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Abstract 

Thermoplastics injection molding has found increasing use in several industry sectors. To achieve high effectivity of the process and desirable 
quality of the manufactured product, correct and precise parameters’ setting is critically important. As injection molding is a sophisticated process 
it is often hard to take care of all the changes occurring during its application. However, implementation of artificial intelligence (AI) methods in 
control and monitoring systems of injection molding machines can increase controllability and additivity of the process. This paper gives an 
overview of different studies related to research on the topic of monitoring and control systems for injection molding and explains why application 
of AI methods would be beneficial. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Today more than one third of polymeric products is 
produced with use of injection molding [1]. It is a complicated 
process, as the molten polymers undergo complex thermo-
mechanical changes. As injection molding is mostly used for 
mass production, repeatability and quality of the final product 
is very important. “Improper settings of process variables will 
produce various defects in the final product” [2, 3] and result 
in increased amounts of waste and scrap. As need for control 
of the injection molding process is high, the first step in this 
case is to precisely design, measure and monitor the process to 
make the key process variables observable and controllable [4]. 
This will allow to increase controllability and repeatability of 
the overall process, leading to possibility of lowering 
probability of unnecessary in-process variations. 

The process of injection molding includes four main stages: 
plasticization, injection, cooling and ejection. Among these 
four, the cooling stage takes from 50% to 80% of the cycle time 
[5]. It has always been of a high interest to shorten overall cycle 
time, as “the cost-efficiency of the process is dependent on the 
time spent in the molding cycle” [6]. One of the ways to shorten 

the cycle time and, in particular, the cooling stage, without 
compromising quality of manufactured parts is use of rapid 
heating and cooling systems, which can include application of 
variotherm technology and conformal cooling/heating 
channels.  

Process monitoring and control, as well as use of variotherm 
technology or conformal cooling/warming channels would 
benefit from application of artificial intelligence methods in 
order to function in the most optimal way. The following 
sections will explain importance of monitoring and control 
systems, give examples of research on these systems and 
explain why AI methods are of a high importance for the 
injection molding. 

2. Injection molding process variables and artificial 
intelligence methods 

According to Karbasi and Reiser [4], the injection molding 
process includes three nested process loops shown in Fig. 1. 
The first loop called machine control includes control of 
machine parameters, such as speed, pressure and 
temperature.  
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Fig. 1. Injection molding control loops [4]. 

The middle one (process control) includes such variables as 
in-mold temperature and pressure. The last loop, which is 
called set point control, takes care of part quality feedback.  

Machine control loop is the most developed one, as process 
variables are handled by the machine manufacturers. The 
middle loop, on the other hand, is less developed, however, 
there is significant amount of research going on, while the third 
one is the least developed, as related development has started 
only in previous decade [4]. In order to increase controllability 
of injection molding further work on the three loops is 
necessary [7]. Among possibilities for process monitoring and 
control development is application of so-called methods of 
machine learning or artificial intelligence, for example, neural 
networks. This would allow to adjust values of necessary 
variables without involvement of machine operators if 
conditions change during the manufacturing process. These 
methods can also be used in rapid heating and cooling systems 
in micro injection molding [8, 9], as well as in injection 
molding of bigger components, such as LCD TV frame [10] 
and automotive interior part [11], for example.  

Fast adaptation of important variables to the changed 
process environment would allow to avoid quality failures in 
micro injection molding, as well as in molding of large 
components. This can be done by building a model of the 
injection molding process or its parts and using the model to 
adjust current process parameters in order to receive an optimal 
output during the manufacturing. In other words, through 
building a self-optimizing injection molding process. 

2.1. Artificial Intelligence methods 

According to Dang [12], there are two main groups of 
simulation-based optimization methods, which are direct 
discrete optimization and metamodel-based optimization 
methods. The methods and their short description is shown in 
Fig. 2, where GA stands for genetic algorithm, RSM for 
response surface methodology, RBF for radial basis function 
and ANN for artificial neural network. Of course, these are not 
all the simulation-based optimization methods used.  

Among others, in the metamodel-based methods group 
ANN is mentioned. This is one of the artificial intelligence 
methods that can be applied to build mathematical models of 
injection molding process with consideration of the most 
important parameters.  

 

Fig. 2. Classification of optimization methods [12] 

When the data is analyzed and model is build, the model can 
be used in order to adjust the current parameters’ values to 
receive a high-quality product as model and process output, as 
well as to shorten the cycle time. 

AI methods give better results when it comes to process 
modelling and forecasting, as they have higher precision and 
lower error values compared to conventional modelling 
methods. In addition, they are not as resource consuming as 
direct discrete optimization methods [12]. In order to build the 
model different artificial intelligence methods can be used to 
process big amounts of data received during the process run. 

Artificial neural networks (ANN) is a method that was used 
for modelling and forecasting in many areas of science and 
engineering [13]. ANN is a method used for information 
processing, which includes use of nonlinear and interconnected 
processing elements called neurons. These elements are 
organized in separate levels connected with layers’ weights. 
ANNs often consist of three layers: the input layer, the hidden 
layer and the output layer [14]. At first, the data is “fed” to the 
network’s first layer, in the second layer, it is processed and the 
model is built, in the third layer the forecast based on the model 
is handed out as a result of the algorithm’s work. 

ANFIS or adaptive neural-based inference system is one 
more method used to create the models and forecasts for certain 
processes. This method is a composition of artificial neural 
networks and fuzzy logic approaches. It identifies a set of 
parameters that the model will be based on using a hybrid 
learning rule. “It can be used as a basis for constructing a set 
of fuzzy If-Then rules with appropriate membership functions 
in order to generate the previously stipulated input–output 
pairs” [14, 15]. 

Genetic programming can be applied to achieve the same 
goals. It is a methodology which gives possibility to generate 
algorithms and expressions to find solution of existing 
problem. These expressions are represented by a tree structure 
consisting of leaves/terminals and functions/nodes. When a 
population of the genetic programming tree is defined 
procedures similar to the ones used in genetic algorithm are 
applied. These procedures include defining the fitness function, 
genetic operators (crossover, mutation and reproduction) and 
the termination criterion. 

These are only three examples of AI methods possible to be 
applied for injection molding, however, they need to be chosen 
carefully to fit a purpose of research, as well as parameters or 
factors used in the model. 
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2.2. Parameters/factors influencing the quality of injection 
molded part 

Quality of injection molded part depends on a lot of factors 
and they are related both to plastic material properties and the 
process parameters [12]. As mentioned before, it is possible to 
distinguish three groups of injection molding process 
parameters, while different scholars might use variables from 
different groups for monitoring and building a model for 
process control and a framework for injection molding process 
monitoring. As an example, Shoemaker [16] states that 
molding conditions comprise melt temperature, mold 
temperature, filling time, packing time and packing pressure. 
Karbasi and Reiser [4], on the other hand, use mold and barrel 
temperatures, velocity profile, screw travel, filling, packing and 
holding pressure and time as main parameters, while Hopmann, 
Ressmann [7] and Hopmann, Abel [17] concentrate on 
consideration of pressure, specific volume and temperature 
(pvT-behavior) and state that description of these variables 
behavior gives possibility to describe the link between cavity 
pressure, melt temperature and resulting part properties.  

Parameters considered in the model depend on the part of 
the process that needs to be controlled and monitored, if the 
control system is aimed at the overall process, then one group 
of parameters is important, if the model built will be used to 
control only cooling and warming of the mold, then other group 
of parameters should be in focus. Another advantage of AI 
methods is that they can define which parameters among 
proposed will be kept in the model and which will be put aside, 
as they are not influencing the process that much according to 
the algorithm’s calculations. The following section will give an 
overview of a current status of monitoring, control and heating 
and cooling systems for injection molding and give examples 
of use of AI methods for thermoplastics injection molding. 

3. Application of AI methods for thermoplastics 
injection molding  

3.1. Heating and cooling systems 

There are several techniques that can be applied to reduce 
time of the cooling stage of injection molding process and 
increase quality of a produced part. Conformal cooling/heating 
channels are one of them. They are “conforming” to the shape 
of the cavity in the mold making it possible to reduce part’s 
temperature faster and more evenly. They allow coolant to 
access all part locations uniformly, making the process more 
efficient and consistent [18]. However, they can also be used to 
increase temperature in the cavity, for example, during 
injection stage not to allow injected earlier plastics to cool 
down and solidify too early. This is important for increase of 
quality of injection molding of parts with very thick and very 
thin walls. Molds with such channels can be produced using 
direct metal sintering (additive manufacturing technique), as 
well as through vacuum diffusion bonding and liquid interface 
diffusion [19].  

Rate of heat exchange is one of the things that need to be 
payed attention to during design of conformal channels, as it is 
directly related to the time taken by the cooling phase. “It is 
important to understand and optimize the cooling channel 
design to optimize the rate of heat transfer in an injection 
molding process” [20]. In addition, the balance between 

optimum cooling and insert strength needs to be addressed 
[21], this is especially important when the mold with conformal 
cooling channels is manufactured with additive manufacturing 
technology, as materials used there are often not as strong as 
conventional ones. As a result, in order to create correct design 
of conformal heating/cooling channels for a particular mold 
FEA, thermal heat transfer analysis and different modelling 
techniques are often used [6, 12]. 

Application of conformal cooling/heating channels is 
reported to bring cooling phase reduction in a range from 15% 
[2] to 50% [22].  

Kitayama et al. [23] propose a framework for numerical and 
experimental examination of conformal cooling channels. To 
asses cooling performance cycle time and warpage are 
considered. Melt temperature, injection time, packing pressure, 
packing time, cooling time, and cooling temperature are taken 
as the design variables. At first, a multi-objective optimization 
of the process parameters is performed, then the process 
parameters of the cooling channel are optimized. A sequential 
approximate optimization using a radial basis function network 
is used to identify a pareto-frontier. According to the model 
with optimized parameters, the conformal cooling channel is 
produced using additive manufacturing and the experiment is 
carried out to validate performance of the channel. Wang et al. 
[24] developed approach for production of spiral and 
conformal cooling channels with higher flow rate, which 
increases heat transfer efficiency. Moreover, the channels 
generated by this new approach are easier to fabricate by using 
copper duct bending instead of expensive selective laser 
sintering. He et al. [25], on the other hand, propose a new 
longitudinal conformal cooling channels design in a B-pillar 
tool. “The longitudinal conformal cooling channel design can 
realize the distance between the channel center and the tool 
work surface is equidistant which provides a more uniform 
cooling performance” [25]. Rahim et al. [26] present the 
Milled Grooved Square Shape (MGSS) conformal cooling 
channels which provide more uniform in cooling and have a 
bigger effective cooling surface area cross sectional area and 
comparing to circular and others type of cooling channels with 
similar cross section.  

Conventional injection molding usually implies keeping the 
mold temperature constant during the whole injection cycle. 
However, variotherm injection molding technique means 
completely the opposite, because of this it is also called rapid 
heat cycle molding (RHCM) or rapid thermal response (RTR). 
“According to the mold temperature, the whole variotherm 
injection molding process can be obviously divided into 
heating stage, high temperature keeping stage, cooling stage, 
low temperature keeping stage” [27]. According to variotherm 
technology, the mold is heated up to resin glass transition 
temperature before the cavity is filled, during injection and 
packing stages the temperature should be kept higher than the 
resin glass transition one to avoid early solidification of 
polymer. After the packing stage, the mold needs to be rapidly 
cooled to freeze the polymer melt and prepare the part for 
ejection, afterwards, the cycle is repeated [27].  

Because of complexity of injection molding process, a lot of 
factors need to be taken into account while applying the 
variotherm technology. “For variotherm injection molding, 
heating and cooling rates are two crucial factors which greatly 
affect the molding cycle time or injection molding efficiency. 
So a high effective mold temperature control system is very 
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important” [27]. If the mold has a high temperature during 
injection stage, but afterwards is quickly cooled down, a lot of 
problems may occur to the manufactured part: weld mark, sink 
mark, short shot, flow mark, low gloss, jetting etc. [28-30]. In 
addition, injection speed, injection pressure and residual 
stresses need to be under thorough control. As a result, it is hard 
to find a solution to the problem of dynamical control of the 
mold temperature. 

Investigation in the field of rapid heating and cooling began 
in the 1960s, when the mold apparatus with additional electric 
heating source for the mold cavity was invented [31, 32]. Later 
different variations of variotherm moulds started to appear. 
Yao et al. [33] developed a rapid heating and cooling system 
which consisted of a metallic heating layer, an oxide insulation 
layer, and a mold base. The system was capable of rising the 
mold temperature from 250C to 2500C in 2 seconds. Fu et al. 
[8] fabricated a variotherm mold for production of stainless 
steel microstructures. The mold consisted of a rapid 
heating/cooling system, vacuum unit, hot sprue and cavity 
pressure transducer. Chen et al. [30], in their turn, proposed a 
dynamic mold surface temperature control method, which 
combines electromagnetic induction heating with coolant 
cooling. According to the study, with use of the method the 
mold could be heated from 1100C to 2000C in 4 seconds and 
cooled back to 1100C in 21 s. Saito et al. [34], on the other hand, 
used a CO2 laser to directly heat the resin melt. Wang et al. [27] 
suggested to use high temperature steam to heat the mold 
surface and cooling water was used to cool down the mold 
surface. According to the simulation results, the mold surface 
can be heated from 300C to 1400C at the central range of the 
cavity surface in 20 s heating time with saturated steam of 
1800C [27].  

The above-mentioned examples show good results, 
however, they never became widely implemented because of 
their complexity and necessity to be adjusted for each mold 
individually. On the other hand, universal monitoring and 
control system that would be automatically adjusting to 
different mold forms and process conditions would make 
implementation of variotherm technology a bit easier. This can 
be done through application of an intelligent monitoring and 
control system. 

3.2. Monitoring and control systems 

Online process monitoring can be destructive and non-
destructive. Most of research related to process monitoring in 
injection molding uses destructive methods. In the last few 
decades, researchers applied various destructive methods to 
injection molding process, such as temperature and pressure 
sensors [35-37], visible mold detectors [38, 39], capacitive 
transducers [40, 41], fluorescent sensing [42] and near infrared 
spectroscopy [43].  

However, it is also possible to use non-destructive methods, 
which are not damaging the molds with installation of sensors 
or other additional equipment, as injection molding machines 
contain a lot of information about the actual process conditions 
[44] and the rest might be calculated through use of theoretical 
models, which describe relation between different injection 
molding process parameters. Dontula, Sukanek [45], for 
example, proposed a model, which describes the effect of the 
machine variables on the melt temperature. Wang, Ying [46], 
from their side, established an integral mathematical model for 

the relationship between the packing pressure and the oil 
pressure in the injection hydro-cylinder in a servo motor-driven 
injection molding machine. Dubay, Pramujati [47] described 
the relationship between the fill velocity and the screw velocity 
and presented two predictive controllers for the screw velocity. 

These examples show that data from injection molding 
machines can be much more useful, than it is considered and 
that efficient use of this data might help to avoid application of 
destructive monitoring methods. Zhao, Zhou [3], for example, 
propose a non-destructive online monitoring method for 
injection molding process with use of pressure, temperature, 
and displacement sensors installed in the injection molding 
machine, not in the mold, for collecting data while the machine 
runs. A multimedia timer method and a multithread technology 
are used for maintaining real-time large-capacity data 
collection. Zhao, Wang [48] developed a non-destructive 
cavity pressure measurement method based on ultrasonic 
technology and a Gaussian process. While Zhang, Mao [49] 
created a statistical quality monitoring method for injection 
molding. “In the method, statistical variables are 
automatically extracted from built-in hydraulic pressure and 
screw position trajectories, to reduce dimension of the process 
variables” [49].  

Final quality of a produced plastic part is directly related to 
the accuracy of a mold, material shrinkage, internal stresses and 
amount of molten material in the mold [50]. In order to have a 
high accuracy of the manufactured items in addition to the 
process monitoring, process control application is needed. It 
excludes need of trial and error method use and doesn’t require 
immediate actions to the changed process parameters and 
conditions, as the action is taken by the control unit, when it is 
necessary.  

After the process data is received with help of a chosen 
monitoring method, it can be handled in different ways to 
optimize the process parameters and increase controllability of 
the plastic injection molding process.  

Gao, Tang [51] propose an example of “a quality control 
system that can predict product quality to an accuracy of 3 
errors per million opportunities as specified by six sigma 
methodologies to ultimately enable fully automatic, high 
quality production”. Piezoelectric pressure sensors, an in-mold 
thermocouple, infrared melt pyrometer, a custom-designed 
multivariate sensor are some of the devices used to get 
necessary data to use it for construction of a model based on 
support vector regression algorithm. Schreiber [52] proposed 
and proved efficiency of use of an injection molding process 
model based on artificial neural network. Verification of the 
model required identification tests, network training and 
prediction simulations. The model needs to be adjusted every 
time the mold, machine and plastic material is changed. 
Hopmann, Ressmann [7] went further and propose to use a 
model predictive controller combined with artificial neural 
network to improve repeatability and product quality in plastic 
injection molding. “Unlike controllers such as proportional-
integral-derivative controllers, the control output is not 
determined using a well-tuned, but mathematically relatively 
simple algorithm. Instead, it performs an online optimization 
based on a process model in order to obtain the control 
outputs” [7]. Kim, Gang [53] investigated the cavity filling 
process to increase process controllability and built a one-
dimensional analytical model that describes relationship of four 
process parameters (injection flow rate, peak cavity pressure, 
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mold temperature and melt temperature) with the filling length. 
In addition, Hopmann, Abel [17] applied “a norm optimal 
iterative learning control combined with a simple follow-up 
controller” for cavity pressure control in injection molding. 

However, in these cases, the same trend as in intelligent heat 
management technology application is seen, the results are 
good, but not widely used, as solutions lack element of 
standardization. As a result, it is possible to conclude that need 
for development of a common framework for monitoring and 
control systems for injection molding systems is high. 

4. Conclusion 

Quality issues are a common problem for injection molding 
process due to non-uniform temperature variation in the mold. 
During design of the molds for injection molding process, it is 
very difficult to achieve efficient cooling with uniform thermal 
distribution. It is attempted to be achieved through application 
of variotherm technology, as well as conformal cooling/heating 
channels. However, most of rapid heating and cooling systems 
are still difficult to apply in the mass production of plastic parts 
in injection molding industry due to extra complex heating 
setups, weak mechanical strength of the mold and lack of a 
standardized control option.  

Injection molding is used for mass production, it needs to be 
repeatable and requires manufactured products to be of a high 
quality. However, it is very sophisticated and includes a lot of 
process parameters which can be divided into three different 
groups (machine, process and quality). The quality of a final 
part depends on each of them, so, process monitoring and 
control are of a high importance. Process monitoring can be 
conducted through application of sensors, visible mold 
detectors, capacitive transducers, fluorescent sensing and near 
infrared spectroscopy, however, non-destructive methods can 
also be used. Then relation between parameters that can and 
cannot be measured should be described through application of 
models and related formulas. After collecting the necessary 
data, process control should be used in order to adjust process 
parameters to the changing environment without additional 
human involvement.  

Here different methods can be used, however, artificial 
intelligence methods will bring more benefits than the usual 
ones, as they can adjust and change the model and output 
parameters depending on changes of conditions and 
environment, as well as put aside parameters of the process that 
are not influencing the model to the high extent. Among AI 
methods that can be applied for development of an intelligent 
monitoring and control system are artificial neural networks, 
adaptive neural-based inference system, genetic programming, 
etc. 
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