
Refining Network Intrusion Alerts with
Multi-Sensor Fusion

Emil Henry Flakk

Master of Science in Communication Technology

Supervisor: Yuming Jiang, IIK
Co-supervisor: Arne Øslebø, Uninett

Department of Information Security and Communication Technology

Submission date: June 2018

Norwegian University of Science and Technology

Title: Refining Network Intrusion Alerts with Multi-Sensor Fusion

Student: Emil Henry Flakk

Problem description:

Modern network security increasingly relies on good situational awareness and on
the ability to quickly react to threats. A major issue with existing network intrusion
detection systems (NIDS) is the high number of false positives, affecting their
effectiveness in practice. In addition, they rarely jointly make use of information
from different kinds of sensors, which could help provide an enhanced view of the
current threat situation.

This project will look into using machine learning to analyze data collected from
NIDS and other sensors (e.g., DNS, Netflow and host-based intrusion detection) to
decrease the number of false positives. A realistic, monitored network environment
will be created to generate sensor data. This data will be combined (“fused”) and
used to create a labeled training/testing dataset for anomaly detection purposes.
Feature extraction will then be performed to reduce the dimensionality of the dataset,
making learning more feasible. In turn, the training dataset will then be used to train
classifiers using supervised classification algorithms. Finally, the resulting classifiers
will be applied to the testing dataset and compared according to their ability in
decreasing the false positive rate.

Responsible professor: Yuming Jiang, IIK, NTNU

Supervisor: Arne Øslebø, Uninett AS

Abstract

Modern Computer Emergency Response Teams (CERTs) are heavily
reliant on Network Security Monitoring (NSM) in order to defend their
networks from intrusions. As attacks increase in frequency and complexity,
the human resources to deal with them become constrained. A particular
issue is that Network IDS (NIDS) tend to produce a huge number of
false positive alerts. This is in part due to the very low base rate of
intrusions compared to normal traffic, leading to a base rate fallacy when
classifying traffic. Experienced incident handlers use their human intuition
to filter out such alerts, often looking at other sensor data to inform
their situational assessment. This thesis tries to capture this intuition
by applying the conceptual model of Multi-Sensor Data Fusion (MSDF),
allowing for the automatic refinement of alert lists and the removal of false
positive alerts, as well as potentially the detection of more sophisticated
attacks. Its contribution is two-fold: First, a simple test-bed using virtual
machines and NSM sensors is constructed to acquire NSM sensor data
from simulated users and an attacker. Then, a graph-based feature
extraction approach (RolX) and binary classifiers are applied to perform
anomaly detection using data from NSM sensors. We show that, given
data generated by our test-bed, commonly available binary classifiers
like Artifical Neural Networks (ANN), RandomForest and State Vector
Machines (SVM) perform well and are able to filter out respectively
93 %, 97 % and 94 % of false positives. Future work is also suggested
to investigate and improve the applicability of these methods to more
complex scenarios.

Samandrag

Hendingshandteringsteam (CERT-ar) er avhengige av såkalla nettsikker-
heitsmonitorering (NSM) for å verne nettverka sine mot inntrengjing.
Etter kvart som åtaka blir vanlegare og støtt meir kompliserte, så vinn
ikkje dei menneskelege kreftene til lenger. Eit særskilt problem er at
programvare som oppdagar innbrot i nettverket (NIDS) ofte lagar mange
falske positive varslar. Dette er til dels fordi grunnraten til intrusjonstra-
fikk er særs låg samanlikna med harmlaus eller normal trafikk, ein såkalla
bayesisk Base Rate Fallacy. Erfarne medarbeidarar tek derfor i bruk eiga
røynsle og vit for å filtrere bort slike varslar, ofte ved å nytte annan
NSM-sensordata for å dana seg eit oversyn over situasjonen. Denne mas-
teroppgåva freistar fange denne intuisjonen ved å nytte den konseptuelle
modellen kjend som Multi-Sensor Data Fusion (MSDF). Det er då von
dette opnar for å automatisk slipe ned varsellister og kan hende oppdaga
meir samansette åtak. Arbeidet bringar to bidrag til bords: Fyrst blir eit
testmiljø laga for generering av NSM-sensordata frå simulerte brukarar
og ein åtakar. Deretter blir ei grafbasert feature extraction-tilnærming
(RolX) og binære klasseinndelarar nytta for å gjennomføre anomalide-
teksjon på denne sensordataen. Vi syner at klasseinndelarane Artifical
Neural Networks (ANN), RandomForest og State Vector Machines (SVM)
fungerer godt med såleis data, og fjernar høvesvis 93, 97 og 94 prosent
av falske positive varslar. Vi føreslår også vidare arbeid for å utforske og
betre nytte desse metodane i meir samansette høve.

Preface

In the 1990s, I was excited about the future, and I dreamed of a world
where everyone would install GPG. Now I’m still excited about the future,
but I dream of a world where I can uninstall it.
– moxie marlinspike

This thesis marks the end of life as a student at NTNU. The process
of writing it, much like student life itself, has been both enjoyable yet
at times unpredictable, however always steadfastly moving towards a
set goal. Its culmination is in no small part the result of many people’s
assistance along the way. I am deeply indebted to my professor Yuming
Jiang (IIK, NTNU) and supervisor Arne Øslebø (Uninett AS) for their
patience and encouragement in bringing this thesis to its completion.
Moreover, I’d like to thank my colleagues at Uninett AS in general,
David Palma (IIK, NTNU), Christoffer V. Hallstensen (NTNU Digital
Security), Gurvinder Singh (Uninett IoU), Boye Borg Nygård and many
others for their input and friendly advice. I would also be at fault for
not acknowledging my girlfriend for her immeasurable contributions to
my well-being. Lastly, my life as a student would not have been half as
fulfilling hadn’t it been for the years spent as a volunteer at the Student
Society in Trondheim (Studentersamfundet), a source of many late night
discussions and friendships.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Acronyms xv

1 Introduction 1
1.1 Research questions . 2

2 Background 5
2.1 Network Security Monitoring and Intrusion Detection 5

2.1.1 Sensor data . 8
2.1.2 Intrusion detection systems 9

2.2 NSM and Multi-Sensor Data Fusion 11
2.3 Machine Learning . 12

2.3.1 Evaluating binary classifiers 14
2.3.2 Pre-processing and features 16
2.3.3 Supervised classifiers . 18

2.4 Machine learning and NSM . 19
2.4.1 Data acquirement . 20
2.4.2 Anomaly detection using role dynamics 22

3 Methodology 25
3.1 Fusion approach . 25
3.2 Data acquirement . 27
3.3 Pre-processing and feature extraction 30

3.3.1 Feature extraction . 30

vii

3.3.2 Pre-processing . 31
3.4 Classification . 34
3.5 Evaluation . 35
3.6 Discussion . 35

4 Findings and Discussion 39
4.1 Data generation . 39
4.2 Feature extraction . 42

4.2.1 Pre-processing . 43
4.3 Classifier results . 43
4.4 Discussion . 44

5 Conclusion and future work 51
5.1 Future work . 51

References 53

A Code 57
A.1 attack.py . 57
A.2 simulate_user_traffic.py . 58

List of Figures

2.1 To intercept network traffic, it might be either extracted inline the trans-
mission cable (“tapped”) or copied onto a separate switch port (commonly
known as a span or mirror port).[Bej13] 8

2.2 ML process as explained by [NFP12]: First, data with known labels is pre-
processed, turned into features and used to train classifiers. For evaluation,
previously unseen data is pre-processed and turned into features in a
similar manner. The trained classifiers then predict the labels, which is
used as a basis for scoring. 13

2.3 A confusion matrix for a well-performing binary classifier (RandomForest)
using randomly generated, linearly separable data. The cells are colored
using a gradient according to their normalized recall. Note the brightly
colored diagonal, suggesting the classifier discriminates well between
different classes. 16

2.4 A Receiver Operator Characteristics (ROC) plot for a binary classifier
(RandomForest) of uniformly generated, linearly separable data. Note
how the False Positive Rate (FPR) asymptotically increases as the True
Positive Rate (TPR) approaches TPR = 1, showing the trade-off between
recall and the amount of false positives. 17

3.1 A high-level overview of how this research was performed. First, Network
Security Monitoring (NSM) data is generated using a test-bed. Then a
feature extraction and fusion process is applied to alert data in order to
generate a labeled dataset, where the labels correspond to the original
alert being a false or true positive. 66 % of the labeled data is used to
train classifiers, and the remaining 33 % is used to evaluate the trained
classifiers according to their ability to predict the labels of unseen data. 26

ix

3.2 The topology of the test-bed used for generating NSM data. The attacker
sits on an external network and interacts with the web server. A Network
IDS (NIDS) is installed on the network gateway, and the web server runs
a Host IDS (HIDS) agent. Both export NSM data to an ElasticSearch
server (not shown) for aggregation. 28

3.3 Kibana provides a searchable view into the NSM sensor data continu-
ously aggregated and stored in ElasticSearch. Here we can see Netflow
sensor data originating from Suricata, generated for the purpose of data
acquirement, the details and results of which are presented in Section 4.1. 29

3.4 A simplified situation graph. Blue vertices represent alerts triggered by
Wazuh, whereas red alerts stem from Suricata. Both alerts have the IP
pairs 192.168.88.90 and 172.168.88.20 in common, and thus form a network. 32

4.1 ROC Curve for SVM (with SMOTE rebalanced data) 45
4.2 ROC Curve for ann (with SMOTE rebalanced data) 45
4.3 ROC Curve for RandomForest (with SMOTE rebalanced data) 47

List of Tables

4.1 Result table for data_smote.training.csv 46
4.2 Result table for data_raw.training.csv 46
4.3 Result table for data_over_undersampled.training.csv 46

xi

List of Algorithms

3.1 Algorithm for mining alert data Aalerts for candidate hosts and their
respective NSM alert data Ansm within the last N minutes. 32

3.2 Algorithm for constructing the situation graph 33

xiii

List of Acronyms

ALAC Adaptive Learner for Alert Classification.

ANN Artifical Neural Networks.

ASIDS Application-specific IDS.

AUC Area Under Curve.

CERT Computer Emergency Response Team.

DNS Domain Name System.

DPI Deep Packet Inspection.

FN False Negative.

FNR False Negative Rate.

FP False Positive.

FPR False Positive Rate.

HIDS Host IDS.

HTTP HyperText Transfer Protocol.

IDS Intrusion Detection System.

IPS Intrusion Prevent System.

JDL Joint Directors of Laboratories.

kNN k-Nearest Neighbor.

xv

MLP Multi-Level Perceptron.

MSDF Multi-Sensor Data Fusion.

NFL No Free Lunch.

NIDS Network IDS.

NMF Non-Negative Matrix Factorization.

NSM Network Security Monitoring.

OTS Off-The-Shelf.

PCA Principal Component Analysis.

ROC Receiver Operator Characteristics.

SMOTE Synthetic Minority Oversampling Technique.

SVM State Vector Machines.

TF-IDF Term Frequency-Inverse Document Frequency.

TN True Negative.

TNR True Negative Rate.

ToS Type of Service.

TP True Positive.

TPR True Positive Rate.

Chapter1Introduction

Information security is increasingly becoming an issue for modern organizations. As
noted by one study[Pon17], whereas the average cost of per breached record has fallen
from to 158 to 141 USD from 2016 to 2018, the mean number of records breached
has increased 1.8 % to more than 24 000. Governments, on the other hand, need
to be mindful of the consequences to national security. Besides economic costs and
other factors counterproductive to organizational goals, breaches erode trust from
consumers and citizens, and perhaps more pressingly, stockholders and politicians.

Modern attackers are increasingly apply sophisticated attacks[Man18], often
establishing a permanent presence in the network and hiding from the owners of the
affected systems. In this case, it’s interesting to consider the mean dwell time, the
amount before an attacker is evicted from the network. In 2018, one study reported
this to be 100 days globally[Man18]. To make matters worse, there is an increasing
skill gap between the needed knowledge to counter-act such intrusions[Man18]. Hence,
the human capacity is already too limited.

Enter Computer Emergency Response Teams (CERTs), which every day try to
detect, handle and limit the impact of intrusions into their networks. To do so,
they often deploy Network IDSs (NIDSs), which analyze traffic and create alerts
when suspicious or misuse traffic is detected. However, this often leads to a high
degree of false positives. Intuitively, this is unavoidable: Intrusive traffics constitutes
only a small amount of the total traffic volume, meaning even a small degree of
misclassification leads to a large amount of false positives. Moreover, attackers will
often try to masquerade their traffic as normal traffic, making the problem even
worse.

1

2 1. INTRODUCTION

The issue of false positives remain one of the major obstacles in effectively
deploying NIDSs[JD02], and arguably most types of Intrusion Detection Systems
(IDSs). These unnecessary alerts bog down incident handlers: Their limited capacities
are wasted filtering away harmless alerts, instead of dealing with other pressing
security concerns. Moreover, the large amount of false alerts defeats the purpose of
monitoring: If most alerts are meaningless or discractive, one is less likely to care
about them, which might lead to intrusions going undetected.

This work is motivated by the fact that incident handlers will use their human
intuition and experience to discriminate between harmless and actual intrusion alerts.
To this end, they often apply sensor data besides NIDS: For example, they might
investigate logs or DNS queries performed by a particular host. This begs the
question: Is there some way to capture this intuition? By doing so, we achieve
two noble goals: First, we automate tedious work already performed by incident
handlers. Secondly, if the approach is data oriented, it might grow organically as new
sensors are installed into the network, saving both development time and perhaps
even allowing us to detect increasingly complex attacks.

In the general sense, we therefore seek to combine different types of sensor data
in order to gain more situational awareness and make the right decision: Should
we pursue this alert further or not? The problem is not new, and the research
field known as Multi-Sensor Data Fusion (MSDF) provides a set of techniques and
conceptual models for precisely such problems.

Due to the short timeframe of this thesis, the scope must be tighetened somewhat
to be manageable, as even intrusion detection by itself is a vast and complicated
field. Therefore, it is proposed to start by filtering away false positive alerts. As
such, the goal of this thesis can be considered to be the complement of typical IDS
research: Instead of developing more sophisticated detection mechanism, we attack
the problem from the other side and try to detect the normal traffic, allowing us to
deliver more pin-pointed alert lists.

1.1 Research questions

Based on the previous discussion, the following is proposed as the main goals of this
research:

1.1. RESEARCH QUESTIONS 3

R1 What is a suitable feature representation of NIDS alert data with auxiliary
sensors and their contribution to operational awareness in computer networks?

R2 Is it possible to construct classifiers (based on such a representation) that are
able to detect primary false positives alert data and ideally retain true positives
given auxiliary sensor data?

Chapter2Background

This chapter will present the theoretical background of the work performed during
this research. It will also present other works relevant to understanding the techniques
used in the Methodology section.

First, the field of Network Security Monitoring (NSM) will be introduced and an
explaination of different monitoring mechanisms (or sensors) that might be applied.
We will also introduce the concept of Intrusion Detection System (IDS).

Then, we will provide a brief introduction to the concepts and terminology of
Multi-Sensor Data Fusion (MSDF), which provides a framework for understanding
how sensor data might be combined.

Then, machine learning will be presented in general. Binary classification learning
problems will then be presented, with a brief introduction to research methodology
and common terminology.

Finally, we will consider applications of machine learning techniques to NSM. We
will particularly consider one approach ([ea18]) that has been a major inspiration to
this research.

2.1 Network Security Monitoring and Intrusion Detection

When dealing with the protection of networks, we refer to the collection, analysis, and
escalation of indications and warnings to detect and respond to intrusions as NSM.
The goal of NSM is not to prevent intrusion. Rather, it recognises that intrusion
is inevitable and tries to build tools for detecting and measuring the impact of
intrusions. [Bej13]

5

6 2. BACKGROUND

In order to better grasp the motivation for NSM, it is useful to understand what
one is trying to detect. The word kill chain is used to describe the steps taken
during intrusion into a network. The term comes from military doctrine, and its
usage within information security was pioneered by Lockheed Martin[HCA11], who
identifies the following phases during intrusion:

– Reconnaissance, a pioneering phase focused on discovering targets and enu-
merating their properties. Examples of actions taken in this phase include
scanning network ranges for open services (“port knocking”) and analysis of
open sources like mailing lists.

– Weaponization, the selection and preparation of a digital artefact, including
exploit code and some mechanism to remotely control the target after successful
exploitation. This step might include applying binary obfuscation techniques
to make the the payload look less inconspicuous, in order to avoid detection.

– Delivery. The transmission of the weaponized artefact to the target.

– Exploitation. The artefact’s code is triggered and bypasses security bound-
aries in order to escalate privilegies to those of a system operator or greater
(e.g. operating system routines), colloquially known as “owning” the system.

– Installation. The remote control mechanism is persistently put on the system
in order to bootstrap the next phase. This might include installing operating
system hooks to hide from antivirus software or human operators.

– Command and Control (C2). The remote control mechanism establishes
contact with one or more attacker-controlled server(s) in order to receive
further instructions. During or before this stage, the compromised node might
register itself at the attacker. Multiple control nodes and C2 methods might be
employed for resilience to counter-intrusion measures and to avoid detection,
usually requiring some sort of discovery mechanism.

– Actions on Objectives. From here on, intruders perform the necessary
actions to reach the goal of the intrusion.

Within any phase of this model, NSM sensors that react to events (actions) in the
network might be installed. As the kill chain operates at multiple layers throughout
the network, e.g. actions visible on the network or only on the target host itself it is

2.1. NETWORK SECURITY MONITORING AND INTRUSION DETECTION 7

usually necessary to install several different kinds of sensors. [Bej13] identifies the
following types of data generated:

– Full content, that is, exact copies of the traffic that passes through the sensor.
The format used is commonly PCAP, compatible with popular analysis tools
like Wireshark.

– Extracted content. These are generally the application or higher-level pay-
loads of the traffic, such as images or text transferred across the network.

– Session data is a record of a conversation between two hosts. This includes
information about the duration, source and destination IPs and ports, protocol,
and bytes transmitted by either party.

– Transaction data is information about the nature of an observed transaction.
This is usually specific to the application at hand: For example, transaction
data about an HTTP request will tell us what page was requested, what web
browser (user-agent) was used and so forth.

– Statistical data are aggregates or metrics about events observed on the
network. By observing the session over time, one is able to calculate, say, the
mean number of bytes transferred and the total duration of it.

– Metadata is data about the data observed on network traffic. For example,
if a certain domain looks interesting, we might augment it with WHOIS data
from the TLD registry.

– Alert data are entries created when tools in the NSM pipeline detects anoma-
lous or suspicious behavior. Example sources include custom heuristics (e.g.
“this host contacted > n = 50 other hosts in 5 minutes”), or, perhaps more
importantly, IDSs.

The practical realisation of installing sensors can be achieved in many ways:
Sensors can be installed inline on network equipment, such as firewalls or edge routers.
Another approach is to intercept traffic and redirect it to dedicated equipment with
sensors installed.[Bej13] With fiber optic cables, this is often achieved by installing
a fiber optic tap, which sends some of the transmitted light through a separate
path (right part of Figure 2.1. It is also possible to have a switch send copies of
traffic through dedicated span ports (left part of Figure 2.1). What approach is

8 2. BACKGROUND

SPAN TAP

NSM

Figure 2.1: To intercept network traffic, it might be either extracted inline the
transmission cable (“tapped”) or copied onto a separate switch port (commonly
known as a span or mirror port).[Bej13]

used depends on the data and resource requirements of the different sensors: For
example, a sensor for port knocking might be installed on a firewall, whereas a more
taxing might be installed onto a dedicated, powerful server. Bear in mind that one
should still aggregate NSM data in a central place, in order to faciliate analysis of
the data[Bej13].

2.1.1 Sensor data

We will now present some concrete data representations from NSM sensors and some
of their applications or characteristics.

DNS Domain Name System (DNS) is a client-server protocol used to associate
records of multiple types with any domain (often called a zone). A zone might
have additional sub-domains or labels with their own records. For example, an A
record or AAAA record associates a domain with an IPv4 or IPv4 address respec-
tively. This indirection achieves two main goals: It allows users to consume services
without knowing IP addresses and providers to change IP addresses without notify-
ing users. RFC2136[VT+97] extends DNS to allow clients to dynamically update
records. These two features make DNS particularly well-suited for implementing
C2 infrastructures[DRF+11][XBSY13], providing both registration of compromised

2.1. NETWORK SECURITY MONITORING AND INTRUSION DETECTION 9

hosts and a discovery mechanism for control nodes. This in turn makes DNS an
important source for indicators of compromise.

Netflow Sometimes, we wish to keep metrics of and audit conversations throughout
our network. Netflow is a telemetry protocol that provides us with useful information
like what hosts communicates, when, for how long and so forth. It usually does
this by tracking traffic with the same 7-tuple of 1) the ingress interface, 2+3) the
source and destination IP addresses, 4) the IP protocol, 5+6) source and destination
ports, and finally the 7) Type of Service (ToS). There also exists a 5-tuple variety,
omitting the ToS and interface fields.[HČT+14] It then keeps track of when flows
were initiated, and uses this information to calculate metrics like the number of bytes
transferred and the number of packets in total. Hence, it is a attractive source of
session data in NSM. Usually, routers in the network will export flow data, and a
collector will aggregate and store it centrally.

Syslog Modern UNIX-like operating systems and others offer logging facilities
that store the a consistently structured log output of applications and the operating
system itself. The format expected is known as syslog and is currently standardized
by RFC 5424 [Ger09]. By collecting syslog output, one is able to gain insight into
the current situation as seen by applications and operating systems. Depending on
the logging capabilities and semantics of the application, syslog might offer any kind
of data, from transactional data to extracted content or statistical data. Syslog can
be remotely aggregated using software like rsyslog.

2.1.2 Intrusion detection systems

IDSs are systems that try to detect intrusions in computer networks. If they also
offer the ability to block the intrusion attempt, say by dropping the traffic, they are
known as Intrusion Prevent System (IPS).

It is common to distinguish between two main IDS approaches[Pet17a]:

– Misuse detection, which detects unwanted behavior using sets of rules (of-
ten called signatures), for example the content of HTTP requests based on
previously observed malicious traffic.

– Anomaly detection, which performs pattern recognition on network activity
and tries detecting unexpected or deviant behavior. Such patterns might be

10 2. BACKGROUND

any number of different features of the sensor data collected: Using parametric
modelling, it is possible to induce the expected distributions of such features
and hence calculate the deviation, as seen in [Den87]. Non-parametric methods
include clustering techniques like k-means and binary classifiers.

In an NSM context, an IDS might be considered an additional sensor that provides
alert data to the system. Such alerts is generated from analysing NSM data from
other sensors or its own. This is entirely dependent on the type of intrusion detection
being performed. There are chiefly three different “flavors” of IDS[Pet17a]:

– Network IDS (NIDS), which performs analysis in network traffic. This
might entail payload inspection, statistical analysis or other heuristics.

– Host IDS (HIDS), which tries to detect intrusion on a particular host using
local resources like application and system logs. For example, the system might
detect users running suspicious binaries.

– Application-specific IDS (ASIDS), which is mainly concerned with detect-
ing intrusion within a particular application, like a database. In the single-host
case, this is similar to HIDS (albeit a less general approach), but ASIDS might
also be applied to distributed applications.

We will now consider two examples of such IDSs:

Suricata is a NIDS capable of providing several sorts of NSM data. First and
foremost, it performs Deep Packet Inspection (DPI) on received traffic, tracking
sessions (e.g. defragmentation of packets) and matching the payload with rules. Such
rules might consider the value of certain protocol-specific fields (like the User-Agent of
HTTP traffic) or more low-level properties, such as the TCP flags, or any combination
thereof. As such, it performs misuse detection. Upon a match, Suricata creates
an alert, i.e. alert data. Suricata is also capable of exporting Netflow and perform
several types of content-extraction, notably of DNS, HyperText Transfer Protocol
(HTTP) and TLS certificates.

Suricata is a multi-platform HIDS based on OSSec. On the host, Wazuh runs as
an agent communicating with a server, i.e. it uses a distributed architecture with a
central control node for controlling agents and storing their outputs. Wazuh comes

https://suricata-ids.org/
https://wazuh.com/

2.2. NSM AND MULTI-SENSOR DATA FUSION 11

with rulesets for matching suspicious behavior in many common applications, such as
the Apache HTTP web server and OpenSSH. In Windows, it can also track the state
of the registry. Additionally, Wazuh supports tracking the integrity of processes and
binaries throughout the system.

2.2 NSM and Multi-Sensor Data Fusion

MSDF is a set of techniques, processes and models that combine data from different
sources in order to provide a holistic view of an entity,[HL97] a process known
as fusion. It has seeen applications within a variety of fields, from the defense
industry[HL97] to intrusion detection and [Bas00] and sharing of NSM data[And16].

By itself, MSDF contributes conceptual models for understanding how such
fusion might be achieved. The techniques themselves might be borrowed from other
fields, such as machine learning or statistical estimation[HL97]. As such, multiple
conceptual models exists for the fusion process. We will now focus on a commonly
accepted and readily applicable model for this research, the Joint Directors of
Laboratories (JDL) Fusion Loop.

First, it must be noted that fusion is not a singular process. Different kinds
of fusion might be performed: We might have data directly related to the entities
themselves, but sometimes the goal is rather to consider the contribution of an entity
to the current situation of a system. Doing so might require different types of data
sources (sensors) or techniques. This is captured by distinguishing between different
levels of processing in the JDL Fusion Loop, as explained by [HL97]:

– Object Refinement (Level 1 Processing). Here, we discover the objects
and provide a refined representation of them, the main goal being to arrive at
a common frame of reference to aid object comparison. Moreover, auxiliary
data or metadata is attached to the object in order to faciliate classification or
satistical estimation of its properties.

– Situation Refinement (Level 2 Processing). This describes how an object
related to the surrounding environment, or compared to other objects. By
doing so, we are able to contextualize the features of the object and also get a
better grasp of the overall situation of the system, i.e. it provides situational
awareness.

12 2. BACKGROUND

– Threat Refinement (Level 3 Processing). The main goal of this process
is to predict the future situation: For example, is it likely or not that these
objects will constitute a threat to us in the future?

– Process Refinement (Level 4 Processing). This is, perhaps somewhat
counter-intuitively, a meta-process concerned with tuning the fusion pipeline
itself. Its main responsibility is to adjust the other processes based on what
new information is required, fine-tune performance for real-time tracking, and
directing any sources to the appropriate processes as required by the desired
inferences to be made. In a general sense, this level might be applied

It is important to note that it is not the case that the processing of data always
goes from lower to higher levels. Rather, these levels allow us to conceptually
differentiate between the different goals of fusion processes.

There exists work applying such conceptual models to NSM data. [Hal17] provides
an overall introduction to the topic and a general fusion model for using such NSM
data to perform intrusion detection and increase the situational awareness of incident
handlers. [And16] presents a fusion model geared towards incident handling in the
financial sector, applying machine learning methods and fusion to enhance situational
awareness and aid decision making.

2.3 Machine Learning

Machine learning (also known as pattern recognition) is a discipline dealing with
how computers might discover and infer structures in data[WFHP16]. In the general
sense, it is concerned with how to teach computers to deal with concepts in the
underlying dataset[WFHP16], such as whether an image is offensive or not, or if two
computer users behave similarly. It is related to the discipline called data mining,
which is concerned with extracting these concepts[WFHP16]. In practice, the terms
are often used interchangeably.

When applying machine learning to a problem, one usually deals with a three step
process[JDM00]: First, the data is transformed into a structure appropriate for the
algorithm at hand (“feature selection/extraction” and “pre-processing”), and patterns
are learned (“training”). The system is then ready to be used, and unknown data is
pre-processed in a similar manner and fed into the system to measure its performance
(“evaluation”). This is true for both the development of machine learning systems and

2.3. MACHINE LEARNING 13

pre-processing feature measurement classification

pre-processing feature
extraction/selection learning

test pattern

classification

training

Figure 2.2: ML process as explained by [NFP12]: First, data with known labels
is pre-processed, turned into features and used to train classifiers. For evaluation,
previously unseen data is pre-processed and turned into features in a similar manner.
The trained classifiers then predict the labels, which is used as a basis for scoring.

their application[WFHP16]. [NFP12] presents a similar model to machine learning
research, which can be seen in Figure 2.2.

The output of such algorithms is highly dependent on the concept to be learned.
[WFHP16] identifies four styles of learning:

– Classification learning tries to classify unknown examples into discrete classes
based on known inputs. Binary classification learning methods in particular
aim to determine whether the input belongs to either of two classes, e.g. “this
is (not) a hot dog”. A subset of this is binary logistical regression learning,
which outputs the probabilities of an input belonging to either class.

– Clustering, which tries to group similar examples.

– Numeric prediction, which predicts a numeric value, similar to interpolation in
linear regression.

– Association learning discovers the relationships between the properties of the
input, for example when learning consumer preference based upon what items
the customer bought.

Likewise, the way such algorithms learn vary. Supervised learning deals with
data where the correct answer (“label”) is known. Conversely, when the learning is
unsupervised, the labels are not known during training.[WFHP16] Hybrid learning
combines supervised and unsupervised techniques.

14 2. BACKGROUND

2.3.1 Evaluating binary classifiers

Machine learning is subject to the No Free Lunch (NFL) theorem, which states
that we cannot a priori determine the performance of learning algorithms on any
previously unseen dataset[Wol96]. Conversely, it suggests that we cannot assume
one algorithm to be the best option for all problems, or even any problem. Hence, it
is common to compare the performance of multiple algorithms in order to arrive at
the best approach. Likewise, machine learning research relies on careful selection of
methods and interpretation of results. A common concern is therefore the issue of
overfitting, or reaching a local minima that reduces the applicability to new data.

In order to reduce the risk of overfitting, machine learning researchers generally
use two distinct datasets, one for training (“training set”) and one for evaluating
performance (“test set”). Similarly, when dealing with algorithms whose performance
is highly dependent on its parameters (such as RandomForest), researchers might
introduce an additional evaluation set to measure the performance of different
parameters. A common technique for the former is to randomly partition the data,
using say 70 % of the data for training and the remainder for evaluation. For
evaluation sets, a common technique is k-folds cross-validation, which creates k
random subsamples of the training data, using one for evaluating the model and the
remainder for training it[PVG+11].

How do we then measure this performance? In binary classification problems,
we try to arrive at some inference function C(k|X0 . . . Xn) that outputs any label
L ∈ 0, 1 for the example k with the features [X0 . . . Xn]. The performance of any
classifier then refers to statistics that measures its ability to predict the class given
new data. During evaluation, L is already known for all k, and we score according to
the ability to match either 0 (the negative) or 1 (the positive). Let L∗ be the known
label and L be the classifier’s prediction. We then have the following outcomes:

– Classifying as L = 1 when L∗ is either 0 or 1 is known as a False Positive (FP)
or True Positive (TP) respectively.

– Classifying as L = 0 when L∗ is either 0 or 1 is known as a True Negative (TN)
or False Negative (FN) respectively.

Now let P be the number of positive examples, and N be the number of negative
examples. We then have the following statistics:

2.3. MACHINE LEARNING 15

– The False Positive Rate (FPR) (fall-out) FPR = FP/P

– The True Positive Rate (TPR) (recall) TPR = TP/P

– The False Negative Rate (FNR) (miss rate) FNR = FN/N

– The True Negative Rate (TNR) (specificity) TNR = TN/N

– The accuracy ACC = (TP + FN)/(P +N)

– The Positive Predictive Value (precision) PPV = TP/(TP + FP).

– The support is the number of members of a particular class, i.e. the sum of
TP and FN, or TN and FP for true and false positives respectively.

These statistics form the basis of most scores used within binary classification.
The choice of statistics depends greatly on the goal. For example, this research seeks
to increase the recall rate for certain classes (false positives), but does not particularly
care for the accuracy. Another example of a common score is the F-measure (f1), the
harmonic mean of the precision and recall, i.e. f1 = 2(PPV ×TPR)/(PPV +TPR).
Note that this score never accounts for the classifier’s performance with TN, and
therefore might not work for certain kinds of research goals.

It is often useful to visualize how these statistics fare when compared with
eachother. Notably, the Bayesian Base Rate Fallacy[Axe99] applies when we
are dealing with predicting a positive that is very rare compared to the negative,
say classifying malicious traffic in a computer network. In this case, it is expected
that increased recall is associated with an asymptotic increase in the FPR. Given a
set of probabilities P = (p0, p1, . . . , pn) for belonging to either class (according to
the classifier), we can then plot the TPR against the FPR at different probability
tresholds φn ∈ [0, 1]. This is known as a Receiver Operator Characteristics
(ROC) plot and is demonstrated in Figure 2.4. A particular advantage of this
visualization is that is easily allows us to find the “sweet-spot” between between
acceptable recall and the amount of false positives[ZOM07]. A related measure is
the Area Under Curve (AUC) of the ROC, which has seen a lot of use in binary
classification, but also received criticism for being a noisy statistic.[HHS+10].

One might also be interested in seeing how well the classifier discriminates
between different classes, both in the binary and the multi-class case. To this end,
a confusion matrix[PVG+11] might be applied. This is a two-dimensional table

16 2. BACKGROUND

Figure 2.3: A confusion matrix for a well-performing binary classifier (RandomFor-
est) using randomly generated, linearly separable data. The cells are colored using
a gradient according to their normalized recall. Note the brightly colored diagonal,
suggesting the classifier discriminates well between different classes.

of the correspondence between expected and predicted labels, often normalized to
give relative probabilities. Gradients are then applied to highlight well-performing
intersections. An example can be seen in Figure 2.3. Intuitively, a well-performing
general classifier should have a strongly-colored diagonal, as it recalls the corrects
label (independent of what label it is) most of the time.

2.3.2 Pre-processing and features

Regardless of the type of learning used, the major obstacle in machine learning is
usually adapting the input data[WFHP16]. This entails cleaning up the data as-is,
and also finding or extracting the features or attributes of the input data. Such
features might be numerical or any other datatype, depending on the algorithm.

Beyond the initial concerns of removing or amending invalid or low-quality data
(outliers and similar), the main goal of preprocessing is to make the data fit the input
requirements: The algorithm might only support certain datatypes, often numerical
values, and other datatypes (like strings) must then be converted to an appropriate

2.3. MACHINE LEARNING 17

Figure 2.4: A ROC plot for a binary classifier (RandomForest) of uniformly
generated, linearly separable data. Note how the FPR asymptotically increases as
the TPR approaches TPR = 1, showing the trade-off between recall and the amount
of false positives.

representation. Likewise, the algorithm might assume values lie in a discrete domain,
requiring discretization of continuous values (and vice versa).

Pre-processing is not limited to the values themselves, but might also include
ensuring certain statistical properties. Certain classifier algorithms in particular
require standardization, which entails transforming the data so that it follows a
Gaussian distribution with mean and variance. Similarly, normalization is done
to ensure each sample have unit norm. [PVG+11] This might be necessary to e.g.
prevent certain numerically large features dominating other smaller features.

In binary classification, a particular concern might be unbalanced datasetsSynthetic
Minority Oversampling Technique (SMOTE)[CBHK02], with very few examples of
the minority class compared to the majority. While this is often the case with certain
kinds of real data, such as when performing intrusion detection[Axe99] or fraud
analysisSMOTE[CBHK02], it is detrimental if the goal is to predict the minority
class, as it risks introducing overfitting. Two techniques are common to counteract
this: We might undersample the majority class, or we might oversample the minority

18 2. BACKGROUND

class. Sampling might then be performed uniformly with or without replacement. A
technique called SMOTE[CBHK02] achieves oversampling by synthesizing examples
of the minority class.

After the data has been prepared, we can find the appropriate features for
conveying the concept to be learned. These might be already part of the dataset, or
might need to be calculated. We might also have a highly dimensional or complicated
dataset, making it hard to discover features manually. More importantly, highly
dimensional datasets tend to lead to both slow learning and overfitting, a phenomenon
known as the curse of dimensionality[KM17]. Therefore, dimensionality reduction is
often a goal during this step of the process.

An initial approach is feature selection, in which case we select the best-
performing existing features according to some metric. By selecting, say, any features
with at least a variance[PVG+11] of 0.1, we remove features that possibly do not
contain useful information to distinguish two classes of examples (as in binary
classification). One might even use machine learning, like decision trees[PVG+11].

Alternatively, we might perform feature extraction, which computes features
based on existing data. The motivation for doing so are many: Sometimes, another
feature space is more fitting for the task at hand. Examples of such algorithms include
Term Frequency-Inverse Document Frequency (TF-IDF) and the Fourier Transform.
Other times, it also allows us to deal with huge datasets that are too complex to
deal with manually. For example, by applying eigenvector decomposition, Principal
Component Analysis (PCA) and similar techniques, we project the data into linear
space of a lesser dimension, thus avoiding the curse of dimensionality[WFHP16].

2.3.3 Supervised classifiers

There exists a multitude of algorithms for classification learning. Common examples
include:

– k-Nearest Neighbor (kNN) is a technique that classifies the example ac-
cording to the class of its k nearest neighbors in feature space.[PVG+11] Hence,
neighbors “vote” for their class, and the vote might be weighted and normal-
ized in certain varieties of the algorithm. Similarly, k-means classifies the
example such that the distance between its attributes and the mean values of
already known clusters of classes is minimized[PVG+11]. The distance measure

2.4. MACHINE LEARNING AND NSM 19

might vary[PVG+11], but the Euclidian and Hamming distance are common
for numerical and string features respectively.

– Decision trees. This approach builds a decision tree according to some
splitting criteria[PVG+11]: Often, one splits the dataset with the attribute
that contributes to the lowest amount of aggregate information information
theoretic entropy. Intuitively, as a higher entropy suggests a more disordered
set, the split with the lowest entropy leads to more ordered data. A similar
approach might be taken with Gini impurity as the metric[PVG+11].

– Similarly,RandomForest is an ensemble ofN decision trees with a randomized
splitting criteria, i.e. the attribute for splitting is selected at random. [PVG+11]
Each sub-tree is then allowed to classify the example, and the final classification
then decided by having each tree vote[PVG+11] for its preference.

– Multi-Level Perceptron (MLP) is a form of Artifical Neural Networks
(ANN). It starts with a network of neurons organized in layers[PVG+11], where
each neuron in layer L is connected to each neuron in layer L+1 using weighted,
directed edges. A neuron applies a activation function (commonly sigmoids)
to its weighted inputs, forwarding the result to the next layer. In the case of
binary classification, the first layer receives any features X = [x0, x1, ..., xn]
and the final layer is a single perceptron outputting a result in the domain
[0, 1]. After the initial forward-feeding and resulting prediction, the error of
the prediction is calculated, and a technique called backpropagation[PVG+11]
is applied to adjust the weights of each neuron’s incoming edges.

– State Vector Machines (SVM). This approach seeks a hyperplane, which is
a line through a p dimensional space such that it is divided into p−1 partitions,
and which maximized the distance between the points closest to the hyperplane
(the margin of separation). Formally, a hyperplane is defined by any points x
such that w × x− b = 0. As the input space might not be linearly separable, a
kernel function φ(x) is used to nonlinearly map any inputs X = X[x0, x1, ..., xn]
into a higher-dimensional feature space F that facilitates the computation of
the optimal hyperplane using a linear approach.[HDO+98]

2.4 Machine learning and NSM

Machine learning has been applied to detect intrusions in computer networks. In fact,
anomaly-based IDSs can be considered a special case of binary classification. Early

20 2. BACKGROUND

anomaly-based intrusion detection systems pursued parametric models[Den87], but
modern machine learning techniques are increasingly being applied. Some examples
are offered to illuminate the wide range of applications:

– [ZXXW15] applies decision trees (J48) to novel DNS features, in combination
with misuse- and anomaly-based IDSs, in order to detect malware traffic based
on e.g. C2 traffic.

– [And16] applies feature selection to fused NSM data in order to improve classifier
performance for intrusion detection and threat intelligence, as well as enabling
data-oriented, privacy-aware feature sharing between incident handlers.

– A system known as SENATUS[ASØ12] uses a vote-based anomaly detection
scheme based on a set of representative flows (from Netflow) and PCA to detect
anomalous flows.

– Adaptive Learner for Alert Classification (ALAC) is a so-called human-computer
interaction model, where human analysts use their implicit expert knowledge
to classify alerts as either true or false positives to train a classifier. By doing
so, the system is increasingly able topredict human expectations and aid the
analyst in reducing the number of false positives.[Pie04]

– [JNVDÅ17] offers a novel anomaly-based machine learning approach to detect-
ing attacks on telecom infrastructure by discovering anomalies in SS7 traffic.

– [ea18] constructs a system for detecting complex kill chains via a Bayesian
logistical regression approach. An unsupervised feature extraction approach is
applied to a graph of NSM data. This approach is explained in more detail in
Section 2.4.2.

2.4.1 Data acquirement

There exists multiple well-known NSM datasets for evaluating and training machine
learning-based IDSs. They are usually the easier option compared to performing
research on data from real-world networks, which comes with a set of ethical and
privacy concerns. Moreover, research data might often be more readily shared between
researchers, making it easier to perform and reproduce research. However, there are
usually disagreements about their applicability[Pet17b]: A particularly well-known
labeled dataset is KDDcup99[TBLG09]. In one meta-evaluation, KDDcup99 is found

2.4. MACHINE LEARNING AND NSM 21

to be be non-representative of real networks, suffering from parameter issues like low
TTL values, and to have too different datasets for learning and testing to achieve
meaningful learning outcomes[Eng10]. Similar critiques apply to other common
datasets, particularly in IDS research.

As such, there exists no clear-cut criteria for the quality of a dataset in general.
However,[SSTG12] suggests there are five such criteria that should generally apply:

– Realistic network and traffic. In order to be applicable in the real world,
the network should look familiar to “ordinary” networks, with users, servers
and so forth. This might include a realistic relative distribution of certain
protocols. For example, one would expect HTTP to be very common in a user
network, SSH less so. Similary, it is common for intrusions in particular to have
a low base rate[Axe99] compared to other types of traffic. Hence, the amount
of intrusive traffic should be much smaller than the amount of normal traffic.

– Labeled dataset. Manual labeling of traffic as e.g. either normal or anomalous
is laborious and thus impractical for researchers.

– Total interaction capture. All interactions between hosts and services on
the network should be provided, in order to fully understand and interpret the
results.

– Complete capture. Research data often provides only the resulting network
traces or heavily anonymized payloads. This makes it difficult to recreate,
expand upon and discover new results.

– Diverse intrusion scenario. Modern attacks are becoming increasingly
creative, bespoke and complex[SSTG12]. Hence, it is essential to develop IDS
that are effective against such attacks in order to keep up with emerging threats.

The authors then evaluate five common datasets in IDS research according to
these criteria. Similarly, [GSLG16] extends these criteria and evaluate eleven datasets
using the extended criteria.

Among the criteria mentioned, the requirement of realism is perhaps the largest
challenge. In response, [SSTG12] proposes solution based on profiles. The idea
behind this is to generate recipes and formal parameters that allow researchers to
recreate and adapt the setup behind the dataset to their needs, and also verify that

22 2. BACKGROUND

the result is reproducible. In this sense, it can be seen as an empirical induction over
discrete simulation techniques. Two different classes of profiles are proposed:

– β-profiles extract behaviors of actors within the network, such as the relative
distributions in time, type and volume of traffic. Using these parameters,
individual agents might recreate the desired traffic patterns and even payloads.
Such profiles might be mined from real or test-bed networks in order with the
desired structure.

– α-profiles are unambigious “recipes” for attacks. Such profiles might model
kill chains (multi-stage attacks) and be carried out by either machines or the
researchers themselves.

2.4.2 Anomaly detection using role dynamics

[ea18] performs anomaly detection using NSM data from OSSec (a common HIDS)
and Snort (a common NIDS). The data was acquired using a virtual, heterogenous
network similar to a corporate network.

To understand their approach, first consider that an entry in the NSM system
might be considered to be a collection of attributes and their corresponding values, or
simply attribute-value pairs. We can then express the entry as a graph of vertices of
such pairs. Then, let for example the attribute-value pair IP = 192.168.88.5 appear
in multiple entries. By linking corresponding attribute-value pairs, the sub-graphs of
these entries will then be linked and we correlate seemingly related logs.

Given such a graph, it is possible to mine for patterns. [ea18] uses RolX, an
unsupervised algorithm for extracting structural roles from graphs[HGER+12]. The
goal of the algorithm might be understood as identifying different behaviors of
vertices: Some nodes are outliers, whereas other nodes might be belong to the critical
path of many of the graph’s sub-graphs (i.e. they are central). The induced roles are
complementary and distinctly different from communities in graphs: The latter deals
with inter-connected nodes, whereas roles deal with structural properties across the
whole graph. Hence it can be argued that unlike communities, roles transfer across
when analysing separate (disconnected) graphs[HGER+12].

[HGER+12] describes RolX in roughly two steps:

2.4. MACHINE LEARNING AND NSM 23

– First, an empty matrix V is initialized. Features are calculated for each node
based on a selection of graph metrics and appended to V . This is repeated
until convergence (i.e. recursively), with interleaved trimming of columns to
reduce the amount of redundant information after each round.

– Non-Negative Matrix Factorization (NMF) is performed on V to find a decom-
position V ≈ G×F , where G is known as the node-role matrix and F is called
the sense-making matrix. Gn in particular is a row of length r decomposing
any vertex n into r different roles. F is used to relate the discovered roles to
well-understood graph features like the PageRank score.

By applying this algorithm on a virtual network, [ea18] ends up with time series
of role decompositions for any node in the graphs, i.e. attributes. In the case of
the attribute being an IP address, this assigns some role to a host. Then, using
an approach known as role dynamics[RGNH13][RGNH12], a time-oriented normalcy
model of expected (“normal”) roles are then constructed. Finally, sophisticated
attacks are injected into the network, analysed using the same role-decomposition
approach and detected under the condition that they deviate greatly from the roles
predicted by the normalcy model.

Chapter3Methodology

Having presented the prerequisite theory in Chapter 2, we will now discuss how this
research was performed. A high-level explaination of the overall methodology of this
thesis is shown in Figure 3.1.

First, we will briefly frame our research goals in terms of MSDF to provide a
conceptual overview of the steps taken to achieve these goals.

Then, the data acquirement process will be described, including the test bed used
to create the NSM sensor data used for machine learning.

Moving on, the procedure for feature generation and pre-processing will be shown.
After this, we will consider the classifiers and evaluation procedure. The resulting
performance of these classifiers according to this procedure will be presented and
discussed in the next chapter.

Finally, a brief discussion will consider the overall choice of methods and justify
them with regards to the previous theoretical background in Chapter 2, as well as
the stated research goals and other concerns.

3.1 Fusion approach

With regards to Research Question 1 and 2 (Section 4.4), the overall problem we are
trying to solve is the following: Let Aalert be alert data created by a NIDS. Given
the superset Ansm containing data from multiple sensors (including the NIDS), we
wish to classify any alert in Aalert as either credible or not credible, i.e. either a true
or false positive respectively. We will now explore how fusion processes relate to the
process of solving this problem.

25

26 3. METHODOLOGY

evaluation

scoring

training

NSM
data alert data data fusion,

feature extraction
 (graph analysis),
pre-processing

traffic generation

learning

classification

33 %

labeled data
(RolX features)

66 %

Figure 3.1: A high-level overview of how this research was performed. First, NSM
data is generated using a test-bed. Then a feature extraction and fusion process
is applied to alert data in order to generate a labeled dataset, where the labels
correspond to the original alert being a false or true positive. 66 % of the labeled
data is used to train classifiers, and the remaining 33 % is used to evaluate the
trained classifiers according to their ability to predict the labels of unseen data.

Initially, a common frame of reference is required, or an Object Refinement
process. NIDS alerts react to specific conversations initiated hosts, and it is the
intention of the hosts that determines our classification: An attacker-controlled host
creates true alerts, whereas an innocent user creates false alerts. Moreover, actions
performed by a host is registered by the sensor at some given time. Therefore, it
makes sense to considers hosts as our objects, with any sensor data correlated by
time and the host. We will refer to the data correlated this way as an event list, as
the data is made up of events creating an impulse in the sensor.

Given these objects and their associated event lists, we now wish to compare
objects in context, i.e. by their contribution to the current environment. This is
an Situation Refinement process, and the goal of doing so is in this case to enable
a Threat Refinement process: Given these characteristics, we wish to predict the
intent of any host, i.e. classify it as an attacker or not. Therefore, we need to train

3.2. DATA ACQUIREMENT 27

classifiers to realize this step.

Finally, having achieved our classification of the host, we are able to filter out
alerts that, given their contextual evaluation, do not seem to be true positives or
real intrusion traffic. That is, as intent determines the nature of these alerts, hosts
that are not classified as attackers will have their alerts removed from the alert list.
Thus, we achieve our goal of removing false positive alerts.

3.2 Data acquirement

An initial requirement of this research was to combine NIDS alert data with HIDS
and any number of other sensors. This presents a couple of limitation: First of, there
are few datasets containing the necessary data. Even when full packet captures are
available, these are not immediately applicable: Stateful TCP traffic is not trivially
replayable (unlike UDP traffic, which uses stateless connections), making it hard to
induce some response in e.g. most HIDSs.

Given these concerns, two choices immediately arise: Either simulate the sensor
impulse with existing research data or generate the traffic with Off-The-Shelf (OTS)
sensors commonly used in real-world networks. In the interest of time and real-world
applicability, the latter approach was selected, as it was considered too burdensome
to correctly emulate realistic network sensors.

In order to satisfy the realism criteria suggested in Section 2.4.1, it was decided
to use virtual machines running Linux, a common operating system for services.
The structure of the test-bed is shown in Figure 3.2. It has the following main
characteristics:

– Hosts belong to either an a home net (internal network) or an external network.
The ranges 192.168.88.0/24 and 172.168.88.0/24 were respectively allocated
towards these networks. The gateway connects these two networks together
and routes traffic between them. The networks are switched separately and
thus do not share an L2 collision domain, which would introduce the risk of
hosts performing L2 communication and bypassing NSM sensors.

– The internal network is monitored internally by a HIDS running on exposed
services, in this case a single web server running a blog. Moreover, any traffic

28 3. METHODOLOGY

NIDS MONITORED

HIDS MONITORED ATTACK
PLANE

gw.flakk.local

kali.flakk.local

apache.flakk.local
wazuh.flakk.local

– Apache alerts
– Logins
– Processes
– Insecure
settings

– DNS
– Netflow
– Alert data

AUX

Figure 3.2: The topology of the test-bed used for generating NSM data. The
attacker sits on an external network and interacts with the web server. A NIDS
is installed on the network gateway, and the web server runs a HIDS agent. Both
export NSM data to an ElasticSearch server (not shown) for aggregation.

entering or leaving the internal network is monitored by an IDS installed on
the gateway.

– An attack scenario is played out: The attackers sits on the external network,
scanning for vulnerable services and launching bruteforce attacks on them.

Two sensors were selected and installed into the network to generate NSM data:
Suricata and Wazuh. As noted in Section 2.1.2, the former provides not only provides
NIDS alert data, but might also be configured to export DNS logs and Netflow. The
latter works as a HIDS and performs misuse detection on the host it is installed.
Both Suricata and Wazuh support central aggregation of sensor data, sending their
data to e.g. ElasticSearch, a popular NoSQL datastore.

The following machines are part of the setup:

– gw.flakk.local (192.168.88.1/24, 172.168.88.10/24). This functions as the
gateway of the internal network and the ingress from the external network.
Suricata was installed on this host in order to provide NIDS alerts, DNS and
Netflow data. This host is also connected to the external network, in order to
provide transit for the Kali host.

3.2. DATA ACQUIREMENT 29

Figure 3.3: Kibana provides a searchable view into the NSM sensor data continu-
ously aggregated and stored in ElasticSearch. Here we can see Netflow sensor data
originating from Suricata, generated for the purpose of data acquirement, the details
and results of which are presented in Section 4.1.

– apache.flakk.local (192.168.88.90/24). This server runs a simple Wordpress
blog via an Apache web server. It also runs a Wazuh agent as an HIDS sensor.

– elasticsearch.flakk.local (192.168.88.94). The central storage node for NSM
data output by Wazuh and Suricata. It also runs Kibana, which provides a
searchable view of the data stored, as seen in Figure 3.2.

– red.flakk.local (192.168.88.20). This hosts merely serves as a staging point
for the traffic generators, which will be explain shortly.

– kali.flakk.local (172.168.88.20/24). This is the attacker in this scenario. Kali
Linux comes built-in with tools suitable for doing recognisance, and launching
bruteforce attacks and more advanced exploits. It communicates mainly with
gw.flakk.local in order to reach the web server apache.flakk.local.

– wazuh.flakk.local. This host serves as the master node in Wazuh, controlling
and storing the NSM data from the agents before forwarding it to ElasticSearch.

As the dataset needs to contain both false and true positive alerts, both attack
traffic and normal traffic had to be generated. Moreover, the traffic should be

30 3. METHODOLOGY

somewhat varied and not just a single type of traffic, as noted in Section 2.4.1.
Inspired by the concept of β- and α-profiles, this was achieved using two different
scripts for generating traffic:

– simulate_user_traffic.py creates n workers with spoofed IP addresses, pro-
ducing a stream of HTTP, SSH and DNS requests according to some distribution.
The intensity of each worker is configurable and contributes to a cummula-
tive request intensity of Erlang-n throughout the network. With a selectable
probability, the request will contain “tags” (specially crafted user-agents for
HTTP or domains for DNS) to trigger misuse rules in Suricata written for this
purpose. Each worker will send traffic from an IP uniformly sampled from
192.168.88.128/25 and 172.168.54.0/25 for normal and false positive traffic
generation respectively.

– The attacker runs a script called attack.py. This implements parts of a kill
chain: First, nmap is used to scan the target network (192.168.88.0/24). Then,
either a SSH or Wordpress login bruteforce attack is launched (by random
choice) using hydra. It then sleeps for a whole minute. This script was
accompanied by manually logging into the web server near the end of the
generation era, simulating a successful intrusion.

3.3 Pre-processing and feature extraction

After NSM data has been generated by the test-bed, it is necessary to pre-process
it to prepare it for machine learning. During this step, there are three major goals:
Firstly, data is collected and transformed as deemed necessary. Then features are
then extracted and compiled into a single dataset, and finally the data for classifier
training and evaluation created from this.

3.3.1 Feature extraction

A RolX-inspired approach inspired by [ea18] (a discussion is provided in Section 2.4.2)
was selected for data fusion and anomaly detection. This research deals with similar
types of NSM data, and also provides an unsupervised mechanism for correlating
time series of log data. A RolX implementation in Python was provided by Lab41.

Initially, we deal with a list of timestamped NSM data, a series of records with
attribute-value pairs of sensor readings. We then wish to apply the fusion process

https://lab41.github.io/blog/2014/12/18/rolx-discovering-individuals-roles-in-a-social-network/

3.3. PRE-PROCESSING AND FEATURE EXTRACTION 31

described in Section 3.1 to align and fuse the data, finally arrive at our features. This
was achieved using the following four steps steps:

– First, the NIDS alerts are split into time-divided buckets at regular intervals.
Each bucket then constitutes a “snapshot” of the network situation at any
point in time, i.e. a time series of network characteristics.

– Using Algorithm 3.1, each bucket was mined for hosts and any prior NSM data
related to them within a configurable time window. Hence, the NSM data
was effectively sampled using a sliding window technique. Note that during
this step, attributes of NSM data related to IPs are also normalized: dest_ip,
dstip, src_ip etc are all mapped into ip, as we only care about host identities.

– Once the situational context was compiled, a situation graph G was constructed
from each event list using Algorithm 3.2. This graph provides a comprehensive
view of all event data associated with a particular NSM alert. We ensure that
there exists at most one vertex corresponding to any unique attribute-value
pair. Therefore, alerts with overlapping attributes (e.g. the source IP is the
same) are linked in the graph. A simplified graph is provided in Figure 3.4.

– Each situation graph was then fed into RolX. This resulted in an r×N matrix
for r roles and N vertices, where r is a parameter of the RolX algorithm equal to
the number of structural roles one is trying to discover. The role decomposition
of each vertex corresponding to a particular host was then collected and labeled
based on whether the host was an attacker or FP generator. The results of
applying this step were then compiled into a single dataset.

3.3.2 Pre-processing

After data has been acquired, it was subjected to different kinds of pre-processing to
prepare it for machine learning:

Standardization The issue of required statistical properties has previously been
noted in Section 2.3.2. To make the data more friendly towards certain kinds of
classifiers (e.g. SVM), standardization was applied. For any column, this removes
the mean from each row and scales by the unit variance. This yields a data set that
is approximately Gaussian with a zero mean and unit norm.

32 3. METHODOLOGY

Algorithm 3.1 Algorithm for mining alert data Aalerts for candidate hosts and
their respective NSM alert data Ansm within the last N minutes.
function find_candidates(NSM alert data Aalerts, alert window N)

C ← {} . Initialize an empty set of (unique) candidates
for a ∈ Aalerts do . Mine candidates from alert data

append(C, asrcIp)
append(C, adstIp)

end for
E ← {} . Initialize a map from candidates to event lists
for c ∈ C do . Get last N minutes of NSM data matching candidate

E[c]← {a|a ∈ Ansm, ctimestamp − atimestamp ≤ N, asrcIp = c ∨ adstIp = c}
end for
return E

end function

rule_31510 sid_31510

ip_172.168.88.20

ip_192.168.88.90

url_/wp-login.php

group_attack msg_A Network
Trojan was detected

Figure 3.4: A simplified situation graph. Blue vertices represent alerts triggered
by Wazuh, whereas red alerts stem from Suricata. Both alerts have the IP pairs
192.168.88.90 and 172.168.88.20 in common, and thus form a network.

3.3. PRE-PROCESSING AND FEATURE EXTRACTION 33

Algorithm 3.2 Algorithm for constructing the situation graph
function make_graph(event list E)

S ← {ai|ai ∈ E[i], i ∈ 0 . . . |E| − 1} . Set of unique attribute-value pairs in E
G← (V,E), |V | = |S| . Initialize an undirected graph
H ← {}
K ← {}
for ai ∈ S, i ∈ 0 . . . |S| − 1 do

H[ai]← i . Map attributes to vertices
K[i]← ai . Map vertices to attributes

end for
for e ∈ E do . Add events to graph

for ai ∈ e, i ∈ 0 . . . |e| − 1 do
h← H(ai)
for a∗j ∈ e, j ∈ i+ 1 . . . |e| − 1 do . Link attributes from same event

h∗ ← H(a∗j)
Add an edge between Vh and Vh∗ in G.

end for
end for

end for
return G,K

end function

Rebalancing The bucket approach introduces an inherent low base rate of false
alerts. The reason is simple: First, note that there are many IPs producing NIDS
alerts, with only a few (or a single) of them generating true alerts. However, the
buckets also aggregate alerts by IP. Hence, the number of false positive alerts
considered in the dataset will be quite small. Moreover, the rate of true intrusion
traffic is generally quite small compared to normal traffic, as suggested in Section
2.4.1 and 2.3.1.

Therefore, the learning set will invariably suffer from unbalanced classes. This
harms classifier performance, as noted in Section 2.3.1: For example, if the number
of true positives is much smaller than the number of false positives, a perfectly
performant classifier might be constructed simply by classifying all alerts as false
positives. Therefore, rebalancing might be applied to improve the performance. Two
techniques (also introduced in 2.3.1) were considered:

– Over-sampling of true positives and undersampling of false positives: Another
sampling was performed using only true positive alerts. Furthermore, a uni-
formly sampled subset of false positives of the same size were created, and the

34 3. METHODOLOGY

results appended together. This yields a balanced dataset.

– Undersampling and synthetic over-sampling: The implementation of SMOTE in-
cluded in imbalanced-learn was applied to synthesize true positives examples
from existing entries.

In the former case, the rebalancing operation changed the composition of the
whole dataset. The latter approach was only to the learning set, in order to avoid
introducing self-bias when evaluating the classifiers.

Splitting In order to avoid overfitting and evaluate the performance of the classi-
fiers, the original dataset was uniformaly sampled (without replacement) into two
partitions for learning and evaluation, composed respectively of 2/3 and 1/3 of the
original data rows. Hence, evaluation is only performed using previously unseen data,
in accordance with the methodological concerns discussed in Section 2.3.1.

3.4 Classification

It is now time to perform Threat Refinement, as presented in Section 3.1. Due to
the NFL theorem (see Section 2.3.1), it is necessary to consider multiple classifiers
when doing machine learning research. Three common classifiers readily available in
scikit were therefore selected:

– RandomForest (sklearn.ensemble.RandomForestClassifier). Hyperparam-
eter tuning was applied using a k-fold cross-validation approach as described
in Section 2.3.1.

– SVM (sklearn.svm.SVC)

– MLP (from sklearn.neural_network.MLPClassifier), a type of ANN.

The classifier were trained on each dataset generated by the different rebalancing
techniques discussed in Section 3.3.2. In accordance with methodological concerns
outlined in Section 2.3.1, training was performed using data not part of set used for
evaluating the data, in order to avoid overfitting.

3.5. EVALUATION 35

3.5 Evaluation

It was decided to use the recall of the negative (“0”, here false positive alerts) class as
the main indicator of success, with the recall of the positive (“1”) class as a secondary
measure. Thus, we were able to satisfy the research goal in Research Question 2 (see
Section 4.4) of mainly detecting false positive alerts and also retaining some true
positives. However, it is necessary to account for what some true positives mean.
We propose a metric as follows:

s(C) = (1− βe−Rc(1))Rc(0) (3.1)

where RC(φ) denotes the recall of the class φ using classifier C, and β denotes
the importance of recalling true positive alerts. This mirrors the tradeoff between
TPR and FPR discussed in Section 2.3.1: By reducing the value of β, one is able to
decrease the number of false positives, at the expense of misclassifying some true
positives. Conversely, a larger value of β is required if the risk of not detecting some
intrusions is unacceptable. For the purpose of this research, it was assumed that the
number of false positives was so great that it made NIDS alerts hard to use at all.
Hence, β might be set to a low value.

Evaluation was performed by taking the trained classifiers and having them
classify unseen data, i.e. the test set (see the discussion of splitting in Section 3.3.2).
sklearn.metrics.classification_report was then used to calculate the resulting
recall for each label (0 and 1), as well as its support (the number of members of each
class), which provides an overview of the overall distribution of the classes in the
dataset used for evaluation.

3.6 Discussion

We will now provide a short discussion of whether the methods now described will
support us in reaching the goals of the research, as stated in Section 1.1. Allowing
for paraphrasing, we seek (R1) a useful representation (features) for describing the
situational (i.e. situational awareness) of a monitored network, and (R2) using such
a representation to develop performant classifiers to remove false positive alerts in
such networks, while still retaining some true positive alerts from such network. We
then consider the following requirements:

36 3. METHODOLOGY

– a representation for describing the situation - Our methodology suggests using
structural role extraction on graphs of of NSM data, inspired by its application
in [ea18].

– a useful representation - It is proposed that binary classifiers might use the
features for a designed goal. In our case, being useful is inevitably linked with
the performance of the classifiers utilizing such data, which will be considered
in Chapter 4.

– a monitored network - We have proposed a simple test-bed that a) runs a
virtualized, real-world network using OTS software, which is b) monitored by
NSM sensors (HIDS, NIDS etc).

– performant classifiers - In Section 3.4, we have selected three classifiers for
evaluation. Moreover, in Section 3.5, what performance entails in this scenario
has been discussed, and a metric (Equation 3.1) proposed in on order to deal
with varying preferences of retaining some true positive alerts. Moreover, we
have also considered the methodological issues of training classifiers, and in
particular suggested a separate dataset for evaluation purposes in order to
avoid the common issue of overfitting.

As a virtual environment with traffic generation was used for this research, it
is possible that the quality of the data is insufficient to conclude with applicability
to other networks than the one used for data generation purposes. Considering the
criteria put forth in Section 2.4.1, a particular concern is the lack of diversity in the
traffic. More importantly, there is little diversity in the attacks performed. A real
network would likely have more protocols represented, with different distributions
and payloads than those offered by the generator. However, this concern is common
and still remains even given a more thorough data generation routine: Due to NFL
theorem (see Section 2.3.1), it is not given that any findings resulting from this data
are necessarily applicable to real-world networks. Moreover, by generating traffic,
the approach selected introduces the risk of implementation errors and issues, such
as logical or periodic faults in the scripts responsible for generating traffic.

The feature extraction approach selected is also not without its issues. In “real”
role dynamics (see Section 2.4.2), a Bayesian normalcy model for expected roles is
constructed using role decomposition time series of the network in its “normal” state.
Moreover, [ea18] applies this to all attribute-pairs belonging to the graph of NSM

3.6. DISCUSSION 37

data, not only the vertices corresponding to host identities (IPs). Then, for a given
treshold, role transitions that greatly different from the normalcy model indicate
anomalies. In our case, it is assumes that the roles themselves encode important
information that might be used for anomaly detection, i.e. that intrusions will
generally have different structural properties in the graph than normal traffic. It is
admitted that this might not necessarily be the case.

Chapter4Findings and Discussion

We will now present the results from the research performed in accordance with the
methdology presented in Chapter 3 and summarized in Figure 3.1. First, we will
present the data acquirement results. We will then consider the results of performing
pre-processing and feature extraction. Then, the results of applying the selected
classifiers will be shown. Finally, the overall results themselves will be discussed, as
well as their implications.

4.1 Data generation

A virtual network environment was constructed in accordance with Section 3.2 using
Linux guests, using KVM as the hypervisor. For the attacker, Kali Linux was selected
as the operating system, otherwise Debian Linux was used. The following software
was used to construct the environment:

– Debian 4.9.65 (Linux)

– Kali Linux 2018.1 (used for the attacker)

– ElasticSearch/Kibana/LogStash 6.2.1

– Suricata 3.2.1

– Wazuh 3.2.0

– WordPress 4.0.23

– nmap 7.00

– wpscan 2.6

39

40 4. FINDINGS AND DISCUSSION

– hydra 7.6

The different Linux hosts were connected together using native Linux bridges
to form the topology shown Figure 3.2, as provided via the KVM hypervisor. This
provides a virtualized network in which to perform generation. Moreover, each host
was installed with software and configured as described by Section 3.2. For generation
purposes, the scripts for generating true or false positive alerts were installed on
kali.flakk.local and gw.flakk.local with the following parameters:

– simulate_user_traffic.py: Traffic distributions of HTTP, SSH and DNS
were set to 20, 15 and 65 % respectively. n = 40 workers were started, generating
false positive alerts with a probability of p = 1/2. Source IPs were uniformly
sampled from 192.168.88.128/25 and 172.168.54.0/25 in order to simulate a
busy network with both internal and external traffic. The source code this
script is provided in Appendix A.2.

– attack.py: Sleep time between turns was set to t = 60 seconds. The probability
for selecting either a SSH or WordPress bruteforce attack was set to p =
1/2. Although not a parameter of the script, the source IP of this traffic is
172.168.88.20, the IP of the attacker running Kali. The source code this script
is provided in Appendix A.1.

Additionally, our sensors were configured as described in Section 3.2: Suricata
(NIDS was installed on gw.flakk.local, providing misuse-based NIDS alert data,
as well as sensor data for DNS and Netflow. In addition, Suricata was configured to
create alerts based on the false positive “tags” used by simulate_user_traffic, i.e.
a special user-agent and domain names for HTTP and DNS respectively. Wazuh was
installed as an agent on apache.flakk.local, providing misuse-based HIDS data.

Data generation was then performed for 12 hours in total, leading to the sensors
generating data. ElasticSearch was used throughout to collect and store the generated
sensor data throughout. An example of sensor data generated by Suricata is provided
in Listing 4.1. Throughout this period, the false positive generators were always
running, whereas the attack script was primarily fired during the first four and
last two hours of the generation time. This was due to an unintended crash in the
software. However, it does not significantly affect the results. Moreover, it makes the

4.1. DATA GENERATION 41

base rate of intrusion traffic even lower, ensuring we are not generating artifically
large amounts of real intrusion traffic.

Listing 4.1: Example of Suricata intrusion data, stored as JSON in ElasticSearch.
Here we see a warning for suspicious DNS traffic.

{
" src_ip " : " 1 9 2 . 1 6 8 . 8 8 . 1 " ,
" src_port " : 53 ,
" geo ip " : {} ,
" app l i c a t i o n " : " s u r i c a t a " ,
" tags " : [

" _geoip_lookup_fai lure "
] ,
" host " : "gw . f l a kk . l o c a l " ,
" tx_id " : 1 ,
" event_type " : " a l e r t " ,
" dest_port " : 51641 ,
"@timestamp " : "2018−05−05T22 : 2 9 : 5 9 . 7 7 3Z" ,
" i n_ i f a c e " : " ens2 " ,
" f low_id " : 134566432126805 ,
" proto " : "UDP" ,
" source " : "/ data/ s u r i c a t a / eve . j son " ,
" dest_ip " : " 1 9 2 . 1 6 8 . 8 8 . 9 0 " ,
" a l e r t " : {

" rev " : 1 ,
" s i gna tu r e " : "SURICATA DNS Unso l i c i t e d response " ,
" category " : " " ,
" a c t i on " : " a l lowed " ,
" g id " : 1 ,
" s e v e r i t y " : 3 ,
" s ignature_id " : 2240001

}
}

It was noticed after generation that the DNS setup for simulate_user_traffic.py
was faulty: Instead of creating labels from a distribution estimating the term fre-
quency in English, a pseudorandom approach was used by mistake. Hence, DNS

42 4. FINDINGS AND DISCUSSION

provides little or no real information about the behavior in the network, and was
removed from the fusion pipeline as an NSM data source in the later steps.

4.2 Feature extraction

The following software were used during this step:

– Debian 4.9.65 (Linux) and macOS 10.13.4

– python-dateutil 2.6.0

– elasticsearch-py 6.2.0

– scikit-learn 0.19.1

– imbalanced-learn 0.3.3

– numpy 1.13.0

– pandas 0.21.0

– igraph 0.7.1 (Python/C++)

The process described in Section 3.3 was applied: First, all Suricata alert data were
downloaded and aggregated from ElasticSearch as JSON files via its HTTP API. They
were then sorted by their timestamp and split into buckets of 45 seconds duration
each (n = 850). Then, for each bucket, alerts were aggregated into candidates using
Algorithm 3.1. In turn, each candidate and its event list was turned into a situation
graph using Algorithm 3.2. RolX was then applied to each bucket (with r = 2)
and the resulting Gn role vector collected for each candidate. Finally, each node
vector was labeled depending on the original alert being a false or true positive alert.
This is in our case determined by the IP ranges set for true or false positive traffic
generation in the scripts configured in Section 4.1), the networks 172.168.54.0/25
and 192.168.88.128/25 respectively.

In the end, n = 37638 rows of data were generated during this stage.

An example of the resulting data is provided below:

role1,role2,label

4.3. CLASSIFIER RESULTS 43

0.8088602254249131,0.11790503264412397,0
0.8662860800911023,0.29786666681631135,1
0.9314385843331936,0.00024310004476482954,0
0.91791797638251,0.09241440241407804,0

As can be seen, each row consists of two scalars implicating the degree of mem-
bership within one of the two (r = 2) roles, as well as a label stating whether or not
the host was generating normal or intrusion traffic.

4.2.1 Pre-processing

After feature extraction, the generated data was subjected to further pre-processing, as
described in Section 3.3.2. Standardization was applied using scikit’s StandardScaler
to the final dataset in order to satisfy statistical properties required for e.g. SVM.
Rebalancing was applied to avoid overfitting the classifiers during learning. Using
the two approaches presented in Section 3.3.2, this resulted in three distinct datasets.
Let L be the learning set and T be the test set. Then this resulted in these datasets:

– data_raw, where no rebalancing has been applied (i.e. original dataset), with
|L| = 25216 (99 FPs, 25117 TPs) and |T | = 12421 (61 FPs, 12360 TPs).

– data_smote for rebalancing with SMOTE, with |L| = 50234 (25117 FPs,
25117 TPs) and |T | = 12421 (61 FPs, 12360 TPs).

– data_over_undersampled for rebalancing with under- and oversampling
as described in Section 3.3.2, with |L| = 7534 (3767 FPs, 3767 TPs) and
|T | = 15600 (1830 FPs, 13770 TPs).

4.3 Classifier results

As discussed in Section 3.5, the recall of false positives, or the ability to correctly
classify FP examples as FPs, is a good measure for evaluating the success of the
classifiers given our research goal. Moreover, we suggested a hybrid scoring technique
in Equation 3.1 to account for the relative importance of retaining true positives.
In the latter case, it was at the same time assumed that losing some true positives
was highly tolerable, and the sensitivity was therefore set to β = 0.75. These
considerations form the basis of our evaluation.

44 4. FINDINGS AND DISCUSSION

The classifiers ANN, RandomForest and SVM previously selected in Section 3.4
were evaluated separately using each the datasets generated by the previous step.
First, they predicted the class for all examples in each test set. Then, the recall
and support (the number of members of a class, e.g. number of false positives) were
calculated using sklearn.metrics.classification_report, and then finally the
s(C) metric from Equation 3.1 from the recall of true and false positives. The results
of applying these operations to the three datasets from the previous section can be
seen in found in Table 4.1, Table 4.3, and Table 4.2 respectively.

We note that all classifiers overall perform poorly as general classifiers on unbal-
anced data, as seen in Table 4.2. However, SVM and RandomForest perform quite
well if only the recall of false positive alerts is considered. Of course, this should not
be done lightly: Given the low base rate of true positives, simply labeling all alerts
as positive should yield a good recall of false positives.

Moving on to the rebalanced datasets, we notice that the dataset rebalanced
with SMOTE (Table 4.1 leads to better performing classifiers overall in the case of
recalling both false and true positive alerts. However, given the low degree of support
(number of test cases), it should not be considered a decisive result: The SMOTE
dataset has a test set with a lower amount of false positive alerts. This is realistic
given the low base rate of intrusions in real traffic, but still leaves the possibility of
just being lucky. Conversely, the over-undersampled dataset (Table 4.3 has a much
smaller training set, which might explain the overfitting observed in the final trained
classifiers: The classifiers merely recall about 62 % of all false positives.

Overall, the SMOTE based dataset leads to well-performing classifiers, with good
recalls for both false and true positive alerts. Moreover, it does this with a training
set that mimicks the low base rate of real intrusion traffic. We therefore consider it
a “winner” and discuss it further: The best performing classifier overall given our
metric s(C) is RandomForest, with excellent recall of false positives (97 %), at some
expense at the recall of true positive alerts (85 % vs 93 % and 93 % for ANN and
SVM respectively). ROC curves for SVM, RandomForest and ANN are provided in
Figure 4.3, Figure 4.3 and Figure 4.3 respectively. As expected, the FPR increases
asymptotically with an increasing TPR.

4.4 Discussion

We first consider our original research goals from Section 1.1:

4.4. DISCUSSION 45

Figure 4.1: ROC Curve for SVM (with SMOTE rebalanced data)

Figure 4.2: ROC Curve for ann (with SMOTE rebalanced data)

46 4. FINDINGS AND DISCUSSION

Table 4.1: Result table for data_smote.training.csv

ANN RandomForest SVM
0 1 0 1 0 1

recall 0.93 0.93 0.97 0.85 0.94 0.93
support 12360.0 61.0 12360.0 61.0 12360.0 61.0
s(C) (β = 0.75) 0.65 0.65 0.66

Table 4.2: Result table for data_raw.training.csv

ANN RandomForest SVM
0 1 0 1 0 1

recall 1.0 0.0 1.0 0.16 1.0 0.05
support 12360.0 61.0 12360.0 61.0 12360.0 61.0
s(C) (β = 0.75) 0.25 0.36 0.28

Table 4.3: Result table for data_over_undersampled.training.csv

ANN RandomForest SVM
0 1 0 1 0 1

recall 0.62 0.96 0.62 0.91 0.63 0.96
support 13770.0 1830.0 13770.0 1830.0 13770.0 1830.0
s(C) (β = 0.75) 0.44 0.43 0.45

R1 What is a suitable feature representation of NIDS alert data with auxiliary
sensors and their contribution to operational awareness in computer networks?

R2 Is it possible to construct classifiers (based on such a representation) that are
able to detect primary false positives alert data and ideally retain true positives
given auxiliary sensor data?

Having already suggested the selection of methods is appropriate for reaching
these goals in Section 3.6, we now consider whether or not this is the case:

4.4. DISCUSSION 47

Figure 4.3: ROC Curve for RandomForest (with SMOTE rebalanced data)

Somewhat counter-intuitively, we consider the second goal (R2) first. Assuming
the sake of argument that R1 is already true, we consider the results of constructing
classifiers using this representation (i.e. after fusion). As seen in the classifier results
presented in Section 4.3, we are in fact able to filter out a great deal of false positive
alerts while retaining some false positives. Our hybrid metric (Equation 3.1) captures
this trade-off in filtering, and RandomForest delivers the best result given our slight
preference for many fewer false positives in exchange for a few lost true positives.
For a visual representation of this trade-off, one might consider the ROC curves
of each classifier (using the SMOTE rebalanced dataset from Section 4.1), as is
demonstrated in Figure 4.3, Figure 4.3 and Figure 4.3: As the recall of true positives
increase, so does the amount of false positives (“noise”). Moreover, the metric
selected is adaptable to other preferences, such as the contrary of ours, adapting to
the highly subjective consideration of some alerts. Hence, we have answered R2 and
demonstrated the viability of constructing such classifiers.

With these observations in mind, we might consider the first goal (R1): The first
goal can be said to be achieved primarily through our fusion step. By joining data
into a graph connected by overlapping attributes, we perform correlation and give
an overview of the current situation of the network, hence the term situation graph.

48 4. FINDINGS AND DISCUSSION

Moreover, it is suggested that the structural role extraction performed using RolX
is suitable, given the good results presented in Section 4.3. Hence, for all practical
motivations underlying this research question (as presented in Chapter 1), we have
demonstrated a sufficient answer to R1.

However, it would of course be an error to not considered factors limiting the
implications of these results. One such factor that must be considered is the nature
of the dataset. As noted in Section 3.6, the network and methods used for generating
the datasets leads to traffic and therefore NSM sensor data that is not very diverse,
neither in types of traffic, the variety of attacks or even the network topology. For
example, there is no Network Address Translation (NAT) mechanism in our network,
although this would be common in a corporate IPv4 network. Hence, these results
might not immediately be applicable to other types of traffic with different properties
in the distribution of protocols, volumes, payloads and so forth. This fact alone
suggests more research is needed in applying the techniques proposed by this thesis
to more diverse datasets.

Another factor that suggests some moderation in interpreting these results is
the feature extraction approach itself, as suggested by the earlier concerns voiced in
Section 3.6. Beneath the approach considered in this thesis, there is an implicit belief
that the structural roles extracted from the situation graph (i.e. the feature extraction
used in this thesis) by themselves encode enough information to discriminate between
normal and intrusive traffic. While it might be suggested that such traffic might
exhibit different structural properties, it by no means follows that these properties
themselves can be generalized. For example, networks might periodically drastically
change their topological and traffic characteristics during certain seasons, like when
new hires arrive, large projects are initiated, or new network services or configurations
are introduced into the network. In this case, a Bayesian model similar to [ea18]
might better capture the dynamics of the network, in that discovers the transitions in
roles over time, in a sense mirroring the concept of the phases constitute a kill-chain,
as presented in Section 2.1. Hence, more research is needed to compare the efficacy
of these techniques. Moreover, it is suggested that more diverse traffic (as previously
considered) might help provide a good ground for performing such comparisons.

These reservations notwithstanding, both research questions have been answered.
Namely, we have demonstrated a (R1) feature representation that combines a superset
of IDS data with NIDS alerts to convey the situational characteristics of the network
at different points in time, and successfully applied it to (R2) construct binary

4.4. DISCUSSION 49

classifiers that perform well when the goal is to remove false positive alerts and retain
some number of true positive alerts, depending on the preference of the user. As
such, these findings show that we have reached what the research set out to do, and
provide motivation for further investigating the efficacy of the techniques herein to
more diverse datasets.

Chapter5Conclusion and future work

This thesis has investigated whether combining data from multiple NSM sensors,
including NIDSs and HIDSs, can be combined to reduce the amount of false positive
alerts from NIDSs. We have demonstrated a way to combine (“fuse”) NSM alerts
and data from other sensors as a graph in order to express the situational context of
alerts. Moreover, a virtual test-bed for generating NSM data was constructed in order
to acquire data. We then demonstrated how a combination of a graph-based feature
extraction algorithm (RolX) and binary classifiers applied to this data succeeds in
recalling false positive alerts, while still retaining some portion of the true positive
alerts. Particularly, the best approach (using a RandomForest classifier) shows that
we recall 97 % of all false positive and 85 % of all true positive alerts.

This work is a contribution towards providing more accurate and relevante alerts
in NSM. The results of the aforementioned techniques are promising, and warrant
further investigation into the applicability of machine learning for the purpose of
reducing false positives. In time, it is hoped that this will allow Computer Emergency
Response Teams (CERTs) to allocate their resources more efficiently and also discover
more attacks on their networks.

5.1 Future work

As this work has been performed in a virtualized test-bed, it remains to be seen
how the approach will perform when applied to real networks. Future work should
look into applying a similar approach to a NSM data from production networks.
Alternatively, an approach using the β- and α-profiles presented in Secton 2.4.1 would
be a great boon to constructing future test-beds, allowing for reuse, flexibility and
easier verification of results.

51

52 5. CONCLUSION AND FUTURE WORK

The use of RolX in this research was heavily inspired by prior art by [ea18].
There, a more sophisticated time-series oriented approach known as role dynamics
was applied. For this research, a simplified approach was selected instead. Future
work should therefore investigate whether or not role dynamics will yield a better
result.

Similarly, results in Chapter 4 suggest that graph-based features might prove
useful for reducing false positives or even detect intrusions in network based on NSM
data. There might exist other novel graph-based feature extraction techniques that
work as well or even better for these purposes, or that might be developed. It is
therefore suggested to further study the applicability of graph features to NSM data.

Additionally, the list of sensors and statistics used for data generation used for
this research are by no means exhaustive. Without going too far in-depth, CERTs
will often use measures such as the entropy of domain names and their popularity in
global rankings to detect C2 traffic in particular. Therefore, more work is needed in
generating datasets that include such and other types of sensor data.

Finally, the goals of the techniques are complementary to developing new hy-
brid IDS solutions: Instead of filtering away false positives, such techniques might
instead be applied to detect intrusions. There is prior art in [ea18] for this appli-
cation, but results might be different or better by additional sensors, graph-based
anomaly detection techniques and any improvements provided by the above research
suggestions.

References

[And16] Lars Christian Andersen. Data-driven approach to information sharing using
data fusion and machine learning. Master’s thesis, 2016.

[ASØ12] Christian Emil Askeland, Anders Emil Salvesen, and Arne Fjæren Østvold. Sena-
tus - implementation and performance evaluation. Master’s thesis, Department
of Telematics, NTNU, 2012.

[Axe99] Stefan Axelsson. The base-rate fallacy and its implications for the difficulty of
intrusion detection. In Proceedings of the 6th ACM Conference on Computer and
Communications Security, pages 1–7. ACM, 1999.

[Bas00] Tim Bass. Intrusion detection systems and multisensor data fusion. Communica-
tions of the ACM, 43(4):99–105, 2000.

[Bej13] Richard Bejtlich. The practice of network security monitoring: understanding
incident detection and response. No Starch Press, 2013.

[CBHK02] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: synthetic minority over-sampling technique. Journal of artificial intelli-
gence research, 16:321–357, 2002.

[Den87] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on
software engineering, (2):222–232, 1987.

[DRF+11] Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos, Maarten
Van Steen, and Norbert Pohlmann. On botnets that use DNS for command
and control. In Computer Network Defense (EC2ND), 2011 Seventh European
Conference on, pages 9–16. IEEE, 2011.

[ea18] Palladino et al. Anomaly detection in cyber networks using graph-node role-
dynamics and netflow bayesian normalcy modeling. FloCon, 2018.

[Eng10] Vegard Engen. Machine learning for network based intrusion detection: an
investigation into discrepancies in findings with the KDD cup’99 data set and
multi-objective evolution of neural network classifier ensembles from imbalanced
data. PhD thesis, Bournemouth University, 2010.

53

54 REFERENCES

[Ger09] R. Gerhards. The syslog protocol. RFC 5424, RFC Editor, March 2009. http:
//www.rfc-editor.org/rfc/rfc5424.txt.

[GSLG16] Amirhossein Gharib, Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghor-
bani. An evaluation framework for intrusion detection dataset. In Information
Science and Security (ICISS), 2016 International Conference on, pages 1–6. IEEE,
2016.

[Hal17] Christoffer V. Hallstensen. Multisensor fusion for intrusion detection and sit-
uational awareness. Master’s thesis, Department of Information Security and
Communication Technology, NTNU, 2017.

[HCA11] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. Intelligence-driven
computer network defense informed by analysis of adversary campaigns and
intrusion kill chains. Leading Issues in Information Warfare & Security Research,
1(1):80, 2011.

[HČT+14] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. Flow monitoring explained: From packet capture to
data analysis with netflow and ipfix. IEEE Communications Surveys & Tutorials,
16(4):2037–2064, 2014.

[HDO+98] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their applica-
tions, 13(4):18–28, 1998.

[HGER+12] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. Rolx:
structural role extraction & mining in large graphs. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1231–1239. ACM, 2012.

[HHS+10] Blaise Hanczar, Jianping Hua, Chao Sima, John Weinstein, Michael Bittner, and
Edward R Dougherty. Small-sample precision of roc-related estimates. Bioinfor-
matics, 26(6):822–830, 2010.

[HL97] David L. Hall and James Llinas. An introduction to multisensor data fusion.
Proceedings of the IEEE, 85(1):6–23, 1997.

[JD02] Klaus Julisch and Marc Dacier. Mining intrusion detection alarms for actionable
knowledge. In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 366–375. ACM, 2002.

[JDM00] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern
recognition: A review. IEEE Transactions on pattern analysis and machine
intelligence, 22(1):4–37, 2000.

[JNVDÅ17] Kristoffer Jensen, Hai Thanh Nguyen, Thanh Van Do, and André Årnes. A big
data analytics approach to combat telecommunication vulnerabilities. Cluster
Computing, 20(3):2363–2374, 2017.

http://www.rfc-editor.org/rfc/rfc5424.txt
http://www.rfc-editor.org/rfc/rfc5424.txt

REFERENCES 55

[KM17] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia
of Machine Learning and Data Mining. Springer, 2017.

[Man18] Mandiant. M-trends 2018. https://www.fireeye.com/current-threats/
annual-threat-report/mtrends.html, 2018. Last accessed June 17th 2018 12:25.

[NFP12] Hai Thanh Nguyen, Katrin Franke, and Slobodan Petrovic. Feature extraction
methods for intrusion detection systems. Threats, Countermeasures, and Advances
in Applied Information Security, 3:23–52, 2012.

[Pet17a] Slobodan Petrovic. IMT4204 — IDS/IPS Definition and Classification (university
lecture). 2017.

[Pet17b] Slobodan Petrovic. IMT4204 — Testing IDS (university lecture). 2017.

[Pie04] Tadeusz Pietraszek. Using adaptive alert classification to reduce false positives in
intrusion detection. In International Workshop on Recent Advances in Intrusion
Detection, pages 102–124. Springer, 2004.

[Pon17] L Ponemon. Cost of data breach study: Global analysis. Poneomon Institute
sponsored by IBM, 2017.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal
of machine learning research, 12(Oct):2825–2830, 2011.

[RGNH12] Ryan Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Role-
dynamics: fast mining of large dynamic networks. In Proceedings of the 21st
International Conference on World Wide Web, pages 997–1006. ACM, 2012.

[RGNH13] Ryan A. Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Modeling
dynamic behavior in large evolving graphs. In Proceedings of the sixth ACM
international conference on Web search and data mining, pages 667–676. ACM,
2013.

[SSTG12] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection. computers & security, 31(3):357–374, 2012.

[TBLG09] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In Computational Intelligence for Security
and Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6.
IEEE, 2009.

[VT+97] Paul Vixie, , Susan Thomson, Yakov Rekhter, and Jim Bound. Dynamic updates
in the domain name system (DNS UPDATE). RFC 2136, RFC Editor, April
1997. http://www.rfc-editor.org/rfc/rfc2136.txt.

[WFHP16] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann, 2016.

https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
http://www.rfc-editor.org/rfc/rfc2136.txt

56 REFERENCES

[Wol96] David H. Wolpert. The lack of a priori distinctions between learning algorithms.
Neural computation, 8(7):1341–1390, 1996.

[XBSY13] Kui Xu, Patrick Butler, Sudip Saha, and Danfeng Yao. DNS for massive-scale
command and control. IEEE Transactions on Dependable and Secure Computing,
10(3):143–153, 2013.

[ZOM07] Kelly H Zou, A. James O’Malley, and Laura Mauri. Receiver-operating character-
istic analysis for evaluating diagnostic tests and predictive models. Circulation,
115(5):654–657, 2007.

[ZXXW15] Guodong Zhao, Ke Xu, Lei Xu, and Bo Wu. Detecting apt malware infections
based on malicious DNS and traffic analysis. IEEE Access, 3:1132–1142, 2015.

ChapterACode

A.1 attack.py

#!/usr/bin/env python2.7

import time
import random
import logging
import os
from subprocess import call, Popen

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)

DEVNULL = open(os.devnull, 'wb')
TARGET = "192.168.88.90"

Hydra template for WordPress bruteforce
ATTACK_STR = "&".join([

"/wp-login.php:log=^USER^",
"pwd=^PASS^",
"wp-submit=Log In",
"testcookie=1:S=Location"

])

while True:
call(["nmap", "-O", "192.168.88.0/24"], stdout=DEVNULL, stderr=DEVNULL)

57

58 A. CODE

First, do some recognisance
Then either SSH or Wordpress bruteforcing
if random.random() < 0.5:

logger.debug("Doing SSH bruteforce")
cmd = ["hydra", "-l", "root", "-P", "/usr/share/wordlists/rockyou.txt",

"192.168.88.90", "ssh"]
else:

logger.debug("Doing Wordpress bruteforce")
cmd = ["hydra", "-l admin", "-P", "/usr/share/wordlists/rockyou.txt",

"192.168.88.90", "-V", "http-form-post", ATTACK_STR]
p = Popen(cmd, shell=True)
Timeout after 10 minutes
time.sleep(60 * 10)
p.terminate()
Sleep for 15 minutes
time.sleep(60 * 15)

A.2 simulate_user_traffic.py

#!/usr/bin/env python3

----- GENERAL DESIGN NOTES

This script generates SSH, DNS and HTTP traffic towards designated targets.
The traffic is distributed over an Erlang-N distribution with N workers, with
Exp(1/l) holding times and traffic types distributed ~ N.
#
All traffic types can be sorted into either false positives or true
negatives. In the case of false positives, some deviating behavior is
triggered in order to (possibly) trigger NSM alerts:
#
- DNS: .xyz (blackholed) is generally considered suspicious, and FP DNS
requests will requests domains within this TLD. For false positives, a
random bytestring (similar to base64 encoded C2 payloads) is created.
#
- SSH: FP will try to (unsuccessfully) log into the root user (possibly
triggering an HIDS alert)

A.2. SIMULATE_USER_TRAFFIC.PY 59

#
- HTTP: FP will try to post to the login page with a suspicious user agent
(triggering a Suricata rule written for this purpose).

Requires the curl (libcurl), ssh (openssh) and dig (bind-tools) commands.

import binascii
import argparse
import random
import ipaddress
import time
import scapy.all as scapy
import logging
import os
import multiprocessing

from subprocess import call, DEVNULL

HTTP_TARGET="192.168.88.1"
DNS_TARGET="192.168.88.1"
SSH_TARGET="192.168.88.90"
REQUESTS_PER_WORKER_SECOND = 1
FALSE_POSITIVE_RATE = 0.5
SIMULATION_TIME = 10e6
WORKERS = 40

In order to use this, do:
ip link add inject0 type dummy
for i in $(seq 1 128); do
ip -4 addr add "172.168.54.${i}/24" dev inject0
done
for i in $(seq 128 250); do
ip -4 addr add "192.168.88.${i}/25" dev inject0
done
ip -4 route add 172.168.54.0/24 via 192.168.88.20
for i in $(seq 1 128); do
ip -4 addr del "172.168.54.${i}/24" dev inject0

60 A. CODE

done
for i in $(seq 128 250); do
ip -4 addr del "192.168.88.${i}/24" dev inject0
done
HOME_NET = "192.168.88.128/25"
EXTERNAL_NET = "172.168.54.0/25"

logger = logging.getLogger(__name__)

EVIL_IPS
NICE_IPS
def random_ip_address(false_positive=False):

net = EXTERNAL_NET if random.random() < 0.5 else HOME_NET
addresses = list(ipaddress.ip_network(net))
return random.choice(addresses)

cat local.rules | grep "DNS Query for Suspicious" \
| grep -Po "Suspicious .(.+) Domain" \
| sed -rn 's/Suspicious (.+) Domain/"\1",/p'
BAD_ZONES=(

".com.ru",
".com.cn",
".co.cc",
".cz.cc",
".co.kr",
".co.be",
".net.tf",
".eu.tf",
".int.tf",
".edu.tf",
".us.tf",
".ca.tf",
".bg.tf",
".ru.tf",
".pl.tf",
".cz.tf",
".de.tf",

A.2. SIMULATE_USER_TRAFFIC.PY 61

".at.tf",
".ch.tf",
".sg.tf",
".nl.ai",
".xe.cx",
".noip.cn",
".ch.vu",
".gr.com",

)

Alexa top1m domains
with open("/data/top-1m.csv", "r") as f:

NICE_ZONES = f.readlines()
logger.debug("Read and parsed Alexa top1m domain list")

def random_domain(false_positive=False):
if false_positive:

zone = random.choice(BAD_ZONES)
label = "{}{}".format(

binascii.b2a_hex(os.urandom(15)).decode("utf-8"),
zone

)
else:

label = random.choice(NICE_ZONES)
return label

def request_sleep(requests_per_second=REQUESTS_PER_WORKER_SECOND):
"Sample sleep times in order to achieve a mean of 1/'requests_per_second'"
return random.expovariate(requests_per_second)

def gen_request_type():
"Sample to achieve the desired distribution of traffic types"
choice = random.random()
20 % DNS
if choice < 0.20:

return "dns"
15 % SSH

62 A. CODE

if 0.20 <= choice < 0.35:
return "ssh"

65 % HTTP
return "http"

def worker(ip_address):
name = "{} ({})".format(ip_address, multiprocessing.current_process().name)
while True:

false_positive = True if random.random() < FALSE_POSITIVE_RATE else False
r_type = gen_request_type()
if r_type == "http":

gen_http(ip_address, HTTP_TARGET, false_positive)
if r_type == "dns":

gen_dns(ip_address, DNS_TARGET, false_positive)
if r_type == "ssh":

gen_ssh(ip_address, SSH_TARGET, false_positive)
logger.debug("{} sent {} request (fp={})".format(

name, r_type, false_positive))
time.sleep(request_sleep())

def gen_ssh(src_ip, target, false_positive=False):
username = "root" if false_positive else "guest"
call(["ssh", "-b", str(src_ip), "-o", "PubkeyAuthentication=yes",

"{}@{}".format(username, target)], stdout=DEVNULL, stderr=DEVNULL)

def gen_dns(src_ip, target, false_positive=False):
zone = random_domain(false_positive)
call(["dig", "-b", str(src_ip), "@{}".format(target), zone],

stdout=DEVNULL, stderr=DEVNULL)

def gen_http(src_ip, target, false_positive=False):
user_agent = "Mozilla/5.0 (Android 4.4; Mobile; rv:41.0) Gecko/41.0 Firefox/41.0"
if false_positive:

user_agent = "Mozilla/5.0 (FPfox)"
target = "{}/wp-admin".format(HTTP_TARGET)
call(["curl", "--interface", str(src_ip), "-H",

"User-Agent: {}".format(user_agent), target],

A.2. SIMULATE_USER_TRAFFIC.PY 63

stdout=DEVNULL, stderr=DEVNULL)

if __name__ == "__main__":

parser = argparse.ArgumentParser(description='Simulate user traffic')
parser.add_argument(

"--debug-level",
type=int,
help="debug level (10 = DEBUG, 20 = INFO, 30 = WARNING)",
default=logging.WARNING,
choices=(logging.DEBUG, logging.INFO, logging.WARNING)

)
args = parser.parse_args()

logging.basicConfig(level=args.debug_level)

ip_addrs = (random_ip_address() for _ in range(WORKERS))
workers = [multiprocessing.Process(target=worker, args=(addr,))

for addr in ip_addrs]
for worker in workers:

worker.start()
time.sleep(SIMULATION_TIME)
for worker in workers:

worker.terminate()

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Research questions

	Background
	Network Security Monitoring and Intrusion Detection
	Sensor data
	Intrusion detection systems

	NSM and Multi-Sensor Data Fusion
	Machine Learning
	Evaluating binary classifiers
	Pre-processing and features
	Supervised classifiers

	Machine learning and NSM
	Data acquirement
	Anomaly detection using role dynamics

	Methodology
	Fusion approach
	Data acquirement
	Pre-processing and feature extraction
	Feature extraction
	Pre-processing

	Classification
	Evaluation
	Discussion

	Findings and Discussion
	Data generation
	Feature extraction
	Pre-processing

	Classifier results
	Discussion

	Conclusion and future work
	Future work

	References
	Code
	attack.py
	simulate_user_traffic.py

