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Abstract

Isogeometric analysis (IGA) has been a particularly impactful development in the realm of
Kirchhoff–Love thin-shell analysis because the high-order basis functions employed naturally sat-
isfy the requirement of C1 continuity. Still, engineering models of appreciable complexity, such
as wind turbine blades, are typically modeled using multiple surface patches and, often, neither
rotational continuity nor conforming discretization can be practically obtained at patch interfaces.
A penalty approach for coupling adjacent patches is therefore presented. The proposed method
imposes both displacement and rotational continuity and is applicable to either smooth or non-
smooth interfaces and either matching or non-matching discretization. The penalty formulations
require only a single, dimensionless penalty coefficient for both displacement and rotation cou-
pling terms, alleviating the problem-dependent nature of the penalty parameters. Using this cou-
pling methodology, numerous benchmark problems encapsulating a variety of analysis types, ge-
ometrical and material properties, and matching and non-matching interfaces are addressed. The
coupling methodology produces consistently accurate results throughout all tests. Furthermore,
the suggested penalty coefficient of α = 103 is shown to be effective for the wide range of problem
configurations addressed. Finally, a realistic wind turbine blade model, consisting of 27 patches
and 51 coupling interfaces and having a chordwise- and spanwise-variant composite material def-
inition, is subjected to buckling, vibration, and nonlinear deformation analysis using the proposed
approach.
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1. Introduction

Modern engineering industries often commit significant resources to performing numerical
analyses based on the finite element method. Yet, significant portions of the design-and-analysis
workflow are consumed by time-consuming and labor-intensive activities such as model cleanup
and finite element mesh generation [1]. Hughes et al. [2] sought to improve this outlook with
the introduction of isogeometric analysis (IGA), an analysis approach in which the functions em-
ployed by computer-aided design (CAD) software are directly employed as finite element bases
during analysis. Isogeometric analysis has been particularly impactful in the realm of thin-shell
analysis [3–7]. Kirchhoff–Love theory is typically applied to thin-shell structures—indicated by
R/t ≥ 20, where R is the shell’s radius of curvature and t is its thickness [8]—and assumes that
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transverse shear strains are negligible, a reasonable assumption for many shell structures of in-
terest. Importantly, second-order derivatives appear in the governing variational equations of the
Kirchhoff–Love theory; this implies the necessity of C1-continuous approximation functions. This
condition has always been a major obstacle for the development of efficient finite element thin-shell
formulations. However, in isogeometric Kirchhoff–Love shell analysis that uses, for example, non-
uniform rational B-splines (NURBS), the most widely used spline-based mathematical functions in
CAD and IGA, the C1-smoothness requirement can be naturally satisfied in the interior of NURBS
patches.

Models of complex, real-world objects, such as wind turbine blades, tend to be composed of
multiple patches due to practical or technical limitations in geometry modeling or to capture design
features such as material discontinuities. Despite the many potential advantages offered by isogeo-
metric Kirchhoff–Love shells, they cannot be readily applied to such complex, multi-patch designs;
additional action must be taken to enforce continuity at patch interfaces. Firstly, the patches must
be connected, i.e., C0 continuity must be imposed. For conforming meshes, where the control
points of the two patches are co-located at their interface, this can be easily done by directly cou-
pling the degrees of freedom of the boundary control points on both patches. This is not possible,
however, in the case of non-conforming patches (patches which do share a common boundary in
the physical space but have different discretizations along that boundary), or when patches only
approximately share a common boundary in the physical space, a possible result of CAD model-
ing operations. The term non-matching is used to refer to both of these situations. In traditional
finite element analysis, such geometric mismatches are typically corrected during mesh genera-
tion, ensuring that the resultant mesh is analysis-suitable. Because IGA circumvents mesh gener-
ation procedures, however, the analysis method itself must be capable of coupling non-matching
patches. Additionally, for Kirchhoff–Love shell analysis, C1 continuity must also be imposed on
patch boundaries. Strictly speaking, C1 continuity applies only to smooth patch interfaces, while
complex shell structures typically also include non-smooth patch interfaces, i.e., patches joined
with an angle other than 180 degrees. In such cases, it is the angle between the patches that must
be maintained during deformation analysis. Therefore, the term rotational continuity, rather than
C1 continuity, is used when referring to patch interfaces of arbitrary angle (including smooth inter-
faces). Accordingly, C0 continuity is referred to as displacement continuity.

A significant amount of research effort has been devoted to imposing rotational continuity
within isogeometric Kirchhoff–Love shell analysis of multi-patch structures. In Kiendl et al. [3],
it was shown that, for smooth and conforming patches, the constraint can be fulfilled by direct
coupling of degrees of freedom of the first two rows of control points along the joint boundary,
provided that the control points across this common edge are collinear. As a more general alter-
native, the bending strip method was introduced by Kiendl et al. [9]. It is a penalty-like approach,
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which can couple both smooth and non-smooth patch interfaces. Goyal and Simeon [10] extended
the bending strip approach by proposing alternate formulations that improve problem condition-
ing. In all cases, however, the bending strip method is still restricted to conforming discretizations.
Lei et al. [11], instead, presented a penalty formulation that can handle non-conforming meshes.
However, the method is restricted to smooth patch interfaces. Breitenberger et al. [12] have used
penalty formulations for both displacement and rotational continuity and applied them to com-
plex B-rep CAD models with non-matching interfaces. However, their formulation for rotational
continuity was restricted to rotational deformation less than 90◦, which is a significant limitation
in large deformation analysis and for rotating structures. Duong et al. [13] proposed a different
penalty formulation for rotational continuity, which has no restrictions on the rotational deforma-
tion. However, it was limited to conforming patch interfaces and the penalty parameters must be
selected in a problem-dependent fashion.

Mortar methods have also been used for patch coupling in the context of IGA [14, 15]. How-
ever, the mortar method requires solving a saddle point problem for the Lagrange multiplier which
can sometimes be challenging. Guo et al. [16, 17] and Nguyen-Thanh et al. [18] have developed
formulations for Kirchhoff–Love shell patch coupling based on Nitsche’s method. The advantage
of such formulations is that they are less dependent on stabilization or penalty parameters than
penalty methods. However, the formulations depend on the variational formulation employed and,
as a result, are relatively difficult to implement for general-purpose analysis codes. Citing the com-
plexity of Nitsche’s method, Coox et al. [19] alternatively proposed a Virtual Uncommon-Knot-
Inserted Master–Slave (VUKIMS) coupling technique based on master–slave interface constraints
derived from the interface knot vectors.

The general advantage of penalty methods lies in their simplicity and flexibility. However, an
inherent issue in these methods is the choice of penalty parameters. If the value of the penalty
parameter is too low, the constraint is not satisfied accurately enough. If the penalty parameter
value is too high, the matrices may become ill-conditioned and the solution of the linear system
is prone to large numerical errors. Ideally, penalty formulations should scale with geometric and
material properties in a way that makes the choice of the penalty parameters problem-independent.
Otherwise, these parameters have to be chosen ad-hoc for each problem. They also should scale
with the element size in order to make sure that the penalty error decreases with mesh refinement.
When different constraints, like displacement and rotational continuity, are to be imposed simulta-
neously with penalty formulations, one also has to ensure the correct balance between the different
penalty parameters. This can be very challenging when these parameters are chosen ad-hoc.

In this paper, we present novel penalty formulations for imposing both displacement and rota-
tional continuity in multi-patch Kirchhoff–Love shell analysis. The proposed formulations work
for smooth and non-smooth, matching and non-matching (or conforming and non-conforming)
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patch interfaces. Both displacement and rotational continuity are controlled by a single, dimen-
sionless penalty coefficient and proper scaling of the different penalty terms with the geometric
and material parameters of the problem allows for a problem-independent choice of the penalty
coefficient value. The presented approach shares similarities with those in Breitenberger et al. [12]
and Duong et al. [13]. However, it is shown that the choice of the penalty parameter values is
heavily problem-dependent in those formulations. The presented formulation is tested on a large
series of benchmark problems, from linear to nonlinear analysis and from isotropic to composite
materials. The examples demonstrate the accuracy and robustness of the proposed method. As
a result of these studies, a universal recommendation for the choice of the penalty coefficient is
obtained.

This paper is outlined as follows. In Section 2, the isogeometric Kirchhoff–Love shell formula-
tion and the penalty formulation for patch coupling are presented. An effective selection of penalty
parameters is also proposed. In Section 3, the formulations are evaluated using several linear and
nonlinear benchmark problems, and the effective range of the relatively problem-agnostic penalty
coefficient is demonstrated. In Section 4, the proposed method is applied to the structural analysis
of a realistic composite wind turbine blade; the effectiveness of the method is demonstrated using
linear buckling, vibration, and nonlinear deflection analyses. In Section 5, conclusions are drawn.

2. Shell formulations

2.1. Composite isogeometric Kirchhoff–Love shells

The proposed penalty formulation is dependent on the Kirchhoff–Love shell formulation itself.
Thus, a brief review of the shell formulation is provided. An isogeometric Kirchhoff–Love thin-
shell formulation was first proposed by Kiendl et al. [3] and was reformulated for composite shells
in Bazilevs et al. [20]. The shell formulation is extended to handle general hyperelastic materials
in Kiendl et al. [6]. The details relevant to the penalty formulation for patch coupling are given
here. The variational formulation is based on the principle of virtual work:

δW = δW int − δWext = 0 , (1)

where W is the total work, W int is the internal work, Wext is the external work, and δ denotes a
variation with respect to the virtual displacement variables δu:

δW =
∂W
∂u

δu . (2)
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The internal virtual work is given by

δW int =

∫
Ω

(S : δE) dΩ , (3)

where Ω is the shell volume in the undeformed configuration, S is the second Piola–Kirchhoff

stress tensor, and E is the Green–Lagrange strain tensor.
For the Kirchhoff–Love shell theory, both normal and transverse shear strains are neglected;

only the in-plane strain components are considered. The Green–Lagrange strain is assumed to
vary linearly through the shell thickness and can be expressed as a combination of membrane and
bending strains of the midsurface. Let Greek indices α = 1, 2 and β = 1, 2 denote the in-plane
components. The covariant components of E can be obtained as

Eαβ = εαβ + ξ3καβ , (4)

where εαβ and καβ are the covariant components of the membrane strain tensor, εεε, and curvature
change (due to bending) tensor, κκκ, of the midsurface, respectively, ξ3 ∈ [−0.5t, 0.5t] is the through-
thickness coordinate, and t is the thickness of the shell. Let x

(
ξ1, ξ2

)
be the spatial coordinate of

the midsurface in the deformed configuration with ξ1 and ξ2 being the parametric coordinates used
in defining the midsurface, and aα be the covariant surface basis vectors in the deformed config-
urations, obtained as aα = x,α, where (·),α = ∂(·)/∂ξα indicates the partial derivatives with respect
to ξα. Let geometric variables indicated by ˚(·) refer to the undeformed configuration. Membrane
strain and curvature change coefficients are defined as

εαβ =
1
2

(
aα · aβ − åα · åβ

)
, (5)

καβ = åα,β · å3 − aα,β · a3 , (6)

where a3 is the unit vector normal to the shell midsurface in the deformed configuration, given by

a3 =
a1 × a2

‖a1 × a2‖
. (7)

In this work, linear elastic material behavior is assumed, corresponding to a St. Venant–
Kirchhoff material model. The stress–strain relationship is expressed by

S = �E , (8)

where � is a constitutive material tensor. Introducing Eq. (8) into Eq. (3), separating out the
through-thickness integration, and utilizing the definition of the strain tensor E given in Eq. (4),
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Figure 1: Composite layup with non-uniform and non-symmetric ply distribution.

one obtains

δW int =

∫
S

δεεε ·


∫ t/2

−t/2
� dξ3

εεε +

∫ t/2

−t/2
ξ3� dξ3

κκκ
 dS

+

∫
S

δκκκ ·


∫ t/2

−t/2
ξ3� dξ3

εεε +

∫ t/2

−t/2
ξ2

3� dξ3

κκκ
 dS , (9)

where S is the shell surface domain. In the case of composite materials, the structure is assumed
to be composed of a number of orthotropic plies. Let k be the index of each ply and �k be the
material tensor of each ply obtained by transforming its orthotropic material tensor from the ply
material coordinates to the shell coordinates. According to the classical laminate theory [21], the
homogenized extensional (membrane) stiffness,�, coupling stiffness,�, and bending stiffness,�,
are given by

� =

∫ t/2

−t/2
� dξ3 =

n∑
k=1

�ktk , (10)

� =

∫ t/2

−t/2
ξ3� dξ3 =

n∑
k=1

�ktkzk , (11)

� =

∫ t/2

−t/2
ξ2

3� dξ3 =

n∑
k=1

�k

tkz2
k +

t3
k

12

 . (12)

In the above, n is the total number of piles, tk is the thickness of the kth ply, and zk is the distance
from the centroid of the kth ply to the mid-plane of the laminate, as illustrated in Figure 1. The
internal virtual work for a composite shell can therefore be defined:

δW int =

∫
S

δεεε · (�εεε +�κκκ) dS +

∫
S

δκκκ · (�εεε +�κκκ) dS . (13)

More details about this formulation can be found in Kiendl [22].
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aA3

aAn

aAt

A

Figure 2: The unit normal vector, aA
3 ; unit tangent vector, aA

t ; and in-plane unit normal vector, aA
n ,

at an edge of patch SA.

2.2. A penalty formulation for non-matching patch coupling

A penalty approach for coupling adjacent patches having either matching or non-matching
discretization and either smooth or non-smooth interfaces is presented here. In the following,
it is assumed that there are two patches, SA and SB, which, in the undeformed configuration,
are approximately co-located along an interface curve, L. For enforcing displacement continuity
between the two patches, the following penalty virtual work is introduced:

δWpd =

∫
L

αd

(
uA − uB

)
·
(
δuA − δuB

)
dL , (14)

where superscripts A and B indicate quantities evaluated on patches SA or SB, respectively, αd is a
penalty parameter of large magnitude, further discussed in the following section, and uA and uB are
the displacements of corresponding locations on SA and SB, respectively, along L. Equation (14)
dictates that, if the distance between points on SA and SB is not the same in the deformed and
undeformed configurations, a large penalty energy is introduced into the system.

The coupling methodology must also maintain the angle formed by patches SA and SB. For
imposing rotational continuity between two patches, the following penalty virtual work is intro-
duced:

δWpr =

∫
L

αr

((
aA

3 · a
B
3 − åA

3 · å
B
3

) (
δaA

3 · δa
B
3 − δå

A
3 · δå

B
3

)
+

(
aA

n · a
B
3 − åA

n · å
B
3

) (
δaA

n · δa
B
3 − δå

A
n · δå

B
3

))
dL , (15)

where αr is a penalty parameter that will be discussed in detail in the following section. In Eq. (15),
we introduce the in-plane unit normal vector, aA

n , which lies in the plane of patch SA and is orthog-
onal to the penalty curve, L. Given the natural tangent vector of the penalty curve on patch SA,
ãA

t , its unit vector, aA
t , can be obtained as aA

t = ãA
t /||ãA

t ||. aA
n can then be computed as aA

n = aA
t × aA

3

(see Figure 2). Note that aA
t and aA

3 are orthogonal unit vectors.
The first term in the right hand side of Eq. (15) penalizes variations in the scalar product of the
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Figure 3: Patch interfaces having an interface angle of (a) 90 degrees and (b) 180 degrees.

normal vectors of the two patches. As will be shown in more detail later, the variation of the scalar
product of two parallel unit vectors vanishes; thus, the formulation is enhanced by the second term
which penalizes variations in the scalar product of the in-plane normal vector of patch SA and the
normal vector of patch SB. Regardless of the patch angle, both terms are calculated and added
together. With this combination, the patches are allowed to form arbitrary angles at their interface.
For patch interfaces forming an angle of 90◦, see Figure 3a, only the first term is active. For patches
having an angle of 180◦ at their interface, see Figure 3b, only the second term is active. For all
other interface angles, both terms are active with complementary strengths.

Finally, the virtual work formulation, Eq. (1), is augmented by the contributions of Eqs. (14)
and (15), and is restated as

δW = δW int + δWpd + δWpr − δWext = 0 . (16)

The above equation states the equilibrium condition of virtual work that must be fulfilled for any
arbitrary variation of the displacement variables δur. Equation (16) is a nonlinear equation system
which can be linearized for the purposes of solving the shell problem using the Newton–Raphson
method:

∂2W
∂ur∂us

∆us = −
∂W
∂ur

. (17)
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The first derivative of the virtual work terms is the residual force vector, whereas the second deriva-
tive yields the stiffness matrix. The contributions from the internal and external virtual work are
detailed in Kiendl et al. [6]. Here, the first and second derivatives of the penalty virtual work are
presented. The derivatives of the displacement penalty virtual work, Eq. (14), are given as follows:

∂Wpd

∂ur
=

∫
L

αd

(
uA − uB

)
·
(
uA
,r − uB

,r

)
dL , (18)

∂Wpd

∂ur∂us
=

∫
L

αd

(
uA
,s − uB

,s

)
·
(
uA
,r − uB

,r

)
dL . (19)

Similarly, the first and second derivatives of the rotation penalty virtual work, Eq. (15), are

∂Wpr

∂ur
=

∫
L

αr

((
aA

3 · a
B
3 − åA

3 · å
B
3

) (
aA

3,r · a
B
3 + aA

3 · a
B
3,r

)
+

(
aA

n · a
B
3 − åA

n · å
B
3

) (
aA

n,r · a
B
3 + aA

n · a
B
3,r

))
dL , (20)

∂Wpr

∂ur∂us
=

∫
L

αr

((
aA

3 · a
B
3 − åA

3 · å
B
3

) (
aA

3,rs · a
B
3 + aA

3,r · a
B
3,s + aA

3,s · a
B
3,r + aA

3 · a
B
3,rs

)
+

(
aA

3,s · a
B
3 + aA

3 · a
B
3,s

) (
aA

3,r · a
B
3 + aA

3 · a
B
3,r

)
+

(
aA

n · a
B
3 − åA

n · å
B
3

) (
aA

n,rs · a
B
3 + aA

n,r · a
B
3,s + aA

n,s · a
B
3,r + aA

n · a
B
3,rs

)
+

(
aA

n,s · a
B
3 + aA

n · a
B
3,s

) (
aA

n,r · a
B
3 + aA

n · a
B
3,r

))
dL . (21)

Equations (20) and (21) require the first and second derivatives of an, which are defined below:

at,r =
1
||ãt||

(
ãt,r −

(
at · ãt,r

)
at

)
, (22)

an,r = at,r × a3 + at × a3,r , (23)

and

at,rs =
1
||ãt||

(
at,s · ãt,r

)
at +

1
||ãt||

2

(
2
(
at · ãt,r

) (
at · ãt,s

)
at −

(
at · ãt,s

)
ãt,r −

(
at · ãt,r

)
ãt,s

)
, (24)

an,rs = at,rs × a3 + at,r × a3,s + at,s × a3,r + at × a3,rs . (25)

Additional details regarding the discretization of the variables used in these expressions can be
found in Kiendl et al. [6]. Note that, for the case of patch coupling at patch edges, ãt is simply
a1 or a2, depending on the edge (a1 and a2 are generally not unit vectors). Thus, the first and
second derivatives of ãt often correspond to the derivatives of a1 or a2. If the penalty formulation is
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integrated over a trimming curve, it is possible to use the tangent of the trimming curve’s projection
on the patch as ãt. Trimming is outside the scope of the present work and will be investigated in
the future.

Remark 1. Close investigation of Eq. (21) reveals the importance of having complementary terms
in Eq. (15). Consider patches forming an angle of 180◦ wherein the vectors aA

3 and aB
3 are parallel.

In this situation, the vector derivative aA
3,s is orthogonal to aB

3 and, similarly, aB
3,s is orthogonal to

aA
3 ; thus, the entire term

(
aA

3,s · a
B
3 + aA

3 · a
B
3,s

)
in Eq. (21) would be equal to zero. Furthermore, in

geometrically linear analysis and in the first step of geometrically nonlinear analysis, the deformed
and undeformed configurations are equivalent and, correspondingly, the term

(
aA

3 · a
B
3 − åA

3 · å
B
3

)
is equal to zero. Thus, in this particular configuration, there is zero penalty stiffness contribution
from the first two lines of Eq. (21); however, there would still be penalty stiffness contribution from
the last two lines of Eq. (21). Conversely, it can be shown that, for configurations wherein patches
form an angle of 90◦, the opposite is true: the last two lines of Eq. (21) have zero penalty stiffness
contribution while the first two lines of Eq. (21) have non-zero penalty stiffness contribution. The
formulations are therefore complementary throughout a range of possible patch angles.

Remark 2. Equations (18)–(21) can also be used to weakly impose boundary and symmetry con-
ditions on a patch. For restraining the displacement on a boundary of patch SA in the case of
simply supported or clamped boundary conditions, one can use Eqs. (18) and (19) and set uB and
its derivatives to zero. For restraining the displacement in the case of a symmetry condition, only
the component of uA normal to the symmetry plane is considered in the equations. For restraining
the rotation in the case of a clamped boundary condition, one can use Eqs. (20) and (21), exclud-
ing the second line of (20) and the last two lines of (21), and replacing aB

3 and åB
3 by åA

n . (Note
that the terms associated with the derivatives of aB

3 become zero.) For restraining the rotation in
the case of a symmetry condition, aB

3 and åB
3 are replaced by the normal vector of the symmetry

plane. Finally, in the case of restraining the displacement and rotation of a symmetry condition,
the resulting terms from Eqs. (18)–(21) are multiplied by two to correctly represent contributions
from both sides of the symmetry plane.

2.3. Implementation

For cases in which the discretization of patches SA and SB is non-matching along L, there are
various possibilities regarding the discretization of L. The discretization of L can theoretically
be entirely independent of the discretizations of both SA and SB. However, for cases which em-
ploy patch coupling along patch edges, one might naturally employ the discretization of SA, SB,
or some combination of the two to construct the penalty terms. For the sake of straightforward
implementation, this work employs the discretization of the patch edge which, across the penalty
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domain L, has the largest number of elements. For cases in which the discretization of both edges
is relatively uniform, this is a conservative choice in that it ensures that the entirety of both edges
is penalized. In contrast, if the coarser discretization is selected, it is possible that some of the
smaller elements would go unconstrained. Of course, the choice of discretization for L could im-
pact the results; this represents a future research opportunity. As the examples in later sections
demonstrate, however, the simple approach described here is often sufficient.

In other configurations, the interface of patches SA and SB may not be a patch edge. Instead,
L may be an intersection of two NURBS surfaces. In general, it may not be feasible to determine
the mathematically exact intersection of the two surfaces; CAD systems are typically tasked with
finding approximate, NURBS-curve representations of such intersections according to system- or
user-defined tolerances. In this case, the integration domain L may be defined by the approximate
intersection curve and the discretizations of L, SA, and SB may not correlate. The proposed
methodology is still applicable in such circumstances.

When evaluating Eqs. (18)–(21), one must integrate over L whilst incorporating variables de-
fined on bothSA andSB. In the numerical setting, Gaussian quadrature points are defined alongL.2

At each quadrature point on L, variables with superscripts “A” or “B” in the penalty formulations
are evaluated at the points on patches SA and SB which are physically nearest to the quadrature
point on L. Note that these nearest points on SA and SB may not be a quadrature point of the
respective patches. For many simple configurations, the corresponding points on L and the two
patches are exactly co-located. For more complex situations (such as the case of non-watertight
geometries), the nearest points can be determined using the approach proposed in Bazilevs et al.
[23, Section 3.4].

It is also important to properly assemble the contributions of Eqs. (18)–(21) to the global system
matrices. This is especially relevant for cases in which the discretization of L does not match the
discretization of one or both of the shell surfaces. In the traditional approach of element-wise
assembly, one would first form the element matrices with respect to the elements of L. However, a
single element ofLmay not correlate with an element in the shells SA or SB, making the assembly
impossible. This problem is resolved by simply assembling the contributions of Eqs. (18)–(21)
directly at each quadrature point to the global matrices. As described above, each quadrature point
on L is associated with the nearest points on SA and SB. For each quadrature point on L, the basis
function information at each of the nearest points on SA and SB can be employed to directly apply
the penalty contributions to the degrees of freedom of the shell problem.

2In this work, the full Gauss quadrature rule is used to integrate L. The effect of different quadrature rules and the
potential for overconstraining and locking are interesting topics that represent avenues for future research.
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2.4. Selection of penalty parameters

A key drawback of penalty methods is that the penalty parameters must be high enough to
ensure constraint satisfaction without creating excessive ill-conditioning. The selection of penalty
parameters, usually performed empirically by the analyst, has a strong influence on the solution
quality. A straightforward strategy is to directly employ a single value for both displacement and
rotation penalties:

αd = αr = α , (26)

where α is an adjustable penalty parameter. As will be shown, this strategy does not ensure that
a given value of α is appropriate for a variety of problem configurations and, in practice, requires
user selection of α based on trial and error.

In this work, it is shown that, rather than requiring user selection of the penalty parameters,
the parameters can be formulated according to the problem configuration, that is, according to
geometry and material properties. A single value of α, scaled by problem-specific parameters,
can then be reliably used for various problems. In this work, the displacement and rotation penalty
parameters are formulated with respect to the shell membrane and bending stiffnesses, respectively,
in order to make the penalty terms dimensionally consistent with the rest of the problem and in
order to scale the terms according to kinematically-relevant stiffness properties:

αd = α
maxi, j

(
Ai j

)
h

, (27)

αr = α
maxi, j

(
Di j

)
h

, (28)

where α is a penalty coefficient, Ai j and Di j are the membrane and bending stiffnesses given in
Eqs. (10) and (12), respectively, h =

(
hA + hB

)
/2, hA and hB are the lengths of the local elements

in the direction most parallel to the penalty curve, i = 1, 2, and j = 1, 2. For uniform isotropic
configurations, the expressions reduce to

αd = α
E t

h (1 − ν2)
, (29)

αr = α
E t3

12 h (1 − ν2)
, (30)

where E is Young’s modulus, t is the shell thickness, and ν is Poisson’s ratio.
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Figure 4: Scordelis-Lo roof problem description and deformation (scaled by a factor of 10 for
visualization).

3. Benchmark examples

A variety of geometrically linear and nonlinear benchmark examples are employed to explore
the behavior of the coupling methodology and the formulations for the penalty parameters pro-
posed in Eqs. (27) and (28). Examples featuring different geometries, material properties, and
analysis types are selected, and a combination of matching and non-matching discretization strate-
gies are used throughout, all to demonstrate the effectiveness and flexibility of the method. The
appropriate range for the dimensionless penalty coefficient, α, is also explored. The geometrically
linear analyses are done by performing only one iteration step of the nonlinear analysis. Lin-
ear systems are solved using direct solvers, eigenvalue problems are solved using a SLEPc-based
Krylov–Schur solver [24, 25], and the highly nonlinear examples in Sections 3.6 and 3.7 employ
the modified Riks (arc length) method [26].

3.1. Scordelis-Lo roof

The Scordelis-Lo roof is a geometrically linear problem from the well-known shell obstacle
course proposed by Belytschko et al. [27] to test accuracy and robustness in complex strain states.
The problem configuration and dimensions of the geometry are shown in Figure 4. The ends of
the geometry are supported by rigid diaphragms while the remaining edges are left unconstrained.
A uniform gravitational load of 90.0 per unit area is applied to the roof, and the resulting linear
deformation is quantified by evaluating the vertical displacement of the midpoint of the free edge.
For the benchmark problem, the thickness and Young’s modulus of the roof are t = 0.25 and
E = 4.32 × 108, respectively. Figure 4 also shows the deformation of the roof.

The geometry of the Scordelis-Lo roof is modeled using multiple NURBS patches of degree 3
with both matching and non-matching discretizations as shown in Figures 5a and 5b, respectively.
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(a) Matching (b) Non-matching

Figure 5: Meshes for the matching and non-matching configurations of the Scordelis-Lo roof.
Thick black lines indicate patch boundaries.

For the purpose of exploring the effective range of α, the deformation of both the matching and
non-matching cases is calculated using the proposed penalty parameter formulations, Eqs. (27) and
(28), and the α-only formulation, Eq. (26), over a range of values of α. This same study is repeated
for cases wherein the shell thickness, t, and Young’s modulus, E, have been modified. Throughout
these studies, analyses are performed using the meshes shown in Figures 5a and 5b with two levels
of h-refinement; the meshes in Figure 5 will be used for the convergence study presented later.

The results of the analyses performed using the benchmark material parameters are shown for
the proposed penalty formulations in Figure 6a and for the α-only penalty formulations in Fig-
ure 6b. The displacements are normalized by a converged reference value, uz = −3.005925× 10−1,
obtained using a single-patch model discretized with 128×128 bicubic elements. As expected, the
results in both cases indicate a range of values of α for which the penalty coupling methodology
is effective and produces the correct result. Also note that accurate results are obtained for both
the matching and non-matching cases. These results clearly show that, if the value of the penalty
parameter is too low, the patch coupling constraint is not enforced. If the penalty parameter value
is too high, the matrices may become ill-conditioned and the solution of the linear system is prone
to large numerical errors. Both scenarios lead to solutions deviating from the reference results. For
this reason, we recommend using a penalty value that is sufficiently high to produce an accurate
result but no higher than necessary.

The results in Figures 6a and 6b alone do not indicate the importance of the proposed penalty
formulations. The value can be understood, however, upon performing the same analysis with dif-
ferent sets of material parameters. The results obtained using a thickness of t = 0.025 instead of
t = 0.25 are shown for the proposed and α-only formulations in Figures 6c and 6d, respectively.
The displacements are normalized by a converged reference value of uz = −32.01045, obtained us-
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(a) E = 4.32 × 108, t = 0.25
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(b) E = 4.32 × 108, t = 0.25
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(c) E = 4.32 × 108, t = 0.025
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(d) E = 4.32 × 108, t = 0.025

100 102 104 106 108 1010

,

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 D
isp

la
ce

m
en

t

(e) E = 4.32 × 1012, t = 0.25
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(f) E = 4.32 × 1012, t = 0.25

Figure 6: Vertical displacement at midpoint of the free edge of the Scordelis-Lo roof, normalized
with respect to the converged reference value, with varying penalty value α using the proposed
penalty approach and the α-only approach for both matching and non-matching discretizations
and different combinations of setup variables.
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Figure 7: Vertical displacement at midpoint of the free edge of the Scordelis-Lo roof under h-
refinement for the proposed penalty approach with α = 103.

ing the same single-patch mesh as before. Similarly, the results obtained using a Young’s modulus
of E = 4.32×1012 instead of E = 4.32×108 are shown for the proposed and α-only formulations in
Figures 6e and 6f, respectively. The displacements are normalized by a converged reference value
of uz = −3.005925 × 10−5, obtained from a single-patch simulation.

For the cases employing the α-only penalty formulation, shown in Figures 6b, 6d, and 6f, the
range of values of α that produce accurate results shifts significantly, by as much as five orders of
magnitude, when the problem parameters are changed. This illustrates one of the key drawbacks
of penalty methods: because the effective range of α is problem-dependent, an analyst would be
forced to select the penalty parameter based on experience. In contrast, for the cases employing the
proposed penalty formulations, shown in Figures 6a, 6c, and 6e, the effective range of α remains
consistent for all problem configurations. Specifically, an accurate range of approximately α = 102

to α = 108 is observed. Thus, a value of α = 103 is recommended; this value is high enough to
reliably produce correct results, but is no higher than necessary.

Solution convergence under mesh refinement can also be demonstrated using the proposed
penalty approach. Results are compared to the converged displacement from the single-patch sim-
ulations. The coarsest geometries for the matching and non-matching multi-patch configurations
are shown in Figures 5a and 5b, and refinement is performed via global h-refinement. All analyses
use α = 103. The results in Figure 7 indicate satisfactory convergence for both the matching and
non-matching cases.

3.2. Simply supported plate under sinusoidal load

A simply supported plate problem is employed to study the convergence and conditioning
behavior of the proposed penalty approach. The setup for this problem is shown in Figure 8. The
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Figure 8: Simply supported plate problem description and deformation (scaled by a factor of 200
for visualization).

(a) Matching (b) Non-matching (c) Quarter

Figure 9: Meshes for the matching and non-matching full geometry configurations and the quarter
geometry configuration of the simply supported plate.

square plate is subjected to a sinusoidal pressure load of p(x, y) = p0 sin(πx/L) sin(πy/L). The
example and results included here utilize a plate with L = 12.0, thickness t = 0.375, Young’s
modulus E = 4.8 × 105, Poisson’s ratio ν = 0.38, and load amplitude p0 = 1.0. The plate
deformation is evaluated at the center of the plate, the location of maximum displacement, and is
compared to the analytical solution [28],

umax =
p0L4

4π4D
, where D =

Et3

12(1 − ν2)
. (31)

The deformation of the plate is also shown in Figure 8.
To evaluate the performance of the penalty approach for patch coupling and for imposing sym-

metry conditions, a variety of configurations of this problem are considered. A full plate geometry
with four NURBS patches of degree 3 is used to assess patch coupling, while a quarter plate ge-
ometry with a single patch of degree 3 is used to assess the enforcement of symmetry conditions.
In the full plate geometry, both matching and non-matching mesh configurations are investigated,
as shown in Figures 9a and 9b, respectively. Figure 9c shows the mesh configuration of the quarter
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Figure 10: Normalized displacement at the plate center and condition number of the stiffness
matrix with varying α.
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Figure 11: Relative error of the displacement at the plate center and condition number of the plate
stiffness matrix under h-refinement with α = 103. The number of elements for the quarter patch
results is scaled by four for comparison.

plate geometry.
For each analysis, the displacement at the center of the plate and the condition number of the

stiffness matrix are calculated. Results for both displacement and condition number with varying
α are shown in Figure 10. These results use the meshes shown in Figure 9 with three levels of
h-refinement. The displacement values indicate the same effective range of α demonstrated in
Section 3.1 for each configuration, while the condition number increases with α as expected. The
convergence of the displacement and condition number are also studied for the plate under h-
refinement, as shown in Figure 11. All convergence results are computed with α = 103, and the
number of elements in the quarter plate configurations is scaled by four for comparison with the
full plate geometry. The refinement study highlights the fact that the condition number increases
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Figure 12: T-beam problem description and deformation (scaled by a factor of 10 for visualization).

with refinement. While this feature helps with overall solution convergence under refinement, it
also dictates that, for some cases with excessive refinement, the results may deteriorate.

3.3. T-beam

Complex shell structures typically also include non-smooth patch interfaces, i.e., patches joined
with a certain angle; the angle between the patches must be maintained during deformation analy-
sis. An example of this is a T-beam, as depicted in Figure 12. The T-beam is modeled using two
planar geometries which are orthogonal at their interface. As shown in Figure 12, one end of the
beam is pinned and a force of F = 10.0 is applied to one corner of the opposite end in the −z

direction. Figure 12 also indicates the dimensions of the geometry. The patches have a Young’s
modulus of E = 1.0 × 107, a thickness of t = 0.1, and a Poisson’s ratio of ν = 0.0. The deformed
geometry is shown in Figure 12.

The T-beam is modeled using two NURBS patches of degree 3. Again, both matching and non-
matching mesh configurations are constructed as shown in Figures 13 and 14. For the analyses
considered here, two h-refinements are performed on each of the meshes shown in Figures 13
and 14. The geometrically linear analysis is performed, and the angle between the patches at the
end of the beam is calculated. If the patches have been properly coupled, an angle of 90◦ should
be maintained. The left side of Figure 15 shows the resultant angle between the two patches
for both the matching and non-matching cases for a range of α values. Note that, for relatively
low values of α, the structure is effectively unconstrained at its interface, resulting in an angle
of approximately 93.5◦ between the patches. However, in the range of approximately α = 10−2

to α = 102 the constraint begins to take effect, resulting in the desired angle of 90◦ between the
patches for α > 102. Again, a wide range of acceptable values of α is observed; the range is
similar to those observed in the previous examples. Thus, the suggested value of α = 103 remains

20



Figure 13: Meshes for the matching (left) and non-matching (right) configurations of the T-beam
problem.

(a) Matching

(b) Non-matching

Figure 14: Top view of meshes for the matching and non-matching configurations of the T-beam
problem. Circular markers indicate discretization of perpendicular patch.
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Figure 15: Angle between patches of the T-beam (left) and total twist at the end of the vertical
patch (right) with varying penalty value α for both matching and non-matching configurations.

appropriate in this case.
The right side of Figure 15 shows the total twist at the free end of the T-beam measured using

the vertical patch. When the penalty value is too low, the patches are effectively uncoupled and the
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Figure 16: Plate buckling problem description and the deformation for the first buckling mode
(color contour indicates relative displacement magnitude).

strain energy is not transferred to the vertical patch, resulting in a twist angle of zero degrees. As
the penalty value increases, a consistently reasonable twist angle is observed. Similar results are
obtained for both the matching and non-matching configurations.

3.4. Plate buckling

Another important type of analysis that is commonly performed in the design of shell struc-
tures, such as wind turbine blades, is linear buckling analysis. Thus, the performance of the pro-
posed penalty formulation is also explored in the context of linear buckling. Linear buckling
analysis, or eigenvalue buckling analysis, entails solving the equation(

Klin + λiKg

)
vi = 0 , (32)

where Klin is the linear stiffness matrix of the structure, Kg is the geometric stiffness matrix based
on the applied load, and λi is the ith eigenvalue associated with mode vector vi. In this context, an
eigenvalue λi is a scalar multiplier of the applied loads that will, in theory, cause buckling of the
structure; vi is the corresponding buckling mode shape.

A plate is employed in a simple buckling configuration, as shown in Figure 16, with one end
clamped and the other supported in the vertical direction. The problem is modeled using both
matching and non-matching multi-patch configurations. All of the patches are bicubic NURBS
surfaces. The discretization of the patches is shown in Figure 17. The patch sizes are intentionally
selected such that the patch boundaries do not occur on axes of symmetry. This makes the problem
more difficult because, if the penalty does not function properly, it may produce a non-symmetric
result. For this problem, Young’s modulus is E = 1.0 × 103, Poisson’s ratio is ν = 0.0, thickness is
t = 0.1, and the applied distributed force is P = 1.0 in terms of force per unit length.
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(a) Matching
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Figure 17: Meshes for the matching and non-matching configurations of the plate buckling prob-
lem.
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Figure 18: Buckling load factor with varying α for both matching and non-matching configurations
of the plate buckling problem.

The plot in Figure 18 indicates that, for a similar range of α parameters observed in the previous
problems, the multi-patch configurations produce buckling load factors of sufficient accuracy when
compared to a converged result obtained using a single-patch configuration. This illustrates the
accuracy of the proposed formulation in the context of linear buckling analysis. Also note that the
suggested value of α = 103 is appropriate here.

3.5. Nonlinear slit annular plate

All of the examples considered thus far have employed linear analysis. However, the presented
methodology is also applicable in the geometrically nonlinear setting. Sze et al. [29] identified
and reproduced a number of common benchmark problems for nonlinear analysis, one of which is
a slit annular plate subjected to a lifting line force. The slit annular plate problem is reproduced
using multi-patch models to verify the proposed coupling methodology in the nonlinear setting.

The slit annular plate setup and deformation are illustrated in Figure 19. One side of the slit is
clamped, while the other is allowed to freely deform under the applied distributed force, P. The
deformation is quantified by tracking the vertical displacement of points A and B, identified in
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Figure 19: Nonlinear slit annular plate problem description and deformation.

(a) Matching (b) Non-matching

Figure 20: Meshes for the matching and non-matching cases of the nonlinear slit annular plate.
Thick black lines indicate patch boundaries.

Figure 19, at incremental loads up to P = 0.8. Young’s modulus is E = 21.0 × 106, thickness is
t = 0.03, and Poisson’s ratio is ν = 0.0.

Refinement studies are not typically performed for the slit annular plate problem in the litera-
ture. However, because cases with different discretizations are considered in this work, a refine-
ment study is performed for both matching and non-matching configurations to ensure that the
results are comparable. For all of the cases, cubic NURBS patches are employed. The coarsest
meshes used in the refinement study are shown in Figure 20, and the displacement of point B due
to the the maximum load of P = 0.8 under h-refinement is shown in Figure 21. For this analysis,
the recommended value of α = 103 is employed. Convergence is achieved with approximately two
h-refinements for both the matching and non-matching cases. Thus, these levels of refinement are
used for the following verification of α.
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Figure 21: Vertical displacement at point B of the slit annular plate under h-refinement for both
matching and non-matching configurations.
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Figure 22: Vertical displacement at points A and B of the slit annular plate due to the maximum
applied P for varying values of α.

Figure 22 shows the displacements at A and B for the maximum load of P = 0.8 and a range of
α values. The accuracy of the method is clearly demonstrated for α = 102 through α = 106, with
identical results obtained in both the matching and non-matching cases. In nonlinear analysis, a
badly conditioned problem is more likely to exhibit divergent behavior, as is the case for α ≥ 107

for this problem. Still, the problem is tractable for a wide range of values of α, and the acceptable
range is similar to the range observed in the previous examples. The suggestion of α = 103 remains
appropriate.

Figure 23 shows the displacements of point A and point B under varying applied forces both
for the presented methodology and as reported by Sze et al. [29] using a 6 × 30 mesh of four-node
S4R elements in ABAQUS [30]. A penalty coefficient of α = 103 is used for this comparison, and
good agreement with the reference results is observed over the entirety of the load spectrum.
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Figure 23: Vertical displacement of points A and B versus applied distributed load for the nonlinear
slit annular plate with α = 103.

3.6. Nonlinear pinched semi-cylindrical shell

The proposed methodology, and in particular the penalty parameter formulations (27) and (28),
were also designed to accommodate composite materials. Here, the performance of the proposed
method is investigated using a nonlinear pinched semi-cylinder example, shown in Sze et al. [29],
featuring isotropic and laminated materials. Figure 24 illustrates the setup and the deformation
of the problem. The semi-cylindrical shell is subject to a point load at the middle of the free
end of the cylinder. The other end is fully clamped. Along its longitudinal edges, the vertical
displacement and the rotation about the y-axis are constrained. For the isotropic configuration,
material parameters are E = 2.0685 × 107 and ν = 0.3, while for the laminated configuration
EL = 2.0685 × 107, ET = 0.517125 × 107, GLT = 0.7956 × 107, and νLT = νTT = 0.3. Ply
configurations of [0/90/0] and [90/0/90] are used, with each ply having a thickness of t = 0.01.
The total shell thickness is t = 0.03 for all cases. The applied load of F = 2000 is scaled by the
load factor λ, where 0 < λ ≤ 1.

Due to symmetry, the problem is solved by modeling only one half of the structure. The
boundary and symmetry conditions are imposed using the proposed penalty approach. A single-
patch configuration as well as a non-matching multi-patch configuration are considered to highlight
the formulations’ performance in the context of nonlinear analysis of composite shells. In both
cases, quadratic NURBS patches are used. The two configurations are shown in Figure 25. Note
that the multi-patch model includes penalties for clamping, symmetry, and non-matching patch
coupling.

Displacements at the location of the applied load under the full load of F = 2000 are shown
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Figure 24: Nonlinear semi-cylinder problem description and deformation at the maximum applied
load for the isotropic material case.

(a) Single patch (b) Non-matching multi-patch

Figure 25: Meshes for the single-patch and non-matching multi-patch cases of the half geometry
of the semi-cylinder. Thick black lines indicate patch boundaries.

for the multi-patch model over a range of penalty parameter values in Figure 26. The results are
consistent between α = 102 and α = 105, demonstrating the stability of the proposed methodology
and confirming the choice of the penalty coefficient of α = 103. The displacements at the loca-
tion of the applied load for varying load levels and using α = 103 are shown in Figure 27. Good
agreement with the reference results [29] is observed for all discretizations and material configura-
tions considered, indicating the effectiveness of the proposed method even for nonlinear composite
applications.
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Figure 26: Vertical displacements at the point where the load is applied for the nonlinear semi-
cylinder at the maximum load for varying α. The study is performed for the non-matching multi-
patch model. The simulations did not converge at α = 106 for the isotropic and [0/90/0] cases, and
at α = 100 for the [90/0/90] case.
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Figure 27: Load factor versus vertical displacement for the nonlinear semi-cylinder problem with
α = 103.

3.7. Hinged cylindrical shallow roof

To further demonstrate the effectiveness of the proposed penalty formulation for challenging,
nonlinear problems, the approach is applied to the hinged cylindrical shallow roof [29], a struc-
ture involving challenging snap-through and snap-back behaviors in both isotropic and laminated
configurations. The problem description and the dimensions of the shallow roof are shown in Fig-
ure 28. The shell structure has hinged supports along two edges and is subjected to a concentrated
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Figure 28: Shallow roof problem description and deformation at the maximum applied load for the
isotropic material case.

(a) Single patch (b) Non-matching multi-patch

Figure 29: Meshes for the single patch and non-matching multi-patch cases of the quarter geometry
of the shallow roof. Thick black lines indicate patch boundaries.

load up to F = 3000. Both isotropic material (E = 3102.75, ν = 0.3) and laminated material
(EL = 3300, ET = 1100, GLT = 660, νLT = νTT = 0.25) are considered; in the case of laminated
material, two different ply configurations, [0/90/0] and [90/0/90], are considered. All plies are
equal in thickness, having a total shell thickness of t = 6.35.

Due to symmetry, only a quarter of the structure is modeled and symmetry conditions are
applied with the proposed penalty formulation. As in the previous example, both single-patch
and non-matching multi-patch configurations are considered for the quarter geometry (Figure 29),
employing bivariate NURBS of degree 2. The load F is scaled by the load factor λ (0 < λ ≤ 1)
and applied incrementally up to the maximum value of 3000.

Figure 30 shows the displacement of the central point under the maximum load for different α
values. This study is performed for the non-matching multi-patch model featuring one quarter of
the structure with patch coupling and symmetry conditions applied using the penalty method. The
trend of the results is similar to those of the previous analyses; non-convergence is observed for
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Figure 30: Vertical displacement of the central point of the shallow roof under the maximum load
for various values of the penalty parameter α. The study is performed for the non-matching multi-
patch model featuring one quarter of the structure.

high values of the penalty parameter, due to poor conditioning, while stable results are obtained
for 102 ≤ α ≤ 106.

The results of the nonlinear simulations for the isotropic and laminated cases throughout the
load range and for both discretization strategies are shown in Figure 31. The results show good
agreement with the reference solutions [29]. Furthermore, the results confirm the validity of the
proposed formulation and α = 103 for highly nonlinear problems, including complex snap-through
and snap-back situations, for both isotropic and laminated materials.

4. Application to wind turbine blade analysis

Wind turbine blade design and analysis is an example of a field in which the use of isogeo-
metric Kirchhoff–Love shell analysis could be especially advantageous. Due to the complexity of
wind turbine blade structures and the wide range of conditions they must withstand, thorough blade
design is a highly iterative process that is governed, in part, by workflow automation and analy-
sis efficiency, both of which may be improved through the application of IGA. The isogeometric
Kirchhoff–Love shell formulation has been shown to accurately capture the dynamic kinematic
behavior of wind turbine blades [31, 32]. This formulation has also been employed for numerous
fluid–structure interaction (FSI)-based analyses of full-scale wind turbines [20, 23, 33–35] and for
IGA-based parametric design and optimization of a simplified blade design [36, 37]. The blades in
the aforementioned work were modeled using a single-patch NURBS or T-spline surface, or mul-
tiple matching NURBS patches coupled using the bending strip method. In this work, a complex
5 MW blade design with shear webs and discontinuous composite definitions is modeled using
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(b) Laminated [0/90/0]

0 10 20 30 40 50
z-displacement

-0.2

0

0.2

0.4

0.6

0.8

1

Lo
ad

 F
ac

to
r

Sze et al.
single patch
non-matching

(c) Laminated [90/0/90]

Figure 31: Vertical displacement of the central point versus applied distributed load for the nonlin-
ear shallow roof with α = 103.

multiple non-matching NURBS patches that are coupled using the proposed penalty approach.

4.1. Blade definition

Resor [38] developed a detailed, composite wind turbine blade design based on the basic 5 MW
blade design proposed by Jonkman et al. [39]. Resor [38] discusses geometry and material design
details as well as comprehensive design analysis procedures. Due to its realistic material distribu-
tion, this NREL/SNL 5 MW blade design is a good candidate for demonstrating the effectiveness
of the presented coupling methodology for complex composite structures.

Figure 32 shows the NREL/SNL 5 MW wind turbine blade geometry modeled using NURBS
surfaces of degree 3. Note that the thick black lines indicate the edges of the 27 NURBS patches.
The blade shell is modeled with multiple patches to accurately capture sharp discontinuities in ma-
terial definition at the patch edges. The shear webs must also be modeled as independent NURBS
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Material Zone Stack Usage

Leading Edge (LE) 1,2,3,2
LE Panel 1,2,3,7,2
Spar Cap 1,2,3,4,2
Trailing Edge (TE) 1,2,3,2
TE Reinforcement 1,2,3,5,6,2
TE Panel 1,2,3,6,2
Shear Web 8,9,8

Figure 32: NREL/SNL 5 MW wind turbine blade geometry, discretization, and stack usage for
each material zone. Element edges indicated by grey lines, patch edges indicated by thick black
lines.

!A

!B

L

Figure 33: Non-matching discretization between the patches used to model the spar cap (red) and
shear web (blue) of a wind turbine blade. Control point locations indicated by spheres.

surfaces. Even in this relatively straightforward geometrical configuration, it is somewhat difficult
to ensure matching spanwise discretization for all patches, as shown in Figure 33, highlighting the
value of a methodology for coupling non-matching patches.

Each of the colored regions in Figure 32 indicates a unique composite material stacking se-
quence. Furthermore, each material stack in each of these zones has a unique thickness profile
along the blade’s span. The stacking sequence in each material zone, in terms of stack ID, is
shown in Figure 32. The name, material, and spanwise thickness distribution of each stack is given
in Figure 34. Material properties and other details can be seen in Resor [38]. Note that Resor [38]
assumes that material thicknesses are constant in between a predefined set of spanwise stations.
In the present work, material thicknesses are defined as piecewise linear functions of blade span
which are evaluated at every quadrature point when determining homogenized material properties.
This smoother material distribution is expected to influence results only slightly.
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Stack ID Stack Name Material

1 Gelcoat Gelcoat

2 Triax Skins SNL Triax

3 Triax Root SNL Triax

4 UD Carbon UD Carbon

5 TE UD Glass E-LT-5500

6 TE Foam Foam

7 LE Foam Foam

8 DB Saertex Saertex

9 SW Foam Foam

Figure 34: Thickness distribution as a function of blade span for all material stacks as well as stack
IDs, names, and materials.

4.2. Linear buckling analysis

All examples considered thus far have been either isotropic configurations, for which the
penalty formulations are given by Eqs. (29) and (30), or composite configurations featuring a
uniform composite definition, for which the penalty formulations are given by Eqs. (27) and (28).
Some composite structures, however, especially wind turbine blades, may have composite defini-
tions that are not uniform. Specifically, sharp material discontinuities can even occur in between,
for example, a blade’s spar cap—which has a thick, stiff material definition—and the leading and
trailing edge panels, which are comparatively weak. Because the penalty parameter formulations
should be based on local material properties, it is necessary to identify formulations capable of
addressing such discontinuities.

A number of possible formulations which resolve discontinuities in material description are
explored here. Linear buckling analysis, as described in Eq. (32), is employed for this study be-
cause it is among the most important types of analyses performed for wind turbine blade structural
design and is one of the primary uses for three-dimensional shell models. Aerodynamic loads
are generated using NREL’s FAST [40], an aeroelastic wind turbine modeling software that uses
engineering models such as blade element momentum theory to simulate the dynamic structural
and aerodynamic performance of wind turbines. The NREL/SNL 5 MW wind turbine is simulated
under a 50-year extreme wind condition having 70 m/s winds, a fixed rotor, blades feathered to
90◦, and 15◦ of yaw misalignment as specified by design load case (DLC) 6.1 in the IEC 61400
design standard [41]. This is commonly a design-governing load case in wind turbine blade de-
sign. The aerodynamic loads at the time instance featuring the largest blade root bending moment
in the flapwise direction are collected and applied to the IGA-based buckling analysis through
chordwise-constant but spanwise-variable distributed loads.
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The various approaches considered for the penalty parameter formulations are described below.
In the following, i and j are restricted to i = 1, 2 and j = 1, 2.

• Minimum: The minimum local stiffness between patches A and B is selected. The intent
of this method is to yield a penalty value that is sufficiently high locally without producing
penalty values that are excessively high with respect to less stiff portions of the model.

αd = α
min

(
maxi, j

(
AA

i j

)
,maxi, j

(
AB

i j

))
h

, (33)

αr = α
min

(
maxi, j

(
DA

i j

)
,maxi, j

(
DB

i j

))
h

. (34)

• Maximum: In this method, the maximum local stiffness between patches A and B is se-
lected. This method prioritizes maximizing the influence of the penalty locally.

αd = α
max

(
maxi, j

(
AA

i j

)
,maxi, j

(
AB

i j

))
h

, (35)

αr = α
max

(
maxi, j

(
DA

i j

)
,maxi, j

(
DB

i j

))
h

. (36)

• Average: This method dictates that, between patches A and B, the average local stiffness
should be used in the penalty formulation. This approach seeks to allow the material prop-
erties of both patches to influence the penalty parameter.

αd = α
maxi, j

(
AA

i j

)
+ maxi, j

(
AB

i j

)
2h

, (37)

αr = α
maxi, j

(
DA

i j

)
+ maxi, j

(
DB

i j

)
2h

. (38)

• Minimum Transverse: In this approach, the material matrices are rotated such that the e̊1

direction of the rotated matrices, �̃ and �̃, is consistent with the local tangential direction
of the penalty curve. Then, the stiffness transverse to the penalty curve, or Ã22 and D̃22, can
be directly used in the formulation. Between the two patches, the minimum Ã22 or D̃22 is
selected, citing the same logic employed in the “Minimum” approach.

αd = α
min

(
ÃA

22, Ã
B
22

)
h

, (39)
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Figure 35: Lowest buckling load factor as a function of α for the various possible methods of
formulating the penalty parameter for composite configurations featuring material discontinuities.

αr = α
min

(
D̃A

22, D̃
B
22

)
h

. (40)

Each of these methods is used with a range of α values in buckling analysis of the NREL/SNL
5 MW blade, as shown in Figure 35. Due to the technical challenges presented in this problem, such
as the large number of penalty coupling curves (51) and highly non-uniform material definition
across the blade structure, one should not expect a level of α parameter flexibility comparable to
that seen in previous benchmark examples. Still, all methods feature a plateau at around α = 102

to α = 104, reinforcing the validity of using α = 103 in general.
Both the “Maximum” and “Average” methods are shown to decrease in accuracy more quickly

than the “Minimum” and “Minimum Transverse” methods with increasing α. Because the “Min-
imum” and “Minimum Transverse” methods utilize similar logic and exhibit comparable perfor-
mance, we recommend using the “Minimum” method for the sake of implementation simplicity.
The first three buckling modes obtained using this approach and α = 103 are shown in Figure 36,
and the “Minimum” method is used for the remainder of the analyses.

4.3. Vibration analysis

A blade’s vibration characteristics are another potential design-driver. It is critical that a blade’s
natural frequencies of vibration do not align with certain turbine operational frequencies, such as
the rotor’s rotational speed or the fundamental tower frequency, in order to avoid resonance. Linear
vibration analysis is performed by considering the eigenvalue problem(

Klin − λiM
)

vi = 0 , (41)
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Figure 36: First (top), second (middle), and third (bottom) buckling modes of the NREL/SNL
5 MW blade using α = 103. Color contour indicates relative magnitude of deflection in buckling.
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Figure 37: NREL/SNL 5 MW blade frequencies of vibration using the proposed methodology and
a range of values of α.

where Klin is the linear stiffness matrix of the structure, M is the mass matrix, and λi is the ith

eigenvalue associated with mode vector vi. The relation of the ith frequency of vibration, ωi, to the
eigenvalue is given by the equation ω2

i = λi.
Vibration analysis results using a range of α values are shown in Figure 37. Again, consistent

behavior is seen over a range of values of αwith α = 103 remaining appropriate. Because vibration
analysis is not load-dependent, the results can also be reasonably compared to the results found in
Resor [38]. Although the model developed by Resor [38] does not evaluate the material thickness
distributions the same way as the IGA-based framework—that is, material thicknesses aren’t eval-
uated at every quadrature point, leading to a less smooth distribution overall—the comparison in
Table 1 demonstrates good agreement overall.

36



Mode Ref. Frequency IGA Frequency Difference
(Hz) (Hz) (%)

1st flapwise 0.87 0.919 5.63
1st edgewise 1.06 1.054 0.57
2nd flapwise 2.68 2.809 4.81
2nd edgewise 3.91 3.886 0.61
3rd flapwise 5.57 5.666 1.72
1st torsion 6.45 6.698 3.84

Table 1: Comparison of vibration analysis results between the reference [38] and the proposed
IGA-based method with α = 103.
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Figure 38: Maximum flapwise tip deflection due to nonlinear analysis for a range of values for α.

4.4. Nonlinear deflection analysis

Maximum blade tip deflection is yet another important consideration in wind turbine blade
design, especially as longer and more flexible blades are developed. Care must be taken to ensure
that there is appropriate clearance between the rotor and the tower. The same loads that are used
in Section 4.2 are applied and nonlinear deformation analysis is performed for a range of α values,
as shown in Figure 38.

Because a large number of penalty curves and a variable composite material definition are
used, nonlinear convergence is more difficult to achieve for excessively large values of α. Still,
a consistent value for tip deflection can be seen from approximately α = 102 to α = 104. From
α = 102 to α = 103, a change in tip deflection of only 0.037% is observed. Similarly, from α = 103

to α = 104, a change in tip deflection of 0.029% is observed. This reinforces the validity of using
α = 103 in general and indicates that the proposed method is appropriate for nonlinear analysis
of structures featuring material stiffness discontinuities at patch-coupling interfaces. Finally, the
nonlinear deformation of the NREL/SNL 5 MW blade using α = 103 is shown in Figure 39.
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Figure 39: Deformation of the NREL/SNL 5 MW blade due to nonlinear analysis using α = 103.

5. Conclusion

A new approach for penalty coupling of NURBS patches with non-matching interfaces is pro-
posed. The proposed penalty parameters are dimensionally consistent and the choice of the penalty
coefficient is problem-independent. The formulations are based on local stiffness properties and
are stated for isotropic and composite configurations, as well as for the unique case of composite
configurations with stiffness discontinuities at the coupling interface.

The proposed patch coupling approach is demonstrated on a number of benchmark problems
from the literature. For all problems, accurate kinematic performance is observed for a relatively
consistent range of penalty coefficient values. As a result, it is suggested that a dimensionless value
of α = 103 be used regardless of problem type or configuration. Through the benchmark problems,
the method is shown to be useful for linear, nonlinear, and buckling analyses, for both matching and
non-matching discretizations, and for problems involving both isotropic and composite materials.

In order to demonstrate the utility of the proposed approach for complex, large-scale industrial
problems, the penalty coupling methodology is applied to the NREL/SNL 5 MW wind turbine
blade, a realistic blade model with spanwise- and chordwise-variant composite material defini-
tions. Patch boundaries are used to capture sharp material discontinuities; the blade is therefore
modeled using 27 NURBS patches and 51 penalty coupling curves. Because it has a compos-
ite definition with a number of material stiffness discontinuities, this example is used to confirm
the good performance of the proposed penalty parameter formulations relative to some alterna-
tive formulations. Buckling, vibration, and deformation analyses are performed. Using α = 103,
analysis results that are reasonably consistent with the reference results are obtained. Thus, the
proposed patch coupling approach has great potential for addressing a wide variety of multi-patch
shell analysis problems.

As previously mentioned, one potentially fruitful future use of this methodology would be to
use the it in the context of trimmed NURBS geometries. For complex geometries, patch inter-
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sections are commonly used to trim NURBS patches. In the analysis setting, these interfaces are
often considered to be rigidly coupled. Hence, the proposed penalty methodology could be applied
to such trimming curves, which are defined in the parametric space of the NURBS surfaces. Of
course, some other approach, such as adaptive refinement, would have to be employed to accom-
modate proper treatment of the trimmed portions of the NURBS surfaces.

Finally, although only linear elastic material behavior is considered in this work, we believe
the proposed penalty formulations can be readily extended to nonlinear materials. This will also
be investigated in the future.

Acknowledgments

A.J. Herrema and E.L. Johnson were supported by the U.S. National Science Foundation (NSF)
Grant No. DGE-1069283 which funds the activities of the Integrative Graduate Education and
Research Traineeship (IGERT) in Wind Energy Science, Engineering, and Policy (WESEP) at
Iowa State University. J. Kiendl was partially supported by the Onsager fellowship program of the
Norwegian University of Science and Technology. This support is gratefully acknowledged.

References

[1] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott,
and T.W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied

Mechanics and Engineering, 199:229–263, 2010.

[2] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics

and Engineering, 194:4135–4195, 2005.

[3] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
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