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Abstract: Planning and stabilizing induced oscillations for underactuated mechanical systems
are challenging tasks. Available analytical solutions are primary linked to formats of representa-
tion of feasible trajectories and can give a rather limited perception of a variety of possibilities
for particular systems. The paper provides new insights to the tasks exploring the classical
and popular robotic benchmark set-up. In particular, the case study illustrates the procedure
for generating a periodic behaviour of a pendulum on a cart, when the pendulum oscillates
around the horizontal. Planning such a behaviour requires novel arguments for establishing a
presence of a forced cycle. Furthermore, if found, the orbital stabilization of the cycle requires
an alternative set of transverse coordinates. Both assignments are successfully solved. The
analytical contributions are discussed and supported by numerical simulations.
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1. INTRODUCTION

Most of methods developed for searching feasible be-
haviours of underactuated systems rely on structural as-
sumptions, which can potentially restrict sets of trajecto-
ries that such methods allow to recover. Comprehensive
understanding of limitations of different methods due to
artificially introduced properties is, therefore, important
and motivated. To this end, we can question and explore
one of widely used representations of a trajectory of n-
DoF mechanical system q(t) = [q1(t); . . . ; qn(t)], t ∈ [0, T ],
where the time evolution of one of degrees of freedom, let
say qn(·), can reproduce the behaviour through geometri-
cal parametrization (virtual holonomic constraints - VHC)

q1(t) = φ1(qn(t)), . . . , qn−1(t) = φn−1(qn(t)), t ∈ [0, T ].

The format is obviously not universal and assumes struc-
tural properties. For instance, if the behaviour is periodic
q(t) = q(t+ T ) and the associated VHC-representation is
found, then the motion generator – the scalar variable qn(·)
– cannot be monotonic. Furthermore, if the functions φi(·)
are smooth, then for those time moments, where velocities
q̇(·) along the behaviour are well defined, and the following
relations

q̇i(t) =
d

dqn
φi(qn(t))q̇n(t), i = 1, . . . , n− 1.

hold. Meanwhile, since the behaviour of qn(·) for periodic
trajectory is not monotonic, therefore its velocity should
become zero at some time moments, q̇n(tj) = 0. In turn,
the previous formula and smoothness of φi(·) in the ge-
ometric representation imply that for this behaviour the
velocities of all degrees of freedom at these time instants tj
should be zeros as well. Clearly such synchronization prop-
erty is rather demanding and might not necessary hold for
� Supported by SPbSU, grant 6.38.230.2015, and RFBR, grant 17-
08-00715.

some behaviours. This limitation can be partly mitigated
by the following argument: this and other abnormal fea-
tures of trajectories and the possibility for their smooth
geometric (VHC) representations come from the fact that
searching trajectories for different tasks is done in generic
set of coordinates chosen in advance. Instead, the analysis
of an individual trajectory might require an alternative set
of variables and case by case study. Furthermore, one can
question the necessity in searching trajectories that require
one motion generator and one VHC-parametrization of
the behaviour for the whole time interval [0, T ] without
its decomposition and sequential parametrization on sub-
intervals etc.

The contribution of the paper complements the discus-
sion with an attempt to illustrate another limitation of
the VHC-parametrization. As argued below, it appears
in solving the planning and stabilization tasks for the
pendulum on a cart system if an engineer is searching
for an induced periodic behaviour of the system with
oscillation of the pendulum around the horizontal. The
VHC-approach successfully re-used for planning induced
cycles for a variety of the case studies, see Shiriaev (2005);
Freidovich (2008); Mettin (2008); Shiriaev (2010); Surov
(2015); Grizzle (2015), relied on a qualitative analysis of
a specific second order system (the reduced dynamics)
and the oscillations were in part found as a consequence
of Poincare-Bendixon statement. They encircled one or
several equilibriums of the reduced dynamics. If a smooth
VHC parametrization for any of induced oscillations was
found, then these stationary points of reduced dynamics
become equilibriums of the full (open loop) dynamics as
well.

However, such conclusion for the induced oscillation of
the pendulum around the horizontal for the underactuated
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Fig. 1. Cart-pendulum system

cart-pendulum system contradicts the physics of the open
loop dynamics. Indeed, if valid, it requires the cart to
accelerate for keeping any constant inclination of the
pendulum from the vertical. Therefore, the periodicity
in the coordinate of the cart is impossible both for the
constant inclination and for nearby oscillations of the
pendulum. The lack of the well defined smooth VHC
parametrization of a cycle for the case study has a number
of consequences. Besides new steps in trajectory planning,
it demands new arguments and analytical constructions
for defining transverse coordinates necessary for orbital
stabilization of the cycle. The main contributions of the
paper suggest and exemplify new methods for planning
the requested oscillation of the cart-pendulum system and
for introducing the complete set of transverse coordinates
for each of the found cycles.

The paper is organized as follows. Section 2 includes prob-
lem statement and the detailed analysis of the challenges
which arise in solving the problem through the search of
geometrical parametrization. New method for searching a
requested periodic trajectory is discussed in Section 3. Sec-
tion 4 describes steps for defining transverse coordinates
and their use in synthesis of a stabilizing controller. The
simulation results are presented in Section 5. Concluding
remarks are given in Section 6.

2. PROBLEM FORMULATION

Dynamics of the cart-pendulum system is described by the
Lagrange’s equations (see, for example, Shiriaev (2005)):

aẍ− sinϕϕ̈− cosϕϕ̇2 = u

− sinϕẍ+ lϕ̈+ g cosϕ= 0, (1)

where q = (x, ϕ)
T
, x – cart horizontal position, ϕ – angular

coordinate of the pendulum (see Fig. 1), m – mass of
pendulum, mcart – mass of cart, l – length of pendulum, g
– gravity acceleration, a = (m + mcart)/ml – a constant,
f = uml – external force acting on the cart. Notice,
that for real system al > 1, thus the dynamics is not
singular. The topological properties of phase space are not
important for us, because of we search trajectories in a
small area. For that reason, we assume ϕ ∈ R, and the

configuration space is just R2. Using these notation, we can
formulate the problem of trajectory planning as follows:

Problem 1. Does there exist a periodic solution x�(t),
ϕ�(t), u�(t) of system (1), such that x� (t) ∈ C2 (R),
ϕ� (t) ∈ C2 (R), u� (t) ∈ C0 (R), and 0 ∈ ϕ�(R) ⊆(
−π

2 ,
π
2

)
?

2.1 Virtual Holonomic Constraint Approach

Search of the periodic trajectories. Let us try to find
a requested trajectory of the cart-pendulum system (1)
using the VHC method. At first, we assume there are three
function x�(t), ϕ�(t), u�(t) satisfying the conditions of
Problem 1, and there exists a smooth function X ∈ C2(R)
(virtual constraint) satisfying

x�(t) = X(ϕ�(t)) ∀ t ∈ R.
Substituting x = X(ϕ) into (1) we obtain 2-nd order
differential equation:

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = 0, (2)

where α(ϕ) = l − dX
dφ sinϕ, β(ϕ) = −d2X

dφ2 sinϕ, γ(ϕ) =

g cosϕ. Due to used notation, the equation (2) is often
referred as αβγ-equation. For any smooth X(ϕ), such that

α(ϕ) �= 0 (3)

holds on some interval (ϕ1, ϕ2), equation (2) has only 2
different equilibrium points: ϕ0 = ±π

2 . According to the
Theorem 33 in Andronov (1966) a periodic trajectory must
envelop at least one equilibrium point, thus the theorem
forbids existence of periodic trajectories defined on interval
(−π/2, π/2) . So, if a periodic solution ϕ�(t) of (2) exists,
then

α(ϕ�(t)) = 0 (4)

for some t. Briefly, the VHC leads to a singular αβγ -
equation (2).

Transverse Linearization. According to Shiriaev (2005)
the linearised transverse dynamics (see equation (41)
there) has the following form:

ζ̇ = A(t)ζ + b(t)v, (5)

where ζ is the set of transverse coordinates, and A : R →
R3×3, b : R → R3 are matrix functions. Some components
of matrix A have α(ϕ�(t)) in their denominators. As was
shown, if system (2) has periodic trajectory, then the
coefficient α(ϕ�(t)) vanishes at some t. This leads to sin-
gularities in A(t), and therefore the transverse coordinates
ζ cannot be used to describe dynamics of the system (1)
in a neighborhood of desired trajectory.

As show next, the problem appears due to a specific set
of transverse coordinates used in the analysis, and there
is another set of transverse coordinates, which are well-
defined in a tubular neighborhood of a desired trajectory.

3. SEARCH OF THE PERIODIC TRAJECTORIES

Rewrite the system (1) in the explicit form:

ẍ=
l cosϕϕ̇2 − g sinϕ cosϕ+ lu

al − sin2 ϕ
(6)

ϕ̈=
sinϕ cosϕϕ̇2 − ag cosϕ+ sinϕu

al − sin2 ϕ
. (7)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

7893



	 Maksim O. Surov  et al. / IFAC PapersOnLine 50-1 (2017) 7621–7626	 7623

Fig. 1. Cart-pendulum system

cart-pendulum system contradicts the physics of the open
loop dynamics. Indeed, if valid, it requires the cart to
accelerate for keeping any constant inclination of the
pendulum from the vertical. Therefore, the periodicity
in the coordinate of the cart is impossible both for the
constant inclination and for nearby oscillations of the
pendulum. The lack of the well defined smooth VHC
parametrization of a cycle for the case study has a number
of consequences. Besides new steps in trajectory planning,
it demands new arguments and analytical constructions
for defining transverse coordinates necessary for orbital
stabilization of the cycle. The main contributions of the
paper suggest and exemplify new methods for planning
the requested oscillation of the cart-pendulum system and
for introducing the complete set of transverse coordinates
for each of the found cycles.

The paper is organized as follows. Section 2 includes prob-
lem statement and the detailed analysis of the challenges
which arise in solving the problem through the search of
geometrical parametrization. New method for searching a
requested periodic trajectory is discussed in Section 3. Sec-
tion 4 describes steps for defining transverse coordinates
and their use in synthesis of a stabilizing controller. The
simulation results are presented in Section 5. Concluding
remarks are given in Section 6.

2. PROBLEM FORMULATION

Dynamics of the cart-pendulum system is described by the
Lagrange’s equations (see, for example, Shiriaev (2005)):
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As show next, the problem appears due to a specific set
of transverse coordinates used in the analysis, and there
is another set of transverse coordinates, which are well-
defined in a tubular neighborhood of a desired trajectory.

3. SEARCH OF THE PERIODIC TRAJECTORIES

Rewrite the system (1) in the explicit form:

ẍ=
l cosϕϕ̇2 − g sinϕ cosϕ+ lu

al − sin2 ϕ
(6)

ϕ̈=
sinϕ cosϕϕ̇2 − ag cosϕ+ sinϕu

al − sin2 ϕ
. (7)
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If we choose the control as u = u(ϕ), then the equation
(7) is of well-studied type

ϕ̈ = −b (ϕ) ϕ̇2 − c (ϕ) . (8)

The following lemma formulates the conditions under
which the equation (8) has a set of periodic solutions.

Lemma 2. Assume that there is a pair of real numbers
ϕ1, ϕ2 (ϕ1 < ϕ2), such that functions b, c are twice
continuously differentiable on interval (ϕ1, ϕ2) and satisfy
the following conditions:

• there exists a ϕe ∈ (ϕ1, ϕ2): c(ϕe) = 0,

c(ϕ)< 0 ∀ϕ ∈ [ϕ1, ϕe)

c(ϕ)> 0 ∀ϕ ∈ (ϕe, ϕ2]

• the function

µ (ϕ) =

∫ ϕ

ϕe

c (η) e
2
∫ η

ϕe
b(ξ)dξ

dη

has the same values at endpoints:

µ (ϕ1) = µ (ϕ2) .

Then for any ϕs ∈ (ϕ1, ϕe) solution of the initial value
problem (8) with ϕ(0) = ϕs, ϕ̇(0) = 0 is a periodic
function.

The number ϕs “enumerates” periodic solutions. All of
them encircle the only one equilibrium point ϕe of type
“centre”. It can be shown that the control input of the
form

u (ϕ) = 2k sinϕ, (9)

with large enough k ∈ R ensures that the conditions of
Lemma 2 hold on some interval (ϕ1, ϕ2). The correspond-
ing closed loop system (8, 9) has equilibrium ϕe satisfying

sin2 ϕe/ cosϕe =
ag

2k
. (10)

The functions

b (ϕ) =− sinϕ cosϕ

al − sin2 ϕ

c (ϕ) =
ag cosϕ− 2k sin2 ϕ

al − sin2 ϕ

µ (ϕ) = ag
sinϕe − sinϕ

sin2 ϕe − al

+ k
ϕ− ϕe − sinϕ cosϕ+ sinϕe cosϕe

sin2 ϕe − al

are continuous everywhere. Thus, the area between ϕ1, ϕe

is filled by periodic trajectories. The values ϕ1, ϕ2, ϕe can
be estimated numerically (we will show this in Section 5).

Each value ϕs from the interval (ϕ1, ϕe) generates a
periodic solution ϕ� = ϕ�(t, ϕs) with the corresponding
control input u� = u�(t, ϕs) = 2k sinϕ�. Each trajectory
ϕ� generates a set of solutions x�(t, ϕs, ẋ0, x0) of equation
(6). These solutions depend on parameter ϕs, and initial
values x0, ẋ0 as follows:

ẋ� (t, ϕs, ẋ0) = ẋ0 +∫ t

0

l cosϕ�ϕ̇
2
� − g sinϕ� cosϕ� + lu�

al − sin2 ϕ�

dτ

x� (t, ϕs, ẋ0, x0) = x0 +

∫ t

0

ẋ� (t, ϕs, ẋ0) dτ .

The last step is to show that for some ϕs and x0, ẋ0 the
function x� (t, ϕs, ẋ0, x0) is periodic. Then, the functions
ϕ�(t, ϕs), x� (t, ϕs, ẋ0, x0) , u�(t, ϕs) be a solution of the
Problem 1.

Theorem 3. Let T (ϕs) be the period of ϕ�(t, ϕs). If there
exists a ϕs ∈ (ϕ1, ϕe) such that

F (ϕs)
def
=

∫ T (ϕs)

0

l cosϕ�ϕ̇
2
� − g sinϕ� cosϕ� + lu�

al − sin2 ϕ�

dτ

= 0 (11)

then (x� (t, ϕs, ẋ0, x0) , ϕ�(t, ϕs)) with x0 ∈ R and

ẋ0 =
−1

T (ϕs)

T (ϕs)∫

0

ξ∫

0

l cosϕ�ϕ̇
2
� − g sinϕ� cosϕ� + lu�

al − sin2 ϕ�

dτdξ

is a periodic solution of (6,7,9).

Since function T (ϕs) is continuous (see Lemma 13 in An-
dronov (1966)), the function F is also continuous. So, to
check the condition of Theorem 3 it is sufficient to find
ϕa, ϕb ∈ (ϕ1, ϕe), such that F has different signs at these
points. After that the value ϕs can be found by solving
numerically equation (11), the equation (12) gives the
initial values x0, ẋ0.

4. ORBITAL STABILIZATION

This section presents an approach for orbital stabilization
of a found periodic trajectory. As shown, the control input
(9) generates a periodic trajectory. Consider the control
input of the form

u (ϕ) = 2k sinϕ+ v.

with an additional (stabilizing) term v. In this way, the
feedback system looks like

ż = f (z) + g (z) v (12)

where

f(z) =




ẋ
l cosϕϕ̇2 − g sinϕ cosϕ+ 2lk sinϕ

al − sin2 ϕ
ϕ̇

sinϕ cosϕϕ̇2 − ag cosϕ+ 2k sin2 ϕ

al − sin2 ϕ




,

g(z) =
1

al − sin2 ϕ
(0, l, 0, sinϕ)

T
(13)

z = (x, ẋ, ϕ, ϕ̇)T is the state vector, f, g are smooth
functions.

Let z� be a closed trajectory of the system (6,7,9). As can
be seen, the function z� satisfies

ż� (t) = f (z� (t)) ∀t ∈ R. (14)

The goal is to find v as a function of z

v = v (z) ,

which makes trajectory z� orbitally stable.

Our solution of the stabilization problem is a variation of
transverse linearization approach Banaszuk (1995).

The function z� can be considered as a parametric repre-
sentation of a curve in phase space. All the points lying in a

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

7894



7624	 Maksim O. Surov  et al. / IFAC PapersOnLine 50-1 (2017) 7621–7626

neighbourhood of the curve can be located using a moving
along the curve affine frame. This frame at each point
consists of tangent vector of the curve and its orthogonal
complement. Basis vectors of the orthogonal complement
define a hyperplane that acts as a Poincaré section.

The moving affine frame at point z�(t) consists of 4 vectors:

the normalized tangent vector f̄�(t) = f(z�(t))
‖f(z�(t))‖ and 3

other vectors orthogonal to f̄�(t) and to each other. The
standard approach of constructing of the frame is the
Frenet-Serret formulas Manfredo P. do Carmo (1995). But
it has some disadvantages which make it difficult to apply
in practice. Firstly, this approach leads to singularities
if curvature of the trajectory vanishes at some points.
Secondly, the basis vectors are expressed through high-
order derivatives of function f , which usually cannot be
estimated well due to parameters uncertainty. Below we
offer different approach for constructing of orthogonal
complement.

Let us define vector fields

e1 = P1f̄�, e2 = P2f̄�, e3 = P3f̄�, (15)

where P1 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 ,P2 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 ,

P3 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 . Direct calculations show that vec-

tors f̄�, e1, e2, e3 are orthonormal for any non-zero f̄�.
Due to the facts that the trajectory z� does not contain
stationary points (otherwise it cannot be periodic), and
the differential equation (14) defines a smooth vector field,
the affine frame (f̄�, e1, e2, e3) is smooth and orthonormal
for all t. The Poincaré-section hyperplane is spanned on
the vectors e1, e2, e3.

Remark 4. An analogous method for the constructing of
orthonormal system of vectors exists also for R2 and
R8. This allows to apply the same approach for the
constructing of Poincaré sections for dynamical system
that can be embedded into R8. According to Adams
(1962), the exact upper bound of independent vector fields
on sphere Sn−1 is less than n for any n > 8. It means that
the proposed method cannot be used when n > 8.

Any state vector z lying in a small enough neighbourhood
of curve z� can be decomposed into:

z = z� (τ) + e1 (τ) ξ1 + e2 (τ) ξ2 + e3 (τ) ξ3

where ξ1, ξ2, ξ3 ∈ R are components of transverse vector ξ,
and τ defines the closest curve’s point:

τ = arg min
t∈[0,T )

‖z, z� (t)‖

(in a small enough neighbourhood of z�, this equation has
a unique solution). Use for short:

Q= (e1, e2, e3) =
1

‖f�‖
(P1f�, P2f�, P3f�) ,

f� = f (z� (τ)) .

Then
z = z� (τ) +Qξ (16)

and

ż =
dz�
dτ

τ̇ +
dQ

dτ
τ̇ξ +Qτ ξ̇. (17)

Multiplying (17) by QT and considering that dz�
dτ = f�,

and QTQ = I3×3, we obtain dynamics of the system (12)
in coordinates ξ, τ :

ξ̇ = QT f (z) +QT g (z) v −QT f�τ̇ −QT dQ

dτ
τ̇ξ (18)

We linearise (18) using approximations

τ̇ ≈ 1

f (z)≈ f� +
∂f

∂z
|z�Qξ

The linearised equation takes the form:

dξ

dτ
= A(τ)ξ +B(τ)v, (19)

where

A(τ) =QT ∂f

∂z
|z�Q−QT dQ

dτ

B(τ) =QT g�.

The following theorem formulates method of orbital stabi-
lization. Its proof establishes the correctness of lineariza-
tion (19).

Theorem 5. Assume there is a feedback v of the form

v(τ, ξ) = K(τ)ξ, (20)

K : R → R1×3, which provides exponential stability of
trivial solution of system (19). Then, the feedback

u(z) = 2k sinϕ+ v (τ(z), ξ(z)) , with

ξ(z) =QT z −QT z� (τ(z))

τ(z) = arg min
t∈[0,T )

‖z − z� (t)‖

provides orbital stability of solution z� of system (12).

Remark 6. The matrix K(τ) can be found by solving ma-
trix Riccati differential equation with periodic coefficients
as it was shown in Shiriaev (2005).

5. NUMERICAL EXPERIMENTS

Using the approach presented in Section 3, we found
a periodic trajectory of system (6,7,9) with parameters
m = 0.4, mcart = 0.1, l = 1.0, g = 9.8, k = 80.0.

The functions c(ϕ), µ(ϕ) of equation (8) are depicted
on Figure 2. The numerically evaluated parameters (see
Lemma 2) are: ϕ1 ≈ −0.558411, ϕ2 ≈ 0.273904, ϕe ≈
−0.274904. Calculating F (ϕ1) = 23.5913 and F (ϕ1) =
23.5913, we see that system (6,7,9) has a periodic solution
according to Theorem 3. Using Brent’s method Brent
(1972) we found a root of function F : ϕs ≈ −0.557983,
and taking x0 = 0 evaluated initial velocity of the cart
according to (11): ẋ0 ≈ 2.77290 · 10−9.

To be sure, that the found initial values ϕs, ẋ0 are correct,
we integrated equations of motion (6,7,9) with

ϕ(0) = ϕs, x(0) = 0, ẋ(0) = ẋ0, ϕ̇(0) = 0.

The obtained trajectory depicted on Figure 3. The trajec-
tory is periodic within error margin of numerical integra-
tion method.
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consists of tangent vector of the curve and its orthogonal
complement. Basis vectors of the orthogonal complement
define a hyperplane that acts as a Poincaré section.

The moving affine frame at point z�(t) consists of 4 vectors:

the normalized tangent vector f̄�(t) = f(z�(t))
‖f(z�(t))‖ and 3

other vectors orthogonal to f̄�(t) and to each other. The
standard approach of constructing of the frame is the
Frenet-Serret formulas Manfredo P. do Carmo (1995). But
it has some disadvantages which make it difficult to apply
in practice. Firstly, this approach leads to singularities
if curvature of the trajectory vanishes at some points.
Secondly, the basis vectors are expressed through high-
order derivatives of function f , which usually cannot be
estimated well due to parameters uncertainty. Below we
offer different approach for constructing of orthogonal
complement.

Let us define vector fields

e1 = P1f̄�, e2 = P2f̄�, e3 = P3f̄�, (15)

where P1 =




0 1 0 0
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 . Direct calculations show that vec-

tors f̄�, e1, e2, e3 are orthonormal for any non-zero f̄�.
Due to the facts that the trajectory z� does not contain
stationary points (otherwise it cannot be periodic), and
the differential equation (14) defines a smooth vector field,
the affine frame (f̄�, e1, e2, e3) is smooth and orthonormal
for all t. The Poincaré-section hyperplane is spanned on
the vectors e1, e2, e3.

Remark 4. An analogous method for the constructing of
orthonormal system of vectors exists also for R2 and
R8. This allows to apply the same approach for the
constructing of Poincaré sections for dynamical system
that can be embedded into R8. According to Adams
(1962), the exact upper bound of independent vector fields
on sphere Sn−1 is less than n for any n > 8. It means that
the proposed method cannot be used when n > 8.

Any state vector z lying in a small enough neighbourhood
of curve z� can be decomposed into:

z = z� (τ) + e1 (τ) ξ1 + e2 (τ) ξ2 + e3 (τ) ξ3

where ξ1, ξ2, ξ3 ∈ R are components of transverse vector ξ,
and τ defines the closest curve’s point:

τ = arg min
t∈[0,T )

‖z, z� (t)‖

(in a small enough neighbourhood of z�, this equation has
a unique solution). Use for short:

Q= (e1, e2, e3) =
1

‖f�‖
(P1f�, P2f�, P3f�) ,

f� = f (z� (τ)) .

Then
z = z� (τ) +Qξ (16)

and

ż =
dz�
dτ

τ̇ +
dQ

dτ
τ̇ξ +Qτ ξ̇. (17)

Multiplying (17) by QT and considering that dz�
dτ = f�,

and QTQ = I3×3, we obtain dynamics of the system (12)
in coordinates ξ, τ :

ξ̇ = QT f (z) +QT g (z) v −QT f�τ̇ −QT dQ

dτ
τ̇ξ (18)

We linearise (18) using approximations

τ̇ ≈ 1

f (z)≈ f� +
∂f

∂z
|z�Qξ

The linearised equation takes the form:

dξ

dτ
= A(τ)ξ +B(τ)v, (19)

where

A(τ) =QT ∂f

∂z
|z�Q−QT dQ

dτ

B(τ) =QT g�.

The following theorem formulates method of orbital stabi-
lization. Its proof establishes the correctness of lineariza-
tion (19).

Theorem 5. Assume there is a feedback v of the form

v(τ, ξ) = K(τ)ξ, (20)

K : R → R1×3, which provides exponential stability of
trivial solution of system (19). Then, the feedback

u(z) = 2k sinϕ+ v (τ(z), ξ(z)) , with

ξ(z) =QT z −QT z� (τ(z))

τ(z) = arg min
t∈[0,T )

‖z − z� (t)‖

provides orbital stability of solution z� of system (12).

Remark 6. The matrix K(τ) can be found by solving ma-
trix Riccati differential equation with periodic coefficients
as it was shown in Shiriaev (2005).

5. NUMERICAL EXPERIMENTS

Using the approach presented in Section 3, we found
a periodic trajectory of system (6,7,9) with parameters
m = 0.4, mcart = 0.1, l = 1.0, g = 9.8, k = 80.0.

The functions c(ϕ), µ(ϕ) of equation (8) are depicted
on Figure 2. The numerically evaluated parameters (see
Lemma 2) are: ϕ1 ≈ −0.558411, ϕ2 ≈ 0.273904, ϕe ≈
−0.274904. Calculating F (ϕ1) = 23.5913 and F (ϕ1) =
23.5913, we see that system (6,7,9) has a periodic solution
according to Theorem 3. Using Brent’s method Brent
(1972) we found a root of function F : ϕs ≈ −0.557983,
and taking x0 = 0 evaluated initial velocity of the cart
according to (11): ẋ0 ≈ 2.77290 · 10−9.

To be sure, that the found initial values ϕs, ẋ0 are correct,
we integrated equations of motion (6,7,9) with

ϕ(0) = ϕs, x(0) = 0, ẋ(0) = ẋ0, ϕ̇(0) = 0.

The obtained trajectory depicted on Figure 3. The trajec-
tory is periodic within error margin of numerical integra-
tion method.
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The coefficients K(τ) of LQR (see equation (20)) where
obtained by solving (numerically) a corresponding matrix
Riccati differential equation with periodic coefficients.
They are depicted on Figure 4.

The results of numerical simulations of feedback controlled
system are depicted on Figure 5. As can be seen, the sys-
tem begins it’s motion from the bottom stable equilibrium
point (i.e. ϕ = −π

2 ), and reaches the desired trajectory
very fast. Besides, the control input depicted on Figure 6
is a smooth (and of course, bounded) function of time.

Finally, we compare the trajectory found by our approach,
and the corresponding VHC phase portrait. As can be
seen on Figure 3, the projection of the phase trajectory on
plane x, ϕ is a smooth curve which can be parametrized
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by any of generalized coordinates x, ϕ. This means, that
this curve can be considered as a virtual constraint X(ϕ).
We interpolated the curve by a B-spline, and substituted
into (2). The phase portrait of the obtained equation is
depicted on Figure 7. The dashed red line corresponds to
singular point ϕ0 of this equation, i.e. α(ϕ0) = 0. As can
be seen, the phase portrait does not contain equilibriums.

The animated results of numerical simulations can be
found at https://youtu.be/NIXzwuEEPwM and https://
youtu.be/hkMllQsUrP8.

6. DISCUSSION AND CONCLUDING REMARKS

The main results of the paper are the following:

• The method of cart-pendulum periodic motions plan-
ning is developed. It can find trajectories that are
unreachable by the VHC. Changing the feedback u(ϕ)
one can find variety of desired trajectories. One peri-
odic trajectory is investigated in details.

• The new simple and numerically efficient method of
transverse coordinates construction is proposed. The
method can be used for any smooth non-singular
trajectory for systems with up to four generalized
coordinates.

• The computer simulation verifies the obtained results
and demonstrates their robustness.

The paper presents an example of mechanical system that
has unexpected periodic motion and describes the con-
troller stabilizing this motion. The aim of the example
is to inspire investigation of problems, where the VHC
leads to singular αβγ-equation. The phase portrait of αβγ-
equation for considered example is shown on Figure 7. The
dashed red line corresponds to the value of coordinate
ϕ, where coefficient α of equation (2) vanishes. All the
phase trajectories are crossing this line in two point. Such
a behaviour of trajectories is impossible in case of non-
singular equation. This figure illustrates how singularity of
αβγ-equation leads to genesis of periodic trajectories. Usu-
ally the restrictions on admissible trajectories are applied
to avoid singularities in αβγ-equation when the VHC is
being used. Our example shows that the singularity of this
equation should rather be considered as an opportunity for
search of new periodic trajectories, but not the obstacle.
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