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Abstract 

Multilevel converters have seen an increasing popularity in the last years for medium- and 
high-voltage applications. The most popular has been the three-level neutral clamped 
converter and still research is going on to improve the control of it. This master thesis was a 
continuation of the specialization project fall 2009. The main topics of current thesis were to 
further investigate the DC-bus balancing issues, compare symmetrical (one sampling per 
triangular wave) and asymmetrical (sampling at the top and bottom of the triangular wave) 
modulation, derive current equations for Space Vector and Double-Signal, improve output 
voltage in overmodulation and be able to DC-bus balance, and to implement the methods in 
the laboratory. 

Models of the three-level converter were made in the specialization project in both PSCAD 
and SIMULINK and further studies of the DC-bus balance were also made in this master 
thesis. None of the methods showed problems to regulate the DC-bus voltage when there was 
different capacitor values and unsymmetrical load. A PI controller was introduced for Space 
Vector but it did not show better performance than a regular P regulator.  

Asymmetrical modulation showed a clearly better performance than symmetrical modulation 
when the switching frequency was low compared to the fundamental frequency, especially for 
Space Vector. The 1st harmonic line-to-line voltage was closer to the wanted value and the 
THDi was significantly lower. Simulations also showed that the THDi can vary significantly 
depending on at which angle the first sampling is done. This is most clear for asymmetrical 
Space Vector modulation, but also for the other cases this pattern occurs.  

By implementing an overmodulation algorithm the amplitude of the 1st harmonic output 
voltage was closer to what was desired. Simulations showed how important it was to have 
three phase sampling symmetry in overmodulation. By having a wrong switching frequency 
the line-to-line output voltage dropped down to 2.06 when operating in six-step, when the 
wanted output value should be 2.205. Hence there is a quite large mismatch and the converter 
is sensitive to the switching frequency when it is operating in the higher modulation area. The 
balancing algorithm introduced for overmodulation is able to remove an initial offset without 
a notable change the 1st harmonic output.  

Both Space Vector and Double-Signal were tested in the laboratory with two separated DC-
sources. Asymmetrical and Symmetrical modulation were tested and so was also 
overmodulation. The laboratory results confirmed the simulated results, but since the 
switching was not synchronized in the laboratory, some errors occurred.  
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1 Introduction 
Multilevel converters have the later years been looked upon as a good choice for medium- and 
high-voltage applications. It was first presented in [22]. Before the introduction of multilevel 
converters the traditional solution has been to connect semiconductors in series to withstand 
the high voltages. This requires fast switching to avoid unequal voltage sharing between the 
devices, which could lead to a breakdown. Multilevel converters have the advantage of 
clamping the voltages, which prevents the need of fast switching. MLC also have a smoother 
output voltage than traditional two-level converters. As wind turbines are increasing in power 
ratings, multilevel converters can be well suited in such applications.  

The most popular multilevel converter and the one that will be studied in this report is the 
neutral point clamped three-level converter. One of the challenges with the NPC three-level 
converter is the increased complexity in the control of it. A lot of research have been done on 
this converter topology and a numerous of control methods have been presented in the 
literature. Still there is a focus of how to solve the voltage fluctuation between the two 
capacitors and most of the research today is to improve the DC-bus balance. 

The focus in this master thesis will be to continue the work from the project in the fall of 2009, 
where DC-bus balancing, balancing in overmodulation, development of current equations and 
laboratory experiments are the most central topics. There will also be a comparison of 
asymmetrical and symmetrical modulation. DC-bus balancing was studied in detail in the 
previous project and in this master thesis a PI controller is included. The reason for studying 
the currents is to see if exist any difference which could increase the stresses on the capacitors 
and conductors.  

One of the goals of the project was to verify that SIMULINK and PSCAD gave the same 
simulations results and it was concluded that this is the case. Hence in this project some of the 
simulations are done in SIMULINK while others are done in PSCAD. Further on will Space 
Vector and Double-Signal be implemented and tested in a laboratory setup. In this setup also 
symmetrical and asymmetrical modulation will be tested as well as overmodulation.  

Some of the text written in [13] will be repeated in this master thesis.  

1.1 Converter Topology 
The converter studied in this project is a Neutral-Point-Clamped three-level converter with 
three bridge legs. “Three-level” means that each bridge leg, A, B and C can have three 
different voltage states. The converter topology can be seen in Figure 1.1-1. Switch 1 and 3 on 
each leg are complementary, which means that when switch 1 is on, switch 3 is off and vice 
versa. Switch 2 and 4 is the other complementary switching pair.  
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Figure 1.1-1: Converter topology 

If each of the capacitors has a constant voltage of 0.5 Udc, then having the two upper switches 
on will give an output voltage of Udc compared to level 0, switch 2 and 3 on will give 0.5 Udc 
and by having the two lower switches on, an output voltage of 0 will occur. In addition to 
these three states there is a forbidden state where the first switch is on while the second is off.  

Table 1.1-1: Bridge leg voltages at different combinations of switch states 

Leg State Ua0 Ta1 Ta2 Ta3 Ta4 

2 Udc ON ON OFF OFF 

1 0.5 Udc OFF ON ON OFF 

0 0 OFF OFF ON ON 

 

The combination of states for the bridge legs give the space vectors plotted in Figure 1.1-2. 
Space vector 210 means that bridge leg A is in state 2, leg B in state 1 and leg C in state 0. 
Some of the switching states give the same space vector as is seen for the inner vectors. All 
the modulation strategies discussed in the subsequent chapters use combinations of these 
switching states. The difference between the modulation strategies is the combinations of 
states and their respective extent. 
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Figure 1.1-2: Overview of space vectors 

In Figure 1.1-3 there is a smooth sinusoidal signal. The other signal is the output of a bridge 
leg trying to resemble this signal. By combining the different states a bridge leg can have it is 
possible to get a close to sinusoidal averaged bridge leg output. The voltage between two 
phases, the line-to-line voltage can achieve five different voltage levels: 

 

 

Figure 1.1-3: Bridge leg voltage 

 

 

Figure 1.1-4: Line-to-line voltage 
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Converters with a higher number of levels will give a smother output of the converter. 
However it makes it more difficult to control and it’s outside the scope of this master thesis. 

In order to get the model as close as possible to real implementation parameters concerning 
minimum on/off-time and dead time are included. Dead time is included to avoid the 
possibility of short circuiting the DC-side. In other words will not the complementary switch 
be turned on before the other switch has been off for at least the dead time. Minimum on- and 
off-time is the minimum time a switch has to be on or off in order to switch. For instance if a 
switch is supposed to be turned on, but will not be on as long as the minimum time, then it 
should just be kept off. The gain of the output voltage to have the switch on for such a short 
time compared to the switching losses is very low or might be negative. With non-ideal 
switch there is also a limit of how fast a switch can be turned on and off, hence it might need 
the minimum on/off-time.  

The control of the switches is done in periods named triangular periods. In one period there is 
a maximum of one turn on and one turn off of a switch. The time a switch is on in a period 
relative to the length of the period is the duty cycle of the switch.  

 , { , , }, {1,2}on
ij

tri

td i a b c j
T

= = =  (1.1) 

These duty cycles range between 0 and 1. The duty cycles of switch 3 and 4 for the bridge leg 
is not defined since they are complementary to switch 1 and 2. Meaning the duty cycle of 
switch 3 is one minus the duty cycle of switch 1. Modulation is done by calculations of these 
duty cycles. If it is assumed that each of the capacitors has the same voltage Udc/2; the bridge 
leg voltage can be expressed as: 

 0 2 1 2 1,
2 2
dc dc

a a a a a
U UU d d d d= + >  (1.2) 

However when there is only one power supply the voltages over each of the capacitors will 
fluctuate. This is due to the neutral point current, iNP seen in Figure 1.1-1. By defining ΔUdc as 
the voltage difference between the upper and lower capacitor voltage it was shown in [13] that 
the bridge leg voltage can be defined as 

 0 2 1, { , , }
2 2 2 2
dc dc dc dc

i i i
U U U UU d d i a b c∆ ∆   = − + + =   
   

 (1.3) 

The voltages of importance when it comes to output of the converter are the line-to-line 
voltages and the phase voltages. The line-to-line voltage from A to B is:

  
 0 0ab a bU U U= −  (1.4) 

From the equation it can be seen that due to the opposite sign any equal offset added to all the 
bridge leg voltages will be cancelled for the line-to-line voltages. This is utilized to get 
enhanced modulation in most of the modulation strategies as discussed in [13]. If the 
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expressions in (1.3) are inserted in (1.4) a line-to-line voltage as function of DC-bus 
unbalance and switch duty cycles is achieved: 

 2 1 2 1 1 2 2 1

Voltage error

1 1( ) ( )
2 2ab dc a a b b dc a a b bU U d d d d U d d d d= + − − + ∆ − + −



 (1.5) 

The first term on the right hand side is the line-to-line voltage at DC-bus balance. The 
modulating strategies base their calculations on DC-bus balance. Hence the output of the 
converters will have an error represented by the second term in the equation. To minimize this 
error there is a need for DC-bus balancing. This is done by control of the neutral point current. 
The control of the neutral point current is related to the choice and extent of the switching 
states. This is done by adding additional conditions to the calculation of switch duty cycles for 
the different modulation strategies. 
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2 Modulation Strategies 
In [13] some of the different modulation methods for a three-level converter were studied in 
detail. Some of what was written in [13] will be repeated in this master thesis to get a better 
overall picture of this topic.  

2.1 Pulse-Width Modulation 
Pulse width modulation is a method of controlling the output voltage of an inverter. In this 
method a control signal is compared with a repetitive signal, typical a triangular signal. To 
make the converter work in an inverter mode the control signal should have a sinusoidal shape. 
This control signal can vary a bit and this will be discussed in [13]. At a constant switching 
frequency the time period of the triangular signal is also constant since this signal gives the 
switching frequency. This is given in equation (2.1).  

 1
sw

tri

f
T

=  (2.1) 

The frequency of the control signal gives the frequency of the desired fundamental output 
voltage. For a two-level converter there are two switches in one bridge leg and the upper 
switch will be on when the control signal is greater than the triangular signal. If unipolar 
switching is chosen the lower switch will be off when the upper is on, which means that it will 
be off when the control signal is greater than the triangular signal. Switch number 2 will be on 
when the control signal is lower than the triangular and hence the upper switch will be off. 
This is shown in the figure below. 

upperU

lowerU

t

t

t

triT

controlT

 

Figure 2.1-1: PWM with bipolar switching pattern 
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As it will be seen in the next subchapters the control is a bit more complicated when a three-
level converter is being used. More about two-level converter control is to be found in [8]. 
There are a few parameters that need to be defined when PWM is discussed. The amplitude 
ratio is given as 

 
^

^
cont

a

tri

Um
U

=  (2.2) 

This ratio tells the value of the amplitude of the bridge leg voltage compared to UDC/2. This 
parameter is a part of the control signals which are given in the equation below. 

 
cos( )
cos( 2 / 3)
cos( 4 / 3)

sta a

stb a

stc a

U m t
U m t
U m t

ω
ω π
ω π

= ⋅
= ⋅ −
= ⋅ −

 (2.3) 

These voltages are the bridge-leg voltages that are desired on the AC-side of the converter. 
When normal sinusoidal modulation is used these signals are also the control signals which 
are compared with the triangular signal. Other methods could be by injection the 3rd harmonic 
voltage to each phase or by adding a common offset, which are described in [3]. Space vector 
and Double-Signal are the two methods used in this master thesis and they are described in 
the next two subchapters.  

The other parameter that is important to be defined is the ratio between the frequency of the 
control signal and the triangular signal. 

 sw
f

control

fm
f

=  (2.4) 

It is common to divide the modulation strategies into two strategies and which one that is 
preferred is depending on mf. In [8] it is recommended to use synchronous modulation if mf is 
lower or equal to 21 and asynchronous modulation if mf is above this value. The definition of 
synchronous modulation is that mf is an integer, which gives that the control signal is sampled 
at the same angles every fundamental period. The definition of asynchronous modulation is 
that mf is not an integer. Asynchronous modulation will create undesirable subharmonics, but 
due to the high frequency the difference in amplitude between synchronous and asynchronous 
subharmonics will be marginal. This is according to [8].The major drawback of synchronous 
modulation is that it is not very flexible and hence there will be some challenges in 
applications with variable speed drives. With asynchronous modulation this should not cause 
problems as long as mf is large. 

The application studied in this report is to be used in the medium voltage range and the 
switching frequency will be in the area from 300 – 1100 Hz, which indicates that synchronous 
modulation should be used. Having a low switching frequency will increase the amplitude of 
the lower harmonics. This occurs because the harmonic distortion has the greatest values 
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around mf, 2mf, 3mf and so on, and since the switching frequency is reduced mf is also 
reduced.      

 

2.2 Space Vector PWM 
Space vector PWM is a popular modulation method for converters, due to its low harmonics 
and increased linear range up to a ma equal to 1.1547. The theory of space vector is that phase 
A, B and C has a permanent position to each other in the vector space, phase shifted with 120 
degrees. This can be seen in Figure 2.2-1. Ua, Ub and Uc are varying as in equation (2.3). The 
reference voltage is defined as 

 0 2 /3 4 /3( ) ( ) ( ) ( )j j j
ref sta stb stcU t U t e U t e U t eζ π π= + +  (2.5) 

For a two-level converter there exist eight switching states. Two of these states are zero 
vectors, which gives seven different states that can be used to generate the wanted output 
voltage. A zero vector is when all the bridge legs are connected to the same point and all of 
the line-to-line voltages are zero. The six non-zero vectors have all the same amplitude, but 
different angles. By using these vectors in a correct manner the average of them will be the 
reference vector, by saying that the switching frequency is much higher than the fundamental 
frequency. A three-level converter has 27 vectors that can be used to create the desired 
voltage, with 19 different states, which can be seen in Figure 2.2-1.   

 

Figure 2.2-1: Space vector diagram for a three-level converter 

There are four different groups the vectors can be divided into, and within each group the 
magnitude of the vectors are the same. The overview of the vectors is given in Table 2.2-1.  
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Table 2.2-1: Overview of space vectors 

Zero vectors Small vectors Medium vectors Large vectors 
(000) 
(111) 
(222) 

(100),(211),(110),(221), 
(121),(010),(011),(122), 
(001),(112),(101),(212) 

(210),(120) 
(021),(012) 
(102),(201) 

(200),(220) 
(020),(022) 
(002),(202) 

 

The vectors are the following  

 

 

1
3

1
3

2
3

j
s DC

j
m DC

j
l DC

U U e

U U e

U U e

θ

θ

θ

= ⋅

= ⋅

= ⋅

 (2.6)   

 

Where UDC is the DC-link voltage.   

There are a lot of vectors to choose among for a three-level converter, and the normal way of 
solving this is to choose the three vector states closest to the reference vector when using 
Space Vector modulation. The reason for this is that the harmonic distortion will be the lowest 
with this choice. By doing this, the vector space can be divided into 24 different sectors. How 
to find the correct sector can be done several ways, where they all lead to the same result. The 
method chosen for the simulations in this master thesis is the same as in [1] and [4]. Here the 
vector space is divided into six new hexagons as shown in the figure below.  

 

Figure 2.2-2: Overview of hexagons 
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When the correct sector has been found, the duty cycles of the vectors have to be calculated. 
Finding the duty cycles for a three-level converter is more complicated than for a two-level. 
As long as the reference vector stays within the six inner sectors, the duty cycles can be 
calculated the same way as for a two-level, which is shown in Figure 2.2-3.  

Uref

Ua

Ub

Uc

tx

ty

ζ

1

2

3

4

5

6

 
Figure 2.2-3: Duty cycle calculations for 

the six inner hexagons 

Uloc

Ua

200

201

222
111
000 211

100

210

221
110

212
101

Uref

refζ

1
2

3

4

5

6

 
Figure 2.2-4: Duty cycle calculations outside the six 

inner hexagons 
 

The equations are shown as the following 

 

0

3 sin(60 ( (sec_ 1) 60 ))

3 sin( (sec_ 1) 60 )

1

o o
x ref

o
y ref

x y

t U in

t U in

t t t

ζ

ζ

= − − − ⋅

= − − ⋅

= − −

 (2.7) 

Tx is the duty cycle for the vector lagging the reference vector, while ty is the duty cycle for 
the vector leading the reference vector. T0 is the duty cycle for the zero vectors. If the 
reference vector is outside the six inner hexagons then one common method calculation the 
on-times is making a local reference vector as shown in Figure 2.2-4. The on-times will den 
be as shown below. 

 

0

2 sin(60 ( (sec 1) 60 ))
3

2 sin( (sec 1) 60 )
3

1

o o
x loc ref

o
y loc ref

x y

t U

t U

t t t

ζ

ζ

= − − − ⋅

= − − ⋅

= − −

 (2.8) 

This is described more in detail in [13]. 

The switching pattern should be designed in a way which minimizes the number of switching 
transitions. In this report the aim has not been to minimize the number of switching transitions, 
but to be able to balance the DC-bus. Hence there are several switching patterns that can be 
used.  
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There are in total 7 vectors available if the reference vector is inside the first sector among the 
six inner hexagons. The switching pattern used in this report takes all of the vectors into use, 
the same approach as in [1]. The switching pattern will then be as shown below. 

0 1 1 2 2 2

0 0

0 0 0

2

2

21 1 1

1 1 1

0

4
d 0

4
d0

2
d

1S pd 1S nd2S pd 2S nd

2
swT

1

 

Figure 2.2-5: Switching pattern for space vector modulation 

This figure is showing half of the switching sequences for a reference vector staying inside 
sector 1 among the six inner hexagons. It is starting off with vector 000 and moving on to 100 
and so on, such that there is one switching transition between every new vector, for instance 
not to use the order 000, 200, 100 and 210. With this switching pattern all the vectors are 
being used, and the possibility of using the vector redundancy is maximized. The major 
drawback of using all of the vectors is that there will be an increase in the switching losses. At 
least should either 000 or 222 be removed since they give the same state. Hence other 
methods should be considered such that the switching losses may be reduced.  

The method that would require the least amount of commutations having the reference vector 
inside sector 1 could be 222, 221, 211, 221 and 222 which is defined as modified space vector 
modulation according to [17], while the classical method is 222, 221, 211, 111, 211, 221 and 
222. Even though the modified version has less switching transitions, it is concluded in [17] 
that the method produces more harmonics in the lower modulation area compared to classical 
space vector modulation, and thus the classical version is preferred. The very clear 
disadvantage with this switching scheme is that there is no possibility of DC-bus balancing. If 
it should be used with only one DC-source then other vectors must be used in order to have 
some redundancy. In [17] it is suggested that there are two switching patterns that could be 
used alternatively. First 111, 211, 221 and 222, and the second alternative is 111, 110, 100 
and 000. It is shown in [18] and [19] that natural balancing occurs at steady-state if there is 
resistance in the phase loads and if correct switching frequency is chosen. Hence this last 
alternative could be used if the correct conditions are present. If not, then at least one vector 
pair should be used during one switching period. Then the switching pattern with the classical 
method would look like 222, 221, 211, 111 and 110. This switching pattern improves the 
balancing possibilities, but if the balancing algorithm should be optimized the switching 
pattern in Figure 2.2-5 has to be used, but 222 should be skipped.  
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2.2.1 Current Flow with Space Vector PWM 
In this report there have been developed equations of the current flowing in this converter in 
order to get a better understanding of the two modulation methods. The mathematic 
expressions for the currents are quite long when using Space Vector. 

Figure 2.2-6, Figure 2.2-7 and Figure 2.2-8 show the phase currents out of each of the levels 0, 
1 and 2 due to a switch state in the vector space. The sum of currents ia, ib and ic is treated as 
zero. Zero vectors [000], [111] and [222] are neglected in the calculations since they connect 
all currents to the same level and they cancel each other. Having the sum of the phase currents 
equal to zero also mean that the sum of two of them is equal to the negative of the third. As an 
example: Switch state [220] connects ia and ib to level 2. The sum of these two is equal to -ic. 
Hence this current is treated when looking at the switch state [220]’s contribution to a current 
out of level 2. 

Level 2 

i2
+

-

UDC

0

1

2

 
 

 

Level 1 

i1
+

-

UDC

0

1

2

 
 

 

Level 0 

i0

+

-

UDC

0

1

2

 
 

 
 

 

 

From [14] formulas for calculation of space vector duty cycles are found. These are seen in 
the sector diagram of Figure 2.2-9. Each of the sectors is numbered in the same manner as in 
[14]. Formula (2.9) relates these formulas to the reference index m and angle ζ.  

ic 
[120] 

ic 
[210] 

-ic  ic 
[220] 

 ic 
[110

 

-ia 
[100] 

-ia 
[100] 

-ib 
[010] 

-ib 
[010] 

ia 
[120] 

ib 
[210] 

-ic/ic 
[110]/[221] 

 ib/-ib 
[010]/[121] 

 ia/-ia 
[100]/[211] 

ib 
[120] 

ia 
[210] 

ia 
[211] 

-ic 

ib 
[121] 

ib 
[020] 

-ic 
[220] 

-ic 
[221] 

ia 
[200] 

 Figure 2.2-7 Phase current 
out of level 1 (neutral 
point) due to switch state  

Figure 2.2-8 Phase current 
out of level 0 due to switch 
state 

Figure 2.2-6 Phase 
currents out of level 2 due 
to switch state  
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3 1* 3 cos sin

2 2

* 3 sin

3 1* 3 cos sin
2 2

ab

bc

ca

U m

U m

U m

ς ς

ς

ς ς

 
= −  

 

=

 
= − −  

 

 (2.9) 

  

 

The instantaneous current out of level 2 is expressed at infinite switching frequency as a 
function of the reference angle ζ, the phase delay φ and the modulation index m in formula 
(2.9). i2[ABC] is the phase current out of level 2 due to switch state [ABC]. d[ABC] is the duty 
cycle of this switch state. The instantaneous current is the sum of the currents in level 2 due to 
switch states in the current sector. 

 2 2[ ] [ ]( , , ) ( , ) ( , )ABC ABCi m i d mζ ϕ ζ ϕ ζ=∑  (2.10)  

As an example the current out of level 2 when the reference is in sector 10, the first inner 
sector is: 

 [ ] [ ]
[ ] [ ]211 221

2 211 221( , , ) cos( ) * cos( ) *
a c

a c phase ab phase bc

d dî î

i m i d i d Î U f Î U fζ ϕ ζ ϕ ζ ϕ= ⋅ − ⋅ = − ⋅ ⋅ − − ⋅ ⋅
 

 

(2.11) 

f is a constant between [0,1] that shares the space vector duty cycles between two redundant 
states. When there is no DC-bus balancing this will imply that f is equal to ½. The sharing of 
redundant states depends on the DC-bus balancing strategy, the unbalance of the capacitors 
and the phase delay of the phase currents. It is unlikely that f will have the same value 
throughout a fundamental period. However f could have a constant value during a 
fundamental period if there is a large voltage unbalance. 

The large and medium space vectors seen as the outermost space vectors in the space vector 
diagram and can only be produced by one switch state each. Hence there is no need for a 
sharing constant.  

 

dζ  

Uab* Uca*+2 Uab*-1 

Ubc* 

-Ubc*+1 

-Uab*+1 -Uca*-1 

Ubc* 

Uca*+2 Uab* 

Ubc*-1 

-Ubc*+2 

-Uca*-1 -Uab* 

Uab*+1 

Ubc*-1 

Uca*+1 

-Ubc*+2 

-Uca* 

-Uca* -Uab* 

10 12 

11 

5 

4 

9 

3 

2 

-Uab*-1 

Figure 2.2-9 Space vector Duty Cycles 

Figure 2.2-10 Variable 
of integral calculations 
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Calculation of average and RMS currents are in this report done by integral calculations in the 
vector space over the reference angle ζ. Only the first 1/3 of a fundamental period is looked at 
due to symmetries over a period. The integral over 1/3 of a period is the sum of integrals over 
each part of a sector that the reference crosses. The sectors that are crossed and the angle they 
are crossed at vary with modulation index m. The sector diagram is divided into modes as in 
[14] depending on what sectors that are crossed. This is shown in Figure 2.2-11. Mode four 
depends on the modulation strategy at overmodulation and neutral point current will be 
looked upon later in this report. M equals ma in all of the calculations.  

 

 

Mode 1:        10
3

m< <  

Mode 2: 1 2
33

m< <  

Mode 3:    2 2
3 3

m< <  

Mode 4: 2 4
33

m< <  

 

 

2.2.2 RMS Current Level 2 
The RMS current out of level two is the square root of the sum of integrals over each of the 
sectors that are crossed:  

 
2

3
2 2

2 2 2[ ] [ ]
0

1 1( , , ) ( , ) ( , )2 2
3 3

rms ABC ABCI i m d i d m d
π

ζ ϕ ζ ζ ϕ ζ ζπ π= = ∑ ∑∫ ∫  (2.12) 

Note that only expressions of phase currents are squared. The duty cycles are related to how 
long a phase current is connect to level 2 due to a switch state and should not be squared.  
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Figure 2.2-11: Separation of the vector space 
into modes 
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Mode 1 (0 < m < 1/√3)  

 

 

In this mode the RMS current is calculated in two integrals: from 0 to π/3 and from π/3 to 
2π/3. The RMS expression is normalized by division of the phase current amplitude. The duty 
cycles of the switch states and the phase currents that are connected to level 2 is found in 
Figure 2.2-9. In this mode there are only small vectors and the reference vector will only stay 
within two sectors, and therefore the calculation only consists of two integrals.  
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 (2.13) 

The results are presented in (2.16) 

Mode 2: (1/√3 < m < 2/3) 

In this mode both small and medium vectors will be used to create the desired voltage. The 
angle where a sector border is crossed is expressed by β in addition to the π/3 intervals as 
illustrated in Figure 2.2-13. β is found in [14] and normalized to have the  same the scaling of 
m as in the rest of this report. 

π/3 2π/3 

0 

Figure 2.2-12: Reference 
vector mode 1 
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1 1sin
33m
πβ −  = − 

   

  

In this mode the calculation will consist of six integrals. In the first part there will only be two 
small vector pairs while in the next part there will be two small vector pairs and one medium 
vector. The third integral will be equal the first one only with new integral calculations limits. 
The next three integrals will have the same pattern.   

β 

π/3-β 
π/3 

π/3+β 2π/3-β 
2π/3 

0 

Figure 2.2-13: Reference vector in mode 2
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Mode 3 (2/3 < m < 2/√3) 

Mode 3 is the most complicated of the three modes. In this case the reference vector will be 
inside 6 sectors during the integral limits and 18 sectors during one fundamental period. Note 
that in this mode the expression of β is the same as in the previous section, but the signs have 
changed.

 

 

1 1sin
33m
πβ −  = − + 

   
 

 

In the first integral there will be a contribution from one small vector pair and one medium 
vector. The same goes for integral number 3, 4 and 6. In the two other integrals there are two 
vector pairs and one medium vector contribution to the current in level 2. 

2π/3-β 2π/3 
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π/3 
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Figure 2.2-14: Reference vector mode 3
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The expressions of the RMS currents in the different modes are solved in MAPLE and the 

results are: 
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(2.16) 

As it can be seen from the equations the expression in the inner hexagon is clearly the easiest, 
and this is expected since there are only small vectors in the inner hexagon. By setting f equal 
to ½ for mode 1, 2 and 3 the results are the same: 

( )( )22 1 3 4cos 1
2
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phase

I m
Î

ϕ
π

+=
 

Below are two plots of the current at f equal 1 and f equal 0. At normal operation condition 
will f not be stuck to one of these two values but oscillate around ½.  

 

Figure 2.2-15 I2 RMS at f=1
 

 

Figure 2.2-16 I2 RMS at f=0
   

By having f equal to 0 there will be no current flowing in level 2 at a low modulation, which 
can be seen in Figure 2.2-16. The reason for this is that f is telling how much the small vector 
connected to the upper level should be on compared to the small vector connected to level 0, 
and since f is zero the vectors connected to level 2 will never be on. The simulations show 
that the RMS current is continuous in the modulation up to 1.1547.  
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Figure 2.2-17 and Figure 2.2-18 show analytical calculations and simulation results of the 
RMS current in level two respectively.  

 

Figure 2.2-17 Analytical calculations of I2 RMS current, f=1/2 

 

Figure 2.2-18 SIMULINK simulations of I2 RMS current at 1050 Hz 
switching and 50 Hz fundamental, f=1/2 

The results correlate very well despite that the analytical results has the premise of an infinite 
switching frequency while the simulation results are calculated with a switching frequency of 
1050 Hz. Thus the analytical expressions developed in this thesis can be used to make an 
estimate of the actual RMS current.  

2.2.3 Average Current Level 2 
 

In [15] there is made an estimate of the average or DC current flowing into level 2 and the 
same calculations are made here. The difference is that in [15] the calculations are done with 
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sinusoidal modulation and not space vector as in this case. The expressions are developed 
exactly the same way as for the RMS current, the only exception is that the current is not 
squared.  

The average current out of level 2: 
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The expressions of the RMS current in maple are changed such that the average current is 
calculated. The results are: 
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As for the RMS current the expressions for the average current will be equal if f is equal to ½. 
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If f is not ½, the average current will still be continuous but the expressions will not be the 
same, and the two figures below show the cases with f equal 0 and f equal 1.  

 

 
Figure 2.2-19 I2 Analytical average current, 

f=0 
 

Figure 2.2-20 Analytical average current, f=1 
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Having f equal to zero gives zero average current at a low modulation and the explanation is 
the same as for the RMS current; none of the upper switches will be on.  

As for RMS current it is also important to verify that the analytical expressions and the 
simulations give the same results for the average current in level 2.   

 
Figure 2.2-21 Analytical I2 average current, 

f=½ 
 

Figure 2.2-22 SIMULINK simulations of I2 
average current at 1050 Hz switching and 50 

Hz fundamental, f=½ 
 

The results correlate well in this case too, but there are some minor errors. With an φ equal to 
2π and a modulation index equal to 0.7 the simulated current is a bit above -0.5 while the 
calculated current is a bit below -0.5. The reason for the inaccuracy is probably the same as 
for RMS current; the switching frequency is much lower in the simulations than in the 
calculations.   

2.2.4 Capacitor RMS Current 
If it’s presumed that the current into the DC link from the rectifier side is DC and the ripple 
current goes through the capacitors it is shown in [15] that the capacitor RMS current will be: 

 2 2
, 2 2C rms rms avgI I I= −  (2.19) 

From formula (2.16) and (2.18) the capacitor current is: 

 ( )2, 3 9 3cos
16 4

C rms

phase

I
m

Î
mϕ

π π
 

+  
 

= ⋅ −  (2.20) 

This is the current when f=½. The plots from the calculations and from simulations are shown 
in Figure 2.2-21 and Figure 2.2-22. As seen the results are quite equal.  
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Figure 2.2-23 Analytical calculations of I 

capacitor RMS current 

 
Figure 2.2-24 SIMULINK simulations of 

capacitor RMS current at 1050 Hz switching 
and 50 Hz fundamental 

 

2.3 Double-Signal Modulation 
This is a quite new method and the purpose of it is to control the DC-bus. The method is 
described in detail in [5].  It is based on some of the same theory as for common offset 
voltage addition, but only the first offset value will be added and this is to increase the linear 
range up to 1.1547. This is given as 
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 The first approach to a new control signal will be to change the control signal as 

 '
i a offU U U= −  (2.22) 

When this is done, the next principle in this modulation technique is to split the control signal 
into two signals. The idea is to keep the voltage unbalance as small as possible, and at the 
same time as few switching transitions as possible. The optimal solution of this is found in [5] 
as  
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The positive signal will be compared to the upper triangular signal, while the negative signal 
will be compared with the lower triangular signal. By adding some offset signals to the new 
signals the DC-bus can be controlled. How this can be done will be described more in detail 
in the chapter about DC-bus balancing.   
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Figure 2.3-1: Control signals for Double-Signal PWM 

 

2.3.1 Current Flow with Double-Signal 
The calculations of the currents flowing when using Double-Signal is easier compared to 
Space Vector. It is enough to look at the upper control signals to calculate the average 
currents. The upper control signals tell how much each bridge leg is connected to level 2. 
Unlike Space Vector there is no need to divide into different modes. The upper control signals 
are given in the figure below for one fundamental period. 

 

Figure 2.3-2: Upper control signals for Double-Signal 

It is enough to calculate the current from 0 to 2π/3 due to symmetry. The upper control signal 
for phase C is zero during this interval and hence there will be no current contribution from 
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The result of the integral is given below. 
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The result is the same as for Space Vector which it should be. The calculation of the RMS 
current is a bit more complicated than the average. In the period from 0 to π/3 the control 
signal for phase A is greater than for phase B, which means that phase A will always be 
connected to the upper level when phase B is connected. So when phase B is connected the 
total current flowing in level 2 will be ia(t) plus ib(t). This is important to remember since the 
total current will be squared, so that the calculations will be (ia(t) + ib(t))^2 and not ia(t)^2 plus 
ib(t)^2. From π/3 to 2π/3 the control signal for phase B will greater than for phase A and 
hence the situation is opposite compared to 0 to π/3. The calculations will then be as below. 
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The result of the integral is given below. 
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By setting the f parameter in the equations for Space Vector to 1/2 it can be shown that 
Double-Signal and SV give the same result for RMS and average current, which is a good 
result. The capacitor current will be the same as for SV since both the average current and the 
RMS current are the same. In the next subchapter simulations will be done for different cos(φ) 
and different modulation factor to compare the theoretical current values with simulated 
values. The simulation results are shown in the figures below.  

 
Figure 2.3-3: SIMULINK simulations of RMS 

current at 1050 Hz switching and 50 Hz 
fundamental 

 
Figure 2.3-4: SIMULINK simulations of 

average current at 1050 Hz switching and 50 
Hz fundamental 
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Figure 2.3-5: SIMULINK simulations of 

capacitor current at 1050 Hz switching and 50 Hz 
fundamental 

 

 

The simulations correspond well with both Space Vector and the analytical results, which is 
expected due to the equations.   
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3 Overmodulation 
 

3.1 Description of Overmodulation 
Before DC-balancing is to be discussed there is one special area that needs to be studied and 
that is in the range of 2/sqrt(3) up to 4/π * Udc/2, which is called overmodualtion. This is a 
nonlinear region; the output of the converter is not proportional to the reference and 4/π*Udc/2 
is the maximum reachable output voltage. As long as the reference vector has an amplitude 
lower than 2/√3 it will not move into the area of overmodulation. The figure below shows the 
space vectors and the shaded area represents overmodulation area.  

aU

bU

cU
 

Figure 3.1-1: Space vector diagram showing the overmodulation area 

The grey vectors show the space vectors that can be created from the different switching 
states to get the desired reference vector. Combinations of these switch states can only 
produce average space vectors inside the hexagon at a finite switching frequency. A reference 
vector can be produced as long as it stays within the hexagon. As it can be seen in the figure 
there are some of the areas that are defined as overmodulation that are inside the hexagon, but 
since the reference vector is rotating it will not be possible to produce this vector the entire 
time. The output will be a space vector that points to somewhere on the hexagon border but 
not of a length that is sufficient to have a linear response. 

If the reference is 4/π, a linear response would result in six-step operation. Only the six large 
vectors should be used and they should be used once per fundamental period. The switching 
sequence at six-step is shown in the figure below.  
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Figure 3.1-2: Six-step operation 

Six-step is not reached for Double-Signal and Space Vector at this value, they take other 
vectors into use and hence the output voltage is less than wanted. Their switching patterns are 
shown in Figure 3.1-3 and Figure 3.1-4. Harmonic analysis of the line-to-line voltages show 
that Space Vector gives 2.0845 in output with an ma of 4/π. With a linear response the result 
should have been 2.2053. Double-Signal gives the output of 2.0860, which is close to the 
value of Space Vector. Hence the two methods have a quite similar response. The simulations 
show that the ma needs to be several times 4/π to reach six-step. Thus methods to improve the 
response in the nonlinear region should be implemented.   

 

Figure 3.1-3: Double signal switching states with a modulation index of 4/ π 

 

Figure 3.1-4: Space vector switching states with a modulation index of 4/ π 
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Overmodulation algorithm 

One method to improve the response in the nonlinear region is to be found in [11]. The 
method is based on a simple principle of keeping the reference vector to the point where it 
crosses the border of the hexagon. Hence the reference vector is rotated back or forth to the 
point where it crosses the hexagon border if it’s outside this border.  This is illustrated in the 
figure below. 

 

 

Figure 3.1-5: Correction of reference vector in overmodulation 

The figure shows that the reference vector is rotated back to the point where it crosses the 
hexagon border. With this method six-step will be reached when the amplitude of the 
reference vector is equal to the length of the large vectors, which is 4/3. Hence the method is 
improved, but it is not linear. With this method it is needed to find the place where the 
reference vector is crossing the hexagon border. Calculations of average currents when using 
space vector are done in [14], and here a convenient method for finding the angle where the 
reference vector crosses the area for the non-linear region is presented. Below is a flow chart 
of how to find the correct angle. 
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Figure 3.1-6: Flowchart of overmodulation algorithm 

Where β is the angle where the reference vector is crossing the hexagon border. So far this 
method is working the same way for both Space Vector and Double-Signal. The Space Vector 
algorithm is always using the three closest vector states. In very high modulation the use of 
small vectors is very limited, and hence the balancing possibilities are small.  

 

3.2 Simulation Results 
Previous in this report it has been discussed the importance of choosing a switching frequency 
which lower the total harmonic distortion and that three phase symmetry is achieved. The 
switching frequency was decided to be 1050 Hz and both Space Vector and Double-Signal 
were simulated. The maximum reachable line-to-line output voltage is 2.205 with ideal 
conditions and this should be reached with a modulation index of 4/3, which in line-to-line 
voltage is 2.309. The results are presented in Table 3.2-1 and Table 3.2-2. The total harmonic 
distortion is defined as 
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Table 3.2-1: 1st harmonic line-to-line output voltage with mf equal to 21 

 Line-to-line voltage modulation 
Signal 2.078 2.165 2.252 2.309 

Space vector  2.0562 2.1157 2.1666 2.1981 
Double-Signal 2.0488 2.1087 2.1597 2.1923 

 

Table 3.2-2: THDi with mf equal to 21 

 Line-to-line voltage modulation 
Signal 2.078 2.165 2.252 2.309 

Space vector  3.0% 4.01% 5.31% 6.06% 
Double-Signal 3.32% 4.11% 5.34% 6.07% 

 

Space Vector has a bit better 1st harmonic output and THDi but the differences are not very 
big. Both methods have improved their response and hence the method of locking the 
reference vector to the angle β has been successfully implemented. To show how sensitive the 
output voltage can be when six-step is reached there were made several simulations with 
different switching frequency and the results are collected in the table below.  

Table 3.2-3: 1st harmonic line-to-line output voltage with m equal 1.333 

mf Switching frequency 1st harmonic output THDi 
15 750Hz 2.1865 7.17% 
18 900Hz 2.1985 4.65% 
19 950Hz 2.2252 5.19% 
20 1000Hz 2.0534 6.80% 
21 1050Hz 2.1923 6.07% 
22 1100Hz 2.1353 5.38% 
23 1150Hz 2.1638 5.30% 

 

The table is showing how critical it is to choose a switching frequency which creates three 
phase symmetry. Even with an mf equal 23, which is synchronized switching, the 1st harmonic 
output is far from the wanted value. These results show that it should be aimed for having 
synchronized switching and three phase symmetry when the operation point is in 
overmodulation.  
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4 Symmetrical and Asymmetrical Modulation 
 

4.1 Comparison of Symmetrical and Asymmetrical Modulation 
Figure 4.1-1 and Figure 4.1-2 shows how a continuous control signal is sampled and the 
switch response in the bridge leg for symmetrical and asymmetrical modulation. In 
symmetrical modulation the control signals are sampled when the triangular waves reach their 
tops.  These values are used to determine when switches 1 and 2 are turned on and switches 3 
and 4 are turned off in the first half of a triangular period. Since there is no new sample, the 
same values are also used to determine when switches 1 and 2 are turned off and 3 and 4 are 
turned on in the last half of the triangular period. In asymmetric modulation however there is 
an extra sampling at the bottom of the triangular waves. Hence there are new  sampled values 
of the control signals to determine the turn off of switch 1 and 2 and turn on of switch 3 and 4 
in the last half period. 

 

Figure 4.1-1: Sampling with symmetrical modulation 

 

 

Figure 4.1-2: Sampling with asymmetrical modulation 

In the asymmetrical modulation it can be seen that there is turn on of switch 1 at 260°. This is 
in the last half period of the triangular signal. Extra turn on is added since there has been no 
switching in the first half period. In other words there is a turn on and a turn off of a switch in 
one half period. It’s worth noting that the extra sampling will result in additional calculation. 
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In Figure 4.1-3 and Figure 4.1-4 THDi of current at inductive load is simulated for 
asymmetric and symmetric modulation for Double-Signal and Space Vector. Asymmetrical 
modulation has a better THD than symmetric in general. The difference is however only 
significant when the switching frequency is low compared to the fundamental. 

 

Figure 4.1-3: THDi of inductive load at different mf with Double-Signal 

 

Figure 4.1-4: THDi of inductive load at different mf with Space Vector 
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In Figure 4.1-5 harmonics from simulations it is shown that some of the harmonics are 
considerably reduced by the use of asymmetrical modulation. 

 

Figure 4.1-5: Harmonic spectra with mf equal to 6 

Figure 4.1-6 and Figure 4.1-7 show the change of switching pattern going from symmetrical 
to asymmetrical modulation. The switching half periods are separated by a grey line. 

 

Figure 4.1-6: Switching vectors with symmetrical modulation during one fundamental 
period, mf equal 6 
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Figure 4.1-7: Switching vectors with symmetrical modulation during one fundamental 
period, mf equal 6 

 

 
Figure 4.1-8 First harmonic deviation at mf 

equal 6 
 

 
Figure 4.1-9 First harmonic deviation at mf 

equal 6 
 

 

In Figure 4.1-8 it can be seen that the deviation from the desired output for the first harmonic 
is much better for asymmetric modulation. The main advantage of asymmetric is the 
reduction of THDi at low switching frequency. Figure 4.1-9 shows that there is a decline in 
error as the switching frequency relative to the fundamental is increased when compared to 
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All the simulations listed in this section have until now been done with the first sampling of 
control voltage at angle 0. However the THD will be affected of what angle the samplings are 
done at. 

Figure 4.1-10 and Figure 4.1-11 shows the THDi for space vector modulation as a function of 
the angle the first sample of the control voltage is taken at. Only low switching frequencies 
relative to the fundamental are shown since higher frequencies do not vary to any 
considerable degree. The plots are of different length due to that the maximum delay of the 
first sample is limited by the length of the switching period.  Asymmetrical modulation has a 
much better THDi in general than the symmetrical. But it also seems that it has the best 
potential for minimizing THD by better sampling.  When the switching frequency is 6 times 
the fundamental the minimum THDi is less than half of the maximum.   

 
Figure 4.1-10 THDi at asymmetrical SV 

modulation ma=1.1547 
 

 
Figure 4.1-11 THDi at symmetrical SV 

modulation ma=1.1547 

 
Figure 4.1-12 THDi at asymmetrical DS 

modulation ma=1.547 

 
Figure 4.1-13 THDi at symmetrical DS 
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180 degrees later.  State 1 is the neutral point of the bridge leg. Its complementary state is 1. 
The negative state 0 has the complementary positive state 2. In Figure 4.1-14 and Figure 
4.1-15 the space vector diagram for the best and the worst case scenario is shown with 
reference vectors marked where sampling is conducted. The red vector illustrates sampling at 
the beginning of the first half of a switch period while the blue vector illustrates sampling at 
the beginning of the last half.  Asymmetric modulation obviously. The switch states for two 
switching periods that should have complementary switching to cancel even harmonics are 
shown below the space vector diagrams and the switching periods are marked in the diagrams. 
In the best case scenario in the first switching period it can be seen that the switch state [1 0 0] 
is used. However the complementary state [1 2 2] is not to be seen 180 degrees later but closer 
to 210 degrees later. However the switch states [2 0 0] have its complementary switch state [0 
2 2] at exactly 180 degrees later, in other words perfect cancellation. In the last half periods 
only complementary medium vectors are used and they match by 180 degrees. In the worst 
case scenario it can be seen there is very little match by 180 degrees of complementary switch 
states. 
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BEST CASE SCENARIO 

 

 

WORST CASE SCENARIO 

 

 
 

 

 

In Figure 4.1-16 lower order voltage harmonics as percentage of the fundamental is shown for 
the two scenarios.  It’s clear that there is very good cancellation of even harmonics in the case 
with the best sampling. Only variation of first sampling at a fixed modulation degree of 
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1.1547 has been discussed. In Figure 4.1-16 THD at fixed frequency and varied delay and 
modulation degree is shown. The switching frequency is 6 times the fundamental.  

 

Figure 4.1-16: Harmonic spectra for best and worst case of asymmetrical modulation mf 
equal 6 and ma equal 1.1547 

 
Figure 4.1-17: THDi with mf equal 6  

Figure 4.1-18: THDi with mf equal 9 
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5 DC-bus Balancing 
Some of this topic was treated in [13] and more has been added here. Because of this some of 
the text from [13] will be repeated in this master thesis.  

In a three-level neutral clamped converter DC-bus balancing is necessary to keep the voltage 
difference between the two capacitors small, such that the equipment connected to the 
capacitors don’t get too high voltage stresses. With no balancing, all of the DC-link voltage 
could be across only one of the capacitors. Another problem that occurs with an unbalance in 
the capacitor voltages is that the output voltage will not follow the reference value. This will 
also increase the harmonic distortion. Due to these two main problems with a voltage 
unbalance the problem must be solved, otherwise this converter topology cannot be use.  As it 
was mentioned in the previous chapter, it is Space Vector and Double-Signal PWM that has 
the most well documented methods of controlling the voltage across the capacitors. How 
these two methods should be used will be discussed in the next subchapters. Studies have also 
been made about using a PI controller for Space Vector. Since Space Vector is actively 
deciding which vectors that should be used while Double-Signal is calculating duty cycles for 
each phase it seems natural to describe the effect of the different vectors in the chapter of 
Space Vector. In addition there will be a separate subchapter regarding DC-bus balancing in 
overmodulation.  

 

5.1 DC-bus Balancing with Space Vector PWM 
In a NPC converter there are 27 vectors that give 19 different vector states. The three zero 
vectors and the big vectors don’t have any influence on the DC-bus balance. There exist six 
medium vectors that could and will influence the voltage balance. How to control this 
influence and a possible initial voltage unbalance is by use of the six small vector pairs with a 
total of 12 vectors. Which phase current that will go through the neutral point is depending on 
which vector that is being used. Table 5.1-1 gives an overview of the NP current with the 
different space vectors. This table is found in [2]. 

Table 5.1-1: Overview of the relation between space vectors and neutral current 

Positive small vectors iNP Negative small vectors iNP Medium vectors iNP 
100 ia 211 -ia 210 ib 
221 ic 110 -ic 120 ia 
010 ib 121 -ib 021 ic 
122 ia 011 -ia 012 ib 
001 ic 112 -ic 102 ia 
212 ib 101 -ib 201 ic 

 

All of the positive and medium vectors will discharge the lower capacitor as long as the 
belonging phase current is positive, hence Udcu will increase while Udcl will decrease. If the 
phase current is negative, the upper capacitor will be discharged and the lower charged. The 
negative vectors act the opposite way of positive and medium vectors. A table can be made to 
clearly see what happens with the two capacitors. 
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Table 5.1-2: Overview of capacitor charging with small, medium and large vector 

Type of vector Phase current > 0 Phase current < 0 
Positive small Charge upper, discharge lower Discharge upper, charge lower 
Negative small Discharge upper, charge lower Charge upper, discharge lower 

Medium Charge upper, discharge lower Discharge upper, charge lower 
Large No change in charge No change in charge 
Zero No change in charge No change in charge 

 

In Figure 5.1-1 an overview of the vectors influencing the capacitor voltages is given. In the 
figure the belonging phase currents are shown with a plus and minus sign. A plus sign is 
representing a positive vector, while a negative sign is representing a negative vector.  
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Figure 5.1-1: Small and medium vectors with their belonging phase currents 

Only medium and small vector contribute to charging of the capacitors. There is an important 
phenomenon to understand when Space Vector is being used and this phenomenon is that 
there will be third harmonic oscillations as long as medium vectors are being used. This does 
not need to be looked upon as an unbalance which has to be removed, but rather as natural 
oscillations. At ideal conditions the small vectors will cancel each other in every switching 
period, while the medium vectors will cancel each other during one fundamental period. The 
challenge with the DC-bus balancing is that the converter will never operate at ideal 
conditions. There are several factors that might create unbalance. 

- Finite switching frequency 
- The phase currents change during a fundamental period. 
- The reference change during a fundamental period 
- The electrical parameters of the load are not perfectly symmetrical.  
- The switches are not ideal 
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Even though there will be no unbalance at ideal situation there will be unbalances in real life 
unless balancing algorithms are implemented. In this report three different methods for Space 
Vector balancing will be presented. The technique of balancing is to differentiate the on-time 
for each vector within a small vector pair. In the part of PI controller the controlling parameter 
f is defined the same way as in the calculations for RMS currents in chapter 2. For 
proportional and prediction balancing there will be presented two controlling parameters.  

5.1.1 DC-bus Balancing with Proportional Controller 
To reduce the unbalances that occur it is necessary to control the use of the six small vector 
pairs. When a small vector pair is involved a total duty cycle of d1 is calculated, where d1 is a 
duty cycle of Ttri. Due to DC-bus balancing this duty cycle is divided into two:  

 1 1,p 1,n d d d= +  (5.1)    

Here d1,n is the duty cycle off the negative vector, while d1,p is the duty cycle of the positive 
vector. In a case where the voltage is balanced between the capacitors, these two duty cycles 
will be equal, but in most cases they will not. Due to this, a controlling parameter is needed, 
named f1.  By introducing f1, the expression for d1,n and d1,p will be as the following:  

 1, 1 1

1, 1 1(1 )
p

n

d f d
d f d

= ⋅

= − ⋅
 (5.2)  

If the reference vector is located in a sector with two small vector pair, another controlling 
parameter is needed, named f2. The expression for the duty cycles for the second vector pair 
will be exactly the same as for the first one. The easiest way to balance the voltage is to have 
a proportional regulator. To decide the values of f1 and f2 there are some parameters that have 
to be found.  By measuring the phase currents and capacitor voltages, the ratio between the 
two small vectors can be decided. Having a situation where Udcu is greater than Udcl, a vector 
that discharges the upper capacitor and charges the lower one has to be chosen.  In [7] a table 
is given of which vectors that should be used in different cases. The value of f1 and f2 should 
be 0.5 at balanced situations and it should be regulated depending on the voltage difference 
and direction of the current. The equations of f1 and f2 are then as shown below. 

 
1

1

abs(U -U )f  = 0.5 - k
(U +U )

abs(U -U )f  = 0.5 + k
(U +U )

dcu dcl

dcu dcl

dcu dcl

dcu dcl

⋅

⋅
 (5.3) 

K is in this case a constant which has to be given a proper value. As it can be seen from the 
formula, the value of f1 is depending on the difference in capacitor voltage. Depending on the 
sign of the current and whether the vector is a positive or negative vector one of the equations 
above has to be chosen.  
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5.1.2 DC-bus Balancing with Prediction 
A method which in some cases could give a better result than proportional regulation is by 
predicting the change in ΔUdc due to the medium vector, and by adding this change in voltage 
to the existing unbalance, the on-times of the small vectors can be calculated. According to 
where the reference vector is, three cases could occur:  

- one small vector pair, one medium vector and one large vector(case 1) 
- two small vector pairs and a medium vector(case 2) 
- two small vector pairs and zero vectors (case 3). 

Prediction gives a bit more complex situation than proportional regulation, because in each 
different case there will be different voltage contributions. With this method the small vectors 
are used to damp the oscillations from the medium vectors.  

 

Case 1: 

As described earlier, the way to control the medium vector’s influence on the voltage balance 
between the two capacitors is by use of the small vectors. To find the most correct value of 
the controlling parameter f1, the change in voltage due to medium vector has to be calculated. 
When this voltage and the voltage difference between the capacitors are known, the small 
vector pair can be regulated.  It is not sure that the vector pair can neutralize the unbalance; it 
depends on the on-time and the current. The voltage contribution from the medium vector is 
given by  

  medium
medium medium

tU i
C

= ⋅  (5.4)  

Here imedium is equal the neutral point current when the medium vector is being used and 
tmedium is the on-time for the medium vector. Umedium will increase Udcu if the neutral point 
current is positive and this voltage has to be added to the initial ΔUdc before deciding the 
value of the control parameter. The conditions will therefore be  

 
( ) 0
( ) 0

dcu dcl medium small

dcu dcl medium small

U U U i
U U U i

− + ⋅ >
− + ⋅ <

 (5.5)  

The neutral point current is ismall when the positive small vector is on and –ismall when the 
negative small vector is used. The total voltage contribution that is possible to get from the 
small vectors  is 

 small
small small

tU i
C

= ⋅  (5.6) 

Usmall is the maximum change in voltage that one of the small vectors can give either positive 
or negative. If the absolute value of dcu dcl mediumU U U− + is greater than the absolute value of 
Usmall, then only one of the small vectors should be used during a switching period to reduce 
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this voltage unbalance. In the opposite situation the small vector is able to remove the 
unbalance and it should be on until balance is reached. The rest of tsmall should be shared equal 
between the two vectors when voltage equilibrium is reached. A flowchart of the code is 
shown in the figure below. 

End
No

Yes

0?dcu dcl mediumU U U− − >

small
small small

tU i
C

= ⋅

0?dcu dcl medium smallU U U i− − ⋅ >Yes No

?small dcu dcl mediumU U U U< − − ?small dcu dcl mediumU U U U< − −

1 0f =

Yes

1 0.5 0.5 dcu dcl medium

small

U U Uf
U

− +
= − ⋅ 1 0.5 0.5 dcu dcl medium

small

U U Uf
U

− +
= + ⋅ 1 1f =

No No Yes

End End

EndEnd

 

Figure 5.1-2: Flowchart for deciding the values of f1 and f2 with SV prediction

 
As it can be seen in the calculations of f1, Usmall is the denominator and if Usmall have a value 
close to 0, f1 can get a higher/lower value than wanted. This will not cause any big problems 
due to the fact that Usmall has a low value and a change in f1 will not have a big influence on 
ΔUdc. 

  

Case 2: 

In this case there is one additional small vector pair compared to previous case. This gives a 
better chance of balancing the voltage unbalance. In a situation where f1 is unequal 0 or 1 
there is no need to actively control the second small vector pair and f2 is equal 0.5. Usmall is 
not big enough to bring ΔUdc to zero if f1 is equal 0 or 1, and in that case f2 needs to be 
actively controlled. The code for deciding f2 will be the same as for f1, the only difference is 
the following: 

 dcu dcl medium dcu dcl medium smallU U U U U U U− + ⇒ − + +  

By having f2 equal to 0 or 1 both vector pairs are used to their maximum to balance the 
capacitor voltages. If there is still an unbalance, this has to be balanced in the upcoming 
switching periods.  
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Case 3: 

In this case there will be no voltage contribution from a medium vector, so it will be easier to 
control the voltage in this case. Staying inside the six inner sectors will only require small 
adjustments of f1 and f2. As in case 2, f1 is controlled first. If only controlling f1 is not enough 
to bring the voltage to an equilibrium, then f2 also has to be controlled. According to the 
current and on-time to the small vectors, as in the other cases, it is not sure that the voltage 
unbalance is brought to equilibrium within only one switching period. 

  

5.1.3 Space Vector Balancing with PI Controller 
In order to get a good understanding of the response of the DC-bus voltages an analysis of the 
neutral point current should be made. As it has been described earlier in this report it is the 
use of small vectors and medium vectors that create a neutral point current which again 
influence the DC-bus voltages. In [10] the expression for the neutral point current is given as 
the following for Space Vector 

 1 1 1 2 2 2( ) (1 2 ) ( ) (1 2 ) ( )NP small small small small medium mediumi i t f t i t f t i t t= ⋅ − ⋅ + ⋅ − ⋅ + ⋅  (5.7) 

This is a very general expression and in order to find the average current it is needed to evolve 
expressions for the duty cycles for the different vectors in the modulation modes. In an ideal 
situation the neutral point current should be zero during one switching period in order to keep 
the DC-bus voltage close to equilibrium. In [14] the average neutral point current is given, but 
the calculations are not shown and the scaling is also different compared to this master thesis. 
Some errors also occurred when the results were plotted. It was therefore decided to calculate 
the neutral point current in this thesis to certify the results from [14]. In [13] and [1] there 
were used two balancing parameters. In [14] only one is used and that will also be the case in 
the equations derived here. The f parameter is the duty cycle of the small vector connected to 
level 2. To be able to calculate the average NP current it is necessary to divide the integral 
into different regions, as it was for the average and RMS currents calculated earlier in this 
report. The calculation for mode 1 which is the six inner hexagons is given as the following 
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The duty cycles are to be found in chapter 2 and the result of this integral is given below 

 , 3 (1 2 ) cos
2

NP avg

phase

I
m f

Î
ϕ= ⋅ ⋅ − ⋅  (5.9) 
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As it can be seen the neutral point current will be equal to zero in the six inner sectors if the 
sharing function is 0.5. In a practical situation it is not sure that iNP will be equal to zero by 
having f equal to 0.5. This equation is derived by setting the switching frequency equal to 
infinity, but for this type of application it is more likely that it will be in the area of 1000 Hz. 
In mode 2 the calculations are more complicated because the reference vector is partly in the 
six inner hexagons and partly outside.  

 

As in the calculations in chapter 2 it is necessary to introduce the angle β. β is in this case 
given as the following 

 1 1sin
33 m
πβ −  = − ⋅ 

 (5.10) 

At this angle the reference vector crosses the border of the six inner hexagons and between β 
and π/3 the reference will use medium and large vectors. Due to this the current calculation 
has to be divided into regions as shown below in this mode.  
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(5.11) 

The result of this integral is given below 
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 (5.12) 

By having f equal to 0.5 the average current will be zero, which means that the influence from 
the medium vectors will cancel each other. The next mode is when the reference vector is 
outside the six inner hexagons and inside overmodulation. Overmodulation will be treated in 
another chapter in this report. The integral for mode 3 is given below. 



50 
 

 

( ) ( )
( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

( ) ( ) ( )

1 1
sin

3 3

0

,

2
3 sin cos

3

3 1
3 cos sin 2 2 1 cos

2 2

3 sin 1 2 1 cos

3 1 2
3 cos sin 1 cos

2 2 3

3
3 co

2

3

2

m

NP avg

phase

m

d

m f

m f

m

m

I

Î

π
π

ζ ζ ϕ

ζ

ζ ζ ζ ϕ

ζ ζ ϕ

π
ζ ζ ζ ϕ

π

−
−

⋅
⋅ ⋅ ⋅ − − +

⋅ ⋅ − ⋅ − ⋅ + ⋅ − ⋅ − −

− ⋅ ⋅ + ⋅ − ⋅ − − +

− ⋅ ⋅ − ⋅ − ⋅ − ⋅ − −

+ − ⋅ ⋅ ⋅

=

 
 
 

 
 
 ∫
            

   
   
   

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

1

1
sin

3

1
sin

3 3

sin

1 2
s sin 1 2 1 cos

2 3

3 1 2
3 cos sin cos

2 2 3

3 1 2
3 cos sin 2 2 1 cos

2 2 3

m

m

d

f

m

d

m f

π

ζ

π
ζ ζ ζ ϕ

π
ζ ζ ζ ϕ

ζ

π
ζ ζ ζ ϕ

−

−

−

⋅

−
⋅

− ⋅ + ⋅ − ⋅ + −

⋅ ⋅ ⋅ − ⋅ ⋅ − − +

⋅ ⋅ − ⋅ − ⋅ + ⋅ − ⋅ + −

 
 
 

 
 
 

 
 
 
 

∫  
 
            

   
    

            

( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )

( )

1

3

1

3

2 1
sin

3 3

3

2
3 sin 2 2 1 cos

3

3 1
3 cos sin cos

2 2

3 1 2
3 cos sin 1 2 1 cos

2 2 3

3 sin 1 cos

3 1
3 cos

2 2

m

m
m f

d

m

m f

m

m

π

π

π

π
ζ ζ ϕ

ζ

ζ ζ ζ ϕ

π
ζ ζ ζ ϕ

ζ ζ ϕ

ζ

−

⋅

−
⋅

− ⋅ ⋅ + ⋅ − ⋅ + − +

− ⋅ ⋅ ⋅ − ⋅ ⋅ −

⋅ ⋅ ⋅ − ⋅ + ⋅ − ⋅ + − +

⋅ ⋅ − ⋅ − +

⋅ ⋅ − ⋅ − ⋅

 
 
 

 
 
 

∫

 
 
 ∫
         

   
   
   

( ) ( ) ( )( )
( ) ( ) ( )

( )( ) ( ) ( )( )

1

1

1

1
sin

3 3

2 1
sin

3 3

2

3

1
sin

3 3

2
sin 1 2 1 cos

3

3 1
3 cos sin cos

2 2

2
3 sin 2 2 1 cos

3

m

m

m

d

f

m

d

m f

π

π

π

π

ζ

π
ζ ζ ϕ

ζ ζ ζ ϕ

ζ

π
ζ ζ ϕ

−

−

−

+
⋅

−
⋅

+
⋅

+ ⋅ − ⋅ − − −

− ⋅ ⋅ − ⋅ − ⋅ ⋅ − +

− ⋅ ⋅ + ⋅ − ⋅ − − −

 
 
 

 
 
 

 
 
 











 
 
 
 ∫
 
    
    
    

  
    ∫

  
 











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 (5.13) 

The result of the integral is given below 
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(5.14) 

A 3D plot in MATLAB can verify that the results are continuous. This is shown for an f equal 
to 0 and 1. 
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Figure 5.1-3: Average neutral point current with f equal to 0 

 

Figure 5.1-4: Average neutral point current with f equal to 1 

As it can be seen in both figures the current is continuous in the whole spectra. Hence the 
calculations seem correct. The response is the same for f equal 0 and 1; it is only the sign that 
is changed. The figures show that the highest average neutral point current is reached at a 
modulation index in the area around 0.6, which is natural since the small vectors have the 
longest on-time in this area. It is also in this area space vector has the best regulation 
possibilities, due to little influence from the medium vector and the small vectors have 
maximum on-time.  

The best way of deciding the parameters in the DC-bus regulators is by studying the effect of 
changing the parameters in the equations for the neutral point current. Since this is a non-
linear system, linearization is needed in order to decide the values in the regulators. The 
approach in this report will be the same as in [14], and more details regarding linearization is 
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to be found in [20]. For this converter a positive neutral point current will increase the voltage 
in the upper capacitor voltage and a negative iNP will decrease the upper capacitor voltage. 
The following expression can then be written: 

 dc
NP

d UC i
dt
∆

=  (5.15) 

iNP has the three variables m, φ and f. To make this system linear around a working point the 
expressions for iNP needs to be differentiated with respect to the three variables. The value of f 
in the working point area will be 0.5. It can be shown that the value of the derivation of m and 
φ will be zero for all the modes having f equal to 0.5.  Hence it is only the derivation of f that 
needs to be taken into consideration when deciding the parameters in the chosen regulator. 
The total transfer system with regulator will then be as shown in the figure below. 

1 NPi
C f
∂

∂

f
Controller

1
s-

f
dcU∆

+
*
dcU∆

 

Figure 5.1-5: Block diagram for PI controller 

When the system is given then the parameters in the regulator can be chosen. What need to be 
decided are the crossing frequency and an optimization of the parameters by simulations. 

In [13] two different control strategies of balancing the DC-bus voltage were presented. 
Proportional regulation gave slightly better THDi than prediction. One problem that might 
occur with proportional regulation is that a stationary error may take place. To be able to 
remove a stationary error it is necessary to have a PI controller. Then integrator part of the 
controller will then be able to remove a possible stationary error. The drawback of having a PI 
controller compared to a proportional regulator is that it makes the system slower. Thus it is 
important to check with simulations whether a PI controller is necessary or not and how the 
response will be.  

The parameters of the PI controller were decided from the calculations of the neutral point 
currents. Hence the values in the controller will be adaptive. The same goes for the 
proportional controller. The method of deciding the parameter values for the PI controller is 
found in [21]. From the block diagram above the following criteria can be given for the 
transfer function. 
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By setting the crossover frequency to 100 Hz and the phase margin to 60 degrees, a 
suggestion of the parameter values can be given for the different modes. By solving these two 
equations the expressions of ki and kp are as the following. 
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 tani
p pm

c

kk φ
ω

=  (5.18) 

The next step from this is to find the different derivatives of iNP with respect to f for the 
different modes. The results are given in the table below. 

Table 5.1-3: Derivatives of neutral point current 

Mode 
NPi

f
∂

∂  

1 3 cos( )m i ϕ− ⋅ ⋅ ⋅  
2 ( ) 2

2

6 cos 1 3 13 sin
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i mm m
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2 1 2

2

cos 3 1 13 3 9 sin 3
3

i m m m m
m m m
ϕ
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π
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 ⋅ ⋅ −  − ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅   ⋅ ⋅  

 

 

As it can be seen from the table above the values of ki and kp will be dependent on the 
modulation index and cos(φ), hence they will probably work more dynamically compared to 
fixed values. To get the best values small adjustments by simulations are needed. One 
problem that will occur at pure inductive load and with very low current is that the 
denominator in ki will go to zero and hence ki will go to infinity. Because of this there should 
be some limitations when φ approaches π/2.  
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5.2 DC-bus Balancing with Double-Signal 
Double-Signal PWM is the other method where active DC-bus balancing can be used. As it 
was described earlier; the method is to split the control signal into two signals. The idea 
behind splitting the control signal into two is that the average neutral point current should be 
zero during one switching period. In [5] the average neutral point current is given by 

 np a b canp bnp cnpi d i d i d i= + +  (5.19) 

Where dinp is the duty cycles for the bridge legs when switch 2 and 3 is on. It is defined as
  

 1 , { , , }inp in ipd v v i a b c= + − =  (5.20) 

The solution to keep the average neutral point current equal to zero and to have a minimum 
switching transitions is derived in [5] (in [10] an expression for the iNP is presented for Space 
Vector modulation). Hence the control signals are given as in (2.23). In theory it should be 
enough to keep this average value equal to zero to prevent voltage unbalance. However, the 
operation of the converter and response of the converter and load will not be ideal in real 
operation. This will lead to drift of the capacitor voltages if there is no balancing.  

Splitting the control signal into two signals is not enough to control the DC-bus. Proper offset 
signals needs to be added to keep the capacitor voltages close to equilibrium. In [5] 
proportional regulation is presented and in [6] regulation with prediction of the phase currents 
influence is presented. Both methods will be described more in detail in the next two chapters. 

 

5.2.1 DC-bus Balancing with Proportional Regulation 
One of the goals when the DC-bus should be balanced is to reach voltage equilibrium without 
increasing the switching frequency of the devices. For DSPWM the control signal is split into 
two signals, and due to this each signal is clamped to zero during one third of a fundamental 
period. It is not wanted to change the control signals when one of them is zero because this 
would increase the number of switching transitions dramatically. In other words there is only 
a possibility to change the control signals in one third of a fundamental period for each phase. 
Hence the offset signal can only be added to one bridge leg at all times. The drawback of this 
method is that the dynamics of the system is slow and it will take some time to balance the 
voltage. The offset signal which is proposed in [5] is given as  

 ( ) ( 1)ioff dc dc i ip inU k U sign U i sign U U= ∆ ⋅ ∆ ⋅ − −  (5.21) 

ΔUdc is the voltage difference of Udcu-Udcl. This offset signal should be added to Uip and 
subtracted from Uin The reason for the expression sign(Uip – Uin – 1) is that one special 
situation could occur when the signal is split into two and this is shown in the figure below, 
which is showing the same as fig. 4 in [5]. 
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Figure 5.2-1: Two possible situations that may occur by adding an offset signal. A) 
Normal switching situation. B) Too big offset signal is added  

T∆  is defined as ton,upper – ton,lower and a positive value is a normal operational situation. Figure 
5.2-1 a) is showing such a situation where switch 2 is turned on before switch 1, which is 
wanted. In b) a too big offset is added and due to this switch 1 turning on before switch 2. 
Because of this situation the expression sign(Uip – Uin – 1) is added, but as they conclude in 
[6], it is not necessary with it. Sign(Uip – Uin – 1) will always return -1 since vin +1 will 
always be greater than vip when no offset signal is added. Since (4.10) is added to Uip and 
subtracted to Uin equation (2.11) is still valid.  

It is important to avoid that switch 1 is turned on before switch 2 and switch 2 should not be 
turned off before switch 1. Due to this the offset signal has some limitations. If a situation as 
in Figure 5.2-1 b) occurs it is important that the offset signal is reduced. The control statement 
is the following. 

 1ip off in offU U U U+ > − +  (5.22) 

If this is the case, then the offset signal has to be reduced to the following 

 
1

2
in ip

off

U U
U

− +
=  (5.23) 

An offset that is too large will make either the lower or the higher control signal or the both of 
them go into saturation. For the higher control signal it means that it has a value higher than 1 
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(positive saturation) or lower than 0 (negative saturation). For the lower control signal it 
means that it has a value higher than 0 (positive saturation) or lower than -1 (negative 
saturation). In these cases the output voltage of the bridge leg will not be what is desired. 
However the upper control signal will not go into positive saturation because the previous test 
has already made sure that the duty cycle of the upper switch is lower than the duty cycle of 
the lower switch. For the same reason the lower control signal will not go into negative 
saturation. How to solve this is given in Table 5.2-1.  

Table 5.2-1: Limits for saturation of Double-Signal DC-bus balancing 

Case Problem description Condition Final offset 

1 
Negative saturation on the upper control signal 
and this is of a greater magnitude than a potential 
positive saturation on the lower control signal 

0ip offU U+ < and 

ip off in offU U U U+ < − +  off ipU U= −  

2 
Positive saturation on the lower control signal 
and this if of a greater magnitude than a potential 
negative saturation on the upper control signal 

1 1in offU U+ − > and 

ip off in offU U U U+ ≥ − +  off inU U=  

 

 

5.2.2 Dc-bus Balancing with Prediction 
This method is based on predicting the neutral point current needed to balance the capacitors 
and then calculate the offset needed on the upper and lower control signal to achieve this 
current. The method is published in [6]. The desired neutral point current is expressed as: 

 cl cu
NP

tri

U Ui C
T
−

=  (5.24) 

The offset is added to the upper and lower control signal of only one leg at time. Table 4.2-2 
lists the solution obtained in [6] and in what intervals the control signals are added.  
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Table 5.2-2: Offset signals for Double-Signal with prediction 

Phase with either Uupper or 
Ulower clamped to zero Offset 

Ub and Uc 
11

2 1 1
NP an ap

aoff
bn bp b cn cp c

i U U
U

U U i U U i

− +
= ±

− − + − − +
 

Ua and Uc 
11

2 1 1
NP bn bp

boff
an ap a cn cp c

i U U
U

U U i U U i

− +
= ±

− − + − − +
 

Ua and Ub 
11

2 1 1
NP cn cp

coff
an ap a bn bp b

i U U
U

U U i U U i

− +
= ±

− − + − − +
 

 

The sign of the solution is decided with the same test as in the previous section. The 
limitations to the offset signals are also the same as in the previous section. If the denominator 
is close to zero the offset could get too high. This will happen very seldom and the limitations 
to the offset signal will limit this effect. The phase current which the offset will be added to 
will have a small value in the cases when the denominator goes to zero. This can be seen in 
[6].  

 

5.3 Simulations Results 
In this part simulations of the PI controller have been made and there have also been made 
several simulations for the different controlling methods and they are compared.  

5.3.1 Simulations PI Controller for Space Vector 
Due to limitations in the simulation programs it is not possible to simulate for a long time 
with short time steps. Hence it is hard to see what will happen with the contribution from the 
integral part. If the time steps are increased too much the accuracy is not good enough and 
strange results occur.   

The approach shown above was used to determine the parameters for the PI controller. Some 
very interesting results were found and the simulations below show what happened. When 
using the same sign as in the calculations for ki the value of the contribution increased 
throughout the entire time interval and made the system unstable. With smaller values of ki 
the contribution still increased, but not as steep as for higher values. This is shown in the 
figure below. 
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Figure 5.3-1: Response with positive ki 

This figure shows the contribution from the integral part of the PI controller. The figure is 
only showing up to 0.9 seconds due to limited data capability at this high resolution, but the 
graph continues with the same slop until it becomes unstable and increases rapidly. Hence it is 
not wanted to operate with the same sign for ki as found in the table. 

Because of the bad result the sign was changed. This gave a much better result than in 
previous case and is shown below.  

 

Figure 5.3-2: Response with negative ki 

With a higher value of ki the contribution from the integral part will go faster to zero, but will 
also make the system more sensitive. What is really interesting to see here is that this value is 
very low. It has not a big influence on f, most of f is depending on the contribution from the 
proportional part. The simulations are showing that there seems to be few advantages of 
having a PI controller compared to a P controller for the setup used in the simulations. In real 
life implementation there might be a need for a PI controller due to the fact that there might 
be some disturbances that will work against f. This is something that needs to be tested in the 
laboratory.  
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5.3.2 Simulation Results of 1st Harmonic Output Voltage, THDi and Maximum 
Voltage Unbalance at Stationary Operation 

In this part there have been done some simulations in order to compare the different balancing 
strategies. In all the simulations the amplitude has been 1000 amps for all of the phase 
currents. In [13] the switching frequency was set to be 1000 Hz, while in this report it will be 
1050 Hz. As it has been discussed previous in this report this could give a better result since 
there are three-phase symmetry with 1050 Hz. 

Table 5.3-1: 1st harmonic line-to-line output voltage with DC-bus balancing. Cos(φ) 
equal to 1 

 Line-to-line voltage modulation 
Signal 0.8660 1.3856 1.7320 2.0 
Space vector proportional 0.8513 1.3713 1.7165 1.9844 
Space vector prediction 0.8517 1.3714 1.7169 1.9836 
Space vector PI 0.8515 1.3712 1.7167 1.9844 
Double-Signal proportional 0.8534 1.3714 1.7165 1.9844 
Double-Signal prediction 0.8527 1.3708 1.7161 1.9847 

 

 

Table 5.3-2: 1st THDi with DC-bus balancing. Cos(φ) equal to 1 

 Line-to-line voltage modulation 
Signal 0.8660 1.3856 1.7320 2.0 

Space vector proportional 1.05% 0.86% 0.88% 0.92% 
Space vector prediction 1.06% 0.89% 0.99% 0.96% 
Space vector PI 1.05% 0.87% 0.90% 0.92% 
Double-Signal proportional 1.21% 1.48% 1.79% 1.89% 
Double-Signal prediction 1.22% 1.47% 1.79% 1.88% 

 

The values in Table 5.3-1 show that there are very little differences in the 1st harmonic output 
voltage. It can be concluded that all of the modulation methods works the way they should 
and the same results were found in [13]. In Table 5.3-2 the THDi results are collected. The PI-
controller for Space Vector has values very close to the proportional version, which is 
expected since it has been shown that the integral part of the PI-controller has a low 
contribution compared to the proportional part. The values are also better compared to having 
a switching frequency of 1000 Hz. 

 

5.3.3 Simulation Results with Different Capacitor Values  
When this model is to be implemented in real life the designer will always try to find two 
capacitors with as equal capacitances as possible, but they will not be exactly the same. As 
time goes by there will also be some fluctuation in the values. Hence it is important to find out 
whether the balancing strategies are able to balance conditions with different capacitor values. 
The simulations are done with a capacitor value of 1900 microfarad on the upper capacitor 
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and 1700 microfarad on the lower capacitor. A situation with such a big capacitor difference 
will most likely not occur in a real life implementation but it shows very well the balancing 
possibilities of the algorithms. The modulation index is 1.0 and the cos(φ) is 1.   

The first simulation is done with the PI controller and is shown in the figure below. 

 

Figur 5.3-3: Space Vector PI controller with different capacitor values 

 

 

Figur 5.3-4: Space Vector proportional balancing with different capacitor values 
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Figur 5.3-5 Space Vector prediction balancing with different capacitor values 

 

 

Figur 5.3-6: Double-Signal prediction balancing with different capacitor values 

 

Figur 5.3-7: Double-Signal proportional balancing with different capacitor values 
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the ratio in capacitor voltage. Hence the initial voltage on the upper capacitor is 
10 000*1900/(1900 + 1700) = 5278 V which can be read from the figures. It can from this be 
concluded that all of the modulation methods are able to handle such a situation.   

In a real life implementation it is not sure that the load in every case will be equal for all of 
the phases. Thus it should be simulated and tested whether the control algorithms are able to 
handle this type of situation. In this report there have been done simulations with two current 
sources as load and with 1000 A as amplitude on phase A current source and 707.1 A as 
amplitude on phase B current source.    

 

Figure 5.3-8: Space Vector PI controller balancing with unsymmetrical load 

 

Figure 5.3-9: Space Vector proportional balancing with unsymmetrical load 
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Figure 5.3-10: Space Vector prediction balancing with unsymmetrical load 

 

Figure 5.3-11: Double-Signal proportional balancing with unsymmetrical load 

 

Figur 5.3-12: Double-Signal prediction balancing with unsymmetrical load 
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Hence it can be concluded that the methods balance the DC-bus with such errors at normal 
operation conditions. If the phase current is very low the balancing possibilities are more 
limited and it will also take much longer time to remove a possible voltage offset.  

 

5.4 Balancing in Overmodulation with Space Vector 
In overmodulation the use of medium vectors decrease from a maximum use at a modulation 
index of 2/√3 to no use at 4/π. This is because the angle is locked closer and closer to the large 
vectors while the reference is in overmodulation. Hence the 3rd harmonic DC-bus oscillation 
due to the medium vectors reduces from maximum to zero when increasing the modulation 
index in overmodulation.   

DC-bus balancing with small vectors is possible only when the reference vector is inside the 
hexagon. The use of small vectors when inside the hexagon decreases as the modulation 
increases. At the same time the number of instances the reference is inside the hexagon 
decreases as the modulation increases. At six-step no small vectors are used. Hence the 
capability for DC-bus balancing with small vectors is reduced to none as the modulation 
increases to the absolute limit of modulation. 

In [13] it is shown that at a high modulation index in the linear region and highly reactive load 
will create large 3rd harmonic oscillations. It is also shown that this does not necessary create 
a considerable harmonic distortion on the output voltage of the converter.  

Even if the third harmonic oscillations on the DC-bus are accepted there is still a need to 
balance other unbalances. As mentioned the capability of the small vectors to remove an 
unbalance decreases with modulation index in the overmodulation region and is gone at six-
step, a new balancing strategy for the region outside the hexagon is necessary. Figure 5.4-1 
shows a technique proposed for balancing. 
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Figure 5.4-1: Flowchart of balancing in overmodulation 

The balancing strategy is based on control of the neutral point current by controlling the 
medium vectors duty cycles. If the medium vector closest to the reference vector has a 
positive influence on the DC-bus balance, the reference vector is shifted along the hexagon 
border so it is closer to the medium vector. If the medium vector has a negative influence on 
the dc bus balance the reference is shifted further away. This will reduce the accuracy of the 
modulation since the medium vector is shorter than the large vector. With reactive load a shift 
closer to the medium vector will occur every other π /3 intervals, while a shift away from the 
medium vector will occur the other intervals. This is because the phase current the medium 
vector controls is equal but with opposite sign every π/3 interval as illustrated by Figure 5.4-2. 
The phase current this overmodulation balancing scheme uses for balance control is the same 
as double signal uses. 

 

Figure 5.4-2: Currents that can be used for balancing at inductive load 
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In order to get a better understanding of how the voltages acts when operating in 
overmodulation there has been developed equations of the current in the following subchapter. 

 

5.4.1 Calculations of Neutral Point RMS Current 
As it has been discussed earlier in this report there are natural 3rd harmonic oscillations that 
occur in the NPC. In this chapter an analysis has been made of the RMS values of the neutral 
point current. This result can be used in order to get a better understanding of the oscillations.   
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(5.25) 

As it can be seen the integral is divided into four integrals between 0 and π/3 and it will be 
described here. In the first integral the space vector is inside the big hexagon, and hence it can 
be calculated as normal. In the second integral some modifications need to be done. This 
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integral goes from where the reference vector crosses the hexagon border and this angle 
should be used to calculate the duty cycles in this integral. After π/6 the locked angle is 
changed to π/3 – β, and this will be the new angle used to calculate the duty cycles until the 
reference vector once again is inside the hexagon border. The last four integrals have the same 
approach as the first four. The result of the integral above is shown in Figure 5.4-3.  
  

 

Figure 5.4-3: Analytical calculation of the neutral point RMS current in overmodulation 

From simulations it seems like the calculated RMS value and the simulated RMS value of the 
neutral point current is close in value for some Cos(φ). With a Cos(φ) close to 1 the error 
between the calculated RMS and the simulated RMS is increased. With an m equal to 1.2 the 
calculated RMS with an f equal 0.6 is 175 A, while the simulated is 280 A. With the same m 
but with a Cos(φ) equal 0 the simulated RMS current was 590 A while the calculated was 607 
A. One possible explanation why good results are achieved with Cos (φ) equal to zero could 
be that the medium vector current is the largest current as found in [13]. The small vectors are 
controlled by f and f is constantly changing during the simulations. In the theoretical plots f is 
kept constant and the changing f could lead to more distorted current and this again could 
distort the RMS current.  

The integral solved above finds the RMS, and thus it cannot be used to calculate the 3rd 
harmonic oscillations accurate enough. If the 3rd harmonic component is to be calculated the 
answer will be very long and not very practical to use. As long as the f is not 0.5 in average 
there will be a DC part in the RMS current which also will influence the RMS current used in 
the calculations. This equation is also only developed for the case where there is only one f, 
such that the case where there are two balancing parameters could not use this approach. Thus 
there should be looked to alternative balancing strategies. 
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5.4.2 Implementation of Balancing Algorithm 
Simulations have shown how critical it is to choose a switching frequency which ensures 
three phase sampling symmetry, otherwise the output voltage might be far from the wanted 
value. This will create symmetry which can be used in the balancing algorithm. Since the 
current is having 3rd harmonic oscillations the voltage difference should be zero three times 
during one fundamental period with infinite switching frequency. The capacitor voltage with 
SV PI controller is shown in the figure below. 

 

Figure 5.4-4: Voltage oscillations in overmodulation 

The figure is showing the voltage on the upper and lower capacitor during one fundamental 
period which lasts 0.02s. As it can be seen there is a very clear third harmonic component 
which should not be removed. There are two different ways of solving the balancing by 
saying that the voltage difference should be zero for certain angles. If it is accepted that the 
upper capacitor will have the highest values and the lower capacitor the lowest values as in 
the figure then there should be zero voltage difference at the reference angles 2π/3, 4π/3 and 0 
or 2π. By measuring the voltage difference at these points the extra voltage balancing can be 
added. The small vectors will be regulated as usual when the reference vector is inside the 
hexagon, but due to their limitations the β might have to be changed and this is decided 
according to the voltage difference at the mentioned angles. This is a fast method of deciding 
whether there are some unbalances or not.  

As it can be seen in Figure 5.4-4 the average voltage of the upper capacitor is a bit higher than 
5kV and the lower capacitor has an average voltage lower than 5kV. This means that ΔUDC 
will not oscillate around zero, but it will have a DC component. For most of the methods 
studied in this report and in [13] there are some DC-offsets in most situations. If this DC-
offset should be removed the parameters need to be optimized in all situations. The DC-offset 
can be removed in overmodulation but then ΔUDC will not be zero at 0, 2π/3 and 4π/3. If there 
is a margin where the extra balancing in overmodulation is disabled the small vectors will do 
some balancing and the DC-offset can be removed.   
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The balancing algorithm is implemented such that there will be a measurement of the 
unbalance at 0, 120 and 240 degrees. At these angles there should be no voltage unbalance at 
ideal conditions. If the voltage difference is within a limit there will be no change in the β 
value and the needed balancing will be taken care of by the small vectors. The other situation 
is that the voltage unbalance is greater than a certain limit, and then there is a need to change 
the angle β. This is shown in the figure below. 
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Figure 5.4-5: Maximum balancing in overmodulation 

In the figure there is a maximum value of how much the corrected reference vector can be 
moved back and forth, this is done in order to not change the output value to much. There 
have been made simulations with a stiff DC-bus offset to find the THDi. In these simulations 
fixed shift to/from medium vector is used instead of proportional balancing. The results are 
shown in Figure 5.4-6. 
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From the figure there is one parameter that goes from 0 to 1000 named shift of medium vector. 
The distance from the medium vector to the large vector is decided to be 1000, and the shift 
parameter is telling how much the originally locked angle can be moved toward or away from 
the medium vector. The reason for the flat areas is that for the particular modulation index the 
locked reference vector cannot be shifted more because then it will pass the medium or large 
vector. The steep steps from some of the modulation indexes is due to how many times it is 
sampled outside the hexagon and have the possibility to be shifted. With a ma equal to 1.333 
the distance can be shifted from 0 to 1000, which is natural since it is locked to every large 
vector.  

There have been made simulations in order to see how the response time of removing an 
initial voltage offset of 4000 V for different ma and cos(φ). With this method the reference 
vector cannot be moved more than a distance of 100, when the total distance between medium 
and large vector is 1000. In this case it is asymmetrical modulation that has been used and the 
switching frequency was 1050 Hz.   

 

Figure 5.4-7: Time to remove an unbalance of 4000 V (c=1.8mF, Î=1000A) in 
overmodulation for asymmetrical Space Vector 
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modulation index is high. Then the small vectors have very limited on-time and the imedium is 
having a low value. The only possibility of reducing the balancing time at this area is to 
increase the limit of how much the reference vector can be adjusted.   

To see how much the balancing algorithm is influencing the 1st harmonic output the voltages 
across each capacitor were given a constant value. Then it was simulated for different 
modulation indexes and different adjustment limits. The results are given in Figure 5.4-8. 

 

Figure 5.4-8: 1st harmonic line-to-line voltage at different shifts and modulation indexes 
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vector is locked to an angle. At a high modulation index the limit of the shift should not 
exceed 100 too much, but even at 200 the output line-to-line voltage has a value of 2.187 
which is 99.2% of the wanted output value. One interesting result is that the reference vector 
can be shifted as much as 500 and still have a better 1st harmonic output compared to for 
instance a switching frequency equal 1000 Hz. These simulations confirm that this method 
can be used without changing the 1st harmonic remarkably.   
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Since Double-Signal has a different modulation technique than Space Vector it was tested to 
see how DS was able to remove an initial voltage offset with a modulation index close to six-
step. The response time was very slow and hence it was decided to implement the same 
balancing algorithm as for Space Vector. The response with this method is shown in the 
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Figure 5.5-1: Time to remove an unbalance of 4000 V (c=1.8mF, Î=1000A) in 
overmodulation for Double-Signal 

As seen the response is different compared to Space Vector at a low modulation index. This is 
because their balancing techniques are different when the reference hits inside the hexagon. 
At higher modulation the overmodulation balancing technique becomes more dominant and at 
six-step the response is the same as for Space Vector.    
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6 Laboratory Work and Comparison with Simulations 
One of the tasks in the problem description was to implement some of the control methods 
analyzed in [13] and in this master thesis to an already built three level converter at NTNU. In 
February it was decided that the methods should be implemented by using a FPGA with help 
from Kjell Ljøkelsøy at SINTEF Energy Research Ph.D. student Sverre Gjerde at NTNU. The 
programs used in the implementation were Xilinx and Active DSP. The results where first 
captured on the oscilloscope and then the data was imported to the laptop with “Open Choice 
Desktop” and saved as a CSV-file which again was imported to MATLAB.   

 

Figure 5.5-1: FPGA card in the laboratory 

 

Figure 5.5-2: The three-level converter in the laboratory 



74 
 

6.1 Implementation in the laboratory 
An existing lab set up with an inverter and a FPGA board developed by SINTEF was used. 
The FPGA board consists of a Virtex 5 FPGA unit and a PowerPC 400 processor. A C++ 
module for double signal modulation was rewritten in Xilinx software development kit to 
have the option of space vector modulation. The execution of the space vector code had to be 
changed compared to how it was implemented in the models in SIMULINK and PSCAD. The 
input parameters to the module were phase voltage references instead of phase voltage 
amplitude and space vector angle. All the variables needed to be integer to reduce power 
intensive operations. Because of the loss of decimals all variables were scaled up by 1000. It 
was decided to rewrite the entire algorithm to make it faster. A method with binary search of 
sectors was implemented and no trigonometric operations were used.  

 

 

In Figure 6.1-1 part of the system is illustrated. The C++ module used got measurements of 
DC bus voltage unbalance and phase currents read from the register together with sinusoidal 
phase voltage references that was calculated in the FPGA. The module calculates six offsets. 
One for switch 1 and one for the switch 2 on each of the bridge legs. They are added to their 
respective phase voltage reference signals to calculate 6 control voltages. This is compared 
with a triangular wave. All the operations illustrated in the figure are done in FPGA-modules 
except the C++ module that runs in the processor of the board. 

By binary search it is meant that the sector diagram would be divided into two, then these two 
sections are divided into two and all of these divided again until all the sectors could be found. 
No “else if”-statement should be used. This means that independent of what sector that is 
searched for the number of tests is equal. However there are 24 sector and at some instant the 
sector diagram has to be divided into 3. The division is the following: 3*2*2*2 = 24, in other 
words one “else if”-statement had to be used. To achieve the division line voltage references 
was used to determine the borders of the sectors. The space vector reference can be 
decomposed with line voltage values along the axis shown in Figure 6.1-1.  If Uab is greater 
than 0 and Ubc is lower than 0 the reference is somewhere in the area 3 in Figure 6.1-2. Else if 
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Figure 6.1-1: Implementation in FPGA 
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Uab + Ubc is greater than 0 the area is 1 and if none of these are true the area is 2. The 
coordinate system is somewhat similar to that done in [2]. 

The area 3 can be divided into two by testing if Uab is greater than 1000 as seen in Figure 
6.1-3. These can then be divided by testing if Ubc is less than -1000 as seen in Figure 6.1-4. 
And so on. 

 
 

 
 

 

 
  

 
 

Once the sector is found the space vector on times are calculated from the line voltages by the 
use of formulas found in [12]. And the control signals to each of these on times are generated. 
The formula for these calculations can be found in [1]. These are however time to turn on 
each of the switches. To achieve a control signal between zero and 1000 this formula can be 
used: 
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Finally the offsets are calculated by subtracting the control voltage from the phase voltage 
references.  

In overmodulation a preprocessor algorithm is applied. The line-to-line voltages are altered to 
have a reference pointing to the hexagon border. Then they are processed as normal. The 
same preprocessor algorithm is used for Double-Signal in overmodulation. However the line-
to-line voltages are calculated back to phase voltages before the modulation algorithm is run 
as normal.  

 

6.2 Laboratory Results of Space Vector and Double-Signal PWM 
The aim of the laboratory work was to verify the methods simulated in this master thesis and 
in [13]. The load used in the simulations was a pure resistive three phase load where each 
phase resistance had a value of 9.3 ohm. The two DC-sources connected had a value of 20 V 
each with a total DC-link voltage of 40 V. The current flowing in the circuit will be quite low 
with these values, and this was necessary due to low current capability of the DC-sources.    

It was decided to simulate Space Vector and Double-Signal without DC-bus balancing at the 
beginning to verify that the simulation methods gave the wanted 1st harmonic output. Tests 
have also been made to compare the results of symmetric and asymmetric modulation at a low 
switching frequency where a difference should occur. Some errors occurred on the control 
signal when the fundamental frequency was set too high. Thus the fundamental frequency had 
to be set lower than the 50 Hz as used in the simulations.  

6.2.1 Laboratory Results of Space Vector 
The output voltages from the converter are shown with a couple of examples below when 
using space vector. 

 

Figure 6.2-1: Line-to-line output voltage with Space Vector at a modulation of 0.2 
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Figure 6.2-2: Line-to-line output voltage with Space Vector at a modulation of 1.0 

The first example has a modulation index of 0.2, and the converter is acting as it should. 
Compared to ideal simulations the output voltage is clearly more disturbed in this case, which 
is natural since the diodes and switches are not acting ideally in real life. The second example 
is when the modulation index is 1.0, and now the line-to-line voltage is switching between 
five levels as it should do. It was tested to have a higher fundamental frequency in this system, 
but then the control signal got to disturbed and some unwanted switching transitions occurred, 
thus it was decided to not increase the switching frequency.  

In the simulations there are used ideal switches and diodes, which will never be the case in 
real life implementations. There will be overshoots in the voltages when a power diode is 
turned on according to [8] and there will be on-state losses in the semiconductors. In this 
laboratory setup the semiconductors are designed in such a way that there are possibilities of 
connecting DC-sources with a voltage 10 times higher than the ones used in this experiment. 
Hence there will be considerable influence from the switches and diodes in the output voltage, 
and this can be seen above. There is not a very clear maximum and minimum value and this is 
probably due to the influence from the switches and diodes. Nevertheless there seems to be a 
stabile average value and this is a satisfactory result. Table 6.2-1 contents the most important 
laboratory data from Space Vector with steps of 0.1 in the modulation index.   
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Table 6.2-1: Space Vector line-to-line output voltage values 

Modulation factor Line-to-line voltage THDi THDv 
0.1(0.173) 0.160 1.98% 156.12% 
0.2(0.346) 0.33 1.59% 90.68% 
0.3(0.520) 0.495 1.25% 99.75% 
0.4(0.693) 0.662 0.87% 53.29% 
0.5(0.866) 0.829 0.95% 53.98% 
0.6(1.04) 1.01 0.98% 28.67% 
0.7(1.21) 1.18 0.97% 34.16% 
0.8(1.39) 1.35 1.01% 34.04% 
0.9(1.56) 1.53 1.21% 36.73% 
1.0(1.73) 1.72 1.07% 30.55% 
1.155(2.0) 1.99 0.92% 18.31% 

   

As it can be seen from the table the 1st harmonic output voltage corresponds well to the 
modulation index. The values are in all cases a bit below what it should be, and some of the 
errors could be related to the dead time that exists and the non-ideal behavior of the switches 
and diodes. The THDi give very good results, though it should be mentioned that there might 
be some inductance in the circuit which already have reduced the THDv compared to the 
results in [13] and that the THDi is very sensitive to the time interval of the harmonic analysis. 
Since mf is not an integer there might be some periods which have better samplings compared 
with others. In general it seems like the results are within the limits where they should be.  

Figure 6.2-3 and Figure 6.2-4 are showing the harmonic spectra of the line-to-line output 
voltage. From these two figures it can be seen that the switching transitions are asynchronous 
because there is no regular pattern around the multiples of mf.  

 

Figure 6.2-3: Harmonic spectra of the line-to-line voltage of Space Vector with a 
modulation index of 0.2 
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Figure 6.2-4: Harmonic spectra of the line-to-line voltage of Space Vector with a 
modulation index of 1.0 

 

6.2.2 Laboratory Results of Double-Signal 
The same simulations were made for Double-Signal as for Space Vector and the same 
examples are given. 

 

Figure 6.2-5: Line-to-line output voltage with Double-Signal at a modulation of 0.2 
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Figure 6.2-6: Line-to-line output voltage with Double-Signal at a modulation of 1.0 

The first example is showing the line-to-line voltage for Double-Signal with a modulation of 
0.2 and the figure shows that there are less switching transitions for this case compared with 
Space Vector, which is expected from the simulations. As for SV the diodes and switches are 
not ideal and hence some errors will occur. The second example is showing the output voltage 
with a modulation of 1.0 and the switching pattern is corresponding well with the simulations.  

Table 6.2-2 is showing the simulation results of Double-Signal. 

Table 6.2-2: Double-Signal line-to-line output voltage values 

Modulation factor Line-to-line voltage THDi THDv 
0.1(0.173) 0.158 4.19% 232.7% 
0.2(0.346) 0.327 3.24% 143.0% 
0.3(0.520) 0.497 2.48% 103.4% 
0.4(0.693) 0.659 1.16% 50.90% 
0.5(0.866) 0.837 1.03% 50.24% 
0.6(1.04) 1.01 0.77% 35.52% 
0.7(1.21) 1.18 1.07% 32.55% 
0.8(1.39) 1.36 1.26% 38.24% 
0.9(1.56) 1.53 1.19% 39.68% 
1.0(1.73) 1.72 1.10% 36.44% 

1.155(2.0) 1.98 1.85% 39.91% 
 

 The 1st harmonic outputs are close to the wanted values, and the errors have the same 
explanations as for Space Vector. The most interesting results in this table are that the THDi is 
low for 0.8, 0.9 and 1.0 compared to the simulations. As discussed in 6.2.1 this could be a 
result of choosing a time interval which made the THDi low, but these time intervals were the 
best with regard to the switching transitions. The resolution in the values from the laboratory 
work is much lower compared to the ones from the simulations, hence there could be a 
possible error created because of this. Due to time limitations these results have not been 
studied further in this master thesis, but so should be done in further work. Nevertheless it is a 
good result since the THDi is lower than expected.  
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Figure 6.2-7 and Figure 6.2-8 are showing the harmonic spectra for Double-Signal at a 
modulation index of 0.2 and 1.0 respectively. In general the maximum values are higher for 
Double-Signal, but there are more distinct areas where there distortion occurs. Especially for a 
modulation of 0.2 the total harmonic distortion is much higher for Double-Signal compared to 
Space Vector and this can easily be seen from the much higher maximum values for DS. 
When the modulation index is 1.0 the maximum values are more in the same range as for 
Space Vector and the total harmonic distortions are also close in value.  

 

Figure 6.2-7: Harmonic spectra of the line-to-line voltage of Double-Signal with a 
modulation index of 0.2 

 

 

Figure 6.2-8: Harmonic spectra of the line-to-line voltage of Double-Signal with a 
modulation index of 1.0 

The results seem to be very positive when it comes to the 1st harmonic output voltage and 
THDi for both of the modulation methods. There are some uncertainty regarding THDi, and 
this should be studied. One of the explanations could be that asynchronous modulation was 
used and with an mff below 21 there could be some errors involved.  
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6.3 Laboratory Results of Symmetrical and Asymmetrical Modulation 
of Space Vector 

As it has been discussed previous in this report the simulations are showing that asymmetrical 
modulation will give a better result than symmetrical modulation. In the laboratory this was 
tested by using Space Vector modulation. The fundamental frequency was 8 Hz and the 
switching frequency was approximately 50 Hz.  

Table 6.3-1 is showing the laboratory results of the symmetrical simulations of Space vector 
at different modulation indexes.   

Table 6.3-1: Line-to-line output voltage for symmetrical SV modulation 

Modulation factor Line-to-line voltage THDi THDv 
0.1(0.173) 0.16 8.99% 216.7% 
0.2(0.346) 0.314 6.89% 106.6% 
0.3(0.520) 0.47 5.59% 76.39% 
0.4(0.693) 0.623 6.57% 85.75% 
0.5(0.866) 0.804 4.71% 50.61% 
0.6(1.04) 0.936 7.53% 62.11% 
0.7(1.21) 1.14 3.90% 34.46% 
0.8(1.39) 1.29 3.91% 31.42% 
0.9(1.56) 1.44 6.22% 45.78% 
1.0(1.73) 1.59 5.95% 45.28% 

1.155(2.0) 1.85 5.59% 39.41 
 

The results are clearly much worse compared to the results with symmetrical simulations 
when the switching frequency was around 1000 Hz. The 1st harmonic output is  lower than the 
wanted output, but never below 90 %. At a modulation index of 0.6 the THDi is much higher 
compared to a modulation of 0.5 and 0.7. This could be a result of bad synchronizing.  

Table 6.3-2 is showing the corresponding laboratory results for asymmetrical modulation. 

Table 6.3-2: Line-to-line output voltage for asymmetrical SV modulation 

Modulation factor Line-to-line voltage THDi THDv 
0.1(0.173) 0.163 5.16% 185.1% 
0.2(0.346) 0.317 6.70% 116.1% 
0.3(0.520) 0.493 3.41% 84.50% 
0.4(0.693) 0.643 5.70% 84.69% 
0.5(0.866) 0.822 2.85% 42.73% 
0.6(1.04) 0.991 2.35% 36.38% 
0.7(1.21) 1.16 1.68% 31.49% 
0.8(1.39) 1.33 2.26% 30.30% 
0.9(1.56) 1.52 1.74% 25.77% 
1.0(1.73) 1.61 5.91% 44.81% 

1.155(2.0) 1.92 4.85% 28.94% 
 

The results are clearly better compared to symmetrical modulation. The 1st harmonic output 
voltage is better in all of the cases and the same is the situation for the THDi. Hence it can be 



83 
 

concluded that asymmetrical modulation gives better results at a low switching frequency 
compared to symmetrical, which was expected.  

 

6.4 Laboratory Results of Overmodulation 
It has been shown previous in this report that the 1st harmonic line-to-line output voltage is 
very sensitive to the switching frequency. Since the switching frequency is not synchronized 
to the fundamental voltage the measured values in the laboratory must be expected to vary. 
The method of locking the reference vector to a certain angle was implemented and tested in 
the laboratory. The line-to-line output voltage at a modulation index of 1.334 is shown in the 
figure below. 

 

Figure 6.4-1: Line-to-line voltage with a ma equal 1.334 

At this modulation index the output voltage should be in six-step operation, while the figure 
shows that the converter is almost working in six-step. The reason for the error could be that 
there is some disturbance on the reference phase voltages, and they don’t sum up to zero 
probably because of rounding errors. When the converter is operating in six-step the control 
signals are either in positive or negative saturation, and then they are very sensitive to small 
errors. Nevertheless the signal is close to six-step and therefore it is expected that the method 
would work given correct phase voltage references.  

Table 6.4-1: Line-to-line output voltage in overmodulation 

Modulation index 1st harmonic line-to-line voltage 
1.20(2.078) 2.046 
1.25(2.165) 2.063 
1.30(2.252) 2.204 

1.334(2.311) 2.136 
 

The values in the table are confirming the simulations results earlier in this report which 
showed that the output voltage in overmodulation is very sensitive to the switching frequency. 
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The laboratory data shows that ma equal to 1.3 has a higher 1st harmonic output than 1.334, 
which it should not have. The signal has clearly more switching transitions and it is shown 
below. 

 

Figure 6.4-2: Line-to-line voltage with a ma equal 1.30  

Figure 6.4-1 is showing a signal much closer to a six-step operation than Figure 6.4-2, which 
show that the modulation method is working how it should do and the higher 1st harmonic 
output for ma equal 1.3 is due to the sampling instant. 

These results are confirming the importance of having synchronized sampling and to have 
three phase symmetry in order to get good results when operating in overmodulation.  

6.5 Laboratory Results of DC-bus balancing 
The simulations have shown that there is a need for DC-bus balancing at normal operation to 
avoid fluctuation in the capacitor voltages. It was therefore decided to test this in the 
laboratory. 

The results were that the converter seemed to handle the balancing by itself, and there was not 
spotted any oscillations at all. The reason for this is most likely due to the very low current 
that is flowing in the system. Since the voltage oscillations are that low there might be a 
possibility for the capacitors to balance through the resistance across the DC-bus, which is 
present due to safety after shut down of the converter.  
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Figure 6.5-1: Simulations of the capacitor voltages equal the values in the laboratory 

The figure above is showing the simulated capacitor voltages with values equal to the values 
in the laboratory and they are showing that the oscillations are low compared to the DC-link 
voltage. Since the voltage is being balanced with the equipment connected to the converter in 
this case, there should be done experiments with DC-sources which have a higher voltage and 
current rating. It is not an optimal situation to run the converter at a much lower voltage than 
it is designed for at least in terms of testing.  
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7 Discussion  
The development of the current equations shows that there is no difference in the currents 
flowing when using Space Vector or Double-Signal. This means that there will be no different 
stresses on the capacitors and the conductors in the converter depending on which modulation 
method that is used. Hence this should not influence the choice of which modulation method 
that is preferred.  

Simulations show that asymmetrical modulation can give very good results even with a low 
mf if the samplings are done at correct angles. This is especially true for Space Vector. The 
THDi is very sensitive to where the first sampling is done and it should be aimed for sampling 
at this point. Asymmetrical modulation with a low switching frequency can give the same 
THDi as symmetrical modulation with a higher switching frequency. Thus by using 
asymmetrical modulation instead of symmetrical modulation with a low mf the switching 
frequency can be reduced and then the switching losses will be reduced.   

With the methods presented in this report the DC-bus balance can be controlled in the entire 
modulation range. The method proposed in this thesis for balancing in overmodulation has as 
condition that there should be a sampling at the three angles where ΔUDC should be zero at 
ideal conditions. If there is no sampling at these points the method doesn’t work as it should 
and thus it is not very flexible when it comes to different switching frequencies. However it 
has been shown that the switching frequency should be a multiple of three in order to get 
correct 1st harmonic output voltage in overmodulation, and with these frequencies the 
algorithm will work as it should.  

Double-Signal and Space Vector have shown to have different properties in different  
operation.  Space Vector seems to have a much better THDi at any given switching frequency  
and degree of modulation. However tests are not conducted at very high switching  
frequencies relative to the fundamental.  When it comes to balancing of the DC-bus  
voltage, their abilities of balancing are related to the phase delay of the output  
currents. Double-Signal has much faster balancing when the load is reactive, while Space  
Vector is much better when the load is active. Space Vector has shown to produce third  
harmonic voltage oscillations over the capacitors, especially when the load is  
reactive. However they do not seem to produce any negative distortion of the output. The  
number of switch transitions varies between the two methods [13]. Especially at a low  
modulation degree Space Vector modulation seems to have more switching and this could  
imply that the switching losses are higher. However the Space Vector modulation technique  
presented uses all redundant switch states and some of them could be removed. This will  
influence the THDi and its ability to balance. As proposed in [13] it could be an  
idea to have several modulation techniques and change between them depending on the state  
of the DC-bus, the behavior of the load and the modulation index. 

The laboratory results correlate well with the simulated results in general. Since the switching 
frequency was not synchronized with the fundamental frequency in the laboratory there 
should be some errors compared to the simulated results. The results in overmodulation 
confirm the importance of three phase symmetry in the higher range of the modulation area. 
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Without this the output voltage will be far from what it is expected to be and the output 
voltage will be oscillating and this is not acceptable in a real life implementation.   
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8 Conclusion 
In this master thesis it has been found that both Space Vector and Double-Signal have the 
possibility to balance the DC-bus at normal operation conditions, with different capacitor 
values and with unsymmetrical load. From the simulations it has not been found that it is 
necessary to have a PI controller in order to remove a steady state offset. Disturbance might 
occur in real life implementation, and then there could be a need for a PI controller. This has 
to be tested in each case. 

Asymmetrical modulation can reduce the THDi compared to classical symmetrical 
modulation, especially when mf is low. Which value the THDi will get is highly dependent on 
the angle where the reference vector is sampled the first time. Simulations show that for some 
cases the THDi can be reduced with 50 % from the worst case to the best case at a certain 
modulation index.  

In overmodulation extra precaution is needed concerning switching frequency and balancing 
algorithm. Simulations have shown that it is critical to have three phase sampling symmetry in 
in order to achieve the wanted output voltage in overmodulation. This has also been 
confirmed by laboratory work. By changing where the reference vector has been locked in 
overmodulation the possibility of balancing is increased and at the same time there is a very 
little change in the 1st harmonic line-to-line output voltage. 

It has been shown that Space Vector and Double-Signal have different qualities and which 
one that is the most suitable is depending on the operation. Both methods were tested in the 
laboratory with two separated DC-sources and both Space Vector and Double-Signal are 
working as they should.  
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9 Scope of further work 
- Investigate how the balancing algorithm in overmodulation could influence sub 

harmonics 
- Compare switching losses of Space Vector and Double-Signal 
- Analyze modified Space Vector algorithm when less vectors are used compared to this 

thesis  
- Investigate natural balancing 
- Study DC-bus balancing in the laboratory with DC-sources which have higher current 

capability than the ones used in this master thesis  
- Further studies of the THDi values of the modulation methods in the laboratory 
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Appendix A: Laboratory Results Space Vector 

 

Figure A.1-1: Space Vector ma equal 0.1 

 

Figure A.1-2: Space Vector ma equal 0.2 

 

Figure A.1-3: Space Vector ma equal 0.3 
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Figure A.1-4: Space Vector ma equal 0.4  

 

Figure A.1-5: Space Vector ma equal 0.5 

 

Figure A.1-5: Space Vector ma equal 0.6 
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Figure A.1-7: Space Vector ma equal 0.7 

 

Figure A.1-8: Space Vector ma equal 0.8 

 

Figure A.1-9: Space Vector ma equal 0.9 
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Figure A.1-10: Space Vector ma equal 0.9 

 

Figure A.1-11: Space Vector ma equal 1.1547 
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Appendix B: Laboratory Results Double-Signal 

 

Figure B.1-1: Space Vector ma equal 0.1 

 

Figure B.1-2: Space Vector ma equal 0.2 

 

Figure B.1-3: Space Vector ma equal 0.3 
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Figure B.1-4: Space Vector ma equal 0.4 

 

Figure B.1-5: Space Vector ma equal 0.5 

 

Figure B.1-6: Space Vector ma equal 0.6 
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Figure B.1-7: Space Vector ma equal 0.7 

 

Figure B.1-8: Space Vector ma equal 0.8 

 

Figure B.1-9: Space Vector ma equal 0.9 
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Figure B.1-10: Space Vector ma equal 1 

 

Figure B.1-11: Space Vector ma equal 1.1547 
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Appendix C: Laboratory Results of Symmetrical Modulation 

 

Figure C.1-1: Symmetrical modulation with ma equal to 0.1  

 

Figure C.1-2: Symmetrical modulation with ma equal to 0.2 

 

Figure C.1-3: Symmetrical modulation with ma equal to 0.3 
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Figure C.1-4: Symmetrical modulation with ma equal to 0.4 

 

Figure C.1-5: Symmetrical modulation with ma equal to 0.5 

 

Figure C.1-6: Symmetrical modulation with ma equal to 0.6 
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Figure C.1-7: Symmetrical modulation with ma equal to 0.7 

 

Figure C.1-8: Symmetrical modulation with ma equal to 0.8 

 

Figure C.1-9: Symmetrical modulation with ma equal to 0.9 
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Figure C.1-10: Symmetrical modulation with ma equal to 1.0 

 

Figure C.1-11: Symmetrical modulation with ma equal to 1.1547 
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Appendix D: Laboratory Results of Asymmetrical Modulation 

 

Figure D.1-1: Asymmetrical modulation with ma equal to 0.1 

 

Figure D.1-2: Asymmetrical modulation with ma equal to 0.2 

 

Figure D.1-3: Asymmetrical modulation with ma equal to 0.3 
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Figure D.1-4: Asymmetrical modulation with ma equal to 0.4 

 

Figure D.1-5: Asymmetrical modulation with ma equal to 0.5 

 

Figure D.1-6: Asymmetrical modulation with ma equal to 0.6 
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Figure D.1-7: Asymmetrical modulation with ma equal to 0.7 

 

Figure D.1-8: Asymmetrical modulation with ma equal to 0.8 

 

Figure D.1-9: Asymmetrical modulation with ma equal to 0.9 
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Figure D.1-10: Asymmetrical modulation with ma equal to 1.0 

 

Figure D.1-11: Asymmetrical modulation with ma equal to 1.1547 
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Appendix E: List Lab Equipment 

TTi PL 303-P Power Supply 30V 3A 

- Serial number 306422 
- Serial number 306423 

SI-9000 Differential probe 

- Elkraft: I06-0181 

XILINX Plattform Cable U88II 

- Model DLC 10 
- Serial XU – 30116 

Tektronix TDS 3014B Four Channel Color Digital Phosphor Oscilloscope 

- TDS3014B B030644 

Three-level converter at NTNU 
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