets.

5.4 Comparison to Kaggle

We chose the model that performed best on the validation set as the model we ran the test
set on. The modified model trained for 10 k iterations was the top performer and achieved
an F1-score of 0.460 on the test set when submitted and evaluated online at Kaggle. We did
not complete our implementation in time to enter the competition, but if we had, this score
would place us 291st out of 738 participating individuals and teams on the leaderboard for
stage 2 of the competition. This demonstrates that our chosen method is competitive.

The top performing model scored 0.385 on the validation set and 0.460 on the test set.
This is an increase of 19 % and shows that the validation set probably is harder than the
test set. If the only goal was to get the highest score on the test set, we could run inference
on the test set with all the saved models. The problem with this is that it would practically
be training on the test set by trying different models and choosing the one that performs
best. This is why we have only run, and reported the scores from, the test set on the 10 k
iterations model.

5.4.1 Winner of competition

The winner of Kaggles Data Science Bowls solution can be found at the competition
discussion forum!. On the stage 2 leaderboard their solution achieved an Fl-score of
0.6312, beating the second-placed entry by impressive 0.017. A screenshot of the leader-
board can be found in appendix A 6.2. They describe their approach as UNet on steroids.
They use a encoder-decoder architecture based on UNet with encoders pretrained on Im-
ageNet. Their choice of encoders includes DPN-92, Resnet-152, InceptionResnetV2 and
Resnet101. They do the same preprocessing as on ImageNet, since they use pretrained
models. The output from the encoder is post-processed by LightGBM (Ke et al., 2017).
They separate candidate nuclei by looking at features of the candidates: e.g. solidity, area,
neighbours median area and others. In addition, they do some of the same post-processing
as we have done in this thesis, removing candidates that are below a certain certainty
threshold.

They discovered quite early that one of the most challenging aspects of this problem
is separating overlapping nuclei. This led to them predicting the borders of the nuclei
separately from predicting the masks. They do this by training a network to predict the

Thttps://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
2https://www.kaggle.com/c/data-science-bowl-2018/leaderboard

23

https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
https://www.kaggle.com/c/data-science-bowl-2018/leaderboard

Chapter 5. Discussion

borders. The network that predicts the borders and the network that predicts the masks are
then combined and fed as input to watershed post-processing.

Due to the training set being relatively small they have done a lot of data augmentation.
The full list is available at the competition forum?, and include gaussian noise, greyscaling,
inverting and more complicated techniques like channel shuffle and nuclei copying on
images. They believe that the last two techniques were important, the last one due to it
focusing the learning more on the hard part of the problem: separating overlapping nuclei.

In addition they do some small test-time augmentation: standard flips and rotations of
90, 180 and 270 degrees. Another way they compensated for the lack of training data,
was adding other datasets and using them in training as well. They added parts of other
datasets including: the janowczyk (Janowczyk, 2018) and nucleisegmentationbenchmark
(Kumar et al., 2017) datasets. They do not do any ensembling except averaging masks
before post-processing.

Watershed post-processing is a powerful technique that if added to our implementation
could have boosted performance. It could especially have helped with the difficult task of
separating overlapping nuclei. Another technique that we could have explored further is
data augmentation. Since the training set is small, different data augmentation techniques
could have compensated for this. We implemented some data augmentation techniques,
but could have explored more techniques.

5.4.2 Other top placements in the competition

Most of the other teams that placed 10 or higher on the leaderboard, used some kind
of Mask R-CNN. This indicates that our choice of Mask R-CNN, even if not absolutely
optimal, was definitely a competitive choice. The difference between our method and their
methods is mainly that they use our first-choice backbone architecture: X-152-32x8d-FPN.
In addition their implementations have been heavily engineered. They have added a lot of
pre- and post-processing and also done more data augmentation. With another graphics
card, we could have used our first-choice model. It is reasonable to assume that this alone
would have increased our score with around 10 %, leading to a score of 0.504, just outside
of the top 100 on the leaderboard.

One of the joint second-place solutions has been documented at the competition fo-
rum*. They achieved a score of 0.614. They use Mask R-CNN from Matterport(matterport,
2018), which is another framework other than Detectron. Other than being another frame-
work, the two Mask R-CNN architectures are similar. Their solution is very straight-
forward and utilizes only a single model. The most notable part of their implementation is
that they have done a lot of data augmentation. The data augmentation consists of a lot of
scaling augmentation; zooming in and out and changing aspect ratio, and also 15 different
test time augmentations including rotations, scaling and channel color shifting. They have
also made some changes to the parameters that are described in their post.

3https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
“https://www.kaggle.com/c/data-science-bowl-2018/discussion/56393

24

https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741
https://www.kaggle.com/c/data-science-bowl-2018/discussion/56393

5.4 Comparison to Kaggle

5.4.3 Comparison of winner and 2nd place

The main differences between the winner of the competition and the 2nd place, were the
backbone architecture and post-processing. The winners chose UNet combined with Wa-
tershed post-processing, and the 2nd place chose Mask R-CNN. Mask R-CNN is a single
model and an architecture that is easy to operate. In contrast, UNet combined with Water-
shed post-processing requires more engineering and has more hyper-parameters to tune.
The advantage of the winners implementation is that they had a separate network for pre-
dicting the borders. This helped them separate overlapping nuclei, which was a critical
part of the competition. Mask R-CNN also does classification, so its full strength was
not utilized here. If the competition included classifying the segmented nuclei, this Mask
R-CNN implementation or one of the other top Mask R-CNN implementations, probably
would have won.

25

Chapter 5. Discussion

26

Chapter

Conclusion and future work

6.1 Conclusion

In this thesis we have conducted a literature review for finding the state-of-the-art methods
for detecting and localizing nuclei in medical imaging. We have implemented and ap-
plied one of the state-of-the-art methods, Mask R-CNN (He et al., 2017) to this task. We
trained the same model twice, first without modifications, then with some adjustments.
The adjustments were made to adapt the model to the problem of detecting and localizing
nuclei, and included increasing the weight of L. The modified model performed 4 %
better on average than the non-modified model. The implementation that performed best
on the validation set with a score of 0.385, achieved an F-1 score of 0.460 on the test set.
We did not complete our implementation in time to enter the competition, but if we had,
this score would have lead to 291st place out of 738 participating individuals or teams
in Kaggles 2018 Data Science Bowl'. Even though we were 0.171 behind the winning
approach which scored 0.631, we implemented the same single model as the second-place
approach. The differences between our implementation and the second-placed implemen-
tation were mainly a different backbone and heavy data augmentation. This shows that our
approach was competitive, and with modifications could have been competing for the top
placements in the competition.

6.2 Future work

Mask R-CNN also does classification, on top of solving the problem in this thesis. There-
fore it could be applied to segmenting the nuclei into masks and classifying the nuclei into
type of nuclei. Being a very general instance segmentation framework, it could do instance
segmentation of almost any type of data within visual computing.

One of the simplest ways to increase performance would be more tuning to discover
which data augmentation techniques are effective, and doing a hyper-parameter search.

"https://www.kaggle.com/c/data-science-bowl-2018

27

https://www.kaggle.com/c/data-science-bowl-2018

Chapter 6. Conclusion and future work

Another method to increase performance would be training several Mask R-CNN models
on different augmentations of the training data, and then combining them by ensemble
methods. A more advanced addition would be adding compressed sensing as done in (Xue
and Ray, 2017) as pre-processing. This would increase precision in separating overlapping
cells, due to the redundant information CS gives. Since all the Mask R-CNN approaches
were beaten by Unet with Watershed post-processing in the Kaggle competition, it could
increase performance to combine Mask R-CNN with Watershed as post-processing.

28

Bibliography

Beucher, S., Meyer, F., 1992. The morphological approach to segmentation: the watershed
transformation. Optical Engineering-New York-Marcel Dekker Incorporated- 34, 433—
481.

Bhattacharjee, D., Paul, A., 2017. A leukocyte detection technique in blood smear images
using plant growth simulation algorithm. In: AAAL pp. 17-23.

caffe2, 4 2018. caffe2. [accessed: 27th of May 2018].
URL https://github.com/caffe2/caffe2.git

Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., Heng, P.-A., 2017. Dcan: Deep contour-aware
networks for object instance segmentation from histology images. Medical image anal-
ysis 36, 135-146.

gangadher, 5 2018. Object detectron nuclei. [accessed: 27th of May 2018].
URL https://github.com/gangadhar-p/NucleiDetectron.git

Girshick, R., 2015. Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision. pp. 1440-1448.

Girshick, R., Radosavovic, 1., Gkioxari, G., Dollar, P., He, K., 2018. Detectron.
https://github.com/facebookresearch/detectron, [accessed: 27th of
May 2018].

He, K., Gkioxari, G., Dollér, P., Girshick, R., Mar. 2017. Mask R-CNN. ArXiv e-prints.

Jaderberg, M., Simonyan, K., Zisserman, A., et al., 2015. Spatial transformer networks.
In: Advances in neural information processing systems. pp. 2017-2025.

Janowczyk, A., 4 2018. Janowczyk medical imaging database. [accessed: 7th of July
2018].
URL http://www.andrewjanowczyk.com/deep-learning/

Kainz, P., Pfeiffer, M., Urschler, M., 2017. Segmentation and classification of colon glands
with deep convolutional neural networks and total variation regularization. Peer] 5,
e3874.

29

https://github.com/caffe2/caffe2.git
https://github.com/gangadhar-p/NucleiDetectron.git
https://github.com/facebookresearch/detectron
http://www.andrewjanowczyk.com/deep-learning/

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017.
Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in Neural
Information Processing Systems. pp. 3146-3154.

Khoshdeli, M., Parvin, B., Feb. 2018. Deep Learning Models Delineates Multiple Nuclear
Phenotypes in HE Stained Histology Sections. ArXiv e-prints.

Khoshdeli, M., Parvin, B., 2018. Feature-based representation improves color decomposi-
tion and nuclear detection using a convolutional neural network. IEEE Transactions on
Biomedical Engineering 65 (3), 625-634.

Kong, H., Akakin, H. C., Sarma, S. E., 2013. A generalized laplacian of gaussian filter for
blob detection and its applications. IEEE transactions on cybernetics 43 (6), 1719-1733.

Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A., 2017. A dataset
and a technique for generalized nuclear segmentation for computational pathology.
IEEE transactions on medical imaging 36 (7), 1550-1560.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86 (11), 2278-2324.

Lin, H., Chen, H., Dou, Q., Wang, L., Qin, J., Heng, P.-A., Jul. 2017a. ScanNet: A Fast and
Dense Scanning Framework for Metastatic Breast Cancer Detection from Whole-Slide
Images. ArXiv e-prints.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P., Aug. 2017b. Focal Loss for Dense
Object Detection. ArXiv e-prints.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ra-
manan, D., Zitnick, C. L., Dollar, P., May 2014. Microsoft COCO: Common Objects in
Context. ArXiv e-prints.

Ljosa, V., Sokolnicki, K. L., Carpenter, A. E., 2012. Annotated high-throughput mi-
croscopy image sets for validation. Nat Methods 9 (7), 637.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic seg-
mentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 3431-3440.

Lu, Y., Shapiro, L. G., 2017. Closing the loop for edge detection and object proposals. In:
AAAL pp. 4204-4210.

matterport, 6 2018. Matterports mask r-cnn. [accessed: 6th of July 2018].
URL https://github.com/matterport/Mask_RCNN

McConnell, R. K., Jan. 28 1986. Method of and apparatus for pattern recognition. US
Patent 4,567,610.

Merkel, D., Mar. 2014. Docker: Lightweight linux containers for consistent development
and deployment. Linux J. 2014 (239).
URL http://dl.acm.org/citation.cfm?id=2600239.2600241

30

https://github.com/matterport/Mask_RCNN
http://dl.acm.org/citation.cfm?id=2600239.2600241

QiongYan, J., LiXu, Y., 2017. Accurate single stage detector using recurrent rolling con-
volution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: Advances in neural information processing
systems. pp. 91-99.

Tareef, A., Song, Y., Huang, H., Wang, Y., Feng, D., Chen, M., Cai, W., 2017. Optimizing
the cervix cytological examination based on deep learning and dynamic shape modeling.
Neurocomputing 248, 28—40.

Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., Jun. 2016. Deep Learning for
Identifying Metastatic Breast Cancer. ArXiv e-prints.

waspinator, 5 2018. Pycoco creator. [accessed: 3rd of June 2018].
URL https://github.com/waspinator/pycococreator.git

Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L., 2018. Efficient and robust cell
detection: A structured regression approach. Medical image analysis 44, 245-254.

Xue, Y., Ray, N., Aug. 2017. Cell Detection in Microscopy Images with Deep Convolu-
tional Neural Network and Compressed Sensing. ArXiv e-prints.

31

https://github.com/waspinator/pycococreator.git

32

B In the money B Gold B Silver B Bronze

Apub Team Name Kernel Team Members Score Entries Last
1 - 338 [ods.ai] topcoders 0.631 2 3mc
2 2683 jacobkie > | 0.614 2 3mc
3 429 Deep Retina > | 0.614 2 3m

4 ~ 352 Nuclear Vision E i l i 0.610 2 3me
5 - 139 Inom Mirzaev - 0.609 4 3mc
6 610 ACS i 0.594 1 3m

7 - 315 Gangadhar Payyavula 0.591 5 3mc
8 ~131 ZhenglLi 0.580 0 now

)

9 ~533 Yuanfang Guan and Wei Dong 0.588 2 3mc

o
10 .255 [ods.ai] Gold Diggers] L 0.584 6 3me

11 - 259 MPWARE Team *a 0.578 9 3mc
12 -199 emergent complexity - 0.576 2] ame
13 .52 SUGO Be 0.576 1 am
14 - 406 Daydreamers g u 0.574 2 3m
15 - 387 shivamchaubey . 0.574 2 3mc
16 ~448 Tututu 49 0.574 1 3me
17 .462 ECL ks 0.574 1 3mc
18 - 464 Samrat Saha . 0.574 2 3mc
19 511 oversam J 0.574 2 3mc
20 2499 Hongta 5 0.574 2 3m

Figure 6.1: The top 20 entries on the stage 2 leaderboard of Kaggles Data Science Bowl 2018

Appendix A

Appendix A contains the leaderboard shown in figure 6.1, of Kaggles Data Science Bowl
2018 at 7th of July.

33

Appendix B

This appendix contains the two configuration files for the two models we have trained
in this thesis. The first configuration file is for the unmodified model and is detailed below:

MODEL:
TYPE: generalized_rcnn
CONVBODY: FPN.add_fpn_ResNetl0O1l_conv5_body
NUM_CLASSES: 2
FASTER RCNN: True
MASK ON: True
NUM.GPUS: 1
SOLVER:
WEIGHT DECAY: 0.0001
LR_POLICY: steps_with_decay
1x schedule (note TRAIN.IMS_PER_BATCH: 1)
BASELR: 0.001
GAMMA: 0.1
MAXITER: 180000
STEPS: [0, 120000, 160000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL RPN: True
RESNETS:
STRIDE_1X1: False
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4
FAST_RCNN:
ROI.LBOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROIXFORM_METHOD: RolIAlign
ROI_XFORM _RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN::

ROI.LMASK HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_vlup4convs

RESOLUTION: 28 # (output mask resolution) default 14
ROIXFORM METHOD: RolAlign

ROIXFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default O

DILATION: 1 # default 2

34

CONV_INIT: MSRAFill # default GaussianFill
TRAIN:

WEIGHTS: configs/pre—trained —weights/ \

e2e_mask_rcnn_X —101—64x4d—FPN_1x \
___pre —trained —weights . pkl

DATASETS: (’dsbl18_train’, ’>dsbl18_val’)

SCALES: (800,)

MAX_SIZE: 1333

IMS_PER_BATCH: 1

BATCH_SIZE_PER_IM: 512

RPN_PRE_.NMS_TOP_N: 2000 # Per FPN level
TEST:

FORCE_JSON_DATASET_EVAL: True

DATASETS: (’dsb18_stagel _test ’,)

SCALE: 800

MAXSIZE: 1333

NMS: 0.5

RPN_PRE_NMS_TOP_N: 1000 # Per FPN level

RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR:

The second configuration file is for the modified model and is detailed below:

MODEL:
TYPE: generalized_rcnn
CONVBODY: FPN.add_fpn_ResNetl01l_conv5_body
NUM_CLASSES: 2
FASTER RCNN: True
MASKON: True

NUM.GPUS: 1

SOLVER:
WEIGHT DECAY: 0.0001
LR_POLICY: steps-with_decay
1x schedule (note TRAIN.IMS_PER.BATCH: 1)
BASE_LR: 0.0025
GAMMA: 0.1
MAXITER: 180000
STEPS: [0, 120000, 160000]

FPN:
FPN_.ON: True
MULTILEVEL_ROIS: True
MULTILEVEL RPN: True

RESNETS:
STRIDE_1X1: False
TRANS_FUNC: bottleneck_transformation
NUM_GROUPS: 64
WIDTH_PER_GROUP: 4

FAST_RCNN:
ROI.LBOX_HEAD: fast_rcnn_heads.add_roi-2mlp_head
ROLXFORM_METHOD: RolAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2

MRCNN::
ROI MASK HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_\

vlup4convs

RESOLUTION: 28 # (output mask resolution) default 14
ROIXFORM_METHOD: RolIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default O
DILATION: 1 # default 2
CONVL_INIT: MSRAFill # default GaussianFill
changed
WEIGHT_LOSS_MASK: 1.2

TRAIN:
WEIGHTS: configs/pre—trained —weights/ \
e2e_mask_renn_X —101—64x4d—FPN_1x \

36

___pre—trained —weights . pkl
DATASETS: (’dsbl8_train’, ’dsb18_val’)
Augment
SCALES: (700, 800, 900, 980)

MAXSIZE: 1333

IMS_PER_BATCH: 1

BATCH_SIZE_PER_IM: 512
RPN_PRE_ZNMS_TOP_N: 2000 # Per FPN level
SNAPSHOT._ITERS: 10000

TEST:
FORCE_JSON_DATASET_EVAL: True
DATASETS: (’dsbl18_stagel _test ’,)
SCALE: 800
MAXSIZE: 1333
NMS: 0.5
RPN_PRE_.NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
add detections per image
DETECTIONS_PER_IM: 500

OUTPUT.DIR:

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Research questions
	Research methods
	Thesis structure

	Literature Review
	Search methodology
	Google scholar search
	CVPR17 search
	AI conferences search

	Summaries of literature
	Google Scholar search
	CVPR17 search
	AI conferences search
	Other

	Discussion of the state of the art
	General instance segmentation and object detection
	Instance segmentation of large objects in medical imaging
	Instance segmentation of small objects in medical imaging
	Cell centroid localization in medical imaging

	Method
	General overview of field
	Mask R-CNN
	Data
	Models
	Training
	Inference and post-processing

	Frameworks

	Experiment
	Setup
	Evalutation
	Evaluation metrics
	Evaluation script

	Results
	Validation set
	Test set: Kaggle

	Discussion
	Literature review
	Method
	Results
	Comparison to Kaggle
	Winner of competition
	Other top placements in the competition
	Comparison of winner and 2nd place

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Appendix A
	Appendix B

