
Extending a derivative-free model-based
trust-region optimization algorithm to
account for constraints and partial
gradient information
Application to oil field development

Joakim Rostrup Andersen

Master of Science in Cybernetics and Robotics

Supervisor: Morten Hovd, ITK
Co-supervisor: Mathias Bellout, ITK

Andres Duarte Codas, IBM Research, Brazil

Department of Engineering Cybernetics

Submission date: July 2018

Norwegian University of Science and Technology

Abstract

This master’s thesis is motivated by the oil field development challenge. This is a very big
and complicated task and only one part of it will be in focus, namely, the well placement
challenge. When planning a new oil field (e.g., in the North sea) or when more wells are
being added to an existing field, then the placement of the wells are crucial. If the wells
have been placed wisely, then the total amount of recovered oil may be improved consid-
erably. In addition, it is preferable to not produce (i.e, extract from the reservoir) water.
Produced water must be cleaned before it is released back into the ocean and there is a
limitation on how much water that can be processed at once. To help aid in the decision of
the placement of the wells, an oil reservoir simulator can be used. Collected data from the
real field are fed into the simulator, and this simulator can be used in the decision making
process.

This task can be viewed upon as mathematical programming: there is an input (the
well location), a function (the simulator) and an output (e.g., a number that represents the
value of the accumulated production of oil, gas and water).

This master’s thesis addresses the challenge of finding a minimum of an unknown
function. The function may be either an ordinary mathematical function, or a function
whose value depends on the output of a simulation. The available information, when
searching for the minimum, is only the function evaluations. The first step towards finding
the minimum, is to sample the unknown function and create a model of the relationship
between the inputs and the outputs. The model will be valid within a region which is
known as the trust-region. The second step, involves minimizing the model, and hopefully
this minimum will lead towards a minimum point of the unknown function. New points
around the newly found point will be needed to create a new model that is valid within the
new trust-region. The trust-region is centered at the newly found point. These steps are
repeated until a termination criterion is satisfied.

This type of method is called a derivative-free model-based trust-region because the
optimization is done on a model only trusted within a specific region, and the unknown
function is not differentiated.

In addition to learn the theory for the given method, two extensions are made. For
most real-life usages, the user would need to be able to impose constraints on the decision
variables. There exists several different approach, which each has their different pros and
cons. The selected method makes sure that all the points that are to be evaluated will al-
ways obey the constraints. This is imposed by adding all the user defined constraints into
the minimization of the model within the trust-region. This means that the area where a
minimum is searched for will be smaller. If there are constraints on some of the outputs
of the unknown function, then these must be handled differently. They are modelled in the

i

same way as the unknown function, and these constraint models can be included into the
minimization of the model of the unknown function.

Adding these constraints makes it harder to find the minimum of the model. Therefore
a Sequential Quadratic Programming software is used to solve this task. The given con-
straint handling technique for input constraints has been implemented and the preliminary
results are satisfying.

The second extension is concerned with the possibility of using less sample points to
create the model. Two different approaches have been explored. The first approach is to
use the old model as an approximation to the new model and perform some minimization
of the difference after the interpolation conditions have been satisfied. The interpolation
conditions will make sure that the model provides the same output as the unknown func-
tions at the sample points, whereas the minimization will make sure that the model is
uniquely defined.

The second approach is concerned with a slightly different scenario. Until now only
the function evaluations have been available. If derivatives of the unknown function with
respect to some of the variables of interest were available, this information could be used
to speed up the model-making process. Simulators often provide this additional type of
information. This is included by solving a very similar minimization problem as is done
for the first approach. These two approaches can be combined.

Including gradient information into the model-making process makes the algorithm
converge faster. I.e., less function evaluations are needed. However, the found local opti-
mum is often worse than the one found without using gradient information.

ii

Sammendrag

Denne masteroppgaven er motivert av oljefeltutviklingsutfordringen. Dette er en veldig
stor og komplisert oppgave, og bare en del av denne oppgaven vil være i fokus, nemlig
brønnplasseringsutfordringen. Ved planlegging av et nytt oljefelt (f.eks. I Nordsjøen) eller
når flere brønner legges til i et eksisterende felt, er plasseringen av brønnene avgjørende.
Hvis brønnene har blitt plassert på en god måte, kan den totale mengden utvunnet olje
forbedres betraktelig. I tillegg er det foretrukket å ikke produsere (dvs. hende ut fra reser-
voaret) vann. Produsert vann må rengjøres før det slippes tilbake i havet, og det er en
begrensning på hvor mye vann som kan behandles samtidig. For å hjelpe til med beslut-
ningen om plassering av brønnene, kan en oljereservoarsimulator brukes. Innsamlet data
fra det virkelige feltet blir matet inn i simulatoren, og denne simulatoren kan brukes i
beslutningsprosessen.

Denne oppgaven kan betraktes som matematisk programmering: det er en innputt
(brønnplasseringen), en funksjon (simulatoren) og en utputt (f.eks. et tall som represen-
terer verdien av den akkumulerte produksjonen av olje, gass og vann).

Denne masteroppgaven studerer utfordringen i å finne et minimum av en ukjent funksjon.
Funksjonen kan enten være en vanlig matematisk funksjon, eller en funksjon hvis verdi
avhenger av resultatet av en simulering. Den tilgjengelige informasjonen, når man søker
etter et minimum, er kun funksjonsevalueringene. Det første skrittet mot å finne mini-
mumet, er å sample den ukjente funksjonen og lage en modell av forholdet mellom in-
ngangene og utgangen. Modellen vil være gyldig innenfor et område som er kjent som
tillitsregionen (engelsk: trust-region). Det andre trinnet innebærer å minimere modellen,
og forhåpentligvis vil dette minimumet lede algoritmen mot et minimumspunkt for den
ukjente funksjonen. Nye punkter rundt det nylig funnet punktet vil være nødvendig for
å opprette en ny modell som er gyldig innenfor den nye tillitsregionen. Tillitsregionen er
sentrert på det nylig funnet punktet. Disse trinnene gjentas til et sluttkriterium er oppfylt.

En optimaliseringsmetode av denne typen kalles for en derivasjonsfri modellbasert
tillitsregion metode fordi optimaliseringen er utført på en modell som bare er gyldig i en
bestemt region, og den ukjente funksjonen er ikke derivert.

I tillegg til å lære teorien for den oppgitte metoden, er to utvidelser lagt til. For de
fleste praktiske bruksområder i virkeligheten må brukeren ha mulighet til å legge inn be-
grensninger på beslutningsvariablene. Det finnes flere forskjellige metoder for å gjøre
dette, som hver har sine forskjellige fordeler og ulemper. Den valgte metoden sørger for at
alle punktene som skal evalueres av den ukjente funksjonen alltid overholder begrensnin-
gene. Dette oppnås ved å legge til alle de brukerdefinerte beskrankningene i minimering
av modellen i tillitregionen. Dette betyr at området der et minimum blir søkt etter vil være
mindre. Hvis det er begrensninger på noen av utgangene til den ukjente funksjonen, må

iii

disse håndteres annerledes. De er modellert på samme måte som den ukjente funksjonen,
og disse begrensningsmodellene kan inkluderes i minimering av modellen av den ukjente
funksjonen.

Å legge til disse beskrankningene gjør det vanskeligere å finne minimum av modellen.
Derfor brukes en sekvensiell kvadratisk programmeringsprogramvare for å løse denne
oppgaven. Den foreslåtte metoden for beskrankninger på innputtene er implementert og
de foreløpige resultatene er tilfredsstillende.

Den andre utvidelsen utforsker mulighetene for å bruke færre punkter for å lage mod-
ellen. To forskjellige metoder har blitt utforsket. Den første metoden er å bruke den
gamle modellen som en approksimasjon til den nye modellen og utføre en minimalisering
av forskjellen av de to modellene etter at interpolasjonsbetingelsene er oppfylt. Interpo-
lasjonsbetingelsene vil sørge for at modellen gir samme verdi som den ukjente funksjonen
på punktene som er brukt til å lage modellen, mens minimeringen vil sørge for at modellen
er unikt definert.

Den andre metoden tar for seg et litt annet scenario. Hittil har bare funksjonsevaluerin-
gen vært tilgjengelig. Hvis deriverte av den ukjente funksjonen med hensyn til noen av
variablene av interesse var tilgjengelige, kunne denne informasjonen ha blitt brukt til å ak-
selerere modellbyggingsprosessen. Simulatorer gir ofte denne typen tilleggsinformasjon.
Denne informasjonen er inkludert ved å løse et veldig lignende minimeringsproblem som
ble gjort for den første metoden. Disse to metodene kan kombineres.

Å inkludere gradientinformasjon i modellbyggingsprosessen gjør at algoritmen kon-
vergerer fortere. Dvs., mindre funksjonsevalueringer er nødvendig. Imidlertid er den
lokale optimale løsningen ofte verre enn den som ble funnet uten bruk av gradientinfor-
masjon.

iv

Preface

This Master’s thesis is a continuation of the specialization project conducted last semester.
The main outcome of the specialization project was a collection of important theory,
specifically theory on how to update and maintain the surrogate model throughout the op-
timization procedure. The algorithm of focus was also selected. There was implemented
some methods to deal with the model building and updating.

The objective of the Master’s thesis is to extend the results of the specialization project
as follows:

• Explore further reductions in sample points for constructing the surrogate model.
The idea is to incorporate available gradient information into the model-making
process. The scenario is that the derivatives of the objective function with respect to
some of the variables are available.

• Include constrains into the optimization formulation. We would like to be able to
specify both simple bounds on the variable, general linear constraints and nonlinear
constraints.

• Implement the algorithm and test it on ordinary mathematical functions for scenarios
where we have different combinations of different constraints and different amount
of available gradient information. In addition, the algorithm is tested on a problem
from the application area. This test is merely to show that the algorithm can be
applied in the field of interest.

Due to the nature of this project, some of the theory is based upon the theory from the
previous work, but expanded upon to encompass the work in this thesis. Most of the the-
ory has been improved upon, but some of it remains the same. The following list contains
more or less unchanged theory: 3.1, 3.3.4, 3.3.5, 3.9.1, 3.9.2, 3.11 and 3.12. The theory in
3.3 was rather complex, thus, I have tried to add more sections to make it more readable
and easier to understand. Section 3.12 has been improved upon and some of the theory
that was there in the specialization project has been moved into separate sections (such as
3.10 and 3.11).

The algorithm in 3.12.1 have been modified slightly. The optimization algorithm has
to be modified because of the constraints. The change is that the gradient of the model is
replaced by the gradient of the Lagrangian of the constrained problem. This is, as far as I
can see, not suggested in the [1] book where the algorithm is taken from. However, if we
don’t use this gradient instead, the algorithm doesn’t make sense anymore. The reasoning
for this change is given in the theory chapter.

v

The literature review is extended upon. The last 5 paragraphs are new. Most of the
theory was found last semester, thus, the literature review this year is almost the same.

The theory in sections 3.4.1 and 3.4.2 are produced by the author, which is the reason
why they “lack” references.

The scope and prerequisites

I would like to point out that the scope of the task will be mathematical programming, and
that the application area only will be used to explain why the different theory is needed,
e.g., why different kinds of constraints are desired. This is a Master’s thesis in cybernetics
and not petroleum engineering.

I was given a third-party solver to solve the “subproblem” (which is a constrained
mathematical programming in the case of constraints). However, at least three weeks was
used to get it to work with my application. The problem was that it was compiled with the
wrong settings, meaning that there was a mismatch between what FieldOpt1 and the third-
party solver defined as a “double” (I.e., how many bytes that should be used to represent a
floating point).

To implement the constraints in FieldOpt is not straightforward. The current constraint
handling process is based upon adding penalty terms to the objective function. That means
that the optimization algorithm finds a point, and first then the constraints are dealt with.
If the point is infeasible, the point will be projected back into the feasible area.

The road taken in this thesis is quite different. The constraints are always included
such that only feasible points are produced. The difficulty arises because of how FieldOpt
is constructed. The idea in FieldOpt is that the optimization algorithms should be agnostic
to the variable type. I.e., they should not care if the variable represents a z-coordinate or
the bottom hole pressure (BHP). The order of the elements of the vector of decision vari-
ables is random. This also complicates the implementation of our type of algorithm. In
contrast to the agnostic philosophy of FieldOpt, we need to know the variable type and we
need to know the exact meaning of the variable. E.g., if we want to impose a restriction of
the well, we must know which variables corresponds to the heel and the toe of the well. In
addition, we would like to scale the variables differently.

Because of these difficulties only one hard coded constraint was included when the oil
reservoir simulator was used.

The functionality to extract the gradients are not ready in FieldOpt. However, based
upon the results in Chapter 4, this is not a big drawback.

1A software that will be explained later.

vi

My coadvisor, Andrés D. Codas, helped me guide my thoughts to come up with the
theory in section 3.4.2.

Further, I would like to say that everything has been implemented in C++. The lan-
guage has the advantage of having probably the fastest run time and the least amount of
restrictions. However, it is not a great language for prototyping. A lot of time would have
been saved if the framework (i.e., FieldOpt) was written in Python or something similar.

Gratitude
I would like to thank my coadvisors for great help during the last year. Mathias Bellout
has been a true motivator throughout this time. His knowledge in the application area
has been very valuable for a novice like me. He has provided useful insight into the field
development planning. Andrés D. Codas has helped me with both mathematics and imple-
mentation issues. Most importantly, he has showed me the exciting world of optimization!

I would also like to thank my advisor, Morten Hovd, for always being responsive and
providing clear and constructive answers and feedback.

Thank you, all!

vii

viii

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents xi

List of Tables xiv

List of Figures xvi

Abbreviations xvii

1 Introduction 1
1.1 Derivative-free optimization . 3

1.1.1 Why use derivative-free optimization methods? 5
1.2 FieldOpt: Field Development Optimization Framework 6
1.3 Outline of the report . 7

2 Literature Review 9

3 Theory 17
3.1 Notations . 19
3.2 The surrogate model . 19
3.3 Updating of the interpolation model . 21

3.3.1 Derivation of the solution of a convex quadratic program 21
3.3.2 Create the Lagrange polynomials 23
3.3.3 Simple updating scheme . 24
3.3.4 Sophisticated updating scheme 25
3.3.5 Formulas for shifting the center point 32

3.4 Gradient enhanced interpolation model 34

ix

3.4.1 Set the true gradients at the center point of the model 34
3.4.2 Including the remaining available gradients 37

3.5 Constraint handling . 39
3.5.1 Incorporate constraints into the algorithm 40
3.5.2 Constraints in the well-placement challenge 41

3.6 Robustness against noise . 44
3.6.1 Scenario: Including gradients 45

3.7 Poisedness - Geometry of the interpolation points 47
3.8 Model improvement algorithm . 48
3.9 Solving the subproblem . 51

3.9.1 The exact solution . 53
3.9.2 Approximate solutions . 53
3.9.3 The constrained case . 55

3.10 The scaling factor, r . 57
3.11 Certifiably fully linear models . 58
3.12 The algorithm . 58

3.12.1 The derivative-free model-based trust-region algorithm 59
3.12.2 Explanation of the algorithm . 61
3.12.3 Comparison with Powell’s algorithms 63

4 Testing of the algorithm 67
4.1 Incorporating constraints . 67

4.1.1 Implementation details . 67
4.1.2 Test problems for the constraint handling 68
4.1.3 Results - constraint handling . 71

4.2 Gradient enhanced models . 77
4.2.1 Convex functions . 77
4.2.2 Nonconvex function . 78
4.2.3 10 dimensional nonconvex function 80

4.3 Testing on an oil reservoir simulator . 82
4.3.1 Scaling . 83
4.3.2 Results of the well placement challenge 83

5 Conclusion 89
5.1 Further work . 90

5.1.1 Implementation . 90
5.1.2 Initialization . 90
5.1.3 Optimize the parameters for the application area 91
5.1.4 Scaling . 91
5.1.5 Global optimization of subproblem 91
5.1.6 Make it a global algorithm . 91
5.1.7 Gradient enhanced models . 91

Bibliography 93

Appendix A - Results of testing the algorithm A1

x

Appendix B - The implementation B1

xi

xii

List of Tables

4.1 The table shows the answers of the different cases for both the Matyas
function and the Rosenbrock function. The optimums are all global. . . . 71

4.2 The Matyas function. Nonlinear constraint. 72
4.3 The table shows the difference in the amount of function evaluations needed

to converge when different parameters are set. The Matyas function, (4.1),
was used as test function. In all scenarios, the global optimum was found. 77

4.4 The table shows the amount of function evaluations needed to converge
when different parameters are set. The 10 dimensional sphere was used as
test function. In all scenarios, the global optimum was found. 78

4.5 The table shows the difference in the amount of function evaluations needed
to converge when different parameters are set. The Ackley function was
used as test function. In all scenarios, the global optimum was found. . . 78

4.6 The table shows how fragile the gradient enhanced model is to the selec-
tion of points. The gradient enhanced model is compared with the regular
model. The only difference for for each test is the initial point. The second
coordinate is changed from 4.0 to 4.5 as is shown in the y-column. The
first coordinate remains unchanged. 79

4.7 The table shows how the algorithm performs on a nonconvex 10 dimen-
sional function. All parameters not mentioned in the table remains un-
changed. 82

A1 The Matyas function. No constraints. A11
A2 The Matyas function. Bounds. A11
A3 The Matyas function. Bounds and linear constraint. A11
A4 The Matyas function. Nonlinear constraint. A11
A5 The Matyas function. Bounds and nonlinear nonconvex constraint A11
A6 The Rosenbrock function. No constraints. A12
A7 The Rosenbrock function. Bounds. A12
A8 The Rosenbrock function. Bounds and linear constraint. A12
A9 The Rosenbrock function. Nonlinear constraint. A12

xiii

A10 The Rosenbrock function. Bounds and nonlinear nonconvex function. . . A12

xiv

List of Figures

1.1 World’s total primary energy supply by fuel type. “Other” includes geother-
mal, solar, wind, tide/wave/ocean and heat. [2]. 1

1.2 Outlook for world total primary energy supply (TPES) to 2040. The values
are in million tonnes of oil equivalent (Mtoe). [2]. 2

1.3 The four steps of the well index calculator in FieldOpt. 6

3.1 Overview of the different step in the derivative-free model-based trust-
region optimization method. This diagram is based upon Algorithm 11.2
in Introduction to derivative-free optimization[1]. 17

3.2 An illustration of the difference between the nonconvex and the convex
minimum distance constraint. We have assumed that we keep x̂1 and only
move x̂2. 42

3.3 Linearization of the Euclidean norm in 2D. The green polygon is the one
of interest, as it only contains feasible points. The image is taken from [3] 43

3.4 The Ackley function with multiple local optimums. 44
3.5 The Ackley function plotted together with the interpolation model. The

circle represents the boundary of the trust-region. The red lines are the
sample points. Center point is [0, 0] and the trust-region radius is 5. m =
2n+ 1 = 5. 45

3.6 The Ackley function plotted together with the interpolation model. The
circle represents the boundary of the trust-region. The red lines are the
sample points. Center point is [2.1, 3] and the trust-region radius is 5.
m = 2n+ 1 = 5 . 46

3.7 The red circles are sample points. The direction of the gradients are drawn,
the size of the arrow is not representative. The figures illustrates why
including gradient information might be a very bad idea. 47

3.8 The figures show how the poisedness is improved by using Algorithm 1.
The red crosses are the points that have changed from one iteration to the
next. “Iteration 1” is the initial set of points, i.e., Y1. “Iteration 2” is the
points in Y2, and so on. 52

xv

4.1 In the figures above, the Matyas function is plotted. The darker the blue
color is, the lower the function value is. 69

4.2 In the figures above, the Rosenbrock function is plotted. The darker the
blue color is, the lower the function value is. 70

4.3 The top left plot shows the contour of the function together with the con-
straint. The three other plots shows which points have been evaluated. The
difference is the amount of sample points used to create the model, i.e., m.
The value is given in the title of each figure. Green mark means final solu-
tion. Red mark means point found by solving the subproblem. Black mark
is the initial point. The black line is the constraint. 73

4.4 The algorithm converges with all the different constraints. The Matyas
function is used and m = 5 for all tests. 75

4.5 The algorithm converges with all the different constraints. The Rosen-
brock function is used and m = 5 for all tests. 76

4.6 The 2 dimensional function of (4.5). I.e., n = 2. The figure illustrates that
the this function is highly nonlinear and nonconvex. 81

4.7 The reservoir which has been used for testing. Red indicates oil, brown
indicates gas and blue indicates water 85

4.8 The initial and optimized placement of the well. The fault (crack) of the
reservoir can be used as reference point for comparison. 86

4.9 Key information for the base case and the optimized case. 87
4.10 The average pressure value. The important thing to note is that it remains

stable. 88

A1 The points evaluated during optimizations runs of the Matyas function
without constraints. See Table A1 for more information. A1

A2 The points evaluated during optimizations runs of the Rosenbrock function
without constraints. See Table A6 for more information. A2

A3 The points evaluated during optimizations runs of the Matyas function
with bounds. See Table A2 for more information. A3

A4 The points evaluated during optimizations runs of the Rosenbrock function
with bounds. See Table A7 for more information. A4

A5 The points evaluated during optimizations runs of the Matyas function
with bounds and linear constraint. See Table A3 for more information. . . A5

A6 The points evaluated during optimizations runs of the Rosenbrock function
with bounds and linear constraint. See Table A8 for more information. . . A6

A7 The points evaluated during optimizations runs of the Matyas function
with a nonlinear constraint. See Table A4 for more information. A7

A8 The points evaluated during optimizations runs of the Rosenbrock function
with a nonlinear constraint. See Table A9 for more information. A8

A9 The points evaluated during optimizations runs of the Matyas function
with a nonlinear nonconvex constraint and bounds. See Table A5 for more
information. A9

A10 The points evaluated during optimizations runs of the Rosenbrock function
with a nonlinear nonconvex constraint and bounds. See Table A10 for
more information. A10

xvi

Abbreviations

IEA = International Energy Agency
TPES = Total Primary Energy Supply
Mtoe = Million tonnes of oil equivalent
PCG = Petroleum Cybernetics Group
IGP = Department of Geoscience and Petroleum
ITK = Department of Engineering Cybernetics
TCGM = Truncated Conjugate Gradient Method
FL = Fully Linear
CFL = Certifiably Fully Linear

xvii

xviii

Chapter 1
Introduction

There is currently an energy deficit in the world. In 2016, around 1.1 billion people did
not have access to electricity[4]. Most of these people are located in developing coun-
tries in sub-Saharan Africa and in Asia[4]. The world’s population is increasing and there
is already an energy deficit. Thus, to help the underdeveloped countries and emerging
economies to move forward while trying to reduce the environmental impact, clean and
reliable energy sources are needed.

Figure 1.1: World’s total primary energy supply by fuel type. “Other” includes geothermal, solar,
wind, tide/wave/ocean and heat. [2].

Even though renewable energy sources have gotten more attention in the last decade,
it only constituted 1.5 % of the world’s total energy supply in 2015[2]. Fossil fuel is the
dominant energy source, as can be seen in Figure 1.1. The “Other” part of the pie chart
includes geothermal, solar, wind, tide/wave/ocean and heat.

1

Chapter 1. Introduction

International Energy Agency (IEA) creates different scenarios of the future. The base
scenario is the New Policies Scenario. It assumes that policy commitments and plans that
have been announced will be followed and obeyed. Another scenario is the 450 Scenario,
which takes into account that the global increase in temperature should be no more than
2 degrees Celsius. The goal is to limit the emission of greenhouse gases such that the
concentration in the atmosphere will be approximately 450 parts per million of CO2. This
scenario serves as an energy pathway for the future.

Figure 1.2: Outlook for world total primary energy supply (TPES) to 2040. The values are in million
tonnes of oil equivalent (Mtoe). [2].

Figure 1.2 shows the predicted energy sources in both of these scenarios. The amount
of energy coming from renewable sources are expected to increase, however, fossil fuel
will still be the dominant source of energy for many years. In particular, oil will remain
the most important source of energy.

Even though oil as an energy source is not clean, the impact on the environment from
extracting it can be reduced in several steps. An oil field’s life span and recovery rate1

can be extended by taking advantage of technology. The expected recovery rate for oil
is about 46 % in the Norwegian Continental Shelf, whereas this number is around 22 %
globally[5]. Thus, there is a lot more to extract from oil fields when they are shut down.

1The recovery rate is a number between 0 and 1. It reflects the expected percentage of how much oil that can
be recovered from the reservoir. Both the amount of oil in the reservoir and the amount that can be extracted
are expected values. It is not known with certainty. If the recovery rate was 1, then all the predicted oil in the
reservoir would have been expected to be extracted.

2

1.1 Derivative-free optimization

Increasing the recovery rate will delay the need of stepping into new territories to search
for new fields. While planning new fields, decisions regarding the number of wells, types
of wells, control of wells and placement of wells are all important. If these and other de-
cisions regarding field development are done in an optimal manner, the recovery rate and
life of the field could be increased. In 2011, it was estimated that an increase of 1 % of
the recovery rate for fields that were operating on the Norwegian Continental Shelf would
give an additional 570 million barrels of oil[5].

Field development planning is a complex and complicated process. Several dependent
decisions must be taken which makes it troublesome. Taking smart choices will have a
large impact on the expected oil recovery rate. Reservoir simulators may be used to aid in
the decision making process. These kind of simulators are computationally expensive (one
simulation of one possible configuration may take several hours). Thus, an oil company
is likely to use a lot of resources to search for suitable positioning of the wells. Trying
different well placement configurations are usually a manual process. This decision tak-
ing process is constrained by both physical (e.g., platform location) and practical (e.g.,
the high cost of running one simulation) limitations. An engineering team will use their
expertise to try to find an optimal placement configuration. They use estimates of fluids in
place, expert judgment regarding the geology of the field and experience. A mathematical
optimization procedure can be used to aid this decision. The algorithm must be given an
initial well placement configuration, and it will return an improved configuration. The
improvement is measured by, e.g., accumulative oil production. The found solution must
the be evaluated by the experts to investigate the viability of the solution. [6]

The focus of this thesis is the well placement configuration. The placement of the wells
are discrete variables and gradients of the objective function with respect to such variables
are (in general) not readily available. Thus, to solve this problem a derivative-free opti-
mization algorithm will be the main topic.

1.1 Derivative-free optimization

In this section, the problem of this project will be explained, and some basic concepts for
the chosen type of derivative-free optimization will be given.

The first task is to find a minimum of “some” function. This function can be both an
ordinary mathematical function or a simulator or even a mixture. This function will be
referred to as the “true function” or the black-box. The situation is that the only available
information is the function evaluations2. Thus, no first or second order derivative informa-
tion are available.

Finding the global minimum of a possibly highly nonlinear and nonconvex function is
in general a very demanding, or maybe even close to impossible, task. However, this is

2The scenario when also some derivatives of the function are available will also be explored.

3

Chapter 1. Introduction

not our goal. The idea is that the user will suggest a starting point, and the algorithm will
improve upon this point. As mentioned above, this project is concerned with the place-
ment of wells. This decision will not be taken solely based upon an algorithm. Applica-
tion expertise is highly important to suggest good initial points and realistic restrictions.
Furthermore, the solution must be evaluated by people who have knowledge about field
development planning.

The second task will consider almost the same scenario, but with some extra specifi-
cations. To find a minimum of a black-box without being able to impose constraints into
the optimization problem, might be very useless. Let’s say that we would like to improve
upon a suggested location of a well. If we are not able to give any constraints whatsoever,
the chance of the output being a new suggestion where the well is very, very long is highly
likely. This is because a longer well will be able to extract (in general) more oil. However,
there are natural limitations on how long a well can be due to limitations in drilling equip-
ment and the cost of drilling. Thus, the second task of this project is to research how to
include constraint handling into the chosen derivative-free method.

The last extension of this derivative-free method is to include available derivative in-
formation into the model-making process. This is of interest because simulators might
provide gradients with respect to some of the variables, but not to all of them. Including
such information into the model-making process will do such that less sample points are
needed. Or, we could use the same amount of points, but using the gradient information to
create even better models.

The chosen algorithm is a derivative-free model-based trust-region method. The dif-
ferent words in the name of the algorithm will now be explained.

The first term is: model-based. The knowledge of the relationship between the input
and the output of the black-box is limited. In the classical scenario, the only information
that can be obtained is the corresponding output given an input. In our extended scenario,
we might also have the gradients of the function with respect to some of the variables.
Either way, the idea is to try to increase the knowledge by creating a model based upon
the information we have available. The model is called a surrogate model and we will
use a second order polynomial. This is why this method is referred to as a model-based
procedure.

The constructed model will only be valid close to the area where the sample points
are taken. The true function might be highly nonlinear and to expect that the model will
be able to mimic the true function far away the points is an unwise idea. The area where
the model is expected to represent the true function in a satisfactory manner is called the
trust-region. This region is defined by a point, a norm (e.g., the Euclidean norm or the
infinity norm) and the trust-region radius.

The term derivative-free comes from the fact that the true function is not, in the classi-
cal scenario, differentiated. In one of our scenarios, some of those gradients might actually

4

1.1 Derivative-free optimization

be included. In addition, there is no derivation of the surrogate model because it is a sec-
ond order polynomial and the derivatives are readily available from the representation of
the model.

1.1.1 Why use derivative-free optimization methods?

There are many scenarios where derivative-free optimization is the only choice. Due to
the wide usage of simulators, the need of good derivative-free methods is still present and
increasing. The simulators are (in general) expensive to evaluate because they are solving
a set of partial differential equations which controls the underlying physics. The black-box
might be be licensed under an open-source license, but gradients may not be readily avail-
able for extraction. Implementing it yourself might not be an easy task, and some variables
are naturally discrete and defining the gradient with respect to them is not an easy task. If
the source code is closed, then derivative-free methods could be the only choice.

Another approach in these scenarios are to use finite-differences. However, there
are two cases where this is not practical: if evaluating the true function is expensive
(computationally-wise) or when the true function is noisy. If the decision variable is of
size n, then (normally) no less than n + 1 function evaluations are needed to create one
single gradient, which makes it a less preferable approach. In the other case, the created
gradients might be utterly useless. If evaluating the function is not too expensive, finite-
differences might be a tempting idea. However, if one chooses this path, then one must
be sure that the perturbations are of the correct sizes. If the perturbations are too big, then
the gradient might be too imprecise. On the other side, if the perturbation is too small it
might be lost in the discretization (e.g., the grid size). Meaning that the perturbed vector
of variables will give the exact same output as the non-perturbed one. One must also make
sure that the perturbation will not be cancelled out by the tolerances throughout the code.
[1]

There is a generally accepted (though not proved) statement[1] that derivative-free
methods are able to find a “good” local minimum if there are a large number of them.
These multiple minima could for example be due to noise. In such scenarios the derivative-
free methods have a tendency to go to regions where the true function is in general low,
during the initial iterations, because of their near blindness (everything that is in between
the sample points are ignored). In later iterations the methods still tend to smooth the
true function, which is a valuable property in the case of noise. This “robustness to noise”
property will be explored in the theory chapter, and in Chapter 4 it will be tested in practice.

However, if usable gradients are available, then a gradient-based optimization strategy
is the approach to take[1].

5

Chapter 1. Introduction

1.2 FieldOpt: Field Development Optimization Frame-
work

To help solve the well placement configuration problem a framework named FieldOpt is
used. This is a software developed by the Petroleum Cybernetics Group (PCG) at NTNU.
This group is a collaboration between the Department of Geoscience and Petroleum (IGP)
and the Department of Engineering Cybernetics (ITK). The main author is Einar Bau-
mann who is a PhD candidate at IGP, NTNU. FieldOpt is a framework which enables
efficient prototyping and testing of mathematical programming techniques within realis-
tic petroleum workflows. It handles everything regarding logging, writing and reading of
simulator input and output files, and it manages the scheduling of simulations.

FieldOpt offers a convenient way of comparing different optimization procedures, con-
straints and reservoir simulators. All of these options can be specified in something called
a driver file, which contains all of the settings and options for FieldOpt. E.g., to test an-
other reservoir simulator, simply change one word in the driver file3.

The software also provides two other practical features; parallelization and the well in-
dex calculator. Reservoir simulations are often time consuming and running them all one-
by-one isn’t always preferable. It is remarkably easy to run simulations in parallel within
this framework. The only additional workload is that related to keeping track of the IDs
of the different simulations. The second feature is the well index calculator. It is common
that optimization algorithms specify the placement of a well as a spline (i.e., two points
and the line between). However, most reservoir simulators need another parametrization
of the wells. Namely, they need to know which cell-blocks the spline passes through and
also the well index for each of these blocks. The well index is a proportionality factor that
connects the pressure difference between the reservoir and the well, with how much flow
one produces from the well. Figure 1.3 shows the different steps of this calculator. First,
the well placement is specified by a toe and a heel. Then the endpoints are snapped into
valid cells (if they are not already in one). The blocks that the spline is passing through is
calculated before the well index is computed for each block.

Figure 1.3: The four steps of the well index calculator in FieldOpt.

These given features make FieldOpt highly useful for engineers and researchers who
works with optimization of oil reservoirs, but do not have the deep understanding of how

3This requires, of course, that the simulator is installed on your system.

6

1.3 Outline of the report

oil reservoir simulators work. The task of optimization can be abstracted from the ap-
plication area and it can be treated as a mathematical problem instead. However, some
knowledge of the application area is, of course, still needed, such as knowing that one
simulation is expensive (time-wise), knowing what is reasonable step sizes for new iter-
ates of the optimization algorithm, knowing reasonable limitations, etc.

1.3 Outline of the report
The next chapter contains a literature review. In Chapter 3 the theory is given. The focus
will be how to build, update and maintain the surrogate model. Further, suggestions on
how to include available gradients into the model-making process are given in Section 3.4.
Section 3.5 presents different methods to include constraints into the optimization pro-
cedure. The somewhat robustness against noise of derivative-free methods are presented
in Section 3.6. Sections 3.7 and 3.8 contains theory on how to measure and improve the
quality of the geometry of the set of interpolation points. Section 3.9 presents how to solve
find a minimum of the model within the trust-region for the unconstrained case, and it also
suggests how to solve it when constraints are included. The chosen algorithm is presented
and commented in Section 3.12. In Chapter 4 the algorithm has been tested. Different
constraints have been included into the optimization procedure and also different amounts
of available gradient information have been explored. At the end of the chapter, a small
test on a oil reservoir simulator has been performed. The last chapter is the conclusion
which also suggests further work. There are two appendices. Appendix A contains graphs
and tables from the testing of the algorithm and Appendix B contains the source code.

7

Chapter 1. Introduction

8

Chapter 2
Literature Review

During the last years there have been a lot of advances in derivative-free optimization. In
2003, some of the leading researchers in the field published a book [1] on the subject. This
book is the first of its kind, which explains the theory of different kinds of derivative-free
optimization. The available theory on derivative-free optimization with constraints were
very limited at that time (and still is), hence, the book focuses on the unconstrained opti-
mization problem.

The main difference between gradient-based and derivative-free optimization is that
derivative-free methods does not use any derivative information of the true function, nor
of the constraints. The lack of such information implies that the same performance as of
gradient-based methods cannot be expected. Derivative-free methods can solve problems
that consists of a few hundred variables. In gradient-based methods, the first-order neces-
sary conditions says that the gradients are zero at the solution. This convenient information
to help setting up a termination criterion cannot be used in derivative-free optimization as
these gradients are not available. In the case of an expensive and/or a noisy true function,
designing a stopping criterion is challenging. In the case of model-based derivative-free
optimization where the the surrogate model is a (fully or under-determined) second or-
der polynomial, early termination might be the preferred choice. The reason is that the
progress of the solver, as we are getting closer to a minimum, will slow down because
both the trust-region radius and the step size are converging to zero. This implies that the
model must be updated frequently with many new points, unless the true function looks
like a quadratic function around the minimum. When the function evaluations are time-
consuming, then the extra time spent trying to find a better solution might not be worth it.
The expected convergence is typically closer to linear than to quadratic. Hence, a stopping
criterion that makes the solver quit early could be preferred. [1]

The book starts by describing ”Direct Search” methods. These methods are very sim-
ple procedures in principle: choose a starting point, and sample the function around that
point. Move either in a direction as soon as you have found a decrease in the objective

9

Chapter 2. Literature Review

function, or do a full search around the point and then choose the best point as your new
best temporarily optimum. Then continue the process until you cannot find a better point.
These methods does not use any derivative information in any way, but rather infer a direc-
tion of decrease based on direct sampling of the solution space[1]. Moreover, the fact that
they are simple to implement, and that many of them are (somewhat) robust against noisy
cost functions, makes them attractive[1]. However, if evaluating the function is expensive,
these methods will not be advantageous, because they usually require a larger number of
function evaluations for convergence compared to a model-based trust-region version. In
[1] a comparison between four derivative-free methods on two examples are given, where
the score is based upon the amount of function evaluations needed for convergence. They
conclude that model-based trust-region methods are more efficient.

The book[1] also covers derivative-free model-based trust-region methods. If one com-
pares the model-based with the direct-search methods, it can be seen that these two ap-
proaches are completely different. The theory of the model-based methods is quite com-
plex, whereas the theory of the direct-search methods is a lot easier. The different parts
needed to create a globally convergent derivative-free model-based trust-region method is
presented in the book. In fact, it gives a framework which can be used to design globally
convergent model-based trust-region methods. The main ingredients are: (i) how to build
and update a surrogate model, (ii) how to maintain a well suited set of interpolation points
and (iii) how to find the minimum of the model within the trust-region.

In [1] both the cases where you have a over-determined model (i.e., more interpolation
points than needed, use regression) and the case where you have a fully determined model
are covered. However, the case when you have an under-determined model is mentioned
only shortly. Because this project is concerned about the use-case where the black-box is
an oil reservoir simulator, which is a very time consuming computation, we are interested
in exploring the under-determined models within our derivative-free optimization proce-
dure. The question is then whether an under-determined second order polynomial model
will provide enough curvature information and replicate the true function well enough for
it to be useful. We therefore turn our attention to the work of M. J. D. Powell, who has
done a lot of work on both under and fully determined quadratic approximation models
for derivative-free optimization procedures. In [7], Powell compares different types of
approximations:

• Linear. I.e., the Hessian matrix is the zero matrix.

• Fully quadratic. I.e., all elements of the Hessian are fully determined by the inter-
polation conditions.

• Diagonal quadratic. The Hessian is imposed a diagonal structure. All off-diagonal
terms are set to zero.

• Sparse quadratic. The Hessian is imposed a predetermined structure.

The fully quadratic and the linear models are models that are uniquely determined by the
interpolation points alone without imposing other constraints.

10

The numerical experiments presented in [7] suggest, not surprisingly, that including
curvature information (i.e., a Hessian) in the model makes it easier to find the minimum
of the function. Depending on the test functions, it varies which of the quadratic models
(full, sparse, diagonal) that does the best job. Here ”good” means that the total amount of
function evaluations, during the minimization of the function, is low. However, the sparse
quadratic models seem to perform best. That the sparse quadratic models perform better
than the diagonal models is expected because some known information of the sparsity of
the Hessian of the true function is applied. This gives an “unfair” advantage to the sparse
models. For the current project, the most important part of this article is the new way
of updating the models, which requires fewer operations. This is done using an under-
determined quadratic model (could be fully determined). Instead of forcing any kind of
sparsity pattern on the quadratic model to take up the remaining freedom (i.e., those that
are not specified by the interpolation conditions), the freedom is eliminated by minimizing
the Frobenius norm of the change of the second order derivative matrix from one itera-
tion to the next. Powell also presents some promising numerical results. The fact that we
don’t need to impose any known structure on the Hessian is a very important feature of
this method because this kind of structure is not necessarily known. Thus, it makes the
modelling procedure more general and easier to use.

This work was continued by Powell in a paper titled “Least Frobenius norm updating
of quadratic models that satisfy interpolation conditions”[8]. In this paper, the method of
updating a possibly under-determined quadratic model is presented in great detail. The
remaining freedom is, as mentioned, taken up by minimizing the Frobenius norm of the
change of the second derivative matrix of the model. The model is uniquely defined due
to the Frobenius norm being strictly convex. An efficient way of updating the system of
equations when one of the interpolation points is replaced with a new one is also given.
Not only is this method efficient, but it also keeps the Lagrange polynomials available,
which is sought after as they are often used to maintain a good geometry of the set of
interpolation points.

There is one critical demand that must be fulfilled when replacing an interpolation
point, which is related to which point to remove when adding a new one. Namely, that
the Lagrange polynomial corresponding to the old interpolation point must be nonzero
evaluated at the new point. This demand is easily fulfilled and does not give rise to any
problems, and is discussed later in this report. To keep the amount of operations low at
each updating, a decomposition of the Hessian is stored instead of an explicit version.
This suggests that using a (truncated) conjugate gradient method to solve the subproblem
is preferable. Further explanation of this is also given later in the report.

Until now, there has been no mentioning of the center point of the model. Due to float-
ing point arithmetic it is advantageous to change the center point of the model when the
distance between the current best point and the current center point becomes “too large”.
Fortunately, Powell provides convenient formulas for this in the same paper [8]. The cost
of doing this is high and should therefore only be done when strictly necessary. Changing
the center point to the current best point each time a new optimum is found is therefore not

11

Chapter 2. Literature Review

recommended. A method to express the Lagrangian polynomials without their constant
terms is presented in [8]. Each Lagrange polynomial is a quadratic polynomial, and the
constant term is removed by using a difference of the Lagrange polynomials instead of
the polynomials themselves. The reason to do this is purely related to the natural limita-
tion of floating point arithmetic. All the needed changes to the mentioned formulas are
provided. The updating formulas are supposed to automatically correct for accumulated
errors. Numerical experiments show that this is the case, and particularly the one with-
out the constant term is better. However, both versions do a good job. The tests also show
that shifting the center point is crucial to avoid an unacceptable amount of loss of accuracy.

Even though [8] provides promising results, the methodology is not robust enough
against numerical errors. A solution which reduces such errors is given by Powell in [9].
Without going into too many details, as this will be presented in the theory part of this
project, the main result is as follows. If a factorization of a submatrix is stored instead of
the matrix itself, one can force the rank of the submatrix to be correct. A method to update
this factorization is given. The rest of the matrix is updated as in [8]. To understand which
matrices, please see the theory chapter.

Powell has released two algorithms: NEWOUA[10] and BOBYQA [11], which im-
plement the methodologies for model building and updating described so far. NEWUOA
is a software (implemented in Fortran 77) that tries to find the smallest value of a function
using a derivative-free model-based trust-region optimization technique. BOBYQA can
be viewed upon as an extension of NEWUOA, where bounds on the decision variables can
be set (i.e., a ≤ x ≤ b, where a and b are constant vectors), which is of great practical
use for further work on this project. Both papers provide a good practical approach of how
to implement the methods just mentioned. Initialization procedures are given, including
how to select the first set of interpolation points and how to set up the first model. Because
this project will use the framework given in [1], a lot of the content of these two papers are
not directly relevant.

Up to now, we have presented references discussing initializing, maintaining and up-
dating the model and the interpolation set. The next important part of a derivative-free
model-based trust-region algorithm is to find a way of finding the minimum of the model
within the trust-region. The following review is concerned about the case when there is no
constraints. Some algorithms to do this are provided in [1]. To have a global convergent al-
gorithm, it is crucial that the found minimum is as least as good as something related to the
steepest descent. The Cauchy Step is that ”something”, and is the step towards the mini-
mum of the model along the steepest descent direction within the trust-region. Actually, as
long as the step is a fraction of the Cauchy step, global convergence can still be achieved.
However, the mentioned global convergence is only to first-order critical points (i.e., the
gradient of the model is zero). If global convergence to second-order critical-points is de-
sired, then the step can be found along a direction related to the biggest negative curvature.
The Eigenstep is defined as a scaled and possibly sign-switched eigenvector of the Hessian
corresponding to the most negative eigenvalue. The Eigenstep serves the same purpose as
the Cauchy step in this situation. If negative curvature is present, then both these steps are

12

calculated, and the one that provides the better solution (i.e., lowest value of the model) is
chosen. [1]

However, in practise using the Cauchy step normally results in a slowly convergent
method, while asymptotic rate of convergence is possible[12]. An algorithm to find the
exact or nearly exact solution is given in [12]. This algorithm is, to quote the book, “[...]
most definitely effective, it is not necessarily efficient”. Meaning that it will find a good
minimizer, but the computational effort might be very high, depending on the sparsity of
the Hessian. The method can be used in the case of an indefinite (both negative and posi-
tive eigenvalues) Hessian matrix. Very simplified, the algorithm tries to find the minimum
in an iterative process by solving a nonlinear equation using Newton’s method. Consid-
ering the high computational effort, alternative methods that give an approximate solution
could be attractive.

The Dogleg method by Powell and the Double-dogleg method by Dennis and Mei are
two such algorithms. Both algorithms need the Hessian matrix to be positive semi-definite,
which is not tolerable for this project. However, a modified version of the Dogleg method,
which doesn’t have that criterion, is given in [13], whereas numerical experiments of this
method is performed in [14]. The first paper, [13], shows that using this algorithm in
an unconstrained optimization leads to the same theoretical global and local convergence
properties. The algorithm narrows down the search of the minimizer in a subspace spanned
by selected vectors. This algorithm is appropriately named The Indefinite Dogleg Method.

All the mentioned approximate methods (including the nearly exact version from [12]),
have all one common disadvantage, and that is that they all use Cholesky factorization of
the Hessian (or of a sum including the Hessian). This factorization can be computationally
expensive as the number of variables increases. In addition, they all need the Hessian in
its explicit form. (Remember that the method of Powell in [8] only stores a factorization
of the matrix.) Thus, using an optimization technique that multiplies the Hessian with a
vector will be advantageous regarding number of operations needed.

A method which solves both of these issues is the conjugate gradient method[15]. The
conjugate gradient method can be thought of as an alternative to the steepest descent. In
the steepest descent, a step might undo some of the improvement made in a previously
taken step. This is avoided in the conjugate method by always only taking steps that are
Q-orthogonal (or Q-conjugate) to all the previous steps, and not just the previous one, as
is the case for the steepest descent. However, this method, in its original form, cannot
directly be used to find the minimum inside of a trust-region since the problem must be
unconstrained. In addition, the Hessian of the model must be positive definite. Both of
these two limitations are unacceptable in this project.

Fortunately, several improved versions of the conjugate gradient algorithm have been
published. The truncated conjugate gradient method[16], which is “truncated” in the sense
that the search area is now limited to a trust-region, is an interesting improvement. In ad-
dition, this improved version can handle indefinite Hessians. In the case of a positive def-

13

Chapter 2. Literature Review

inite Hessian, the reduction is at least half of the global minimizer in the trust region[17].
However, no such conclusion can be drawn when the problem is nonconvex[12]. In the
nonconvex case, the step produced by the algorithm might be just as bad as the Cauchy
direction, and thus lead to a slow, but theoretically globally convergent algorithm, while in
practice, the algorithm may barely converge[12].

An algorithm which improves on the performance of the truncated conjugate gradient
is the “The generalized Lanczos trust-region method” [18]. The idea behind this algorithm
is to look for the solution in one additional subspace, which is produced by the Lanczos
algorithm, in the case that the solution of the truncated conjugate gradient method is at the
boundary of the trust-region. This additional subspace almost always contains the solution
to the subproblem. A recently published article [19], proposes new stopping criterion that
will improve the numerical performance of this algorithm.

Algorithm 11.2 in “Introduction to Derivative-Free optimization”[1] will be the fo-
cus of this specialization project. Powell’s method of building and updating an under-
determined quadratic model is embedded into the previously mentioned framework. There
are several differences between this and Powell’s algorithms (e.g., NEWUOA [10]), which
will be presented later.

Stefan Wild has recently designed a methodology to compare derivative-free optimiza-
tion algorithms that considers expensive function evaluations[20]. He expands upon some-
thing called performance profiles. Performance profiles[21] rate solvers based upon how
long time they use to achieve a given reduction in the objective function value within a
limit of function evaluation. Data profiles were designed to give the user information
about the percentage of problems that can be solved (for a predetermined tolerance) with
a limitation the allowed amount of function evaluations. This information is essential to
users with expensive function evaluations. In this paper[20], a small comparison between
two direct search solvers and NEWOUA (a model-based trust-region solver) is performed.
Also in this test the model-based solver is the winner.

There is a lack of convergence theory of constrained derivative-free model-based trust-
region optimization. However, the book [1] presents some ideas. Depending on the type
of constraints, the algorithm may or may not still be globally convergent. If there are
only bounds and linear constraints, the convergence theory of the book should be fairly
easy to adapt[1]. There is one type of constraints that could be included while the global
convergent property remains the same. The idea is to add some penalty corresponding to
the amount that the constraints are being violated to the objective function value, whereas
nothing else is changed. If it is possible to merge the objective function and the penalty
terms into a merit function, then this method can be applied. If this method is used, one has
to be careful and make sure that the magnitudes of the terms are about the same. E.g., hav-
ing an objective function varying in the range of -0.001 to 0.001 whereas the penalty term
is in the range of −109 to 109, the objective function becomes negligible. In addition, it is
not guaranteed that the final solution satisfies the constraint(s). Some ideas when it comes
to nonlinear constraints are suggested, and they are all presented later in the theory chapter.

14

The available theory on including gradients into the derivative-free algorithms is lim-
ited, and close to zero (or zero) when it comes to model-based trust-region algorithms.
This makes sense, because if reliable gradients are available, gradient based methods
should be applied. Further, if only some of the derivatives are known, then those that
are missing can be estimated. In this project, we are trying to “go the other way”. In-
stead of estimating the remaining gradients, we simply include those that we have into the
derivative-free method.

The paper [22] presents a generalized pattern search algorithm which includes gradi-
ents, if available, to help select better search directions for the poll step. The poll step is
the step when the algorithm evaluates point around the current iterate to find a direction
which offers decrease in the function value. The paper reports a significant reduction in
the maximum amount of function evaluations that are needed in the poll steps.

This review has presented the relevant literature sources needed to conduct this Mas-
ter’s thesis. First, a note on other types of derivative-free optimization was given. How
to build, update and maintain an under-determined quadratic model have been discussed
which are an important part of the overall algorithm because we need the model to at least
replicate (some of) the main curvature of the true function. If the model is too bad, we
might end up taking a lot of steps in the wrong direction and the algorithm might run for-
ever. Further, methods for finding a minimum of the model within the trust-region were
briefly presented. A short note on how to handle constraints was also given. Next, the
theory of some of the presented topics will be given.

15

Chapter 2. Literature Review

16

Chapter 3
Theory

This chapter begins with a simplified explanation and overview of the derivative-free
model-based trust-region optimization algorithm that will be used in this project. A flowchart
of the algorithm can be seen in Figure 3.1. The goal of this section is to make it easier for
the reader to follow along and to understand why the subsequent theory is presented.

Figure 3.1: Overview of the different step in the derivative-free model-based trust-region opti-
mization method. This diagram is based upon Algorithm 11.2 in Introduction to derivative-free
optimization[1].

The algorithm starts with the Initialize step. The number of interpolation points used to
create the surrogate model is chosen, as well as the initial guess and the initial trust-region
radius. The starting point, which is provided by the user, is perturbed to get the selected

17

Chapter 3. Theory

amount of sample points. These points are evaluated and used to create the first surrogate
model.

In the next step, some measurement of optimality is required. We have chosen the
gradient of the Lagrangian because the optimization problem will have constraints. In the
unconstrained case, the gradient of the surrogate model suffices. This step makes sure
that the surrogate model becomes more accurate when the gradient (of the Lagrangian)
is close to zero. This will prevent the scenario where the gradient is too small compared
to the trust-region radius. If the gradient is small compared to the radius, then often a
small step within the trust-region is taken. The reason why it is not preferable to take
these small steps is because the model is most likely a bad predictor of the true function
when the steps become too small. Remember that the surrogate model is constructed based
upon points spread around the inside of the trust-region, meaning that maybe only one or
two points will contribute with information close to the current iterate. Thus, the chance
that the model mimics the true function in detail around the current iterate, is close to zero.

The Criticality step increases the accuracy of the model by reducing the trust-region
radius. This implies that the radius is a natural termination criterion for the algorithm. Af-
ter the radius is reduced, new points will be selected until the gradient of the Lagrangian
satisfies some requirement. When the radius is decreased, some of the old points might
leave the trust-region, forcing these points to be replaced by points inside the trust-region.
Note that the replacement of these points might make the geometry of the new set of points
worse, and, hence, more replacements must be made. To elaborate, when one point out-
side the trust region is going to be replaced by a point inside, it is not necessarily possibly
to place that new point such that the geometry of all the points in the set is good. Maybe
some of the old ones must also be moved.

At this point of the algorithm, the surrogate model satisfies a criterion and hopefully it
is a good predictor of the true function. A minimum of this surrogate model, which obeys
the constraints of the overall problem, is found. This optimization problem is known as
the subproblem. The found minimum is evaluated.

After the point has been evaluated, the next step is the Acceptance of the trial point
step. Here it is decided if the point may be accepted into the set of interpolation points.
One out of three cases might happen. (i) The point is the best found point so far and it is
included in the set of interpolation points before going to the Trust-region radius update
step. (ii) The point is disregarded all together. (iii) The point is included, but it is not the
best point found thus far. For both (ii) and (iii) the Model improvement step will be entered
because, clearly, the model is not good enough.

In the Model improvement step, one point of the interpolation set is attempted replaced
solely with the goal of making the model better. This step may or may not be able to do a
replacement. Afterwards the algorithm enters the Trust-region radius update step.

In the Trust-region radius update step the trust-region radius is updated based upon

18

3.1 Notations

how well the model predicted in the Acceptance of the trial point step. All the different
steps have been entered, and the algorithm is back to the Criticality step.

3.1 Notations
Before we dive into the theory, the most used notation will be introduced. Let n be the
number of inputs to the surrogate model, i.e., the number of decision variables the objective
function will depend upon. The number of interpolation points is denoted by m, and this
number is fixed throughout the entire optimization procedure. yi is the i-th interpolation
point, for i = 1, 2, . . . ,m. Further, let y0 be the center point of the model, and yb be
the best point found thus far. f(x) represents the true function, while x is of the same
dimension as yi. The yi’s vectors represent decision vectors that we have found values
for, while for all other vectors, x is used. All the m interpolation points minus the center
point, i.e., (yi − y0), are stacked together in a big, n-by-m, matrix Ŷ:

Ŷ =
[
(y1 − y0) (y2 − y0) . . . (ym − y0)

]
Note that y0 does not necessarily have to be one of the yi’s vectors, but it may be.

3.2 The surrogate model
This section presents all the relevant theory for how to handle the surrogate model. First,
the chosen model is presented and the derivation is shown. Then a method to update the
model is given. Further, an extension of the updating method is presented which will make
it more robust against floating point errors. How to include gradient information into the
model building and updating procedures are derived. Afterwards, one method to shift the
center point of the model and one method to increase the geometry of the set of interpola-
tion points are given.

In the field of optimization using derivative-free model-based trust-region methods, it
is common to use a polynomial of first or second order as the interpolation model. The
chosen model is therefore a second order polynomial. Some reasons why these kind of
models are commonly used are that they are easy to understand and they are easy to work
with. By easy to work with, it is meant that they are easy to differentiate and they are easy
to create based upon interpolation points. Moreover, if one could choose between finding
the minimum of a low order polynomial and a complicated function, most people would
probably choose the former.

A second order polynomial can be written on the following form:

Q(x) = c+ gᵀ(x− y0) +
1

2
(x− y0)ᵀG(x− y0) (3.1)

where c is a scalar, g ∈ Rn is the gradient at y0 and G = Gᵀ ∈ Rn×n is the Hessian
of the model. Because G is symmetric this function has (n + 1)(n + 2)/2 coefficients.

19

Chapter 3. Theory

If these coefficients should be determined solely based upon the interpolation conditions,
then (n+ 1)(n+ 2)/2 sample points would have been needed. To clarify, by interpolation
conditions it is meant

Q(yi) = f(yi), i = 1, 2, . . . ,m

and these will removem degrees of freedom as long as the points are linearly independent.
Q is the surrogate model and f is the true function.

The true function (i.e., the oil reservoir simulator) is computationally expensive to
evaluate, thus, using fewer points would be desirable. One possibility is to simply use a
model with less coefficients such as a linear model. However, a linear model does not pos-
sess any curvature information whatsoever because the Hessian matrix is the zero matrix.
There are algorithms out there which follow this approach such as COBYLA[23]. The
selected approach is to include some curvature information which, hopefully, will make
the algorithm converge faster.

The surrogate model will be on the form (3.1). As mentioned in the literature review,
there exists different approaches to decide the remaining degrees of freedom. The selected
approach is the one that is suggested in [7] which solves a minimization problem. The
method is based upon the idea that the old model is a good approximation to the new
model. This is (often) a reasonable thought as they are both interpolation models which
shares m−1 points. After the interpolation conditions are satisfied, some change between
the old and the new model is minimized. The updating is required to be independent of
the center point of the model. The reason is not specified in the paper, but a unique model
is required and considering that the center point could be any point, including it into the
updating would make it dependent on the that point, and thus not unique. This leads the
attention to the Hessian matrix which is the only part of (3.1) which is invariant to shift of
the center point.

There are different representations to choose from when dealing with a second order
polynomial such as the monomial basis, the radial basis and the Lagrange polynomial
basis. The latter is chosen1. In fact, when it comes to the model itself, it doesn’t matter
which representation is chosen. However, the Lagrange polynomial basis is important for
other reasons, which will be revealed later, and therefore it must be available. This basis
will be available almost for free when the approach given in [7] is used. A second order
polynomial (where m = (n + 1)(n + 2)/2) may be written in terms of the Lagrange
polynomial basis:

Q(x) =

m∑
j=1

f(yj)`j(x) (3.2)

where the `j’s are the Lagrange polynomials. These must satisfy the Kronecker delta prop-
erty: `j(yi) = 1 if j = i and is zero otherwise. f(yj) is the true function evaluated at yj .

Now that some general information around the model we are using have been estab-
lished, the next topic can be presented: how to create and update the surrogate model.

1In fact, a modified version of the Lagrange polynomial basis will be used.

20

3.3 Updating of the interpolation model

3.3 Updating of the interpolation model
In this part it is derived how the coefficients of the interpolation model in (3.1) can be
uniquely determined when one interpolation points is replaced with a new one. The goal
of this section is to find the quadratic polynomial,Q#, that must be added to the old model,
Q, to get the new model, Q+. I.e., find the model Q# such that Q + Q# = Q+. The old
and the new model have all the same interpolation conditions but one. That means that the
old model will have the exact same value at all of the interpolation points but the one that
has been replaced. The superscripts # and + will denote that a component belongs to the
difference model, Q#, or the new model, Q+, respectively. E.g., y+

i will be part of the
new set of interpolation points, whereas yi will belong to the old set.

This is the representation of the new model:

Q+(x) = c+ + g+ᵀ
(x− y0) +

1

2
(x− y0)ᵀG+(x− y0) (3.3)

and this is how the difference model is represented:

Q#(x) = c# + g#ᵀ
(x− y0) +

1

2
(x− y0)ᵀG#(x− y0) (3.4)

The corresponding interpolation conditions will be:

Q+(y+
i) = f(y+

i), i = 1, 2, . . . ,m (3.5)

and

Q#(y+
i) = Q+(y+

i)−Q(y+
i) = f(y+

i)−Q(y+
i), i = 1, 2, . . . ,m (3.6)

Note that all the right hand sides of (3.6) will be zero except for the one corresponding to
the point that is being replaced.

Before continuing, the Frobenius norm is introduced in case the reader is not familiar
with it. The Frobenius norm of a matrix is the Euclidean norm of the vectorized matrix.
Here is a small example for illustration:

∣∣∣∣∣∣∣∣[a b
c d

]∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a
b
c
d


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=
√
a2 + b2 + c2 + d2

3.3.1 Derivation of the solution of a convex quadratic program
As previously mentioned, after satisfying the m interpolation conditions (3.5) there is still
(n+ 1)(n+ 2)/2−m degrees of freedom left. These will be determined by minimizing
the change of the Hessian matrix from the old model to the new one. The Frobenius norm
will be used as the measurement of change. This can be formulated as a minimization

21

Chapter 3. Theory

problem. Specifically, the squared Frobenius norm of the change of the Hessian is mini-
mized subject to the m interpolation conditions.

G#, and consequently G+, is selected as the matrix that minimizes the squared Frobe-
nius norm:

||G#||2F = ||G+ −G||2F =

n∑
i=1

n∑
j=1

(G+
ij −Gij)

2

subject to it being symmetric and subject to the interpolating conditions.

Since the Frobenius norm is strictly convex (just as the Euclidean norm is), Q# is
uniquely defined if the following two properties of the interpolation points are fulfilled[8]:

(P1) If Q is the space of all quadratic polynomials from Rn to R that are zero for the
interpolation points, then the dimension of this space must be 1

2 (n+1)(n+2)−m.

(P2) If p(x) is any linear polynomial from Rn to R and p(x) = 0 for all the interpola-
tion points, then p must be identically zero.

It is demonstrated why these two properties make Q# uniquely defined by the follow-
ing contradiction[8]: (P1) ensures that the model is equal to the true function for all the
interpolation points. Let q(x) ∈ Q be the polynomial with the second derivative matrix
that minimizes ||G+ − G||2F . If q̂(x) ∈ Q is another polynomial which has the same
double derivative matrix, then q − q̂ will be a linear polynomial which is nonzero. How-
ever, property (P2) says that such a linear polynomial must be zero, and thus we have a
contradiction, and we can conclude that Q# is uniquely defined. Later, a convenient way
to ensure these two properties is presented.

The parameters of Q# can be found by solving a convex quadratic program:

min
G#

ij ,g
#,c#

1

2
||G#||2F =

1

2

n∑
i=1

n∑
j=1

G#
ij

2

s.t.

c# + g#ᵀ
yd,i +

1

2
yᵀ
d,iG

#yd,i = f(y+
i)−Q(y+

i) i = 1, 2, . . . ,m

(3.7)
where yd,i = (y+

i − y0). Note that Q(y+
i) is the old model evaluated at the new inter-

polation point. Recall that G# is required to be symmetric. However, this requirement is
automatically satisfied by (3.8c).

The first order KKT conditions of this minimization problem will now be derived. The

22

3.3 Updating of the interpolation model

corresponding Lagrangian function is:

L(c#,g#,G#) =
1

2

n∑
i=1

n∑
j=1

G#
ij

2

−
m∑

k=1

λk

(
c# + g#yd,k +

1

2
yᵀ
d,kG#yd,k − (f(y+

k)−Q(y+
k))

)
,

where λk’s are the Lagrange multipliers. We then derive the partial derivatives of L with
respect to variables c#, g# and G# and set these equal to zero at the solution:

∂L
∂c#

=

m∑
k=1

λk = 0 (3.8a)

∂L
∂g#

=

m∑
k=1

λk(y+
k − y0) = 0 (3.8b)

∂L
∂G#

=

m∑
k=1

λk(y+
k − y0)(y+

k − y0)ᵀ −G# = 0 (3.8c)

The unknown parameters are now uniquely given by (3.8) and them constraints in (3.7)[8].
Clearly, (3.8c) can be used to eliminate G#. These equations will be put together as a
linear system of equations in matrix form. Let A+ be the m×m matrix whose elements
are:

A+
i,k =

1

2

[
(y+

i − y0)ᵀ(y+
k − y0)

]2
, ∀ i, k ∈ {1, 2, . . . ,m} (3.9)

Further, let e be an m× 1 column vector with all elements set to 1, and F# be of the same
size with element i having the value f(y+

i)−Q(y+
i). All the λk’s are stacked together into

the column vector λ of appropriate size. The matrix form of the linear system of equations
is then:

A+
e

... (Ŷ+)ᵀ

eᵀ

. . .

Ŷ+

0




λ
c#

. . .
g#

 = W+


λ
c#

. . .
g#

 =


F#

0
. . .
0

 , (3.10)

where W+ is a (m+ n+ 1)× (m+ n+ 1) matrix.

Before we continue with how to do the updating of the model, we will see how we can
create the Lagrange polynomials. The reason why this is presented now, is that it is very
related to the just found solution of the minimization problem.

3.3.2 Create the Lagrange polynomials
The normal Lagrange polynomials, i.e., those belonging to a second order polynomial
which is fully determined by the interpolation conditions alone, are uniquely determined

23

Chapter 3. Theory

by the Kronecker-delta property. The Kronecker-delta property is `j(yi) = δji = 1 if
j = i and is zero otherwise. However, now that there are less interpolation points, there
are also have less Lagrange polynomials and thus also less Kronecker delta properties to
fulfill. This means that the coefficients of the Lagrange polynomials are not uniquely de-
fined. In other words, there will be several bases that will give the same (and correct)
output and all of them can satisfy the Kronecker delta property. To overcome this lack of
uniqueness, the same approach is taken as the one used for determining Q#. But now the
squared Frobenius norm of ∇2`+j is minimized instead of G# and now it is subject to the
Kronecker delta property instead of the interpolation conditions. ∇2`+j is the Hessian be-
longing to the j-th Lagrange polynomial of the new model. The `j’s are now applicable to
our under-determined model. The Kronecker delta property conditions will be as follows:

`+1 (y+
j) = c+1 + (g+

1)ᵀ(y+
j − y0) +

1

2
(y+

j − y+
0)ᵀG+

1 (y+
j − y0) = δ1j (3.11a)

`+2 (y+
j) = c+2 + (g+

2)ᵀ(y+
j − y0) +

1

2
(y+

j − y0)ᵀG+
2 (y+

j − y0) = δ2j (3.11b)

...

`+m(y+
j) = c+m + (g+

m)ᵀ(y+
j − y0) +

1

2
(y+

j − y0)ᵀG+
m(y+

j − y0) = δmj (3.11c)

for j = 1, 2, . . . ,m.

Let’s say that we want to find `+t (x), which means that all the right hand sides in (3.11)
should be zero except for the one belonging to `+t (x), which will be 1: `+t (yt) = δtt = 1.
If this information is transferred into the matrix formulation of the solution of (3.7), it will
be equivalent to setting the right hand side of (3.10) to a unit vector with the element 1 at
position t:

W+


λ+t
c+t
. . .
g+
t

 =


et

0
. . .
0

 (3.12)

If we calculate the Lagrange polynomials directly from (3.12) we would need to solve
an almost identical linear system of equations m times, one time for each Lagrange poly-
nomial. A more computational budget friendly method will be presented later. Now we
will turn the focus back to the updating procedure.

3.3.3 Simple updating scheme
Before the method that is explained in the paper [8] is presented, a more intuitive method
is suggested. This alternative is included because it is more straightforward and it accom-
plishes the same theoretical result. In addition, hopefully, it will be easier for the reader to

24

3.3 Updating of the interpolation model

understand what is happening. However, computationally wise, it is terrible in comparison.

Let’s assume we already have a model Q and that we want to update it after one of the
interpolation points has been replaced, t say. Let x+ be the new interpolation point, i.e.,
x+ = y+

t . The Q# model will be calculated by using a linear solver on equation (3.10).
As mentioned, the F# vector consists of the values (f(y+

i)−Q(y+
i)) for j = 1, 2, . . . ,m.

This means that F# will be the unit vector et times f(x+) − Q(x+). Now that we have
Q# we can simply add it to the old model Q and we are done.

The observant reader might have noticed that Q# is actually a scaled version of the
t-th Lagrange polynomial of the new model. To see this, compare the right hand side of
(3.12) with the F# used here. This means that the model can be updated by this formula:

Q+(x) = Q(x) +Q#(x) = Q(x) + `+t (x)(f(x+)−Q(x+))

In the scenario that we don’t yet have a model, i.e., none of the coefficients of Q is
determined. Then this method can be used to create the first model. Simply put all of the
coefficients to zero and follow the exact same procedure. The only difference will be that
the F# vector will possibly have values in all its slots, and the Q# will not be a scaled
Lagrange polynomial.

This initialization procedure actually reveals two new ways of using this under-determined
model. Until now, it has been assumed that the old model is a good approximation to the
new one. But if we want to remove this assumption, we can use this method to reset the
stored Hessian. The other idea is to never use the old model, and let the model be deter-
mined solely on (3.10) at every iteration. This would lead to a model which has at least
a linear part and is extended with some curvature information such that the interpolation
conditions are satisfied.

The focus will now be turned to the updating procedure that is given in [8].

3.3.4 Sophisticated updating scheme

The way that the paper [8] deals with the updating of the system with a new point is very
different and a lot more complicated than the just presented method. As we have seen,
we are solving the (3.10) a lot of times. The idea in this paper is that we will work with
the inverse of the W matrix. This inverse is hereby denoted by H, i.e., H = W−1. The
inverse is never calculated directly, but initialized and then updated directly. First, a pro-
cedure to update the entire H matrix is presented. This procedure is somewhat resistant to
errors that occur due to the limited accuracy of floating point arithmetic. However, users
of the method reported they had problems and Powell came up with an even more robust
updating procedure. This is an extension which is used to update one submatrix of H.
The rest of the matrix is still updated with the original formula, which will be presented
shortly. The extension will be given afterwards.

25

Chapter 3. Theory

Here, the formulas detailing the model updating procedure are presented and com-
mented upon, but the complete derivation is not presented. Full derivations are of less in-
terest to this project, however, the most important parts of the methodology are explained
and commented. Please see [8] for full derivations.

Updating the H matrix

One of the most important goals of the model updating procedure is to keep the compu-
tational effort of each update low (O(m2 + n2)). Moreover, an important feature of the
procedure is that it is designed to automatically reduce the effect of numerical errors. The
key idea behind the updating procedure, which allows for both of the preceding specifica-
tions, is the fact that W+ and W only differ in the t-th row and column, which can easily
be seen from (3.10). Remember that both Ŷ and A are determined by the interpolation
points alone. Further, H+ can be calculated from H and the t-th column of W+, w+

t .
The fact that H−1 should be equal to W is also a key factor. The matrix W is not stored.

Before the results are given, some information regarding how the updating procedure
is robust2 against numerical errors due to floating point arithmetic will be given.

In the beginning of an updating procedure, H is available and w+
t can easily be cal-

culated (w+
t is as defined above) from the interpolation points. The following update

procedure is by no means effective nor is it used, but the given relationship provides good
protection against accumulation of numerical errors due to computer rounding errors.

Let’s start by inverting H to get W. We know that W is symmetric (see equation
(3.10)) and we already have the vector w+

t . This means that we can calculate the new
W+. Then this new matrix can be inverted to get H+, and the updating of the inverse
matrix is done.

We now assume that any numerical errors from the current iteration can be neglected,
and that there might be huge errors in H due to previous iterations. Most of the er-
rors in the matrix will be inherited by the updated matrix. Let the error be denoted as
∆ = Wr−H−1, where Wr is the “real” W matrix as defined by (3.10). ∆ is a matrix of
the same size as W. Remember that Wr is not actually stored, nor created. This error, ∆,
will not grow as the number of iterations increases[8]. This statement will now be justified.

Let ∆+ = W+
r − (H+)−1 be the error of the updated system. Remember that ∆

represents the accumulation of numerical errors due to previous iterations. Now we will
use the relationship given in the previous paragraph, namely, that the t-th row and column
of (H+)−1 is equal to the same row and column of W+

r . This implies that the t-th row
and column of ∆+ must be zero.

2It is not “fully robust”, but it helps reducing the effect of numerical errors that occur due to computer
rounding errors.

26

3.3 Updating of the interpolation model

Now, let’s use the fact that Wr and W+
r will be identical for all rows and columns

except the t-th. We know that H−1 and (H+)−1 will be identical for all rows and columns
except the t-th ones. All this implies that any accumulated error in the t-th row of ∆ will be
eliminated in ∆+, whereas the other errors will be inherited by ∆+. This, in turn, implies
that removing an interpolation point that has been in the set for a long time is preferable.

Remember that t is taken from the closed interval [1, 2, 3, . . . ,m] and that H is a
(m+ n+ 1)× (m+ n+ 1) matrix, thus, any errors in the bottom right (n+ 1)× (n+ 1)
matrix will not be removed. This is where the extension of updating method comes in. It
will be presented later.

We did assume that we could neglect the contribution of rounding errors due to the cur-
rent iteration. However, if |∆+

i,j | > |∆i,j | (where the subscript i, j denotes the i, j element
of the matrix), then this difference is due to rounding errors due to the current iteration.
The discussion is now done and we proceed by presenting the updating formulas.

Let x+ be the new interpolation point, and let t be the index of the interpolation point
that is going to be replaced. Further, Let w ∈ Rm+n+1 (not the same vector as w+

t) be
the following vector:

wi =
1

2
{(yi − y0)ᵀ(x+ − y0)}2, i = 1, 2, . . . ,m

wm+1 = 1

wm+i+1 = (x+ − y0), i = 1, 2, . . . , n

then

H+ = H +
1

σt
[αt(et −Hw)(et −Hw)ᵀ − βtHete

ᵀ
t H (3.13)

+ τt {Het(et −Hw)ᵀ + (et −Hw)eᵀ
t H}]

where

αt = eᵀ
t Het = Ht,t

βt =
1

2
||x+ − y0||4 −wᵀHw

τt = `t(x
+) = eᵀ

t Hw

σt = αtβt + τ2t

where et is the t-th unit vector inRm+n+1. The following convenient relationship is also
available3:

`j(x
+) = eᵀ

j Hw, j = 1, 2, . . . ,m

It is proven in exact arithmetic that σt will be greater than zero as both αt ≥ 0 and βt ≥ 0.
As stated earlier, a convenient way to ensure that the properties (P1) and (P2) are satisfied

3In “Extract the Lagrange polynomials” we will see how the Lagrange polynomials can be extracted from H.

27

Chapter 3. Theory

would be given. In [8] it is stated that they will be as long as `t(x+) is nonzero. The
interested reader can find the reasoning of this in the original paper [8]. We can see that
this is necessary or else the value 1/σt could potentially explode. In addition, it means
that the W+ of (3.10) for the new interpolation points is nonsingular. If a square matrix is
nonsingular, then the matrix is invertible.

The extension of this updating formula will be presented next.

Updating one part of the H

As previously mentioned, a separate updating formula has been invented by Powell to
update a submatrix of H that will reduce the effect of numerical errors even more. See
[10] and [9] for practical and theoretical descriptions, respectively. Before the formulas
are given, some reasoning of how this factorization helps to reduce the effect of computer
rounding errors is given. Let

H =

(
Ω Ξᵀ

Ξ Υ

)
,

where Ω, Ξ and Υ are of the dimension m × m, (n + 1) × m and (n + 1) × (n + 1),
respectively. Ω is the submatrix that will be updated by this formula. Further, let W in
(3.10) be expressed as:

W =

(
A Xᵀ

X 0

)
,

where

Xᵀ =

(
e

... Ŷᵀ

)
.

and A is defined as before. The interpolation points are chosen such that X will have full
rank, i.e., the rank is n+1. The proceeding updating formula for the factorization is based
upon the remark that XΩ = 0. That this is the case, can easily be shown:

WH =

(
A Xᵀ

X 0

)(
Ω Ξᵀ

Ξ Υ

)
=

(
AΩ + XᵀΞ AΞᵀ + XᵀΥ

XΩ XΞᵀ

)
= I

where the last equality is due to H−1 = W. The fact that XΩ should be zero and the rank
of X is n+1 creates a bound on the rank of Ω. The rank can not be higher thanm−n−1.
If Ω has the rankm−n−1, then the bottom right submatrix of dimension (n+1)×(n+1)
of H−1 is zero[9]. Which solves the problem of the accumulated errors in the bottom right
submatrix of ∆ mentioned earlier. This property is guaranteed by using the factorization
of Ω given below and the proceeding updating formulas, which makes sure the rank of Ω

28

3.3 Updating of the interpolation model

is m− n− 1.

The Ω matrix is factorized as shown:

Ω =

m−n−1∑
k=1

skzkzᵀk

= ZSZᵀ

where Z contains the column vectors zk, and S is a diagonal matrix of the sk’s. The sk’s
are either −1 or +1, and it is only −1 if floating point errors have previously occurred.
This can be seen by looking at the updating formula for the sk’s, i.e., equation (3.17). As
previously mentioned, it is proved that σt will be a positive number in exact arithmetic.
Thus, if any of the elements of S is -1 after an update, then errors due to the limitation of
precision of floating points have occurred.

If the t-th element of zk is zero, then

s+k = sk (3.14)

z+k = zk (3.15)

Let K be the set containing those indices (the k’s). Before the updating is started, an ele-
mentary change is made, if necessary, to the terms of the sum, which forces the cardinality
of K to be greater or equal m− n− 3. If si = sj , then the following orthogonal rotation
can be done to zi and zj without changing the value of Ω:

zi := cos(θ)zi + sin(θ)zj (3.16a)
zj := − sin(θ)zi + cos(θ)zj (3.16b)

for any θ ∈ [0, 2π]. Thus, either i or j can be put into K by forcing the t-th element
of either of the z’s to be zero. This means that a maximum of two new vectors must be
calculated after retaining the values in (3.15). If the cardinality of K is m − n − 2, then
the following updating formula is used:

s+u = sign(σt)su (3.17)

z+u = |σt|−1/2{τtzu + Zt,uchop(et −Hw)} (3.18)

where zu denotes the only z vector that has a nonzero element in the t-th component, Zt,u

is the t-th element of zu, chop() keeps the first m elements of the vector and the other
paramerets are as before.

In the other case, when the cardinality of K is m − n − 3 (i.e., one of the sk’s is -1),
then the updating formula depends upon the sign of βt. Let zu and zv be the two vectors

29

Chapter 3. Theory

that are not given by (3.15), and su = 1, sv = −1. If βt is non-negative:

ζ = τ2t + βtZ
2
t,u

s+u = su = 1

s+v = sign(σt)sv = −sign(σt)

z+u = |ζ|−1/2{τtzu + Zt,uchop(et −Hw)}
z+v = |ζσ|−1/2{−βtZt,uZt,vzu + ζzv + τtZt,vchop(et −Hw)},

while if βt < 0:

ζ = τ2t − βtZ2
t,v

s+u = sign(σt)su = sign(σt)

s+v = sv = −1

z+1 = |ζσt|−1/2{ζzu + βtZt,uZt,vzv + τtZt,uchop(et −Hw)

z+v = |ζ|−1/2{τtzv + Zt,vchop(et −Hw)}.

To conclude, equation (3.13) is still used to update Ξ and Υ, while the just stated for-
mulas are used to update the factorization of Ω. Before we continue, some information
about how to decide the θ is provided. There is atleast two ways to find the value. The first
one is the easiest and most straight forward method.

Let zik and zjk be the k-th element of the two vectors. atan2(y,x) is the inverse tangent
that takes into the consideration where the points are placed and gives a value between
±π. Now, let θ̃ = atan2(zik, z

j
k). If θ̃ < 0, then θ = θ̃ + π. Else, θ = θ̃. The new vectors,

are then given by:

zinew := cos(θ)zi + sin(θ)zj

zjnew := − sin(θ)zi + cos(θ)zj

The other method relies on the definition of sin and cos and is the preferred method as it
doesn’t require the calculation of θ.

sin(θ) =
zjk√

(zjk)2 + (zik)2
cos(θ) =

zik√
(zjk)2 + (zik)2

Now the updating is straight forward as both the unknowns are determined. Both of these
methods will put a zero at the k-th element of zj . The last method is the method that Powell
used in his implementation of NEWOUA[10], and the solution was found by inspecting
his code. The code is available (pr. 29.06.2018) at http://mat.uc.pt/˜zhang/
software/newuoa.zip.

All the needed details to update the inverse H matrix are given and we can now proceed
with a computational budget friendly method to extract the Lagrange polynomials.

30

http://mat.uc.pt/~zhang/software/newuoa.zip
http://mat.uc.pt/~zhang/software/newuoa.zip

3.3 Updating of the interpolation model

Extract the Lagrange polynomials

Here we will show how to create the Lagrange polynomials almost for free. Note that the
W matrix is solely determined by the interpolation points. This means that the inverse of
that matrix also does not depend upon the right hand side of (3.10). In other words, we
can extract the Lagrange polynomials directly out of the matrix because multiplying the
inverse matrix with a unit vector is the same as extracting the corresponding column of
that matrix. Thus, all information belonging to the t-th Lagrange polynomial are stored in
column t of H.

Gt = ∇2`t =

m∑
k=1

Hk,t(yk − y0)(yk − y0)ᵀ (3.20a)

ct = Hm+1,t (3.20b)

gt =


Hm+2,t

Hm+3,t

...
Hm+n+1,t

 (3.20c)

`t(x) = ct + gᵀ
t (x− y0) +

1

2
(x− y0)ᵀGt(x− y0) (3.20d)

To keep the computational effort at a minimum when calculating `t(x+), Powell sug-
gests to use the following procedure. First calculate:

σk = (yk − y0)ᵀ(x+ − y0), k = 1, 2, . . . ,m

and then compute

`j(x
+) = cj + gᵀ

j (x+ − y0) +
1

2

m∑
k=1

Hk,jσ
2
k, j = 1, 2, . . . ,m

Next we will show how to efficiently store and update the quadratic model.

Update the stored quadratic model

After the H+ matrix is created, the model needs to be updated too. As briefly mentioned,
Q# is a multiple of `+t (x). Combining this with the formulas in (3.20), but with H+

instead of H, the following updating formulas are obtained[8]:

c+ = c+ (f(x+)−Q(x+))H+
m+1,t (3.21a)

g+
j = gj + (f(x+)−Q(x+))H+

m+j+1,t, j = 1, 2, . . . , n (3.21b)

G+ = G + (f(x+)−Q(x+))

m∑
j=1

H+
k,t(y

+
k − y0)(y+

k − y0)ᵀ (3.21c)

31

Chapter 3. Theory

Using the last formula for updating G+ is possible, however, the computational cost
will be higher than appreciated, and thus an alternative method is proposed.

G = Γ +

m∑
k=1

γk(yk − y0)(yk − y0)ᵀ (3.22a)

Γ+ = Γ + γt(yt − y0)(yt − y0)ᵀ (3.22b)

γ+k = γk(1− δkt) + (f(x+)−Q(x+))H+
k,t, k = 1, 2, . . . ,m (3.22c)

where we only store and update the γk’s and Γ. If the second derivative matrix is needed, it
can be calculated using the above formula. However, the idea is to never calculate it explic-
itly. While solving the subproblem, the Hessian matrix should be used. If the optimization
procedure uses an algorithm which multiplies the Hessian by a vector, the computational
cost is reduced (compared to first creating the entire matrix and then do the multiplication
by the vector). This suggests that using an optimization algorithm which does not rely on
computing eigenvalues of the Hessian is a smart choice, e.g., some version of the (trun-
cated) conjugate gradient method could be used.

The goal for the total computational effort of the overall updating algorithm isO(m2).
If the updating formula for G in (3.21c) was used, then the cost would beO(mn2) because
m matrices of rank one would be added to G. The alternative method obeys the goal of
a cost of no more than O(m2). Multiplying the expression (3.22a) by a vector, as will be
done in a conjugate gradient method, is done in O(mn) which is equal to O(m2) in the
case of m = 2n+ 1, which is Powell’s recommended value for m.

3.3.5 Formulas for shifting the center point

Also here an in-depth derivation is not of immediate interest. I refer the interested reader
to the original paper [8]. However, a brief description will be given. The computationally
effort of changing the center point by the method given below, is no less than to just
simply calculate the inverse of the new W matrix. However, Powell states that using the
presented method has some advantages, where one of them is that the Ω matrix (and its
decomposition) will be unaffected by the change of the center point. (The paper proofs
that the Ω submatrix is independent of the center point.) The shifting is only necessary
because of the limitation of precision of the computers. Doing a shift is computationally
expensiveO((n+m)3) and should only be applied when needed, remember that the cost of
updating is no more thanO((n+m)2). Deciding when it is needed is not straight forward,
but Powell suggest to perform a shift of the center point when the ratio ||y0 − yb||/∆k

becomes “large”, where yb is the yet best found point and ∆k is the current trust-region

32

3.3 Updating of the interpolation model

radius. Let ΩX and ΩA be the following (m+ n+ 1)× (m+ n+ 1) matrices:

ΩX =

 I 0 0
0 1 0
0 − 1

2s I

 , (Ωᵀ
X)−1 =

 I 0 0
0 1 1

2sᵀ

0 0 I


ΩA =

 I 0 −Pᵀ

0 1 0
0 0 I

 , (Ωᵀ
A)−1 =

 I 0 0
0 1 0
P 0 I


where s is the distance between the new, y+

0 , and old center point: s = y+
0 − y0 and P is

the n×m matrix containing the following pk column vectors:

uk = yk − y0 −
1

2
s (3.23a)

pk = (sᵀuk)uk +
1

4
||s||2s, k = 1, 2, . . . ,m (3.23b)

The reason why the vectors in (3.23) are chosen is because they give the convenient ex-
pression in (3.24). The vectors provides the following relationship between the difference
of the old and new A matrices [8].

Anew
ik −Aold

ik

=
1

2
{(yi − y0 − s)ᵀ(yk − y0 − s)}2 − 1

2
{(yi − y0)ᵀ((yk − y0))}2

=
1

2
{(ui −

1

2
s)ᵀ(uk −

1

2
s)}2 − 1

2
{(ui +

1

2
s)ᵀ(uk +

1

2
s)}2

=
1

2
{−sᵀuk − sᵀui}{2uᵀ

i uk +
1

2
||s||2}

= −pᵀ
kui − pᵀ

i uk, for 1 ≤ i, k ≤ m.

This means that the new W matrix, W+, can be calculated by the following multiplica-
tions:

W+ = ΩXΩAΩXW Ωᵀ
XΩᵀ

AΩᵀ
X

Which in turn implies the end results given below. The H matrix after the shift, H+, can
be calculated as:

H+ = (Ωᵀ
X)−1(Ωᵀ

A)−1(Ωᵀ
X)−1H Ω−1X Ω−1A Ω−1X (3.24)

A practical way of doing this multiplication is given in [8]. After the shift, some changes
to the model parameters must also be done. The changes are found in [10].

g+ = g + Gs

Γ+ = Γ + vsᵀ + svᵀ

33

Chapter 3. Theory

where v =
∑m

j=1 γj(xj − y+
0 + 1

2s). It might look like that the second derivative matrix
is altered, but it is not. That matrix is independent of shifts. The performed changes must
be done because of how the matrix is stored (i.e., how it is factorized). The changes to the
constant of the model are not given in that paper as Powell is using the Lagrangian poly-
nomials without their constant terms. “Ignoring” the term (by using a difference instead
of the polynomial itself) will provide better floating point arithmetic. However, the model
improvement algorithm given later uses the polynomials as they are. Using a difference
is perhaps possible, but this idea is not further explored. Therefore, the changes to the
constant are derived here. Let Q1 and Q2 be the old and new model, respectively.

Q1(x) = c1 + gᵀ
1 (x− y0) +

1

2
(x− y0)ᵀG1(x− y0)

Q2(x) = c2 + gᵀ
2 (x− y0 − s) +

1

2
(x− y0 − s)ᵀG2(x− y0 − s)

Both models should provide the same output for the same input.

Q1(y0 + s) = c1 + gᵀ
1s +

1

2
sᵀG1s

Q2(y0 + s) = c2

=⇒ c2 = c1 + gᵀ
1s +

1

2
sᵀG1s

3.4 Gradient enhanced interpolation model
This section will suggest two ideas on how to include the available gradients into the
model-making process. The first part will suggest how to set the gradients at the center
point of the model, whereas the last idea will be able to set elements of the Hessian matrix.

3.4.1 Set the true gradients at the center point of the model
Let’s now assume that the function we are trying to minimize also provides some partial
derivatives. Say that it provides the partial derivative of f with respect to the ng last ele-
ments of x. The goal is to include this information in a similar system of equations as the
one just presented, i.e., as the one in 3.10. This method does not fully take advantage of
the available derivatives, as it only uses this information to set the gradient of the model.
The derivatives are only used if they belong to the center point of the model, y0. Using
the available derivatives from the other sample points should be possible to help determine
the Hessian matrix. However, doing so in Powell’s updating scheme in [8] is not straight
forward.

Let

x =

(
x̃
xg

)
and g =

(
g̃
gg

)
where gg and xg are vectors of length ng . gg contains the partial derivatives (with respect
to xg) that are provided by the objective function. The following derivation is almost the

34

3.4 Gradient enhanced interpolation model

same as the one given in the last section. However, it is included to prove that this new
system can be put into the same system of equations as the other one. This let’s us use
Powell’s method of updating and handling the inverse matrix (the H matrix). In addition,
the derivation nor the result are, as far as the author knows, not available elsewhere.

The interpolation conditions are as before:

c+ gᵀ(yi − y0) +
1

2
(yi − y0)ᵀG(yi − y0) = f(yi) (3.25)

for i = 1, 2, . . . ,m. However, this time the last ng elements of g is determined by some
additional information. This means that we must eliminate those as variables in the op-
timization problem4. Let y0 be the zero-vector for now. This is only done to ease the
notation. It will be reintroduced shortly. Here we take (3.25) and insert the known infor-
mation:

c+ gᵀyi +
1

2
yᵀ
i Gyi = f(yi) (3.26)

c+

(
g̃
gg

)ᵀ(
ỹi

yg

)
+

1

2
yᵀ
i Gyi = f(yi) (3.27)

c+ g̃ᵀỹi +
1

2
yᵀ
i Gyi = f(yi)− gᵀ

gyg (3.28)

The same optimization problem is formulated, where the change in the squared Frobe-
nius norm of the Hessian matrix is minimized. To avoid having too many super- and
subscripts, we will assume that all the coefficients of the old model were zeros, such that
all the #’s can be removed. In addition, we skip using the + superscript because we do
not have both an old and a new model to separate between, we only have the new model.
This assumption will not impact anything other than the right hand side of the interpola-
tion conditions. To remove this assumption later on, all that is needed is to subtract the
output of the old model evaluated at the interpolation points from the right hand side of
the interpolation conditions.

min
Gij ,g,c

1

2
||G||2F =

1

2

n∑
i=1

n∑
j=1

Gij
2

s.t.

c+ gᵀyi +
1

2
yᵀ
i Gyi = f(yi) i = 1, 2, . . . ,m

(3.29)

The Lagrangian function is the same as before, except for that the number of variables is

4They could be included as constraints instead.

35

Chapter 3. Theory

lower.

L(c, g̃,G) =
1

2

n∑
i=1

n∑
j=1

Gij
2

−
m∑

k=1

λk

(
c+ gᵀyk +

1

2
yᵀ
kGyk − f(yk)

)

=
1

4

n∑
i=1

n∑
j=1

Gij
2

−
m∑

k=1

λk

(
c+ g̃ᵀỹk +

1

2
yᵀ
kGyk − (f(yk)− gᵀ

gyg,k)

)
Where we have used equations (3.26) and (3.28) in the last equality. The partial derivatives
are found:

∂L
∂c

=

m∑
k=1

λk = 0 (3.30a)

∂L
∂g̃

=

m∑
k=1

λkỹk = 0 (3.30b)

∂L
∂G

=

m∑
k=1

λkykyᵀ
k −G = 0 (3.30c)

The only change is in (3.30b) compared to (3.8), where now only the upper n − ng part
of yk is present. As before, this can be formulated with matrices. The center point of the
model is now allowed to be any vector. Let

Ŷ =

[
Ỹ
Yg

]
such that all variables that have gradients readily available are stored in the ng×mmatrix,
Yg . Remember that the center point is subtracted from each column vector in Ŷ.

The matrix form of the linear system of equations is then:
A e

... Ỹᵀ

eᵀ

. . .

Ỹ
0




λ
c
. . .
g̃

 =


F− gg

ᵀYg

0
. . .
0

 , (3.31)

The A matrix remains unchanged. The F vector is as defined earlier, namely it contains
the output of the true function evaluated at the interpolation points subtracted the old model

36

3.4 Gradient enhanced interpolation model

evaluated at the same points. In the case of the model having all zero coefficients, simply
subtract 0 as the evaluated model value.

We see that (3.31) is on the same form as (3.10). That means that it should be possible
to use the same robust updating method of the inverse matrix. However, the matrix dimen-
sion is ng rows and columns smaller, because Ỹ is used instead of Ŷ. This means that for
example we can not extract the Lagrange polynomials as before because the ng last ele-
ments of the gradients will not be specified by that system. Nontheless, the method should
be able to provide you with the quadratic model information. One possibility is to simply
have two set of systems of equations, one which will provide the Lagrange polynomials
and the regular quadratic model, and one set which will provide the gradient enhanced
model. We will not dwell into the details about how to do the updating of the H matrix
in the case when some gradients are specified because another method to deal with gradi-
ents will be presented shortly. However, the method in [8] is applicable if we take some
care, and go one step back and make sure that the steps are still valid. For example, care
must be taken when some formulas are simplified to using Lagrange polynomials, these
simplifications should not be done.

3.4.2 Including the remaining available gradients

As already mentioned, the previous method only takes advantage of the gradient at the
center point of the model. There is still m5 gradients available which is never used. It
would be interesting to try to include this information into the model-making process.
Unless we are extremely lucky with the directions of the gradients we cannot create a
model that will satisfy all the interpolation conditions and all the gradients. This fact leads
us towards the idea of solving some kind of minimization problem. Let di represent the
vector (yi − y0), where i is the interpolation point number.

Q(x) = c+ gᵀ(x− y0) +
1

2
(x− y0)ᵀH(x− y0) (3.32)

∇xQ(x) = g + H(x− y0) = ∇xf(x) (3.33)
∇xQ(d) = g + Hd = ∇xf(x) (3.34)

Where ∇xf(x) is the gradient of the true function. If we had all the derivatives of the
objective function (i.e., ng = n), we would have m equations of the form (3.34). Let’s
write this equation explicitly for the case when n = 5.

∇xf1
∇xf2
∇xf3
∇xf4
∇xf5

 =


g1
g2
g3
g4
g5

+


h11 h21 h31 h41 h51
h21 h22 h32 h42 h52
h31 h32 h33 h43 h53
h41 h42 h43 h44 h54
h51 h52 h53 h54 h55




d1
d2
d3
d4
d5

 (3.35)

5or (m− 1). It depends upon if the center point is included in the set of interpolation points. We will hereby
assume that it is not included in the set.

37

Chapter 3. Theory

Let’s say we have 5 variables, and gradient information is available for the 4 last of them.
Using the method in the previous section will set the gradient at the center point of the
model. Here we have inserted the first sample point, i = 1, into the equation (3.35) and
only extracted the equations which have a new gradient (i.e.,∇xf

i
2 is available) which we

want to incorporate into the model-making process:


d1 d2 d3 d4 d5 0 0 0 0 0 0 0 0 0
0 0 0 d5 0 d1 d2 d3 d4 0 0 0 0 0
0 0 d5 0 0 0 0 d4 0 d1 d2 d3 0 0
0 d5 0 0 0 0 d4 0 0 0 d3 0 d1 d2





h51
h52
h53
h54
h55
h41
h42
h43
h44
h31
h32
h33
h21
h22



=


∇xf

1
2 − g2

∇xf
1
3 − g3

∇xf
1
4 − g4

∇xf
1
5 − g5



If the system of equations is expanded with the second, i = 2, interpolation point, it
becomes:



d11 d12 d13 d14 d15 0 0 0 0 0 0 0 0 0
d21 d22 d23 d24 d25 0 0 0 0 0 0 0 0 0
0 0 0 d15 0 d11 d12 d13 d14 0 0 0 0 0
0 0 0 d25 0 d21 d22 d23 d24 0 0 0 0 0
0 0 d15 0 0 0 0 d14 0 d11 d12 d13 0 0
0 0 d25 0 0 0 0 d24 0 d21 d22 d23 0 0
0 d15 0 0 0 0 d14 0 0 0 d13 0 d11 d12
0 d25 0 0 0 0 d24 0 0 0 d23 0 d21 d22





h51
h52
h53
h54
h55
h41
h42
h43
h44
h31
h32
h33
h21
h22



=



∇xf
1
2 − g2

∇xf
2
2 − g2

∇xf
1
3 − g3

∇xf
2
3 − g3

∇xf
1
4 − g4

∇xf
2
4 − g4

∇xf
1
5 − g5

∇xf
2
5 − g5



This expansion can be done for all of the m points. Let’s denote the system which
include all of the points as D. Further, let h be the vector containing the elements of the
Hessian which are relevant (i.e., those elements that can be set by the available gradient
information. In other words, those that are part of the ng last equations of (3.35)), and let
v be the right hand side of the equation.

38

3.5 Constraint handling

The idea is to minimize the squared norm of this difference, i.e, ||Dh− v||22. This
objective can be included straight into the minimization problem (3.29) as follows:

min
Gij ,g,c

α
1

2
||G||2F + (1− α)

1

2
||Dh− v||22

s.t.

c+ gᵀyi +
1

2
yᵀ
i Gyi = f(yi) i = 1, 2, . . . ,m

(3.36)

where α is a weighting factor between 0 and 1. The problem remains convex as long as
α is in the open interval (0, 1] because the additional term is also convex6. It is important
that α > 0 unless n = ng because if α = 0 and n 6= ng then some of the elements of the
Hessian won’t be included. The problem in (3.36) can not (as far as the author can see) be
transformed into a system of equations of the form (3.31).

If the Lagrangian is set up and differentiated as before, the only change will be in the
∂L
∂G term (compared to (3.30a)). For those elements of G that are found in h will add
another term. The symmetry of G that was automatically achieved due to (3.8c) is no
longer present. Thus, the symmetry must be imposed otherwise. In addition, because of
the change in the term ∂L

∂G = 0 the G matrix can not be replaced by the λ’s.

The idea is to accept that it will be slightly more complicated, and simply put all the
equations that arises from the derivatives of the Lagrangian and in the interpolation con-
ditions into a linear system of equations. There will be more equations as we will need to
determine the Lagrangian multipliers in addition to the Hessian matrix. The exact setup
is not shown here because it involves some uninteresting index arithmetic. The way the
symmetry is imposed is by “removing” the lower left subdiagonal of the Hessian, and ev-
ery time those variables are supposed to be used, the one from the upper right part is used
instead.

This concludes the discussion about how to include the gradients into the model-
making process. In Section 3.6, some ideas regarding how efficient it will be to include
gradients will be shared. In the next Section we will see how constraints can be included
into the derivative-free model-based trust-region algorithm.

3.5 Constraint handling

A desired functionality when dealing with optimization is the capability of handling con-
straints. If we were lucky, we could solve the well-placement challenge without specifying
bounds. However, this implies that we must always (by luck) choose feasible points to
evaluate and that the (local) solution of the unconstrained problem is the same as of the
constrained problem.

6It is the exact same type as the previous term. The sum of two convex functions is a convex function.

39

Chapter 3. Theory

3.5.1 Incorporate constraints into the algorithm

There are different approaches one can take to include constraints into a derivative-free
trust-region model-based optimization method. Constraints can be split into two cate-
gories hard and soft (or unrelaxable and relaxable). A hard constraint is a restriction that
cannot be violated. In other words, the constraint must be satisfied at all times. E.g., the
bounds of the reservoir are hard constraints. A soft constraint is a restriction that is desired,
but it can be violated without any catastrophically consequences. E.g., the desired regions
for the different wells or the restriction of allowable change in the bottom hole pressure.

Let’s assume we only have hard constraints with available gradients7. The perhaps
most straight forward idea is to simply intersect the feasible area defined by the con-
straints with the trust-region area. This will allow us to only generate feasible sample
points. However, both solving the subproblem and doing the optimization of the Lagrange
polynomials might become a lot more difficult. The Lagrange polynomials are optimized
in the process of improving the geometry of the set of interpolation points, as we will see
in a later section. Nonetheless, if we only have bounds and linear constraints the authors
of [1] states that the convergence theory should be applicable after some adaptation.

Soft constraints without available gradients must be handled differently. Because they
are soft, they will have no impact on the geometry of the interpolation set[1]. This is be-
cause the points that violate the soft constraint are just “less desired”, but still feasible.
An easy and straightforward way of handling this type is as follows: Combine the objec-
tive function and the soft constraints into a merit function and use that as the input to the
derivative-free optimization algorithm. Following that approach, the convergence theory
for the unconstrained case can be used without any modifications[1]. Sometimes the con-
straints are in fact additional objective functions and the user has some knowledge on how
to combine them into one penalty function, which makes this approach desirable. Except
for the complication of having to find a sensible penalty function, this method might seem
like a good option. However, the final solution of the algorithm might violate the soft
constraints.

We might want to add some constraints that depends upon the simulator. In other
words, adding restrictions on one or more of the outputs of the simulator could be of inter-
est. An example is that we would like to put a limitation on how much gas we are allowed
to produce. To deal with these kind of constraints, we could model them using an under-
determined second order polynomial or maybe even a linear model, just as we do we the
true function. If we want to use the under-determined model approach, we already have the
needed Lagrange polynomial basis. Thus, including a constraint modelling approach into
the algorithm demands almost no extra effort. However, the subproblem becomes signifi-
cantly harder to solve, but the constraint representation becomes more accurate compared
to just adding a penalty in a merit function[1]. If evaluating the black box is expensive,
then this trade off may be reasonable.

7Available gradients means that we can calculate the derivatives of the constraints

40

3.5 Constraint handling

3.5.2 Constraints in the well-placement challenge

The most basic constraints are the bounds on the decision variables. In the well-placement
challenge, these bounds will allow us to specify the bounds of the oil reservoir. Moreover,
if we would like to specify such that each well has a predefined, separate region, these
kind of constraints would allow us to do so.

Basic restrictions on the decision variables are a very useful tool, however, it does have
its limitation. One limitation is that, in the case that we have overlapping regions, there
is nothing keeping the wells distanced from each other and, of course, we would not like
to place two wells in the same place. Another limitation is that, even though we have
separated regions, we might want a minimum distance between two wells which is bigger
than the distance between the regions. One solution is to shrink the regions, however, for
obvious reasons, this is not desired.

Linear constraints will, for example, allow us to set a restriction on how fast the set-
point for the bottom (or top) hole pressure may change.

Restrictions on the length of the wells are common to include into the optimization
procedure. This makes sure that the wells are not too short nor too long. A too short well
might be not be possible to actually drill, whereas a too long one might be too expensive
or the drilling capabilities might be restricted. Let’s say that we would like to specify the
minimum length of a well. A well is defined as a spline (i.e., two points and the line be-
tween the points). A minimum distance constraint (e.g., ||x − y||2 > Dmin) is in general
a hard nonconvex nonlinear constraint. Directly including such a constraint is not prefer-
able. One approach is to convexify the constraint, which is done in [24]. The result is
given below.

Say that we have N different vectors which we want to separate by a minimum dis-
tance, Dmin. Let aij be a column vector of the same length as the vectors that we want to
keep separated. These vectors must satisfy ||aij ||2 = 1 for i < j, and j = 1, 2, . . . , N .

aᵀ
ij(xi − xj) ≥ Dmin, i < j, j = 1, 2, . . . , N

There are many good heuristics to choose the aij’s [24]. One approach is to start with
an approximate solution of the optimization problem which doesn’t need to satisfy the
minimum norm constraint. In other words, one can ignore the constraint when finding the
approximate solution. Denote the approximate solution x̂ = [x̂1, x̂2, . . . , x̂N]. We then
choose aij = (x̂i − x̂j)/||x̂i − x̂j ||2. [24]

The given reformulation will make the constraint convex, but it will also decrease the
size of the feasible area. This means that solving this more restricted problem is easier,
and any solution found will be guaranteed to be feasible for the nonconvex problem. An
example of this trick is given in Figure 3.2. The x̂1 and x̂2 represents an approximate so-
lution of the optimization problem of interest, but where the minimum distance constraint
has been ignored. The required minimum distance between the two points is Dmin = 2.

41

Chapter 3. Theory

To illustrate the difference between the nonconvex and the convex constraint, we have as-
sumed that we keep x̂1 and only move x̂2. The circle represents the nonlinear constraint,
and all the area outside the circle are the feasible area. For the convex constraint, we can
clearly see that the feasible area is severly decreased. The only area that is still feasible is
the area right of the green line.

Figure 3.2: An illustration of the difference between the nonconvex and the convex minimum dis-
tance constraint. We have assumed that we keep x̂1 and only move x̂2.

This procedure can clearly be applied to keep the lengths of the wells above a mini-
mum value. As mentioned earlier, we would also like to restrict the maximum length of
a well (e.g., ||x − y||2 ≤ Dmax). This is just the Euclidean norm which forms a closed,
convex feasible area because we have to stay inside the circle. However, if the optimiza-
tion algorithm doesn’t allow using nonlinear constraints, we may perform a linearization
of it, as is done in [3]. The result of the linearization is shown in Figure 3.3. However,
the linearization becomes more tedious when we add another dimension. The outline of
the method is to uniformly sample the n dimensional sphere and create linear constraints.
Moreover, we already have a constraint of the exact same type (||x−y||2 ≤ Dmax), namely,
the trust-region constraint. Thus, we will keep this convex constraint for now.

There is one type of constraints left that we haven’t yet discussed, namely, the min-
imum inter-well distance constraint. This might look a lot like the minimum length re-
striction, however, it is far more complex. If the minimum distance restriction is applied
without thinking, it would have to be applied an exponential amount of times. Let’s say

42

3.5 Constraint handling

that there are only two wells, then we must assert that the length between every point on
each of the wells are separated by the minimum amount. Considering that the variables
are continuous, this gets even worse.

Another option is to first find the two points that are closest, and then apply the con-
straint for those two points. However, this kind of setup leads to a more complicated
problem to solve. It would be of interest to try to include that directly into the subproblem
and see how it goes, but we should have another possible option for including this type
of constraints. The inter-well distance constraint can be thought of as a soft constraint.
Hence, it doesn’t matter if it is violated by “some” amount. This means that we can avoid
dealing with them directly while solving the subproblem. Instead a penalty term can be
added to the objective function and a merit function can be used as the true function in
the optimization algorithm. This, alone, will make the true function nonlinear, however,
considering we are already dealing with an oil reservoir simulator, the objective function is
highly nonlinear already. To be more precise, we will find the minimum distance between
the wells and then use this value as an input to a penalty function such that the penalty will
be high if the constraint is violated too much. This term will be added to the output of the
simulator.

Figure 3.3: Linearization of the Euclidean norm in 2D. The green polygon is the one of interest, as
it only contains feasible points. The image is taken from [3]

.

This concludes the constraint handling process. Now we have methods to include all
the different types of constraints of interest: minimum length, maximum length, minimum
inter-well distance and regions for the different wells. In other words, we can specify
bounds, linear constraints and nonlinear constraints.

43

Chapter 3. Theory

3.6 Robustness against noise
As mentioned in the introductory chapter, derivative-free methods have a tendency to find
a “good” local minimum. The multiple minimums can either arise due to noise or the
function of interest might simply have several minimums. The origin of the multiple min-
imums is not important. In this section, an illustration will be given of why derivative-free
methods possess this property.

Figure 3.4: The Ackley function with multiple local optimums.

We will be using the Ackley function to demonstrate the robustness against noise.
This function was proposed by David Ackley[25] and is commonly used for testing of
optimization algorithms.

f(x) = −a exp

(
−b
√

1

n
xᵀx

)
− exp

(
1

n

n∑
i=1

cos cxi

)
+ a+ exp (1) (3.37)

With the values a = 20, b = 0.2, c = 2π and n = 2.

The equation is given in (3.37), whereas the plot is shown in Figure 3.4. We see that it
has plenty of local optimums. For the illustration, we will simply choose a center point,
a trust-region radius, sample the function and create the interpolation model. In Figure
3.5 we clearly see the how the algorithm is “blind” to everything that is in between the
points. Despite the fact that there are lots and lots of local optima in between the sample
points, the optimization procedure will be able to find a decent solution. The center point
of the model has been set to be at the global optimum and the trust-region radius is set to

44

3.6 Robustness against noise

5 whereas the number of interpolation points is m = 2n + 1 = 5. This figure gives us a
clue about the initial value for the trust-region radius. If the initial value is too small, we
will easily be trapped in a local optimum. Thus, in the case that noise is present, it is very
important that the initial value is set accordingly. Further, if possible, it should be chosen
such that there is a good chance that the global optimum is within the initial trust-region.

Figure 3.5: The Ackley function plotted together with the interpolation model. The circle represents
the boundary of the trust-region. The red lines are the sample points. Center point is [0, 0] and the
trust-region radius is 5. m = 2n+ 1 = 5.

The effectiveness of this near blindness might have been a bit over-represented in the
figure because the global optimum is at the center point of the model. However, the prop-
erty is still present even if the model is centered elsewhere. This is shown in Figure 3.6
where the center point is placed at [2.1, 3]. The global optimum is located at [0, 0], and
the solution of the subproblem would have been x = 0.2892 and y = −1.0581. In other
words, the algorithm are converging against a good local (possible global) optimum.

3.6.1 Scenario: Including gradients
The reason why gradients are included into the model-making process in the first place is
to either allow the number of required sample points (i.e., m) to be lowered, or keep the
same amount and use the gradient information to improve the model. In this section, a

45

Chapter 3. Theory

Figure 3.6: The Ackley function plotted together with the interpolation model. The circle represents
the boundary of the trust-region. The red lines are the sample points. Center point is [2.1, 3] and the
trust-region radius is 5. m = 2n+ 1 = 5

strong limitation on the objective function will be derived. To keep the illustrations sim-
ple, the Ackley function (3.37) in 1D will be used. In addition, we will cheat a bit and use
m = (n+1)(n+2)/2 = 3 sample points. In theory, this would define the quadratic model
(i.e., the constant, the gradient and the 1-by-1 Hessian matrix) and we would not need to
include any gradients. However, this doesn’t influence the purpose of the illustration.

If we are lucky with the sample points, including gradient information will make the
model a lot better. Figure 3.7a shows this scenario. However, if we are not that lucky
with our sample points, including the gradients will make the model a lot worse than if
the gradients were neglected altogether. Figure 3.7b shows how two out of three of the
gradients point in completely wrong directions and we do definitely not want to “enhance”
the model with this information. Unless the modelling process should be based on luck,
the gradients shouldn’t be included. If the true function is a convex quadratic function,
the gradients can be included. However, if this is the case, then a regular gradient-based
approach can be used. Nonetheless, results of testing this idea will be shown in Chapter 4.

The reason why the derivative-free methods have a tendency to find good local opti-

46

3.7 Poisedness - Geometry of the interpolation points

(a) Here good sample points have been chosen by
luck.

(b) Here bad sample points have been chosen by
bad luck.

Figure 3.7: The red circles are sample points. The direction of the gradients are drawn, the size of
the arrow is not representative. The figures illustrates why including gradient information might be
a very bad idea.

mums is the fact that they only use the objective function value and not the gradients. Thus,
including the gradients into the model-making process defeats its own purpose. Instead of
enhancing the model, it will make it worse (unless we are lucky). The only achievement
that is still obtained is that the model can be made with very few points. However, there
exists better methods. E.g., use a linear model or use the under-determined model we
already have discussed in-depth detail.

3.7 Poisedness - Geometry of the interpolation points

Until now, the phrase “geometry of the interpolation points” has been used, and it has been
implied that the geometry can be both good and bad. A term which is used to describe the
geometry characteristics is poisedness, which is used in [1]. Poisedness is a measurement
of how well the points are spread. In other words, how likely it is that the points will be
able to capture information. E.g., if n = 2 and the m points are all on the first axis, the
geometry will be very bad. However, if one point is at the origin, and the other ones are
[1, 0], [0, 1], [−1, 0] and [0,−1] the geometry will be good, or we can say the points are
poised. Actually, the geometry will only be good if the area that are being considered is
close to the points (say, a ball centered at the origin with radius 1). If we have a radius of
10,000,000 these points are no longer suitable.

In our work, the Lagrange polynomials have been chosen as the basis for the model. It
is a natural choice because the Lagrange polynomials are readily available when Powell’s
updating method is used, but, as mentioned, we could have chosen another one if that was
desired. However, this basis is convenient because it has several good properties. Some
of these properties are kept even though we use a modified version of the classical La-
grangian basis. Remember that our basis is not uniquely defined by the Kronecker delta

47

Chapter 3. Theory

property alone, whereas the classical Lagrangian basis would have been. Firstly, this basis
gives a convenient way to measure the poisedness of the interpolation set and is also the
most commonly used measurement of it [1]. Finally, the basis scales automatically, i.e.,
all the coefficients are always in the set [−1, 1], which means that we do not need to add
any additional normalization procedures to keep it numerically sound.

The poisedness of the interpolation set is denoted Λ and is defined as[1]:

Λ = max
1≤j≤m

max
x∈B

|`j(x)| (3.38)

where B is the region of interest. This region is often defined by a point (e.g., the best
point found thus far in the overall optimization algorithm) and a radius (e.g., the trust-
region radius). If an interpolation set is well poised in a ball B with radius ∆, then it will
also be poised in any smaller ball centered at the same place[1]. This makes sense as the
poisedness is defined as the maximum absolute value of all the Lagrange polynomials that
can be found within the area of interest. If the area that is being searched for a maximum
value is decrease, the output will be either the same or lower. Which again means that if
the poisedness was lower than “Λmax” before, then it will also be lower in the new smaller
search area.

The poisedness of the set is completely independent of the true function we are trying
to minimize. The formula for calculating the classical Lagrange polynomials in 1D is:

`t(x) =

m∏
j=1
j 6=t

x− yj

yt − yj

which clearly doesn’t care about the true function. For the under-determined case, this still
remains true as we can see from (3.12) or (3.20). Remember that W and its inverse, H, is
solely determined by the interpolation points.

In the next section a procedure to improve the poisedness is given.

3.8 Model improvement algorithm

In this section an algorithm to improve the poisedness is presented and commented. The
poisedness is improved by “moving the points around”, while the search area remains un-
changed, such that the value of (3.38) is lowered8. This algorithm is needed in the final
algorithm to keep the surrogate model useful throughout the optimization procedure. The
model improvement algorithm, which is a key component of the overall algorithm, is given
in Algorithm 1. The algorithm is commented and then it is applied to a set of points to
illustrate how it spreads the points.

8Remember that if one point is replaced with a new one, all the Lagrange polynomials must be updated.

48

3.8 Model improvement algorithm

k=1;
while poisedness not good enough do

Λk = max
1≤j≤m

max
x∈B

|`j(x)| (3.39)

if Λk > Λ then
let t ∈ {1, 2, . . . ,m} be an index of which

max
x∈B

|`t(x)| > Λ (3.40)

and let x+ ∈ B be a point that maximizes |`t(x)| in B.
Replace the one interpolation point
yt := x+

else
The interpolation set is Λ-poised. Exit.

end
Update all the Lagrange polynomials.
k += 1.

end

Algorithm 1: Model improvement algorithm.

49

Chapter 3. Theory

Finding Λk in (3.39) involves finding the minimum of m quadratic functions within
area B. This can therefore be a very time consuming task. Fortunately, an approximation
of the upper and lower limits of the |lj(x)| can be used instead. Finding an upper limit
of each polynomial is rather straightforward. Use (3.20d), but replace all the coefficients
with their corresponding absolute value and then use x = [∆,∆, . . . ,∆]ᵀ as an input. A
lower limit is more tedious to find. It is shown that if at least one of the coefficients in
the polynomial has an absolute value of at least b, the ball is centered at the origin, and
the radius is 1, then the lower limit is b/4 [1]. The case for when the radius is something
else and/or the ball is centered elsewhere, is not shown. An idea to solve this issue is to
simply scale and shift the interpolation points such that they are all contained in a ball of
radius 1 centered at the origin with at least one point on the boundary. The poisedness
of the shifted and scaled set will be the same as for the original one[1]. Of course, this
means that we must calculate the Lagrange polynomials from scratch. The fact that the
poisedness remains the same makes sense as we are measuring how the points lies relative
to each other within an area, thus scaling both the points and the area should not impact
this measurement, nor should a shifting of the points and area.

If one chooses to use an approximate approach in (3.39), then one must be sure that
either Λk > Λ or Λk ≤ Λ. In other words, the estimated lower limit must be guaranteed to
be higher than Λ or the estimated upper limit must be guaranteed to be lower or equal Λ. Λ
is a predetermined constant (chosen by the user) which represents the required poisedness.
The point x+ can also be approximated instead of solved explicitly. After this is done, an
updating of the Lagrange polynomials can be effectively done as previously described. If
the limits (Λk > Λ or Λk ≤ Λ) can not be guaranteed by the upper and lower bounds, then
the algorithm should switch to an optimization algorithm to make sure that the limits are
satisfied.

Finding the maximum of |`j(x)| within the ball can also be done by solving two max-
imization problems, one for `j(x) and another for −`j(x). The highest value of those two
will be taken. Considering that this type of optimization problem is the exact same one
as the one in the subproblem, the same solver can be applied. The Λ in the algorithm is a
predetermined constant. When the poisedness of the interpolation set is less or equal to Λ,
then the set is called Λ-poised.

The algorithm will finish in a finite, uniformly bounded amount of iteration[1]. How-
ever, the algorithm is not guaranteed to always improve the poisedness from one iteration
to the next. Sometimes, it will get worse, and next time it might keep on improving.

Before we go to the example, two remarks will be given. For the first remark, let’s
look at equation (3.40), while simultaneously remember the one criterion Powell had on
the new interpolation point such that (P1) and (P2) would be satisfied. Not only is |`t(x+)|
nonzero, but it is in addition also bigger than 1 (Λ must be chosen greater than one). Hence,
Powell’s criterion is always fulfilled when Algorithm 1 is applied to increase the poised-
ness.

50

3.9 Solving the subproblem

The second remark is that, as previously mentioned, the poisedness (and thus also the
algorithm to improve the poisedness) is completely indifferent to the true function. This is
an important feature, because we can calculate all the new points, and then evaluate them.
This enables the possibility of using a parallel simulation scheme and it can be a good time
saver.

Example of the Model-improvement algorithm

To give the reader a better feeling of what poisedness is, an example is given. Here, the
model improvement algorithm is applied to a set of points which is not Λ-poised to begin
with. The initial set is the Y1 below. In the example n = 2 and m = 6. We have
done 5 iterations of the algorithm. The change in the set from one iteration to the next
is marked in red both in the matrices below and in the Figure 3.8. The sets of points are
also plotted in Figure 3.8 for easier visualization. The poisedness of each set if written
below each plot. As we can see from the figure, the poisedness value decreases a lot in
the beginning, but once the points are no longer on (or almost on) top of each other, the
poisedness remains almost unchanged. The region where the poisedness is measured is a
ball of radius 1 centered at the origin.

Yᵀ
1 =


−0.98000000 −0.96000000
−0.96000000 −0.98000000
0.00000000 0.00000000
0.98000000 0.96000000
0.96000000 0.98000000
0.94000000 0.94000000

 , Yᵀ
2 =


−0.98000000 −0.96000000
−0.96000000 −0.98000000
0.00000000 0.00000000
0.70891722 −0.70529170
0.96000000 0.98000000
0.94000000 0.94000000



Yᵀ
3 =


−0.98000000 −0.96000000
−0.96000000 −0.98000000
0.00000000 0.00000000
0.70891722 −0.70529170
0.96000000 0.98000000
−0.53544173 0.84457217

 , Yᵀ
4 =


−0.99641143 0.08464202
−0.96000000 −0.98000000
0.00000000 0.00000000
0.70891722 −0.70529170
0.96000000 0.98000000
−0.53544173 0.84457217



Yᵀ
5 =


−0.99641143 0.08464202
−0.96000000 −0.98000000
0.00000000 0.00000000
0.70891722 −0.70529170
0.96000000 0.98000000
−0.26438316 0.96441772

 , Yᵀ
6 =


−0.98115169 0.19323911
−0.96000000 −0.98000000
0.00000000 0.00000000
0.70891722 −0.70529170
0.96000000 0.98000000
−0.26438316 0.96441772



3.9 Solving the subproblem
In this section, methods to solve the subproblem will be given. We start by considering
solvers for the unconstrained optimization problem. This is the most common situation in
the derivative-free trust-region model-based setting. Afterwards, the case when constraints

51

Chapter 3. Theory

(a) Poisedness is 2557.59. (b) Poisedness is 76.64.

(c) Poisedness is 15.42. (d) Poisedness is 1.11.

(e) Poisedness is 1.02. (f) Poisedness is 1.00.

Figure 3.8: The figures show how the poisedness is improved by using Algorithm 1. The red crosses
are the points that have changed from one iteration to the next. “Iteration 1” is the initial set of points,
i.e., Y1. “Iteration 2” is the points in Y2, and so on.

52

3.9 Solving the subproblem

are present will be discussed.

As mentioned in the literature study, there are several ways of finding the solution of
the subproblem in the classical unconstrained case. The subproblem is the task to find the
minimum of the quadratic model within the trust-region:

min
s

c+ gᵀs + sᵀGs

s.t. ||s||2 ≤ r
(3.41)

where the c could be removed because it does not affect what the optimal solution vector
is, it only influences the value of the objective function at that point. s is the distance
from the current iterate, and the constraint makes sure that the distance from the current
iterate to the next is no more than the trust-region radius. The form of the exact solution is
presented before some approximation alternatives are shown.

3.9.1 The exact solution
The exact solution is on the form [12]:

Corollary 1. Any global minimizer of (3.41) satisfies the equation

(G + Iλ∗)s∗ = −g
(G + Iλ∗) � 0

λ∗ ≥ 0

λ∗(||s∗||2 − r) = 0

If (G + Iλ∗) is positive definite, then s∗ is unique.

The characterization of the solution was first obtained in [26]. An algorithm to find
the (almost) exact solution is presented in great details in [12]. However, the algorithm is
potentially computationally heavy as it relies on the Cholesky factorization of (G+Iλ∗) in
an iterative process. Considering that the surrogate model is an under-determined model,
in addition to the fact that the true function is not necessarily a second order polynomial,
there is probably no point in using lots of resources to solve the approximation as exactly
as possible. In other words, if the subproblem is solved exactly it does not necessarily
give a better9 solution than an approximate solver would have given. This is because the
minimum of the surrogate model and the minimum of the true function do not necessarily
coincide. The key idea behind the under-determined model is that it should capture the
main curvature of the true function to help the optimization algorithm to move towards the
(local) optimum.

3.9.2 Approximate solutions
Different algorithms for finding an approximate solution are given below. These algo-
rithms are all based upon the conjugate gradient method, which is also presented. First we

9by “better” we mean a solution that will make the overall algorithm converge faster.

53

Chapter 3. Theory

present the Cauchy and Eigenstep concepts because these are essential to the analysis of
global convergence, and they are the most basic methods that can be applied. The follow-
ing presentation of these concepts is based on the discussion given in [1].

The steepest descent direction (i.e., negative gradient direction) can be thought of as
the driving force behind all optimization techniques. Global convergence (i.e., the algo-
rithm ending in a finite number of iterations) requires that the model is minimized at least
as good as something related to the steepest descent. This is where the Cauchy point en-
ters, which is the step to the minimum of the model along the steepest descent direction
within the trust region. In the case of negative curvature (i.e., an indefinite or negative
definite second order derivative matrix) and the requirement to have global convergence to
second-order critical points, then another step must also be considered, namely the Eigen-
step. The Eigenstep is a step related to the most negative curvature. They will yield a
global convergent algorithm, but that doesn’t say anything about the rate of convergence.
In [12] they compare an algorithm to the Cauchy point, and this is how they phrase it:

“The resulting step is then barely, if at all, better than the Cauchy direction, and
this leads to a slow but globally convergent algorithm in theory and a barely convergent
method in practice.”

In other words, looking for a better approach is a good idea.

The Conjugate Gradient method

The reason why the steepest descent method doesn’t provide an optimal trajectory is that
a later step will often undo some of the progress towards the optimum that was done in a
previously taken step. This happens because only two consecutive steps are required to be
orthogonal to each other, thus each step can undo some of the progress made by the steps
before the last one. A solution to this is to make all steps conjugate to each other. This is
what is defined as the conjugate gradient method(see Algorithm 2). A new basis for the
search space, Rn, is defined, and then steps along these vectors are taken. Actually, it is
done in an iterative process, i.e., find a direction, take a step, and repeat. Two vectors, u
and v are conjugate with respect to G if uᵀGv = 0. This is also denoted G-orthogonal or
G-conjugate[18]. Considering that the algorithm goes along vectors which spanRn, then
the optimum must be found within at most n steps. Unfortunately, this method requires
the second derivative matrix to be positive definite. There are five reasons why this method
is of interest[12]:

• The best general-purpose algorithm to solve (3.41) in an iterative way.

• Easy to understand and easy to implement. See Algorithm 2.

• Progress is made at each iteration, and global convergence can be concluded.

• If terminating early (i.e., before all vectors in the basis are used), a decent point can
still be found.

• Can be modified to also work for the cases where the Hessian is not positive definite.

54

3.9 Solving the subproblem

Given x0;
g0 = Gx0 + g;
p0 = −g0;
for k = 0, 1, 2, . . . until convergence do
αk = ||gk||22/(p

ᵀ
kGpk)

xk+1 = xk + αkpk

gk+1 = gk + αkGpk

βk = ||gk+1||22/||gk||22
pk+1 = −gk+1 + βkpk

end

Algorithm 2: The conjugate gradient method [12]

Truncated Conjugate Gradient method

This method is the same as the conjugate gradient method except that it looks for the
solution within a ball (e.g., the trust-region), and the step is thus truncated if the method
tries to go to a point which is outside of the ball. There are two additional exits. The first
is the case when the model is convex, but the solution lies outside the trust-region. In this
case, the selected point is where the line from the current point to the optimal point crosses
the trust-region. The second case is when the model is nonconvex, also here the point lies
on the boundary. The original method [16] is a preconditioned version, a version without
the preconditioning is presented in [17], and is the one that is given below in Algorithm 3.

3.9.3 The constrained case

If there are constraints the subproblem becomes more difficult and other methods must be
applied to solve it. Unless there is only bounds on the decision variables, the previously
discussed methods can not be used. If there are only bounds, we can treat the bounds as
the same way as the methods treat the trust-region radius. However, we are interested in
more general constraints, such as linear and nonlinear inequality constraints. There are
different options to choose between, such as interior point methods, genetic algorithms
and sequential quadratic programming methods. The latter is chosen, mainly because we
had access to a solid implementation of it which has been around for years and are used
by professionals, namely, SNOPT[27].

55

Chapter 3. Theory

Step 1
Given g, and G;
x1 = 0;
g1 = g;
d1 = −g;
k = 1;

Step 2
if ||gk|| = 0 then

x∗ = xk;
Stop;

end
Compute dᵀ

kGdk;
if dᵀ

kGdk ≤ 0 then
Go to step 4;

end
αk = −gᵀ

kdk/(d
ᵀ
kGdk);

Step 3
if ||xk + αkdk|| ≥ r then

Go to step 4;
end
xk+1 = xk + αkdk;
gk+1 = gk + αkGdk;
βk = ||gk+1||2/||gk||2;
dk+1 = −gk + βkdk;
k := k + 1;
Go to step 2;

Step 4
Compute α∗k ≥ 0 such that ||xk + α∗kdk|| = r,
i.e.. by taking the positive root:

α∗k =
−2xᵀ

kdk +
√

4(xᵀ
kdk)2 − 4dᵀ

kdk(xᵀ
kxk − r2)

2dᵀ
kdk

;

x∗ = xk + α∗kdk ;
Stop;

Algorithm 3: The truncated conjugate gradient method [17]

56

3.10 The scaling factor, r

Sequential Quadratic Programming (SQP)

SNOPT, which is an implementation of a SQP algorithm, can solve problems on the form
in (3.42).

min
x∈Rn

f(x)

s.t.

l ≤

c(x)
Ax
x

 ≤ u

(3.42)

where f is the objective function, Ax is a set of linear equations and c(x) is a set of non-
linear constraints. l and u are the lower and upper bounds, respectively, for the constraints
as well as the bounds for the decision variables. Only a brief outline of the method will
be given here. The interested reader are referred to [28] and [15]. The main idea is in the
name of the method, namely, to solve the nonlinear constrained problem (3.42) by solving
a sequence of quadratic programs. The constraints of the subproblems are linearization
of the constraints in (3.42). The objective function of the subproblems are a quadratic
approximation to the Lagrangian function. The second derivatives are assumed to be to
expensive to calculate, thus the Hessian is approximated in an iterative way. [28]

The observant reader might have seen a connection between the constraint handling in
the SQP algorithm and how they could be included into the subproblem of the derivative-
free trust-region model-based algorithm. The SQP algorithm makes a linearization, or one
could say a linear model, of the nonlinear constraints. This is the exact same idea that
was suggested to handle nonlinear constraints in the derivative-free method if we choose
to model them as linear models and not under-determined second order polynomials.

This concludes the discussion on how to solve the subproblem. The next section
presents a technique to make the derivative-free model-based trust-region algorithm more
practical.

3.10 The scaling factor, r
In many of the situations where derivative-free model-based trust-region methods are ap-
plied, the function evaluations are expensive, and thus it might be a good idea to keep old
interpolation points even though they are outside the trust-region ∆k. It turns out that if we
only work with one trust-region radius, the algorithm will be be rather impractical. This
is because too many points must be replaced to keep them inside of the trust-region. This
problem can be circumvented by introducing a second trust-region defined as an up-scaled
version of the other one[1]. It is suggested that the value of the scaling factor is r ≥ 2.
The exact details of where the scaled region should be used and where the normal region
should be used are not given. Thus, a suggestion is given here.

The normal trust-region should be used whenever a new point is selected. This goes
for both the case when we are solving the subproblem or when we trying to improve the

57

Chapter 3. Theory

geometry of the set of interpolation points. The scaled trust-region should be used when
we are measuring poisedness and when we are checking if a point is outside the region or
not.

In the next section a couple of terms that are frequently used in [1] will be presented.

3.11 Certifiably fully linear models
When talking about surrogate models, [1] introduces the terms fully linear (FL) and certifi-
ably fully linear (CFL). These terms are used in the process of proving global convergence
of the algorithms developed. Only a short description of the terms will be given here. For a
more in-depth and mathematically description, the interested reader is referred to the book.

If there exists two fixed bounds, one on the difference between the true function and the
model, and the other on the difference between the gradients of the same functions, within
a region (e.g., the trust-region), then the model is said to be fully linear. For FL models,
there exists a “Model-improvement” algorithm, that in a finite, uniformly bounded num-
ber of iterations can either conclude that the model is FL (in which case we refer to the
model as CFL), or the algorithm will produce a new model which is FL within the trust-
region. There is, fortunately, a convenient relationship between (C)FL and Λ-poisedness.
If a model is based on a Λ-poised set in the region of interest (trust-region), then the model
is fully linear. Thus, if we inspect the poisedness of the interpolation set, and the set is
Λ-poised, then the model is CFL.

Algorithm 1 is such a Model-improvement algorithm. It satisfies all the criteria above.
First, we note that Algorithm 1 will terminate in a finite, uniformly bounded number of
iterations, as is mentioned in Section 3.8. When the poisedness is measured the first time
(i.e., when k = 1 and Λ1 is found) the algorithm either conclude that the set of inter-
polation points is Λ-poised, which means it concludes that the model based upon that
interpolation set is CFL. In the other case when the algorithm concludes that the set is not
Λ-poised, then it will start iterate and produce a Λ-poised set. The new model based upon
the new set will be CFL.

The reason why we are talking about fully linear and not fully quadratic is because the
interpolation model that are used in this project is an under-determined quadratic model
and, thus, it cannot be fully quadratic.

3.12 The algorithm
As mentioned in the literature review, Algorithm 11.2 in “Introduction to Derivative-Free
optimization”[1] is the algorithm that is chosen for this specialization project. Powell’s
method to build and update an under-determined quadratic model is embedded into the
framework of the book.

58

3.12 The algorithm

All the needed building blocks to use the framework have been described: building,
updating and maintaining the model and the interpolation set and how to solve the sub-
problem. Here we present the full derivative-free model-based trust-region optimization
algorithm.

3.12.1 The derivative-free model-based trust-region algorithm
The first step of the derivative-free model-based trust-region algorithm is the initialization
step, which is self-explanatory. Step 1 makes sure the surrogate model is a (C)FL model
before we proceed by finding a solution of the subproblem in step 2. In step 3 we decide
if the newly found point should be included into the interpolation set and if the surrogate
model does mimic the true function satisfactory. Step 4 is only entered if the newly found
point didn’t become a new “best found” point. It tries to improve the model by replacing
one of the interpolation points by a point that will improve the geometry of the set. In
the last step, the trust region radius is updated and the model is updated based upon the
previously done changes. Below the algorithm, further explanations are given.

Step 0 - Initialization

Choose m ∈ [n+ 2, (n+ 1)(n+ 2)/2]. m = 2n+ 1 is recommended.
Choose an initial point y0.
Choose a maximum radius ∆max.
Choose an initial trust-region radius, ∆0 ∈ (0,∆max].
Choose the trust-region radius factor r ≥ 1.
Compute the first set of interpolation points. Store the set of interpolation points in Y0.
Compute the initial minimum Frobenius norm Lagrange polynomials (i.e., find the initial
H matrix and the initial quadratic model.).
Select a Λ > 1 to be used in the model improvement algorithm.
The constants η1, γ, γicb, εc, τ, β, ω , and µ must also be provided by the user,
and they must satisfy: η1 ∈ (0, 1), 0 < γ < 1 < γicb, εc > 0, 0 < τ < 1, ω ∈ (0, 1) and
µ > β > 0.
Set k = 0.

Step 1 - Criticality step

If ||∇Licb
k ||2 > εc, then

Qk = Qicb
k and ∆k = ∆icb

k

Done, go to next step.
Else,

Check the poisedness of the interpolation set to attempt to certify if the model Qicb
k

is FL on B(xk, r∆
icb
k).

If (the interpolation set is not Λ-poised) or (∆icb
k > µ||∇Linc

k ||2), then
apply Algorithm 4 to construct a model m̃k(xk + s) with the gradient g̃k

and the Hessian G̃k at s = 0, which is fully linear on the ball B(xk, r∆̃k)),
for some ∆̃k ∈ (0, µ||∇L̃k||] chosen by Algorithm 4.
Qk = Q̃k and ∆k = min{max{∆̃k, β||∇L̃k||2}, ∆icb

k }

59

Chapter 3. Theory

Else,
Qk = Qicb

k and ∆k = ∆icb
k

Step 2 - Step calculation

Find the step, sk, towards the minimum of the model, e.g., using the truncated conjugate
gradient method as in Algorithm 3 or a SQP algorithm.

Step 3 - Acceptance of the trial point

If ||sk||2 ≥ τ max{||yj − xk|| : yj ∈ Yk}, then
compute yt = arg maxj{||xk − yj ||2|`j(xk + sk)| : yj ∈ Yk}.

ρk =
f(xk)− f(xk + sk)

Qk(xk)−Qk(xk + sk)

If (ρ ≥ η1) or (ρk > 0 and it is known that Qk is CFL in B(xk, r∆k)), then
xk+1 = xk + sk, and include xk + sk into the set Yk+1 by replacing yt.

Else,
xk+1 = xk.
If (||yt − xk|| > r∆k) or (|`t(xk + sk)| > 1), then

accept xk + sk into the set Yk+1 by replacing yt.

Step 4 - Model improvement

If (xk+1 6= xk), then
go to Step 5.

Else,
Choose yt = arg maxj{||yj − xk|| : yj ∈ Yk}, and
find a new point y∗t ∈ arg max{|`t(x)| : x ∈ B(xk,∆k)}.
If (||yt − xk|| > r∆k) or (|`t(y∗t)| > Λ), then

replace yt by y∗t in Yk+1.
Else, consider the next furthest point from xk and repeat. If eventually a point yt

is found in Yk+1 such that max{|`t(x)| : x ∈ B(xk,∆k)} > Λ, then this point
is replaced. If no such point is found, then there is no need to improve because Yk

is Λ-poised in B(xk, r∆k), which implies that Qk is CFL in B(xk, r∆k).

Step 5 - Trust-region radius update

∆icb
k+1 =


[∆k,min{γicb∆k,∆max}], if ρk ≥ η1,
γ∆k, if ρk < η1 and Qk is fully linear,
∆k, if ρk < η1 and Qk is not CFL

Update the model Qk to obtain Qicb
k+1, and recompute the minimum Frobenius norm La-

grange polynomials.

60

3.12 The algorithm

k := k + 1.
Go to step 1.

3.12.2 Explanation of the algorithm
Some explanations of the different steps and logic are necessary. The following explana-
tions are based, once again, upon the book [1].

Starting with step 0. The name of the step reveals what its main purpose is. How to
find the first set of interpolation points and the initialization of the H matrix and the first
quadratic model can be found in [10] and [11], if we have no constraints. However, if
we have constraints, the selection of the interpolation points can be a lot more complex.
However, for this project, we assume that the given initial point is feasible and that this
point can be perturbed by the initial trust-region radius in each directions.

The Yk is the interpolation set at iteration k. xk is the best point found so far. Notice
that the ball where we measure the poisedness about is centered at xk, while the model
may be centered around another point! The superscript “icb” is short for incumbent, and
is used to tell the difference between when something is partly updated and when it is ac-
tually fully updated. For example, ∆icb

k may or may not be the final value for ∆k. Further,
Qk denotes the quadratic model at iteration k.

The ρk (from Step 3), tells how good the model mimics the true function. Ideally ρk
should be equal to 1, meaning that our model predicts the behavior of the true function
perfectly, at the evaluated point (xk + sk). However, demanding that ρk is equal to one
is an unwise choice, and thus the η1 is introduced. If ρk ≥ η1 then the model is “good
enough”. Further, the γ’s are used in the updating of the trust region (in Step 5). In the
case when ρk ≥ η1, the new trust-region radius can either be retained, or increased. In
the other case, our model predicts too badly and thus the trust-region radius is reduced in
order to try to make a better model, one can think of it as one zooms in and tries to get a
better view of the function.

The Criticality step is perhaps the most non-intuitive one, particularly because of the
naming of step 4 (Model improvement). The step named “Model improvement” does not
use the model-improvement algorithm, whereas the Criticality step does. There might
seem to be some redundant steps here. However, the Criticality step is necessary and it
keeps the radius of the trust-region comparable to some measurement of stationarity so
that when the measure of stationarity is close to zero, the model becomes more accurate.
The measure of stationarity will be close to zero if the current iterate is close to a stationary
point. The step also updates the trust-region radius, and it is this updating of the radius
that forces it to converge to zero. The trust-region radius may, thus, be a natural stopping
criterion for the algorithm. In addition, it is this step that makes sure the model is CFL or
FL.

The∇Lk is the Lagrangian function of the subproblem at iteration k. The test ||∇Licb
k ||2 >

εc is clearly important in the Criticality step. The idea is that when ||∇Licb
k ||2 ≤ εc, then

61

Chapter 3. Theory

the step calculated will be a lot smaller than the trust-region radius (i.e., we are moving just
a tiny bit inside the trust region). What happens next is that the model is being improved
until some measurement of acceptance is reached. If the interpolation set is Λ-poised, but
the criterion is still not met, then the trust-region is reduced and the model-improvement
algorithm is applied again. This means that not only is a fully linear model required, but
also some extra criterion on the relationship between the trust-region radius and the gra-
dient of the Lagrangian of the subproblem must be satisfied. As we remember from the
sections about poisedness and the model improvement algorithm, both of those are not
concerned about the true function at all. This step will create a relationship and it is highly
important regarding assuring global convergence. In the original algorithm in [1], the gra-
dient of the model is used instead of the gradient of the Lagrangian. However, we have
constraints. If we use the gradient of the model, we might end up with a high value of
||gk||2, but because of the constraints, we will not be able to achieve any decrease of the
model while trying to solve the subproblem. Thus, we use the gradient of the Lagrangian
to try to assure that there will be a decrease while solving the subproblem.

In Step 3 (Acceptance of the trial point) three things may happen. (i) The new point
is accepted as the new iterate (i.e., it is better than the previously best found point), then
xk+1 = xk + sk, and the point is also put into the set of interpolation points. If not, two
alternatives are possible, (ii) the point is included into Y or (iii) the point is disregarded
all together.

An interesting thing to notice is how the new interpolation points are chosen (if not
produced by step 2), and also how the point that should be removed is selected. We see
that in either case |`t(x+)| is nonzero, where t is the index of the old interpolation point
and (x+) is the new point. This means that Powell’s criterion is satisfied, and thus the
properties ((P1) and (P2)) in Section 3.3 will be satisfied.

i = 0 ;
Qi

k = Qicb
k ;

for i = 1, 2, . . . until ∆̃k ≤ µ||∇Li
k|| do

Use Algorithm 1 to improve the previous model, Qi−1
k ,

until it is FL on B(xk, rω
i−1∆icb

k). Denote the new model Qi
k.

∆̃k = ωi−1∆icb
k ;

Q̃k = Qi
k;

end

Algorithm 4: Criticality step: first order[1].

The Model improvement step (step 4) is only executed if xk+1 = xk after step 3. That
means that the step, sk, produced in step 2 wasn’t accepted. This, in turn, implies that the
model mimics the true function insufficiently. The point xk+sk may or may not have been
included into the interpolation set. The point that is furthest away from xk is attempted

62

3.12 The algorithm

replaced with a point that improves the poisedness. Note that the point xk +sk might have
been included into the interpolation set. However, as stated in [1], this replacement will
only either improve the poisedness or replace a point that is far away. Hence, if the model,
mk was FL at the beginning of step 3, then it will also be FL at the end of that step [1].

In the last step, the Trust-region radius step, the model is updated to include the new
point(s) provided by the previous steps. If another point than xk + sk has been included
into into the interpolation set, one additional function evaluation is required.

In this algorithm the number of sample points, m, is fixed. Considering that we are
dealing with expensive objective functions, maybe it could be an idea to include the al-
ready evaluated points if they are within the trust-region. However, this is not done in
this algorithm. There exists different versions of the algorithm in the book [1], where at
least one of them use a dynamic number of sample points. Even though old points are not
included as interpolation points of the model, some information from the previous points
are still part of the model, because of how we update the model. Remember that we use
the old Hessian in the process of determining the new one. We minimize the change, thus,
in some sense, information from the old points are still there. Of course, we could have
included more information as is done in other algorithms. The idea of the interpolation
model is not to very accurately replicate the true function, all that we want is to capture
some information such that it will guide us towards the optimum in an iterative process.

3.12.3 Comparison with Powell’s algorithms

As mentioned in the literature review, there are several differences between the algorithm
just presented and Powell’s algorithms (e.g., NEWUOA[10]). The comparison is done
with the constraints taken out of the equation. The following three differences are given
in the book [1]. Powell uses two different trust-region radii and they are not related by
a constant factor like they are in our algorithm (∆k and r∆k). The radius of the inter-
polation set will, in theory, eventually converge to zero, the trust-region radius is allowed
to be bounded away from zero. The reason for allowing the trust-region radius to remain
bounded away from zero is to allow large steps even when we are close to the optimum.
The smallest of the two radii are also used to keep the interpolation points sufficiently
spaced to avoid the influence of noise.

Another difference is how to select the point that should be replaced when a new, better
point is included. Instead of working with yi = arg maxj{||xk − yj ||2|`j(xk + sk)| :
yj ∈ Yk} as is done in the algorithm above, Powell suggests to optimize the coefficient of
the rank-two update update of the system defining the Lagrange polynomials, which will
explicitly improve the conditioning of the system. The rank-two update is a name of the
quadratic model that is added to the old model, to get the new one. And the reason for it
being called “rank-two” is that the Wnew −Wold is of rank two. The W’s only differs
in one row and one column, which can be seen from (3.10), (3.9) and the definition of Ŷ
(remember that W is defined by the interpolation points alone).

63

Chapter 3. Theory

Powell does not explicitly work with the concept of poisedness, and thus there is no
testing of |`i(y∗i)| > Λ > 1. The model-improvement step is far more complex, but the
basic idea for selecting new points is the same. Namely, to choose a new point such that it
gives a large value of the Lagrange polynomial belonging to the point that is going to be
replaced. A perk of doing it this way, is that there is no need of doing the optimization of
the Lagrange polynomials as is done in the model-improvement algorithm. Avoiding the
optimization in Algorithm 1 is a tempting idea. Luckily, Algorithm 1 can be modified to
include these kind of “cheap” steps, i.e., replace a point by another for which the absolute
value of the corresponding Lagrange polynomials exceeds Λ.

The details of this idea are not suggested in [1]. A suggestion by the author of this re-
port for how to do this is as follows. Instead of choosing the point that should be removed
based upon the maximization of |`i(x)| within the ball, one could use the strategy as is
given in the model-improvement step, i.e., choose the point that is farthest away from the
current best point, yt say. Use the approximation techniques given in Section 3.3 to find
an upper bound. If the upper bound is greater than Λ, find a new point, y∗t say, by using
(a version of) the truncated gradient method on `t(x) and −`t(x). If the upper bound is
lower than Λ, go to the next farthest point, and repeat. The only criterion for the point,
y∗t , is that it should give a large value of |`t(x)| which is greater than Λ (and be within the
trust-region).

However, using this kind of improvement strategy has one disadvantage. As men-
tioned, the number of iterations of Algorithm 1 is uniformly bounded. If we use the method
just proposed (i.e., allowing “cheap” steps), then this property is weakened. The algorithm
will then complete in a finite number of iterations. A strategic trick is to modify Algorithm
1 to allow for a fixed number of consecutive cheap steps, and if the limit is reached, switch
to global optimization[1].

Another difference, which is sort of a consequence of the differences already given, is
that Powell’s algorithm is quite complex and the program flow is not easy to follow. The
algorithm given in this section follows a nice loop, Step 1 - Step 5, whereas in Powell’s
algorithm there are a lot of jumps based upon what is happening. To see the flow, look
at Figure 1 in [10]. The approach taken seems to be more of a “keep going as long as
possible, and only use resources to fix the conditioning of the system if needed”-strategy,
whereas in the given algorithm, maintaining the poisedness of the interpolation set is an
essential part of the loop. This difference is observed by the author and is not given in [1].
Considering practical performance (measured in total run time), the author would not be
surprised if Powell’s algorithm performs better as less function evaluations are probably
used to maintain the poisedness of the interpolation set.

Another difference is their capability of finding good local optimums, or potentially
global optimum. There is done a comparison between different derivative-free algorithms
in [29]. In Figure 2 in that paper, we can see which points have been evaluated by the
algorithms. The function “six-hump camel back function’,’ which has six local optimums
where two of them are global ones, where used. They were initiated with the same starting

64

3.12 The algorithm

point, which is closer to a local optimum than a global one. In the test, amongst others,
NEWOUA and a method named DFO, which is more or less the same as the one presented
in this thesis, were compared10. The result of the test on the six-hump camel back function
was that the NEWOUA algorithm found the closest local optimum very fast, whereas the
DFO method found the global optimum. The reason for why the DFO algorithm was able
to find it, is due to how it handles the trust-region radius and how it slowly decreases. If the
initial radius is “big enough”, and the initial point is close to a local optimum, we can still
be able to find a better local optimum, this is because we slowly zoom in on the function
and while we do this, new points will be evaluated and we might stumble upon points with
lower objective function values and the attention is moved towards that point.

In this chapter, some of the relevant theory to create a globally convergent derivative-
free model-based trust-region algorithm has been presented. The main focus has been on
the building, updating and maintaining an under-determined quadratic model. Informa-
tion regarding how to include gradients into the model-making process has been given.
The derivative-free model-based trust-region algorithm has been extended to handle con-
straints. Lastly, these components were put into a globally convergent framework which
we presented and explained.

10The DFO algorithm is also given in the book [1]. The difference is in how it handles geometry of the set of
interpolation points and that the number of interpolation points can change during the algorithm.

65

Chapter 3. Theory

66

Chapter 4
Testing of the algorithm

In this chapter we will see if the selected method of incorporating constraints into the opti-
mization procedure works. In addition, we will see which effect it has to include gradient
information into the model-making process. These are the main goals of this chapter. At
the end of the chapter, the algorithm is applied to a well placement task to see if the algo-
rithm is able to find a minimum when a simulator is used as the true function.

While testing the chosen constraint handling technique, we will also explore the effect
of varying the number of interpolation points, m. In addition, some comments on different
aspects of the convergence of the algorithm will be given.

4.1 Incorporating constraints
The selected method to deal with constraints is to simply add the constraints into the sub-
problem as previously discussed. The feasible area defined by the constraints is added
as a mask on top of the trust-region. The constraints are assumed to be hard or unrelax-
able. This means that the constraints must be included while checking and improving the
poisedness of the set.

Before the test problems are presented, some comments on the implementation is given
and the chosen parameters are listed.

4.1.1 Implementation details
Until now the trust-region has been defined by the the Euclidean norm. However, in the
implementation, the infinity norm is used. This is because this constraint can be defined
by bounds on the variables instead of adding a nonlinear constraint which has a undefined
gradient at the origin. It is mentioned in [1] that it is an option to use this norm.

67

Chapter 4. Testing of the algorithm

The following parameters are found by trial and error and are by no means optimized
and further tuning and testing should be performed.

r = 2

ω = 0.66

β = 0.09

τ = 0.1

η1 = 0.1

γ = 0.7

γicb = 1.2

εc = 0.1

µ = 3

Λ = 2

The sophisticated updating scheme was implemented during the specialization project,
but because there was some hidden bug(s), I decided to switch to the simple scheme in-
stead.

The termination criterion is the trust-region radius. When it becomes less than, ∆min,
the algorithm terminates.

4.1.2 Test problems for the constraint handling
The tests in this part are performed in 2D such that it is easy to visualize the problems and
solutions. These two functions will be used:

fm(x1, x2) = 0.26(x21 + x22)− 0.48x1x2 =
1

2

[
x1 x2

] [0.52 −0.48
−0.48 0.52

] [
x1
x2

]
(4.1)

fr(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (4.2)

These are two classical test functions for optimization. The Matyas function, (4.1), is a
convex second order polynomial with global optimum at (0, 0) and fm(0, 0) = 0. It is
plotted in Figure 4.1. The Rosenbrock function, (4.2), is a lot more complex. It is also
a polynomial, but it has many stationary points along the valley, as can be seen in Figure
4.2. Its global optimum is at (1, 1) and fr(1, 1) = 0.

The chosen bounds for the Matyas function is

lbm =

[
0.5
0.5

]
≤
[
x
y

]
≤
[
5
5

]
= ubm (4.3)

and the chosen bounds for the Rosenbrock function is

lbr =

[
1.5
1.2

]
≤
[
x
y

]
≤
[
5
5

]
= ubr (4.4)

68

4.1 Incorporating constraints

(a) The Matyas function. Global optimum at (0, 0).

(b) The contours of the Matyas function. Global optimum at (0, 0).

Figure 4.1: In the figures above, the Matyas function is plotted. The darker the blue color is, the
lower the function value is.

69

Chapter 4. Testing of the algorithm

(a) The Rosenbrock function. Global optimum at (1, 1). There are many local
optimums along the valley

(b) The contours of the Rosenbrock function. Global optimum at (1, 1).

Figure 4.2: In the figures above, the Rosenbrock function is plotted. The darker the blue color is,
the lower the function value is.

70

4.1 Incorporating constraints

There will be five different test problems. The first one, Case 1, is the unconstrained case
with an initial point of (4, 4). Then the four following cases will be tried.

• Case 2. Bounds as given in (4.3) and (4.4).
Initial point: [4, 4].

• Case 3. Bounds and linear constraint.

y ≥ 6− x

Initial point: [4, 4].

• Case 4. Nonlinear constraint.

y ≥ x2 + 1.2

Initial point: [0, 4].

• Case 5. Bounds and nonlinear nonconvex constraint.

y ≥ 3 cos(0.5x)

Initial point: [4, 4].

The initial point is only changed in the nonlinear constraint to make it feasible. The answer
for each of the cases are given in Table 4.1. The subscripts “m” and “r” indicate that
they belong to the Matyas and the Rosenbrock function, respectively. The ∗ will indicate
optimal values, either global or local.

Table 4.1: The table shows the answers of the different cases for both the Matyas function and the
Rosenbrock function. The optimums are all global.

x∗m y∗m f∗m(x∗m, y
∗
m) x∗r y∗r f∗r (x∗r , y

∗
r)

Case 1 0 0 0 1 1 0
Case 2 0.5 0.5 0.01 1.5 2.25 0.25
Case 3 3 3 0.36 1.9996 4.0004 0.9996
Case 4 0.4294 1.3844 0.2609 1 2.2 144
Case 5 1.8355 1.8228 0.1339 1.5 2.25 0.25

4.1.3 Results - constraint handling
The main purpose of this section is to show that the chosen constraint handling technique
works. All the cases 1-5 for both test functions have been performed. The results are
plotted in Figure 4.4 and Figure 4.5. These figures show that the constraint handling is
working as expected. All the evaluated points are plotted in the figures. We can see that
none of the points are violating the constraints. The red marks are points that have been
found while solving the subproblem. The green mark is the final solution, and the black

71

Chapter 4. Testing of the algorithm

mark is the initial point. The constraints are painted in black. For all tests in this subsec-
tion, the initial-trust region radius was set to ∆0 = 1, the final was set to ∆min = 0.001
and the max was set to ∆max = 2.

If there were any soft(relaxable) constraints. Then there would have been blue marks
violating the constraints, whereas the red ones should still obey all the constraints.

A lot of test have been performed on Case 1-5. For each case and for each function
there have been done three tests with different m’s. This allows for all the different op-
tions to be tested. The minimum is m = n + 2 = 4, the recommended value by Powell
is m = 2n + 1 = 5, whereas the maximum number is m = (n + 1)(n + 2)/2 = 6. Per-
forming these tests is not a main goal of this thesis, but it is an interesting field to explore.
For each test there are one figure and one table. All of them are available in Appendix A.
Figure 4.3 and Table 4.2 are an example. They are repeated here such that an explanation
can be given. The top left subfigure is the feasible area plotted together with the contours
of the function. The other three plots show the different points that have been evaluated
for the three different m’s. The colors are as defined above.

The Table 4.2 shows the answers that were found for the different scenarios in Figure
4.3, and it also tells how many function evaluations were needed to converge, ne. The
np value tells how many times we would need to evaluate functions if parallalization was
supported.

Table 4.2: The Matyas function. Nonlinear constraint.

m=4 m=5 m=6
ne 25 35 50
np 16 19 25
(x,y) (0.42946, 1.38443) (0.42939, 1.38438) (0.42939, 1.38438)
f(x,y) 0.26090 0.26090 0.26090

Comments on the algorithm - Convergence

Figure A10 in Appendix A shows some interesting aspects of the algorithm. This is the
scenario where the Rosenbrock function is minimized subject to bounds and a nonconvex
nonlinear constraint. For the cases when m = 5 and m = 6 we can see that the algorithm
converges to the global optimum, despite being attracted into the valley during some of
the first iterates. However, a high amount of function evaluations are required. This is
because the gradient of the Lagrangian is small and a lot of small steps are performed, we
can also see (by noticing how close the blue marks are to the red ones) that the trust-region
is getting small too. The reason why it is able to keep on going despite being around
the stationary points, are because when we keep on improving the geometry, we keep on
evaluation points around the current iterate, and these new points will contribute with new

72

4.1 Incorporating constraints

Figure 4.3: The top left plot shows the contour of the function together with the constraint. The
three other plots shows which points have been evaluated. The difference is the amount of sample
points used to create the model, i.e., m. The value is given in the title of each figure. Green mark
means final solution. Red mark means point found by solving the subproblem. Black mark is the
initial point. The black line is the constraint.

73

Chapter 4. Testing of the algorithm

information.

If they are chosen in the direction of the global minimum they will contribute with a
lower function value and when this is included into the model, we will go in that direction
the next time we solve the subproblem. Another possibility is that the points may con-
tribute with worse function values if they are placed a bit “higher up the valley”, and this
can lead to that the curvature of the model will start to coincide with the curvature of the
true function, and this can also give us a lower value when the subproblem is solved. In
other words, the points that gives a high function value will make the algorithm go away
from that area.

When m = 4, we are not that lucky with which points are found during the geometry
improving, and we get stuck in a local optimum. This is highly likely because too few
points are being sampled, and thus the algorithm is not able to capture enough information
of the true function.

If the behaviour in the cases whenm = 5 andm = 6 is undesirable, i.e., it is preferable
to just converge to a local optimum, two different approaches can be taken. The first is to
simply increase the final trust-region radius, ∆min, such that the algorithm is not allowed to
take these small steps. The other approach is to add a restriction on how many consecutive
steps with a small decrease is allowed. For the second approach the user will have to
specify how many small decreases he/she would allow and what would be defined as a
small decrease. If the user has knowledge of the application area this should be doable.
Both of these approaches could be combined.

Comments on the algorithm - Parallelization

By comparing the values ne and np in all the tables in Appendix A, we can see, not sur-
prisingly, that parallelization has the potential to increase the effectiveness of the algorithm
by a good amount!

Comments on the algorithm - Selecting m

The choice of m is not simple. The recommended value by Powell does an overall decent
job. However, sometimes m = 4 is best and sometimes m = 6 is best. Further testing
must be done to conclude anything. But following the recommended value by the creator
of the method will be the choice for now.

Summary Now that it is shown that the chosen constraint handling technique works,
we will change focus towards including gradients into the model-making process. The
author would like to point out that he is aware that more testing should be done before
we can conclude that the implementation is robust when it comes to handling constraints.
However, the chosen method is suggested in [1] and we have produced results that are
satisfying and show that the implementation handles the constraints as it should. A natural
question is how many constraint there can be. This will depend upon at least two parts.

74

4.1 Incorporating constraints

(a) Unconstrained. (b) Bounds.

(c) Bounds and linear constraint. (d) Nonlinear constraint.

(e) Bounds and nonlinear nonconvex constraint.

Figure 4.4: The algorithm converges with all the different constraints. The Matyas function is used
and m = 5 for all tests.

75

Chapter 4. Testing of the algorithm

(a) Unconstrained. (b) Bounds.

(c) Bounds and linear constraint. (d) Nonlinear constraint.

(e) Bounds and nonlinear nonconvex constraint.

Figure 4.5: The algorithm converges with all the different constraints. The Rosenbrock function is
used and m = 5 for all tests.

76

4.2 Gradient enhanced models

One limitation is how good the third-party solver is to solve the subproblems. However, the
chosen solver (SNOPT) is a very solid and robust solver, thus this is not the first limitation.
Another part that must be considered is how much one can restrict the feasible area and
still be able to find feasible points such that the required poisedness can be achieved.

4.2 Gradient enhanced models

4.2.1 Convex functions

In this section we will see how gradient information included into the model-making pro-
cess effects the total number of function evaluations and the quality of the solution. First,
the Matyas function will be used. Then the 10 dimensional sphere will be tested. The
references cases will be m = n+ 2, m = 2n+ 1 and m = (n+ 1)(n+ 2)/2.

In the theory chapter, two ideas for applying gradient information were given. One was
to only include gradients at the center point of the model. The other one was to include all
the available gradient information by solving a minimization problem while the gradient
of the center point was still set exactly. The first case corresponds to setting α = 1 and
setting the ng to the number of available derivatives of the objective function. The second
case corresponds to setting α to a value in the open interval 0 to 1. If α = 0, then ng
must be set to n. This means that all coefficients will be determined by the interpolation
conditions and the gradients, and the minimum change of the Hessian is ignored.

Table 4.3: The table shows the difference in the amount of function evaluations needed to converge
when different parameters are set. The Matyas function, (4.1), was used as test function. In all
scenarios, the global optimum was found.

m ng α ne

No gradients 6 0 1 117
5 0 1 99
4 0 1 78

Gradients 3 2 1 47
2 1 0.5 33
2 2 0.5 34
2 2 0 34

The results are given in Table 4.3. From the table, we can see that including gradient
information can reduce the amount of evaluations needed by up to a factor of around 3.
Thus, we can conclude that including gradient information into the model-making process
can be beneficial when we have a convex function such as the Matyas function. To further
test this idea, we will, as told, use the multidimensional sphere.

The results can be seen in Table 4.4. The conclusion are the same as the one in the
previous paragraph. Including gradient information into the model is preferable when we

77

Chapter 4. Testing of the algorithm

Table 4.4: The table shows the amount of function evaluations needed to converge when different
parameters are set. The 10 dimensional sphere was used as test function. In all scenarios, the global
optimum was found.

m ng α ne

No gradients 66 0 1 588
21 0 1 267
12 0 1 254

Gradients 10 10 1 122
10 10 0.5 81
10 5 0.5 81

have a convex function such as the sphere.

Until now, it seems like including the gradient information is an option that should be
followed when such information is available. However, this view will change during the
next tests.

4.2.2 Nonconvex function

Here we will inspect how well the gradient enhanced model performs when the function
is no longer convex. The Ackley function (3.37) will be used for this purpose.

Table 4.5: The table shows the difference in the amount of function evaluations needed to converge
when different parameters are set. The Ackley function was used as test function. In all scenarios,
the global optimum was found.

m ng α ne

No gradients 6 0 1 65
5 0 1 71
4 0 1 74

Gradients 2 2 1 82
2 2 0.5 48
2 1 0.5 79

The results are given in Table 4.5. To the author’s great surprise, the algorithm found
the global optimum in all of the scenarios given in the table. In addition, we can see that
the second last row (ng = n = 2,m = 2, α = 0.5) is the one that used the least amount of
function evaluations! These results were unexpected. The initial point was [4, 4] and the
initial trust-region radius was set to 8, the ∆max to 12 and the final trust-region radius to
0.001.

The prediction in part 3.6.1 was that the gradients would make the algorithm less “im-
mune” against bad local optimums in nonconvex and/or noisy functions, but in the just

78

4.2 Gradient enhanced models

performed test the algorithm performed better with the gradient enhanced model.

A change in the initial trust-region radius was made, and it was set to 9.6 (instead
of 8.0). The algorithm converges to a local optimum after 112 function calls, the pa-
rameters were ng = n = 2,m = 2 and α = 0.5. The algorithm was ran once more,
but with no gradient information and m = 5. The global optimum was found after
78 function evaluations. This means that the gradient enhanced model performed bet-
ter only because it was lucky with which points were selected. To demonstrate how fragile
the gradient enhanced model are to the point selection, we will perturb the starting y-
coordinate by small amounts. For each initial starting point, the algorithm is ran with both
the gradient enhanced model (n = ng = 2,m = 2, α = 0.5) and the “normal” model
(n = 2,m = 5, ng = 0). We will take a note of if it did find the global optimum and if
not, what was the function value at that point. The number of function evaluations are also
stored.

Table 4.6: The table shows how fragile the gradient enhanced model is to the selection of points.
The gradient enhanced model is compared with the regular model. The only difference for for each
test is the initial point. The second coordinate is changed from 4.0 to 4.5 as is shown in the y-column.
The first coordinate remains unchanged.

y ne Global?
No gradients 4.0 67 Yes

4.1 57 Yes
4.2 60 Yes
4.3 75 Yes
4.4 72 Yes
4.5 53 Yes

Gradients 4.0 48 Yes
4.1 52 Yes
4.2 38 13.6016
4.3 52 Yes
4.4 67 3.5745
4.5 42 6.6745

Table 4.6 shows the results. The regular model is able to find the global minimum
every time, whereas the gradient enhanced model is not. This emphasizes that the gradient
enhanced model is very exposed to local minimums, which are either due to the function
or due to noise. The gradient enhanced model has one advantage, which is that in all
cases it converges faster (i.e., needs less function evaluations) to the local optimum. If we
know that we don’t have a noisy function and we don’t mind finding local optimums, the
gradient enhanced model may be used. Remember that the algorithm (with or without the
gradients) is not a global optimizer. However, as we have seen, it possess the property
of finding a good local optimum (or even the global optimum) despite the function being
noisy and/or containing a lot of minimums.

79

Chapter 4. Testing of the algorithm

4.2.3 10 dimensional nonconvex function

Until now mainly 2 dimensional functions have been used. To test if the algorithm still
works when the dimension is increased, we will try a 10 dimensional nonconvex function.
Three different aspects will be tested.

1. Is the value that Powell recommended, m = 2n+ 1, a good choice?

2. How will the gradient enhanced model perform now that there are more degrees
of freedom? I.e., more degrees of freedom are not taken up by the interpolation
conditions.

3. Will we be able to find the global optimum?

The function we will use is the 10 dimensional Rastrigin function:

f(x) = 10n+

n∑
i=1

(x2
i − 10 cos(2πxi)) (4.5)

where n = 10 and the search domain is −5.12 ≤ xi ≤ 5.15. The global optimum has the
value 0 and is located at [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The 2D version of the function can be
seen in Figure 4.6. The starting point was [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], and the initial starting
radius was set to 3, the max to 8 and the final trust-region radius was not changed.

The results are given in Table 4.7. First, note that taking advantage of parallelization
is highly advantageous in all cases. Remember that np is the number of simultaneously
evaluations of the function, whereas ne is the total number. For the cases where no gra-
dient information were included, Powell’s recommended number of interpolation points
was indeed the best. If m = n + 2, then we are not able to explore the search area well
enough and only a local solution is found. However, a lot less function evaluations was
needed. When the gradient information was included, only local optimums were found in
all scenarios. The amount of available gradients was set to ng = 5 and ng = 10. In all of
these scenarios the amount of function evaluations were lower than for the scenarios with
no gradient information. The table demonstrates how the gradient information actually
makes the model worse. We went from finding the global optimum with m = 21 to only
finding local optimums when m remains unchanged and ng was set to 5 and 10. Another
interesting fact is that using m = n + 2 = 12 with no gradient information finds a better
local optimum than any of the runs where gradient information were included. It can be
seen from the table that, once again, the algorithm converges using less function evalua-
tions when gradient information is included.

The algorithm has been tested on different ordinary mathematical functions. The re-
sults have been promising. Of course, more testing should be performed, but the prelim-
inary results are promising. As mentioned throughout the this thesis, the true function
could also have been a simulator (i.e., a black-box). In the next section, this will be the
scenario.

80

4.2 Gradient enhanced models

Figure 4.6: The 2 dimensional function of (4.5). I.e., n = 2. The figure illustrates that the this
function is highly nonlinear and nonconvex.

81

Chapter 4. Testing of the algorithm

Table 4.7: The table shows how the algorithm performs on a nonconvex 10 dimensional function.
All parameters not mentioned in the table remains unchanged.

m ng alpha ne np Global?
No gradients 12 0 0 147 66 20.8952

21 0 0 223 61 Yes
66 0 0 486 32 Yes

Gradients 10 10 0.5 78 37 120.0418
21 10 0.5 109 34 100.7540
21 5 0.5 140 49 49.5252

4.3 Testing on an oil reservoir simulator

The algorithm was tested in the well placement challenge. This test is just to show that the
algorithm also work when the true function is not an analytic function. We have already
showed that it converges to local optimums when the true function is an ordinary mathe-
matical function.

Only a restriction on the well length of the producer well was added in this case. Imple-
menting the constraints in FieldOpt is not straightforward. The current constraint handling
is based upon adding penalty terms to the objective function. That means that the opti-
mization algorithm finds a point, and first then the constraints are dealt with. If the point
is infeasible, the point will be projected back into the feasible area.

The road taken in the algorithm presented in this thesis is quite different. The con-
straints are always included such that only feasible points are produced. The difficulty
arises because of how FieldOpt is constructed. The idea in FieldOpt is that the optimiza-
tion algorithms should be agnostic to the variable type. I.e., they should not care if the
variable represents a z-coordinate or the bottom hole pressure (BHP). The order of the
elements of the vector of decision variables is random. However, this also complicates
the implementation of our type of algorithm. In contrast to the agnostic philosophy of
FieldOpt, we need to know the variable type and we need to know the exact meaning of
the variable. E.g., if we want to impose a restriction of the well, we must know which
variables corresponds to the heel and the toe of the well. In addition, we would like to
scale the variables differently.

The functionality to extract the gradients are not ready in FieldOpt. However, based
upon the result in the previous section, this is not a big drawback. Most likely the gradient
enhanced model would, at its best, find the same good local optimum as the algorithm
would have found without gradients.

82

4.3 Testing on an oil reservoir simulator

4.3.1 Scaling
Before the results are shown, a small note on scaling will be given. In general, scaling
of the decision variables and the objective function value and the possible constraints are
very important for the speed of the convergence of an optimization algorithm. The objec-
tive function returned by FieldOpt is already scaled. The scaling procedure can be used
to achieve two different goals. The first goal is the most obvious one which is to get the
magnitude of the variables to about the same level. The second one is less intuitive and to
motivate it an example from the application area is given.

Let’s say that we are perturbing the toe of the well. The perturbations along the xy-
plane should be of many magnitudes larger than the perturbations along the z-axis. This
is simply how oil reservoirs are made by the nature. The thickness (i.e., along the z-axis)
of the layer of oil is very small compared to how wide (i.e., along the xy-plane) the layer
is. To take this consideration of the variables into account, scaling can be applied. The
idea is that those variables that are not allowed to change a lot will be multiplied by a
factor greater than 1. Let’s call this scaling factor β. The value of β will depend upon
the relationship between the different variables. The goal is to make it such that, approx-
imately, an increase of 1 in each variable will represent a desired step of the “unscaled”
variable. E.g., if the scaled z-coordinate change by 1, maybe the real change is about 1
meter, whereas for the x-coordinate the real change is about 30 meters or more.

The result of this scaling will be that when you search for a solution of the subproblem
within the trust-region, the boundary of the trust-region will be hit faster by those variables
that are not allowed to change that much. This is because a step along that axis will be
multiplied by β.

Another method to achieve the same kind of limitations on how much the different
variables are allowed to change, is to simply scale the trust-region directly[15]. If a vari-
able is not allowed to change a lot (such as the z-coordinate of the toe of the well), then
the trust-region would be smaller along that axis. The scaling of the trust-region might be
more logical, however, if we follow the other approach, then we only have to scale once.
Considering that we are already scaling the variables to obtain approximately the same
magnitudes, doing another scaling at the same time is not much of an extra work.

The x and y coordinates were scaled by 1/10000 and the z coordinates were scaled by
30/10000 in the testing of the algorithm.

4.3.2 Results of the well placement challenge
The chosen case has three wells where two of them are injectors. Injectors are wells that
inject fluid to maintain the pressure of the reservoir such that the oil will keep on going up
of the reservoir. These two wells have fixed positions. The last well is a producer. Produc-
ers are the wells where fluid goes up, i.e., the wells that produce the oil and gas. This well
is the well that we will optimize on. Both the toe and the heel of the well are variables.
That means we have 6 decision variables in total. A restriction of the maximum length

83

Chapter 4. Testing of the algorithm

was added and set to 500. It was tried to do the optimization without this restriction, but it
led to a solution which had a very long well.

The reservoir can be seen in Figure 4.7. The meaning of the colors are given in the
description of the figure. It is a little hard to see, but the injector wells are marked with
“I01” and “I03”. The well that is going to be optimized is marked with “P01”. The total
simulation time is about 6 years.

Let To, Tg and Tw be the total accumulated oil, gas and water, respectively. They are
given in standard cubic meter (SM3). The objective function is defined as follows:

f = 299.9611e−7To + 0.15032e−7Tg − 4.9690e−7Tw

As we can see, the water contributes with a negative factor in the objective function. The
initial trust-region radius was set to 0.001 and the final one was set to 0.00001. If the initial
trust-region was set too big, the initial set of perturbed vectors would be infeasible. This
is a big challenge in constrained optimization. However, the goal of this test is to show
that the algorithm works when the true function is a simulator, and the goal is not to find
the best possible well location. Of course, the goal is to find an improved position, i.e., a
local optimum, but we will not use resources on finding the optimal parameters to find a
best possible local optimum.

We used the suggested value by Powell with m = 2n+ 1. The objective function had
an improvement of about 226%. The initial well position was

[7864.2123, 14229.1378, 1533.4939, 8000.8869, 14236.4459, 1541.9891],

where the three first values are the [x, y, z] coordinates of the heel, whereas the three last
are the same coordinates of the toe. The final position was

[7690.4719, 14097.4035, 1532.4248, 8153.8992, 14284.7164, 1544.6308].

The change of the location of the well can be seen in Figure 4.8. If we compare the initial
and the final positioning of the well, we can see that the z-coordinates have changed by
only a couple of meters, whereas the others has been changed by up to around 150 meters.
Some graphs of the most important key information is given in Figure 4.9 and 4.10. The
total amount of function evaluations was 314 and if parallalization was utilized it would
have been 96. This might seem like a high number, but the author would like to point out
that the resolution of the solution is quite high. By that it is meant that the final trust-region
radius is very small and the final improvements will be very small. The step sizes at the
end of the optimization procedure is around 0.1 meters1.

The author does not have knowledge about petroleum, but he contacted a petroleum
engineer, Brage K. Strand, for help. The engineer did not do a thorough analysis, but his
preliminary conclusion was that the optimized well location offers a solid improvement.

1It was tested with a bigger starting radius and a higher final radius. This will be presented soon.

84

4.3 Testing on an oil reservoir simulator

Figure 4.7: The reservoir which has been used for testing. Red indicates oil, brown indicates gas
and blue indicates water

We can see from Figure 4.9a that the oil production is more than doubled, and the
same goes for the gas production (Figure 4.9b). The two lower graphs in Figure 4.9 might
seem a bit alerting. However, please look at the scales of 4.9c and compare it with 4.9a.
The algorithm has found a solution such that the water-breakthrough happens at the end of
the horizon of the simulation. This is achieved by having a negative coefficient associated
with the total production of water in the objective function value. A water-breakthrough is
when water starts to enter the well. Once this has happen, the water will keep on flowing
into the well. This has to do with the properties of the different fluids. Having the water-
breakthrough happen late in the simulation is (often) advantageous because it means that
we are producing more or less only hydrocarbons (i.e., oil and gas) the entire considered
lifespan. The Figure 4.9d shoes the water cut. The water cut is the rate of produced water
divided by the rate of total produced fluids. Even though it is “exploding” at the end, which
is reasonable as we are having a water-breakthrough, the value is no more than 0.0035 at
the end. This is a very low value. A rather normal water cut level to shut down wells is
around 0.9.

Figure 4.10 is for the people who know more about petroleum, but all that we are con-
cluding from this figure is that the pressure stays more or less the same. A stable pressure
is good.

The number of function evaluations was quite high, and thus another test was per-

85

Chapter 4. Testing of the algorithm

(a) The initial position of the well.

(b) The optimized well.

Figure 4.8: The initial and optimized placement of the well. The fault (crack) of the reservoir can
be used as reference point for comparison.

86

4.3 Testing on an oil reservoir simulator

(a) The total oil production in the well. (b) The total gas production in the well.

(c) The total water production in the well. (d) The water cut of the well.

Figure 4.9: Key information for the base case and the optimized case.

87

Chapter 4. Testing of the algorithm

Figure 4.10: The average pressure value. The important thing to note is that it remains stable.

formed. It was assumed that the high number of evaluations was due to a very low final
trust-region radius. Only the objective function was inspected. An analysis of the solution
was not performed. The initial radius was set to 0.01 and the final to 0.001. Looking
at it only from an optimization perspective without evaluating the quality of the solution,
the result was a great improvement. Compared to the initial placement of the well, the
objective function value increased by about 332 %. The number of function evaluations
was only 49 and 20 if parallalization was utilized. This shows that setting the parameters
correctly have a crucial impact on the performance of the algorithm. About 1/16 of the
function evaluations was used, and the objective function value was about 47 % better! In
this last scenario the final trust-region radius was set such that the last steps was around 10
meters for the x-coordinate. This is more reasonable than using one tenth of a meter.

The found position of the well was:

[7753.1103, 14369.2628, 1526.7029, 8080.5994, 13991.5888, 1537.34286].

Once again, we can see that the z-coordinate only changes slightly.

This concludes the testing of the algorithm. The algorithm seems to work both with
and without constraints. Including gradient information into the model-making process
might not be advantageous as we lose some of the robustness of the derivative-free model-
based trust-region algorithm. However, a faster convergence is often obtained, but to a
less optimal local solution. It was also tested on the well placement challenge, and the
preliminary results are very promising. In the next chapter this thesis will be summarized.

88

Chapter 5
Conclusion

This thesis was concerned with an optimization problem where constraints were both
present and absent, and where gradients were both available and not. Relevant theory for
a derivative-free model-based trust-region algorithm has been present. Extensions to in-
clude constraints was also given. Methods to include the gradients into the model-making
process was designed by the author. A small modification to the algorithm given in [1]
was made. The change was that the gradient of the Lagrangian should be used instead of
the gradient of the surrogate model in the scenario when constraints are present.

The suggested algorithm with the possibility of using a gradient enhanced model was
implemented. In addition, the support for adding hard (unrelaxable) constraints is im-
plemented. Even though the support for derivative-free constraints (i.e., constraints that
must be modeled) are not implemented, it is straight forward to add it considering that the
under-determined Lagrange polynomials are available and the subproblem already uses a
SQP solver to find a solution.

The different steps of the selected algorithm has been explained and commented. Fur-
ther, the algorithm has been compared to one that uses the same method to deal with the
under-determined quadratic model.

The implementation has been used to produce results for the different scenarios men-
tioned in the first paragraph of this chapter. The results are that the chosen constraint
handling technique is working, but that there will be some limitations on how “difficult”
the constraint can be. This is because we need to be able to find points such that the
poisedness (the geometry) is still good considering that we are dealing with hard (unre-
laxable) constraints. These types of constraints must be considered when the poisedness
is being measured and improved. This means that equality constraints can be problematic.
If such constraints are desirable, the most reasonable idea would be to add them as soft
(relaxable) constraints. Doing so will allow the algorithm that improves the poisedness to
choose points that violates the constraints, but the constraints could still be included when

89

Chapter 5. Conclusion

the subproblem is being solved.

Further, tests on how the gradient enhanced model compares to the regular model were
performed. The conclusion was that as long as the true function is not convex, the regular
model will be most likely to find the better local solution. However, the gradient enhanced
model has a tendency to converge faster. The gradient enhanced model was also more
fragile to the selection of points compared to the regular one. In addition, the robustness
against noise was decreased when gradients were included.

To sum up, the desired functionality has been implemented and tested. The results of
including gradients into the model-making process was as forecasted in the theory chapter,
and the selected constraint handling technique is working.

5.1 Further work
There are several possible extensions that can be made. The most relevant theory has
already been presented and references have been given. If the author should keep on
working with this project, he would like to explore the following ideas.

5.1.1 Implementation
There are a lot that can be done with the implementation.

• The updating scheme. As mentioned, due to some hidden bugs, the current updat-
ing scheme is the simplified and slow one.

• The constraint handling. The setup to use a SQP to solve the subproblem is al-
ready there. Natural extensions are to add functionality to model derivative-free
constraints. In addition, one could add soft (non)linear constraints. Which means
that they should be included while solving the subproblem, but ignored while deal-
ing with the poisedness.

• Cheap improvements. In the theory chapter there is mentioned the possibility of
doing cheap improvements of the geometry. However, if hard (unrelaxable) con-
straints are included, care must be taken such that those are not violated.

5.1.2 Initialization
The initialization procedure should be explored. As mentioned, the basic idea of perturb-
ing the initial point along the different axes to create an initial set of interpolation points
may not be feasible when we have constraints. A simple example of why this initialization
procedure must be improved is as follows. Let’s say that we have a well and an initial
positioning of it. The initial length of the well is same as the maximum allowed length.
This is not unreasonable, because this algorithm is supposed to be used by experts who
have knowledge in the application area. If the maximum length is Dmax, and we know
that in general a longer well will produce more oil, then the experts will make the well

90

5.1 Further work

length around Dmax. Thus, perturbing the initial point along the different axes will not be
allowed by the maximum length constraint.

A possible idea is that instead of looking at one decision variable at the time, one could
look at the heel and the toe in a more complex manner. Another idea is to demand more
initial guesses from the user such that it will be easier to find more perturb solutions that
are feasible.

5.1.3 Optimize the parameters for the application area
There are a lot of parameters in the algorithm. These should be optimized for the applica-
tion area.

5.1.4 Scaling
A dynamic way of doing the scaling of the decision variables should be added. Scaling
can be the difference between a successful and an unsuccessful optimization.

5.1.5 Global optimization of subproblem
An interesting idea is to add a global optimization procedure to solve the subproblem. This
might be preferable if the constraints are very complicated and it is hard to find anything
but bad local optimums.

5.1.6 Make it a global algorithm
The algorithm is a local solver, but we have seen that it is able to find good local optimums
and even the global one. If the global solution is desired, then this algorithm could be
extended into a multi-start algorithm. That means that it will be initiated from several
different starting points. Thus, the chance of finding the global optimum increases. If this
approach is taken, one should try to reuse the already simulated cases whenever possible.
Maybe a point that is going to be evaluated is more or less (within some possibly dynamic
tolerance) the same as a previous one. Then this point should highly likely be used instead
of evaluating a new one.

5.1.7 Gradient enhanced models
I would not recommend to pursue the idea of including the gradients into the model-
making process. Unless you know that the true function is convex, or you would not mind
getting a possibly worse local solution, the gradient enhanced model will not be favorable.
However, if all that you want is an improvement of the initial solution, then this approach
is still of interest. But the good property of derivative-free algorithms to be robust against
noise is weakened.

91

Chapter 5. Conclusion

92

Bibliography

[1] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to Derivative-
Free Optimization, volume 8. Siam, 2009.

[2] IEA. Key World Energy Statistics 2017. 2017.

[3] Jean-Thomas Camino, Christian Artigues, Laurent Houssin, and Stéphane Mour-
gues. Linearization of euclidean norm dependent inequalities applied to multibeam
satellites design. 2016.

[4] IEA. Energy Access Outlook 2017. 2017.

[5] Ministry of Petroleum and Energy Norway (2011). An industry for the
future — Norway’s petroleum activities. https://www.regjeringen.
no/en/dokumenter/meld.-st.-28-20102011/id649699/ (visited on
12/04/2018).

[6] Mathias C Bellout. Joint optimization of well placement and controls for petroleum
field development. 2014.

[7] M. J. D. Powell. On the use of quadratic models in unconstrained minimization
without derivatives. Optimization Methods and Software, 19, 2004.

[8] M. J. D. Powell. Least frobenius norm updating of quadratic models that satisfy
interpolation conditions. Math. Programming, 100, May 2004.

[9] M. J. D. Powell. On updating the inverse of a KKT matrix. Numerical Linear Algebra
and Optimization, January 2004.

[10] M. J. D. Powell. The NEWOUA software for unconstrained optimization without
derivatives. Large-Scale Nonlinear Optimization, 83, November 2006.

[11] M. J. D. Powell. The BOBYQA algorithm for bounded constrained optimization
without derivatives. August 2009.

[12] A. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. Society for Industrial
and Applied Mathematics, 2000.

93

https://www.regjeringen.no/en/dokumenter/meld.-st.-28-20102011/id649699/
https://www.regjeringen.no/en/dokumenter/meld.-st.-28-20102011/id649699/

[13] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A family of trust-region-based al-
gorithms for unconstrained minimization with strong global convergence properties.
SIAM Journal on Numerical Analysis, 22, 1985.

[14] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. Approximate solution of the trust
region problem by minimization over two-dimensional subspaces. Math. Program-
ming, 40, 1988.

[15] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[16] T. Steihaug. The conjugate gradient method and trust regions in large scale optimiza-
tion. SIAM Journal on Numerical Analysis, 20, 1983.

[17] Y. Yuan. On the truncated conjugate gradient method. Math. Programming, 87,
2000.

[18] N. I. M Gould, S. Lucidi, M. Roma, and P. L Toint. Solving the trust-region subprob-
lem using the lanczos method. SIAM Journal on Optimization, 9, 1999.

[19] L. H. Zhang, C. Shen, and R.C. Li. On the generalized lanczos trust-region method.
SIAM Journal on Optimization, 27, 2017.

[20] Stefan Martin Wild. Derivative-free optimization algorithms for computationally
expensive functions. Cornell University, 2009.

[21] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with
performance profiles. Mathematical programming, 91(2):201–213, 2002.

[22] Mark A Abramson, Charles Audet, and John E Dennis. Generalized pattern searches
with derivative information. Mathematical Programming, 100(1):3–25, 2004.

[23] Michael JD Powell. A direct search optimization method that models the objective
and constraint functions by linear interpolation. In Advances in optimization and
numerical analysis, pages 51–67. Springer, 1994.

[24] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[25] David H Ackley. The model. In A Connectionist Machine for Genetic Hillclimbing.
Springer, 1987.

[26] S. M. Goldfeld, R. E. Quandt, and H.F. Trotter. Maximization by quadratic hill-
climbing. Econometrica, 34, 1966.

[27] E Philip, Walter Murray, and Michael A Saunders. User’s guide for snopt version 7:
Software for large-scale nonlinear programming. 2008.

[28] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[29] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review
of algorithms and comparison of software implementations. Journal of Global Opti-
mization, 56(3):1247–1293, 2013.

94

Appendix A - Results of testing
the algorithm

Figure A1: The points evaluated during optimizations runs of the Matyas function without con-
straints. See Table A1 for more information.

A1

Figure A2: The points evaluated during optimizations runs of the Rosenbrock function without
constraints. See Table A6 for more information.

A2

Figure A3: The points evaluated during optimizations runs of the Matyas function with bounds. See
Table A2 for more information.

A3

Figure A4: The points evaluated during optimizations runs of the Rosenbrock function with bounds.
See Table A7 for more information.

A4

Figure A5: The points evaluated during optimizations runs of the Matyas function with bounds and
linear constraint. See Table A3 for more information.

A5

Figure A6: The points evaluated during optimizations runs of the Rosenbrock function with bounds
and linear constraint. See Table A8 for more information.

A6

Figure A7: The points evaluated during optimizations runs of the Matyas function with a nonlinear
constraint. See Table A4 for more information.

A7

Figure A8: The points evaluated during optimizations runs of the Rosenbrock function with a non-
linear constraint. See Table A9 for more information.

A8

Figure A9: The points evaluated during optimizations runs of the Matyas function with a nonlinear
nonconvex constraint and bounds. See Table A5 for more information.

A9

Figure A10: The points evaluated during optimizations runs of the Rosenbrock function with a
nonlinear nonconvex constraint and bounds. See Table A10 for more information.

A10

Table A1: The Matyas function. No constraints.

m=4 m=5 m=6
ne 78 99 117
np 58 58 64
(x∗, y∗) (0.02735, 0.02742) (0.03893, 0.03893) (0.06292, 0.06292)
f∗(x∗, y∗) 0.00003 0.00006 0.00016

Table A2: The Matyas function. Bounds.

m=4 m=5 m=6
ne 49 53 52
np 36 34 25
(x∗, y∗) (0.50000, 0.50000) (0.50000, 0.50000) (0.50000, 0.50000)
f∗(x∗, y∗) 0.01000 0.01000 0.01000

Table A3: The Matyas function. Bounds and linear constraint.

m=4 m=5 m=6
ne 23 29 38
np 14 14 10
(x∗, y∗) (3.00000, 3.00000) (3.00047, 2.99953) (3.00000, 3.00000)
f∗(x∗, y∗) 0.36000 0.36000 0.36000

Table A4: The Matyas function. Nonlinear constraint.

m=4 m=5 m=6
ne 27 36 44
np 13 17 18
(x∗, y∗) (0.42939, 1.38437) (0.42939, 1.38438) (0.42939, 1.38438)
f∗(x∗, y∗) 0.26090 0.26090 0.26090

Table A5: The Matyas function. Bounds and nonlinear nonconvex constraint

m=4 m=5 m=6
ne 28 34 38
np 20 18 12
(x∗, y∗) (1.83541, 1.82294) (1.83513, 1.82326) (1.83555, 1.82277)
f∗(x∗, y∗) 0.13387 0.13387 0.13387

A11

Table A6: The Rosenbrock function. No constraints.

m=4 m=5 m=6
ne 842 469 393
np 725 363 274
(x∗, y∗) (1.00966, 1.01946) (1.00296, 1.00611) (0.99990, 0.99981)
f∗(x∗, y∗) 0.00009 0.00001 0.00000

Table A7: The Rosenbrock function. Bounds.

m=4 m=5 m=6
ne 47 201 149
np 38 148 100
(x∗, y∗) (2.14443, 4.60090) (1.49961, 2.24891) (1.50000, 2.25004)
f∗(x∗, y∗) 1.31026 0.24961 0.25000

Table A8: The Rosenbrock function. Bounds and linear constraint.

m=4 m=5 m=6
ne 47 65 55
np 38 49 32
(x∗, y∗) (2.14443, 4.60090) (1.99960, 4.00040) (1.99960, 4.00040)
f∗(x∗, y∗) 1.31026 0.99960 0.99960

Table A9: The Rosenbrock function. Nonlinear constraint.

m=4 m=5 m=6
ne 41 106 105
np 33 75 65
(x∗, y∗) (0.99974, 2.19948) (1.00000, 2.19999) (1.00094, 2.20188)
f∗(x∗, y∗) 144.00000 144.00000 143.99999

Table A10: The Rosenbrock function. Bounds and nonlinear nonconvex function.

m=4 m=5 m=6
ne 47 200 137
np 38 146 93
(x∗, y∗) (2.14443, 4.60090) (1.50000, 2.25000) (1.50000, 2.25000)
f∗(x∗, y∗) 0.61289 0.25000 0.25000

A12

Appendix B - The
implementation

EigenUtil.h

1 //
2 // Created by joakim on 16.04.18.
3 //
4 #ifndef FIELDOPT_EIGEN_UTIL_H
5 #define FIELDOPT_EIGEN_UTIL_H
6

7 #include <Eigen/Core>
8 #include <Eigen/Dense>
9

10

11 inline void eigen_tail(Eigen::VectorXd &lhs, const Eigen::VectorXd &rhs,
int a) {↪→

12 int d = lhs.rows() - a;
13 for (int i = 0; i < a; ++i) {
14 lhs[i + d] = rhs[i];
15 }
16 }
17

18 inline void eigen_head(Eigen::VectorXd &lhs, const Eigen::VectorXd &rhs,
int a) {↪→

19 for (int i = 0; i < a; ++i) {
20 lhs[i] = rhs[i];
21 }
22 }
23

24 inline void eigen_col(Eigen::MatrixXd &lhs, const Eigen::VectorXd &rhs,
int a) {↪→

25 for (int i = 0; i < lhs.rows(); ++i) {
26 lhs(i, a) = rhs[i];
27 }
28 }
29

30 inline void eigen_row(Eigen::MatrixXd &lhs, const Eigen::VectorXd &rhs,
int a) {↪→

31 for (int i = 0; i < lhs.cols(); ++i) {
32 lhs(a, i) = rhs[i];
33 }
34 }
35

36 inline void eigen_block(Eigen::MatrixXd &lhs, const Eigen::MatrixXd &rhs,
int startRow, int startCol) {↪→

B1

37 for (int i = 0; i < rhs.rows(); ++i) {
38 for (int j = 0; j < rhs.cols(); ++j) {
39 lhs(startRow + i, startCol + j) = rhs(i, j);
40 }
41 }
42 }
43

44

45 #endif //FIELDOPT_EIGEN_UTIL_H

DFO Model.h
1 #ifndef FIELDOPT_DFO_MODEL_H
2 #define FIELDOPT_DFO_MODEL_H
3

4 #include <iostream>
5 #include <Eigen/Dense>
6 #include <random>
7 #include <math.h>
8 #include <Settings/optimizer.h>
9 #include <Subproblem.h>

10 #include "Subproblem.h"
11 #include "EigenUtil.h"
12 #include "GradientEnhancedModel.h"
13 /* References
14 This implementation is based upon the following papers and book, and I

would recommend anyone who↪→

15 is trying to understand the code to actively use those references.
16 [1] The BOBYQA algorithm for bound constrained optimization without

derivatives by M.J.D. Powell.↪→

17 [2] The NEWUOA software for unconstrained optimization without
derivatives by M.J.D. Powell.↪→

18 [3] Introduction to Derivative-Free Optimization by Andrew R. Conn, Katya
Scheinberg and Luis N. Vicente.↪→

19 [4] Least Frobenius norm updating of quadratic models that satisfy
interpolation conditions by M.J.D. Powell.↪→

20

21 Only the parts about model improvement (i.e., finding upper/lower/high
value of the Lagrange polynomials,↪→

22 are based upon [3]. Almost everything else is based upon [2] (practical
approach) and [4] (more theoretical view).↪→

23 */
24 namespace Optimization {
25 namespace Optimizers {
26

27 class DFO_Model {
28

29 private:
30

31 Eigen::VectorXd copyOfStartingPoint;
32 Eigen::VectorXi mapNormalToFieldopt;
33

34 Eigen::VectorXd lagrangeMultipliers;
35 const int normType;
36 double lagabsvalMin = 0.5; // works ok: 0.001
37

B2

38 Settings::Optimizer *settings_;
39 GradientEnhancedModel enhancedModel;
40 Subproblem subproblem;
41 unsigned int m; // Number of interpolation points used to create the

model. Does not change.↪→

42 unsigned int n; // Number of decision variables in your model.
43 unsigned int ng; // Number of decision variables WITH gradients.
44 double rho; // Trust-region radius.
45 double lambda; // The required poisedness of the set of interpolation

points.↪→

46 double r;
47

48 Eigen::MatrixXd Winv;
49 Eigen::MatrixXd W;
50

51 Eigen::VectorXd y0; // The point which the model is ceneterd around.
52

53 Eigen::MatrixXd
54 Y; // Container for the interpolation points. The interpolation

point i is given in the following way:↪→

55 // yi = y0 + Y.col(i); i.e. Y contains the displacements away from y0.
56

57 Eigen::MatrixXd derivatives;
58 Eigen::VectorXd derivativeAtCenterpoint;
59

60 Eigen::VectorXd fvals; // Holds the function evaluations for the
interpolation points.↪→

61

62 Eigen::VectorXd bestPoint; // Displacement of the optimal point from
y0. Absolute point: y0 + bestPoint;↪→

63 int
64 bestPointIndex; // This assumes that the point is in the

interpolation set (not sure if this will be discarded in
future work)

↪→

↪→

65

66 Eigen::VectorXd bestPointAllTime;
67 double bestPointAllTimeFunctionValue;
68

69 //These 4 variables are only used in the case m>2*n+1. How to calculate
the p's and q's are well explained in [1], for sigma see [2].↪→

70 //The i's are used to find the corresponding interpolation points and
function values in Y and Fvals, respectively.↪→

71 //The qs, qs and is come in a set of 3, such that the same index of
each vector belong together.↪→

72 Eigen::VectorXi sigmas;
73 Eigen::VectorXi ps;
74 Eigen::VectorXi qs;
75 Eigen::VectorXi is;
76

77 // The inverse KKT matrix, H. See [2]
78 Eigen::MatrixXd Xi;
79 Eigen::MatrixXd Upsilon;
80 Eigen::MatrixXd Z;
81 Eigen::DiagonalMatrix<double, Eigen::Dynamic>
82 S; //Should have been a integer matrix, but Eigen doesn't support

diagonal int matrices.↪→

83

B3

84

85 // Containers for the 2nd order model.
86 Eigen::VectorXd gradient;
87 Eigen::VectorXd centerPoint;
88 Eigen::MatrixXd hessian;
89 double constant = 0;
90

91 Eigen::MatrixXd Gamma;
92 Eigen::VectorXd gammas;
93

94 bool modelInitialized;
95 bool initialInterpolationPointsFound;
96

97 int isModelCFL = -1; // -1: Don't know. 0: No. 1: Yes.
98

99 /**
100 Checks if a value is almost zero.
101

102 @value the value to be checked.
103 @zeroLimit the highest value that still is counted as zero.
104 @return true / false
105 */
106 bool isApproxZero(double value, double zeroLimit);
107

108 /**
109 The classic kronecker-delta function.
110

111 Compares if two integers are equal or not.
112

113 @param[in] i integer 1
114 @param[in] j integer 2
115 @return 1 if i==j and zero otherwise.
116 */
117 int kroneckerDelta(int i, int j);
118

119 /**
120 Returns the sign of the value.
121

122 0 is counted as positive (+1).
123

124 @param[in] the value to be checked.
125 @return the sign of the value.
126 */
127 int sign(double value);
128

129

130

131 bool cmp(Eigen::VectorXd a, Eigen::VectorXd b);
132

133 public:
134 //EIGEN_MAKE_ALIGNED_OPERATOR_NEW
135

136 enum UpdateReason {
137 IMPROVE_POISEDNESS = -1,
138 INCLUDE_NEW_OPTIMUM = -2,
139 INCLUDE_NEW_POINT = -3,
140 FORCED_IMPROVE_MODEL = -4

B4

141 };
142

143 bool isInitialInterpolationPointsFound() {
144 return initialInterpolationPointsFound;
145 }
146

147 bool isModelInitialized() {
148 return modelInitialized;
149 }
150

151 /**
152 Constructor for the class.
153

154 A naming convenvention:
155 model = this entire class.
156 quadratic model = just the quadratic model.
157 Inverse KKT matrix = H
158

159 @param[in] m number of interpolation points.
160 @param[in] n number of decision variables.
161 @param[in] y0 the center point of the model.
162 @param[in] rhoBeg the initial trust-region radius.
163 @param[in] lambda the required poisedness of the interpolation set

(lambda > 1)↪→

164 */
165 DFO_Model(unsigned int m,
166 unsigned int n,
167 unsigned int ng,
168 Eigen::VectorXd y0,
169 double rhoBeg,
170 double lambda,
171 double weight_objective_minimum_change,
172 QList<double> weights_derivatives,
173 Settings::Optimizer *settings);
174

175 DFO_Model() : normType(0) {};
176

177 Eigen::VectorXd
ScaleVariablesFromApplicationToAlgorithm(Eigen::VectorXd point);↪→

178

179 /**
180 Finds the first set of interpolation points.
181

182 Finds the first set of interpolation points based
183 upon the initial center point (y0) and the trust-region radius.
184

185 */
186 Eigen::MatrixXd findFirstSetOfInterpolationPoints();
187

188 /**
189 Finds the last set of interpolation points.
190

191 If m > 2n+1, then this function must also be ran. Before it is ran,
192 make sure that the local variable fvals is filled up with the function
193 evaluations for the first set of interpolation points.
194

195 */

B5

196 Eigen::MatrixXd findLastSetOfInterpolationPoints();
197

198 /**
199 Initializes the model.
200

201 Both findFirstSetOfInterpolationPoints() and
findLastSetOfInterpolationPoints() (if m > 2n+1)↪→

202 must be called before this function.
203 */
204 void initializeModel();
205

206 /**
207 Updates the model with a new point.
208

209 Updates the model with a new point, the reason for updating must be
provided.↪→

210 Some changes must be done, and this function is NOT done!
211 Cannot be used when INCLUDE_NEW_OPTIMUM is the reason.
212

213 @param[in] yNew is the is the displacement of the new point from the
current center point(y0).↪→

214 @param[in] fvalNew is the function evaluation corresponding to yNew.
215 @param[in] t-1 is the index of the point that is going to be replaced

by yNew in Y.↪→

216 @param[in] updateReason is either IMPROVE_POISEDNESS or
INCLUDE_NEW_OPTIMUM.↪→

217 */
218 void update(Eigen::VectorXd yNew,
219 double fvalNew,
220 Eigen::VectorXd gradient,
221 unsigned int t,
222 UpdateReason updateReason);
223

224 void update(Eigen::MatrixXd yNews,
225 Eigen::VectorXd fvalNews,
226 Eigen::MatrixXd gradients,
227 Eigen::VectorXi indicies,
228 int numberOfPoints,
229 UpdateReason updateReason);
230

231 /**
232 Evaluates the current quadratic model at point.
233

234 @param[in] point is the displacement from current center point (y0).
235 @return the value of the model at point.
236 */
237 double evaluateQuadraticModel(Eigen::VectorXd point);
238

239 /**
240 This is a bad way of accessing and updating the function evaluations.
241

242 It will be replaced by other functions later, when I have decided how
243 the interface should be.
244 @return a reference to the fvals
245 */
246 Eigen::VectorXd *getFvalsReference() {
247 return &(this->fvals);

B6

248 }
249

250 /**
251 This is a bad way of accessing Y outside of the class.
252

253 It will be replaced by other functions later, when I have decided how
254 the interface should be.
255 @return a reference to the Y
256 */
257 Eigen::MatrixXd *getYReference() {
258 return &(this->Y);
259 }
260

261 Eigen::MatrixXd *getDerivativeReference() {
262 return &(this->derivatives);
263 }
264

265 /**
266 Returns the center point of the quadratic model
267

268 @return the center point of the quadratic model
269 */
270 Eigen::VectorXd getCenterPoint() {
271 return y0;
272 }
273

274

275 void findWorstPointInInterpolationSet(Eigen::VectorXd &dNew, int
&indexOfWorstPoint);↪→

276 void calculateAMatrix(Eigen::MatrixXd &A, Eigen::MatrixXd &Ycopy);
277

278

279 Eigen::VectorXd FindLocalOptimumOfAbsoluteLagrangePolynomial(int t);
280

281 /**
282 Finds the point that is best to replace with the new one.
283

284 @yNew is the point that we want to add to the model, where yNew is
given as the displacement of the current center point.↪→

285 @return index of the point that is best to replace.
286 */
287 int findPointToReplaceWithNewOptimum(Eigen::VectorXd yNew);
288

289 /**
290 Returns the index of the best point.
291

292 Note: this will only be valid as long as the best yet found
293 point is never removed from the interpolation set.
294

295 @return the index of the best point.
296 */
297 int getBestPointIndex();
298

299 void SetFunctionValue(int t, double value);
300 void SetFunctionValueAndDerivatives(int t, double value,

Eigen::VectorXd grad);↪→

301 void SetTrustRegionRadiusForSubproblem(double radius);

B7

302 bool FindReplacementForPointsOutsideRadius(double radius,
Eigen::MatrixXd &newPoints, Eigen::VectorXi &newIndices);↪→

303 double GetFunctionValue(int t) {
304 return fvals[t - 1];
305 }
306

307 double GetTrustRegionRadius() {
308 return rho;
309 }
310

311 void SetTrustRegionRadius(double radius) {
312 rho = radius;
313 }
314

315 void SetRequiredPoisedness(double lambda) {
316 this->lambda = lambda;
317 }
318 void SetInitialStartPoint(Eigen::VectorXd startPoint) {
319 y0 = startPoint;
320 }
321 void SetNumberOfVariables(int n) {
322 this->n = n;
323 }
324 void SetNumberOfInterpolationPoints(int m) {
325 this->m = m;
326 }
327

328 Eigen::VectorXd GetGradient() {
329 return gradient;
330 }
331 Eigen::VectorXd GetGradientAtPoint(Eigen::VectorXd point) {
332 enhancedModel.ComputeModel(Y, derivatives, derivativeAtCenterpoint,

fvals, y0, bestPoint, rho, r, ng);↪→

333 double e_c = 0;
334 Eigen::VectorXd e_g(n);
335 Eigen::MatrixXd e_h(n, n);
336 enhancedModel.GetModel(e_c, e_g, e_h);
337 return e_g + e_h * point;
338

339 }
340 Eigen::VectorXd GetPoint(int t) {
341 return Y.col(t - 1);
342 }
343 Eigen::VectorXd GetBestPoint() {
344 return Y.col(bestPointIndex - 1);
345 }
346 double GetBestFunctionValueAllTime() {
347 return bestPointAllTimeFunctionValue;
348 }
349 Eigen::VectorXd GetBestPointAllTime() {
350 return bestPointAllTime;
351 }
352 Eigen::VectorXd FindLocalOptimum();
353 double findLargestDistanceBetweenPointsAndOptimum();
354 double ComputeLagrangePolynomial(int t, Eigen::VectorXd point);
355 double PrintLagrangePolynomial(int t);
356 Eigen::VectorXi GetInterpolationPointsSortedByDistanceFromBestPoint();

B8

357 bool FindPointToReplaceWithPointOutsideScaledTrustRegion(int t,
Eigen::VectorXd &dNew);↪→

358 void wtf(Eigen::VectorXd &da) {
359 return;
360 }
361 int isPointAcceptable(Eigen::VectorXd point);
362 int GetNumberOfPointsOutsideRadius(double radius);
363 double norm(Eigen::VectorXd a);
364 Eigen::MatrixXd calculateWExplicitly();
365 void UpdateOptimum();
366 bool isPoised(VectorXd &dNew, int &indexOfPointToBeReplaced, double

radius);↪→

367 void modelImprovementStep(VectorXd &dNew, int
&indexOfPointToBeReplaced);↪→

368 void Converged(int iterations,
369 int number_of_tiny_improvements,
370 int number_of_function_calls,
371 int number_of_parallell_function_calls);
372 void isLagrangePoly(); // prints the (hopefully) kronecker-delta

property. used for debugging.↪→

373 void createLagrangePolynomial(int t, double &c, VectorXd &grad,
MatrixXd &hess);↪→

374 void updateQuadraticModelNew(Eigen::VectorXd yNew, double fvalNew,
unsigned int t);↪→

375 void shiftCenterPointOfQuadraticModelNew(Eigen::VectorXd s);
376 void createW();
377 int IsModelCFL() {
378 return isModelCFL;
379 }
380 Eigen::VectorXd GetLagrangianGradient(Eigen::VectorXd point);
381 void initLagrangeMultipliers(int a) {
382 lagrangeMultipliers = Eigen::VectorXd::Zero(a);
383 }
384 bool ModelImprovementAlgorithm(double radius, Eigen::MatrixXd

&newPoints, Eigen::VectorXi &newIndices);↪→

385 void calculateLagrangeMultipliers();
386 //These two functions are only used to create an example to show how

the model improvement algorithm works↪→

387 void setInitialy0(Eigen::VectorXd);
388 void findVariableMeaning(Eigen::VectorXd realvars, Eigen::VectorXd

scaling);↪→

389 void PrintSortedBestPoint(Eigen::VectorXd scaling);
390

391 };
392 }
393 }
394

395 #endif //FIELDOPT_DFO_MODEL_H

DFO Model.cpp
1 #include "DFO_Model.h"
2 namespace Optimization {
3 namespace Optimizers {
4

5 bool DFO_Model::cmp(Eigen::VectorXd a, Eigen::VectorXd b) {

B9

6 return (norm(a.topRows(a.rows() - 1))) > (norm(b.topRows(b.rows() -
1)));↪→

7 }
8

9 static int NormType = 0;
10

11 double norm2(Eigen::VectorXd a) {
12 if (NormType == 0) {
13 return (a).lpNorm<Infinity>();
14 } else if (NormType == 2) {
15 return (a).norm();
16 }
17 }
18

19 bool cmp2(Eigen::VectorXd a, Eigen::VectorXd b) {
20 return (norm2(a.topRows(a.rows() - 1))) > (norm2(b.topRows(b.rows() -

1)));↪→

21 }
22

23 bool DFO_Model::isApproxZero(double value, double zeroLimit) {
24 if (std::abs(value) <= zeroLimit)
25 return true;
26 return false;
27 }
28

29 int DFO_Model::kroneckerDelta(int i, int j) {
30 if (i == j)
31 return 1;
32 return 0;
33 }
34

35 int DFO_Model::sign(double value) {
36 if (value >= 0) {
37 return 1;
38 }
39 return -1;
40 }
41

42

43

44 void DFO_Model::updateQuadraticModelNew(Eigen::VectorXd yNew, double
fvalNew, unsigned int t) {↪→

45 double valModelOld = evaluateQuadraticModel(yNew);
46 double diff = fvalNew - valModelOld;
47 double c;
48 Eigen::VectorXd grad(n);
49 Eigen::MatrixXd hess(n, n);
50 createLagrangePolynomial(t, c, grad, hess);
51

52 constant += diff * c;
53 gradient += diff * grad;
54 hessian += diff * hess;
55

56 }
57

58

59 DFO_Model::DFO_Model(unsigned int m,

B10

60 unsigned int n,
61 unsigned int ng,
62 Eigen::VectorXd y0,
63 double rhoBeg,
64 double lambda,
65 double weight_objective_minimum_change,
66 QList<double> weights_derivatives,
67 Settings::Optimizer *settings)
68 : subproblem(settings),
69 enhancedModel(n, m, ng, weights_derivatives,

weight_objective_minimum_change),↪→

70 normType(settings->parameters().norm_type) {
71 NormType = settings->parameters().norm_type;
72 this->m = m;
73 this->n = n;
74 this->ng = ng;
75 Eigen::MatrixXd wtf12(10, 10);
76 Eigen::MatrixXd wtf11(20, 20);
77 Eigen::MatrixXd wtf(m + n + 1, m + n + 1);
78 Eigen::MatrixXd wtf2;
79 wtf2.resize(m + n + 1, m + n + 1);
80 this->Winv.resize(m + n + 1, m + n + 1);
81 this->Winv = Eigen::MatrixXd::Zero(m + n + 1, m + n + 1);
82 this->W = Eigen::MatrixXd::Zero(m + n + 1, m + n + 1);
83 this->y0 = Eigen::VectorXd::Zero(n);
84

85 this->r = settings->parameters().r;
86 int j = 0;
87

88 copyOfStartingPoint = Eigen::VectorXd::Zero(n);
89 for (auto i = settings->parameters().starting_point.begin(); i !=

settings->parameters().starting_point.end(); ++i) {↪→

90 this->y0[j] = *i;
91 this->copyOfStartingPoint[j] = *i;
92 j++;
93 if (j >= n) {
94 break;
95 }
96 }
97

98 lagabsvalMin = settings->parameters().min_lagrange_abs_val;
99

100 this->rho = rhoBeg;
101 this->lambda = lambda;
102

103 this->bestPoint = Eigen::VectorXd::Zero(n);
104 this->bestPointAllTime = Eigen::VectorXd::Zero(n);
105 this->bestPointAllTimeFunctionValue =

std::numeric_limits<double>::max();↪→

106 this->Y = Eigen::MatrixXd::Zero(n, m);
107 this->derivatives = Eigen::MatrixXd(ng, m);
108 this->derivativeAtCenterpoint = Eigen::VectorXd(ng);
109 this->fvals = Eigen::VectorXd(m);
110 if (m >= n + 2) {
111 this->Xi = Eigen::MatrixXd::Zero(n + 1, m);
112 this->Upsilon = Eigen::MatrixXd::Zero(n + 1, n + 1);
113 this->Z = Eigen::MatrixXd::Zero(m, m - n - 1);

B11

114 this->S = Eigen::DiagonalMatrix<double, Eigen::Dynamic>(m - n - 1);
115 this->S.diagonal().setOnes();
116 }
117 if (m > 2 * n + 1) {
118 this->sigmas = Eigen::VectorXi(n);
119 this->ps = Eigen::VectorXi(m - 2 * n - 1);
120 this->qs = Eigen::VectorXi(m - 2 * n - 1);
121 this->is = Eigen::VectorXi(m - 2 * n - 1);
122 }
123

124 this->gradient = Eigen::VectorXd::Zero(n);
125 this->centerPoint = Eigen::VectorXd::Zero(n);
126 this->hessian = Eigen::MatrixXd::Zero(n, n);
127 this->Gamma = Eigen::MatrixXd::Zero(n, n);
128 this->gammas = Eigen::VectorXd::Zero(m);
129 this->initialInterpolationPointsFound = false;
130 this->modelInitialized = false;
131 this->settings_ = settings;
132 this->isModelCFL = -1;
133

134 }
135

136 Eigen::MatrixXd DFO_Model::findFirstSetOfInterpolationPoints() {
137 int numberOfPointsFound = 0;
138 if (m < n + 2) {
139 for (int i = 1; i <= n; ++i) {
140 if (i <= (m - 1)) {
141 Y(i - 1, i) += rho;
142 }
143 }
144 if (m >= n) {
145 for (int i = 1; i < m - n; ++i) {
146 Y(i - 1, i + n) -= rho;
147 }
148 }
149 numberOfPointsFound = m;
150 initialInterpolationPointsFound = true;
151 } else if (m >= 2 * n + 1 && m <= (n + 1) * (n + 2) * 0.5) {
152 for (int i = 1; i <= n; ++i) {
153 Y(i - 1, i) += rho;
154 Y(i - 1, i + n) -= rho;
155 }
156 numberOfPointsFound = 2 * n + 1;
157 } else if (m >= n + 2 && m <= 2 * n) {
158 for (int i = 1; i <= n; ++i) {
159 Y(i - 1, i) += rho;
160 }
161 for (int i = 1; i < m - n; ++i) {
162 Y(i - 1, i + n) -= rho;
163 }
164 numberOfPointsFound = m;
165 initialInterpolationPointsFound = true;
166 } else {
167 std::cout << "Invalid value of m = " << m << ". Choose n+2 <= m <=

(n+1)(n+2)/2. Recommended: m = 2n+1."↪→

168 << std::endl;
169 std::cin.get();

B12

170 std::exit(1);
171 }
172 return Y.block(0, 0, n, numberOfPointsFound);
173 }
174

175 Eigen::MatrixXd DFO_Model::findLastSetOfInterpolationPoints() {
176 if (m > 2 * n + 1) {
177 // Calculate the sigmas
178 for (int i = 1; i <= n; ++i) {
179 if (fvals[i + n] < fvals[i])
180 sigmas[i - 1] = -1;
181 else
182 sigmas[i - 1] = 1;
183 }
184

185 // Find the last set of interpolation points, while also storing the
ps, qs and is for later usage.↪→

186 int j = 2 * n + 2;
187 int l = 1; //Number of cycles (i.e. number of times i has become i

== 3 * n + 2)↪→

188 int p;
189 int q;
190 int index = 0;
191

192 for (int i = 2 * n + 2; i <= m; ++i) {
193

194 if (j >= 3 * n + 2) {
195 j = j - n;
196 l++;
197 }
198 p = (j - 2 * n - 1);
199

200 if (p + l >= 1 && p + l <= n)
201 q = p + l;
202 else
203 q = p + l - n;
204

205 ps[index] = p;
206 qs[index] = q;
207 is[index] = i;
208

209 Y(p - 1, i - 1) += rho * sigmas[p - 1];
210 Y(q - 1, i - 1) += rho * sigmas[q - 1];
211

212 index++;
213 j++;
214

215 }
216 } else {
217 std::cout << "findLastSetOfInterpilationPoints() was called when m <=

2*n + 1" << std::endl;↪→

218 }
219 initialInterpolationPointsFound = true;
220 return Y.block(0, 2 * n + 1, n, m - (2 * n + 1));
221 }
222

223 void DFO_Model::initializeModel() {

B13

224 derivativeAtCenterpoint = derivatives.col(0);
225 Winv = calculateWExplicitly();
226 createW();
227 modelInitialized = true;
228 bestPointIndex = 1;
229 bestPoint = Y.col(0);
230

231 }
232

233 void DFO_Model::update(Eigen::MatrixXd yNews,
234 Eigen::VectorXd fvalNews,
235 Eigen::MatrixXd gradients,
236 Eigen::VectorXi indicies,
237 int numberOfPoints,
238 UpdateReason updateReason) {
239 for (int i = 0; i < numberOfPoints; ++i) {
240 update(yNews.col(i), fvalNews(i), gradients.col(i), indicies(i),

updateReason);↪→

241 }
242 }
243

244 void DFO_Model::update(Eigen::VectorXd yNew,
245 double fvalNew,
246 Eigen::VectorXd grad,
247 unsigned int t,
248 UpdateReason updateReason) {
249 int oldBestPointIndex = bestPointIndex;
250 int oldBestFval = fvals[bestPointIndex - 1];
251

252 if (updateReason == INCLUDE_NEW_OPTIMUM) {
253 lagrangeMultipliers = subproblem.getLagrangeMultipliers();
254

255 if (fvalNew < bestPointAllTimeFunctionValue) {
256 bestPointAllTimeFunctionValue = fvalNew;
257 bestPointAllTime = yNew;
258 }
259 }
260

261 if (updateReason == IMPROVE_POISEDNESS) {
262 if (fvalNew < bestPointAllTimeFunctionValue) {
263 bestPointAllTimeFunctionValue = fvalNew;
264 bestPointAllTime = yNew;
265 }
266 }
267 if (updateReason == INCLUDE_NEW_POINT) {
268 if (fvalNew < bestPointAllTimeFunctionValue) {
269 bestPointAllTimeFunctionValue = fvalNew;
270 bestPointAllTime = yNew;
271 }
272 }
273

274 if (updateReason == FORCED_IMPROVE_MODEL) {
275

276 } else {
277 if (fvalNew < fvals[bestPointIndex - 1] && updateReason ==

INCLUDE_NEW_OPTIMUM) {↪→

278 bestPoint = yNew;

B14

279 bestPointIndex = t;
280 }
281 }
282

283 eigen_col(Y, yNew, t - 1);
284 fvals(t - 1) = fvalNew;
285 if (ng > 0) {
286 eigen_col(derivatives, grad, t - 1);
287 }
288 updateQuadraticModelNew(yNew, fvalNew, t);
289

290 if ((updateReason == IMPROVE_POISEDNESS || updateReason ==
INCLUDE_NEW_POINT)) {↪→

291 if (t == oldBestPointIndex && fvalNew > oldBestFval) { // removing
optimum :(↪→

292 bestPointIndex = 1;
293 for (int j = 2; j <= m; ++j) {
294 if (fvals[j - 1] < fvals[bestPointIndex - 1]) {
295 bestPointIndex = j;
296 }
297 }
298 bestPoint = Y.col(bestPointIndex - 1);
299 }
300 }
301 Winv = calculateWExplicitly();
302 createW();
303

304 isModelCFL = -1;
305

306 }
307

308 double DFO_Model::evaluateQuadraticModel(Eigen::VectorXd point) {
309 enhancedModel.ComputeModel(Y, derivatives, derivativeAtCenterpoint,

fvals, y0, bestPoint, rho, r, ng);↪→

310

311 double e_c = 0;
312 Eigen::VectorXd e_g(n);
313 Eigen::MatrixXd e_h(n, n);
314 enhancedModel.GetModel(e_c, e_g, e_h);
315 double val = e_c + point.transpose() * e_g + 0.5 * point.transpose() *

e_h * point;↪→

316 return val;
317 }
318

319 void DFO_Model::shiftCenterPointOfQuadraticModelNew(Eigen::VectorXd s) {
320 double tmp1 = gradient.transpose() * s;
321 double tmp2 = (0.5 * (s.transpose() * hessian) * s);
322 constant += tmp1 + tmp2;
323 gradient += hessian * s;
324 for (int i = 1; i <= m; ++i) {
325 eigen_col(Y, Y.col(i - 1) - s, i - 1);
326 }
327 bestPoint -= s;
328 bestPointAllTime -= s;
329 y0 += s;
330 }
331

B15

332

333 void DFO_Model::findWorstPointInInterpolationSet(Eigen::VectorXd &dNew,
int &indexOfWorstPoint) {↪→

334 double worstPoisedness = 0;
335 Eigen::VectorXd poisedness(m);
336 int index = -1;
337 double c;
338 Eigen::VectorXd grad(n);
339 Eigen::MatrixXd hess(n, n);
340

341 // Creating the lagrange polynomial.
342 for (int t = 1; t <= m; ++t) {
343 createLagrangePolynomial(t, c, grad, hess);
344

345 // Find min and max of l_t(x)
346 subproblem.setConstant(c);
347 subproblem.setGradient(grad);
348 subproblem.setHessian(hess);
349 vector<double> xsolMax;
350 vector<double> fsolMax;
351 vector<double> xsolMin;
352 vector<double> fsolMin;
353 //PrintLagrangePolynomial(t);
354 subproblem.Solve(xsolMax, fsolMax, (char *) "Maximize", y0,

bestPoint, Y.col(t - 1));↪→

355 subproblem.Solve(xsolMin, fsolMin, (char *) "Minimize", y0,
bestPoint, Y.col(t - 1));↪→

356 poisedness(t - 1) = std::max(abs(fsolMax[0]), abs(fsolMin[0]));
357

358 Eigen::VectorXd d1(n);
359 Eigen::VectorXd d2(n);
360 for (int i = 0; i < n; ++i) {
361 d1[i] = xsolMax[i];
362 d2[i] = xsolMin[i];
363 }
364

365 double temp = 0;
366 if ((abs(fsolMax[0]) >= abs(fsolMin[0])) && abs(fsolMax[0]) >=

worstPoisedness) {↪→

367 worstPoisedness = abs(fsolMax[0]);
368 for (int i = 0; i < xsolMax.size(); ++i) {
369 dNew[i] = xsolMax[i];
370 }
371 index = t;
372 } else if ((abs(fsolMin[0]) > abs(fsolMax[0])) && abs(fsolMin[0]) >=

worstPoisedness) {↪→

373 worstPoisedness = abs(fsolMin[0]);
374 for (int i = 0; i < xsolMin.size(); ++i) {
375 dNew[i] = xsolMin[i];
376 }
377 index = t;
378 }
379 }
380 if (worstPoisedness > lambda) {
381

382 if (index == bestPointIndex) {
383 int k = -1;

B16

384 double tmp = -1;
385 for (int j = 1; j <= m; j++) {
386 if (poisedness[j - 1] > lambda && poisedness[j - 1] > tmp && j !=

bestPointIndex) {↪→

387 k = j;
388 tmp = poisedness[j - 1];
389 }
390 }
391 if (k != -1) {
392 indexOfWorstPoint = k;
393 indexOfWorstPoint = -1;
394 return;
395 } else {
396 indexOfWorstPoint = -1;
397 return;
398 }
399

400 } else {
401 indexOfWorstPoint = index;
402 }
403

404 createLagrangePolynomial(indexOfWorstPoint, c, grad, hess);
405 subproblem.setConstant(c);
406 subproblem.setGradient(grad);
407 subproblem.setHessian(hess);
408 vector<double> xsolMax;
409 vector<double> fsolMax;
410 vector<double> xsolMin;
411 vector<double> fsolMin;
412

413 subproblem.SetTrustRegionRadius(GetTrustRegionRadius() * 1);
414 subproblem.Solve(xsolMax, fsolMax, (char *) "Maximize", y0,

bestPoint, bestPoint);↪→

415 subproblem.Solve(xsolMin, fsolMin, (char *) "Minimize", y0,
bestPoint, bestPoint);↪→

416

417 if ((abs(fsolMax[0]) >= abs(fsolMin[0]))) {
418 for (int i = 0; i < xsolMax.size(); ++i) {
419 dNew[i] = xsolMax[i];
420 }
421 } else {
422 for (int i = 0; i < xsolMin.size(); ++i) {
423 dNew[i] = xsolMin[i];
424 }
425 }
426 } else {
427 indexOfWorstPoint = -1; // Indicates that the required poisedness is

already achieved↪→

428 }
429 std::cout << "Required poisedness: " << lambda << "\nPoisedness: " <<

worstPoisedness << "\n";↪→

430

431 }
432

433

434 void DFO_Model::calculateAMatrix(Eigen::MatrixXd &A, Eigen::MatrixXd
&Ycopy) {↪→

B17

435 int elem = 0;
436 /// Constant
437 for (int i = 1; i <= m; ++i) {
438 A(i - 1, 0) = 1;
439 }
440 elem++;
441 /// Linear
442 for (int i = 1; i <= n; ++i) {
443 if (elem < m) {
444 for (int j = 1; j <= m; ++j) {
445 A(j - 1, elem) = Ycopy(i - 1, j - 1);
446 }
447 elem++;
448 } else {
449 break;
450 }
451 }
452 /// Squared
453 for (int i = 1; i <= n; ++i) {
454 if (elem < m) {
455 for (int j = 1; j <= m; ++j) {
456 A(j - 1, elem) = Ycopy(i - 1, j - 1) * Ycopy(i - 1, j - 1);
457 }
458 elem++;
459 } else {
460 break;
461 }
462 }
463 /// Cross terms
464 int rows = n;
465 int it = 1;
466 int col = 1;
467 int t = 2;
468 for (int k = 1; k <= n - 1; ++k) {
469 for (int i = t; i <= n - 1; ++i) {
470 for (int j = 1; j <= m; ++j) {
471 if (elem < m) {
472 double x1 = Ycopy(k - 1, j - 1);
473 double x2 = Ycopy(i - 1, j - 1);
474 A(j - 1, elem) = x1 * x2;
475 } else {
476 break;
477 }
478 }
479 elem++;
480 }
481 t++;
482 }
483 }
484

485

486

487 int DFO_Model::findPointToReplaceWithNewOptimum(Eigen::VectorXd yNew) {
488 // Create the w vector
489 Eigen::VectorXd w(n + m + 1);
490 for (int i = 1; i <= m; ++i) {
491 w(i - 1) = 0.5 * std::pow((Y.col(i - 1)).transpose() * (yNew), 2);

B18

492 }
493 eigen_tail(w, yNew, n);
494 w(m) = 1;
495

496 Eigen::VectorXd Hw = Eigen::VectorXd::Zero(m + n + 1);
497 Hw = Winv * w;
498

499 int indexToBeReplaced = 1;
500 double currentMax = -1;
501 for (int i = 1; i <= m; ++i) {
502 if (i == bestPointIndex) {
503 continue;
504 }
505 double distance = norm((bestPoint - Y.col(i - 1)));
506 double distanceWeight = distance;
507

508 double lagval = std::abs((Hw)(i - 1));
509 double value = distanceWeight * lagval;
510 if (value >= currentMax) {
511 indexToBeReplaced = i;
512 currentMax = value;
513 }
514 }
515

516 std::cout << "Point selected: " << indexToBeReplaced << "\n";
517

518 return indexToBeReplaced;
519 }
520

521 int DFO_Model::getBestPointIndex() {
522 return bestPointIndex;
523 }
524

525 void DFO_Model::SetFunctionValue(int t, double value) {
526 fvals[t - 1] = value;
527 }
528

529 void DFO_Model::SetFunctionValueAndDerivatives(int t, double value,
Eigen::VectorXd grad) {↪→

530 fvals(t - 1) = value;
531 for (int i = 0; i < ng; ++i) {
532 derivatives(i, t - 1) = grad(i);
533 }
534 }
535

536 void DFO_Model::SetTrustRegionRadiusForSubproblem(double radius) {
537 subproblem.SetTrustRegionRadius(radius);
538 }
539

540 Eigen::VectorXd DFO_Model::FindLocalOptimum() {
541 Eigen::VectorXd localOptimum(n);
542 vector<double> xsol;
543 vector<double> fsol;
544 /// The enhanced model;
545 enhancedModel.ComputeModel(Y, derivatives, derivativeAtCenterpoint,

fvals, y0, bestPoint, rho, r, ng);↪→

546 double e_c = 0;

B19

547 Eigen::VectorXd e_g(n);
548 Eigen::MatrixXd e_h(n, n);
549 enhancedModel.GetModel(e_c, e_g, e_h);
550 subproblem.setHessian(e_h);
551 subproblem.setGradient(e_g);
552 subproblem.setConstant(e_c);
553 subproblem.SetTrustRegionRadius(rho);
554 subproblem.Solve(xsol, fsol, (char *) "Minimize", y0, bestPoint,

bestPoint);↪→

555 for (int i = 0; i < n; i++) {
556 localOptimum[i] = xsol[i];
557 }
558 return localOptimum;
559 }
560

561

562 double DFO_Model::findLargestDistanceBetweenPointsAndOptimum() {
563 int t = -1;
564 double maxDistance = -1;
565 for (int i = 0; i < m; ++i) {
566 double dist = norm(Y.col(i) - bestPoint);
567 if (dist > maxDistance) {
568 t = i + 1;
569 maxDistance = dist;
570 }
571 }
572 return maxDistance;
573 }
574 double DFO_Model::ComputeLagrangePolynomial(int t, Eigen::VectorXd point)

{↪→

575 double c;
576 Eigen::VectorXd grad(n);
577 Eigen::MatrixXd hess(n, n);
578 createLagrangePolynomial(t, c, grad, hess);
579 double val = c + grad.transpose() * point + 0.5 * point.transpose() *

hess * point;↪→

580 return val;
581 }
582

583 double DFO_Model::PrintLagrangePolynomial(int t) {
584

585 double c;
586 Eigen::VectorXd grad(n);
587 Eigen::MatrixXd hess(n, n);
588 createLagrangePolynomial(t, c, grad, hess);
589 std::cout << "Lagrange polynomial ----------------------- " << t <<

"\n";↪→

590 std::cout << "c = " << c << std::endl;
591 std::cout << "gradient = " << std::endl << grad << std::endl;
592 std::cout << "hessian = " << std::endl << hess << std::endl;
593 }
594

595 Eigen::VectorXd
DFO_Model::FindLocalOptimumOfAbsoluteLagrangePolynomial(int t) {↪→

596 double c;
597 Eigen::VectorXd grad(n);
598 Eigen::MatrixXd hess(n, n);

B20

599 createLagrangePolynomial(t, c, grad, hess);
600

601 // Find min and max of l_t(x)
602 subproblem.setConstant(c);
603 subproblem.setGradient(grad);
604 subproblem.setHessian(hess);
605 vector<double> xsolMax;
606 vector<double> fsolMax;
607 vector<double> xsolMin;
608 vector<double> fsolMin;
609 subproblem.Solve(xsolMax, fsolMax, (char *) "Maximize", y0, bestPoint,

Y.col(t - 1));↪→

610 subproblem.Solve(xsolMin, fsolMin, (char *) "Minimize", y0, bestPoint,
Y.col(t - 1));↪→

611

612 Eigen::VectorXd optimum(n);
613 for (int i = 0; i < xsolMax.size(); ++i) {
614 if (abs(fsolMax[0]) >= abs(fsolMin[0])) {
615 optimum[i] = xsolMax[i];
616 } else {
617 optimum[i] = xsolMin[i];
618 }
619 }
620 return optimum;
621 }
622

623 Eigen::VectorXi
DFO_Model::GetInterpolationPointsSortedByDistanceFromBestPoint() {↪→

624 std::vector<Eigen::VectorXd> tmp;
625 for (int i = 0; i < m; ++i) {
626 Eigen::VectorXd t(n + 1);
627 for (int j = 0; j < n; ++j) {
628 t(j) = Y(j, i) - Y(j, bestPointIndex - 1);
629 }
630 t(n) = i + 1;
631 tmp.push_back(t);
632 }
633 std::sort(tmp.begin(), tmp.end(), cmp2);
634 Eigen::VectorXi indicesSortedByDescendingNorm(m);
635 for (int i = 0; i < m; ++i) {
636 indicesSortedByDescendingNorm[i] = tmp[i][n];
637 }
638 return indicesSortedByDescendingNorm;
639 }
640

641 bool DFO_Model::FindPointToReplaceWithPointOutsideScaledTrustRegion(int
t, Eigen::VectorXd &dNew) {↪→

642 subproblem.SetTrustRegionRadius(rho);
643 dNew = FindLocalOptimumOfAbsoluteLagrangePolynomial(t);
644 if (std::abs(ComputeLagrangePolynomial(t, dNew)) > lambda) {
645 return true;
646 }
647 return false;
648 }
649

650

651 int DFO_Model::isPointAcceptable(Eigen::VectorXd point) {

B21

652 // Create the w vector
653 Eigen::VectorXd w(n + m + 1);
654 for (int i = 1; i <= m; ++i) {
655 w(i - 1) = 0.5 * std::pow((Y.col(i - 1)).transpose() * (point), 2);
656 }
657 eigen_tail(w, point, n);
658 w(m) = 1;
659

660 Eigen::VectorXd Hw = Eigen::VectorXd::Zero(m + n + 1);
661 Hw = Winv * w;
662

663 int indexToBeReplaced = -1;
664 double currentMax = -1;
665 for (int j = 1; j <= m; ++j) {
666 if (j == bestPointIndex) {
667 continue;
668 }
669 double lagval = std::abs((Hw)(j - 1));
670 if ((lagval > 1) || (norm(Y.col(j - 1) - bestPoint) > r * rho)) {
671 double distance = norm((bestPoint - Y.col(j - 1)));
672 double distanceWeight = std::pow(distance, 2);
673 if (distance > 2 * rho) {
674 distanceWeight += 100000000 * distanceWeight;
675 }
676 double value = distanceWeight * lagval;
677 if (value >= currentMax) {
678 indexToBeReplaced = j;
679 currentMax = value;
680 }
681 }
682 }
683 return indexToBeReplaced;
684 }
685

686 double DFO_Model::norm(Eigen::VectorXd a) {
687 if (normType == 0) {
688 return (a).lpNorm<Infinity>();
689 } else if (normType == 2) {
690 return (a).norm();
691 }
692 }
693

694 bool DFO_Model::FindReplacementForPointsOutsideRadius(double radius,
695 Eigen::MatrixXd

&newPoints,↪→

696 Eigen::VectorXi
&newIndices) {↪→

697 Eigen::DiagonalMatrix<double, Eigen::Dynamic> copyS = S;
698 Eigen::MatrixXd copyZ = Z;
699 Eigen::MatrixXd copyUpsilon = Upsilon;
700 Eigen::MatrixXd copyXi = Xi;
701 Eigen::MatrixXd copyY = Y;
702 Eigen::MatrixXd copyWinv = Winv;
703 bool retVal = true;
704

705

706 /// Find points outside r*radius

B22

707 Eigen::VectorXi sortedPoints =
GetInterpolationPointsSortedByDistanceFromBestPoint();↪→

708 int number_of_points_outside = GetNumberOfPointsOutsideRadius(radius);
709 sortedPoints.conservativeResize(number_of_points_outside);
710

711 if (number_of_points_outside <= 0) {
712 return false;
713 }
714 newIndices.resize(number_of_points_outside);
715

716 for (int i = 0; i < number_of_points_outside; ++i) {
717 newIndices(i) = -1;
718 }
719

720

721 subproblem.SetTrustRegionRadius((radius / r) * 0.9);
722 newPoints.resize(n, number_of_points_outside);
723 newPoints.setZero();
724 Eigen::VectorXd dNew(n);
725 int addedPoints = 0;
726 int j = 0;
727 for (int i = 0; i < number_of_points_outside; ++i) {
728 dNew = FindLocalOptimumOfAbsoluteLagrangePolynomial(sortedPoints(i));
729 double lagabsval =

std::abs(ComputeLagrangePolynomial(sortedPoints(i), dNew));↪→

730 if (lagabsval > lagabsvalMin) {
731 newIndices(addedPoints) = sortedPoints(i);
732 newPoints.col(addedPoints) = dNew;
733 eigen_col(newPoints, dNew, addedPoints);
734

735 eigen_col(Y, dNew, sortedPoints(i) - 1);
736 Winv = calculateWExplicitly();
737 createW();
738 addedPoints++;
739 j++;
740 //break;
741 } else {
742 PrintLagrangePolynomial(sortedPoints(i));
743 if (newIndices.rows() == 0 || newIndices.rows() == addedPoints) {
744 break;
745 }
746 //break;
747 }
748 }
749

750 if (addedPoints != newIndices.rows()) {
751 newIndices.conservativeResize(addedPoints);
752 newPoints.conservativeResize(n, addedPoints);
753 }
754 if (addedPoints == 0) {
755 retVal = false;
756 }
757

758 /// reset!!
759 Y = copyY;
760 Xi = copyXi;
761 Upsilon = copyUpsilon;

B23

762 S = copyS;
763 Z = copyZ;
764 Winv = copyWinv;
765 createW();
766 return retVal;
767 }
768 int DFO_Model::GetNumberOfPointsOutsideRadius(double radius) {
769 /// Number of points outside radius
770 int number = 0;
771 for (int j = 1; j <= m; ++j) {
772 if (norm(Y.col(j - 1) - bestPoint) > radius) {
773 number++;
774 }
775 }
776 return number;
777 }
778

779

780 void DFO_Model::createW() {
781 W = Eigen::MatrixXd::Zero(m + n + 1, m + n + 1);
782 Eigen::MatrixXd A = Eigen::MatrixXd::Zero(m, m);
783 Eigen::MatrixXd X = Eigen::MatrixXd::Zero(n + 1, m);
784 for (int i = 1; i <= m; ++i) {
785 for (int j = 1; j <= m; ++j) {
786 A(i - 1, j - 1) = 0.5 * std::pow(Y.col(i - 1).transpose() * Y.col(j

- 1), 2);↪→

787 }
788 }
789

790 for (int i = 1; i <= m; ++i) {
791 X(0, i - 1) = 1;
792 }
793

794 for (int i = 1; i <= m; ++i) {
795 Eigen::VectorXd tmp = X.col(i - 1);
796 eigen_tail(tmp, Y.col(i - 1), n);
797 eigen_col(X, tmp, i - 1);
798 }
799

800 W.topLeftCorner(m, m) = A;
801 W.bottomLeftCorner(n + 1, m) = X;
802 W.topRightCorner(m, n + 1) = X.transpose();
803 }
804

805 // This is slow and should only be used for testing and debugging.
806 Eigen::MatrixXd DFO_Model::calculateWExplicitly() {
807 double precision = 0.00001;
808 Eigen::MatrixXd W = Eigen::MatrixXd::Zero(m + n + 1, m + n + 1);
809 Eigen::MatrixXd A = Eigen::MatrixXd::Zero(m, m);
810 Eigen::MatrixXd X = Eigen::MatrixXd::Zero(n + 1, m);
811 for (int i = 1; i <= m; ++i) {
812 for (int j = 1; j <= m; ++j) {
813 A(i - 1, j - 1) = 0.5 * std::pow(Y.col(i - 1).transpose() * Y.col(j

- 1), 2);↪→

814 }
815 }
816 for (int i = 1; i <= m; ++i) {

B24

817 X(0, i - 1) = 1;
818 }
819 for (int i = 1; i <= m; ++i) {
820 Eigen::VectorXd tmp = X.col(i - 1);
821 eigen_tail(tmp, Y.col(i - 1), n);
822 eigen_col(X, tmp, i - 1);
823 }
824

825 W.topLeftCorner(m, m) = A;
826 W.bottomLeftCorner(n + 1, m) = X;
827 W.topRightCorner(m, n + 1) = X.transpose();
828 Eigen::MatrixXd Winv(m + n + 1, m + n + 1);
829 Winv = W.inverse();
830 Eigen::FullPivLU<Eigen::MatrixXd> lu_decompW(W);;
831 Eigen::MatrixXd WLUinv(m + n + 1, m + n + 1);
832 WLUinv = lu_decompW.inverse();
833 return WLUinv;
834 }
835

836

837 void DFO_Model::UpdateOptimum() {
838 int i = 1;
839 for (int j = 2; j <= m; ++j) {
840 if (fvals[j - 1] < fvals[i - 1]) {
841 i = j;
842 }
843 }
844 if (i != bestPointIndex) {
845 bestPointIndex = i;
846 bestPoint = Y.col(i - 1);
847 }
848 }
849

850 bool DFO_Model::isPoised(Eigen::VectorXd &dNew, int
&indexOfPointToBeReplaced, double radius) {↪→

851 bool ispoised = false;
852 indexOfPointToBeReplaced = -1;
853 int numberOfPointsOutsideRadius =

GetNumberOfPointsOutsideRadius(radius);↪→

854 if (numberOfPointsOutsideRadius >= 1) {
855 // Find points outside r*radius
856 Eigen::VectorXi sortedPoints =

GetInterpolationPointsSortedByDistanceFromBestPoint();↪→

857 sortedPoints.conservativeResize(numberOfPointsOutsideRadius);
858 subproblem.SetTrustRegionRadius(radius / r);
859 for (int i = 0; i < numberOfPointsOutsideRadius; ++i) {
860 dNew =

FindLocalOptimumOfAbsoluteLagrangePolynomial(sortedPoints[i]);↪→

861 double lagabsval =
std::abs(ComputeLagrangePolynomial(sortedPoints[i], dNew));↪→

862 if (lagabsval > lagabsvalMin) {
863 indexOfPointToBeReplaced = sortedPoints[i];
864 break;
865 } else {
866

867 PrintLagrangePolynomial(sortedPoints[i]);
868 }

B25

869 }
870 } else {
871 subproblem.SetTrustRegionRadius(radius);
872 findWorstPointInInterpolationSet(dNew, indexOfPointToBeReplaced);
873 }
874

875 if (indexOfPointToBeReplaced == -1) {
876 isModelCFL = 1;
877 ispoised = true;
878 } else {
879 isModelCFL = 0;
880 }
881 }
882

883 void DFO_Model::modelImprovementStep(Eigen::VectorXd &dNew, int
&indexOfPointToBeReplaced) {↪→

884 indexOfPointToBeReplaced = -1;
885 Eigen::VectorXi sortedPoints =

GetInterpolationPointsSortedByDistanceFromBestPoint();↪→

886 for (int i = 0; i < m; ++i) {
887 int t = sortedPoints[i];
888 subproblem.SetTrustRegionRadius(rho);
889 dNew = FindLocalOptimumOfAbsoluteLagrangePolynomial(t);
890 double lagabsval = std::abs(ComputeLagrangePolynomial(t, dNew));
891 if (lagabsval > lambda || norm((Y.col(t - 1) - bestPoint))
892 > r * rho) {
893

894 if (lagabsval > lagabsvalMin) {
895 indexOfPointToBeReplaced = t;
896 break;
897 }
898 }
899 }
900

901 if (indexOfPointToBeReplaced == -1) {
902 isModelCFL = 1;
903 } else {
904 isModelCFL = -1;
905 }
906 }
907

908 void DFO_Model::isLagrangePoly() {
909 for (int t = 1; t <= m; ++t) {
910

911 double c;
912 Eigen::VectorXd grad(n);
913 Eigen::MatrixXd hess(n, n);
914 createLagrangePolynomial(t, c, grad, hess);
915

916 for (int j = 1; j <= m; j++) {
917 double val = c + grad.transpose() * Y.col(j - 1) + 0.5 * (Y.col(j -

1)).transpose() * hess * Y.col(j - 1);↪→

918 if (j == t) {
919 std::cout << "value should be 1, but is: " << val << "\n";
920 } else {
921 std::cout << "value should be 0, but is: " << val << "\n";
922 }

B26

923 }
924 }
925 }
926

927 void DFO_Model::Converged(int iterations,
928 int number_of_tiny_improvements,
929 int number_of_function_calls,
930 int number_of_parallell_function_calls) {
931 {
932 Eigen::VectorXd gradient = GetLagrangianGradient(GetBestPoint());
933 Eigen::MatrixXd Yabs(n, m);
934 for (int j = 0; j < m; ++j) {
935 Eigen::VectorXd sd = (Y).col(j) + getCenterPoint();
936 eigen_col(Yabs, sd, j);
937 }
938 std::cout.clear();
939 std::cout << "\033[1;36;mDFO terminated. Trust region radius too

small.\033[0m" << std::endl;↪→

940 std::cout << "\033[1;36;mDFO terminated. Trust region radius too
small.\033[0m" << std::endl;↪→

941 std::cout << "\033[1;36;mDFO terminated. Trust region radius too
small.\033[0m" << std::endl;↪→

942 std::cout << "\033[1;36;mDFO terminated. Trust region radius too
small.\033[0m" << std::endl;↪→

943 std::cout << "\033[1;36;mDFO terminated. Trust region radius too
small.\033[0m" << std::endl;↪→

944 std::cout << "\033[1;36;mDFO terminated. Trust region radius too
small.\033[0m" << std::endl;↪→

945 std::cout << "\033[1;36;mDFO terminated. Trust region radius too
small.\033[0m" << std::endl;↪→

946

947 std::cout << "\033[1;34;m " << "Norm of gradient at best point = " <<
"\033[0m" << gradient.norm() << "\n";↪→

948 std::cout << "\033[1;34;m " << "Best point index = " << "\033[0m" <<
bestPointIndex << "\n";↪→

949 std::cout << "\033[1;34;m " << "Fvals = \n" << "\033[0m" << fvals <<
"\n";↪→

950 std::cout << "\033[1;34;m " << "Y = \n" << "\033[0m" << Y << "\n";
951 std::cout << "\033[1;34;m " << "Y absolute = \n" << "\033[0m" << Yabs

<< "\n";↪→

952 std::cout << "\033[1;34;m " << "Ybest (abs) = \n" << "\033[0m" <<
bestPoint + y0 << "\n";↪→

953 std::cout << "\033[1;34;m " << "Trust region radius is: " <<
"\033[0m" << rho << std::endl;;↪→

954 std::cout << "\033[1;34;m " << "Best found, all time, value: " <<
"\033[0m" << bestPointAllTimeFunctionValue↪→

955 << "\n";
956 std::cout << "\033[1;34;m " << "Best found, all time, point: \n" <<

"\033[0m" << bestPointAllTime + y0;↪→

957

958 std::cout << "\nm = " << m << "\n";
959 std::cout << "n = " << n << "\n";
960 std::cout << "ng = " << ng << "\n";
961

962 std::cout << "Best point (absolute):\n" << getCenterPoint() +
GetBestPoint()↪→

B27

963 << "\nWith value: " <<
GetFunctionValue(getBestPointIndex()) << "\n";↪→

964

965 std::cout << "\033[1;36;mFunction Calls \033[0m" <<
number_of_function_calls << "\n";↪→

966 std::cout << "\033[1;36;mParallell Function Calls \033[0m" <<
number_of_parallell_function_calls << "\n";↪→

967 }
968 }
969

970 void DFO_Model::createLagrangePolynomial(int t, double &c,
Eigen::VectorXd &grad, Eigen::MatrixXd &hess) {↪→

971 grad.setZero();
972 hess.setZero();
973 c = 0;
974 createW();
975 Eigen::VectorXd ans(n + m + 1);
976 Eigen::VectorXd rhs = Eigen::VectorXd::Zero(n + m + 1);
977 rhs(t - 1) = 1;
978 ans = W.colPivHouseholderQr().solve(rhs);
979

980 c = ans(m);
981 grad = ans.tail(n);
982 for (int k = 1; k <= m; ++k) {
983 hess += ans(k - 1) * (Y.col(k - 1)) * (Y.col(k - 1)).transpose();
984 }
985 }
986

987 // return true when no new points are found. is_poised = true
988 bool DFO_Model::ModelImprovementAlgorithm(double radius, Eigen::MatrixXd

&newPoints, Eigen::VectorXi &newIndices) {↪→

989 /// Get all points inside of the trust-region
990 Eigen::MatrixXd tmpNewPoints;
991 Eigen::VectorXi tmpNewIndices;
992 FindReplacementForPointsOutsideRadius(radius, tmpNewPoints,

tmpNewIndices);↪→

993 Eigen::MatrixXd copyY = Y;
994 Eigen::VectorXi changed(m);
995 changed.setZero();
996 for (int i = 0; i < tmpNewPoints.cols(); ++i) {
997 if (tmpNewIndices(i) != -1) {
998 eigen_col(Y, tmpNewPoints.col(i), tmpNewIndices(i) - 1);
999 changed(tmpNewIndices(i) - 1) = 1;

1000 } else {
1001 break;
1002 }
1003 }
1004 subproblem.SetTrustRegionRadius(radius);
1005 /// Improve poisedness until required poisedness is achieved.
1006 Eigen::VectorXd dNew(n);
1007 int index = -1;
1008 while (1) {
1009 findWorstPointInInterpolationSet(dNew, index);
1010 if (index == -1) {
1011 break;
1012 } else {
1013 eigen_col(Y, dNew, index - 1);

B28

1014 changed(index - 1) = 1;
1015 }
1016 }
1017

1018 int number_of_new_points = 0;
1019 for (int i = 0; i < m; i++) {
1020 if (changed(i) == 1) {
1021 number_of_new_points++;
1022 }
1023 }
1024 newPoints.resize(n, number_of_new_points);
1025 newIndices.resize(number_of_new_points);
1026

1027 int i = 0;
1028 for (int j = 1; j <= m; ++j) {
1029 if (changed(j - 1) == 1) {
1030 eigen_col(newPoints, Y.col(j - 1), i);
1031 newIndices(i) = j;
1032 i++;
1033 }
1034 }
1035 Y = copyY; /// reset.
1036 createW();
1037

1038 if (number_of_new_points == 0) {
1039 isModelCFL = 1;
1040 } else {
1041 isModelCFL = 0;
1042 }
1043

1044 return (number_of_new_points == 0);
1045 }
1046

1047 // Will only be valid for bestpoint, because the lagrange multipliers are
found for that point.↪→

1048 Eigen::VectorXd DFO_Model::GetLagrangianGradient(Eigen::VectorXd point) {
1049 Eigen::VectorXd lagGrad(n);
1050 lagGrad = GetGradientAtPoint(point);
1051 subproblem.SetTrustRegionRadius(rho);
1052 if (ng > 0) {
1053 calculateLagrangeMultipliers();
1054 Eigen::MatrixXd conGrad = subproblem.getGradientConstraints(point +

y0);↪→

1055 for (int i = 0; i < subproblem.getNumberOfConstraints(); i++) {
1056 lagGrad -= lagrangeMultipliers[i] * ((conGrad.row(i)).transpose());
1057 }
1058 }
1059 return lagGrad;
1060 }
1061

1062 void DFO_Model::calculateLagrangeMultipliers() {
1063

1064 subproblem.calculateLagrangeMultipliers((char *) "Minimize", y0,
bestPoint, bestPoint);↪→

1065 lagrangeMultipliers = subproblem.getLagrangeMultipliers();
1066

1067 }

B29

1068

1069 Eigen::VectorXd
DFO_Model::ScaleVariablesFromApplicationToAlgorithm(Eigen::VectorXd
point) {

↪→

↪→

1070 Eigen::VectorXd ret(point.rows());
1071 point = point / 10000.0;
1072 for (int i = 0; i < point.rows(); ++i) {
1073 if (i % 2 == 0 && i != 0) {
1074 //z coord
1075 ret[i] = point[i] * 30.0;
1076 } else {
1077 //xy coord
1078 ret[i] = point[i];
1079 }
1080 }
1081 return ret;
1082

1083 }
1084 void DFO_Model::setInitialy0(Eigen::VectorXd a) {
1085

1086 this->y0 = a;
1087 }
1088 void DFO_Model::findVariableMeaning(Eigen::VectorXd realvars,

Eigen::VectorXd scaling) {↪→

1089 mapNormalToFieldopt = Eigen::VectorXi::Zero(6); // [x0 y0 z0, x1 y1 z1]
1090 for (int i = 0; i < 6; i++) {
1091 for (int j = 0; j < 6; j++) {
1092 if (abs(copyOfStartingPoint[i] - realvars[j]) <= 0.000001) {
1093 mapNormalToFieldopt[i] = j;
1094 }
1095 }
1096 }
1097 subproblem.SetMappingVariables(mapNormalToFieldopt, scaling);
1098 }
1099

1100 void DFO_Model::PrintSortedBestPoint(Eigen::VectorXd scaling) {
1101 Eigen::VectorXd wellStart(3);
1102 Eigen::VectorXd wellEnd(3);
1103 Eigen::VectorXd splineIsh = y0 + bestPoint;
1104

1105 for (int i = 0; i < 6; ++i) {
1106 splineIsh[i] = splineIsh[i] * scaling[i];
1107 }
1108 for (int i = 0; i < 3; i++) {
1109 wellStart[i] = splineIsh(mapNormalToFieldopt[i]);
1110 wellEnd[i] = splineIsh(mapNormalToFieldopt[i + 3]);
1111 }
1112 std::cout << "Well information\nCoordinates:\n" << wellStart << "\n" <<

wellEnd << "\n" << "spline length: "↪→

1113 << (wellStart - wellEnd).norm() << "\n\n";
1114 }
1115

1116 }
1117 }

B30

Subproblem.h

1 //
2 // Created by joakim on 08.03.18.
3 //
4

5 #ifndef FIELDOPT_SUBPROBLEM_H
6 #define FIELDOPT_SUBPROBLEM_H
7

8 #include <Eigen/Core>
9 #include <Eigen/Dense>

10 #include "FieldOpt-3rdPartySolvers/handlers/SNOPTHandler.h"
11 #include "FieldOpt-3rdPartySolvers/handlers/SNOPTLoader.h"
12 #include "Optimization/optimizer.h"
13 #include "VirtualSimulator.h"
14 namespace Optimization {
15 namespace Optimizers {
16 class Subproblem {
17

18 /*
19 This class will find _one_ maximum of a quadratic function (specified by

c_, g_ and H_) subject to some specified constraints.↪→

20 The constraints must be specified by whomever uses this function and
they must be specified by editing the code explicitly↪→

21 (i.e, they cannot be set through function calls).
22 The objective function and the constraints (except the simple/basic

bounds) are put together into one set of equations:↪→

23 Let cl_i represent a linear constraint, and let cn_i represent a
nonlinear one.↪→

24 let n_l and m be the numbers of linear constraints and nonlinear
constraints, respectively.↪→

25 F = [f_obj, cl_0, cl_1, ..., cl_n_l, cn_0, cn_1, ..., cn_m]ˆT;
26

27 The inequalities for the constraints and the objective function is given
by:↪→

28 Flow <= F <= Fupp
29

30 If you don't have a limit, use the infinity_ *(+-1) value.
31

32 maximize f_obj = c_ + g_ˆT x + xˆT H_ x
33

34 subject to Flow <= F <= Fupp
35 xlow <= x <= xupp
36

37

38 Linear and nonlinear constraints are specified differently.
39

40 Note!
41 Because F contains both the objective functions and the constraints, the

row-indices will start at row 1 and not row 0.↪→

42

43 Linear
44 The linear constraints are specified through lenA, iAfun, jAvar and A.
45 The first 2 are used because the matrix hatA ("lower <= hatA*x <=

upper") might be very sparse. An example will illustrate the usage:↪→

46

47 A = [0 1 0

B31

48 5 0 6
49 0 0 8].
50

51 lenA = 4; // There are four nonzero elements in A
52 iAfun[0] = 1; //These two indices belongs to the element (0,1) in A

(namely, the value 1). Now A[0] must be set to 1.↪→

53 jAvar[0] = 1;
54 A[0] = 1;
55

56 iAfun[1] = 2; //These two indices belongs to the element (1,0) in A
(namely, the value 5). Now A[1] must be set to 5.↪→

57 jAvar[1] = 0;
58 A[1] = 5;
59

60 iAfun[2] = 2; //These two indices belongs to the element (1,2) in A
(namely, the value 6). Now A[2] must be set to 6.↪→

61 jAvar[2] = 2;
62 A[2] = 6;
63

64 iAfun[3] = 3; //These two indices belongs to the element (2,2) in A
(namely, the value 8). Now A[3] must be set to 8.↪→

65 jAvar[3] = 2;
66 A[3] = 8;
67

68

69 Nonlinear
70 The nonlinear constraints are specified through lenG, neG, iGfun and

jGvar. The actual G matrix is specified in the userfunc.↪→

71 The G matrix contains both the derivative of the objective function and
the derivative of the nonlinear constraints.↪→

72 The nonlinear constraints must also be specified by the userfunc, and
put into appropriate place in F:↪→

73 F[4]=x_1ˆ2 + x_2ˆ2 + x_3ˆ2;
74 Let's say that we now, in addition to the linear constraints above,

also has 1 nonlinear constraint. ("lower <= x_1ˆ2 + x_2ˆ2 + x_3ˆ2
<= upper").

↪→

↪→

75 The partial derivatives with respect to the variables will then be:
76 G[y] = 2*x_1;
77 G[y+1] = 2*x_2;
78 G[y+2] = 2*x_3;
79 Where y is the number of partial derivatives of the objective

functions.↪→

80 If f_obj = x_1 + x_2 + x_3, then
81 y = 3; and
82 F[0] = x_1 + x_2 + x_3;
83 G[0] = 1;
84 G[1] = 1;
85 G[2] = 1;
86

87 Now we must specify iGfun and jGvar.
88

89 //From the objective function:
90 iGfun[0] = 0;
91 jGvar[0] = 0;
92 iGfun[1] = 0;
93 jGvar[1] = 1;
94 iGfun[2] = 0;

B32

95 jGvar[2] = 2;
96

97

98 //From the nonlinear constraints:
99 iGfun[3] = 4; // NOTE NOTE! The reason why this value is 4 is because

the first row is for the objective function, then we have 3 linear
constraints

↪→

↪→

100 jGvar[3] = 0;
101

102 iGfun[4] = 4;
103 jGvar[4] = 1;
104

105 iGfun[5] = 4;
106 jGvar[5] = 2;
107

108

109 neG = lenG = 6;
110

111

112

113

114 */
115

116

117 private:
118 Eigen::VectorXd lastLagrangeMultipliers;
119 int normType_;
120 Eigen::VectorXd y0_;
121 Eigen::VectorXd bestPointDisplacement_;
122

123 int n_; // Number of variables
124 int m_; // Number of nonlinear constraints
125 integer neF_; // Number of element in F
126 integer neG_;
127 integer lenG_;
128 integer objRow_;
129 double objAdd_;
130 double trustRegionRadius_;
131

132 integer *iAfun_ = NULL;
133 integer *jAvar_ = NULL;
134 double *A_ = NULL;
135 integer lenA_;
136 integer neA_;
137

138 integer *iGfun_ = NULL;
139 integer *jGvar_ = NULL;
140

141 double *x_;
142

143 // lower and upper bounds
144 double *xlow_ = NULL;
145 double *xupp_ = NULL;
146

147 Eigen::VectorXd xlowCopy_;
148 Eigen::VectorXd xuppCopy_;
149

B33

150 // the initial guess for Lagrange multipliers
151 double *xmul_ = NULL;;
152

153 // the state of the variables (whether the optimal is likely to be on
154 // the boundary or not)
155 integer *xstate_ = NULL;
156

157 double *F_ = NULL;
158 double *Flow_ = NULL;
159 double *Fupp_ = NULL;
160 double *Fmul_ = NULL;
161 integer *Fstate_ = NULL;
162 char *xnames_ = NULL;
163 char *Fnames_ = NULL;
164

165 integer nxnames_;
166 integer nFnames_;
167 Settings::Optimizer *settings_;
168

169 // this is the value SNOPT considers as infinity
170 double infinity_ = 1e20;
171

172 void setConstraintsAndDimensions();
173 void setOptionsForSNOPT(SNOPTHandler &snoptHandler);
174 bool loadSNOPT(string libname = "libsnopt-7.2.12.2.so");
175 void setAndInitializeSNOPTParameters();
176 void passParametersToSNOPTHandler(SNOPTHandler &snoptHandler);
177 void setNormType(int type);
178 void setCenterPointOfModel(Eigen::VectorXd cp);
179 void setCurrentBestPointDisplacement(Eigen::VectorXd db);
180

181 public:
182

183 void SetMappingVariables(Eigen::VectorXi map1, Eigen::VectorXd
scaling1);↪→

184 Eigen::VectorXd GetInitialPoint();
185 //EIGEN_MAKE_ALIGNED_OPERATOR_NEW
186

187 enum NormType {
188 INFINITY_NORM = 0,
189 L2_NORM = 2,
190 };
191

192 void setQuadraticModel(double c, Eigen::VectorXd g, Eigen::MatrixXd H);
193 void setGradient(Eigen::VectorXd g);
194 void setHessian(Eigen::MatrixXd H);
195 void setConstant(double constant);
196 void printModel();
197

198 void SetNormType(int type) {
199 normType_ = type;
200 }
201

202 void SetCenterPoint(Eigen::VectorXd cp);
203 void SetBestPointRelativeToCenterPoint(Eigen::VectorXd bp);
204 ˜Subproblem();
205 SNOPTHandler initSNOPTHandler();

B34

206 Subproblem(Settings::Optimizer *settings);
207 Subproblem() {};
208 Eigen::VectorXd getLagrangeMultipliers() {
209 return lastLagrangeMultipliers;
210 }
211 void ResetSubproblem();
212

213 void SetTrustRegionRadius(double radius) {
214 trustRegionRadius_ = radius;
215 //Flow_[1] = 0;
216 //Fupp_[1] = trustRegionRadius_;
217 }
218 void Solve(vector<double> &xsol,
219 vector<double> &fsol,
220 char *optimizationType,
221 VectorXd centerPoint,
222 VectorXd bestPointDisplacement,
223 VectorXd startingPoint);
224

225 Eigen::MatrixXd getGradientConstraints(Eigen::VectorXd point);
226 int getNumberOfConstraints();
227 void SolveVirtualSimulator();
228 Eigen::VectorXd FindFeasiblePoint();
229

230 void evaluateConstraints(Eigen::VectorXd point);
231

232 void calculateLagrangeMultipliers(char *optimizationType,
233 VectorXd centerPoint,
234 VectorXd bestPointDisplacement,
235 VectorXd startingPoint);
236

237 bool isPointFeasible(Eigen::VectorXd point);
238 };
239

240 }
241 }
242

243 #endif //FIELDOPT_SUBPROBLEM_H

Subproblem.cpp
1 #include <limits>
2 #include "Subproblem.h"
3 namespace Optimization {
4 namespace Optimizers {
5

6 #ifdef __cplusplus
7 extern "C" {
8 #endif
9 int SNOPTusrFG3_(integer *Status, integer *n, doublereal x[],

10 integer *needF, integer *neF, doublereal F[],
11 integer *needG, integer *neG, doublereal G[],
12 char *cu, integer *lencu,
13 integer iu[], integer *leniu,
14 doublereal ru[], integer *lenru);
15 #ifdef __cplusplus

B35

16 }
17 #endif
18

19 void smallTightning(double &value, bool lower) {
20 //Not used anymore.
21 return;
22

23 if (lower && value < 0) {
24 value = value * 0.999;
25 } else if (lower && value > 0) {
26 value = value * 1.001;
27 } else if ((!lower) && value > 0) {
28 value = value * 0.999;
29 } else if ((!lower) && value < 0) {
30 value = value * 1.001;
31 }
32

33 }
34

35 static Eigen::VectorXd yb_rel;
36 static Eigen::VectorXd y0;
37 static int normType;
38

39 static Eigen::MatrixXd hessian;
40 static Eigen::VectorXd gradient;
41 static double constant;
42 static double scale;
43 static VirtualSimulator virtualSimulator;
44

45 static Eigen::VectorXi mapNormalToFieldopt;
46 static Eigen::VectorXd scaling;
47

48 Subproblem::Subproblem(Settings::Optimizer *settings) {
49 settings_ = settings;
50 n_ = settings->parameters().number_of_variables;
51 y0_ = Eigen::VectorXd::Zero(n_);
52 y0 = Eigen::VectorXd::Zero(n_);
53 bestPointDisplacement_ = Eigen::VectorXd::Zero(n_);
54 xlowCopy_ = Eigen::VectorXd::Zero(n_); /// OBS should be set by the

driver file....↪→

55 xuppCopy_ = Eigen::VectorXd::Zero(n_);
56 loadSNOPT();
57 normType = settings->parameters().norm_type;
58 normType_ = settings->parameters().norm_type;
59

60 virtualSimulator =
VirtualSimulator(settings->parameters().test_problem_file);↪→

61 m_ = virtualSimulator.GetNumberOfConstraints() + 1;
62 lastLagrangeMultipliers = Eigen::VectorXd::Zero(m_);
63

64 setConstraintsAndDimensions(); // This one should set the iGfun/jGvar
and so on.↪→

65 setAndInitializeSNOPTParameters();
66

67 scale = 1;
68 hessian = Eigen::MatrixXd::Zero(n_, n_);
69 gradient = Eigen::VectorXd::Zero(n_);

B36

70 constant = 0;
71

72 ResetSubproblem();
73 }
74

75 SNOPTHandler Subproblem::initSNOPTHandler() {
76 string prnt_file, smry_file, optn_file;
77 optn_file = settings_->parameters().thrdps_optn_file.toStdString() +

".opt.optn";↪→

78 smry_file = settings_->parameters().thrdps_smry_file.toStdString() +
".opt.summ";↪→

79 prnt_file = settings_->parameters().thrdps_prnt_file.toStdString() +
".opt.prnt";↪→

80 SNOPTHandler snoptHandler(prnt_file.c_str(),
81 smry_file.c_str(),
82 optn_file.c_str());
83 return snoptHandler;
84 }
85

86 void Subproblem::setAndInitializeSNOPTParameters() {
87 // the decision variables
88 x_ = new double[n_];
89 // the initial guess for Lagrange multipliers
90 xmul_ = new double[n_];
91 // the state of the variables (whether the optimal is likely to be on
92 // the boundary or not)
93 xstate_ = new integer[n_];
94 F_ = new double[neF_];
95 Fmul_ = new double[neF_];
96 Fstate_ = new integer[neF_];
97 nxnames_ = 1;
98 nFnames_ = 1;
99 xnames_ = new char[nxnames_ * 8];

100 Fnames_ = new char[nFnames_ * 8];
101 }
102

103 void Subproblem::Solve(vector<double> &xsol,
104 vector<double> &fsol,
105 char *optimizationType,
106 Eigen::VectorXd centerPoint,
107 Eigen::VectorXd bestPointDisplacement,
108 Eigen::VectorXd startingPoint) {
109 y0_ = centerPoint;
110 y0 = y0_;
111 bestPointDisplacement_ = bestPointDisplacement;
112 yb_rel = bestPointDisplacement_;
113 // Set norm specific constraints
114 std::cout << "lower bounds\n" << xlowCopy_ << "\n";
115 std::cout << "upper bounds\n" << xuppCopy_ << "\n";
116 if (normType_ == INFINITY_NORM) {
117 for (int i = 0; i < n_; ++i) {
118 xlow_[i] = std::max(bestPointDisplacement_[i] - trustRegionRadius_,

xlowCopy_[i] - y0_[i]);↪→

119 xupp_[i] = std::min(bestPointDisplacement_[i] + trustRegionRadius_,
xuppCopy_[i] - y0_[i]);↪→

120 }
121 } else if (normType_ == L2_NORM) {

B37

122 for (int i = 0; i < n_; ++i) {
123 xlow_[i] = xlowCopy_[i];
124 xupp_[i] = xuppCopy_[i];
125 }
126 }
127

128 scale = 1; //computeScale();
129

130 // The snoptHandler must be setup and loaded
131 SNOPTHandler snoptHandler = initSNOPTHandler();
132 snoptHandler.setProbName("SNOPTSolver");
133 snoptHandler.setParameter(optimizationType);
134 snoptHandler.initializeLagrangeVector(neF_ - 1);
135

136 setOptionsForSNOPT(snoptHandler);
137 snoptHandler.setRealParameter("Major step limit", trustRegionRadius_);

//was 0.2↪→

138 snoptHandler.setRealParameter("Major feasibility tolerance", 1.0e-9);
//1.0e-6↪→

139

140 snoptHandler.setRealParameter("Major optimality tolerance", 0.00001);
141

142 ResetSubproblem();
143 for (int i = 0; i < n_; i++) {
144 //x_[i] = startingPoint[i];//bestPointDisplacement_[i];
145 //x_[i] = 0.0;//bestPointDisplacement_[i];
146 //x_[i] = startingPoint[i];
147 }
148 if (normType_ == Subproblem::L2_NORM) {
149 Flow_[1] = 0;
150 Fupp_[1] = trustRegionRadius_;
151 }
152 passParametersToSNOPTHandler(snoptHandler);
153 integer Cold = 0, Basis = 1, Warm = 2;
154

155 snoptHandler.solve(Cold, xsol, fsol);
156 lastLagrangeMultipliers = snoptHandler.getLagrangeMultipliers();
157 fsol[0] = fsol[0] * scale;
158 integer exitCode = snoptHandler.getExitCode();
159

160 if (exitCode != 40 && exitCode != 41 && exitCode != 1 && exitCode != 31
&& exitCode != 3 && exitCode != 32) {↪→

161 std::cout << "ExitCode is: " << exitCode << "\n";
162 std::cin.get();
163 }
164

165 Eigen::VectorXd xvec(n_);
166 for (int i = 1; i <= n_; ++i) {
167 xvec(i - 1) = xsol[i - 1];
168 }
169 if (virtualSimulator.IsFeasiblePoint(xvec + y0) == false) {
170 std::cout << "output from snopt is infeasible. ExitCode was: " <<

exitCode << "\n";↪→

171 auto d = virtualSimulator.evaluateConstraints(xvec + y0);
172 std::cout << d << "\n";
173 }
174

B38

175 Eigen::VectorXd tmp(n_);
176 if (virtualSimulator.IsFeasiblePoint(xvec + y0) == false) {
177

178 if (virtualSimulator.IsFeasiblePoint(xvec + y0) == false) {
179 std::cout << "output from snopt is infeasible. Will do random

search\n";↪→

180 }
181

182 double snopt_suggested_val = constant + gradient.transpose() * xvec +
0.5 * xvec.transpose() * hessian * xvec;↪→

183 Eigen::VectorXd yTry(n_); //Displacement from current center point
184 static std::random_device rd;
185 static std::mt19937 gen(rd());
186 std::uniform_real_distribution<> dis(-trustRegionRadius_,

trustRegionRadius_);↪→

187 int k = 0;
188

189 Eigen::VectorXd yBest = xvec;
190

191 double bestValue = constant + gradient.transpose() * xvec + 0.5 *
xvec.transpose() * hessian * xvec;↪→

192 double value = 0;
193

194 int ll = 0;
195 bool lock = false;
196 int fails = 0;
197 while (k < 5000) {
198 for (int i = 0; i < n_; ++i) {
199 yTry(i) = dis(gen) + bestPointDisplacement_[i];
200 }
201 if (virtualSimulator.IsFeasiblePoint(yTry + y0) == false) {
202 fails++;
203 continue;
204 } else {
205 if (lock == false) {
206 yBest = yTry;
207 bestValue = constant + gradient.transpose() * yTry + 0.5 *

yTry.transpose() * hessian * yTry;↪→

208 lock = true;
209 }
210 }
211 value = constant + gradient.transpose() * yTry + 0.5 *

yTry.transpose() * hessian * yTry;↪→

212 if (std::string(optimizationType) == "Maximize") {
213 if (value > bestValue) {
214 bestValue = value;
215 yBest = yTry;
216 }
217 }
218 if (std::string(optimizationType) == "Minimize") {
219 if (value < bestValue) {
220 bestValue = value;
221 yBest = yTry;
222 }
223 }
224

225 ++k;

B39

226 }
227 std::cout << "Randomly generated point is infeasible, number of

times: " << fails << "\n";↪→

228 tmp = yBest;
229 for (int i = 1; i <= n_; ++i) {
230 xsol[i - 1] = yBest[i - 1];
231 fsol[0] = constant + gradient.transpose() * yBest + 0.5 *

yBest.transpose() * hessian * yBest;↪→

232 }
233 }
234

235 if (virtualSimulator.IsFeasiblePoint(xvec + y0) == false) {
236 std::cout << "Failed to find feasible points...\n";
237 }
238

239 }
240

241 void Subproblem::ResetSubproblem() {
242 for (int i = 0; i < n_; i++) {
243 Fstate_[i] = 0;
244 xstate_[i] = 0;
245 x_[i] = 0.0;
246 xmul_[i] = 0;
247 }
248

249 for (int h = 0; h < neF_; h++) {
250 F_[h] = 0.0;
251 Fmul_[h] = 0.0;
252 }
253

254 }
255

256 void Subproblem::passParametersToSNOPTHandler(SNOPTHandler &snoptHandler)
{↪→

257 snoptHandler.setProblemSize(n_, neF_);
258 snoptHandler.setObjective(objRow_);
259 snoptHandler.setA(lenA_, iAfun_, jAvar_, A_);
260 snoptHandler.setG(lenG_, iGfun_, jGvar_);
261 snoptHandler.setX(x_, xlow_, xupp_, xmul_, xstate_);
262 snoptHandler.setF(F_, Flow_, Fupp_, Fmul_, Fstate_);
263 snoptHandler.setXNames(xnames_, nxnames_);
264 snoptHandler.setFNames(Fnames_, nFnames_);
265 snoptHandler.setNeA(neA_);
266 snoptHandler.setNeG(neG_);
267 snoptHandler.setUserFun(SNOPTusrFG3_);
268 }
269

270 void Subproblem::setConstraintsAndDimensions() {
271 if (normType_ == Subproblem::L2_NORM) {
272 m_++;
273 }
274 neF_ = m_ + 1;
275 lenA_ = 0;
276 lenG_ = n_ + m_ * n_;
277 objRow_ = 0; // In theory the objective function could be any of the

elements in F.↪→

278 objAdd_ = 0.0;

B40

279

280 iGfun_ = new integer[lenG_];
281 jGvar_ = new integer[lenG_];
282

283 iAfun_ = NULL;
284 jAvar_ = NULL;
285 A_ = NULL;
286

287 xlow_ = new double[n_];
288 xupp_ = new double[n_];
289

290 Flow_ = new double[neF_];
291 Fupp_ = new double[neF_];
292

293

294 // Objective function
295 Flow_[0] = -infinity_;
296 Fupp_[0] = infinity_;
297

298 // Trust region radius
299 if (normType_ == Subproblem::L2_NORM) {
300 Flow_[1] = 0;
301 Fupp_[1] = trustRegionRadius_;
302 }
303

304 Eigen::VectorXd x_lb = virtualSimulator.GetLowerBoundsForVariables();
305 if (x_lb.rows() < n_) {
306 int tmp1 = x_lb.rows();
307 x_lb.conservativeResize(n_);
308 for (int i = tmp1; i < n_; ++i) {
309 x_lb[i] = -infinity_;
310 }
311 }
312 Eigen::VectorXd x_ub = virtualSimulator.GetUpperBoundsForVariables();
313 if (x_ub.rows() < n_) {
314 int tmp2 = x_ub.rows();
315 x_ub.conservativeResize(n_);
316 for (int i = tmp2; i < n_; ++i) {
317 x_ub[i] = infinity_;
318 }
319 }
320 for (int i = 0; i < n_; ++i) {
321

322 if (std::isinf(x_lb[i])) {
323 xlow_[i] = -infinity_;
324 } else {
325 xlow_[i] = x_lb[i];
326 }
327 if (std::isinf(x_ub[i])) {
328 xupp_[i] = infinity_;
329 } else {
330 xupp_[i] = x_ub[i];
331

332 }
333

334 if (std::abs(x_lb[i] - x_ub[i]) <= 0.00000000001) {
335 xlow_[i] = x_lb[i];

B41

336 xupp_[i] = x_lb[i];
337 }
338

339 xlowCopy_[i] = xlow_[i];
340 xuppCopy_[i] = xupp_[i];
341 }
342

343 int startI = 1;
344 if (normType_ == Subproblem::L2_NORM) {
345 startI++;
346 }
347 Eigen::VectorXd g_lb = virtualSimulator.GetLowerBoundsForConstraints();
348 Eigen::VectorXd g_ub = virtualSimulator.GetUpperBoundsForConstraints();
349 Flow_[startI] = 0;
350 Fupp_[startI] = 500;
351 startI++;
352 for (int i = startI; i < neF_; ++i) {
353

354 if (std::isinf(g_lb[i - startI])) {
355 Flow_[i] = -infinity_;
356 } else {
357 Flow_[i] = g_lb[i - startI];
358 smallTightning(Flow_[i], 1);
359 }
360 if (std::isinf(g_ub[i - startI])) {
361 Fupp_[i] = infinity_;
362 } else {
363 Fupp_[i] = g_ub[i - startI];
364 smallTightning(Fupp_[i], 0);
365

366 }
367

368 }
369

370 // first the objective
371 for (int i = 0; i < n_; i++) {
372 iGfun_[i] = 0;
373 jGvar_[i] = i;
374 }
375

376 if (m_ != 0) {
377 // and then the constraints
378 for (int j = 1; j <= m_; j++) {
379 for (int i = 0; i < n_; i++) {
380 iGfun_[i + j * n_] = j;
381 jGvar_[i + j * n_] = i;
382 }
383 }
384 }
385

386 neG_ = lenG_;
387 neA_ = lenA_;
388

389 }
390

391 Subproblem::˜Subproblem() {
392 delete[] iGfun_;

B42

393 delete[] jGvar_;
394 delete[] x_;
395 delete[] xlow_;
396 delete[] xupp_;
397 delete[] xmul_;
398 delete[] xstate_;
399 delete[] F_;
400 delete[] Flow_;
401 delete[] Fupp_;
402 delete[] Fmul_;
403 }
404

405 void Subproblem::setOptionsForSNOPT(SNOPTHandler &snoptHandler) {
406

407 //if (settings_->verb_vector()[6] >= 1) // idx:6 -> opt (Optimization)
408 //cout << "[opt]Set options for SNOPT.---" << endl;
409

410 //snoptHandler.setParameter("Backup basis file 0");
411 // snoptHandler.setRealParameter("Central difference interval", 2 *

derivativeRelativePerturbation);↪→

412

413 //snoptHandler.setIntParameter("Check frequency", 60);
414 //snoptHandler.setParameter("Cold Start Cold");
415

416 //snoptHandler.setParameter("Crash option 3");
417 //snoptHandler.setParameter("Crash tolerance 0.1");
418 //snoptHandler.setParameter("Derivative level 3");
419

420 // if ((optdata.optimizationType == HISTORY_MATCHING) ||
hasNonderivativeLinesearch)↪→

421 // snoptHandler.setParameter((char*)"Nonderivative linesearch");
422 // else
423 //snoptHandler.setParameter((char*)"Derivative linesearch");
424 //snoptHandler.setIntParameter("Derivative option", 0);
425

426 // snoptHandler.setRealParameter("Difference interval",
optdata.derivativeRelativePerturbation);↪→

427

428 //snoptHandler.setParameter("Dump file 0");
429 //snoptHandler.setParameter("Elastic weight 1.0e+4");
430 //snoptHandler.setParameter("Expand frequency 10000");
431 //snoptHandler.setParameter("Factorization frequency 50");
432 //snoptHandler.setRealParameter("Function precision",

sim_data.tuningParam.tstep.minDeltat);↪→

433 //snoptHandler.setParameter("Hessian full memory");
434 //snoptHandler.setParameter("Hessian limited memory");
435

436 // snoptHandler.setIntParameter("Hessian frequency",
optdata.frequencyToResetHessian);↪→

437 //snoptHandler.setIntParameter("Hessian updates", 0);
438 //snoptHandler.setIntParameter("Hessian flush", 1); // Does NOT work

in the current version of SNOPT!!!↪→

439

440 //snoptHandler.setParameter("Insert file 0");
441 // snoptHandler.setRealParameter("Infinite bound",

optdata.defaultControlUpperBound);↪→

442

B43

443 //snoptHandler.setParameter("Iterations limit");
444 //snoptHandler.setRealParameter("Linesearch tolerance",0.9);
445 //snoptHandler.setParameter("Load file 0");
446 //snoptHandler.setParameter("Log frequency 100");
447 //snoptHandler.setParameter("LU factor tolerance 3.99");
448 //snoptHandler.setParameter("LU update tolerance 3.99");
449 //snoptHandler.setRealParameter("LU factor tolerance", 3.99);
450 //snoptHandler.setRealParameter("LU update tolerance", 3.99);
451 //snoptHandler.setParameter("LU partial pivoting");
452 //snoptHandler.setParameter("LU density tolerance 0.6");
453 //snoptHandler.setParameter("LU singularity tolerance 3.2e-11");
454

455 //target nonlinear constraint violation
456 snoptHandler.setRealParameter("Major feasibility tolerance",

0.0000001);↪→

457 snoptHandler.setIntParameter("Major Iterations Limit", 1000);
458

459 //target complementarity gap
460 //snoptHandler.setRealParameter("Major optimality tolerance",

0.000000000001);↪→

461

462 snoptHandler.setParameter("Major Print level 00000"); // 00001"
463 snoptHandler.setRealParameter("Major step limit", 0.2); //was 0.2
464 //snoptHandler.setIntParameter("Minor iterations limit", 200); // 200
465

466 //for satisfying the QP bounds
467 snoptHandler.setRealParameter("Minor feasibility tolerance", 1.0e-3);
468 snoptHandler.setIntParameter("Minor print level", 0);
469 //snoptHandler.setParameter("New basis file 0");
470 //snoptHandler.setParameter("New superbasics limit 99");
471 //snoptHandler.setParameter("Objective Row");
472 //snoptHandler.setParameter("Old basis file 0");
473 //snoptHandler.setParameter("Partial price 1");
474 //snoptHandler.setParameter("Pivot tolerance 3.7e-11");
475 //snoptHandler.setParameter("Print frequency 100");
476 //snoptHandler.setParameter("Proximal point method 1");
477 //snoptHandler.setParameter("QPSolver Cholesky");
478 //snoptHandler.setParameter("Reduced Hessian dimension");
479 //snoptHandler.setParameter("Save frequency 100");
480 snoptHandler.setIntParameter("Scale option", 1);
481 //snoptHandler.setParameter("Scale tolerance 0.9");
482 snoptHandler.setParameter((char *) "Scale Print");
483 snoptHandler.setParameter((char *) "Solution Yes");
484 //snoptHandler.setParameter("Start Objective Check at Column 1");
485 //snoptHandler.setParameter("Start Constraint Check at Column 1");
486 //snoptHandler.setParameter("Stop Objective Check at Column");
487 //snoptHandler.setParameter("Stop Constraint Check at Column");
488 //snoptHandler.setParameter("Sticky parameters No");
489 //snoptHandler.setParameter("Summary frequency 100");
490 //snoptHandler.setParameter("Superbasics limit");
491 //snoptHandler.setParameter("Suppress parameters");
492 //snoptHandler.setParameter((char*)"System information No");
493 //snoptHandler.setParameter("Timing level 3");
494 snoptHandler.setRealParameter("Unbounded objective value",
495 1.0e+18); // infinity_ = 1e20; "Unbounded

objective value 1.0e+15"↪→

B44

496 snoptHandler.setRealParameter("Unbounded step size", 1.0e+19);
//"Unbounded step size 1.0e+18"↪→

497 //snoptHandler.setIntParameter("Verify level", -1); //-1
498 //snoptHandler.setRealParameter("Violation limit", 1e-8); //1e-8
499

500 // if (settings_->verb_vector()[6] >= 1) // idx:6 -> opt (Optimization)
501 // cout << "[opt]Set options for SNOPT.---" << endl;
502

503 }
504

505 /***
506 ADGPRS, version 1.0, Copyright (c) 2010-2015 SUPRI-B
507 Author(s): Oleg Volkov (ovolkov@stanford.edu)
508 Vladislav Bukshtynov (bukshtu@stanford.edu)
509 **/
510

511 bool Subproblem::loadSNOPT(const string libname) {
512

513 //#ifdef NDEBUG
514 if (LSL_isSNOPTLoaded()) {
515 printf("\x1b[33mSnopt is already loaded.\n\x1b[0m");
516 return true;
517 }
518

519 char buf[256];
520 int rc;
521 if (libname.empty()) {
522 rc = LSL_loadSNOPTLib(NULL, buf, 255);
523 } else {
524 rc = LSL_loadSNOPTLib(libname.c_str(), buf, 255);
525 }
526

527 if (rc) {
528 string errmsg;
529 errmsg = "Selected NLP solver SNOPT not available.\n"
530 "Tried to obtain SNOPT from shared library \"";
531 errmsg += LSL_SNOPTLibraryName();
532 errmsg += "\", but the following error occured:\n";
533 errmsg += buf;
534 cout << errmsg << endl;
535 return false;
536 }
537 //#endif
538

539 return true;
540 }
541

542 void restrictNumberValueToMatchSNOPT(double &value) {
543 if (value == -std::numeric_limits<double>::infinity() || value <=

-1e20) {↪→

544 value = -1e20;
545 } else if (value == std::numeric_limits<double>::infinity() || value >=

1e20) {↪→

546 value = 1e20;
547 }
548 }
549

B45

550 double calculateSplineLenght(Eigen::VectorXd splineIsh) {
551 Eigen::VectorXd wellStart = Eigen::VectorXd::Zero(3);
552 Eigen::VectorXd wellEnd = Eigen::VectorXd::Zero(3);
553

554 for (int i = 0; i < 6; ++i) {
555 splineIsh[i] = splineIsh[i] * scaling[i];
556 }
557 for (int i = 0; i < 3; i++) {
558 wellStart[i] = splineIsh(mapNormalToFieldopt[i]);
559 wellEnd[i] = splineIsh(mapNormalToFieldopt[i + 3]);
560 }
561 return (wellStart - wellEnd).norm();
562 }
563

564 int SNOPTusrFG3_(integer *Status, integer *n, double x[],
565 integer *needF, integer *neF, double F[],
566 integer *needG, integer *neG, double G[],
567 char *cu, integer *lencu,
568 integer iu[], integer *leniu,
569 double ru[], integer *lenru) {
570

571 Eigen::VectorXd xvec(*n);
572 for (int i = 0; i < *n; ++i) {
573 xvec[i] = x[i];
574 }
575

576 int m = *neF - 1;
577

578 // If the values for the objective and/or the constraints are desired
579 if (*needF > 0) {
580 /// The objective function
581 F[0] = (constant + gradient.transpose() * xvec + 0.5 *

xvec.transpose() * hessian * xvec) / scale;↪→

582 restrictNumberValueToMatchSNOPT(F[0]);
583 if (m) {
584 /// The constraints
585 int startI = 1;
586 if (normType == Subproblem::L2_NORM) {
587 F[1] = (xvec - yb_rel).norm();
588 startI++;
589 }
590

591 F[startI] = calculateSplineLenght(xvec + y0);
592 startI++;
593

594 Eigen::VectorXd constraints =
virtualSimulator.evaluateConstraints(xvec + y0);↪→

595 for (int i = 0; i < constraints.rows(); ++i) {
596 F[i + startI] = constraints[i];
597 restrictNumberValueToMatchSNOPT(F[i + startI]);
598 }
599 }
600 }
601

602 if (*needG > 0) {
603 /// The Derivatives of the objective function
604 Eigen::VectorXd grad(*n);

B46

605 grad = gradient + hessian * xvec;
606 for (int i = 0; i < *n; ++i) {
607 G[i] = grad(i);
608 restrictNumberValueToMatchSNOPT(G[i]);
609 }
610

611 /// The derivatives of the constraints
612 if (m) {
613 Eigen::VectorXd gradConstraint(*n);
614 int startI = *n;
615 if (normType == Subproblem::L2_NORM) {
616 gradConstraint = (xvec - yb_rel) / ((xvec - yb_rel).norm() +

0.000000000000001);↪→

617 for (int i = 0; i < *n; ++i) {
618 }
619 startI += *n;
620 }
621 Eigen::MatrixXd constraintsGradients =

virtualSimulator.evaluateConstraintGradients(xvec + y0);↪→

622 for (int i = 0; i < constraintsGradients.rows(); ++i) { //for each
contraint↪→

623 for (int j = 0; j < constraintsGradients.cols(); ++j) { //for
each variable.↪→

624 G[startI + i * (*n) + j] = constraintsGradients(i, j);
625 restrictNumberValueToMatchSNOPT(G[startI + i * (*n) + j]);
626 }
627 }
628 }
629 }
630 return 0;
631 }
632

633 void Subproblem::setQuadraticModel(double c, Eigen::VectorXd g,
Eigen::MatrixXd H) {↪→

634 constant = c;
635 gradient = g;
636 hessian = H;
637 }
638

639 void Subproblem::setGradient(Eigen::VectorXd g) {
640 gradient = g;
641 }
642

643 void Subproblem::setHessian(Eigen::MatrixXd H) {
644 hessian = H;
645 }
646

647 void Subproblem::setConstant(double c) {
648 constant = c;
649 }
650 void Subproblem::setNormType(int type) {
651 normType = type;
652 }
653 void Subproblem::setCenterPointOfModel(Eigen::VectorXd cp) {
654 y0 = cp;
655 }
656 void Subproblem::setCurrentBestPointDisplacement(Eigen::VectorXd db) {

B47

657 bestPointDisplacement_ = db;
658 yb_rel = bestPointDisplacement_;
659 }
660 void Subproblem::SetCenterPoint(Eigen::VectorXd cp) {
661 y0_ = cp;
662 y0 = y0_;
663 }
664 void Subproblem::SetBestPointRelativeToCenterPoint(Eigen::VectorXd bp) {
665

666 }
667 void Subproblem::printModel() {
668 std::cout << "The model of the subproblem \n";
669 std::cout << "constant = \n" << constant << std::endl;
670 std::cout << "gradient = \n" << gradient << std::endl;
671 std::cout << "hessian = \n" << hessian << std::endl;
672 std::cout << "trust region radius = " << trustRegionRadius_ <<

std::endl;↪→

673

674 }
675 Eigen::VectorXd Subproblem::GetInitialPoint() {
676

677 return virtualSimulator.GetInitialPoint();
678 }
679 Eigen::MatrixXd Subproblem::getGradientConstraints(Eigen::VectorXd point)

{↪→

680 return virtualSimulator.evaluateConstraintGradients(point);
681 }
682 int Subproblem::getNumberOfConstraints() {
683 return virtualSimulator.GetNumberOfConstraints();
684 }
685 void Subproblem::SolveVirtualSimulator() {
686 virtualSimulator.Solve();
687 }
688 Eigen::VectorXd Subproblem::FindFeasiblePoint() {
689 hessian = Eigen::MatrixXd::Zero(n_, n_);
690 gradient = Eigen::VectorXd::Zero(n_);
691 constant = 1;
692 yb_rel = Eigen::VectorXd::Zero(n_);
693 // The snoptHandler must be setup and loaded
694 SNOPTHandler snoptHandler = initSNOPTHandler();
695 snoptHandler.setProbName("SNOPTSolver");
696 snoptHandler.setParameter("Feasible point");
697 snoptHandler.initializeLagrangeVector(neF_ - 1);
698

699 setOptionsForSNOPT(snoptHandler);
700 snoptHandler.setRealParameter("Major step limit", 0.2); //was 0.2
701 snoptHandler.setRealParameter("Major feasibility tolerance", 1.0e-6);

//1.0e-6↪→

702

703 ResetSubproblem();
704 for (int i = 0; i < n_; i++) {
705 //x_[i] = startingPoint[i];//bestPointDisplacement_[i];
706 //x_[i] = 0.0;//bestPointDisplacement_[i];
707 //x_[i] = startingPoint[i];
708 }
709

710 if (normType_ == Subproblem::L2_NORM) {

B48

711 Flow_[1] = 0;
712 Fupp_[1] = trustRegionRadius_;
713 }
714 passParametersToSNOPTHandler(snoptHandler);
715 integer Cold = 0, Basis = 1, Warm = 2;
716

717 vector<double> xsol;
718 vector<double> fsol;
719 snoptHandler.solve(Cold, xsol, fsol);
720 lastLagrangeMultipliers = snoptHandler.getLagrangeMultipliers();
721 fsol[0] = fsol[0] * scale;
722 integer exitCode = snoptHandler.getExitCode();
723 if (exitCode != 40 && exitCode != 41 && exitCode != 1 && exitCode != 31

&& exitCode != 3 && exitCode != 32) {↪→

724 std::cout << "ExitCode is: " << exitCode << "\n";
725 std::cin.get();
726 }
727

728 Eigen::VectorXd xvec(n_);
729 for (int i = 1; i <= n_; ++i) {
730 xvec(i - 1) = xsol[i - 1];
731 }
732 return xvec;
733 }
734 void Subproblem::evaluateConstraints(Eigen::VectorXd point) {
735 if (virtualSimulator.GetNumberOfConstraints() > 0) {
736 auto d = virtualSimulator.evaluateConstraints(point + y0);
737 }
738

739 }
740

741 void Subproblem::calculateLagrangeMultipliers(char *optimizationType,
742 VectorXd centerPoint,
743 VectorXd

bestPointDisplacement,↪→

744 VectorXd startingPoint) {
745

746 y0_ = centerPoint;
747 y0 = y0_;
748 bestPointDisplacement_ = bestPointDisplacement;
749 yb_rel = bestPointDisplacement_;
750 if (normType_ == INFINITY_NORM) {
751 for (int i = 0; i < n_; ++i) {
752 xlow_[i] = std::max(bestPointDisplacement_[i] - trustRegionRadius_,

xlowCopy_[i] - y0_[i]);↪→

753 xupp_[i] = std::min(bestPointDisplacement_[i] + trustRegionRadius_,
xuppCopy_[i] - y0_[i]);↪→

754 }
755 } else if (normType_ == L2_NORM) {
756 for (int i = 0; i < n_; ++i) {
757 xlow_[i] = xlowCopy_[i];
758 xupp_[i] = xuppCopy_[i];
759 }
760 }
761

762 scale = 1;
763

B49

764

765 // The snoptHandler must be setup and loaded
766 SNOPTHandler snoptHandler = initSNOPTHandler();
767 snoptHandler.setProbName("SNOPTSolver");
768 snoptHandler.setParameter(optimizationType);
769 snoptHandler.initializeLagrangeVector(neF_ - 1);
770

771 setOptionsForSNOPT(snoptHandler);
772 snoptHandler.setIntParameter("Major Iterations Limit", 2);
773 snoptHandler.setIntParameter("Iterations limit", 2);
774 snoptHandler.setRealParameter("Major step limit", trustRegionRadius_ *

0.0001); //was 0.2↪→

775 snoptHandler.setRealParameter("Major feasibility tolerance", 1.0e-9);
//1.0e-6↪→

776

777 snoptHandler.setRealParameter("Major optimality tolerance", 0.00001);
778 snoptHandler.setIntParameter("Minor iterations limit", 1); // 200
779

780 ResetSubproblem();
781 for (int i = 0; i < n_; i++) {
782 //x_[i] = startingPoint[i];//bestPointDisplacement_[i];
783 x_[i] = bestPointDisplacement_[i];
784 //x_[i] = startingPoint[i];
785 }
786 if (normType_ == Subproblem::L2_NORM) {
787 Flow_[1] = 0;
788 Fupp_[1] = trustRegionRadius_;
789 }
790 passParametersToSNOPTHandler(snoptHandler);
791 integer Cold = 0, Basis = 1, Warm = 2;
792

793 vector<double> xsol;
794 vector<double> fsol;
795 snoptHandler.solve(Cold, xsol, fsol);
796 lastLagrangeMultipliers = snoptHandler.getLagrangeMultipliers();
797

798 fsol[0] = fsol[0] * scale;
799 integer exitCode = snoptHandler.getExitCode();
800

801 if (exitCode != 40 && exitCode != 41 && exitCode != 1 && exitCode != 31
&& exitCode != 3 && exitCode != 32) {↪→

802 std::cout << "ExitCode is: " << exitCode << "\n";
803 std::cin.get();
804 }
805

806 Eigen::VectorXd xvec(n_);
807 for (int i = 1; i <= n_; ++i) {
808 xvec(i - 1) = xsol[i - 1];
809 }
810 if (virtualSimulator.IsFeasiblePoint(xvec + y0) == false) {
811 std::cout << "output from snopt is infeasible. ExitCode was: " <<

exitCode << "\n";↪→

812 auto d = virtualSimulator.evaluateConstraints(xvec + y0);
813 std::cout << d << "\n";
814 }
815

816 if (virtualSimulator.IsFeasiblePoint(xvec + y0) == false) {

B50

817 std::cout << "Failed to find feasible points...\n";
818 }
819

820 }
821 bool Subproblem::isPointFeasible(Eigen::VectorXd point) {
822 return virtualSimulator.IsFeasiblePoint(point + y0);
823 }
824 void Subproblem::SetMappingVariables(Eigen::VectorXi map1,

Eigen::VectorXd scaling1) {↪→

825 mapNormalToFieldopt = map1;
826 scaling = scaling1;
827 }
828 }
829 }

GradientEnhancedModel.h
1 //
2 // Created by joakim on 24.04.18.
3 //
4

5 #ifndef FIELDOPT_GRADIENTENHANCEDMODEL_H
6 #define FIELDOPT_GRADIENTENHANCEDMODEL_H
7

8 #include <Eigen/Dense>
9 #include "FieldOpt-3rdPartySolvers/handlers/SNOPTHandler.h"

10 #include "FieldOpt-3rdPartySolvers/handlers/SNOPTLoader.h"
11 #include <QList>
12 #include <QString>
13 #include <QStringList>
14 #include <QJsonObject>
15 #include <Qt>
16

17 namespace Optimization {
18 namespace Optimizers {
19

20 class GradientEnhancedModel {
21 private:
22 Eigen::VectorXd h_old_;
23 double constant_;
24 Eigen::VectorXd gradient_;
25 Eigen::MatrixXd hessian_;
26 Eigen::MatrixXd hessian_old_;
27 Eigen::MatrixXd points_;
28 Eigen::VectorXd funcVals_;
29 Eigen::MatrixXd v_;
30 Eigen::VectorXd y0_;
31 Eigen::MatrixXd D_;
32

33 double alpha_;
34 Eigen::VectorXd weights_derivatives_;
35 Eigen::VectorXd weights_least_square_;
36 Eigen::VectorXd best_point_;
37 int n_;
38 int m_;
39 int ng_; // number_of_variables_with_gradient

B51

40

41

42 void solveLinearSystem(Eigen::VectorXd funcVals, Eigen::VectorXd
derivatives_at_y0, Eigen::VectorXd &ans);↪→

43 int convert_h_ij_to_t_lsq(int i, int j);
44 int convert_h_ij_to_t_vectorized(int i, int j);
45 void convert_t_to_ij_lsq(int t, int &i, int &j);
46 void convert_t_to_ij_vectorized(int t, int &i, int &j);
47

48 public:
49 GradientEnhancedModel(int n,
50 int m,
51 int number_of_variables_with_gradient,
52 QList<double> weights_derivatives,
53 double weight_objective_minimum_change);
54 GradientEnhancedModel() {};
55 void GetConstant(double &c);
56 void GetGradient(Eigen::VectorXd &g);
57 void GetHessian(Eigen::MatrixXd &H);
58 void GetModel(double &c, Eigen::VectorXd &g, Eigen::MatrixXd &H);
59 void ComputeModel(Eigen::MatrixXd Y,
60 Eigen::MatrixXd derivatives,
61 Eigen::VectorXd derivatives_at_y0,
62 Eigen::VectorXd funcVals,
63 Eigen::VectorXd y0,
64 Eigen::VectorXd best_point,
65 double radius,
66 double scaling_factor_r,
67 int index_of_center_point);
68 void PrintParametersMatlabFriendly();
69

70 void isInterpolating();
71 };
72 }
73 }
74 #endif //FIELDOPT_GRADIENTENHANCEDMODEL_H

GradientEnhancedModel.cpp
1 //
2 // Created by joakim on 24.04.18.
3 //
4

5 #include <iostream>
6 #include "GradientEnhancedModel.h"
7 #include "EigenUtil.h"
8

9 namespace Optimization {
10 namespace Optimizers {
11

12 static Eigen::VectorXd _y0_;
13 static Eigen::MatrixXd _hessian_old_;
14 static Eigen::MatrixXd _D_;
15 static Eigen::MatrixXd _v_;
16 static double _alpha_;
17 static Eigen::VectorXd _weights_least_square_;

B52

18 static Eigen::MatrixXd _points_;
19 static Eigen::VectorXd _best_point_;
20 static int _n_;
21 static int _ng_;
22 static int _m_;
23

24 void GradientEnhancedModel::GetConstant(double &c) {
25 c = constant_;
26 }
27 void GradientEnhancedModel::GetGradient(Eigen::VectorXd &g) {
28 g = gradient_;
29 }
30 void GradientEnhancedModel::GetHessian(Eigen::MatrixXd &H) {
31 H = hessian_;
32 }
33 void GradientEnhancedModel::GetModel(double &c, Eigen::VectorXd &g,

Eigen::MatrixXd &H) {↪→

34 c = constant_;
35 g = gradient_;
36 H = hessian_;
37 }
38 GradientEnhancedModel::GradientEnhancedModel(
39 int n, int m, int number_of_variables_with_gradient,
40 QList<double> weights_derivatives,
41 double weight_objective_minimum_change) {
42

43 _n_ = n;
44 n_ = n;
45 _m_ = m;
46 m_ = m;
47 _ng_ = number_of_variables_with_gradient;
48 ng_ = number_of_variables_with_gradient;
49 alpha_ = weight_objective_minimum_change;
50 weights_derivatives_ =

Eigen::VectorXd::Zero(weights_derivatives.size());↪→

51 int j = 0;
52 for (auto i = weights_derivatives.begin(); i !=

weights_derivatives.end(); ++i) {↪→

53 weights_derivatives_[j] = *i;
54 j++;
55 }
56 constant_ = 0;
57 gradient_ = Eigen::VectorXd::Zero(n_);
58 hessian_ = Eigen::MatrixXd::Zero(n_, n_);
59 hessian_old_ = Eigen::MatrixXd::Zero(n_, n_);
60 points_ = Eigen::MatrixXd::Zero(n_, m_);
61 funcVals_ = Eigen::VectorXd::Zero(n_);
62 v_ = Eigen::VectorXd::Zero(ng_ * m_);
63 y0_ = Eigen::VectorXd::Zero(n_);
64 best_point_ = Eigen::VectorXd::Zero(n_);
65 weights_least_square_ = Eigen::VectorXd::Zero(m_);
66

67 int t = 0;
68 int y = n_;
69 for (int i = 0; i < ng_; ++i) {
70 t += y;
71 y--;

B53

72 }
73 h_old_ = Eigen::VectorXd::Zero(t);
74 D_ = Eigen::MatrixXd::Zero((ng_) * m_, t);
75

76 }
77

78 void GradientEnhancedModel::ComputeModel(Eigen::MatrixXd Y,
79 Eigen::MatrixXd derivatives,
80 Eigen::VectorXd

derivatives_at_y0,↪→

81 Eigen::VectorXd funcVals,
82 Eigen::VectorXd y0,
83 Eigen::VectorXd best_point,
84 double radius, double

scaling_factor_r,↪→

85 int index_of_center_point) {
86 funcVals_ = funcVals;
87 points_ = Y;
88

89 y0_ = y0;
90 best_point_ = best_point;
91

92 // Set up _weights_least_square_
93 for (int t = 0; t < m_; ++t) {
94 double norm = (Y.col(t) - best_point).norm();
95 if (norm <= radius) {
96 weights_least_square_[t] = weights_derivatives_[0];
97 } else if (norm <= scaling_factor_r * radius) {
98 weights_least_square_[t] = weights_derivatives_[1];
99 } else {

100 weights_least_square_[t] = weights_derivatives_[2];
101 }
102 }
103

104 // Set the _D_ matrix and the _v_ vector
105 if (ng_ > 0) {
106 int base_row = 0;
107 for (int t = 0; t < m_; ++t) { // for each sample point
108

109 int y = n_;
110 int c0 = 0;
111 for (int i = 0; i < ng_; ++i) { // for each row
112 for (int k = 0; k < y; ++k) { // for each elem in row
113 D_(base_row + i, c0 + k) = points_(k, t) *

weights_least_square_[t];↪→

114 }
115 c0 += y;
116 y--;
117 }
118 y = n_ - 1;
119 c0 = 0;
120 for (int k = 0; k < (ng_ - 1); ++k) { // for each row that begins

an inverse diagonal↪→

121 int ii = 1;
122 int jj = 1;
123 for (int i = k; i < (ng_ - 1); ++i) {//for each element in that

inverse diagonal↪→

B54

124 D_(base_row + k + ii, c0 + y - jj) = points_(y, t) *
weights_least_square_[t];↪→

125 ii++;
126 jj++;
127 }
128 c0 += (y + 1);
129 y--;
130 }
131 base_row += ng_;
132

133 for (int i = 0; i < ng_; ++i) {
134 v_(t * ng_ + i) = (derivatives((ng_ - i - 1), t) -

derivatives_at_y0(ng_ - i - 1)) * weights_least_square_[t];↪→

135 }
136 }
137 }
138

139

140 // set the constraints
141 Eigen::VectorXd ans;
142 solveLinearSystem(funcVals, derivatives_at_y0, ans);
143

144 // calculate start indices;
145 int start_h_ij = 0;
146 int start_g_i = (int) ((n_ * n_ + n_) * 0.5);
147 int start_c = start_g_i + (n_ - ng_);
148 int start_lambda_i = start_c + 1;
149

150 //extract the results
151 constant_ = ans(start_c);
152 for (int i = 0; i < n_ - ng_; ++i) {
153 gradient_[i] = ans(start_g_i + i);
154 }
155 eigen_tail(gradient_, derivatives_at_y0, ng_);
156 for (int i = 1; i <= (int) ((n_ * n_ + n_) * 0.5); ++i) {
157 int ii = 0;
158 int jj = 0;
159 convert_t_to_ij_vectorized(i, ii, jj);
160

161 hessian_(ii - 1, jj - 1) = ans(start_h_ij + i - 1);
162 if (ii != jj) {
163 hessian_(jj - 1, ii - 1) = hessian_(ii - 1, jj - 1);
164 }
165 }
166

167 hessian_old_ = hessian_;
168 }
169

170 void GradientEnhancedModel::solveLinearSystem(Eigen::VectorXd funcVals,
171 Eigen::VectorXd

derivatives_at_y0,↪→

172 Eigen::VectorXd &ans) {
173 int colsD = 0;
174 int y = n_;
175 for (int i = 0; i < ng_; ++i) {
176 colsD += y;
177 y--;

B55

178 }
179 Eigen::MatrixXd A = Eigen::MatrixXd::Zero((int) (1 + (n_ - ng_) + m_ +

(n_ * n_ + n_) * 0.5),↪→

180 (int) (1 + (n_ - ng_) + m_ +
(n_ * n_ + n_) * 0.5));↪→

181 Eigen::VectorXd b = Eigen::VectorXd::Zero((int) (1 + (n_ - ng_) + m_ +
(n_ * n_ + n_) * 0.5));↪→

182 // calculate start indices;
183 int start_h_ij = 0;
184 int start_g_i = (int) ((n_ * n_ + n_) * 0.5);
185 int start_c = start_g_i + (n_ - ng_);
186 int start_lambda_i = start_c + 1;
187 int row = 0;
188

189

190

191

192 // dL/dhij,
193 for (int i = 1; i <= n_; ++i) {
194 for (int j = 1; j <= i; ++j) { // the derivative with respect to

(i,j)↪→

195

196 b(row) += hessian_old_(i - 1, j - 1) * alpha_; //right hand side
197 A(row, convert_h_ij_to_t_vectorized(i, j) - 1) = alpha_;
198

199 for (int t = 1; t <= m_; ++t) {
200 A(row, start_lambda_i + t - 1) += -0.5 * points_(i - 1, t - 1) *

points_(j - 1, t - 1);↪→

201 }
202

203 if (i > (n_ - ng_)) {
204 for (int p = 1; p <= ng_ * m_; p++) {
205 int t = convert_h_ij_to_t_lsq(i, j); // taking derivative

w.r.t. h_t↪→

206

207 b(row) += (1 - alpha_) * v_(p - 1) * D_(p - 1, t - 1); // right
hand side↪→

208

209 for (int k = 1; k <= colsD; ++k) {
210 int ii = 0;
211 int jj = 0;
212

213 convert_t_to_ij_lsq(k, ii, jj);
214 A(row, convert_h_ij_to_t_vectorized(ii, jj) - 1) += (1 -

alpha_) * D_(p - 1, k - 1) * D_(p - 1, t - 1);↪→

215 }
216 }
217

218 }
219

220 row++;
221 }
222 }
223 // dL/dgi,
224 for (int i = 1; i <= (n_ - ng_); ++i) {
225 for (int t = 1; t <= m_; ++t) {
226 A(row, start_lambda_i + t - 1) += points_(i - 1, t - 1);

B56

227 }
228 row++;
229 }
230 // dL/dc
231 for (int t = 1; t <= m_; ++t) {
232 A(row, start_lambda_i + t - 1) = 1;
233 }
234 row++;
235

236 //interpolation conditions
237 for (int k = 1; k <= m_; ++k) {
238 b(row) = funcVals(k - 1) - derivatives_at_y0.dot((points_.col(k -

1)).tail(ng_));↪→

239 A(row, start_c) = 1;
240

241 for (int t = 1; t <= (n_ - ng_); ++t) {
242 A(row, start_g_i + t - 1) = points_(t - 1, k - 1);
243 }
244

245 for (int i = 1; i <= n_; ++i) {
246 for (int j = 1; j <= i; ++j) {
247 if (i == j) {
248 A(row, start_h_ij + convert_h_ij_to_t_vectorized(i, j) - 1) =
249 0.5 * points_(i - 1, k - 1) * points_(i - 1, k - 1);
250 } else {
251 A(row, start_h_ij + convert_h_ij_to_t_vectorized(i, j) - 1) =

points_(i - 1, k - 1) * points_(j - 1, k - 1);↪→

252 }
253 }
254 }
255

256 row++;
257 }
258 ans = A.colPivHouseholderQr().solve(b);
259 }
260

261 int GradientEnhancedModel::convert_h_ij_to_t_lsq(int i, int j) {
262 int t = 0;
263 for (int p = n_; p > i; --p) {
264 t += p;
265 }
266 t += j;
267 return t;
268 }
269

270 int GradientEnhancedModel::convert_h_ij_to_t_vectorized(int i, int j) {
271 int t = 0;
272 int y = n_;
273 for (int k = 1; k < j; ++k) {
274 t += y;
275 y--;
276 }
277 t += (i - j + 1);
278 return t;
279 }
280

281 void GradientEnhancedModel::convert_t_to_ij_lsq(int t, int &i, int &j) {

B57

282 i = n_;
283 j = 0;
284 for (i = n_; t - i > 0; --i) {
285 t -= i;
286 }
287 j = t;
288 }
289

290 void GradientEnhancedModel::convert_t_to_ij_vectorized(int t, int &i, int
&j) {↪→

291 j = 1;
292 for (int k = n_; t > k; k--) {
293 t = t - k;
294 j++;
295 }
296 i = j + (t - 1);
297 }
298

299 void GradientEnhancedModel::isInterpolating() {
300 std::cout << "Checking if the gradient enhanced model actually

interpolates the points\n";↪→

301 for (int i = 1; i <= m_; ++i) {
302 double val = constant_ + gradient_.transpose() * points_.col(i - 1)
303 + 0.5 * (points_.col(i - 1)).transpose() * hessian_old_ *

points_.col(i - 1);↪→

304 std::cout << funcVals_[i - 1] << " == " << val << "\t" <<
(std::abs(val - funcVals_[i - 1]) <= 0.000000001) << "\n";↪→

305 }
306 }
307

308 }
309 }

DFO.h
1 //
2 // Created by pcg1 on 12.01.18.
3 //
4

5 #ifndef FIELDOPT_DFO_H
6 #define FIELDOPT_DFO_H
7

8 #include "Optimization/optimizer.h"
9 #include "Subproblem.h"

10 #include "DFO_Model.h"
11 #include <ncurses.h>
12 #include <fstream>
13 #include <iostream>
14

15 namespace Optimization {
16 namespace Optimizers {
17

18 /*!
19 * @brief This is a fantastic description of the DFO method, with

references.↪→

20 */

B58

21 class DFO : public Optimizer {
22 public:
23 DFO(Settings::Optimizer *settings,
24 Case *base_case,
25 Model::Properties::VariablePropertyContainer *variables,
26 Reservoir::Grid::Grid *grid,
27 Logger *logger);
28

29 QString GetStatusStringHeader() const {};
30 QString GetStatusString() const {};
31 Model::Properties::VariablePropertyContainer *variables_;
32 void set_next_step(int a);
33

34 Eigen::VectorXd
ScaleVariablesFromAlgorithmToApplication(Eigen::VectorXd point);↪→

35 Eigen::VectorXd
ScaleVariablesFromApplicationToAlgorithm(Eigen::VectorXd point);↪→

36 void ConvertPointToCase(Eigen::VectorXd point, Optimization::Case

*new_case);↪→

37

38 void CreateScalingVector();
39

40 private:
41

42 QList<QUuid> UUIDS_in_same_order_as_in_realvar_base_case_;
43 bool terminated = false;
44 Eigen::VectorXd realvectest_;
45 QUuid mapIndexToCase;
46 vector<QUuid> mapIndicesToCase;
47 Eigen::VectorXd scaling_;
48

49 std::string filenamePoint;
50 std::string filenameType;
51 std::string filenameTrr;
52

53 std::string color_from = "31";
54 std::string color_to = "33";
55 Model::Properties::VariablePropertyContainer *varcont_;
56 DFO_Model DFO_model_;
57 void iterate() override;
58 int number_of_interpolation_points_;
59 int number_of_variables_;
60 Optimization::Case *base_case_;
61 int last_action_;
62 int next_step_;
63 std::string get_action_name(int a);
64 Eigen::VectorXd weights_distance_from_optimum_lsq_;
65

66 int number_of_points_first_set;
67 bool multiple_new_points;
68 double trust_region_radius_tilde;
69 double trust_region_radius_icb;
70 double rho;
71 bool is_model_CFL;
72 Eigen::VectorXd tmp_eval;
73

74 int number_of_crit_step_finished_with_bad_poisedness;

B59

75 int number_of_crit_step_finished_without_checking_poisedness;
76 int ng;
77 double alpha;
78 int number_of_tiny_improvements;
79 double r;
80 double w;
81 double u;
82 double beta;
83 double epsilon_c;
84 double tau;
85 double eta1;
86 double gamma;
87 double gamma_inc;
88 double trust_region_radius_inc;
89 double trust_region_radius_max;
90 double trust_region_radius_end;
91

92 bool notConverged;
93

94 int crit_steps;
95 int accept_steps;
96 int model_impr_steps;
97

98 Eigen::VectorXd *refFuncVals;
99 Eigen::MatrixXd *refY;

100 Eigen::MatrixXd *refDerivatives;
101

102 int number_of_new_points;
103 int number_of_function_calls;
104 int number_of_parallell_function_calls;
105 Eigen::MatrixXd new_gradients;
106 Eigen::MatrixXd new_points;
107 Eigen::VectorXd new_point;
108 Eigen::VectorXd last_trial_point;
109 Eigen::VectorXd new_gradient;
110 Eigen::VectorXi new_points_indicies;
111 Eigen::VectorXd function_evaluations;
112 double function_evaluation;
113 int new_point_index;
114 int criticality_step_iteration;
115

116 bool force_criticality_step;
117

118 bool is_successful_iteration() {};
119

120 void handleEvaluatedCase(Case *c);
121

122 TerminationCondition IsFinished() {
123 cout << "JUST CALLED ISFINISHED" << endl;
124 return TerminationCondition::NOT_FINISHED;
125 };
126

127 protected:
128

129 private:
130 int previous_iterate_type_;
131 double initial_trust_region_radius_;

B60

132 double required_poisedness_;
133 QList<QUuid> realvar_uuid_;
134 Settings::Optimizer *settings_;
135 int iterations_;
136

137 };
138 }
139 }
140

141 #endif //FIELDOPT_DFO_H

DFO.cpp
1 //
2 // Created by pcg1 on 12.01.18.
3 //
4

5 #include "DFO.h"
6 #include "GradientEnhancedModel.h"
7 #include "VirtualSimulator.h"
8 #include <iostream>
9 #include <iomanip>

10 #include <casadi/casadi.hpp>
11

12 #define FIND_POINTS1 0
13 #define FIND_POINTS2 1
14 #define INITIALIZE_MODEL 2
15 #define CRITICALITY_STEP_START 3
16 #define CRITICALITY_STEP_CHECK_CONVERGENCE 4
17 #define FIND_TRIAL_POINT 5
18 #define ACCEPTANCE_OF_TRIAL_POINT 6
19 #define MODEL_IMPROVEMENT_STEP_START 7
20 #define MODEL_IMPROVEMENT_STEP_END 8
21 #define TRUST_REGION_RADIUS_UPDATE_STEP 9
22 #define CRITICALITY_STEP_ADD_POINTS 10
23

24 VirtualSimulator vs;
25

26

27

28 Eigen::VectorXd evaluateFunctionVS(Eigen::VectorXd x, int ng) {
29 Eigen::VectorXd result(1 + ng);
30 result(0) = vs.evaluateFunction(x);
31

32 Eigen::VectorXd gradients1 = vs.evaluateFunctionGradients(x);
33 Eigen::VectorXd grads = gradients1.tail(ng);
34 for (int i = 0; i < grads.rows(); ++i) {
35 result(i + 1) = grads(i);
36 }
37

38 return result;
39 }
40

41

42

43

B61

44 namespace Optimization {
45 namespace Optimizers {
46

47 DFO::DFO(Settings::Optimizer *settings,
48 Optimization::Case *base_case,
49 Model::Properties::VariablePropertyContainer *variables,
50 Reservoir::Grid::Grid *grid,
51 Logger *logger)
52 : Optimizer(settings, base_case, variables, grid, logger),
53 DFO_model_(
54 settings->parameters().number_of_interpolation_points,
55 settings->parameters().number_of_variables,
56 settings->parameters().number_of_variables_with_gradients,
57 base_case->GetRealVarVector(),
58 settings->parameters().initial_trust_region_radius,
59 settings->parameters().required_poisedness,
60 settings->parameters().
61 weight_model_determination_minimum_change_hessian,
62 settings->parameters().weights_distance_from_optimum_lsq,
63 settings) {
64 // Set parameters
65 if (settings->parameters().initial_trust_region_radius > 0.0)
66 initial_trust_region_radius_ =

settings->parameters().initial_trust_region_radius;↪→

67 else
68 initial_trust_region_radius_ = 600;
69

70 if (settings->parameters().number_of_interpolation_points > 0)
71 number_of_interpolation_points_ =

settings->parameters().number_of_interpolation_points;↪→

72 else
73 number_of_interpolation_points_ = 21;
74

75 if (settings->parameters().number_of_variables > 0)
76 number_of_variables_ = settings->parameters().number_of_variables;
77 else
78 number_of_variables_ = 10;
79

80 if (settings->parameters().required_poisedness > 0)
81 required_poisedness_ = settings->parameters().required_poisedness;
82 else
83 required_poisedness_ = 5;
84

85 settings_ = settings;
86 varcont_ = variables;
87 iterations_ = 0;
88 previous_iterate_type_ = 0;
89 base_case_ = new Case(base_case);
90 variables_ = variables;
91 base_case_->GetRealVarVector();
92 base_case_->GetRealVarIdVector();
93 last_action_ = -1;
94 weights_distance_from_optimum_lsq_ =
95 Eigen::VectorXd::Zero(settings->
96 parameters().weights_distance_from_optimum_lsq.size());
97 int j = 0;

B62

98 for (auto i =
settings->parameters().weights_distance_from_optimum_lsq.begin();↪→

99 i !=
settings->parameters().weights_distance_from_optimum_lsq.end();
++i) {

↪→

↪→

100 weights_distance_from_optimum_lsq_[j] = *i;
101 j++;
102 if (j >= 3) {
103 break;
104 }
105 }
106

107 UUIDS_in_same_order_as_in_realvar_base_case_ =
base_case_->GetRealVarIdVector();↪→

108 CreateScalingVector();
109 Eigen::VectorXd initialStartPoint = base_case->GetRealVarVector();
110 auto as = base_case->GetRealVarIdVector(); //QList<QUuid>
111 auto aa = base_case->real_variables(); // QHash<QUuid, double>
112 Eigen::VectorXd realvec = base_case_->GetRealVarVector();
113 DFO_model_.setInitialy0(ScaleVariablesFromApplicationToAlgorithm(

base_case_->GetRealVarVector()));↪→

114 vs = VirtualSimulator(settings_->parameters().test_problem_file);
115 DFO_model_.initLagrangeMultipliers(vs.GetNumberOfConstraints());
116 number_of_crit_step_finished_with_bad_poisedness = 0;
117 number_of_crit_step_finished_without_checking_poisedness = 0;
118 ng = settings_->parameters().number_of_variables_with_gradients;
119 alpha = settings_->parameters().
120 weight_model_determination_minimum_change_hessian;
121 QList<Case *> newCases = case_handler_->RecentlyEvaluatedCases();
122 number_of_tiny_improvements = 0;
123 r = settings_->parameters().r;
124 w = settings_->parameters().w;
125 u = settings_->parameters().u;
126 beta = settings_->parameters().beta;
127 epsilon_c = settings_->parameters().epsilon_c;
128 tau = settings_->parameters().tau;
129 eta1 = settings_->parameters().eta1;
130 gamma = settings_->parameters().gamma;
131 gamma_inc = settings_->parameters().gamma_inc;
132 trust_region_radius_inc =

settings_->parameters().initial_trust_region_radius;↪→

133 trust_region_radius_max =
settings_->parameters().max_trust_region_radius;↪→

134 trust_region_radius_end =
settings_->parameters().end_trust_region_radius;↪→

135 notConverged = true;
136 crit_steps = 0;
137 accept_steps = 0;
138 model_impr_steps = 0;
139 refFuncVals = DFO_model_.getFvalsReference();
140 refY = DFO_model_.getYReference();
141 refDerivatives = DFO_model_.getDerivativeReference();
142 for (int i = 0; i < number_of_interpolation_points_; ++i) {
143 (*refFuncVals)(i) = -1;
144 }
145 number_of_new_points = 0;
146 number_of_function_calls = 0;

B63

147 number_of_parallell_function_calls = 0;
148 last_trial_point = Eigen::VectorXd::Zero(number_of_variables_);
149 new_point = Eigen::VectorXd::Zero(number_of_variables_);
150 function_evaluations =

Eigen::VectorXd::Zero(number_of_interpolation_points_);↪→

151 function_evaluations.setZero();
152 new_point_index = -1;
153 criticality_step_iteration = 0;
154 force_criticality_step = false;
155 {
156 Eigen::VectorXd tmp = DFO_model_.getCenterPoint();
157 for (int i = 0; i < number_of_variables_; ++i) {
158 last_trial_point(i) = tmp(i) + DFO_model_.GetTrustRegionRadius() *

(2 * r) * 10; //far outside↪→

159 }
160 }
161 next_step_ = FIND_POINTS1;
162 is_model_CFL = false; //false means we don't know.
163 trust_region_radius_tilde =

settings_->parameters().initial_trust_region_radius;;↪→

164 trust_region_radius_icb =
settings_->parameters().initial_trust_region_radius;;↪→

165 rho = 0;
166 multiple_new_points = false;
167 number_of_points_first_set = 0;
168 Eigen::VectorXd realvars = base_case_->GetRealVarVector();
169 DFO_model_.findVariableMeaning(realvars , scaling_);
170 }
171 void DFO::handleEvaluatedCase(Optimization::Case *c) {
172 }
173

174 void DFO::iterate() {
175 if (terminated){
176 return;
177 }
178

179 if (iterations_ != 0){
180 //Extract information from the new cases.
181 if (multiple_new_points) {
182 QList<Case *> cs = case_handler_->RecentlyEvaluatedCases();
183 for(int i=0; i<cs.count(); ++i)
184 {
185 for (int j = 0; j < number_of_new_points; j++) {
186 if (cs[i]->GetId() == mapIndicesToCase[j]) {
187 function_evaluations[j] =

-1*(cs[i]->objective_function_value());↪→

188 break;
189 }
190 }
191 }
192

193 } else {
194 QList<Case *> c = case_handler_->RecentlyEvaluatedCases();
195 function_evaluation = -1*(c[0]->objective_function_value());
196 }
197

198 case_handler_->ClearRecentlyEvaluatedCases();

B64

199 }
200

201

202 print:
203 std::cout << "\033[1;34;m " << " ---------- New iterate " <<

iterations_ << " ---------- " << "\033[0m"↪→

204 << std::endl;
205 std::cout << "\033[1;34;m " << "Fvals = \n" << "\033[0m" <<

*refFuncVals << "\n";↪→

206 std::cout << "\033[1;34;m " << "Y = \n" << "\033[0m" << *refY << "\n";
207 if (iterations_ != 0 && iterations_ != 1 && iterations_ != 2) {
208 std::cout << "\033[1;34;m " << "Best point index = \n" << "\033[0m"

<< DFO_model_.getBestPointIndex() << "\n";↪→

209

210 DFO_model_.PrintSortedBestPoint(scaling_);
211 }
212 std::cout << "\033[1;34;m " << "y0 = \n" << "\033[0m" <<

DFO_model_.getCenterPoint() << "\n";↪→

213 std::cout << "\033[1;34;m " << "Trust region radius is: " << "\033[0m"
<< DFO_model_.GetTrustRegionRadius()↪→

214 << std::endl;
215 std::cout << "\033[1;34;m " << "Trust region radius Tilde is: " <<

"\033[0m" << trust_region_radius_tilde↪→

216 << std::endl;
217

218

219 top:
220 if (next_step_ == FIND_POINTS1) {
221 new_points = DFO_model_.findFirstSetOfInterpolationPoints();
222 std::cout << "Y new points:\n" << new_points <<"\n";
223 std::cout << "Y:\n" << *refY << "\n";
224 new_points_indicies.resize(new_points.cols());
225 number_of_points_first_set = new_points.cols();
226

227 multiple_new_points = true;
228 set_next_step(FIND_POINTS2);
229 goto evaluate;
230 } else if (next_step_ == FIND_POINTS2) {
231

232

233

234 // add the points.
235 for (int i = 0; i < number_of_new_points; ++i) {
236 //DFO_model_.SetFunctionValue(i + 1, function_evaluations[i]);
237 DFO_model_.SetFunctionValueAndDerivatives(i + 1,

function_evaluations(i), new_gradients.col(i));↪→

238 }
239

240 set_next_step(INITIALIZE_MODEL);
241 // find the remaining points.
242 if (number_of_interpolation_points_ == number_of_function_calls) {
243 // All points are found.
244 number_of_new_points = 0;
245 goto print;
246 } else {
247 number_of_new_points = number_of_interpolation_points_ -

number_of_function_calls;↪→

B65

248 new_points_indicies.resize(number_of_new_points);
249 new_points.resize(number_of_variables_, number_of_new_points);
250 new_points = DFO_model_.findLastSetOfInterpolationPoints();
251 multiple_new_points = true;
252 goto evaluate;
253 }
254 } else if (next_step_ == INITIALIZE_MODEL) {
255 if (number_of_new_points != 0) {
256 // Add the points
257 for (int i = 0; i < number_of_new_points; ++i) {
258 DFO_model_.SetFunctionValueAndDerivatives(
259 number_of_points_first_set + i + 1,
260 function_evaluations(i),
261 new_gradients.col(i));
262 }
263 }
264

265 DFO_model_.initializeModel();
266 set_next_step(CRITICALITY_STEP_START);
267 goto print;
268 } else if (next_step_ == CRITICALITY_STEP_START) {
269 Eigen::VectorXd gradient =

DFO_model_.GetLagrangianGradient(DFO_model_.GetBestPoint());↪→

270 if ((gradient.norm() > epsilon_c && force_criticality_step == false
271 && number_of_crit_step_finished_without_checking_poisedness <= 4)

) {↪→

272 DFO_model_.SetTrustRegionRadius(trust_region_radius_icb);
273 set_next_step(FIND_TRIAL_POINT);
274 number_of_crit_step_finished_without_checking_poisedness++;
275 goto top;
276 } else {
277 number_of_crit_step_finished_without_checking_poisedness = 0;
278 bool is_poised =
279 DFO_model_.ModelImprovementAlgorithm(r *

trust_region_radius_icb, new_points, new_points_indicies);↪→

280 if ((!is_poised) || (trust_region_radius_icb > u *
gradient.norm())) {↪→

281 criticality_step_iteration = 0;
282 if (is_poised) {
283 force_criticality_step = false;
284 set_next_step(CRITICALITY_STEP_CHECK_CONVERGENCE);
285 goto top;
286 } else {
287 force_criticality_step = false;
288 set_next_step(CRITICALITY_STEP_ADD_POINTS);
289 multiple_new_points = true;
290 goto evaluate;
291 }
292 } else {
293 if (force_criticality_step) {
294 trust_region_radius_icb = trust_region_radius_icb * gamma;
295 force_criticality_step = false;
296 set_next_step(CRITICALITY_STEP_START);
297 } else {
298 DFO_model_.SetTrustRegionRadius(trust_region_radius_icb);
299 set_next_step(FIND_TRIAL_POINT);
300 }

B66

301 goto top;
302 }
303 }
304 } else if (next_step_ == CRITICALITY_STEP_ADD_POINTS) {
305 Eigen::VectorXi dummyI;
306 Eigen::MatrixXd dummyP;
307 bool is_poised = DFO_model_.ModelImprovementAlgorithm(r *

trust_region_radius_tilde, dummyP, dummyI);↪→

308 DFO_model_.update(new_points,
309 function_evaluations,
310 new_gradients,
311 new_points_indicies,
312 number_of_new_points,
313 DFO_Model::IMPROVE_POISEDNESS);
314 is_poised = DFO_model_.ModelImprovementAlgorithm(r *

trust_region_radius_tilde, new_points, new_points_indicies);↪→

315 set_next_step(CRITICALITY_STEP_CHECK_CONVERGENCE);
316 crit_steps++;
317 goto print;
318 } else if (next_step_ == CRITICALITY_STEP_CHECK_CONVERGENCE) {
319 Eigen::VectorXd gradient =

DFO_model_.GetLagrangianGradient(DFO_model_.GetBestPoint());↪→

320

321 bool is_poised =
322 DFO_model_.ModelImprovementAlgorithm(r *

trust_region_radius_tilde, new_points, new_points_indicies);↪→

323

324 if (trust_region_radius_tilde <= u * gradient.norm() && is_poised) {
325 // The radius have been reduced, and the gradient is now sufficient

large. Proceed to find trial point.↪→

326 is_model_CFL = true;
327 double temp = max(trust_region_radius_tilde, beta *

gradient.norm());↪→

328 double new_trust_region_radius = min(temp,
trust_region_radius_icb);↪→

329 DFO_model_.SetTrustRegionRadius(new_trust_region_radius);
330 set_next_step(FIND_TRIAL_POINT);
331 goto print;
332 } else {
333 do {
334 //decrease radius. check poisedness.
335 criticality_step_iteration++;
336 trust_region_radius_tilde = pow(w, (criticality_step_iteration -

1)) * trust_region_radius_icb;↪→

337 is_poised =
338 DFO_model_.ModelImprovementAlgorithm(r *

trust_region_radius_tilde, new_points,
new_points_indicies);

↪→

↪→

339 } while (is_poised);
340

341 if (trust_region_radius_tilde <= trust_region_radius_end){
342 std::cout << "crit_steps: " << crit_steps << "\nmodel_impr: " <<

model_impr_steps << "\nacceptance: "↪→

343 << accept_steps << "\n";
344 DFO_model_.Converged(iterations_, 0, number_of_function_calls,

number_of_parallell_function_calls);↪→

345 for (int i = 0; i<7;i++){

B67

346 eigen_col(new_points, DFO_model_.GetBestPoint(),i);
347 new_points_indicies(i) = i+1;
348 }
349 multiple_new_points = true;
350 terminated = true;
351 goto finished;
352

353 }
354

355 set_next_step(CRITICALITY_STEP_ADD_POINTS);
356 number_of_new_points = new_points_indicies.rows();
357 multiple_new_points = true;
358 goto evaluate;
359 }
360 } else if (next_step_ == FIND_TRIAL_POINT) {
361

362 Eigen::VectorXd gradient =
DFO_model_.GetLagrangianGradient(DFO_model_.GetBestPoint());↪→

363

364

365

366 if (DFO_model_.GetTrustRegionRadius() <= trust_region_radius_end) {
367 std::cout << "crit_steps: " << crit_steps << "\nmodel_impr: " <<

model_impr_steps << "\nacceptance: "↪→

368 << accept_steps << "\n";
369 DFO_model_.Converged(iterations_, 0, number_of_function_calls,

number_of_parallell_function_calls);↪→

370 for (int i = 0; i<7;i++){
371 eigen_col(new_points, DFO_model_.GetBestPoint(),i);
372 new_points_indicies(i) = i+1;
373 }
374 terminated = true;
375 multiple_new_points = true;
376 goto finished;
377 }
378 new_point = DFO_model_.FindLocalOptimum();
379 if ((new_point - last_trial_point).norm() <=

0.0001*DFO_model_.GetTrustRegionRadius()) {↪→

380 force_criticality_step = true;
381 trust_region_radius_icb = gamma *

DFO_model_.GetTrustRegionRadius();↪→

382 set_next_step(CRITICALITY_STEP_START);
383 goto top;
384 } else {
385 last_trial_point = new_point;
386 double maxDistance =

DFO_model_.findLargestDistanceBetweenPointsAndOptimum();↪→

387 if (DFO_model_.norm((new_point - DFO_model_.GetBestPoint())) < tau

* maxDistance) {↪→

388 // Too close.
389 if (!is_model_CFL) {
390 is_model_CFL = DFO_model_.isPoised(new_point, new_point_index,

DFO_model_.GetTrustRegionRadius());↪→

391 }
392 if (is_model_CFL) {
393 set_next_step(TRUST_REGION_RADIUS_UPDATE_STEP);
394 goto top;

B68

395 } else {
396 set_next_step(MODEL_IMPROVEMENT_STEP_START);
397 goto top;
398 }
399 } else {
400 set_next_step(ACCEPTANCE_OF_TRIAL_POINT);
401 number_of_new_points = 0;
402 multiple_new_points = false;
403 goto evaluate;
404 }
405 }
406 } else if (next_step_ == ACCEPTANCE_OF_TRIAL_POINT) {
407 accept_steps++;
408 DFO_model_.SetTrustRegionRadiusForSubproblem(
409 DFO_model_.GetTrustRegionRadius());
410 int t = DFO_model_.findPointToReplaceWithNewOptimum(new_point);
411 rho = (DFO_model_.GetFunctionValue(DFO_model_.getBestPointIndex()) -

function_evaluation)↪→

412 / (DFO_model_.evaluateQuadraticModel(DFO_model_.GetBestPoint())
413 - DFO_model_.evaluateQuadraticModel(new_point));
414

415 if (!is_model_CFL) {
416 Eigen::VectorXd dummyVec(number_of_variables_);
417 dummyVec.setZero();
418 int dummyInt = 0;
419 is_model_CFL = DFO_model_.isPoised(dummyVec, dummyInt,

DFO_model_.GetTrustRegionRadius());↪→

420 }
421

422 if ((rho >= eta1) || (is_model_CFL && rho > 0)) {
423 DFO_model_.update(new_point, function_evaluation, new_gradient, t,

DFO_Model::INCLUDE_NEW_OPTIMUM);↪→

424 set_next_step(TRUST_REGION_RADIUS_UPDATE_STEP);
425 goto print;
426 } else {
427 int index = DFO_model_.isPointAcceptable(new_point);
428 if (index != -1) {
429 DFO_model_.update(new_point, function_evaluation, new_gradient,

index, DFO_Model::INCLUDE_NEW_POINT);↪→

430 }
431 set_next_step(MODEL_IMPROVEMENT_STEP_START);
432 goto top;
433 }
434 } else if (next_step_ == MODEL_IMPROVEMENT_STEP_START) {
435 DFO_model_.modelImprovementStep(new_point, new_point_index);
436 if (new_point_index == -1) {
437 rho = 0;
438 force_criticality_step = true;
439 is_model_CFL = true;
440 set_next_step(TRUST_REGION_RADIUS_UPDATE_STEP);
441 goto top;
442 } else {
443 set_next_step(MODEL_IMPROVEMENT_STEP_END);
444 }
445 } else if (next_step_ == MODEL_IMPROVEMENT_STEP_END) {
446 DFO_model_.update(new_point, function_evaluation, new_gradient,

new_point_index, DFO_Model::INCLUDE_NEW_POINT);↪→

B69

447 model_impr_steps++;
448 set_next_step(TRUST_REGION_RADIUS_UPDATE_STEP);
449 goto print;
450 } else if (next_step_ == TRUST_REGION_RADIUS_UPDATE_STEP) {
451 if (rho >= eta1) {
452 if (function_evaluation >

DFO_model_.GetFunctionValue(DFO_model_.getBestPointIndex())) {↪→

453 trust_region_radius_icb = gamma *
DFO_model_.GetTrustRegionRadius();↪→

454 } else {
455 double tmp = std::min(gamma_inc *

DFO_model_.GetTrustRegionRadius(), trust_region_radius_max);↪→

456 double weight = 0;
457 trust_region_radius_icb = weight *

DFO_model_.GetTrustRegionRadius() + (1 - weight) * tmp;↪→

458 rho = 0;
459 }
460 } else {
461 if (!is_model_CFL) {
462 Eigen::VectorXd dummyVec(number_of_variables_);
463 dummyVec.setZero();
464 int dummyInt = 0;
465 is_model_CFL = DFO_model_.isPoised(dummyVec, dummyInt,

DFO_model_.GetTrustRegionRadius());↪→

466 }
467 if (is_model_CFL) {
468 trust_region_radius_icb = gamma *

DFO_model_.GetTrustRegionRadius();↪→

469 } else {
470 trust_region_radius_icb = DFO_model_.GetTrustRegionRadius();
471 }
472 }
473 set_next_step(CRITICALITY_STEP_START);
474 goto top;
475

476 } else {
477 cout << "This should never be ran. \n";
478 cin.get();
479 }
480

481

482 evaluate:
483 if (multiple_new_points) {
484 number_of_new_points = new_points_indicies.rows();
485 new_gradients.resize(ng, number_of_new_points);
486 mapIndicesToCase.resize(number_of_new_points);
487 function_evaluations.resize(number_of_new_points);
488 for (int i = 0; i < number_of_new_points; ++i) {
489 number_of_function_calls++;
490 Optimization::Case *new_case = new Optimization::Case(base_case_);
491 ConvertPointToCase(new_points.col(i) +

DFO_model_.getCenterPoint(),new_case);↪→

492 mapIndicesToCase[i] = new_case->GetId();
493 case_handler_->AddNewCase(new_case);
494 }
495 number_of_parallell_function_calls++;
496 } else {

B70

497 Optimization::Case *new_case = new Optimization::Case(base_case_);
498 ConvertPointToCase(new_point + DFO_model_.getCenterPoint(),new_case);
499 mapIndexToCase = new_case->GetId();
500 //add it to the handler!
501 case_handler_->AddNewCase(new_case);
502 number_of_function_calls++;
503 number_of_parallell_function_calls++;
504 }
505 iterations_++;
506

507 finished:
508 std::cout << "end of iterate\n";
509 }
510

511 std::string DFO::get_action_name(int a) {
512 switch (a) {
513 case 0: return "FIND_POINTS1 ";
514 case 1: return "FIND_POINTS2 ";
515 case 2: return "INITIALIZE_MODEL ";
516 case 3: return "CRITICALITY_STEP_START ";
517 case 4: return "CRITICALITY_STEP_CHECK_CONVERGENCE ";
518 case 5: return "FIND_TRIAL_POINT ";
519 case 6: return "ACCEPTANCE_OF_TRIAL_POINT ";
520 case 7: return "MODEL_IMPROVEMENT_STEP_START ";
521 case 8: return "MODEL_IMPROVEMENT_STEP_END ";
522 case 9: return "TRUST_REGION_RADIUS_UPDATE_STEP ";
523 case 10: return "CRITICALITY_STEP_ADD_POINTS ";
524 default:return "Not a valid state ";
525 }
526 }
527

528 void DFO::set_next_step(int a) {
529 std::cout << "From " << "\033[1;" + color_from + "m " <<

get_action_name(next_step_) << "\033[0m";↪→

530 next_step_ = a;
531 std::cout << "\tTo " << "\033[1;" + color_to + ";m " <<

get_action_name(next_step_) << "\033[0m" << std::endl;↪→

532 }
533

534 Eigen::VectorXd
DFO::ScaleVariablesFromAlgorithmToApplication(Eigen::VectorXd point)
{

↪→

↪→

535 Eigen::VectorXd ret(point.rows());
536 for (int i = 0; i < number_of_variables_; i++){
537 ret[i] = scaling_[i]*point[i];
538 }
539 return ret;
540 }
541 Eigen::VectorXd

DFO::ScaleVariablesFromApplicationToAlgorithm(Eigen::VectorXd point)
{

↪→

↪→

542 Eigen::VectorXd ret(number_of_variables_);
543 for (int i = 0; i < number_of_variables_; i++){
544 ret[i] = point[i]/scaling_[i];
545 }
546 return ret;
547 }

B71

548

549

550 void DFO::ConvertPointToCase(Eigen::VectorXd point,Optimization::Case*
new_case) {↪→

551 Eigen::VectorXd scaled(number_of_variables_);
552 scaled = ScaleVariablesFromAlgorithmToApplication(point);
553

554 new_case->SetRealVarValues(scaled);
555 new_case->set_objective_function_value(
556 std::numeric_limits<double>::max());
557 }
558

559 void DFO::CreateScalingVector() {
560 scaling_ = Eigen::VectorXd::Zero(number_of_variables_);
561 for (int i = 0; i < number_of_variables_; ++i) {
562 Model::Properties::Property::PropertyInfo
563 propinfo = variables_->
564 GetContinousVariable(
565 UUIDS_in_same_order_as_in_realvar_base_case_[i])->propertyInfo();
566 if (propinfo.coord == Model::Properties::Property::Coordinate::x) {
567 scaling_[i] = 10000.0;
568 } else if (propinfo.coord ==

Model::Properties::Property::Coordinate::y) {↪→

569 scaling_[i] = 10000.0;
570 } else if (propinfo.coord ==

Model::Properties::Property::Coordinate::z) {↪→

571 scaling_[i] = 10000.0 / 30.0;
572 } else {
573 std::cout << "The variable type is not coordinate xyz... no scaling

applied\n";↪→

574 std::cin.get();
575 }
576 }
577 }
578

579

580 }
581 }

VirtualSimulator.h
1 //
2 // Created by joakim on 12.06.18.
3 //
4

5 #ifndef FIELDOPT_VIRTUALSIMULATOR_H
6 #define FIELDOPT_VIRTUALSIMULATOR_H
7 #include <iostream>
8 #include <iomanip>
9 #include <casadi/casadi.hpp>

10 #include <Eigen/Core>
11

12 class VirtualSimulator {
13 private:
14 std::string problem;
15 casadi::NlpBuilder nl;

B72

16 std::vector<casadi::DM> input;
17 casadi::Function f;
18 casadi::Function fj;
19 casadi::Function g;
20 casadi::Function gj;
21 int m_; //Number of constraints (linear and nonlinear);
22 int n_; //Number of variables;
23 int mb_; //Number of bounds.
24

25 public:
26 VirtualSimulator(std::string problemFile);
27 VirtualSimulator();
28 Eigen::VectorXd evaluateConstraints(Eigen::VectorXd point);
29 Eigen::MatrixXd evaluateConstraintGradients(Eigen::VectorXd point);
30 double evaluateFunction(Eigen::VectorXd point);
31 Eigen::VectorXd evaluateFunctionGradients(Eigen::VectorXd point);
32 casadi::DM convertEigenMatrixToCasadi(Eigen::MatrixXd point);
33 Eigen::MatrixXd convertCasadiMatrixToEigen(casadi::DM casadiMatrix);
34 int GetNumberOfVariables();
35 int GetNumberOfConstraints();
36 Eigen::VectorXd GetInitialPoint();
37 Eigen::VectorXd GetLowerBoundsForVariables();
38 Eigen::VectorXd GetUpperBoundsForVariables();
39 Eigen::VectorXd GetLowerBoundsForConstraints();
40 Eigen::VectorXd GetUpperBoundsForConstraints();
41 bool IsFeasiblePoint(Eigen::VectorXd point);
42 Eigen::VectorXd Solve();
43 };
44

45 #endif //FIELDOPT_VIRTUALSIMULATOR_H

VirtualSimulator.cpp

1 //
2 // Created by joakim on 12.06.18.
3 //
4

5 #include "VirtualSimulator.h"
6 VirtualSimulator::VirtualSimulator(std::string problemFile) {
7 problem = problemFile;
8 nl.import_nl(problem);
9 std::vector<casadi::MX> f1 = {nl.f};

10 std::vector<casadi::MX> f2 = {casadi::MX::vertcat(nl.x)};
11 f = casadi::Function("obj", f2, f1);
12 fj = f.factory("jacf", {f.name_in()}, {"jac:o0:i0", "o0"});
13 auto gcat = {casadi::MX::vertcat(nl.g)};
14 g = casadi::Function("obj", f2, gcat);
15 gj = g.factory("jacg", {f.name_in()}, {"jac:o0:i0", "o0"});
16 input = {casadi::DM(nl.x_init)}; // set the correct size of input.
17 m_ = GetNumberOfConstraints();
18 }
19 VirtualSimulator::VirtualSimulator() {
20 }
21

22 Eigen::VectorXd VirtualSimulator::evaluateConstraints(Eigen::VectorXd
point) {↪→

B73

23 input[0] = convertEigenMatrixToCasadi(point);
24 auto out = g(input);
25 Eigen::VectorXd output;
26 if (m_ > 0) {
27 output = convertCasadiMatrixToEigen(out[0]);
28

29 } else {
30 output = Eigen::VectorXd::Zero(0);
31 }
32 return output;
33 }
34

35 Eigen::MatrixXd
VirtualSimulator::evaluateConstraintGradients(Eigen::VectorXd point)
{

↪→

↪→

36 input[0] = convertEigenMatrixToCasadi(point);
37 auto out_gj = gj(input);
38 Eigen::MatrixXd output = convertCasadiMatrixToEigen(out_gj[0]);
39 return output;
40 }
41

42 double VirtualSimulator::evaluateFunction(Eigen::VectorXd point) {
43 input[0] = convertEigenMatrixToCasadi(point);
44 auto out = f(input);
45 Eigen::VectorXd output = convertCasadiMatrixToEigen(out[0]);
46 return output[0];
47 }
48

49 Eigen::VectorXd
VirtualSimulator::evaluateFunctionGradients(Eigen::VectorXd point) {↪→

50 input[0] = convertEigenMatrixToCasadi(point);
51 auto out_fj = fj(input);
52 Eigen::VectorXd output =

(convertCasadiMatrixToEigen(out_fj[0])).transpose();↪→

53

54 return output;
55 }
56

57 casadi::DM VirtualSimulator::convertEigenMatrixToCasadi(Eigen::MatrixXd
point) {↪→

58 casadi::DM casadiVector;
59 size_t rows = point.rows();
60 size_t cols = point.cols();
61

62 casadiVector.resize(rows, cols);
63 casadiVector = casadi::DM::zeros(rows, cols);
64 std::memcpy(casadiVector.ptr(), point.data(), sizeof(double) * rows *

cols);↪→

65

66 return casadiVector;
67 }
68

69 Eigen::MatrixXd VirtualSimulator::convertCasadiMatrixToEigen(casadi::DM
casadiMatrix) {↪→

70 auto casadiMatrixDense = casadi::DM::densify(casadiMatrix);
71 Eigen::MatrixXd eigenMatrix;
72 size_t rows = casadiMatrixDense.size1();

B74

73 size_t cols = casadiMatrixDense.size2();
74 eigenMatrix.resize(rows, cols);
75 eigenMatrix.setZero(rows, cols);
76 std::memcpy(eigenMatrix.data(), casadiMatrixDense.ptr(), sizeof(double)

* rows * cols);↪→

77

78 return eigenMatrix;
79 }
80 int VirtualSimulator::GetNumberOfVariables() {
81 return (nl.x_init).size();;
82 }
83 int VirtualSimulator::GetNumberOfConstraints() {
84 return (nl.g_ub).size();;
85 }
86 Eigen::VectorXd VirtualSimulator::GetLowerBoundsForVariables() {
87 Eigen::VectorXd lb(GetNumberOfVariables());
88 for (int i = 0; i < lb.rows(); ++i) {
89 lb(i) = nl.x_lb[i];
90 }
91 return lb;
92 }
93

94 Eigen::VectorXd VirtualSimulator::GetUpperBoundsForVariables() {
95 Eigen::VectorXd ub(GetNumberOfVariables());
96 for (int i = 0; i < ub.rows(); ++i) {
97 ub(i) = nl.x_ub[i];
98 }
99 return ub;

100 }
101 Eigen::VectorXd VirtualSimulator::GetLowerBoundsForConstraints() {
102 Eigen::VectorXd lb(GetNumberOfConstraints());
103 for (int i = 0; i < lb.rows(); ++i) {
104 lb(i) = nl.g_lb[i];
105 }
106

107 return lb;
108 }
109

110 Eigen::VectorXd VirtualSimulator::GetUpperBoundsForConstraints() {
111 Eigen::VectorXd ub(GetNumberOfConstraints());
112 for (int i = 0; i < ub.rows(); ++i) {
113 ub(i) = nl.g_ub[i];
114 }
115 return ub;
116 }
117 bool VirtualSimulator::IsFeasiblePoint(Eigen::VectorXd point) {
118 if (GetNumberOfConstraints() <= 0) {
119 return true;
120 } else {
121 Eigen::VectorXd constraints = evaluateConstraints(point);
122 for (int i = 0; i < GetNumberOfConstraints(); ++i) {
123 if (constraints[i] < nl.g_lb[i] * 0.9 || constraints[i] > 1.1 *

nl.g_ub[i]) {↪→

124 return false;
125 }
126 }
127 }

B75

128 return true;
129 }
130 Eigen::VectorXd VirtualSimulator::GetInitialPoint() {
131 Eigen::VectorXd x_init(GetNumberOfVariables());
132 for (int i = 0; i < x_init.rows(); ++i) {
133 x_init(i) = nl.x_init[i];
134 }
135 return x_init;
136 }
137 Eigen::VectorXd VirtualSimulator::Solve() {
138 casadi::Dict opts;
139 opts["expand"] = true;
140 // Allocate NLP solver and buffers
141 casadi::Function solver = casadi::nlpsol("nlpsol", "ipopt", nl, opts);
142 std::map<std::string, casadi::DM> arg, res;
143 // Solve NLP
144 arg["lbx"] = nl.x_lb;
145 arg["ubx"] = nl.x_ub;
146 arg["lbg"] = nl.g_lb;
147 arg["ubg"] = nl.g_ub;
148 arg["x0"] = nl.x_init;
149 res = solver(arg);
150

151 for (auto &&s : res) {
152 std::cout << std::setw(10) << s.first << ": " <<

std::vector<double>(s.second) << std::endl;↪→

153 }
154 double fval = (convertCasadiMatrixToEigen(res["f"])(0));
155 Eigen::VectorXd ans = convertCasadiMatrixToEigen(res["x"]);
156

157 std::cout << "========================= THE ANSWERS
======================\n";↪→

158 std::cout << "fval = " << fval << "\n";
159 std::cout << "x = \n" << ans << "\n";
160 return ans;
161

162 }

B76

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Derivative-free optimization
	Why use derivative-free optimization methods?

	FieldOpt: Field Development Optimization Framework
	Outline of the report

	Literature Review
	Theory
	Notations
	The surrogate model
	Updating of the interpolation model
	Derivation of the solution of a convex quadratic program
	Create the Lagrange polynomials
	Simple updating scheme
	Sophisticated updating scheme
	Formulas for shifting the center point

	Gradient enhanced interpolation model
	Set the true gradients at the center point of the model
	Including the remaining available gradients

	Constraint handling
	Incorporate constraints into the algorithm
	Constraints in the well-placement challenge

	Robustness against noise
	Scenario: Including gradients

	Poisedness - Geometry of the interpolation points
	Model improvement algorithm
	Solving the subproblem
	The exact solution
	Approximate solutions
	The constrained case

	The scaling factor, r
	Certifiably fully linear models
	The algorithm
	The derivative-free model-based trust-region algorithm
	Explanation of the algorithm
	Comparison with Powell's algorithms

	Testing of the algorithm
	Incorporating constraints
	Implementation details
	Test problems for the constraint handling
	Results - constraint handling

	Gradient enhanced models
	Convex functions
	Nonconvex function
	10 dimensional nonconvex function

	Testing on an oil reservoir simulator
	Scaling
	Results of the well placement challenge

	Conclusion
	Further work
	Implementation
	Initialization
	Optimize the parameters for the application area
	Scaling
	Global optimization of subproblem
	Make it a global algorithm
	Gradient enhanced models

	Bibliography
	Appendix A - Results of testing the algorithm
	Appendix B - The implementation

