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Abstract

Human Activity Recognition (HAR) is the �eld of recognizing activities by analyzing
measurements of a subject’s movement and environment. A major application of HAR
systems is medical research. �e Nord-Trøndelag Health Study is one of the largest health
studies in the world, containing health data on 120 000 subjects. �e fourth version of
the study (HUNT4) commenced in the fall of 2017, where activity data for the �rst time is
collected through physical measurements and not by questionnaires. Subjects are asked
to wear two accelerometers for a week to record their activities. To analyze this data an
e�ective and accurate HAR system is needed. With the large amounts of data, a manual
analysis is not feasible. Prior studies have developed promising HAR systems, classifying
activities with a high degree of accuracy (Hessen and Tessem [2016], Vågeskar [2017]).
�is thesis aims to make improvements to the HAR system presented in Vågeskar [2017]
by increasing the e�ciency of the system and adding a sensor no-wear time classi�er.

�ree goals were de�ned for this thesis: Goal 1 was to explore the state of the art machine
learning methods and datasets that are commonly used in HAR research. �is was to be
explored in a systematic literature review. Goal 2 was to increase the e�ectiveness of the
HAR system presented in Vågeskar [2017] while maintaining the accuracy of 94 percent,
based on the results of the specialization project preceding this thesis (Reinsve [2017])
which indicated that the 138 features used to train the HAR classi�er in Vågeskar [2017]
could be signi�cantly reduced while maintaining the accuracy. Goal 3 was to develop a
classi�er that was able to detect instances of sensor no-wear time (SNT) by classifying
the con�guration of sensors a�ached to a subject at any given time.

In this thesis, a systematic literature review on machine learning methods and publicly
available datasets used in HAR research, is presented. �e feature importances for the
138 di�erent features were presented. It was shown that when tested on the TFL dataset,
a model with the 5 most important features was su�cient in order to achieve an accu-
racy of 90.0 percent, while a model using the 27 most important features was capable
of reaching 94.0 percent accuracy. By calculating only the most important features, an
increase in e�ectiveness of 5.9 times for the feature calculation step of the HAR system
was achieved using 27 features. With 5 features a speedup of 23 times was achieved.
�e SNT classi�er achieved an accuracy of 95.6 percent using 2 minute windows and a
random forest classi�er, when tested on the SNT dataset.
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Sammendrag

Helseundersøkelsen i Nord-Trøndelag (HUNT) er den største helseundersøkelsen i Norge.
Siden studiet ble unnfanget i 1984, har det bli� samlet inn helseinformasjon om 120,000
personer. Hi�il har det vœrt gjennomført tre utgaver av studiet: HUNT1, HUNT2 og
HUNT31. Informasjon som høyde, vekt, blodtrykk, puls, hørsel og oksygenopptak har
blit samlet inn. Høsten 2017 ble den �erde utgaven av studiet sa� i gang (HUNT4). De�e
blir det første av HUNT studiene til å samle inn fysiske målinger av aktivitetsnivået
til deltakerene. Det er forventet at ca. 58,000 vil ta del i studiet, og at ca. 50,000 av
disse vil gjennomføre de frivillige aktivitetsmålingene. Deltakerene som ønsker å utføre
målingene får utdelt to akselerometere som de blir bedt om gå med i syv dager. For å
håndtere de store datamengdene trengs det et system som automatisk analyserer dataene.
De�e forskiningområdet omtales som ”Human Activity Recongnition” (HAR). Gjennom
arbeidet til Hessen and Tessem [2016] og Vågeskar [2017] ble det utviklet et fullt fun-
gerede HAR system for de�e formålet. I denne oppgaven bygges det videre på de�e
arbeidet for å gjøre de�e systemet bedre rustet til å takle utfordringene ved storskala-
bruk. Målet er å øke e�ektiviten av systemet presentert i Vågeskar [2017] samt utvikle
et system for deteksjon av det som kalles ”sensor no-wear time”.

Tre konkrete mål ble de�nert for oppgaven: å undersøke hvilke maskinlæringsmetoder
og alment tilgjengelige datase� som blir brukt i forskning innenfor HAR fagfeltet, forbedre
e�ektiviteten av HAR systemet presentert i Vågeskar [2017], og utvikle et system for
å detektere tilfeller av ”no-wear time”, der sensorene ikke er montert på personen mens
målingene pågår.

En systematisk li�eraturstudie ble utført for å �nne hvilke maskinlæringsmodeller som
blir brukt i forskning på HAR, samt hvilke HAR datase� som er alment tilgjengelige.
Informasjon om hvilke ”features” som var mest betydningfulle for HAR systemet brukt i
Vågeskar [2017] ble hentet ut. Det ble vist at en modell med de 5 viktigste features’ene
var tilstrekkelig for å opnå en nøyaktighet på 90 prosent. Med 27 features oppnådde
modellen 94.0 prosent nøyaktighet. Med 5 features økte e�ektiviteten av systemet betrak-
telig; utregninger ble gjort 23 ganger raskere enn for modellen med 138 features. Med
27 features var systemet 5.9 ganger raskere. Modellen for detektering av sensor no-wear
time oppnådde en nøyaktighet på 95.6 prosent.

1h�ps://www.ntnu.no/hunt/om
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Chapter 1
Introduction

�is chapter introduces the background and motivation for the thesis. Furthermore, it
de�nes the goals and the structure of the thesis.

1.1 Background and Motivation

Human Activity Recognition (HAR) is the �eld of recognizing activities by analyzing
measurements of a subject’s movement and environment. HAR systems have applica-
tions in health care services, sports, security (video surveillance etc), and personal health
tracking. Another application is medical research. Gaining an understanding of the ac-
tivity level of a population can help us understand the development of life style deceases,
heart conditions, or mortality. �is information can aid policy makers and others in tak-
ing proactive steps to improve the quality of lives of people on a substantial scale.

In Norway, the Nord-Trøndelag health study is the largest collection of health data on a
population. �e study spans decades, going back as far as 1984 (Hunt Research Center
[2017]). In total, approximately 120,000 people, all from the province of Nord-Trøndelag,
have participated in the HUNT studies. �e study have collected measurements on
height, weight, blood pressure, heart rate, hearing,and oxygen uptake, among others
1. Traditionally, the HUNT studies have collected data on physical activity (PA) levels
through questionnaires. Unfortunately, questionnaires about PA are bound to be unreli-
able and do not necessarily re�ect an objective view of a person’s activity level. Measur-
ing the activity level directly with sensors would produce more accurate and objective
results.

In the fall of 2017, the fourth version of the study, HUNT4, commenced. �e study is a
collaboration between the HUNT research center, the Norwegian University of Science
and Technology (NTNU), the Norwegian ministry of Health and Care services (HOD),

1h�ps://www.ntnu.no/hunt/hunt3
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and others. It is the �rst HUNT study to collect PA data through direct measurement.
It is expected that like in the HUNT3, approximately 58,000 people will take part in the
study. Almost 30 000 have already participated 2. Subjects are given the choice to wear
two accelerometers for a period of seven days. It is expected that approximately 50,000
of the participants will take part in wearing the accelerometers. Additionally, about 10%
of the subjects are o�ered to wear a heart rate monitor for two out of the seven days. �e
accelerometers, which will be the core domain of this thesis, will register every move-
ment the subjects make throughout the day, even while they are sleeping. �e data will
be used to gather a be�er view of the overall activity level in the population. �e subjects
will also be given a precise summary of the activities they performed during the period
they wore the sensors, giving them the opportunity to make improvements in their daily
routines.

To be able to analyze the large amounts of data collected through the HUNT4 study,
an accurate and e�ective HAR system is needed. Due to the large amount of partici-
pants, a manual analysis of the data is not feasible. �is thesis builds on the foundation
of two prior master theses: Hessen and Tessem [2016] and, Vågeskar [2017], both from
the Department of Computer Science (IDI) at the Norwegian University of Science and
Technology (NTNU). �eir work served as prestudies to the HUNT4 study, and resulted
in a fully functioning HAR system. �is project aim to make improvements to the ef-
fectiveness of the HAR system presented in Vågeskar [2017], and to introduce a system
that is able to detect instances of sensor no-wear time. No-wear time is when a sensor is
detached from the subject during the recording when it was intended to be a�ached. �e
random forest classi�er (RFC) developed in Vågeskar [2017] delivered great accuracy for
the Trondheim free-living (TFL) dataset: 94,2%. However, as shown in the specialization
thesis proceeding this master (Reinsve [2017]), the use of 138 input features to the RFC
made the system slower than necessary while maintaining a similar accuracy. A signi�-
cant number of the features presented in Vågeskar [2017] was not necessary to maintain
the accuracy of the RFC. Reinsve [2017] also showed that the feature calculation step
of the HAR system was the most time consuming by a signi�cant margin. �erefore,
a signi�cant increase in e�ectiveness could be made with a corresponding reduction of
features used in the model. �is thesis aim to present an improved version of the HAR
system presented in Vågeskar [2017], using less features in order to increase the e�ec-
tiveness of the feature calculations step in the HAR system. �is will reduce time it takes
to predict the activities for the subjects participating in the HUNT4 study, as well as pro-
viding insight into which features are the most important to create a robust model.

In addition to increasing the e�ectiveness of the HAR system, this thesis aims to create a
system that is capable of detecting sensor no-wear time. It is expected that for a number
of the participants in the HUNT4 study, one or both sensors will fall o� at some point dur-
ing the week long recordings. Some of these participants will try to rea�ach the senors,
while others will not. �e sensors might also be removed for any particular reason by the
participants themselves. �is introduces inaccurate measurements into the HUNT4 data.
�e current HAR system (Vågeskar [2017]) uses a dual-sensor model for all predictions.

2As of May 2018
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For example, if a participant wore both sensors for three days, and one sensor for the last
four days, the dual-sensor model would produce inaccurate prediction results. �erefore,
in order to maintain a similar degree of accuracy for this type of data, as with properly
recorded data, a system that can detect when a sensor is detached from the subject would
be useful. Such a system can then inform the HAR system to use either the dual-sensor
model or a sensor speci�c single-sensor model for predictions, when necessary. To train
a system for this task, a dataset with labeled instances of no-wear time was needed. A
new dataset was created for this thesis for this purpose; the sensor no-wear time (SNT)
dataset will be used to train a separate system to detect instances of no-wear time in
recordings. �e dataset consists of recordings from two subjects wearing two accelerom-
eters each, one on the back and one on the thigh. Both subjects performed two separate
protocols each. �e protocols described the sequences of which sensor to put on, or take
o�, and for how long to wear them. �is resulted in a total of four di�erent recordings.
�is dataset will hopefully provide the necessary data in order to train the model used
by the no-wear time detection system. With such a system in place, it is desired that
the subject recordings from the HUNT4 containing no-wear time can be used; and at the
same time achieve approximately the same degree of accuracy as the for the data not
containing no-wear time. Put together, the improvements in e�ectiveness and the detec-
tion of no-wear time should result in HAR system that is be�er prepared for large scale
usage such as with the HUNT4 study.

1.2 Goals and Research�estions

�e following goals and research questions were de�ned for this thesis:

• Goal 1: Explore the state of the art in HAR systems that use machine learning

– Research �estion 1: What is the state of art machine learning methods
used in HAR systems and how are they performing in terms of accuracy?

– Research �estion 2: Which publicly available datasets have been used in
HAR research�

• Goal 2: Reduce the number of features used in the HAR classi�er model to improve
the speed of predicting data while maintaining a high degree of accuracy

– Research�estion 1: What features are the most important when used with
a random forest classi�er for the TFL dataset?

– Research �estion 2: How does the feature importances vary with sensor
placement?

– Research�estion 3: How many and which features are su�cient to achieve
90% and 94% accuracy?

• Goal 3: Create a HAR system that is able to detect sensor recordings with instances
of no-wear time

3



Chapter 1. Introduction

– Research �estion 1: What are the instances and reasons where data is
missing or not recorded as intended in the HUNT4 data?

– Research �estion 2: To what degree is missing records and no-wear time
data present in the HUNT4 data?

– Research�estion 3: What is a reasonable approach to detect no-wear time
of sensors, and what accuracy can it achieve when implemented?

1.3 �esis Structure
• Chapter 2: Background�eory details the background theory necessary to un-

derstand the concepts covered in this thesis.

• Chapter 3: Systematic Literature Review presents the systematic literature re-
view (SLR). It includes state of the art machine learning methods used in HAR
research and the datasets that are commonly used in HAR research.

• Chapter 4: Datasets describes the two datasets used in this thesis: the TFL and
SNT datasets.

• Chapter 5: Methodology details the HAR system’s design used for the experi-
ments in this work.

• Chapter 6: Experiments presents the the experiments of this thesis, covering the
setup, results, and motivation for each of the experiments.

• Chapter 7: Discussion discusses the results of the SLR and the experiments.

• Chapter 8: Conclusion summarizes and evaluates the work presented in this
thesis and discusses possible areas of interest for further work on the topic.
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Chapter 2
Background �eory

�is chapter present background theory on subjects necessary to understand the concepts
and experiments explored in this thesis. Section 2.1 brie�y introduces human activity
recognition, section 2.4 presents machine learning, section 2.5 introduces decision trees,
section 2.6 explains ensemble methods in general and speci�cally the random forests
method. Section 2.6 brie�y introduces the performance metrics used to evaluate the clas-
si�ers in this thesis, while section 2.8 describe features and list the features used for the
HAR classi�er in this thesis. Lastly, section 2.3 explains sensors in the context of HAR.

2.1 Human Activity Recognition

Human Activity Recognition (HAR) is the �eld of recognizing the activities performed
by a a person or a group of people by analyzing measurements of a subject’s movement
and environment. HAR has been a research �eld since the earliest works were done in
the late ’90s (Lara and Labrador [2013]). HAR systems have a wide range

2.1.1 �e HAR problem de�nition

A comprehensive and detailed de�nition of HAR is given in De�nition 2.1.1

De�nition 2.1.1. HAR problem: Given a set S = S0, ..., Sk−1 of k time series, each one
from a particular measured a�ribute, and all de�ned within time interval I = [tα, tω] ,
the goal is to �nd a temporal partition 〈I0, ..., Ir−1〉 of I, based on the data in S, and a set
of labels representing the activity performed during each interval Ij (e.g., si�ing, walking,
etc.). �is implies that time intervals Ij are consecutive, non-empty, non-overlapping, and

such that
r−1⋃
j=0

Ij = I , Lara and Labrador [2013]
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Chapter 2. Background �eory

2.1.2 Structure of HAR systems
A HAR system can be de�ned in terms of a sequence of operations performed to recognize
activities from wearable sensors. In Bulling et al. [2014] this sequence of operations is
presented as the Activity Recognition Chain (ARC); a sequence of �ve operations. A
simpli�ed overview of the the ARC is presented in �gure 2.1.

Figure 2.1: A simpli�ed overview of the Activity Recognition Chain presented in Bulling et al.
[2014]. Figure from Hessen and Tessem [2016]

�e domain of this thesis is primarily the feature generation and selection step, and the
classi�cation step. �e three steps: data collection, data pre-processing and data seg-
mentation are described in detail in Hessen and Tessem [2016]. Relevant parts from
these three step are presented below in section Ṫhe feature generation and selection step,
hereby referred to as the feature calculation step is discribed in the context of machine
learning in 2.4.

2.2 Data collection

2.3 Sensors
A sensor is a device that detects or measures a device which detects or measures a phys-
ical property and records, indicates, or otherwise responds to it 1.

A range of di�erent sensors have been used in HAR systems Lara and Labrador [2013],
including accelerometers, microphones, light sensors, GPS, and others. �ey can be cat-
egorized in terms of what a�ributes they measure: environmental, acceleration, location
and physiological signals (Lara and Labrador [2013]).

• Environmental attributes: Examples of environmental a�ributes include tem-
perature, light and audio levels, humidity, etc. �ese a�ribute provide context in-
formation about the surrounding of the subject.

1h�p://www.oed.com/view/Entry/176005?rskey=5Tz8tB&result=1&isAdvanced=false#eid
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• Acceleration: Accelerometers are widely used for HAR purposes. �ey are in-
expensive,are found in many of the devices we carry around on a daily basis, and
they require low power Lara and Labrador [2013]. Triaxial accelereometers are
among the most widely used for recognizing activities such as walking, running,
etc (Lara and Labrador [2013]). Systems using accelerometers have reported high
recognition accuracies, achieving up 90 percent Lara and Labrador [2013].

• Location: �e most common location based sensor is probably the Global Posi-
tioning System (GPS). Most phones come equipped with a GPS inside, making it a
convenient sensor to use. Drawbacks of using GPS includes poor indoors perfor-
mance and privacy issues.

• Physiological signals: �ere is a wide range of physiological signals: heart rate,
blood oxygen.

2.4 Machine Learning

Machine learning is the science of creating computer programs that improve with experi-
ence. �e use of machine learning has exploded in the last decade; dramatically improv-
ing web searches (Google etc), speech recognition systems (Apple’s Siri etc), and brought
us closer to the self-driving car reality. Machine learning is also a profound tool in the
context of HAR. Analyzing the vast amounts of data collected through the HUNT4 study
would simply not be possible without the help of machines. In this section, the basics of
machine learning are introduced.

2.4.1 �e Learning Problem

For the computer to be able to learn, a proper de�nition of learning is necessary. De�ni-
tion 2.4.1 gives a de�nition for learning in the context of computer programs.

De�nition 2.4.1. Learning A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E. [Mitchell, 1997, p. 2]

Many learning problems can be described by the way of this de�nition. Consider the
task of recognizing words in handwriting. �e task T is then to recognize and classify
words in pictures of handwri�en words. �e performance measure P could be the per-
centage of word that are correctly classi�ed, also called the accuracy. �e experience E
would be a database with pictures of handwri�en words, that are labeled with their cor-
rect classi�cation. In the context of HAR the task T is to recognize activities based on
some measurements of a subjects activity, with the help of experience E usually provided
as a labeled set of training data. �e performance measure can be several di�erent met-
rics: accuracy, precision, recall, and more. �e metrics used in this thesis are presented
in section 2.7 One might also be interested in the amount of time the system uses; the
e�ciency of the system.
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2.4.2 Types of Learning

�ere are three main types of learning in machine learning. �ey are de�ned in terms of
feedback that is available to learn from. [Russel and Norvig, 2010, p. 693-695] describes
the three types of learning:

Supervised learning: �e agent observes input-output pairs to learn a function that
maps from the input data to the output. An example of supervised learning is an agent
tasked with braking a car. As input the agent receives a series of perceptions in the form
of images or other sensor data. �e output is provided by a teacher who says ”brake”.
�e agent will then try to learn what factors determines the need to brake.

Unsupervised learning: No feedback is provided to the learning agent. �e agent learns
pa�erns in the input. An example of unsupervised learning is clustering.

Reinforcement learning: With this type of learning the agent learns from reinforce-
ments, which comes in the form of rewards or punishments. A prime example of an agent
utilizing reinforcement learning would be a chess-playing agent. �e agent receives no
reward or punishment until the game is over. If the agent wins and receives two points,
the reward indicate that the agent did something right. It does not however inform the
agent of which moves it performed, prior to winning the game, that were good (or bad
moves) �is is up to the agent itself to decide.

�ese distinctions might not always as distinct. �ere is also semi-supervised learn-
ing which blurs the line between unsupervised and supervised learning. With semi-
supervised learning the learning agent is given only a few labeled training examples.

2.4.3 Supervised Learning

�e HAR problem is typically solved with supervised learning. A de�nition of the super-
vised learning task is de�ned in de�nition 2.4.2.

De�nition 2.4.2. Supervised learning Given a training set of N example input-output
pairs (x1, y1), (x2, y2), ..., (xN , yN )), ) where each yj was generated by an unknown func-
tion y = f(x), discover a function h that approximates the true function f. [Russel and Norvig,
2010, p.695]

2.4.4 Machine Learning tasks with Respects to Output

ML tasks tasks can be categorized in terms of the output they provide. Classi�cation,
regression, and clustering. �e three methods are described in [Russel and Norvig, 2010,
p. 694-696]
Classi�cation: when the output, y, is one of a �nite set values. An example would be
the �nite set of values (sunny, cloudy, rainy) if trying to predict the weather of tomorrow,
as an example. If y can only take on two di�erent values, it is called binary classi�cation.
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Regression: when the output, y, is a number. An example would be to predict tomor-
row’s temperate. �e probability of predicting the exact number is actually zero, hence
regression is �nding a conditional expectation or average value of y.
Clustering: detects potentially useful clusters in the input data.

2.4.5 Classi�cation

�e HAR problem is a classi�cation task. As seen in De�nition 2.1.1, we wish to �nd
a temporal partition of the time interval, where each partition gets assigned an activity
label. �e activity is selected from a set of activities.

2.5 Decision Trees

�e random forest (RF) model is used for both the HAR and SNT systems in this thesis.
RF are ensembles of decision trees (DT). Hence, understanding DT are important to grasp
the RF model. A short introduction to DT is presented in this section.

According to [Mitchell, 1997, p. 52], decision tree learning is one of the most widely used
and practical methods for inductive inference. Decision trees is a method for approx-
imating discrete-valued functions that is robust to noisy data ([Mitchell, 1997, p. 52]).
Decision trees can be used to solve a wide range of ML tasks: classi�cation, regression,
clustering, ranking and probability estimation (Flach [2012]).

Decision tree is a simple tree based method. DTs have been used extensively for AR
purposes, but the reported accuracies have generally not been on par with other methods
such as random forest, arti�cial neural nets, support vector machines and hidden Markov
models

2.6 Ensemble methods and Random Forests

An ensemble of classi�ers is a set of classi�ers where the individual decisions of the
included classi�ers are combined in some way (Die�erich [2000]). �e classi�er ensemble
is generally much more accurate than the individual classi�ers in the ensemble.

Die�erich [2000]

2.6.1 Bootstrapping

Bootstrap is a method for creating di�erent random samples of datasets. It creates random
subset of data by uniformly sampling the data with replacement. Because samples are
taken with replacement, bootstrap samples will general contain duplicates [Flach, 2012,
331]. �is is not a disadvantage however, the di�erence between the bootstrap samples
introduces diversity to the models in the ensemble.
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Figure 2.2: An illustration of a decision tree for the concept ”PlayTennis”. Each node in the tree
corresponds to a test of an a�ribute of an instance. Examples are classi�ed by sorting the examples
through the tree and testing the a�ribute values of the examples on the internal nodes in the tree.
An instance with the a�ribute values (Sunny, No, Strong) is classi�ed as Yes. Figure from [Mitchell,
1997, p. 52]

2.6.2 Bagging
Bagging is short for ”bootstrap aggregating. It is a simple, yet e�ective ensemble method
that created models on di�erent bootstrap samples of the original dataset. Figure 2.8
presents the basic bagging algorithm.
�e bagging algorithm is relatively simple. It takes a dataset, an ensemble size, and a
learning algorithm as input.

2.6.3 Random Forests
Random forest is an ensemble classi�er that was properly introduced �rst in Breiman
[2001]. �e de�nition of random forests shown in 2.6.1 was presented in Breiman [2001].

De�nition 2.6.1. Random Forest A random forest is a classi�er consisting of a collection
of tree-structured classi�ers {h(x, θk), k = 1, …} where θk are independent identically dis-
tributed random vector and each tree casts a unit vote for the most popular class at input x.
(Breiman [2001]).

One of the advantages of RF is that it can be used for both regression and classi�cations
problems.

�e RF introduces additional randomness over the bagging method. When growing the
trees, nodes are split on the best feature available in a random subset of the remaining
features at that point. �is helps bring great diversity in the trees that are created, in turn
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Figure 2.3: �e GrowTree algorithm presented in [Flach, 2012, p. 132]. Combined with the algo-
rithm in �gure 2.4 they make up an decision tree learner.

Figure 2.4: �e BestSplit-Class algorithm presented in [Flach, 2012, p. 137]

generally resulting in be�er models.
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Figure 2.5: �e bagging algorithm. �e algorithm train an ensemble of models from bootstrap
samples of the original dataset. Figure from [Flach, 2012, p. 332]

Figure 2.6: Illustration of the Random Forest method. �e model create n instances of decision
trees, each with a random subset of the data. �e predicted class is the majority vote of all the trees.
2

2h�ps://cdn-images-1.medium.com/max/1600/1*i0o8mjFfCn-uD79-F1Cqkw.png
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2.7 �ality metrics

Figure 2.8: �e random forest algorithm. Figure from [Flach, 2012, p. 333]

2.7 �ality metrics

�ality metrics are metrics the quality of classi�cations are evaluated on. Many di�erent
metrics are used in the �eld of ML. �e quality metrics used to evaluate the two classi�ers
in this thesis are listen in table 2.1.

Figure 2.9: A confusion matrix
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Metric Description

Accuracy = TP+TN
TP+FP+FN+TN Percentage of correctly classi�ed samples

Precision = TP
TP+FP Proportion of predicted positives that are positives

Recall = TP
TP+FN Proportion of positives that are correctly classi�ed as positives

Specificity = TN
TN+FP Proportion of negatives that re correctly classi�ed as negatives

F1 = 2× Recall×Precision
Recall+Precision �e weighted average of precision and recall

Table 2.1: �ality metrics

2.8 Features
A model is only as good as its features. Features can be though of as a kind of measure-
ment of that can be performed on any instance. More speci�cally they are functions that
map from an instance space to a domain of the feature; the feature values.

2.8.1 Time Domain Features
Time domain features are statistical features that are extracted from a signal without �rst
transforming it to some other domain. Time domain features are e�cient to extract, with
a computational complexity of O(n) where n is the number of samples. �e time domain
features used in this thesis is shown in table 2.10. �ey are the same time domain features
used in Vågeskar [2017] For a comprehensive explanation on time domain features see
Vågeskar [2017].

2.8.2 Frequency Domain Features
Frequency features that require the signal to be transferred to the frequency domain to
be extracted. Frequency features are more computationally demanding to extract than
time domain features. �e signal has to undergo frequency domain transform. �e fre-
quency domain features used in this thesis are shown in �gure 2.11. �ese are the same
frequency domain features as used in Vågeskar [2017]. For a comprehensive explanation
of frequency domain features see Vågeskar [2017].
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Figure 2.10: Time domain features. Figure from Vågeskar [2017]
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Figure 2.11: Frequency domain features. Figure from Vågeskar [2017]
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Chapter 3
Systematic Literature Review

�is chapter present the systematic literature review (SLR).

3.1 Introduction

A SLR is a way of systematically identifying and assessing literature on a topic, narrowing
down the set of identi�ed work, and synthesize the research to answer a set of research
questions. �ere are multiple de�nitions of systematic reviews available, two of them are
presented here in De�nition 3.1.1 and 3.1.2.

De�nition 3.1.1. Systematic review ”A review of a clearly formulated question that uses
systematic and explicit methods to identify, select, and critically appraise relevant research,
and to collect and analyse data from studies that are included in the review. Statistical
methods (meta-analysis) may or may not be used to analyse and summarise the results of
the included studies” (Siddaway [2014]).

A shorter de�nition is shown in 3.1.2.

De�nition 3.1.2. Systematic review A systematic review a�empts ”to identify, appraise
and synthesize all the empirical evidence that meets pre-speci�ed eligibility criteria to an-
swer a given research question” 1

�e goal of this SLR is to answer the two research questions of goal 1, presented in section
1.2.
�e SLR presented in this chapter follows the guidelines of the SLR process described in
Siddaway [2014]. Some of the stages in the process are done less comprehensively than
described, these are presented as limitations of the review, in section 7.1.2. Additionally,
inspiration and ideas found in Prestmo [2017] were included in the SLR.

1 h�p://www.cochranelibrary.com/about/about-cochrane-systematic-reviews.html
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3.2 Systematic Literature Review
Siddaway [2014] describes a �ve stage SLR process: scoping, planning, identi�cation
(searching), screening, and eligibility. �ese stages are carried out successively in this
section. Each stage is brie�y explained to the reader. �e results of the research synthesis
and analysis is presented in section 3.3, followed by a summary and discussion in chapter
7.

3.2.1 Scoping
Scoping is the �rst step of the SLR process. �e goal is to formulate research questions
and clarify whether the planned SLR have been conducted by others in the �eld. �e
goals and research questions for this thesis are presented in section 1.2. Goal 1, and its
research questions RQ1 and RQ2, are to be answered by this SLR.

• Goal 1: Explore the state of the art in HAR systems that use machine learning.

– Research �estion 1: What is the state of art machine learning methods
used in HAR systems and how are they performing in terms of accuracy?

– Research �estion 2: Which publicly available datasets have been used in
HAR research?

It is important to emphasize that the focus of this thesis, and hence the SLR, lies on ac-
tivity recognition in the context of inertial sensors, particularly accelerometers, which
are used in the experimental part of this thesis. Hence, vision-based methods are not
considered relevant in the context of this literature review.

Search for similar systematic literature reviews
Prior to conducting a SLR, it is necessary to research whether similar SLR have been
conducted by others, to avoid doing duplicate and unnecessary work. �e two RQs listed
above are not directly related to each other, and as such, the search for similar SLRs was
carried out with to similar, but separate searches; one for each of two research questions.
�e results of these searches are shown below. Google Scholar and Google was used as
search engines. When searching for articles, articles published prior to the last ten years
were �ltered out from the search results, as they where seen as less relevant than more
recent research. 6 search string were created for both of the searches, based on the terms
found in table 3.2.

• Research �estion 1: For each of the 6 search string, the top 20 most relevant
articles were examined by screening the title and/or abstract. Based on the �ndings,
there seems to be very few proper systematic literature reviews on HAR methods
and their performance. However, there are multiple surveys and articles covering
the topic in their related work/literature review sections, summarizing the topic
well. �ese seem to go a long way in covering machine learning methods in HAR,
and their performance. �erefore, the systematic literature review part, related to
RQ1, will be focused on extracting information from these studies, in addtion to
searching for studies more recent that may not be included in those papers.
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• Research �estion 2: �e same procedure as for RQ1 was carried out for RQ2.
Based on the �ndings of this search, no SLR was found on the topic. Very few
papers in general seemed to cover the topics of available dataset.

�e articles that presented relevant surveys or summaries on the topics of the two
topics were included in the SLR. �ese articles are presented in table 3.1.

Study ID Title Authors
S1 Activity recognition using inertial sensing for healthcare, well-

being and sports applications: A survey
Akin Avci et al.

S2 A Survey on Human Activity Recognition using Wearable Sen-
sors

Oscar D. Lara et.al

S3 A Tutorial on Human Activity Recognition Using Body-Worn
Inertial Sensors

Andreas Bulling et al.

S4 A Study on Human Activity Recognition Using Accelerometer
Data from Smartphone

Akram Bayat et al.

S5 Activity identi�cation using body-mounted sensors��a re-
view of classi�cation techniques

Stephen J Preece et al.

S6 A Survey on Activity Detection and Classi�cation Using Wear-
able Sensors

Maria Cornacchia et al.

S7 UniMiB SHAR: A Dataset for Human Activity Recoignition Us-
ing Acceleration Data from Smartphones

Daniela Micucci et al.

S8 Accelerometry analysis of physical activity and sedentary be-
havior in older adults: a systematic review and data analysis

E. Gorman et al.

Table 3.1: �e articles that were included a�er searchin for similar SLRs.

3.2.2 Planning

�e planning phase of the SLR consists of three phases: breaking down the research
questions into search questions and search terms, formulating inclusion and exclusion
criterias, and creating a comprehensive record keeping system.

Search questions
Six search questions (SQs) were created to break down the research questions into more
speci�c and detailed questions. �is approach was taken from Prestmo [2017]. Separately,
the SQs corresponds to parts of a RQ, collectively they represent the research questions.
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SQ1 What machine learning methods are applied in HAR research?

SQ2 What accuracy do these methods achieve?

SQ3 Which ML methods achieves the highest degree of accuracy?

SQ4 What are the publicly available datasets used in HAR research?

SQ5 What devices or sensors are used to collect these dataset?

SQ6 How many subjects are typically used to collect data in these dataset?

SQ1-SQ3 are related to RQ1, and SQ4-SQ6 are related to RQ2. Search terms were created
based on the search, and research questions. Additionally, some words that were closely
related or synonymous with words in the list was added to increase the likelihood of
�nding relevant articles.

Search Terms
A total of 13 search terms were created. �e terms were divided into 3 groups with re-
lated terms and synonyms (table 3.2). An article was classi�ed as relevant if it contained
at least one of the terms from group 1, and one from either group 2, 3, or both. Based on
this de�nition, a total of 19 search strings were created.

Group 1 Group 2 Group 3
Term 1 Human Activity Recognition Machine learning Data set(s)
Term 2 Activity Recognition Machine recognition Dataset(s)
Term 3 Human activities Arti�cial Intelligence Data
Term 4 Daily living Algorithms Accelerometer
Term 5 Random forest

Table 3.2: �e search terms of the SLR, divided into four groups of related terms.

Inclusion and exclusion criteria
Inclusion and exclusion criteria makes it possible to clearly de�ne the boundaries of the
SLR. �ey are used as criteria for evaluating the articles (section 3.2.4 and 3.2.5) in three
steps: title, abstract, and full-text screening. In de�ning the criteria, a range of aspects
were considered: Field of study, topic, research design, time frame, and data. Relevant
studies are the ones that meet the inclusion criteria, but not the exclusion criteria.

�e de�ned inclusion criteria:
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IC1 �e �eld of study of the article is computer science

IC2 �e main topic of the article is activity recognition

IC3 �e article is published a�er 2007

IC4 �e study focuses on machine learning methods and/or datasets used in HAR

IC5 �e HAR dataset(s) used in the study is collected with an accelerometer

IC6 Empirical results are presented in the study

�e de�ned exclusion criteria:

EC1 �e focus of the article is on movement analysis and/or gesture recognition

EC2 �e focus of the article is on activity recognition using computer vision meth-
ods

EC3 �e set of activities di�ers signi�cantly from the set used in this thesis

EC4 �e study uses fewer than 10 subjects for data collection

Record keeping system Two record keeping systems were used for this SLR. To keep
track of searches, Microso� OneNote was used. Records were kept for all searches in
a systematic fashion. To keep track of articles, tables were created for each step of the
screening process, listing all of the articles for each step. �e articles selected in the last
�ltering step (eligibility) were added to EndNote X8, for reference management.

3.2.3 Identi�cation
�e identi�cation step of the SLR is concerned with �nding all relevant works that ad-
dresses the research questions. �is process starts with selecting electronic databases
to conduct searches on. It is favorably if two or more databases are used in the search
process. �is stage also serves as a re�nement step, where the inclusion and exclusion
criteria, as well as the search questions and search terms, can be re�ned iteratively if the
search results are not satisfactory. �e search terms and criteria de�ned in Section 3.2.2
went through multiple steps of re�nement to improve the results of searches.

Selecting the right electronic databases to conduct the searches on is important to in-
crease the likelihood of �nding a wide range of relevant and high quality articles. �ere
are many academic databases and search engines to chose from; each with their own
advantages and disadvantages. For this SLR, Google Scholar was selected as the main
search engine. It is an academic search engine estimated to contain about 160 million
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documents (Ordua-Malea et al. [2014]).

Additional searches
To reduce the likelihood of missing out on highly relevant studies, additional searches
were performed. Two steps were taken: (i) Search the standard Google search engine
with some of the search strings, (ii) Examine the reference section of works identi�ed.

(i) Using Google Scholar exclusively, might lead to some relevant studies from being dis-
covered . Not necessarily because they are not in the database, but because for some
reason, they did not show up in one of the searches. By searching the standard Google
search engine, more articles could potentially be found. �is approach yielded favorable
results; several highly relevant articles were found by searching Google with some of
search strings created for the Google Scholar search. A PRISMA �ow diagram for this
SLR is presented in �gure 3.1. �e PRISMA �ow diagram illustrates how many articles
(records) that were identi�ed through the di�erent search processes, and the number of
articles �ltered out through the di�erent screenings.

(ii) �e reference section of the works that were included a�er the title and abstract
screening in section 3.2.4 were screened for additional relevant studies. �is step helped
�nd some articles for the SLR, and some articles for the background theory in Chapter 2.
Searching
Google Scholar was searched with all of the 19 search string that were created. Google
was searched with 6 of the search string. Each of top 20 articles for each of the search
string, on both databases were screened (Section 3.2.4).

Database Search strings Hits
Google Scholar 19 686,287

Google 6 1,000,000 +

Table 3.3: �e number of search results returned, for all the search strings on each of the databases

3.2.4 Screening
�is stage is concerned with si�ing the title and abstracts of the articles identi�ed in
the identi�cation step of the SLR, and exporting the articles to the reference manager
(EndNote X8). �e screening procedure was divided into two stages to �nd articles more
e�ectively: title screening and abstract screening.

Title screening
A total of 517 articles were identi�ed through the search process. �ese were all eval-
uated on the basis of their title relative to the inclusion and exclusion criteria de�ned
for this SLR. For the title screening, IC1, IC2, IC3 and IC4, as well as EC1, and EC2 were
the criteria for inclusion and exclusion respectively. A total of 39 articles passed the title
screening, while 478 were excluded.
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Abstract screening
�e 39 articles that passed title screenings were accessed to read the abstract section of
the article. In this step all the inclusion criteria and EC1-EC3 were used. A total of 17
article passed the abstract screening, excluding 22 of the articles that passed the title
screening.

3.2.5 Eligibility

In the eligibility stage of SLR process, the goal is to reduce the set of works identi�ed,
to the �nal set to be be used as the resources for the synthesize and analysis. �is is
to be accomplished by screening the full-text version of articles and extracting relevant
information to be analyzed later in the process. �e inclusion and exclusion criteria are
the metric by which the articles are evaluated by. For this screening, all of the inclusion
and exclusion criteria were used to determine the relevance of articles. Out of the 17
articles that passed the abstract screening, 14 articles passed the full-text screening and
were included in the SLR. �ese 14 articles include the 8 articles that were included in
the search for other systematic literature reviews.

In total, 517 articles were examined. 39 out of the 517 articles passed the title screening.
17 out of the 39 articles that passed the title screening, passed the abstract screening. 14
articles were included in the study a�er passing the full-text screening step. �e �nal set
of included articles is presented in table 3.4.

3.3 Results

In this section the search questions are answered on the basis of the �ndings from the SLR.

SQ1 What machine learning methods are applied in HAR research?

MFA bin Abdullah et al. [2012] presents a comprehensive list of machine learning mod-
els used in HAR research. It is evident that most of the popular classi�ers have and are
being used in HAR research and systems. Based on this sample of studies, Decision Trees
appear to be used frequently inn research. �is is true for other classi�ers such as the
Support Vector Machine (SVM), Naive Bayes, and k-Nearest Neighbour as well.
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Study ID Title Authors
S1 Activity recognition using inertial sensing for healthcare, well-

being and sports applications: A survey
Akin Avci et al.

S2 A Survey on Human Activity Recognition using Wearable Sen-
sors

Oscar D. Lara et.al

S3 A Tutorial on Human Activity Recognition Using Body-Worn
Inertial Sensors

Andreas Bulling et al.

S4 A Study on Human Activity Recognition Using Accelerometer
Data from Smartphone

Akram Bayat et al.

S5 Activity identi�cation using body-mounted sensors��a re-
view of classi�cation techniques

Stephen J Preece et al.

S6 A Survey on Activity Detection and Classi�cation Using Wear-
able Sensors

Maria Cornacchia et al.

S7 UniMiB SHAR: A Dataset for Human Activity Recoignition Us-
ing Acceleration Data from Smartphones

Daniela Micucci et al.

S8 Accelerometry analysis of physical activity and sedentary be-
havior in older adults: a systematic review and data analysis

E. Gorman et al.

S9 Human Activity Recognition: Using Sensor Data of Smart-
phones and Smartwatches

Andreas Dengel et al.

S10 Centinela: A human activity recognition system based on ac-
celeration and vital sign dat

Oscar D. Lara et al.

S11 Activity Recognition using Cell Phone Accelerometers Jennifer R. Kwapisz et
al.

S12 Simple and Complex Activity Recognition through Smart
Phones

Stefan Dernbach et. al

S13 Classi�cation Algorithms in Human Activity Recognition us-
ing Smartphones

Mohd Fikri Azli bin Ab-
dullah et al.

S14 A comparison study of classi�er algorithms for mobile-
phone�s accelerometer based activity recognition

Media Anugerah Ayu
et al

Table 3.4: �e �nal list of selected works for the SLR.

24



3.3 Results

Figure 3.2: A comprehensive list of the machine learning models used in HAR research. Figure is
taken from bin Abdullah et al. [2012] and have been modi�ed.

SQ2 What accuracy do these methods achieve?

When assessing the accuracy of machine learning models across studies it is important
to consider that most studies use di�erent datasets, features, parameters, etc. Hence, an
absolute comparison between models across multiple datasets is unreliable. �erefore,
a comparison between models tested on the same dataset is more representative of the
di�erences in performance between models. Such a comparison is presented in Ismail
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et al. [2012], where 45 algorithms were tested on a dataset collected speci�cally for the
study, using an HTC Mini mobile phone. �e results of the most accurate out of the 45
classi�ers are shown in �gure 3.3.

Figure 3.3: A comparison of the accuracy achieved by di�erent machine learning methods trained
and tested on the same dataset. Figure is taken from Ismail et al. [2012]

Preece et al. [2009] presents a comprehensive overview of studies that compare di�erent
classi�ers, and their results. �is presents the opportunity to look at how two given
models can perform be�er or worse than the other depending on the study. �is is why
it is di�cult to compare models without training and testing them on the same datasets;
one classi�er might be be�er for a given set of features and data, and then perform worse
when used in conjunction with other data and features. Figure 3.4 lists the studies and
the results of the comparisons.
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Figure 3.4: An overview of studies comparing di�erent classi�ers. Figure is taken from Preece
et al. [2009]

An overview of the performance of di�erent classi�ers across multiple studies is pre-
sented in Avci et al.. �is overview is shown in �gure 3.5. �e results indicate that the
Decision Tree classi�er performs consistently well in the three studies that are listed. �e
results for Nearest Neighbour shows that the variations in the accuracy of a classi�er can
be signi�cant, achieving a 91 percent accuracy in one study and 49.7 percent in another.
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Figure 3.5: An overview of the performance of di�erent classi�ers across multiple studies. Figure
is taken from Avci et al.

Another study testing multiple classi�ers on the same dataset is Bayat et al. [2014]. �e
study test 6 di�erent classi�ers. �e Multilayer perceptron classi�er achieves the highest
accuracy of the 6 models when the smartphone is placed both in the hand and in the
pocket of the subject. �e random forest classi�er comes in at a strong second place if
averaging the results of the two experiments, edging out the SVM by a slight margin.
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Figure 3.6: An overview of the accuracies of 6 di�erent classi�ers commonly used for HAR pur-
posed, tested on the same dataset. Figure is taken from Bayat et al. [2014]

SQ3 What ML method have the highest accuracy?

�ere might not be one true answer to this questions. It depends on a multitude of fac-
tors, as discussed in SQ2. �rough the research identi�ed and included in this SLR we can
however present some suggestion to the answer of this question. Looking at �gure 3.4 we
can see that the decision tree classi�er performs be�er than both k-Nearest Neighbour
(kNN) and Naive Bayes in both the Bao and Intille study, as well as the Maurer study.
�is might indicate that the decision tree classi�er is a be�er classi�er for HAR purpose
than the two. �e same than be said about the result in 3.5 However, this is presumable
not always the case. As seen in the Ravi study in �gure 3.4, the Naive Bayes classi�er per-
forms signi�cantly be�er than the decision tree classi�er. �e highest accuracy achieved
across all the studies comparing di�erent classi�ers is 95 percent. �is was achieved in
the Lester study using binary classi�ers. �is does however not indicate that binary clas-
si�ers are the most accurate classi�ers. In �gure 3.5, Arti�cial Neural Network (ANN)
delivered the highest accuracy of all the classi�ers with 95 percent. �is does not mean
that it is the best classi�er for HAR purposes. To evaluate such a claim, the other classi-
�ers would have to be tested on the same data, and in the same way.

SQ4 What publicly available datasets are used in HAR research?

Datasets are either publicly available or not. Using publicly available dataset can be e�-
cient at minimizing the bias of the system by separating the development of the system
from the creation of the dataset. Li�le research was found that gives an overview of the
datasets that are publicly available. In fact, through this SLR only one such article was
found: Micucci et al. [2017]. �e article presents the publicly available datasets contain-
ing samples from smartphone sensors. �e overview is displayed in �gure 3.7).
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Figure 3.7: Publicly available datasets containing samples from smartphone sensors. Figure taken
from Micucci et al. [2017]

Figure 3.8: Commonly used sensor for HAR and their applications Bulling et al. [2014]
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�e table lists 14 di�erent datasets, but as stated in the article, the MobiAct and UCI
HAPT are updated versions of MobiFall and UCI HAR. Hence, there are 12 unique pub-
licly available datasets in the list.

Readers interested in a survey on video datasets for activity recognition should explore
Chaquet et al. [2013].

SQ4 What devices or sensors are used to collect these dataset?

�e device type used to collect the datasets in �gure 3.7 is smartphones. �e accelerom-
eter embedded in the phones were used.

SQ6 How many subjects are typically used to collect data in these dataset?

�e number of subjects used for collecting data varies greatly as seen in �gure 3.7. When
excluding the MobiFall and UCI HAR datasets, the average number of subjects across
the 12 studies is 19 subjects. �is is close to the number of subjects in the TFL dataset, in
which 16 out of the 22 subjects are used in this thesis. �e dataset with the fewest number
of subjects is the Gravity dataset, using only two subject for data collection. MobiAct is
the largest of the datasets in terms of number of subjects. It uses 57 subjects, almost twice
as many as the datasets with the second largest number of subjects: the UCI HAPT and
the UniMiB SHAR datasets. Both datasets uses a total of 30 subjects for data collection.
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Figure 3.1: PRISMA �ow diagram for the SLR, detailing the number of articles at each step of the
process
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Chapter 4
Datasets

�is chapter presents the two datasets used in the experiments presented in chapter 6,
the Trondheim free living (TFL) and the sensor no-wear time (SNT) datasets.

4.1 �e Trondheim Free Living Dataset (TFL)

�e Trondheim Free Living (TFL) dataset consists of measurements on 22 subjects in an
out-of-lab environment. �is dataset was �rst used in Larsen and Vågeskar [2016], then
Vågeskar [2017] and later in Reinsve [2017]. �is section presents the equipment used to
collect data, the setup and the collection process.

4.1.1 Equipment and Setup

�e sensor used for measuring the performed activities was the Axivity AX3 accelerom-
eter, pictured in �gure 4.1. It measures proper acceleration in three axis. �e sensors
weighs only 11 grams and its dimensions are: 23 x 32.5 x 7.6 mm1. �e recording fre-
quency of the sensors were set to 100 Hz. �e data was collected using two di�erent
setups: Subject 001 through subject 005 wore two sensors: one on the thigh, and and
one on the upper back. Subject 006 through subject 022 wore a total of four sensors, one
on the thigh, upper back, lower back, and le� or right wrist. �e lower back and thigh
placements are illustrated in �gure 4.1.1.

A Go Pro camera was used to capture video of the activities carried out in the out-of-lab
environment. It was placed around the chest of the subjects and was pointed downwards
towards the feet.

1h�ps://axivity.com/product/ax3
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Figure 4.1: �e Axivity AX3 accelerometer

(a) Lower back

(b) �igh

Figure 4.2: �e sensor placements on the subjects

4.1.2 Data collection process

�e recording were started at St. Olavs hospital in Trondheim, where the subjects were
��ed with the two accelerometers and the chest mounted camera. �e subjects wore
the camera and accelerometers for approximately two hours while conducting a set of
activities. �e camera recordings served as the basis for labeling the data for the �rst
two hours. �e labelling of the activity data was performed manually at the hospital on
a frame-by-frame basis.
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Figure 4.3: �e chest-mounted camera

4.1.3 Subjects
�e subject group consisted of 22 subjects, all them adults. 15 of them male and 7 female.
�e average age of the subjects was 40 years. �e subject IDs range from 001 to 022,
excluding ID 007 which was removed because of a sensor malfunction. Figure 4.4 presents
a bar chart with the activity distribution over all the subjects with ID in the range 006-022
(excluding subject 007). In Appendix B a bar chart of the activity distribution for each
subject in the dataset is presented for reference. Only subject 006 through subject 022,
excluding subject 007, was used in this thesis because of the di�erence in back sensor
placement compared to the remaining subjects.

4.2 �e Sensor No-wear Time Dataset (SNT)
�e Sensor No-wear Time (SNT) dataset was created for the purpose of this thesis, to
explore the possibility of using temperature readings from the AX3 to detect instances
were a sensor is taken o� (and possibly put back on again) during the recording of data.

4.2.1 Equipment and Setup
�e data was collected using the same AX3 accelerometer as used to collect the TFL
data. �e AX3 includes a on-board temperature sensor, measuring the internal electron-
ics board temperature. �is sensor is the Microchip MCP9700 2, depicted in �gure 4.5. �e
MCP9700 is capable of accurately measuring temperatures between -40C and +150C3�e
temperature is used to calibrate the accelerometer signal of the AX3, and is not a di-
rect measurement of skin temperature. It was however expected that the temperature
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Figure 4.4: �e activity distribution across all subjects

measured by the sensors would strongly correlate with the skin temperature of the sub-
ject wearing it. �e sensor was placed on the lower back and on the thigh in the same
positions as shown in �gure 4.1.1.

4.2.2 Data collection process

�e data was collected at HUNT research center in Trondheim, Norway in April of 2018.
�e data was collected using two di�erent protocols: P1 and P2. Both subjects did two
recordings, one for each protocol. �is resulted in four recordings in total, each with a
sensor recording for both the back and thigh sensor.

Protocol 1
�is protocol consisted of 4 steps:

3h�ps://www.microchip.com/wwwproducts/en/en022289
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4.2 �e Sensor No-wear Time Dataset (SNT)

Figure 4.5: �e Microchip MCP9700 temperature sensor

Step 1 Put the two sensor on, one on the thigh and one on the back, and do three claps
(with the hands). Wear both sensors for about an hour while being somewhat
active.

Step 2 Take o� the back sensor and do three claps. Let the back sensor lie on a table
for about an hour.

Step 3 Put on the back sensor, take o� the thigh sensor, and do three claps. Let the
thigh sensor lie on a table for about an hour.

Step 4 Take o� both sensor, do three claps.

Protocol 2
�is protocol consisted of 6 steps:
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Step 1 Put the two sensor on, one on the thigh and one on the back, and do three claps
(with the hands). Wear both sensors for about an hour while being somewhat
active.

Step 2 Take o� the back sensor and do three claps. Let the back sensor lie on a table
for about an hour.

Step 3 Do three claps, put the back sensor back on, with the opposite device orien-
tation. No de�ned duration before applying next step.

Step 4 Take o� the thigh sensor and do three claps. Let the thigh sensor lie on a table
for about an hour.

Step 5 Put the thigh sensor back on, with the opposite device orientation. No de�ned
duration before applying next step.

Step 6 Take o� both sensors, do three claps.

4.2.3 Subjects

�e SNT dataset contains recordings from two male subjects, both adult. �e data was
collected by Vegar Rangul and Atle Kongsvold at the HUNT resarch center. �e dataset
is in its current form just a proof-of-concept. �e dataset is expected to be extended in
the future.

4.3 Annotation process

With two protocols and two subjects, four sets of recording were made. For each of the
four recordings, a text �le with the timestamps for the changes in sensor con�gurations
were created. �e temperature readings were extracted with the cwa-convert4program
(provided by Axivity); which converts a cwa �le into a csv. Based on the timestamps
provided and the temperature readings (CSVs, a label �le was created. �ree labels were
de�ned: one for both sensors on (A for all sensors), one for thigh sensor on (T for thigh),
and one for back sensor on (B for back). �e only instances where both sensors are o� are
at the end of the recordings where they were taken o� the subject. A label for no sensor
on was experimented with, but not included for the �nal experiment in this thesis. �e
reason for this is discussed in Section 7.2.3.

4h�ps://github.com/digitalinteraction/openmovement/blob/master/So�ware/AX3/cwa-convert/c/README.md
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4.3 Annotation process

Figure 4.6: Distribution of sensor con�gurations for the entire SNT dataset.
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Chapter 5
Methodology

�is chapter presents the methodology used for the experiments found in chapter 6.
Two of the three experiments performed in this thesis use the HAR system presented
in Vågeskar [2017]. Hence, the explanation will be similar to the methodology presented
in Vågeskar [2017] albeit less detailed. For a more detailed and comprehensive presen-
tation of the design of the HAR system see Vågeskar [2017]. �e same methods are also
used for most aspects of the SNT classi�er, hence both systems will be discussed in each
of the steps. �e explanation in this chapter will follow the steps of the the Activity
Recognition Chain presented in section 2.1.2.

5.1 Data Acquisition
�e TFL and SNT datasets used in this work are both presented in chapter 4. �is section
presents the process of how the raw data is process in order to be used bu the HAR system
in this work. For a detailed description of the process see Vågeskar [2017]

5.1.1 Sensor Synchronization
�e AX3 sensor captures data in the AX3 continuous wave accelerometery (CWA for-
mat). For the TFL dataset the Axivitys OMConvert 1so�ware was used to convert the
CWA �les into WAV �les. Further, for the purpose of synchronizing the recording of the
two sensors, the Timesync so�ware package was used. Timesync takes two WAV �les
as input and synchronizes them based on the magnitudes of the signals. A master and
slave �le can be speci�ed by the script’s user. �e output of the Timesync so�ware is
a seven column CSV with three columns for each of the synchronized sensors signals.
�e columns contain the acceleration along the X, Y, and Z axes in g0s in �oating point
numbers Vågeskar [2017]. In addition to the synchronizing of the senors, a synchroniz-
ing between the video annotations and the sensors have to be performed. �is process is
described in its entirety in Vågeskar [2017]. �is process was already completed for the
TFL dataset before being applied in this thesis. �is was not the case for the SNT dataset,
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Figure 5.1: �e Activity Recognition Chain. Figure from Vågeskar [2017]

where the �les were provided in the CWA format. To extract the temperature readings
of the sensor Axivity’s cwa-convert program was used. �is extracted the temperature
readings of the two sensors and converted the two CWA �les into two comma-separated
values (CSV) �les with two columns: the time stamp of each temperature sample, and the
corresponding temperature in ADC units. �e two temperature recordings were not syn-
chronized because of di�culties with ge�ing temperature readings of the sensor when
using the OMConvert and Timesync so�ware packages. While labeling the SNT dataset,
the e�ect of not having synchronized the sensors was evident. It was discovered that the
time stamps between the two sensors and their recordings could be o� by several min-
utes for samples later in the recording. To deal with this the following labeling approach
was used:

5.2 Segmentation of the data

�e segmentation of the data in the CSVs into windows of a given length, was done for
both the TFL and the SNT dataset. For the TFL dataset a window length of 3.0 seconds
was used. �is length was chosen based on the the evaluation on window lengths in
Vågeskar [2017], and for the results of this thesis’ experiments related to increasing the
e�ectiveness of the HAR system in Vågeskar [2017], to be comparable with each other.
For the SNT dataset multiple window lengths were experimented with. �e SNT data was

1h�ps://github.com/digitalinteraction/openmovement/tree/master/So�ware/AX3/omconvert
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5.3 Relabeling and removal of activities

collected with a sampling frequency of 50 Hz for the acceleration sensor. A temperature
reading was extracted for every 120 acceleration sample. �is meant that, on average,
one temperature reading was extracted for every 2.4 second. �e rate of change for the
the temperature measurements is obviously much slower than that of the acceleration
measurements. �erefore the window length had to be substantially longer than that
used for the HAR system with the TFL data. Window lengths of 1, 2, 3, and 4 minutes
were experimented with. A window length of 30 second was also experimented with-
A window length of 2 minutes consistently performed be�er than all the others. With 2
minute windows, each window contains 50 temperature readings.

5.3 Relabeling and removal of activities

Prior to modelling and classi�cation some windows with certain activities were either
relabeled or removed. �e removed activities are the same ones that were removed in
both Hessen and Tessem [2016] and Vågeskar [2017]. �ese were removed for the same
reasons as in them. �e 4 removed activities are: shu�ing, transitions, unde�ned activity,
and non-vigorous activity.

Figure 5.2: Activities that were relabeled. Figure from Vågeskar [2017]

5.4 Feature calculation

�e features used by the HAR classi�er were listed in �gure 2.10 and 2.11. �e fea-
tures used in the SNT classi�er are listed in table5.1. For both classi�ers, features were
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Figure 5.3: Activities that were relabeled. Figure from Vågeskar [2017]

extracted separately from each sensor. For the HAR classi�er all of the 20 time and fre-
quency domain features were calculated. �ese unique features ”produced” at total of 138
distinct features inpu�ed to be used in the modelling and classi�cation. �e 4 features
for each of the sensors used in the SNT modelling and classi�cation were also extracted
separately for each of the two sensors.

In some instance the feature calculations of the HAR classi�er would result in unde�ned
or in�nite values. �e a�ected features were the spectral entropy, spectral centroid and,
correlation features. �e system developed in ? dealt with these instances by replacing
the values with 0. �is was never the case with the feature calculations of the SNT clas-
si�er. None of the features in 5.1 produced such values.

�e feature calculation in the HAR systems also deals with sensors that are wrongly at-
tached on subjects (Vågeskar [2017]). �is is the case when a sensor is a�ached upside
down, making the values along one or more of the senor’s axes be opposite of the ex-
pected. �e systems deals with this by removing the sign o� all sensor values. �is is
applied only to the �nal output of the feature calculations for both training and test-
ing. �is system signi�cantly increases the accuracy on subjects wearing sensors that
are oriented wrongly (Vågeskar [2017])
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5.5 Random Forest Classi�er as the choice of classi�er

Name De�nition Description
Max max(x) �e highest value in a sequence.
Min min(x) �e lowest value in a sequence.

Max-min delta max(x) - min(x) �e di�erence between the maximum and minimum value in a sequence.
First-last delta last(x) - �rst(x) �e di�erence between the last and �rst value in a sequence

Table 5.1: �e features used in the SNT system. �e features are time domain features calculated
from the temperature readings of the sensors.

5.5 Random Forest Classi�er as the choice of classi�er
�e RFC are used for all three experiment in chapter 6. �e random forest classi�er was
the obvious choice for the two experiment related to increasing the e�ectiveness of the
HAR system in Vågeskar [2017], which used this classi�er. For the SNT experiment it
was decided that a RFC was to be used for simplicity; using similar classi�ers made it
easier and quicker to implement and test the SNT classi�er.

Scikit-learn’s random forest classi�er implementation was used for the implementation
of both the HAR and SNT classi�ers. 2

5.5.1 Parameters
A few parameters of the RFC were set di�erently than their default values. For the HAR
classi�er the following parameters were set:

• Number of trees (n estimators): 50. �is number of trees was set to match
the se�ings of the RFC in Vågeskar [2017]. �is number of trees was selected
in Vågeskar [2017] because they provided a good balance between accuracy and
training time. Using signi�cantly more threes reportedly resulted in very slight
changes in accuracy while taking signi�cantly longer to train.

• Class weight (class weight): ”balanced”. �is parameter determines the class
weights of the classes. �e ”balanced” option gives the classes equal weight. �is
is the results in the same e�ect as oversampling the dataset until an equal class
distribution is achieved Vågeskar [2017].

For the RFC classi�er used for the purpose of SNT detection and sensor con�guration
classi�cation, the following parameters were set:

• Number of trees(n estimators): 100. Training time for the SNT system was sig-
ni�cantly shorter than for the HAR system. �erefore, the number of trees making
up the model were increased. �is resulted in a slight increase in accuracy over
using 50 tees.

• Class weight (class weight): ”balanced”. �is was used on the basis of that of
the HAR classi�er. �e sensor con�gurations in the SNT dataset are not evenly
distributed as show in in �gure 4.6.

2h�p://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassi�er.html
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Chapter 5. Methodology

5.6 Feature importances
To evaluate the the importance of the features used in the random forest model, scikit-
learns ”feature importances ” a�ribute of the RFC was used3. �e feature importance
measures the relative importance of each feature on the prediction. Information on the
implementation of the feature importance calculation in scikit-learn was hard to �nd. It is
indicated that the framework use the gini importance, which is de�ned as total decrease
in node impurity weighted by the probability of reaching that node, averaged over all
the trees of the ensemble4. �e higher the feature importance of a feature, the more
important the feature.

5.7 Training the models
A total of 138 di�erent RFC was built using di�erent number of features. �e number of
features included in the model is called the feature count of the model. �e model with
feature count 1 was trained on data containing exclusively the feature with the high-
est feature importance. �e model with feature count 2 was trained with the two most
important features, etc. �is process was repeated for all 138 di�erent feature counts.
Segmentation and feature calculation of the data was done once with all the 138 features
included, but before training each of the models, the corresponding n features with the
highest feature importance of each feature count was extracted from this set. �is was
to reduce the testing time of the system.

5.8 Testingwith subject-wise and record-wise cross-validation
To assess the models ability to generalize beyond the observed training data, the testing of
the models were done with subject- and record-wise cross-validation. �is means that for
each record or subject in the dataset the following was performed: exclude the recording
or subject from being included in the training data, use this to test the model. Use all the
remanding records or subjects to train the model. When �nished training the model, run
the predictions on the excluded data and measure the performance of the classi�er. �en,
a�er completing this process, average the performance values over all the tests based on
the number of predictions in each of the tests.

3h�p://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassi�er.html
4h�ps://medium.com/thearti�cialimpostor/featureimportancemeasuresfortreemodelsparti47f187c1a2c3
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Chapter 6
Experiments

�is chapter presents the experiments that were performed. �e goal of the experiments
was to increase the e�ectiveness of the HAR system presented in Vågeskar [2017] and
to develop a system capable of detecting sensor no-wear time by classifying the sensor
con�guration of the sensors a�ached to a subject.

6.1 Selecting features based on feature importances and
model accuracy

�e RFC model presented in Vågeskar [2017] used 13 time domain features and 7 fre-
quency domain features. �e 20 unique features were represented as 69 input features
to the RFC, for each of the two sensors. In total, 138 features were used to both train the
model and predict. �e reason for there being more input features to the classi�er than
unique features is that some features are calculated for all three axis of the acceleration
signal, for both sensors. �is can result in 6 features being created from one unique fea-
ture. From this point onward ”features” refers to the 138 features inpu�ed to the model
and ”unique features” to the 20 time and frequency domain features, unless otherwise
stated. In Reinsve [2017] it was shown that many of 138 features were not necessary
to maintain the accuracy presented in Vågeskar [2017]. It also showed that the feature
calculation step in the activity recognition chain was the most time consuming of the
steps. �erefore, reducing the number of unique features to calculate would result in
signi�cant time saving for the HAR system when viewed as a whole. One key factor had
to be considered while doing so: maintain a similar degree of accuracy as that of 94.2
percent Vågeskar [2017]. �is experiment consists of three steps: extracting the feature
importances of all the 138 features, �nding which of the unique features the 138 features
and their indexes map to, and lastly, evaluating the accuracy of 138 models trained on
1-138 of the most important features. �e goal of the experiment was to �nd out how
many, and which features were su�cient to achieve an accuracy of 90 and 94 percent.
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6.1.1 Setup

�is experiment uses the HAR system presented in Vågeskar [2017] with the TFL dataset.
Scikit-learn’s feature importances1was used to extract the feature importances for the
138 features. 138 ordinary RFC classi�ers are trained on the TFL dataset using di�erent
number of features. �e �rst model is trained on the single most important feature only,
as determined by the feature importances score. �e second model is trained exclusively
on the two most important features. �is process continued up until a model trained on
all the 138 features was created. All of the classi�ers were trained on all the subjects in
the TFL dataset using subject-wise cross validation. �e testing was repeated 3 times and
the scores were averaged.

6.1.2 Results

Figure 6.1 shows the feature importances for the 69 features of the lower back sensor
sorted by their importance. �e x-axis is the ranking of the feature in terms of feature
importance. �e feature with the highest feature importance is at index 1. �e x-axis
value does not re�ect the index of the feature when passed to the RFC, nor which of the
unique features it corresponds to. Figure 6.2 present the feature importances for the thigh
sensor features.

Figure 6.1: Feature importances of the features derived from the lower back accelerometer signal.

1h�p://scikit-learn.org/stable/auto examples/ensemble/plot forest importances.html
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6.1 Selecting features based on feature importances and model accuracy

Figure 6.2: Feature importances of the features derived from the thigh accelerometer signal.

In �gure 6.3 the feature importances of both sensors are show on top of each other. �e
four most important features calculated from the lower back sensor are all more impor-
tant than any of the features derived from the thigh sensor.

Figure 6.3: Feature importances of features for both sensors, presented on top of each other for
be�er comparison. �e x-axis values indicate the index of the feature when sorted based on feature
importance. �is is not the index of the feature when passed to the RFC.

�e accuracies of the 138 di�erent models trained with di�erent number of the most
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important features are shown in �gure 6.4.

Figure 6.4: �e overall accuracy for subject-wise cross validation for all the feature count combi-
nations from 1 to 138 features. �e accuracy increases rapidly when adding the 5 most important
features. �e model with the 5 most important features is is the �rst model to reach an accuracy
of 90 percent.

Figure 6.5 shows the confusion matrix for the default model using all 138 features. �is
model has an accuracy of 94.1 percent.
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Figure 6.5: Confusion matrix for the RFC trained with all the 138 features.

�e confusion matrices for the RFCs with 5 and 27 of the most important features are
shown in �gure 6.6 and 6.7 respectively.

Figure 6.6: Confusion matrix for the RFC trained with the 5 most important features.
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Figure 6.7: Confusion matrix for the RFC trained with the 27 most important features

Figure 6.8 present the accuracies of the models with 1 to 10 most important features. �e
accuracy rises sharply until adding the 6th most important feature. �e classi�er with 5
features obtains 90.0 percent accuracy. �e classi�er using the 6 most important features
achieve 92.0 percent accuracy.

Figure 6.8: �e overall accuracy for subject-wise cross validation for all the feature count com-
binations from 1 to 10 features. Adding additional features a�er the 5 most important features
produce incremental changes in the accuracy. �e model trained on 5 features is the �rst model to
reach an accuracy 90 percent. It is worth noting that when adding the 6th most important feature
to the model, an accuracy of 92 percent was achieved
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Figure 6.9: �e overall accuracy for subject-wise cross validation for all the feature count combi-
nations from 15 to 50 features. �e model trained on the 27 most important features is the �rst to
achieve 94 percent accuracy. However, this accuracy is not achieved consistently until the 40 to 50
most important features are used

In �gure 6.9 the accuracies of the models with the 15 to 50 most important features are
illustrated. �e model using 27 features delivers an accuracy of 94.0 percent. �e accuracy
stabilizes at this level of accuracy around the 40-50 features range.

5 features 27 features
Accuracy Accuracy

0.902 0.940
Activity Precision Speci�city Recall F 1 Precision Speci�city Recall F 1

Bending 0.407 0.996 0.157 0.227 0.659 0.998 0.195 0.301
Cycling 0.741 0.989 0.521 0.612 0.952 0.997 0.904 0.927
Lying 0.962 0.997 0.930 0.945 0.962 0.997 0.933 0.947

Running 0.931 0.999 0.901 0.915 0.949 1.000 0.908 0.928
Si�ing 0.950 0.937 0.972 0.961 0.950 0.937 0.978 0.964

Standing 0.848 0.975 0.869 0.856 0.904 0.985 0.900 0.902
Walking 0.821 0.963 0.896 0.857 0.933 0.987 0.945 0.939

Table 6.1: �ality metrics table for the performance of the activity recognition classi�ers using 5
and 27 features, tested with subject-wise cross validation on the TFL dataset
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138 features
Accuracy

0.942
Activity Precision Speci�city Recall F 1

Bending 0.741 0.999 0.209 0.326
Cycling 0.974 0.998 0.925 0.949
Lying 0.962 0.997 0.907 0.934

Running 0.958 1.000 0.870 0.912
Si�ing 0.947 0.933 0.979 0.963

Standing 0.908 0.985 0.902 0.905
Walking 0.936 0.988 0.951 0.944

Table 6.2: �ality metrics table for performance of the activity recognition classi�er with 138
features, tested with subject-wise cross-validation on the TFL dataset.

6.2 Increasing e�ciency of the HAR system by calcu-
lating fewer features

�is experiment builds on the �ndings of the experiment in section 6.1. Having shown
that a signi�cant number of features can be excluded in the feature calculation step while
maintaining the accuracy, the next step was to assess the potential increase in e�ective-
ness of the HAR system. �e motivation behind increasing the e�ciency is obvious; the
HUNT 4 dataset is expected to consist of about 50 000 subjects with PA measurements.
Predicting the activities of all the subjects would take considerable time with the current
number of features. Table 6.3 shows the time statistics of the di�erent steps of the HAR
system for three di�erent data lengths, using all of the 138 features.

Number
of subjects

Dataset Time (m) Model train-
ing (s)

Windows ex-
traction

Feature calcu-
lation

Prediction

1 TFL 139 13.32 0.94s 21.97s 0.31s
1 HUNT4 8,640 13.32 58s 23m 19s

50,000 HUNT4 432,000,000 13.32 34d 790d 11d

Table 6.3: Time statistics for the HAR system using all 138 features with a sampling frequency of
100 Hz and a window length of 3 second. Times are stated in s for seconds, m for minutes, and
d for days. Training the model is done once, and remains the same regardless of the number of
subjects to be analyzed. Window extraction, feature calculation, and prediction scale linearly with
the data length. Feature calculation take the most time of all the steps. Calculating the features for
the 50,000 subjects that are expected to participate in the HUNT4 study wearing the accelerometers
would take 790 days running on a single thread on a reasonably fast computer. Subject 006 was
used as the testing subject. All the other times are extrapolated from the the time it took for the
system to classify the activities of this subject.
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6.2.1 Setup

�is experiment used the same dataset as in the experiment in 6.1: the TFL dataset. 138
models were again created, using 1 to 138 features, starting with the most important
feature. �e time it took to complete the model training, window extraction, feature
calculation, and prediction steps in the HAR system were measured. Subject 006 in the
TFL dataset was used as test subject for measuring the time. �e testing was repeated
three times and the results were averaged over all three runs.

6.2.2 Results

Figure 6.10 show the time spent executing the four step of the HAR system for subject
006.

Figure 6.10: �e time usage for the 4 steps in the HAR system for predicting the activities of
subject 006 in the TFL dataset. �e time for each step and feature count is averaged over three
iterations.

Figure 6.11 combine the accuracy plot in �gure 6.4 with the time statistics for the feature
calculation step in �gure 6.10.
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Figure 6.11: Combined plot with both accuracy and feature calculation time for models with fea-
ture count 1 to 138. �e accuracy is a result of a subject-wise cross validation on the 16 subjects
used in the TFL dataset (subject 006 and subjects 008-022). �e feature calculation time is extracted
from the predicting the activities of subject 006 in the TFL dataset.

Figure 6.12: Combined plot with both accuracy and feature calculation time for models with fea-
ture count 1 to 138. �e accuracy is a result of a subject-wise cross validation on the 16 subjects
used in the TFL dataset (subject 006 and subjects 008-022). �e feature calculation time is extracted
from the predicting the activities of subject 006 in the TFL dataset.
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Figure 6.13: Combined plot with both accuracy and feature calculation time for models with fea-
ture count 1 to 138. �e accuracy is a result of a subject-wise cross validation on the 16 subjects
used in the TFL dataset (subject 006 and subjects 008-022). �e feature calculation time is extracted
from the predicting the activities of subject 006 in the TFL dataset.

�e results of this experiment and the experiment in 6.1 was put together to get a be�er
understanding of the optimal accuracy and.

6.3 No-wear time detection and sensor con�guration
classi�cation by the use of sensor temperature read-
ings

�ere are generally three instances where data is not recorded or obtained as intended:
missing recordings, records with errors, and records containing sensor no-wear time
samples where either one or both of the sensors have been detached during recording.
Missing records are the easiest to deal with. If both records are missing, the classi�er
is unable to make any predictions. If either the back or thigh recording is missing, the
HAR system can use sensor-speci�c models for classi�cation. To produce an estimate
for the number of subject with missing records, 4304 unique subject records from the
HUNT4 data were looked at. Figure 6.14 presents the results. �ere are multiple reasons
for why sensor recordings are missing: some sensor stop working during recordings, for
some unknown reason, making it impossible to extract the collected data. Some sensors
have even started burning when they were connected to a computer, a�er having com-
pleted a number of subject recording. �is has happened because of the glue around the
micro-USB has caught �re when plugged in to charge.
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Figure 6.14: �e frequency of records missing for the lower back sensor (B) and thigh sensor (T)
in a sample size of 4304 subjects in the HUNT4 dataset. Out of the 4304 subjects, 446 subjects have
one missing sensor recording. 196 are missing the lower back sensor, and 250 are missing the thigh
sensor.

In addition to missing sensor records, there are instances where the recording contain
obvious error. For example, a sensor might have a malfunction during the recording,
but it was possible to extract the data from it. �ese instances are the hardest to deal
with and o�en have to be manually examined before being either discarded or modi�ed.
Lastly, there’s the instances with sensor no-wear time. Sensor have been reported to have
fallen o� during recordings of data for the HUNT4 study. Some of the participants in the
study might also decide to take one or both of the sensors o� for any particular reason.
Some subjects might try to rea�ach the sensor(s), others might not. To get an idea of
the extent of sensor no-wear time in the HUNT4 data collected thus far, a subset of the
data was looked at. For each of the subjects wearing accelerometers in the HUNT4 study,
an activity report is generated by the HAR system. Based on these reports we might be
able to understand the frequency of no-wear time in the HUNT4 dataset. Figure 6.15 and
6.16 show the activity report of two subjects that have participated i the HUNT4 study.
�e subject in �gure 6.15 looks to have been very active, with a lot of short walks during
the daytime (green), while the subject in �gure 6.16 seem to have been si�ing more still
(light blue), with some longer walks in the middle of the day. Both �gure 6.15 and 6.16
looks like the way they are expected to look with no, or very li�le, sensor no-wear time.
�is means that both sensors have been a�ached for most or all of the duration of the
recording. Figure 6.17 and 6.18 however, illustrate how recordings containing sensor no-
wear time are expected to look. �e sensors a�ached to a subject during a recording
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is from now one referred to as the sensor con�guration of the subject. �e goal of this
experiment is to develop a sensor con�guration classi�er, which is tasked with assigning
one of the three labels (A, B, T) to windows of data from the recordings. ”A” indicates
that both sensors are a�ached to the subject, ”B” indicated that the back sensor (only) is
a�ached to the subject, and ”T” which indicates that the thigh sensor (only) is a�ached
to the subject. No-wear time is predicted by the classi�er for any window not assigned
label A.

Figure 6.15: An example activity report for a subject in the HUNT4 dataset (probably) not con-
taining no-wear time, except for day 9 and the evening of day 8.
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Figure 6.16: An example activity report for a subject in the HUNT4 dataset (not likely) containing
no-wear time for the �rst 7 days. �e last two days of the recording the sensors are clearly not
a�ached, hence there is sensor no-wear time.

Figure 6.17: An example activity report for a subject in the HUNT4 dataset (very likely) containing
no-wear time. �e no-wear time looks to start on the morning of the 4th day of recording
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Figure 6.18: An example activity report from a subject in the HUNT4 dataset (very likely) con-
taining no-wear time for day 4 to 9.

In looking for a reasonable way to detect no-wear time of sensors, the idea of utilizing the
temperature sensor in the AX3 accelerometer came up. �e idea behind this is that the
skin temperature on both the back and thigh should be fairly similar. So if both sensors
are a�ached, they temperature di�erence between the two will be insigni�cant. And if
one of the senors are detached, the detached sensor will experience a signi�cantly larger
change in temperature than the sensor that is a�ached.

6.3.1 Setup

�e dataset used for this experiment was the SNT dataset presented in section 4.2. �e
5 features listed in 5.1 were extracted for both the sensors separately before being com-
bined. An ordinary RFC was used with the parameters de�ned as in section 5.5.1. �e
testing was performed with a subject-wise cross-validation of the four recordings in the
SNT dataset, holding out one of the recordings while training on the other three record-
ings, and repeating this process for each recording in the dataset.

6.3.2 Results

�e SNT classi�er achieved an accuracy of 95.6 percent accuracy on average when clas-
sifying the four recordings in the SNT dataset. A confusion matrix of the results is pre-
sented in �gure 6.19. Table 6.4 shows the performance of the classi�er in terms of the
quality metrics introduced in 2.7.
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Figure 6.19: Confusion matrix for the record-wise cross-validation test on the SNT dataset

Sensor on the subject Precision Speci�city Recall F 1

All (A) 0.954 0.964 0.954 0.954
Back (B) 0.960 0.983 0.961 0.961
�igh (T) 0.952 0.984 0.952 0.952

Table 6.4: �ality metrics table for the results of subject-wise cross-validation testing on the SNT
dataset with 2 minute windows.
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Discussion

7.1 Systematic Literature Review

7.1.1 Strength and limitations of the literature
�e literature used for the literature review were all of acceptable quality. Most of the
papers were fairly recent, and presented goals, results, and discussions clearly. A signi�-
cant number of articles were found covering di�erent machine learning methods in HAR.
�is made it possible to extract information about classi�ers across papers, and that have
been applied to di�erent datasets, as well as comparisons using the same training and
testing data.

A limitation of the literature was the lack of articles found on the topic of publicly avail-
able datasets for accelerometer based HAR. �ere was however substantial amounts of
literature and surveys on the topic of video-based datasets for HAR purposes. �ese were
not included in because of the di�erence in domains. �ere should however be created
similar survey for accelerometer based HAR systems. �is would bene�t researchers by
making it easier to select datasets and implement new models.

7.1.2 Limitations of the review
�ere are multiple limitations in how this SLR was carried out. Using Google Scholar
as the only academic search engine in the process, might have limited the range of doc-
uments that were found. Furthermore, in the process of creating search questions and
terms, there is no telling what the optimal combination of search terms are. �erefore,
it is impossible to guarantee that all relevant studies in the respective databases were
included in the search results. Furthermore,the �ltering of the articles, through multiple
steps, was performed by a single person; the author of this thesis. �erefore, the authors
bias will be re�ected in the works that were selected as the basis for the research synthe-
sis. �is creates room for error and misjudgments, which would likely be less prevalent
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with more people involved in the process.

Because of time constraints, only the top 20 articles in the search results were exam-
ined in any form. Clearly there will always be time constraints, but there might have
been articles of interest outside of the top 20 relevant articles returned by the search en-
gine.

7.2 Experiments discussion

�e three experiments performed in chapter 6 were aiming to reach goal 2 and 3 of this
thesis: increasing the e�ectiveness of the HAR system presented in Vågeskar [2017], and
developing a SNT classi�er able to detect instances of sensor no-wear time by classifying
sensor-con�gurations for recordings in the SNT dataset. �e two experiments in section
6.1 and 6.2 both aimed to achieve goal 2. �e experiment in section 6.2 builds on the
results of the experiment in section 6.1, therefore they must bee seen in conjunction.

7.2.1 Selecting features based on feature importances and model
accuracy

�e �rst step towards achieving goal 2 of the thesis was performed in section 6.1. �e
feature importances for the lower back and thigh sensors were presented in �gure 6.1
and 6.2, respectively. Looking at the feature importances it is clear that many of features
are less important than others. �e 4 features with the highest feature importance in
�gure 6.1 have signi�cantly higher importances than the rest of the features. �is is less
pronounced in �gure 6.1, which depicts the feature importances for the thigh sensor.
�ere, a more linear decrease in feature importance towards the right of the �gure is
evident. Figure 6.3 show the feature importance fort both sensor on top of each other.
It is interesting to see that the four features with the highest feature importances are
all from the lower back sensor. �is indicates that the this sensor is more important
when classifying the 7 activities with the TFL dataset. In fact, as seen in the accuracy
plot in �gure 6.8, the model using the 4 most important features (meaning that only
features from the back sensor was used) achieved an accuracy slightly above 70 percent.
Moving beyond the four most important features, the di�erence in feature importances
between the two sensors decrease. In �gure 6.4 the accuracy for all the 138 models that
were trained is show. It is clear, and maybe surprisingly so, that very few of the 138
features are necessary to achieve an accuracy in the 90 to 94 percent range. �e accuracy
seen to stabilize a�er the 37 or so most important features are included in the model.
�e classi�er with 5 features is the ”smallest” of the models to reach an accuracy of 90
percent, achieving an accuracy of 90.2 percent. �e model with 27 features is the �rst to
reach an accuracy of 94 percent. Compared to the accuracy of 94.2 percent for the model
incorporating all of the 138 features, this is a surprising result.
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7.2.2 Increasing e�ciency of theHARsystemby calculating fewer
features

Based on the promising result presented in section 6.1, it was decided to go ahead with
modifying the feature calculation part of the HAR system. �e results of this change are
convincing. Figure 6.10 presents the time usage of the system for 4 of the steps in the
HAR system related to predicting the activities of subjects: training the model, extracting
windows, calculating features, and running the predictions. All 138 models are shown
in the �gure. �e time it takes to train the di�erent models increases with the number
of features in the model. �is is to be expected. It is important to note that the feature
calculation step of the training process was not included in this statistic. �is is a big lim-
itation of the experiment, but can be somewhat neglected based on the fact that training
the model is done once only. �e time used by the RFC to classify the activities of subject
006 in the TFL dataset remains consistently low relative to time spent on the other parts
of the system. �e same holds true for the window extraction part of the system. It uses
about the same time regardless of the number of features in the model. �is is exactly as
anticipated because the window extraction extracts the exact same windows for all the
models. �erefore an increase in e�ectiveness is to be achieved primarily by a reduction
in the number of features that is calculated for each window.

Figure 6.11 combines the results of the experiment in 6.1 with the feature calculation
graph in �gure 6.10. �is �gure presents an informative overview over the trade-o�s to
be made when balancing between accuracy and the overall e�ciency of the HAR system.
It is evident that using more features than the 29 of the features results in a signi�cant
decrease in e�ectiveness and only a very slight increase in accuracy. For the model with
138 features, the feature calculation took 21.97 seconds on average when tested on subject
006 in the TFL dataset. When using the 5 most important features, the feature calculation
step of the HAR system took 0.94 seconds on average. �is is 4.3 percent of the time it took
for the model with 138 features, or 23 times faster. With the 27 most important features
the feature calculation step took 3.72 seconds, 16.9 percent as much as the model with 138
features. �is is a speedup of 5.9 times �is model achieved an accuracy of 94.0 percent,
0.2 less than the full model. Hence, the choice between the model with 27 features and 138
features should be simple. When it comes to choosing the optimal number of features for
both e�ciency and accuracy the choice depends on what the user of the system prefers.
If time is not an issue, the model with the highest accuracy should be chosen. If time
is of more importance, the user must decide themselves what accuracy (or performance
in terms of the other quality metrics) is acceptable. If 90 percent accuracy is acceptable
�gure 6.12 indicate that using 6 features is the best choice. It uses marginally more time
than that of the model with 5 features, but increases the accuracy from 90 percent to
92 percent. If the the highest accuracy is desired �gure 6.13 show that using about 40
or more features is su�cient. �e accuracy stabilizes fairly well around that mark. If a
certain emphasis is put on the the e�ectiveness, 21 to 29 features achieve about the same
accuracy while being twice as e�ective. Based on these result it is clear that an increase
in the e�ectiveness of the HAR system is achieved while maintaining the high accuracy
of the system. It is up to the user of the system to make the desired compromise between
the performance and e�ectiveness of the system.
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7.2.3 No-wear time detection by the use of sensor temperature
readings

�e SNT classi�er achieves an accuracy of 95.6 percent when tested with record-wise
cross validation on the SNT dataset. It is able to successfully classify the sensor con�g-
urations with a high degree of certainty, in e�ect detecting instances of no-wear time
(A or B). �ese results were achieved using 4 simple time domain features derived from
temperature readings and a window size of two minutes. �e performance of this system
using these 4 simple features is surprisingly good.

�ere is however several crucial limitations of the system that limit the system from be-
ing used in real world applications such as the HUNT4 study. Most notable is the lack of
the sensor con�guration ” N (no sensor)”. Including this label in the system was in fact
experimented with in the initial stages of the developing the experiment. However the
accuracy of this system was poor, about ten percent lower than that of the system using
A, B, and T. �is might be due to the fact that the system only considers temperature
data, and that separating between the A and N con�guration using this data is hard. �e
temperature di�erence between the two sensors in con�guration A is minimal. Unfor-
tunately, the same will most o�en likely be true for the two sensor in con�guration N.
Additionally, the temperature changes of the sensors in con�guration A are o�en very
slow, meaning that the temperature is very stable. �e same can be said for the N con�g-
uration. �is led to several misclassi�cations between the two. It is believed that incor-
porating features derived from the acceleration signals of the accelerometer will alleviate
this problem, because the ”pro�le” of the acceleration signals should di�er signi�cantly
between the two con�gurations. Lastly, the fact that the sensor were not synchronized
before being labelled is another limitation of the experiment. �e impact of this aspect
on the results of the experiment has not been investigated.

In spite of these limitations, the potential of the classi�er is clear. An additional bene�t
of having a sensor con�guration classi�er is the potential for a signi�cant increase in
e�ciency of the HAR system used with the HUNT4 study (Vågeskar [2017]). Even though
the subjects were the sensors for about 7 days on average, the recordings o�en last 8
or 9 days. �is is because the sensors are transported back around before and a�er the
recording are performed. �is means that anywhere between 1 to 3 days of the recordings
have the sensor con�guration N. �e current HAR system used for classi�cation in the
HUNT4 study classi�es this period the same way it does for the rest of the data. In
other words, the system performs a signi�cant number of unnecessary and irrelevant
calculation, slowing down the process, and in turn, the HUNT4 study analysis. �is
problem can be �xed with the SNT detection system. Removing the 1-3 last days of
the recordings automatically with the help of the SNT classi�er will result in signi�cant
time savings. �is is in addition the the already signi�cant timesaving achieved by the
reduction in features.
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Chapter 8
Conclusion and Future Work

�is chapter presents the conclusion of this thesis along with potential areas of interest
for future work.

8.1 Conclusion
�ree goals were de�ned for this thesis in section 1.2. Goal 1 was to explore the state
of the art machine learning methods and datasets that are commonly used in HAR re-
search. �is was presented in the systematic literature review in chapter 3. Goal 2 was to
increase the e�ectiveness of the HAR system presented in Vågeskar [2017] by building
on the results of the specialization project preceding this thesis (Reinsve [2017]). �is
indicated that the number of features used to train the random forest classi�er could be
signi�cantly reduced while maintaining the accuracy. Goal 3 was to develop a classi�er
that was able to detect instances of sensor no-wear time and classify the the con�gura-
tion of sensors a�ached on a subject. Goal 2 and goal 3 were explored through the three
experiments presented in chapter 6. �e results of these experiments were presented in
section 6.1, 6.2, and 6.3.

All three goals of this thesis were reached. �is work has resulted in one improvement
and one addition to the HAR system that was presented in Vågeskar [2017]. Firstly, the
e�ectiveness of the feature calculation has been signi�cantly increased while maintain-
ing the accuracy of the model. Secondly, a functioning sensor no-wear time classi�er has
been developed.

�e e�ectiveness of the HAR system presented in Vågeskar [2017] was increased by mod-
ifying the feature calculation step of the activity classi�er. �is system classi�es 7 dif-
ferent activities: walking, running, standing, si�ing, lying, and bending. �e increase
in e�ciency was achieved �rst by determining which features that were the most im-
portant for the RFC. �e features were evaluated on the basis of their feature importance
value, provided by the scikit-learn ML framework. �e original system (Vågeskar [2017])
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used 20 di�erent time and frequency domain features. �ese features produced a total
of 138 input features (69 features for each of the two sensors) to the RFC. When tested
with a subject-wise cross-validation of the 16 subjects from the TFL dataset, the accuracy
of this system proved to be 94.2 percent, equaling that of the same system in Vågeskar
[2017]. It was shown that in order to reach an accuracy of 90.0 percent, a classi�er trained
on the 5 most important features was su�cient, resulting in 90.2 percent accuracy. By
including the 6th most important feature in the model, the accuracy was raised to 92.0
percent. When further trained with the 27 most important features, the RFC achieved an
accuracy of 94.0 percent. Based on these results, a signi�cant increase in e�ectiveness
was achieved by making changes to feature calculation part of the HAR system. �is
made it possible to calculate only the n most important features when classifying activ-
ities of subjects, while excluding the others. �en, models with corresponding features
were used to make predictions. When using the 5 most important features, the feature
calculation step of the HAR system took 0.94 seconds on average. �is was about 23x (4.3
percent) faster than that of the model using 138 features, which took 21.97 seconds (sub-
ject 006 TFL, 134 minutes). With the 27 most important features the feature calculation
step took 3.72 seconds, a 5.9x (16.9 percent) speedup compared to using 138 features, and
at the same time achieving 94.0 percent accuracy.

A sensor no-wear time classi�er was developed to detect instances of sensor no-wear
time in recordings and classifying the sensor con�guration worn by a subject. �e sys-
tem used temperature readings extracted from the on-board temperature sensor on the
two AX3 accelerometers used. A random forest classi�er was trained on the SNT dataset,
which was created for this thesis. �e system was used to recognize three sensor con�g-
urations: all sensors (A), back sensor (B), and thigh sensor (T). �e con�guration labels
indicated which sensors were a�ached to the subject at any given time. �e classi�er
obtained an accuracy of 95.6 percent using 4 features for each of the two temperature
sensors when tested with subject-wise cross-validation on the 4 recordings in the SNT
dataset.

In conclusion, the feature importances together with the accuracy and time statistics
obtained in this work, provide useful insight into what features are the most important
and necessary for the system to perform well overall. �is insight make it possible to
make decisions on models to use while balancing the trade-o� between accuracy and
e�ectiveness. �e increase in e�ectiveness should prove useful for processing the HUNT4
data, which will be a time consuming process. �e SNT classi�er will make it possible to
handle no-wear time instances for the 50,000 subjects expected to make up the HUNT4
dataset, and will aid the feature calculation and classi�cation step of the HAR system to
use the correct set of models for each of the subjects. �is should increase the accuracy
for the HUNT4 predictions.

8.2 Future Work

�is section presents areas of interest for future work, identi�ed throughout the work on
this thesis.

68



8.2 Future Work

8.2.1 Further optimisations on feature calculation
�e feature importances that were presented in this work made it possible to identify
which features that were important in order to successfully classify activities. To be able
to use any combinations of features for training the RFCs, the mapping between the 20
unique time and frequency domain features had to be found. �e indexes of the 138
features were mapped to the unique features producing them. With this mapping, it was
possible to reduce the number of features that were calculated for a subject’s windows
of activities by reducing the number of the unique features that were calculated. �is
enabled a speedup of the HAR system in the feature calculation step. A limitation of this
solution is that most of the unique features produced more than 1 input feature to the
classi�er. Hence, a unique feature were calculated in its entirety as soon as one of its
produced features was selected for inclusion. �is resulted in the non-linear growth of
the time used on feature calculation as show in �gure 6.10. Although this still resulted
in a signi�cant time saving, further work can be done in re�ning this process. A prime
example of this is the current implementation of the 7 frequency domain features. �ey
are calculated in the same Python method in the feature calculation module. �is means
that as soon as the 1 out of the 21 features this feature produces is selected for inclusion,
all of them are calculated even though only one is used. �is applies to many of the 20 real
features. �is is very ine�ective. With modi�cations to the feature calculation approach
used in this thesis, additional e�ciency improvements can be achieved using the same
approach and knowledge deduced in this work.

8.2.2 Analyze the impact on accuracy by adding more activities
For the experiments in this thesis, 7 out of the 18 activities de�ned for the TFL dataset
were used. Adding more of the activities should a�ect the accuracy of the classi�er. �is
a�ect should be explored in particular relation to the e�ciency improvements presented
in this work. With the 7 activities the model with the 5 and 27 most important features
both performed relatively well. �is might not be the case when increasing the set of
activities to be classi�ed. As a result, achieving the same results might not be possible
with the substantial reduction in features presented in this thesis. Experiments should
be conducted to examine this e�ect.

8.2.3 More comprehensive SNT classi�er
�e system developed in this thesis for detecting instances of no-wear time only considers
the temperature readings of the sensor. For this very reason, it is di�cult for the system
to di�erentiate between a sensor con�guration where either both sensors are a�ached
to the subject, or both are detached. Making more features available to the classi�er by
including features derived from acceleration measurements of the sensor should help the
encountering those con�gurations. �is is based on the assumption that two accelerom-
eters a�ached to a person should experience signi�cantly more acceleration forces than
two sensors that are detached. �is might not be true in all cases however. �e accelerom-
eters can be le� in a car that is driving around, or le� in a cloth drier etc. Regardless, it is
believed that when combining features derived from both the acceleration and tempera-
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ture recording of the sensor, the system should be capable at dealing well with instances
were both sensors are detached. �is approach should also increase the accuracy of the
predictions for the A, B, and T classes, as compared to using temperature-only features.
Another bene�t of including acceleration features would be the increase in ”time reso-
lution”. �e current system uses windows of two minute lengths for classi�cation. �is
might be decreased signi�cantly depending on the contribution of the acceleration fea-
tures. Another limiting factor for the application of the sensor no-wear time classi�er
to real world data, is that it was trained exclusively on data collected inside of buildings.
�e temperature inside a building is usually relatively stable. When moving between in-
side and outside environments however, one might experience substantial temperature
changes in a short period of time. �is is especially true for locations in cold climates.
For example, during winter in Norway the temperature might be around 23 ◦C inside a
given building, while the outside temperature might be as low as −23 ◦C. While such
dramatic temperature changes might not signi�cantly a�ect the system, the extent of the
e�ect cannot be determined until a dataset capturing these variables have been created
and tested on. �is aspect should also bene�t from the addition of acceleration features.

8.2.4 Switching of models based on SNT sensor con�guration-
classi�cations

As shown in section 6.3, it is expected that a number of recordings in the HUNT4 study
will contain instances of sensor no-wear time. �e SNT classi�er was e�ective in detect-
ing instances with the sensor con�gurations A, B, and T. With further improvements to
this system, as described above, it is believed that it will be be�er at classifying instances
where both sensors are detached. With such a system in place an implementation can
be integrated into the HAR system to be used for analyzing the HUNT4 data, as a step
before the classi�cations step. With the HAR system now being able to recognize which
sensors are a�ached to a subject at any given time, the system can change the models
it uses for prediction on the go. One way to implement the model switching would be
to separate subjects in the dataset into two groups: no-wear time ”detected”, and ”not
detected”. What the threshold should be before a subject is put in the no-wear time ”de-
tected” category, is to be determined. For example, one might de�ne that a subject with
5% or more samples classi�ed di�erently than ”A” (All sensors on) should be put in the
no-wear time ”detected” category. A�er dividing the subjects into groups, the system
might iterate over the subjects in the ”detected” category and classify the sensor con-
�gurations for each of the windows in the subject’s recording using the SNT classi�er.
�en, slight modi�cations to the (activity) prediction step of the HAR system need to be
implemented. �e SNT system should pass on a �ag to the prediction step, indicating
whether the subject was placed in the ”detected” group and is to use multiple models for
prediction. �e prediction step will use the sensor con�guration predictions to select the
corresponding models for each window and subject it predicts. For instance, if a subject
wore both sensors for 2 days and then wore only the back sensor for 5 days, the system
would use the dual-sensor model for the �rst two days and the single-sensor back model
for the 5 days. Using the SNT classi�er as developed in this work, models can be selected
and applied on window lengths of 2 minutes.
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8.2.5 A more comprehensive SNT dataset
�e SNT dataset created for this thesis consists of four recording collected from two
subjects performing both the P1 and P2 protocols. �e dataset was su�cient to develop
a proof of concept SNT classi�er. However, it would be bene�cial if a larger dataset
with more subjects and variations in recording environments was made. �is would
also increase the changes of identifying edge cases where the system performs poorly.
Such a dataset would provide a more robust framework for the continued development
of the SNT classi�er. �is is necessary to aspire con�dence in the ability of the system to
function as intended if applied in large scale environments such as the HUNT4 study.

8.2.6 VideoAnnotation improvements for Labeling TrainingData
�e annotation process for the TFL dataset is both tedious and time consuming. �e
annotators have to examine the videos recorded of the subjects on a frame-by-frame
basis and label them with the ground-truth activities. With an average video length of
over two hours for each subject in the TFL dataset, labeling all the videos accurately
would be very laborious. Speeding up this process would make it easier to label more,
and longer, videos. �is could in turn inspire more datasets to be created. A way to do
this could be to utilize the classi�er(s) that are already available and have been trained
on other datasets, or a subset of the dataset, to process the accelerometer recordings of
new data and predict the activities. �en, these predictions could be used as a temporary
ground truth assignment in the video labeling tool. With all the frames labeled, the job
of the annotator would be to quickly go through the video and to verify that segments
of the video, of greater length than a single frame, match the corresponding segments
of labeling performed by the classi�er. If a mismatch occurs, the annotator should be
able to manually adjust the timeframe of the activities and /or relabel them. �e change
from manually selecting activities on a frame-by-frame basis, to verifying already labeled
segments, should signi�cantly speed up the process of labeling training data.
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F. G. Larsen and E. Vågeskar. Investigating the performance of a human activity recog-
nition system on out-of-lab data. Technical report, Trondheim, 2016.

D. Micucci, M. Mobilio, and P. Napoletano. Unimib shar: A dataset for human activity
recognition using acceleration data from smartphones. Applied Sciences, 7(10):1101,
2017.

T. M. Mitchell. Machine Learning. McGraw-Hill series in computer science. McGraw-Hill,
New York, 1997. ISBN 0070428077. URL Publisherdescriptionhttp:
//www.loc.gov/catdir/description/mh022/97007692.
htmlTableofcontentshttp://www.loc.gov/catdir/toc/
mh022/97007692.html.

E. Ordua-Malea, J. M. Aylln, A. Martn-Martn, and E. D. Lpez-Czar. About the size of
google scholar: playing the numbers. arXiv preprint arXiv:1407.6239, 2014.

S. J. Preece, J. Y. Goulermas, L. P. Kenney, D. Howard, K. Meijer, and R. Crompton. Activ-
ity identi�cation using body-mounted sensors��a review of classi�cation techniques.
Physiological measurement, 30(4):R1, 2009. ISSN 0967-3334.

T. Prestmo. Decision support in patient-centered health care. Master’s thesis, Trondheim,
2017.

Ø. Reinsve. Improving the activity recognition and speed of prediction in an existing
human activity recognition system. Project thesis, Trondheim, 2017.

S. J. Russel and P. Norvig. Arti�cial intelligence: A modern approach. 2010.

A. Siddaway. What is a systematic literature review and how do i do one. University of
Stirling, (I):1, 2014.
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Appendix A
Activity de�nitions

Figure A.1: Description of the activities used for labeling the TFL dataset
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Appendix B
Distribution of activities for the
TFL data set

�is chapter presents bar plots of the activity distribution for all subjects used in this
project from TFL data set. �ese are not all the activities in the data set, but the ones that
the classi�er was trained on.

(a)Distribution over all subjects. Time: 1757 min-
utes (b) Subject 006. Time: 134 minutes

Figure B.1: Activity distribution

79



(c) Subject 008. Time: 114 minutes (d) Subject 009. Time: 51 minutes

(e) Subject 010. Time: 86 minutes (f) Subject 011. Time: 115 minutes

(g) Subject 012. Time: 126 minutes (h) Subject 013. Time: 112 minutes

Figure B.1: Activity distributions
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(i) Subject 014. Time: 100 minutes (j) Subject 015. Time: 137 minutes

(k) Subject 016. Time: 114 minutes (l) Subject 017. Time: 121 minutes

(m) Subject 018. Time: 104 minutes (n) Subject 019. Time: 105 minutes

Figure B.1: Activity distributions
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(o) Subject 020. Time: 122 minutes (p) Subject 021. Time: 107 minutes

(q) Subject 022. Time: 109 minutes

Figure B.1: Activity distributions
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Appendix C
Distribution of sensor
con�gurations for the SNT dataset

(a) Distribution over all recordings. Time: 999
minutes

Figure C.1: Sensor con�guration distribution
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(b) Subject 1 and subject 2 (Protocol 1) . Time: 259 minutes

Figure C.1: Sensor con�guration distribution

(c) Subject 1 and Subject 2 (Protocol 2) . Time: 568 minutes

Figure C.1: Sensor con�guration distribution

84



(d) Subject 1 (Protocol 1) . Time: 259 minutes (e) Subject 2 (Protocol 1). Time: 172 minutes

(f) Subject 1 (Protocol 2). Time: 292 minutes (g) Subject 2 (Protocol 2). Time: 277 minutes

Figure C.1: Sensor con�guration distribution
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