
Cumulative Citation Recommendation

Christian Barth Roligheten

Master of Science in Computer Science

Supervisor: Kjetil Nørvåg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract
Keeping knowledge bases such as Wikipedia up-to-date with the latest information is a
difficult task in the information age: Every day thousands of news articles, blog posts,
opinions are published on the Internet and if we imagine that just a small fraction of these
documents contain new information that would require a knowledge base to be updated,
then we need an army of constantly vigilant volunteers to keep track of this stream of
information and update knowledge bases as it becomes necessary. Obviously as more
more information is generated on the Internet, we need increasingly more volunteers to
keep track of it all. It would then be greatly beneficial if we could create automated systems
which assist volunteers with integrating new information into knowledge bases.

Cumulative Citation Recommendation (CCR) is the task of assisting knowledge base
editors by automatically recommending edits to entity profiles in knowledge bases given
a stream of documents. In this thesis we implement a CCR system that allow us to
evaluate different learning-to-rank (LTR) based ranking approaches to CCR. Specifically
we compare entity-dependent and entity-independent approaches, as well as approaches
which use Gradient Boosted Trees and Random Forests as the ranking algorithm. We
also evaluate how different features affect the system. Our best approach which uses
Gradient Boosted Trees and an entity-dependent approach achieves an F1 measure of 0.5
on the 2014 TREC KBA track, which would places it in second place compared to other
participants of this track. Our evaluation of different LTR-based approaches reveal which
approaches are most effective for CCR.

i

Sammendrag

Å holde kunnskapsbaser som Wikipedia oppdatert med ny informasjon er en utfordrende
oppgave i informasjonsalderen: Hver dag blir tusenvis av nyhetsartikler, blogginnlegg og
meninger publisert på nettet og hvis vi forestiller oss at bare en liten mengde av disse
krever at en kunnskapsbase oppdateres, trenger vi en arme av oppvakte redaktører for å
holde oversikt over denne strømmen med informasjon og oppdatere kunnskapsbaser når
nødvendig. Åpenbart trenger vi en alltid økende mengde redaktører ettersom mer infor-
masjon produseres på nettet over tid. Det ville vært til stor hjelp dersom vi kunne laget
systemer som støtter frivillige redaktører med å integrere ny informasjon inn i kunnskaps-
baser.

Cumulative Citation Recommendation (CCR) handler om å støtte redaktører i
kunnskapsbaser ved å automatisk anbefale endringer til entitetsprofiler i kunnskapsbaser
basert på en strøm av dokumenter. I denne avhandlingen bygger vi et CCR system som
lar oss evaluere forskjellige learning-to-rank (LTR) baserte metoder til CCR. Spesifikt
sammenlikner vi entitetsavhengige og entitetsuavhengige metoder og metoder basert på
Gradient Boosted Trees og Random Forests som rangeringsalgoritmer. Vi evaluerer også
hvordan forskjellige valg av features påvirker systemet. Vår beste metode oppnår en F1
poengsum på 0.5 som plasserer denne metoden på andreplass i TREC KBA track 2014.
Vår evaluering av forsjellige LTR baserte metoder viser også til hvilke metoder som
fungerer for CCR i forskjellige situasjoner.

ii

Acknowledgments
I would like to thank my supervisor Professor Kjetil Nørvåg for his guidance and for being
supportive and encouraging throughout this project. I would also like to thank Professor
Krisztian Balog and Associate Professor Heri Ramampiaro for taking time off their busy
schedules to provide me with valuable insight into the field of research covered by this
thesis.

Lastly I would like to thank my friends and fellow thesis writers Dag Erik Løvgren
and Øystein Aas Eide for fruitful discussions throughout the semester and for giving me a
reason to show up at school every day outside of writing this thesis.

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Acknowledgments iii

Table of Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Research questions . 4

1.3 Outline . 5

2 Preliminaries 7

2.1 Supervised learning . 7

2.2 Document processing . 10

2.3 Text representations for supervised learning 11

2.4 Evaluation of information retrieval systems 13

v

3 Related Work 17

3.1 Cumulative citation recommendation . 17

3.2 Knowledge base population . 19

4 TREC Cumulative Citation Recommendation 21

4.1 The TREC KBA track . 21

4.2 Task description and definitions . 22

4.3 Document collection and truth data . 24

4.4 Evaluation metrics . 27

5 Implementation 29

5.1 Architectural overview . 29

5.2 Building word vectors for temporally sensitive tasks 30

5.3 The document processing system . 31

5.4 The Vital Filtering System . 44

6 Experiments & Results 49

6.1 Document collection and truth data . 49

6.2 Evaluation methodology . 50

6.3 Experimental overview . 51

6.4 Results . 52

7 Discussion & Conclusion 57

7.1 Discussion of results . 57

7.2 Contribution . 60

7.3 Conclusion . 62

7.4 Future work . 63

Bibliography 65

vi

A Per-topic training data distribution 69

Appendix 69

B Command-line used for evaluating runs 73

vii

viii

List of Tables

4.1 Target entity types for the 2014 CCR task and the number of entities in
each category . 22

4.2 Subset of fields in a StreamCorpus document which we use in this thesis.
Descriptions adapted from streamcorpus.org 24

4.3 Evolution of the TREC KBA StreamCorpus between the 2012 and 2014
KBA track . 25

5.1 Statistics of different collections which we combine and use to train our
word-embeddings. 31

5.2 Basic features . 37

5.3 Temporal features . 39

5.4 Variants of document-representation features we implemented 43

5.5 Verb tags from the Penn Treebank English POS tag set and the tense they
indicate . 44

5.6 Tense and clause features . 44

6.1 Variants of document-representation features we implemented 51

6.2 Performance of different feature sets when using an entity-independent ap-
proach . 52

6.3 Performance of different feature sets and approaches when using an entity-
dependent approach . 53

6.4 Best F1 and SU score of each participating team in the 2014 TREC KBA
track and our best (bold) . 56

ix

http://streamcorpus.org/sphinx-docs/streamcorpus.html

A.1 Number of training examples for each relevancy level per entity in the
training data of the 2014 TREC KBA track (Target entities of the CCR
task only) . 71

x

List of Figures

1.1 Number of articles vs number of active editors (>5 edits) on Wikipedia . 2

1.2 Illustration of the process of Cumulative Citation Recommendation 3

2.1 Typical method of splitting truth data into separate training and testing sets 8

2.2 A typical LTR system . 9

4.1 Example of StreamCorpus document containing noisy text unrelated to the
article (bold) . 27

5.1 High-level architecture of our system . 30

5.2 Architecture of the document processing system 31

5.3 Partial hypernym tree of the verb win in Wordnet, verbs that indicate vital-
ity in a hypothetical CCR classifier are labeled in green 42

5.4 Architecture of the Vital Filtering System 45

5.5 Architecture of the entity-dependant ranking approach 48

6.1 Graph showing the F1 measure of different feature sets and approaches
when using an entity-independent approach 53

6.2 Graph showing the F1 measure of different feature sets and approaches
when using an entity-dependent approach 54

6.3 Graph showing the F1 measure of different feature sets for all approaches 55

xi

Chapter 1
Introduction

In Section 1.1 we will detail the motivation behind this thesis, we will then use the problems
described in the motivation to define research questions which this thesis will attempt to
answer in Section 1.2. We will then briefly summarize the contributions of this thesis in
Section 7.2 and then outline the structure of this thesis in Section 1.3.

1.1 Motivation

Increasingly in the modern era we are relying more and more on knowledge bases such
as Wikipedia as a source of information in our everyday lives, however while modern
knowledge bases are convenient for the average person, people often do not think of what
goes on in the background in order to make sure these knowledge bases are kept up-to-date
and relevant.

For free and open knowledge bases such as Wikipeda, an army of volunteer editors
is needed to constantly update articles or create new ones when needed, and while the
Internet has created a platform for these editors to easily collaborate, it has also created a
problem: As the velocity of information creation on the Internet increases, more work from
editors is needed to keep knowledge bases up-to-date. This problem is illustrated in Figure
1.1: While the number of active editors has been falling since around 2007, the number
of articles is increasing linearly and shows no sign of slowing down. As time passes and
more articles are being created, it will become increasingly difficult for a small number of
editors to keep up with the ever increasing amount of new information created both on the
Internet and in the real world.

1

Chapter 1. Introduction

Figure 1.1: Number of articles vs number of active editors (>5 edits) on Wikipedia

We can think of two ways to address the problem of keeping knowledge bases up-
to-date: Either the number of editors has to increase proportionally with the number of
articles, or the effectiveness of each editor needs to increase such that they can keep up
with the increasing complexity. While Computer Science may not be able to address the
ladder, it may be able to address the former: By creating systems which can effectively
notify editors of new important events related to the topics in knowledge bases, then it will
be easier for a small number of editors to keep up with changes to increasingly complex
knowledge bases.

Cumulative Citation Recommendation (CCR) is the task of assisting knowledge base
editors by automatically recommending edits to entity profiles in these knowledge bases
given a stream of documents. Figure 1.2 illustrates this process: Given a stream of doc-
uments which can include news articles, blog posts, etc. it is the task of CCR systems
to automatically process this stream of documents and filter out what is relevant to differ-
ent entities. The highly relevant filtered documents are then accumulated and presented
to knowledge base editors who integrate this new content into existing knowledge base
profiles.

This thesis will focus on the problem of building a CCR system that can effectively
filter out documents that are relevant to an entity given a document collection containing
potentially millions of documents. Our goal when implementing this system is to uncover
which methods work when building such a system so that we can guide future research.

2

1.1 Motivation

Figure 1.2: Illustration of the process of Cumulative Citation Recommendation

3

Chapter 1. Introduction

1.2 Research questions

With the motivation described in Section 1.1 we define our main research question as fol-
lows:

RQ1 How can we effectively filter out new, relevant information related to a set of
entities given a stream of documents?

This main research question will be answered by implementing a system to filter rele-
vant information from a stream of documents, and evaluating if it does indeed effectively
filter new relevant information related to a set of predefined entities. Implementing such
a system however is no small task, and many different approaches have been proposed in
existing research. We will follow earlier work on CCR such as Balog et al. (2012) and
Jiang et al. (2014) which find that supervised learning approaches using learning-to-rank
(LTR) achieve some of the best results for the problem.

When implementing the CCR system we will also evaluate different approaches to cre-
ating such a system. In existing research on CCR a popular machine-learning algorithm
has been the Random Forests algorithm, we want to see if we can get better results using
Gradient Boosted Trees. We also want to evaluate if entity-dependent approaches achieve
better results than entity-independent approaches for the system we implement. Finally we
will look at how the choice of features affect the performance of our system for these dif-
ferent implementations. For this we define three secondary research questions that prompt
us to look at different ways of creating a LTR based system and comparing them with the
purpose of guiding future work on this problem:

RQ2 How does the Random Forest algorithm compare to Gradient Boosted Trees
when used for ranking?

RQ3 How does entity-dependent approaches compare to entity-independent
approaches for ranking?

RQ4 What features are effective when used in conjunction with the different ap-
proaches?

These research questions will be answered by implementing a system which can run
with both the Random Forests and Gradient Boosted Trees algorithm, while for both of
these approaches also having the ability to switch between entity-dependent and entity-
independent approaches. By comparing these approaches using the appropriate metrics
with different features we can make recommendations as to what works and what does not
work for CCR.

4

1.3 Outline

1.3 Outline

Chapter 2 - Preliminaries: Gives an overview of the theoretical concepts that need to
be understood in order to properly implement our approach.

Chapter 3 - Related Work: Presents related work in both CCR and related fields

Chapter 4 - TREC Cumulative Citation Recommendation: Gives an overview of
the TREC KBA track and related CCR task which we will implement and evaluate our
implementation against

Chapter 5 - Implementation: Details our implementation of a CCR system build in
the context of the TREC KBA track.

Chapter 6 - Experiments & Results: Explains our approach to evaluating the system
we implemented and the results of this evaluation.

Chapter 6 - Discussion & Conclusion: Presents a discussion of the results of the
evaluation and our answers to the research questions. Lastly we present our conclusion to
this thesis and future work.

5

Chapter 1. Introduction

6

Chapter 2
Preliminaries

In order to properly approach the task of creating a system which solves the task of cumu-
lative citation recommendation we need to understand the preliminary theory underlying
the creation of such a system. As we stated earlier there are many ways of creating CCR
systems, and covering the theory behind all such approaches would be beyond the scope of
this thesis. In this chapter we will therefore give an overview of the established theoretical
concepts which we will base our implementation and evaluation on.

2.1 Supervised learning

Supervised learning is the problem of taking a set of labeled examples and using these
to make predictions on unseen data points (Mohri et al., 2012). The specific type of pre-
diction one wishes to make can vary depending on the task. Common types of problems
for supervised learning are classification, regression and ranking problems which are all
differentiated by the type of unseen data we wish to predict. The methods used to make
predictions in all of these methods vary and it would be outside the scope of this thesis
to cover all of them. In this section we will give a brief overview of the generic topics of
supervised learning as well as more specific topics of special interest to this thesis.

7

Chapter 2. Preliminaries

2.1.1 Features

When using supervised learning we have stated that we use labeled examples to make
prediction on unseen data points. These examples that are used to make prediction have to
be structured in a way that allow a supervised learning algorithm to utilize them to make
these predictions. In supervised learning the collection of data-points for any given training
example are often called “features” or “attributes” of the given example. It is normal for
any given example to be associated with many different features which make up a “feature
vector”. The goal of any supervised learning algorithm is to build models which take as
input a feature vector and output the correct prediction for that vector.

2.1.2 Training and testing set

After using a given algorithm to create a model it is customary that we want to evaluate
the performance of this model which requires us to have some labeled examples that we
can compare the models predictions to. A naive approach to evaluating the model would
be to simply have the model make predictions on the labeled examples it used to create
the model, and see how accurate it is on recreating the labels. This is however not an
appropriate way to evaluating a model because it does not evaluate if the model is only
good at predicting labels it has seen before and does not test if the model generalizes well
to predicting unknown feature vectors, something that is called overfitting.

Because of this it is normal to split the collection of all available labeled examples
(truth data) into two separate sets which are called the training and testing set as shown
in Figure 2.1. The training set of labeled examples is made available to the supervised
learning algorithm while the testing set is kept hidden. When it comes to evaluating a
given model the labeled examples from the testing set are used to evaluate the models
predictions. Since the model did not have access to these labels for examples in the testing
set, the performance of the model when predicting these labels give a good measure of the
model’s generalized performance.

Figure 2.1: Typical method of splitting truth data into separate training and testing sets

8

2.1 Supervised learning

2.1.3 Learning-To-Rank

Ranking is one of the central problems of Information Retrieval (Liu, 2011). According
to Baeza-Yates A. et al. (1999) the primary problem of any IR system is to predict which
documents a user will find useful or not given a query. In order to predict which documents
are relevant and which are irrelevant, a ranking model is used to rank a set of documents
according to their relevancy. Producing this ranking model is one of the primary problems
of IR.

Learning-To-Rank (LTR) is the task of automatically constructing a ranking model
using training data (Liu, 2011). Figure 2.2 illustrates the process of creating and using an
LTR model for ranking. As we can see from this figure, learning-to-rank is a supervised-
learning approach to ranking: A set of labeled training data are used to train a ranking
model, this model can then be used to make prediction on unlabeled testing data.

Since learning-to-rank attempts to solve the ranking problem in IR, it is also natural
that it takes into account the query-based nature of ranking in IR: Since documents are
only ranked in relation to a query, rankings of documents from different queries are not
comparable. Because of this labeled training data in LTR systems is grouped by their
respective query. When a ranking model is trained, model fitness is evaluated only in
query groups. In the same fashion when ranking unknown documents are ranked relative
to other documents for the same query.

Figure 2.2: A typical LTR system

LTR is not a single algorithm and encompasses many different approaches, in Liu
(2011) they summarize that LTR there are primarily three types of LTR algorithms that
can be distinguished by how they predict rankings for a query given a group of documents:

9

Chapter 2. Preliminaries

Pointwise approaches take as input only single documents and attempts to predict
their relevancy to a query without taking into account rankings of other documents for the
same query. Because the pointwise approach does not take into account the query-based
nature of ranking in IR, it is considered in Liu (2011) to have certain limitations.

Pairwise approaches take as input pairs of documents and attempts to predict which
of the two documents are more relevant to the given query. According to Liu (2011) the
ranking then boils down to a classification problem where the task is to reduce the number
of miss-classified pairs of documents. Again this approach does not fully exploit the fact
that ranking problems in IR are query-focused, and in a similar fashion to the pointwise
approach it does not fully exploit the query-based nature of ranking problems in IR.

Listwise approaches take as input the whole set of document associated with a query.
The task of ranking them becomes to produce a permutation of the document set associated
with a query that best represents the true ranking of the documents associated with a query.
The listwise approach is according to Liu (2011) the one that best represents the task of
ranking in IR given that it uses whole sets of documents associated with a query, something
neither the pairwise or pointwise approach does.

2.2 Document processing

Document pre-processing is an important part of any information retrieval system and is es-
pecially important for supervised learning systems which use features based on document-
representations: When textual content in documents are used to make predictions, then the
amount of noise in the textual content can negatively affect the accuracy of the predictions
made. The effects of pre-processing on document content on classification performance
has been investigated in Uysal et al. (2014) where they find that the method of document
pre-processing can affect the performance of a classification system and that careful con-
siderations of pre-processing method can significantly improve classifier performance.

In this section we will quickly introduce the methods of document pre-processing that
are relevant for this thesis.

Tokenization

Tokenization is the process of separating a stream of characters into tokens. A token in
this case is usually a single word or term that existed in the original stream of characters.
Extracting these terms can be tricky because it is not always apparent where the boundary
of a term is. An example of this given in Manning et al. (2008) is tokenizing the stream of
characters “O’Neill”. Here it is not apparent if we should consider this as a single token
or if we should split it into two tokens in the form of “O” and “Neill”. Resolving such
conflicts is an important consideration we need to make when tokenizing since the best
choice may be dependent what you are planning to use the tokens for later.

10

2.3 Text representations for supervised learning

Stopword removal

Stopword removal is the process of removing common words that provide little meaning
to the underlying text from the textual content of the document. Stop word removal is
commonly performed after tokenization as tokenization makes it easy to identify certain
stop words from a given list of terms to be removed. This list of words to be removed
is called the stop word list, and can either be computed by removing terms that appear
very frequently in the document collection (Lo et al., 2005), or retrieved from existing stop
words lists.

Whether stop word removal has a positive impact on supervised learning problems
such as text classification has not been proved and in Manning et al. (2008) they state that
a general trend has been to use smaller lists or no lists at all. In more specialized domains
such as as sentiment analysis it has also been shown that using classical stop word lists can
negatively impact system performance (Saif et al., 2014).

Term normalization

Term normalization is the process of transforming similar terms in such a way that they be-
come equivalent. A popular example of term normalization is case-folding which involves
lower-casing all character such that terms such as “Book” and “book” become equivalent
terms. Another form of term normalization is called lemmatization which involves reduc-
ing a word down to its base form. An example of lemmatization is the transformation of
verb “Running” to its base form “Run”. Term normalization can be beneficial in that it
can drastically reduce the vocabulary size in a document collection, which is especially
true for case-folding. However term normalization can also normalize terms that represent
different things: Case-folding “Bush” as in “George Bush” to “bush” makes it harder to
distinguish that the term refers to a surname and not a bush.

2.3 Text representations for supervised learning

One challenge of applying supervised learning to textual content is how to best represent
text in a way that a machine learning algorithm can understand and effectively utilize. As
a general rule for a machine learning algorithm to properly discover relationships between
text we need to preserve as much of the meaning and context of each word in a text as
possible. However we also want to limit the amount of irrelevant information since this
will increase the complexity of the model. Finding a way to represent text, and further
whole documents with these requirements in mind is crucial to properly apply machine
learning to text related tasks.

11

Chapter 2. Preliminaries

2.3.1 The classic vector-space model

One of the earliest and simplest ways of representing text is the classic vector-space model
(Salton et al., 1975). The vector-space model represents documents in a vector-space where
each dimension corresponds to an unique term in the vocabulary. A document can then be
represented as a vector in this model where each term has an associated weight which is
determined by the frequency of the term occurrence in the document. Many term weight-
ing schemes are used for the vector-space model, the simplest being the binary weighting
scheme where the term weight is 1 if the document contains the term and 0 otherwise. The
TF-IDF weighting scheme is also commonly used where the TF-IDF weight of the term in
relation to the document and collection is used as a weight.

The classic vector-space model can be used to represent documents in supervised learn-
ing tasks: By considering each dimension in the vector-space as an individual feature fed
to a supervised learning algorithm it is possible to use this model for supervised learning
tasks (Baeza-Yates A. et al., 1999).

While the classic vector-space model is widely used in IR tasks it is not without its
flaws. When using the vector-space model as a way to represent a given document as a
feature-vector there are some issues that have to be dealt with:

Dimensionality and sparsity Since each dimension only corresponds to a single term
and a vocabulary can consist of millions of unique terms, the size of the vectors in this
model can become very large, in addition any single document is likely to only contain
a fraction of the terms, meaning the vector representing a document will be very sparse.
This can lead to problems for many machine learning algorithms because the number of
features required to represent all terms can introduce unwanted complexity which can lead
to overfitting (Meng et al., 2011). While there are approaches to mitigate this problem such
as feature selection it is still a core weakness of the vector-space model.

Loss of word meaning and context When a piece of text is converted into a vector
as in the vector-space model, a significant amount of semantic and contextual information
about the original text is lost. Firstly since each term has a fixed position in the vector,
the position of terms in the original text is lost, which gives rise to the vector-space model
often being called the “bag-of-words model”. Additionally the vector does not encode
semantic relationships such as some terms being semantically related. For example when
using the vector-space model, the terms “run” and “sprint” are as related as the terms “run”
and “window” or any other term for that matter.

12

2.4 Evaluation of information retrieval systems

2.3.2 Distributed representations

While the traditional vector-space model represent each word in a single dimension in
the vector space, distributed representations represent words as points in a vector-space
(Bengio et al., 2003). Relatively recently approaches to generate distributed vectors for
words which maintain semantic relationships have gained popularity in NLP related tasks.
These include neural-network based approaches such as the skip-gram approach described
in Mikolov et al. (2013) as well as count-based approaches such as the GloVe model de-
scribed in Pennington et al. (2014). As mentioned these approaches aim to preserve se-
mantic relationships between words.

Up until this point we have only discussed distributed vectors of words, which while
useful when we work on tasks involving single words, are not so useful when working on
sentences or whole documents. A popular approach to this is based on simply aggregating
the word-vectors in a text using the mean, max or min function and considering this as a
representation of the text as a whole (De Boom et al., 2016). In this thesis we will focus
mostly on aggregating word-vectors using the mean function, which can be described as
follows.

Dmean =

∑|D|
i=1 vi
|D|

(2.1)

Where D is a given document, vi is the word-vector of the ith word and |D| is the num-
ber of words in D. The resulting vector Dmean can be considered a representation of the
underlying document with a distributed representation based on word-embeddings. This
representation has the benefit of having fixed dimentionality, ie. the vector dimentionality
is equal to the dimentionality of the underlying word-vector no matter how large our vo-
cabulary grows. From the distributional hypothesis we also retain the semantic relationship
between documents with semantically similar words because the underlying words will be
close to each other in the vector-space. This does not mean that the model is without its
flaws: Since we just take the mean of each word-vector, we lose the original context of
each word in the document, ie. a document consisting of the same words in random order
will have the same representation.

2.4 Evaluation of information retrieval systems

In this section we will describe the evaluation metrics that are relevant for Cumulative
Citation Recommendation.

13

Chapter 2. Preliminaries

2.4.1 Precision and Recall

Precision and recall are two widely used measure of test accuracy in information retrieval
and form the standard evaluation measure for many such systems (Baeza-Yates A. et al.,
1999). Precision can be thought of as a measure of a test’s “accuracy”, ie. the ratio of
retrieved documents that actually are relevant and documents retrieved. Recall on the other
hand is a measure of how many of the relevant documents that exists that were retrieved by
the system or algorithm. In a more formal way we can describe precision in the following
way: For a given query Q let A be the set documents the algorithm retrieves a relevant, let
R be the set of all the relevant documents to the query Q. The precision of the algorithm
for query Q is then as follows.

precision =
|R ∩ A|
|A|

(2.2)

Recall can be described formally in the same manner as follows.

recall =
|R ∩ A|
|R|

(2.3)

2.4.2 F-Measure

When comparing retrieval algorithms it is useful to be able to summarize both the precision
and recall of the algorithm as a single value (Baeza-Yates A. et al., 1999). Taking the
harmonic mean of the precision and recall is one way to summarize these values into a
single value, and it is then called the F-Measure or F1-Measure. It can be calculated as
follows.

F-Measure =
2

1
recall

+ 1
precision

(2.4)

2.4.3 Scaled Utility

The scaled utility metric is a linear utility measure that is based on rewarding relevant
retrieved documents and punishing non-relevant retrieved documents (Robertson et al.,
2002). The utility function can be described as follows.

T11U = 2 ∗ TP − FP (2.5)

14

2.4 Evaluation of information retrieval systems

Where TP is the number of true positives retrieved by the system and FP is the number
of false positives retrieved. Once we have the utility score of the system it is normalized
by the maximum possible score a system can achieve, which is calculated as follows.

T11NU =
T11U

2 ∗ (TP + FN)
(2.6)

Where FN is number of false negatives. Finally the scaled utility is retrieved by adding
the concept of minimal normalized utility to the measure. The minimal normalized utility
(MinNU) is the maximum negative utility a user will tolerate before the user stops looking
for documents. Generally many values for MinNU can be used but normally this value is
set to MinNU = −0.5 (Robertson et al., 2002). Now we can calculate the scaled utility
as follows.

T11SU =
max(T11NU,MinNU)−MinNU

1−MinNU
(2.7)

The scaled utility incorporates the idea that a user will stop searching for more docu-
ments when the utility reaches MinNU , hence the utility cannot fall below MinNU even
if the actual utility of the search T11NU falls below this value (Robertson et al., 2002).

2.4.4 Statistical significance testing in IR

One central problem in information retrieval is the comparison of the performance of two
different systems: Given two systems A and B, how can we determine if one performs
significantly better than the other? In Smucker et al. (2007) they present different meth-
ods of testing the significance of differences in performance between two IR systems: In
TREC related problems data is often separated into N topics and the evaluation metric is
calculated separately for each of these topics. Given two systems A and B we then have
N paired samples of scores for these two systems, the methods tested in Smucker et al.
(2007) use various statistical tests on these N paired scores to calculate a p-value. They
come to the conclusion the randomization test, bootstrap shift method test, and Student’s
t-test produce comparable significance values. In this thesis we will focus on Student’s
t-test because it is relatively simpler compared to the two other aforementioned methods.

In Sakai (2014) a good guideline for performing a two-sided t-test on paired topic
scores for two systems is presented: Given that we have two systems A and B with N
paired topic scores where ai and bi is the respective system score for topic i, then with µA

and µB being the sample mean across topics for the two respective systems, we want to
test the null hypothesis H0 : µA = µB.

In the setting of a two-sided paired Student’s t-test we reject H0 if the test statistic (t0)
is larger than the two-sided critical t value t(φ, α) where φ is the degrees of freedom which
will be N − 1 and α is the significance criterion. Calculating t0 can be done as follows:

15

Chapter 2. Preliminaries

t0 =
d̄√
V/N

=
√
N

d̄√
V

(2.8)

Where d̄ =
∑N

i=0 di/N is the sample mean of the score differences for each topic
(di = ai − bi), and V =

∑N
i=0(di − d̄)2/(N − 1) is the unbiased population variance.

Sakai (2014) also states that the p-value should be presented alongside the results of the
significance test. The p-value is simply P (|T | > t0) which can be found using statistical
software or tables.

16

Chapter 3
Related Work

In this chapter we review existing approaches and research that is related to the CCR prob-
lem. First in Section 3.1 we review relevant related work on the main topic of this thesis. In
Section 3.2 we review work that is related to CCR in the field of knowledge base population
(KBP).

3.1 Cumulative citation recommendation

Research on cumulative citation recommendation has been largely dominated by the TREC
KBA track which ran in 2012, 2013 and 2014. In all of these tracks a variety of approaches
have been tried to the CCR task, however since we will be looking at supervised approaches
in this thesis, we will look primarily at related work in CCR which uses supervised ap-
proaches.

Classification vs ranking approaches

In Balog et al. (2012) K. Balog, et al. summarizes that supervised approaches to CCR can
be primarily split into classification- and ranking-based approaches. Ranking-based ap-
proaches attempt to rank candidate documents relative to each other such that a knowledge-
base editor can easily filter out those that are most relevant (Efron et al., 2012). Classifi-
cation approaches however such as those presented in Berendsen et al. (2012) attempt to
first make a binary decision of which documents are vital and then use the confidence
score of the classifier to rank documents relative to each other. Multi-step classification
approaches have also been proposed in Balog Krisztian et al. (2013) where they perform
multiple stages of binary classification to make more detailed classifications of documents.

17

Chapter 3. Related Work

Choice of machine-learning algorithm

When using either classification- or ranking-based approaches many different machine-
learning algorithms have been used: In Balog Krisztian et al. (2013) they compare ap-
proaches based on random forests and the J48 algorithms and discover that generally the
random forest algorithm is preferable, similar experiments were performed in Balog et al.
(2012) where they also find that for a learning-to-rank based approach the random forest
algorithm beats other ranking algorithms with the same feature set. More recent classifi-
cation approaches such as the one presented in Cano et al. (2014) have attempted to apply
randomized tree ensembles to generally good results, while Reinanda et al. (2016) used
gradient boosted decision trees. A classification approach that uses a joint deep neural
network approach has also been proposed in Ma et al. (2017).

Entity-dependent vs entity-independent approaches

In the first 2012 TREC KBA track most supervised-learning approaches trained a single
global ranking or classification model for all entities, which effectively means that their
model needs to handle the generalized properties of all entities as opposed to those specific
to each entity. In the 2014 TREC KBA track the number of training instances per entity was
selected such that enough training instances exist per entity to allow experimentation with
entity-dependent approaches which train a single model per entity as opposed to a single
global model. Examples of entity-dependent approaches can be found in Wang, Zhang,
et al. (2014) where they train both an entity-dependent and entity-independent model and
find that their entity-dependent model performs slightly better than the entity-independent
one. Another notable entity-dependent approach is Jiang et al. (2014) where they use an
entity-dependent ranking approach and achieve significantly better results than all other
participants in the 2014 TREC KBA track.

Feature engineering

Feature engineering is an important aspect of building supervised approaches to CCR. In
Balog Krisztian et al., 2013 they propose four categories into which they group common
features used for CCR. These categories are document features which rely only on the
document content and its metadata, entity features which depend on data about the target
entity, document-entity features which capture relationships between a document and target
entity, and finally temporal features which quantify if some important event relevant to the
entity is taking place at a given time.

In general the most interesting developments on feature engineering for CCR have been
on either temporal or document-entity features. The document and entity feature categories
are usually based on representing existing metadata about documents and entities as fea-
tures and it is therefore limits to how these features can be applied to CCR, for this reason
we have not seen much development of these types of features in later CCR approaches.

18

3.2 Knowledge base population

For temporal features burst detection on various time-series data is often used to detect
if something has happened to an entity, and is usually performed on the time-series data
lookingN hours into the past from when the document was timestamped. Different sources
of this time-series data have been used: In Balog Krisztian et al. (2013) they use both
number of mentions of the entity in the document collection and Wikipedia page-view
data, while Wang, Liao, et al. (2015) used Google Trends as a source of this data. For
detecting a burst in an entity’s time-series data, detecting bursts based on deviation from
the mean across the training period was used in Balog Krisztian et al. (2013), while an
approach based on moving-average burst detection was introduced in Wang, Zhang, et al.
(2014).

Document-entity features are often based on measuring the similarity between an en-
tity’s existing knowledge-base profile and the textual content of the document in question.
The earliest attempts at document-entity similarity in Balog Krisztian et al. (2013) mea-
sures similarity using cosine similarity, jaccard similarity and KL-divergence between the
Wikipedia page of an entity and the textual content of a document. Using the same simi-
larity measures on textual content of existing citations on an entity’s Wikipedia page was
also introduced in Wang, Song, et al. (2013). Later in the 2014 TREC KBA track entity
profiles from Wikipedia were not available for all entities and an approach to building an
entity profile automatically based on concatenating documents in the training data known
to be citation-worthy was introduced in Wu et al. (2014).

A common way of building new supervised learning systems for CCR is to use a basic
set of features which usually consist of the features introduced in Balog Krisztian et al.
(2013) and then adding novel features on top of this feature set, two approaches that exem-
plify this are Wang, Song, et al. (2013) and Reinanda et al. (2016). This basic feature set
together with some various other features were used in a “feature-aware comparison” in
Gebremeskel et al. (2014), where they analyze features commonly used in CCR and con-
clude using a model trained on a small, carefully selected set of features can outperform
one that uses a larger, less carefully selected feature set.

3.2 Knowledge base population

Cumulative citation recommendation is generally considered part of the broader research
area of knowledge base acceleration. Because of this, work on cumulative citation rec-
ommendation is naturally related to work on knowledge base population (KBP) where the
aim is to build technologies “that use unstructured text to populate knowledge bases about
named entities” (Mitchell, 2013). One specific form of KBP where the relationship to CCR
is especially apparent is in stream slot filling (SSF) which was ran as a task in the TREC
KBA track alongside the CCR task in the years 2013 and 2014. The goal of SSF is to fill
in predefined “slots” containing information about an entity, these slots can be things such
are where a person was born, what year they were born in or where they currently live.

19

Chapter 3. Related Work

In the 2013 TREC KBA track the idea was presented that slot-filling for entities in SSF
may be a good way of solving the CCR task as well, by the logic that a document that fills
a slot for an entity will also be citation-worthy for that entity. In the 2013 TREC KBA
track all SSF systems are also expected to solve the CCR task by providing each document
that fills a slot with a confidence score indicating how likely it is to be vital. This has led
to some interesting systems that perform both the SSF and CCR task at the same time,
notable works include Nguyen et al. (2013) which assigns a confidence score based on
number of variations in slot values found. As for the value in combining SSF and CCR
the results have been mixed: In the 2013 TREC KBA track overview paper (John R. Frank
et al., 2013) the organizers claim that they anticipate that eventually SSF systems will have
the highest scores for the CCR task, however in the same overview paper they also show
that SSF systems overall have significantly worse performance in the CCR task compared
to dedicated CCR systems, indicating that bridging the gap between SSF and CCR isn’t
trivial.

20

Chapter 4
TREC Cumulative Citation
Recommendation

In this chapter we will describe the context and definitions used when performing CCR in
the context of the TREC KBA track. In Section 4.1 we introduce the TREC KBA track. In
Section 4.2 we introduce how the task of CCR is described in the TREC KBA track and the
associated definitions. In Section 4.3 we introduce the StreamCorpus document collection
and associated truth data used in the TREC KBA track. Finally in Section 4.4 we review
the evaluation metrics used in the TREC KBA track.

4.1 The TREC KBA track

The Text Retrieval Conference (TREC) ran a Knowledge Base Acceleration (KBA) track
between between 2012 and 2014 with the goal of examining issues related to creating sys-
tems that can participate in the process of assimilating information into knowledge bases.
On their website their official goal is stated as follows: Given a rich dossier on a subject,
filter a stream of documents to accelerate users filling in knowledge gaps1.

The TREC KBA track has in all the three years it was active included a task related to
CCR, in 2012 and 2013 this task was simply called the “cumulative citation recommen-
dation task” while in 2014 the task name changed to the “vital filtering task”. Other than
the name change the task was still to create CCR systems, for this reason we will use the
terms “cumulative citation recommendation” and “vital filtering” interchangeably in this
thesis. To allow for creation and assist in the equal evaluation of cumulative citation rec-
ommendation systems the KBA track organizers have created a document collection called
StreamCorpus, and collected human generated truth data for documents in this collection.

1http://trec-kba.org/

21

Chapter 4. TREC Cumulative Citation Recommendation

4.2 Task description and definitions

In order to properly approach the TREC CCR task one first needs to understand the context
of the task and the specific terminology used to define different aspects of the task. The
goal of the TREC KBA CCR task is to create systems which can filter documents that
contain information about an entity in a knowledge base that would require that entity’s
profile in the knowledge base to be updated. Below we give a more in-depth description of
the different aspects of the task.

4.2.1 Definition of an entity

An entity in the broader sense of KBA can be anything that can have a profile in a knowl-
edge base. This can be as broad as any human concept such as “teapot” or “skydiving”.
Obviously targeting all of these concepts would be difficult, and as such the TREC KBA
track only cares about a carefully selected set of “target entities”. For the 2014 TREC KBA
track a set of 109 target entities were chosen, however for the CCR task only 74 of these are
relevant. Since we only care about these target entities in the task, we can redefine entity
to only be the three entity types that are considered in the task: People, organizations and
buildings. Table 4.1 gives an overview of the different entity types and their representation
in the entity set. It is also important to note the selection of target entities for the task was
not random: Entities “in the region between Seattle, Washington, and Vancouver, British
Columbia” were selected as target entities for the task (John R Frank et al., 2014).

Entity type Count

Person 59
Building 5
Organization 10

Table 4.1: Target entity types for the 2014 CCR task and the number of entities in each category

4.2.2 Judging citation relevancy

In order to properly filter documents that would require an update to an entity’s profile there
needs to be a formal definition of how we determine if a document would require such a
change. In order to standardize this definition for the TREC KBA track the organizers have
defined four different relevancy levels which determine if a document contains information
that would require a profile update. These relevancy levels are formalized in the “Assessor’s
guidelines”2 which were created for human assessors to create truth data for the CCR task
and are defined as follows:

2http://trec-kba.org/data/index.shtml

22

4.2 Task description and definitions

Vital documents would require a change to an already up-to-date knowledge base pro-
file. The vital classification imply that the entity took an action, ie. participated actively
in an event. Another criteria for a document being vital is that the information it contains
is “timely”, ie. the event it describes did not happen a long time ago. While information
is required to be timely, there is no novelty requirement for a document to be vital: If 100
documents describe the same vital event at different points during the day the event took
place, then all of them are vital, not just the first document describing the event.

Useful documents contain information that would be relevant to include in an entity’s
knowledge base profile, however the information is either not timely (ie. it is biographical)
or the entity did not actively participate in the event. An example of this is that a document
saying that a person was recently elected to a position is vital, while a document simply
stating that the entity has an elected position is useful. One way to describe the boundary
between vital and useful documents is that vital documents are relevant both when we have
an existing, up-to-date profile for the entity, while a useful document is only relevant if we
are building a knowledge base profile from scratch, and need to include old biographical
information in the new profile.

Unknown documents contain biographical information about an entity, but the text
make it difficult to disambiguate the entity in question. For example if a document contains
biographical information about a “John Smith” but it is not clear from the text which John
Smith is described it is classified as unknown.

Non-referent documents are similar to unknown ones except that it is clear from the
context that it is a different entity than the one we are targeting that is described. For
example if a target entity is called “Jogn Smith” but we determined that the document
describes an event relating to another John Smith then the document is non-referent.

4.2.3 The no future information rule

To ensure the proper and equal evaluation of the participating systems in the TREC KBA
track there are some additional technical requirements that must followed by participants
of the TREC KBA track: Since each system is determining relevancy of documents in the
past, it is possible for systems to “cheat” by gathering facts about the documents or entities
which would not have been known at the time of evaluation.

For this reason the TREC KBA track has a “No future information” rule which require
systems to judge relevancy for each document using only information that was available
when the document in question was created. For example a system may not use an entity’s
Wikipedia page from 2014 to determine if a document from 2012 is relevant for that entity.
Additionally a system may not go “back in time” to update judgments of documents using
information it has learned judging later documents. While systems may not access future
information, they can however iterate over the document collection by date and update their
knowledge as time passes, a system may for example process documents in yearly batches
and retrieve updated version of Wikipedia pages each time it processes a new year.

23

Chapter 4. TREC Cumulative Citation Recommendation

4.3 Document collection and truth data

In order to evaluate the performance of CCR systems a large collection of documents is
required to perform the task on. Human generated judgments on the documents in this
collection is also needed in order to provide a “ground truth” with which we can evaluate
a system’s own judgments against.

4.3.1 StreamCorpus

StreamCorpus is a series of document collections created specifically for use in the TREC
KBA track. For each of the years the TREC KBA track has been active, a new iteration
of this collection has been created. Where each iteration adds more documents to the
collection. For the 2014 TREC KBA track the 2014 StreamCorpus collection is used which
consists of over 1.2 billion documents scraped from different parts of the Internet.

Documents contained in StreamCorpus are scraped from a variety of sources on the
Internet which includes, but is not limited to, forum posts, blog posts, news articles, and
scientific articles. Table 4.2 lists the relevant fields contained in each StreamCorpus doc-
ument for this thesis. Arguably the most important field is the “cleaned visible” which is
usually used as the source of the textual content of documents in most systems.

Document field Description

doc id Identifier of the document, which may change over time,
and of which this stream item is a snapshot.
This is always an MD5 hash of abs url.

raw The original download as an unprocessed byte array.

clean html HTML-formatted version of raw.
This has correct UTF-8 encoding and no broken tags.

clean visible Copy of clean html with all HTML tags replaced with whitespace.

tagging Set of auto-generated taggings, such as a one-word-per-line (OWLP)
tokenization and sentence chunking with part-of-speech,
lemmatization, and NER classification.

sentences A dictionary mapping tagger IDs to
ordered lists of Sentence objects produced by that tagger.

Table 4.2: Subset of fields in a StreamCorpus document which we use in this thesis. Descriptions
adapted from streamcorpus.org

24

http://streamcorpus.org/sphinx-docs/streamcorpus.html

4.3 Document collection and truth data

In the 2014 TREC KBA track a problem that became apparent was that StreamCorpus
had grow so large that it was difficult for participants to process it without significant
computational resources available (As illustrated in Figure 4.3). Because of this a filtered
collection was created for the 2014 TREC KBA track. This filtered collection is simply a
filtered version of the original document collection where only documents that mention one
of the target entities of the 2014 TREC KBA track have been kept in the collection. This
filtering significantly reduces the size of the document collection and allowed for easier
processing of StreamCorpus for participants of the 2014 TREC KBA track. This size
difference is illustrated in Figure 4.3, where we can see that the 2014 (filtered) collection
contains significantly less documents than the unfiltered 2014 collection.

Year Document count Timespan Start month End month

2012 >400 Million 7 months Oct. 2011 Apr. 2012
2013 >1 Billion 17 months Oct. 2011 Feb. 2013
2014 1.2 Billion 19 months Oct. 2011 Apr. 2013
2014 (filtered) 20 Million 19 months Oct. 2011 Apr. 2013

Table 4.3: Evolution of the TREC KBA StreamCorpus between the 2012 and 2014 KBA track

4.3.2 Truth data

As mentioned earlier the goal of the CCR task is to filter documents based on their im-
portance in building a knowledge-base profile for certain entities, the truth data for the
CCR task is therefore comprised of human generated judgments on the importance of cer-
tain documents in StreamCorpus to each target entity’s hypothetical profile. The process
for generating this truth data is comprised of two steps: First mention extraction was per-
formed on each document in StreamCorpus to identify which of the target entities are
mentioned in each document, effectively producing a list of document-entity pairs. Then
each document-entity pair was classified into one of the four relevancy ratings presented
in Section 4.2.2 by human annotators. The result of this is a set of document-entity pairs
where each has been annotated by at least one human annotator. This means that each
document-entity pairs may have several different ratings in truth data, which is the result
of two or more annotators disagreeing on the rating of a document-entity pair.

In John R Frank et al. (2014) they review the rate of annotator agreements on judgments
in the truth data for the 2014 TREC KBA track, and find that for the “vital” rating there is
a 67.70% agreement on which document-entity pairs are vital in the truth data.

25

Chapter 4. TREC Cumulative Citation Recommendation

For aiding in the creation of CCR systems the document-entity pairs in the truth data
has been split into a training- and testing-set. The decision of which document-entity pairs
goes into which set was decided by defining a training-time for each entity: The training-
time for an entity is a date such that all truth data before that date can be used freely as
training data for CCR systems, all truth data after this date may only be used for evaluating
these systems. The training-time was defined per entity such that each entity should have
at least 20% of its “vital” annotated document-entity pairs in the training set. The result of
this is that each entity has their own training-time, and that these dates may vary by almost
a year for some entities.

4.3.3 Potential problems of working with StreamCorpus and truth
data

Because StreamCorpus is a very large document collection with document collected from
a variety of sources, we discovered certain quirks of the collection we feel need to be
addressed in order to work with it properly. The first quirk is the amount of duplicate
documents contained in the collection: In our initial exploration of the StreamCorpus col-
lection we found that many of the documents it contains are duplicate or near-duplicates of
documents earlier in the collection. Furthermore some duplicates are annotated differently
in the training set, meaning two document can have exactly the same or close to equivalent
textual content and yet be annotated differently, while we cannot confirm this, we believe
this is because if an annotator sees the same document twice at very different times, the
annotation guidelines say that the later one should not be vital due to the content not being
timely any more. We believe handling this problem could be an important factor in training
supervised approaches.

Another quirk can be found in the description of the cleaned visible field which we will
use as the basis for document textual content. Since the description says it only removes
HTML tags leaving effectively everything else, this means the cleaned visible field can
contain significant amounts of text which is derived from sources such as hyperlinks and
text in the header and footer of the original website. This problem is illustrated in Figure
4.1, as we can see there is a significant amount of text in the cleaned visible field which is
unrelated to the actual article content. Obviously having noise in the form of irrelevant text
in the documents can cause problems for systems which use this textual content to make
judgments.

26

4.4 Evaluation metrics

Finally the number of available training examples per entity in the training data is
highly imbalanced. To better illustrate this we have listed the number of training examples
for each relevancy level per entity in Table A.1. As we can see from this table, when
we aggregate the total number of training examples for each entity some have as few as
2 training examples in total for some entities while others have over 600. Furthermore
there is a strong class imbalance for some entities such that one vitality rank can represent
over 90% of the total training examples for that entity. Some relevancy levels are also
more applicable to some entities than others: The entity “Rick Hansen” in Figure A.1 for
example is much more prone to non-referent documents than most other entities. Obviously
this class imbalance can affect the performance of models trained with this truth data,
especially when building a single entity-independent model for all entities.

Figure 4.1: Example of StreamCorpus document containing noisy text unrelated to the article
(bold)

4.4 Evaluation metrics

The official evaluation metric for the CCR task is the maximum macro-averaged F1 and
SU measures which we described in Section 2.4. The macro-averaged metric works by

27

Chapter 4. TREC Cumulative Citation Recommendation

calculating the recall and precision for each target entity separately and then averaging
across all entities. This can be computed as follows.

F1 =
∑
e∈E

F1(e)

|E|
(4.1)

Where E is the set of all target entities of the task, F1(e) is the F1 measure calculated from
the only the truth data for entity e.

In the TREC KBA track CCR systems are expected to output a confidence score
for each document-entity pair representing how confident the system is that the given
document-entity pair is vital, the confidence value has to be reported in the range 1-1000
where 1 represents the lowest confidence and 1000 the highest.

The final F1 measure for a run is calculated by sweeping a cutoff value τ across the
possible confidence values from 1 to 1000. All judgments that have a confidence score
higher than τ are considered “vital” while those with a lower value are considered “non-
vital”. The macro-averaged F1 measure is then calculated for each of these cutoff values
and the cutoff value that achieves the highest score is chosen as the final macro-averaged
F1 for the run.

In addition to the maximum macro-averaged F1 metric, the scaled utility (SU) metric
that was described in Section 2.4.3 is also used to evaluate each run. This metric is also
calculated by sweeping the cutoff value τ across the possible confidence values and taking
the highest SU score as the final SU score of the run.

28

Chapter 5
Implementation

In this chapter we will detail our implementation of a CCR system created with the purpose
of answering the research questions we presented earlier. In Section 5.1 we present an high-
level overview of our CCR system. In Section 5.2 we describe our approach to creating
word-vectors which we will use for some features we implement later in the system. In
Section 5.3 we give an in-depth description of the first stage of our system which deals
with processing the document collection. In Section 5.4 we describe the second stage of
our system which deals with ranking document-entity pairs by the vitality rankings defined
for the TREC KBA track.

5.1 Architectural overview

The high-level architecture of our system is shown in Figure 5.1, as can be seen from this
figure our system consists of two subsystems which run in sequence:

The “Document processing system” is the first stage in our system and is engineered
to deal with the large size of document collection used for evaluating CCR systems in
the context of the TREC KBA track. Its task is to detect which documents in the collec-
tion mention which target entities and produce document-entity pairs from this. For each
document-entity pair this system also extracts the relevant features from the document and
combine these into a single feature vector. The resulting output is all detected document-
entity pairs and their respective feature vectors.

The “Vital filtering system” is the second stage of our system and deals with assigning
a confidence score to the resulting document-entity pairs using the feature vectors that were
produced in the first stage. This stage uses a training set of document-entity pairs to train an
LTR based model which can then make predictions on the relative ranking of document-
entity pairs. The final output of this stage is the predicted scores of all document-entity
pairs produced by the previous stage.

29

Chapter 5. Implementation

Figure 5.1: High-level architecture of our system

5.2 Building word vectors for temporally sensitive tasks

In tasks where the “no future information” rule is irrelevant the usual way to acquire word
vectors for research is to download pre-built vectors from reputable sources. However
since we cannot use future information in the CCR task all pre-built vectors we have found
are unsuitable because they do not guarantee that they were not trained on documents that
may be from the future in relation to some of the documents we need to classify. The
reason this is problematic is that these vectors may have “learned” relationships between
words that should not yet be known to our system. As an example word-vector models built
after 2008 will learn there is a strong association between “Barack Obama” and the term
“president”, obviously this will give this word-vector model an unfair advantage when used
for ranking documents prior to 2008. From the perspective of the 2014 TREC KBA track
task we cannot use any model trained on documents containing information that appeared
after 2011-11-05 since this is the timestamp of the first documents in our testing collection.

For this reason we train our own word vectors using only documents from before 2011-
01-17. This guarantees that the vectors we use are not trained on relationships that should
not exist when ranking any of the documents in our testing collection. Our training corpus
consists of all the English Wikipedia articles dumped in January 2011 and all documents in
The New York Times Annotated Corpus. For English Wikipedia articles we used Wikiex-
tractor1 to extract the article text from the article dump we used. For the NYT corpus we
extracted the document body from each annotated article from 1996 to 2007. Table 5.1
summarizes relevant statistics of our training collections, the resulting training collection
contains 2.3 billion tokens. For comparison the collection used to train word vectors in
(Pennington et al., 2014) consist of between 1 and 42 billion tokens.

1https://github.com/attardi/wikiextractor

30

5.3 The document processing system

There are many different approaches to training word vectors as described in Sec-
tion 2.3.2. Initially we considered embeddings based on Word2Vec, GloVe and Doc2Vec.
Doc2Vec turned out to be unusable because it cannot train paragraph vectors in an online
manner, this means that we would have to train paragraph vectors for all testing documents
at the same time which breaks the “no future information” rule. The choice between GloVe
and Word2Vec was harder because the two approaches have achieved very similar results
on NLP related tasks, in the end we went with GloVe because it has been shown to give
slightly better results compared to Word2Vec (Pennington et al., 2014), however the two
methods should produce similar results.

When training our word-embedding model we use publicly available toolsets for
GloVe2. We train 300 dimensional models, and use the default parameters except for the
iteration count which we increase from 25 to 100 in order to match the iteration count used
for high-dimensional vectors in Pennington et al. (2014).

Document source Num. tokens Newest document timestamp

NYT Corpus 1B June 19, 2007
English Wikipedia 1.3B January 17, 2011

Combined 2.3B January 17, 2011

Table 5.1: Statistics of different collections which we combine and use to train our word-
embeddings.

5.3 The document processing system

In Figure 5.2 the different steps of the document processing system are shown: Effectively
this system is a pipeline that iterates over each document in the output of the previous
stages. In this section we will describe how each of the steps in this system work.

Figure 5.2: Architecture of the document processing system

2https://github.com/stanfordnlp/GloVe

31

Chapter 5. Implementation

5.3.1 Mention extraction

The first problem we face when solving the CCR task is identifying which document po-
tentially mention one of the target entities, since we are ranking document-entity pairs and
not individual documents we need a way for our system to detect candidate document-
entity pairs that which represent documents that might be relevant to an entity. Since the
document collection contains over 20 million documents it is not feasible to apply any
computationally expensive algorithm to determine which document mention which enti-
ties. Our strategy for mention extraction is therefore relatively simple: For each entity we
collect a set of “surface-forms” of the entity, which is simply the different names the entity
could be referred to by. We then look for these in the document text to identify if a target
entity was mentioned in document.

Common surface forms for people would be their first-name, last-name and various
combinations of these, nicknames and various abbreviations of their full-name can also
be considered surface-forms. For each entity we collect their surface-forms in two ways.
First we include the “canonical name” of each entity which is defined in the truth data
of the 2014 TREC KBA track. The canonical name of an entity is the full name of the
entity, for example “John Smith” or “Norwegian University of Science and Technology”.
Additionally some entities have entries in existing Knowledge Bases such as DBPedia3

where different naming variants are defined. For entities that have an entry in DBPedia we
collect additional surface-forms, ignoring those that consist only of the entity’s first-name
or last-name as these are too generic.

Using the aforementioned surface-forms we detect occurrences of these in the text by
using a method similar to the one used in Balog Krisztian et al. (2013) where they do a
simple substring match for surface-forms in the document text. Our approach works the
same way except we introduce an additional requirement: If we match a surface-form it
must also not be preceded or followed by a word character. This additional requirement
was introduced because some entity surface-forms could be matched as part of partial,
unrelated sentences. For example the canonical name of the entity “Ted Prior” would
match with the string “Created Prior” if we did only a simple string match.

By iterating over the whole document collection and applying the method above to the
textual content of each document, we produce a collection of candidate document-entity
pairs. Each pair in this collection denote a single document mentioning a single target
entity. A single document may therefore be part of multiple document-entity pairs where
each pair denotes the document mentioning a different entity. These document-entity pairs
play a vital role in for the rest of our system: Since in CCR we want to differentiate vital vs
non-vital documents for different entities, a document may be vital for one entity while the
same document may be non-vital to another, even if both entities are mentioned in it. This
means that in our system we will be ranking these document-entity pairs as either vital or
non-vital, and not individual documents.

3http://wiki.dbpedia.org/

32

5.3 The document processing system

5.3.2 Collection filtering

As mentioned previously we will be ranking document-entity pairs and not individual doc-
uments, because of this any document that does not participate in a document-entity pairs
is essentially redundant and will not be used later in our system. Because of the large size
of the StreamCorpus document collection it is beneficial to filter out any document which
does not mention any of the target entities. To do this we simply produce a new docu-
ment collection by iterating over the original collection and ignore any document that is
not featured in any of the document-entity pairs we found in the “mention extraction” step.

5.3.3 Training profile generation

One of the unique challenges in the 2014 TREC KBA track is that a significant number
of the target entities do not have training profiles in the form of Wikipedia pages which
can be used as entity profiles in the CCR task. Existing approaches to the CCR task rely
on external entity profiles for computing the similarity between an entity and a candidate
document, something that can be used as a feature in CCR systems. Since we will later
introduce features that require entity profiles we need a method of generating these entity
profiles.

A solution to the lack of external profiles in the 2014 TREC KBA track was presented
in Wu et al. (2014) which is based on combining the textual content of all vital training
document for an entity into a single document which serves as a entity profile. In our
profile generation algorithm we will use a similar approach with some modification which
we believe will improve the quality of the resulting profiles, specifically we will introduce
some additional document filtering in order to generate better entity profiles based on the
problems with StreamCorpus we discussed in Section 4.3.3.

From the definition of vital we presented in Section 4.2.2 we know that for a document
to be vital the entity needs to actively participate in the event described in the document. We
therefore present a method of removing all sentences in a document that does not directly
mention a given target entity. The idea behind this method of filtering a document is that
the only textual content that we want to keep in an entity profile from a given document
is the content which talks directly about the entity, and it is therefore these sentences we
want to build the entity profile on.

33

Chapter 5. Implementation

The approach to sentence filtering uses the method of mention extraction presented
Section 5.3.1: First we perform mention extraction on each document and filter on sen-
tences that mention one of the entity’s surface-forms. When extracting mentions for the
purpose of filtering sentences we make a small modification on the approach in Section
5.3.1: We noticed that when people are mentioned in documents there is almost always
a mention of their full name ie. “Barack Obama” while following mentions use only the
first-name or surname ie. “Obama” or “Barack”. Since we already know the full name of
the entity is mentioned at least once for all documents remaining after the collection fil-
tering from Section 5.3.2, we assume that any mention of a persons first-name or surname
in the remaining documents also refers to that entity. Doing this allows us to extract more
sentences from each document, reducing the likelihood we miss important information in
the documents relating the an entity.

Our approach to filtering the content of a document is detailed in Algorithm 1, here
mentions(t, e) returns true if one of the surface-forms of entity e was mentioned in the text
t.

Algorithm 1: Filter sentences mentioning an entity from a document
Data: Document d

Entity e
1 filtered← ””
2 foreach sentence in d.sentences do
3 if mentions(sentence, e) then
4 filtered← ” ” + sentence
5 end
6 end
7 return filtered

In Wu et al. (2014) they build profiles using only vital documents from the training data,
and from how they describe their approach, they use the raw document content without
any filtering. As we discussed in Section 4.3.3 this is problematic because documents in
StreamCorpus often contain irrelevant data as we discussed in Section 4.3.3. We will build
an entity profile for each entity by combining the textual content of both vital and useful
training documents, in our solution we include useful documents in addition to vital due to
the definition of useful in the 2014 TREC KBA track: Recall that the definition of useful we
presented in Section 4.2.2 says useful documents contain biographical information about an
entity which is useful when building an entity profile from scratch, since we are effectively
building a new entity profile we therefore argue that it is relevant to include both useful
and vital documents, as opposed to only using vital ones.

Another issue we have to deal with when building entity profiles is that there is no nov-
elty requirement for the 2014 TREC KBA track. As we mention in Section 4.2.2 Stream-
Corpus contains duplicates of the same document, that due to there being no novelty re-
quirement may all be annotated vital. If nothing is done to mitigate this we can end up with
entity profiles that contain the same exact sentences many times.

34

5.3 The document processing system

In order to handle the issue of duplicates we require a method that can efficiently de-
tect duplicates the document collection, and prevent these from being added to the profile.
To do this we looked at different clustering algorithms that allow us to cluster duplicates
effectively. While there are many possible choices for clustering algorithm, our choice is
constrained by the “no future information” rule in the TREC CCR task. Clustering algo-
rithms that need to scan the whole document collection before clustering are inappropriate
because they will use future information to decide on the clustering topology. Common
clustering algorithms such as DBSCAN and K-means are therefore not applicable because
of this. The type of clustering algorithm we need is a clustering algorithm that works in
an online fashion. After researching possible candidates in existing literature we decided
that the classic Single Pass clustering algorithm described in Frakes et al. (1992) would be
a good fit: It only has a single intuitive parameter in the form of the similarity threshold t
and it handles clusters in an online fashion, which means using it does not break the “no
future information” rule.

As for determining the similarity threshold parameter t we set it intuitively to 0.9, ie.
there must be a 0.9 document similarity for documents to be clustered together. Our choice
of 0.9 as opposed to 1 is based on the fact that if there is a slight change to a document,
such as a spelling correction or equivalent we still want it to be clustered with other near-
duplicates, for this reason we set the threshold slightly below 1 such that our clusters can
contain “near-duplicates” as well.

Our implementation of a Single-Pass clustering algorithm is detailed in Algorithm 2.

Algorithm 2: Single-Pass clustering algorithm
Data: Set of documents D

Similarity threshold t
1 C ← ∅
2 foreach document d in D do
3 closest cluster = null
4 highest similarity = 0
5 foreach cluster c in C do
6 if S(d, c) ≥ t and S(d, c) ≥ highest similarity then
7 closest cluster = c
8 highest similarity = S(d, c)
9 end

10 end
11 if closest cluster == null then
12 c = {d}
13 C ← C ∪ c
14 end
15 else
16 closest cluster← closest cluster ∪ d
17 end
18 end
19 return C

35

Chapter 5. Implementation

The function S(d, c) calculates the similarity between a cluster c and a document d,
which we defined as follows.

S(d, c) =

∑|C|
i=1 Sdoc(di, d)

|C|
(5.1)

When calculating the similarity between documents we use the simple dice measure
with binary term weights which can be defined as follows.

Sdoc(d1, d2) =
2C

A+B
(5.2)

Where C is the number of terms in the intersection of terms appearing in both d1 and
d2, A and B are the number of terms that appear in document d1 and d2 respectively.

We chose this similarity measure because we will primarily be comparing documents
by the filtered content generated by Algorithm 1. Since this content is relatively short we
represent documents in clusters by the set of unique terms that appear in them which makes
the dice coefficient with binary term weights a computational efficient similarity measure.

5.3.4 Feature Extraction

In this section we will introduce the different features we will use in our system, our rea-
soning why we chose these features and how we extracted them.

The input of feature extraction is the document-entity pairs and associated filtered cor-
pus produced by the Document Processing System and any additional data we need for
specific features, which in our case is word-vectors and entity-profiles. The output is a set
of numeric features for each document-entity pair. Our approach to feature extraction is
detailed in Algorithm 3, here extract features(d, e) is a function which extracts function
performs the actual extraction of features for a document-entity pair (d, e).

Algorithm 3: Feature extraction
Data: Document collection C

Set of document-entity pairs S
Result: Set of document-entity feature vectors

1 foreach document d in C do
2 M ← get mentions(S, d)
3 foreach entity e in M do
4 F ← extract features(d, e)
5 output (d, e)→ F

6 end
7 end

36

5.3 The document processing system

Basic features

In order to have a basic set of features to use as a baseline we reproduce the features
introduced in Balog Krisztian et al. (2013). This feature set includes a variety of features
that are both relatively simple to extract and have been shown to perform reasonably well
during the 2012 TREC KBA CCR task, and as such are suitable as a baseline that we can
compare a larger feature set to.

A problem with reproducing this feature set faithfully is that many of the features in
this feature set require entities to have Wikipedia profiles, which is problematic consid-
ering that many entities do not have Wikipedia profiles in the 2014 TREC KBA track.
To deal with this the related entity features and the temporal features based on Wikipedia
pageview data have been removed in our implementation because we have no substitute for
the Wikipedia data these features are based on. The method of generating profiles using
training documents that was described in Section 5.3.3 is used to generate profiles for each
entity based on training data, this allows us to keep the similarity features although the
system even though we do not have Wikipedia profiles for all entities.

The remaining features are extracted in the same way as in Balog Krisztian et al. (2013),
the full feature set with descriptions is shown in Figure 5.2. For a more detailed description
of the basic feature set, see Balog Krisztian et al. (2013).

Feature name Description

Len(d) Length of document body
Src(d) Source of document
Eng(d) Document language is detected as English
FPos(d, e) Position of first mention

of entity in document body
LPos(d, e) Position of last mention

of entity in document body
FPosn(d, e) FPos(d, e) normalized
LPosn(d, e) LPos(d, e) normalized
Spread(d, e) LPos(d, e) - FPos(d, e)
Spread(d, e)n Spread(d, e) normalized
SV(e) Average hourly stream volume over training period
SV(e,h) Average stream volume over the last h hours
∆SV(e,h) Change in stream volume over the last h hours
SB(e,h) Burst in stream in the last h hours
ProfSimcos(d,e) Cosine similarity between document d and e’s profile page
ProfSimjac(d,e) Jaccard similarity between document d and e’s profile page
ProfSimkl(d,e) KL-divergence between document d and e’s profile page

Table 5.2: Basic features

37

Chapter 5. Implementation

Semantic similarity features

Features based on measuring the similarity between a document and an external entity
profile has been extensively used in previous supervised approaches to the TREC CCR task.
To our knowledge the similarity measurements that have been used are cosine similarity,
Jaccard similarity and KL-Divergence on the classic vector-space model representation
of the full document body, which are all included in the basic feature that was described
earlier.

Another type of similarity measure we have not found any attempts at using are seman-
tic similarity measures that measure the semantic similarity between the entity profile and
a document. A relatively new approach to semantic similarity measurements are measures
based on using word-vectors to measure the distance between two documents. Initially
our approach to calculating the semantic similarity between two documents was based on
using Word Mover’s Distance (WMD) from Kusner et al. (2015), however this measure
turned out to be problematic as we found it did not handle calculating similarity between
variable length documents very well and the computation time was generally too high for
calculating the similarity for a very large corpus. Instead we use a simpler approach based
the mean of word-vectors document representation we presented in Section 2.3.2, specif-
ically we will use Davg from equation 2.1 as a document-representation and calculate the
similarity between an entity profile and a given document using the cosine distance.

For calculating the similarity we will use the entity profiles generated using the method
described in Section 5.3.3 to generate entity profiles that we compare each document to.
For the document we will use the sentence filtering approach in Algorithm 1 to remove
unrelated textual content from the document. We also apply stop word removal and case-
folding on both the entity profile and document. Both the entity profile and document are
represented using equation 2.1 and we then use cosine similarity on these representations
to calculate the similarity between the two texts.

When using this method we are utilizing the fact that semantically similar words will
appear close to each other in the vector-space, thus if the document text and entity profile
text contain many semantically similar words, they will appear closer to each other than
if the document text contains words that are not semantically related to those in the entity
profile.

Kurtosis & Trend features

Kurtosis is defined as the forth moment of a distribution and has been applied in temporal
IR to detect sporadic and spikey events (Kanhabua et al., 2015). Given that earlier ap-
proaches to the CCR task have utilized various methods of detecting bursts in an entity’s
time-series we want to see if kurtosis can be used in the same fashion to detect burts in an
entity’s time-series data. Calculating the kurtosis for a series of temporal values y1, ..., yN
with mean ȳ can be done as follows.

38

5.3 The document processing system

Kurtosis(Y) = N

∑N
i=1(yi − ȳ)4

(
∑N

i=1(yi − ȳ)2)2
(5.3)

We retrieve the time-series data for an entity using approach described in Balog Krisz-
tian et al. (2013). We count the number of documents that mention the entity for each hour
h and create a time-series of these hourly values. We then collect the time-series values
N hours before the document timestamp and calculating the kurtosis of this subsample of
time-series values. Instead of estimating a single value of N we use the approach of Balog
Krisztian et al. (2013) where they include features for different choices of N . For our ap-
proach we considered the valuesN = {16, 24, 48, 96, 192}, effectively giving us 5 features
that are different parameterizations of the kurtosis feature.

A second temporal feature we wanted to investigate was the trend over the last N hour
in the time-series of the entity. Specifically we want to quantify whether there is a positive,
or negative trend in the number of mentions over the last N hours, and how strong this
trend is. To quantify this we fit a linear regression line y = b0 + b1x to the values in the
time-series over the lastN hours. In this case the slope of the regression line can be seen as
a estimate of the trend in the time-series data. The slope is the derivative of the regression
line, ie. y′ = b1. The value we are interested in is b1 which can tell us whether there is a
positive or negative trend in the last N hours and how strong this trend is. To estimate b1
from the sample of mentions in the last N hours we use the least squares estimate, which
in Walpole et al. (2012) is given by the following equation.

b1 =

∑N
i=1(xi − x̄)(yi − ȳ)∑N

i=1(xi − x̄)2
(5.4)

We use the same approach as with kurtosis for computing the value of b1. For a
document-entity pair we compute multiple values of b1 for N = {16, 24, 48, 96, 192} back
in time and use each as a separate feature in our system.

The kurtosis and trend features we implement are listed in Table 5.3, it should be noted
that each of these feature represents all features for each choice of N , meaning there are
more features than two as shown in the table.

Feature name Description

Kurtosis(d, t) Kurtosis of e’s time-series t hours in the past
Trend(d, t) Slope of regression line fitted to e’s time-series t hours in the past

Table 5.3: Temporal features

39

Chapter 5. Implementation

Duplicate clustering features

As we mention in Section 4.3.1 when working with the StreamCorpus collection one thing
we noticed is that it contains a lot of duplicate or near-duplicate documents. These du-
plicate documents often appear many days or even weeks after the first instance of the
document appeared in the collection. This in itself is not a problem, however we also no-
ticed that these duplicates are also featured in the training and testing sets where the same
duplicate documents often appear with different labels at different points in time. We be-
lieve the reason for this is the requirements that documents must be timely: Since some
duplicates appear many weeks after the first instance of the same document, the timeliness
requirements leads the human annotators to classify them as non-vital because they saw a
similar duplicate earlier in the document collection.

Obviously this will confuse any supervised learning system that does not handle this:
It will see many documents with the same textual content but with different labels, which
may cause problems for the algorithm when making inferences based on these examples.

At first we looked into removing duplicates from the document collection in the pre-
processing stage, but the problem with this is that we have no concrete metric for determin-
ing if we should remove a duplicate or not: By the hypothesis that it is the timeliness that
causes duplicates to go from vital to non-vital, we would have to know exactly how long
it takes for a document that is a duplicate of an earlier document to go from being vital
to non-vital. Instead of trying to estimate this ourselves we adapt the time range feature
from Jiang et al. (2014) to leverage the ranking algorithm to solve this for us: By creat-
ing features which allow the prediction stage of our system to determine which documents
are duplicates and how much time has passed since the first version of the document was
detected in the collection, we can enable it to learn when to consider a duplicate non-vital.

Our approach to extracting features to do this is based on first applying Algorithm 2 to
cluster duplicates in the stream. Once we have determined which cluster each document
belongs to, we measure how “stale” a document is by calculating time difference in hours
between the document timestamp and the timestamp of the first document in the cluster it
belongs to. A document with no other duplicates will have a time difference of 0, and as
the time between the first document in the cluster increases, the feature value increases as
well, giving us a measure of how stale a document is.

Document-representation features

In Chapter 2 we presented various methods of representing the textual content of a doc-
ument as features in supervised learning setting. The methods we presented were the
vector-space model and mean of word-vectors representation. In order to evaluate how
document-representation features can contribute to CCR systems, we will implement dif-
ferent variants of this feature type using the aforementioned methods of representing a
document.

40

5.3 The document processing system

Before we represent the textual content of a document using either of the previously
mentioned document-representations, we need to describe our approach to filtering the
document. We will use an approach to filtering document textual content that is inspired
by the “action-pattern features” presented in (Jiang et al., 2014). The action-pattern fea-
tures they present use the open information extraction framework Reverb to extract relation
triples from documents and extract those triples where a target entity is either the object or
the subject of the sentence. While they use a more specialized way to representing these
verbs as features in their system, we will use a more generalized approach and as such use
triple extraction only to filter documents down to the verbs that signify what action the
entity took in the document.

Our approach to extracting verbs is based on an open information extraction frame-
work called Stanford OpenIE (Angeli et al., 2015). This framework has been shown to
outperform Ollie, another open information extraction framework, which in turn has been
shown to substantially outperform Reverb (Schmitz et al., 2012). The Stanford OpenIE
framework extracts relation triples from sentences in a document. When extracting verbs
for a given document-entity pair, we look for relation triples where the entity is either the
subject or object of the sentence, then we constuct a new document which only consists of
the verbs that represent what the entity did in the document.

Algorithm 4 describes our approach to verb filtering: The extract triples(s) represents
the call to Stanford OpenIE to extract triples from sentence s, mentions(t, e) is the same
mention extraction function that was used in Algorithm 1. Extracting the verbs in a relation
triple can be done through the use of the POS tagging of the relation text which is provided
as part of triple extraction using Stanford OpenIE. By looking at the POS tags of each term
in the relation we can identify which are verbs, allowing us to filter out non-verb terms in
the relation.

Algorithm 4: Filter out verbs from sentences where target entity participates
Data: Document d

Entity e
1 filtered← ””
2 foreach sentence in d.sentences do
3 if mentions(sentence, e) then
4 triples← extract triples(sentence)
5 foreach triple in triples do
6 if mentions(triple.object, e) or mentions(triple.subject, e) then
7 foreach verb in triple.relation do
8 filtered← ” ” + verb
9 end

10 end
11 end
12 end
13 end

41

Chapter 5. Implementation

In Section 2.3.2 we presented two document representations that allow us to repre-
sent the filtered textual content as features: The classic vector-space model and the word-
embedding based approach of taking the mean of word-vectors from Equation 2.1, we
believe it would be interesting to apply both of these separately to see which will be best
suited for the task of CCR: On one hand the vector-space model might perform well be-
cause of its relative simplicity, on the other hand the mean of word-vectors approach may
perform better because of its ability to represent semantic relationships in document text.
In order to show how these compare we implement both representations separately so that
we later can compare their performance.

One potential problem when using a document-representation consisting only of verbs
using the vector-space model is that we may encounter verbs we have not seen in the
training set before. When using supervised learning our model can only be trained on verbs
that appear in the training set, and it will therefore not be able to make any judgments about
unseen verbs encoded with the vector-space model. Here the word-vector based approach
may have an advantage because semantically similar words will appear close in the vector-
space, something the model can utilize to deal with verbs that have not been seen in the
training set.

As a way of mitigating the issue of unseen verbs for the vector-space model, we will
present a third variant which augments the vector-space model with hypernyms from a
lexical database. The idea for this approach is based on Mansuy et al. (2006) where they
show that adding features using Wordnet hypernyms can improve accuracy in document
classification tasks. To assist the vector-space model in dealing with unseen verbs we
propose a similar method of augmenting the verbs in each document with related verbs
by using the lexical database Wordnet (Miller, 1995). In this approach we augment the
existing document-representation in by walking the hypernym tree of each verb seen in the
document and adding all hypernyms to the document-representation.

To illustrate the motivation behind our approach consider the hypernym tree in Figure
5.3: If the verbs triumph and win are indicators of vitality in the training set, and prevail is
not represented in the training set, then a document containing the verb prevail will not be
classified as vital by a classifier using only the document verbs as features. However if we
add the hypernyms of prevail then the document will also contain win, which the model
uses as an indicator of the document being vital.

Figure 5.3: Partial hypernym tree of the verb win in Wordnet, verbs that indicate vitality in a
hypothetical CCR classifier are labeled in green

42

5.3 The document processing system

Our approach to extracting the hypernyms is an extension of the verb filtering approach
in Algorithm 4: After extracting a verb we look up the senses associated with the verb in
Wordnet. For sense disambiguation two simple approaches that are commonly used with
hypernym extraction are using all senses of a given verb or using only the most frequently
used sense. We tried both of these approaches however we quickly found that the all-senses
approach generated very large numbers of hypernyms for each verb and therefore settled on
the most-frequent sense approach. Hypernym extraction is done by walking the hypernym
tree of the sense until we reach the highest conceptual level. In the hypernym tree each
node is itself a sense, we therefore add the identifier of that sense to the set of hypernyms
of a given verb, effectively expanding the document textual content with the hypernyms of
each verb.

Given the document filtering strategies and representations listed in this section, we can
summarize the different document-representation feature variants we have implemented in
Table 5.4.

Representation variant Description

Verbs VSM Filter out verbs describing what the entity did
in the document and represent verbs using VSM

Hypernyms VSM Filter out verbs describing what the entity
did in the document represent verbs using VSM and
supplement verb features with hypernyms

Verbs AvgWV Filter out sentences mentioning target entity and
represent sentences using the mean of
word-vectors representation

Table 5.4: Variants of document-representation features we implemented

Tense and clause features

By extracting relation triples we are also effectively determining if the entity is the subject
or object of the the clause. This may be a useful feature because it tells us if the target
entity is acting or being acted upon in the document.

When extracting the relation verb in Algorithm 4 we also get the POS tagging of the
verbs from clauses where the entity is participating. One of the useful properties of POS
taggings on verbs is that we can effectively tell if the event being described in the clause is
happening in past or present/future tense.

The Stanford OpenIE framework we use to extract triples uses the Penn Treebank En-
glish POS tag set, in Table 5.5 we have listed the verb POS tags and which tense they
indicate. The tense of the verbs can tell us if the event in a clause is described as happen-
ing in the past or in the present/future. Since the definition of a vital event requires it to
be timely, this can help us tell if the document is describing something that has already
happened, which makes the information biographical, and therefore useful instead of vital.

43

Chapter 5. Implementation

Tag Description Indicates past event?

VBD Verb, past tense Yes
VBN Verb, past participle Yes
VB Verb, base form No
VBG Verb, gerund or present participle No
VBP Verb, non-3rd person singular present No
VBZ Verb, 3rd person singular present No

Table 5.5: Verb tags from the Penn Treebank English POS tag set and the tense they indicate

The specific tense and clause features we implement are listed in Table 5.6, we also
added a “skew” variant of each feature which may be better at indicating which variant is
dominant in a given document.

Feature name Description

triplesPresentTense(d,e) Number of triples mentioning e that are in present/future tense
triplesPastTense(d,e) Number of triples mentioning e that are in past tense
triplesEntObject(d,e) Number of triples mentioning e where e is the object of the triple
triplesEntSubject(d,e) Number of triples mentioning e where e is the subject of the triple
tenseSkew(d,e) triplesPresentTense(d,e) - triplesPastTense(d,e)
clauseSkew(d,e) triplesEntSubject(d,e) - triplesEntObject(d,e)

Table 5.6: Tense and clause features

5.4 The Vital Filtering System

As explained in Section 3.1 there are many different approaches to filtering vital docu-
ments. Many of these approaches fall into the ranking or classification approaches and can
further be split into entity-dependent and entity-independent approaches. In our implemen-
tation we decided to focus on a ranking based approach because they have been shown to
perform better than a multi-step classification approach when using the same feature set
(Balog et al., 2012).

The architecture of the Vital Filtering System is shown in Figure 5.4. It is comprised
of two main stages: Training and Prediction. In the training stage a ranking model is
trained using a combination of truth data provided with the task and the feature vectors
we extracted in the Document Processing System. The prediction stage uses the ranking
model to rank the remaining feature vectors which we do not know the true label for. The
resulting set of ranked Document-Entity pairs can be used to evaluate the system.

44

5.4 The Vital Filtering System

Figure 5.4: Architecture of the Vital Filtering System

5.4.1 Model training

The model training stage is responsible for using the training set provided in the 2014
TREC KBA track to train a ranking model which can rank unknown document-entity
pairs relative to each other. Recall from Chapter 4 that there are four relevancy levels a
document-entity pair can fall into: Vital, Useful, Unknown and Non-Referent. When using
a ranking model in CCR, these levels are considered as relative document ranking in a IR
ranking problem such that Vital > Useful > Unknown > Non-Referent. Under this as-
sumption we can create a model to rank document-entity pairs relative to each other using
any off-the-shelf LTR library given that we have feature vectors for each document-entity
pair.

In existing research on CCR the de-facto standard library to train ranking models with is
RankLib which was used both for the first LTR approach to CCR in Balog et al. (2012) and
also the best performing solution to the 2014 TREC KBA CCR task in Jiang et al. (2014).
Both Balog et al. (2012) and Jiang et al. (2014) use RankLib with Random Forests as the
underlying machine-learning algorithm. While RankLib + Random Forest has achieved
good results, we believe it would be interesting to look at a newer LTR library in our
implementation as well, we therefore implement an alternative ranking algorithm which
uses Gradient Boosted Trees using the XGBoost library (Chen et al., 2016).

When performing the actual model training in our implementation we have created a
system where we can easily switch between ranking using either Gradient Boosted Trees
with XGBoost and RankLib with Random Forest. Both of our implementation use the
same underlying feature set which consist solely of numerical features and also the same
training set. This means outside of the specific algorithms and their parameters there is
no difference in how ranking is performed between the two models. When training either
the Random Forests or the Gradient Boosting based implementation we use both with their
default parameters which was done to prevent us from favoring either model unwittingly
by tuning parameters on either models better than the other.

45

Chapter 5. Implementation

When performing training and prediction with LTR as discussed in Section 2.1.3 the
underlying algorithm only compares ranks in query groups. For CCR there are no direct
“queries” but since the point of ranking in groups is that the ranked documents in one query
are not comparable to the ones in another query we see that the obvious analog for queries
become the target entities themselves: Since the point of CCR is to recommend edits to
specific entities then it also follows that recommendations for one entity are not comparable
to those of another. For this reason we group the document-entity pairs in the training data
by their respective entities. This way when we train our model the LTR algorithm only
considers ranking between document-entity pairs that came from the same entity.

5.4.2 Prediction and Scoring

With the trained model produced in the model training stage the system can now predict
the rank of unknown document-entity pairs in the document collection, this is done by
applying the ranking model to batches of document-entity feature vectors grouped by their
respective entity. The result are groups of documents ranked relative to each other such
that a document which has a higher rank than another document from the same entity will
be predicted to have higher likelihood of being vital to that entity.

As mentioned in Section 4.4 the output format of the TREC KBA track is such that all
document-entity pairs must be ranked by a confidence score in the range 1 to 1000. The
prediction scores created by the model however are not scaled to this range, the system
therefore needs to transform the rank of each document-entity pair into this range. Rescor-
ing document-entity pairs is simple if we know the rank given to each document-entity
pair. We can apply linear interpolation to rerank each document-entity pair such that the
highest scoring instance receives a score of 1000 while the lowest receives a score of 1. To
do this we first determine the lowest and highest rank in the set I as follows.

Min = min
i∈I

S(i) (5.5)

Max = max
i∈I

S(i) (5.6)

Where S(i) is the ranking score given by our learning-to-rank model for document-
entity pair i. Each document-entity pair is then given a final score in the range of 1 to 1000
by linear interpolation as follows.

Score(i) = 1 +
S(i)−Min

Max−Min
· 999 (5.7)

46

5.4 The Vital Filtering System

5.4.3 Entity-dependant ranking

So far we have described training a single, global model for ranking vitality across all our
entities. An alternative ranking technique would be to train one model for each entity and
ranking document-entity pairs using the relevant entity’s model. This has the benefit that
the models trained do not have to compromise in order to predict accurately across all
entities: Each model can focus on the unique properties of the specific entity and ignore
properties of the other entities which may not be relevant. This method of ranking may
also have drawbacks which are not apparent in the entity-independent approach, the most
obvious being less training data for each model, the other being that we may not be able to
make predictions for new entities without existing truth data for the new entity.

When training entity-dependent models using truth data from the 2014 TREC KBA
track the system has to deal with the problem of some entities having much less training
data than others. In the 2014 TREC KBA track the number of vital training examples can
vary significantly between entities as was described in Section 4.3.3. Obviously training
entity-dependent models for target entities with very few training examples will not be
beneficial. In order to handle entities with too few training examples, we apply the method
used in Wang, Zhang, et al. (2014) where they use a entity-independent global model when
there are too few training examples for a given entity to train a entity-dependent model.
The threshold for when we fall back to the entity-independent model was chosen such that
entities with less than 50 training examples use the entity-independent model, while all
entities with more than this use a entity-dependent model trained only on its own training
examples.

Figure 5.5 shows the ranking method we implement for entity-dependent ranking: Ini-
tially training examples are grouped by the their entity, then a ranking model is trained for
each entity using either the Random Forest or Gradient Boosted Trees algorithm. When
ranking unknown document-entity pairs the respective entity’s ranking model is used to
make the prediction.

47

Chapter 5. Implementation

Figure 5.5: Architecture of the entity-dependant ranking approach

48

Chapter 6
Experiments & Results

In this chapter we will describe how we evaluated the system we implemented in Chapter
5. In Section 6.1 we will present the document collection and truth data we used in our
evaluation. We then present the evaluation metrics and how we extract these metrics in
Section 6.2. In Section 6.3 we give an overview of the experiments we run and finally in
Section 6.4 we will present the results of the aforementioned experiments with the chosen
metrics.

6.1 Document collection and truth data

Our system was implemented to solve the CCR problem in the context of the TREC KBA
track. Since the 2014 TREC KBA track is the most recent iteration of this track we will
use the target entities, truth data and document collection that was used during the official
2014 TREC KBA track which we described in Chapter 4.

We retrieved the filtered 2014 StreamCorpus from the offical TREC website1. The truth
data for the 2014 TREC KBA track which includes training set, testing set and listings of
target entities was retrieved from the same website2.

1http://s3.amazonaws.com/aws-publicdatasets/trec/kba/index.html
2http://trec-kba.org/data/index.shtml

49

Chapter 6. Experiments & Results

6.2 Evaluation methodology

When evaluating our approach it was important that we chose the appropriate metrics with
which to evaluate our system. We evaluated some different choices of metrics based on
earlier work on the TREC CCR task: The micro-averaged F1 and SU metrics were some-
times used together with the macro-averaged F1 and SU in earlier TREC KBA tracks,
however micro-averaging is not frequently used for the 2014 TREC KBA track, where the
macro-averaged F1 and SU metrics are the official metrics (John R Frank et al., 2014).
Other than the F1 and SU metrics some other more novel evaluation methodologies have
been presented in related research: In Gebremeskel et al., 2014 they use cross-validation
to perform a comparison of individual features commonly used in approaches to the TREC
KBA track, while in Dietz et al., 2013 they propose evaluating CCR systems in temporal
batches to better quantify if a CCR system better or worse over time. While these metrics
are interesting we were not able to find any other work having adopted these methods, this
tells us it is likely more fitting to stick with more established metrics. In the end we de-
cided that the most fitting metrics for our evaluation would be the macro-averaged F1 and
SU metrics, ie. the official metrics of the 2014 TREC KBA track.

For generating the aforementioned metrics we use the official scoring tool for the 2014
TREC KBA track3, this tool allows us to easily retrieve both macro- and micro-averaged
F1 and SU scores for runs we generate using StreamCorpus and associated truth data.
The scoring tool was also used for generating the results for the 2014 TREC KBA track,
allowing us to generate results in a way highly consistent with the official evaluation that
took place in 2014. The scoring tool has different settings that must be properly configured
for the evaluation to be correct. From our own preliminary work we have observed that
changing even a single of these settings can widely change the results of a given system.
We aim to run the tool with the same settings as was used for presenting the official results
in John R Frank et al. (2014) where the official results of the 2014 TREC KBA track are
presented. For posterity we have listed the specific command we used to run the scoring
tool in Appendex B.

When evaluating the system performance we noticed that the official scoring tool for
the TREC KBA track includes one entity from the entity list which is not a target entity of
the CCR task. Specifically there appears to be a bug that causes it to consider the entity
“ Nicholas Tse” a target entity of the CCR task when this entity is only supposed to be a
target entity for the SSF task. This is problematic because all CCR systems will have a F1
measure of 0 for this entity since they do not rank document-entity pairs for it, which has
the effect that all runs have slightly lower F1 and SU score than they should for the CCR
task. The bug seems to come from how the scorer tool handles entities in the testing set,
by filtering the testing set such that it only contains annotations for the target entities of the
CCR task we ensure the scorer does not use this entity when generating scores. Because
of this all scores we report will be slightly higher than those reported elsewhere. Since
we will not compare our results to anything we have not generated using the scoring tool
ourselves, this should not be a problem.

3https://github.com/trec-kba/kba-scorer

50

6.3 Experimental overview

6.3 Experimental overview

In order to answer our research questions we created experiments that show both the per-
formance of the different features we implemented as well as the approaches to ranking. To
summarize the ranking approaches we have implemented there is the entity-independent
approach and the entity-dependent approach, for each of these there are also variations
that use either Random Forests and Gradient Boosted Trees as the underlying machine-
learning algorithm. This makes for a total of four distinct approaches we need to evaluate
and compare.

As we mentioned in Section 5.3.4 we implemented a basic feature set which we used
as a baseline feature set that we compare the performance of the rest of our features to. In
order to evaluate how our system performed using the features presented in Balog Krisz-
tian et al. (2013) which is a relatively old solution, we will first generate runs using only
these features and then add the rest of the features to see how they affect the performance
of the system. Table 6.1 shows how we partitioned features into groups which we evalu-
ated separately to see how using different features affect the performance of the different
approaches.

In order to show how the feature sets in Table 6.1 perform under each of the afore-
mentioned approaches we split our experiments in two parts: First we evaluated the dif-
ferent features using both Random Forests and Gradient Boosted Trees using the entity-
independent approach. We then performed the same set of experiments using the entity-
dependent approach. This will both show us which feature set work with which approach,
while also allowing us to compare the performance when using either the entity-dependent
approach and the entity-independent approach.

Feature set name Description

Basic Only basic features adapted from Balog Krisztian et al. (2013)

Extended All features except document-representation features

Verbs VSM Extended + Verbs VSM from Table 5.4

Hypernyms VSM Extended + Hypernyms VSM from Table 5.4

Verbs AvgWV Extended + Verbs AvgWV from Table 5.4

Table 6.1: Variants of document-representation features we implemented

51

Chapter 6. Experiments & Results

6.4 Results

In this section we present the results to the experiments we presented in Section 6.3. Our
results are split into two parts: First in Section 6.4.1 we present the results for Gradient
Boosted Trees and Random Forests with different feature sets under the entity-independent
approach. In Section 6.4.2 we present the result of the same experiments when using an
entity-dependent approach.

6.4.1 Performance of entity-independent ranking models

Table 6.2 together with Figure 6.1 shows the performance of different feature sets using
the entity-independent approach to ranking. As we see from this we achieve a relatively
good performance using only the basic feature set for both Random Forests and Gradient
Boosted Trees. In terms of the F1 measure there is no significant difference in performance
between the two algorithms, with both achieving equivalent or near-equivalent scores for
all feature sets. When we look at the SU measure we see that there is slightly more variance
in the results between the two algorithms. Specifically we see that the Random Forests
algorithms has the best SU score for all feature sets except when using the “Verbs AvgWV”
feature set.

As for which feature set works best we see that using the “extended” feature sets
improves performance in terms of the F1 measure. When adding different document-
representations we see that we achieve our best results for both the F1 and SU
measure when using the “Verbs VSM” feature set, neither of the other two document-
representations we implemented seem to give any notable increases in performance.

Random Forest Gradient Boosting
Feature set F1 SU F1 SU
Basic 0.469 0.373 0.469 0.340
Extended 0.472 0.392 0.480 0.339
Verbs VSM 0.486 0.398 0.486 0.343
Hypernyms VSM 0.477 0.395 0.477 0.344
Verbs AvgWV 0.453 0.350 0.454 0.355

Table 6.2: Performance of different feature sets when using an entity-independent approach

52

6.4 Results

Figure 6.1: Graph showing the F1 measure of different feature sets and approaches when using an
entity-independent approach

6.4.2 Performance of entity-dependent ranking models

Table 6.3 and Figure 6.2 shows the performance of different feature sets using the entity-
dependent approach to ranking. For this approach we see that there is clear trend of fa-
voring the Gradient Boosted Trees algorithm in terms of the F1 measure. For the SU
measure the relationship is interestingly reversed, with the Random Forests algorithm gen-
erally performing better for this measure which mirrors what we saw in Table 6.2 for the
entity-independent model.

As for which feature set performs the best we again see that the “Verbs VSM” feature
set achieves the best result in terms of the F1 measure. When using Gradient Boosted Trees
and the entity-dependent approach with the “Verbs VSM” feature set we achieve the best
F1 score of this thesis of 0.5.

Random Forest Gradient Boosting
Feature set F1 SU F1 SU
Basic 0.455 0.352 0.486 0.355
Extended 0.472 0.369 0.491 0.334
Verbs VSM 0.468 0.366 0.500 0.344
Hypernyms VSM 0.468 0.363 0.491 0.343
Verbs AvgWV 0.458 0.355 0.454 0.337

Table 6.3: Performance of different feature sets and approaches when using an entity-dependent
approach

53

Chapter 6. Experiments & Results

Figure 6.2: Graph showing the F1 measure of different feature sets and approaches when using an
entity-dependent approach

From Figure 6.3 we can get a better overview of which methods perform best overall.
We see that using Gradient Boosted Trees with the entity-dependent model has the best
F1 measure for all feature sets except for the “Verbs AvgWV” feature set. Using Random
Forests with the entity-dependent approach is the weakest model overall, having consis-
tently the lowest F1 scores except for when using the “Verbs AvgWV” feature set where it
is marginally better than the other approaches.

54

6.4 Results

Figure 6.3: Graph showing the F1 measure of different feature sets for all approaches

6.4.3 Significance testing

Our results show that a model which uses an entity-dependent approach with Gradient
Boosted Trees “Verbs VSM” feature set performs the best of all our models. As we men-
tioned earlier our implementation using an entity-independent approach using Random
Forests and only the “Basic” feature set is a close as possible replication of the approach
presented in Balog et al. (2012) and therefore chosen as our baseline.

In order to test if our best approach significantly outperforms our baseline we perform a
paired Student’s t-test on the scores of our best implementation and the baseline approach.
This test was performed in accordance with the method presented in Section 2.4.4 with
a standard significance criterion of α = 0.05. The number of topics for the 2014 TREC
KBA track CCR task is 74, we get a test statistic t0 = 1.9626, the critical t value is t(72−
1, 0.05) = 1.9939, since t0 < t(72 − 1, 0.05) we cannot say that our best implementation
significantly outperforms our baseline implementation. The associated p-value is 0.05362.

55

Chapter 6. Experiments & Results

6.4.4 Comparison with results from the 2014 TREC KBA track

We were given access to the raw runfiles of the official runs from the 2014 TREC KBA
track which makes it possible for us to evaluate their runs in the same fashion as our own.
In order to put our results in the context of other solutions to the 2014 TREC KBA track, we
have in Table 6.4 listed the results in terms of the official metrics for both our best model
and the best submitted model of each respective participating team in the 2014 TREC KBA
track.

It should be noted that because of the bug we fixed with the scorer in Section 6.3, the
results we generate for the participating teams of the 2014 TREC KBA track will all be
somewhat higher than the ones published in other papers.

Team name Best F1 Best SU

MSR KMG 0.573 0.518
This thesis 0.500 0.398
IRIT 0.453 0.356
uiucGLIS 0.452 0.379
BIT Purdue 0.450 0.345
KobeU 0.448 0.298
ECNU 0.410 0.345
UW 0.373 0.412
LSIS 0.287 0.393
WHU 0.272 0.372
SCU 0.244 0.335

Table 6.4: Best F1 and SU score of each participating team in the 2014 TREC KBA track and our
best (bold)

As we can see from Table 6.4 our best run in terms of the F1 measure would have placed
2nd in the 2014 TREC KBA track. We can also see that the difference in terms of F1 score
between our best and the best run of the track (MSR KMG) is quite large with a difference
of 0.073. It should however also be noted that the difference between our best run and
the 3rd best run of the 2014 TREC KBA track (IRIT) is quite large with a difference of
0.047. The difference between our best and the 3rd best is so large that if we had used our
baseline implementation based on Random Forests with an entity-independent approach
and the “Basic” feature set we would still place 2nd.

56

Chapter 7
Discussion & Conclusion

In this chapter we will first discuss the implications of our results in Section 7.1. Based on
this discussion we present our answers to our research questions and a conclusion to this
thesis in Section 7.3. Lastly we present ideas for future work in Section 7.4.

7.1 Discussion of results

In Chapter 6.4 we presented and described the performance of our system using the docu-
ment collection and truth set of the 2014 TREC KBA track. In this section we will present
the discussion of these results.

7.1.1 Choice of entity-dependent vs entity-independent approach

When we compare the results for the Random Forests algorithm vs Gradient Boosted Trees
we see that for entity-independent models the performance of Gradient Boosted Trees is
about the same as the performance of Random Forests based models as is shown in Figure
6.1. The gain in performance for Gradient Boosted Trees is first apparent when we switch
from an entity-independent to entity-dependent approach as seen in Figure 6.2. Since the
major difference between the entity-dependent and entity-independent approaches is that
there are fewer training samples per model, this may indicate Gradient Boosted Trees is
better at handling smaller training sets than the Random Forests algorithm.

Another aspect that may explain the problems of using Random Forests with the entity-
dependent approach is the layout of training examples for each entity. As we show in Table
A.1 some entities have very large class imbalances in their training data. If the Random
Forests algorithm is badly suited to handle this large class imbalances then it will struggle
with training entity-dependent models for entities where this problem is apparent.

57

Chapter 7. Discussion & Conclusion

If we disregard the results of the Random Forests algorithm and focus on Gradient
Boosted Trees it is also interesting that this algorithm benefits so consistently from the
entity-dependent approach. Given that the underlying algorithm and features are the same
we would expect the same performance between these two models if there was no inher-
ent benefit to entity-dependent ranking. However given that the entity-dependent model
always outperforms the entity-independent model for Gradient Boosted Trees, this seems
to indicate that there is an inherent benefit in entity-dependent ranking.

Considering that the primary trade-off when using an entity-dependent model is fewer
training samples per entity for the benefit of needing only to target a single entity. This
has the obvious benefit of the model being able to learn entity-specific features, something
entity-independent models may struggle with considering they have to perform well for
many entities. The question then becomes if this trade-off is worth it. Based on our re-
sults with Gradient Boosted Trees the answer seems to be yes, however the opposite is true
when using the Random Forests algorithm, which makes it hard to make a specific recom-
mendation. The result of the significance test show that our best entity-dependent model
does not significantly outperform the baseline entity-independent model, which leads us
to conclude that the choice between entity-dependent vs entity-independent is not going to
significantly improve performance using a system similar to the one we implement. This
result mirror results in related work, especially the results of Wang, Zhang, et al. (2014)
which find that an entity-dependent model only slightly outperform an equivalent entity-
dependent approach.

7.1.2 Choice of Random Forests vs Gradient Boosted Trees

Our results which compare the performance of the Random Forests and Gradient Boosted
Trees algorithms is are somewhat unclear given the the two algorithm have very difference
performances when alternating between the entity-independent and entity-dependent ap-
proaches. Overall Gradient Boosted Trees achieve the best performance for most feature
sets as shown in Figure 6.3, however this is only given that we choose to compare the two
algorithms by the entity-dependent approach, if we use the entity-independent approach
the results in terms of the F1 measure are much more equal.

When considering the choice of Random Forests vs Gradient Boosted Trees one should
also consider the number of hyper-parameters that need to be tuned for each algorithm.
Random Forests has always been a good choice when one cannot perform hyper-parameter
estimation because it has relatively few hyper-parameters to tune. Gradient Boosted Trees,
at least when implemented with XGBoost has many hyper-parameters which can play
an important role in the performance of the model. One of the most important hyper-
parameters in XGBoost is the gamma parameter which controls regularization and there-
fore reduces overfitting in the model, since we are using the default parameters we are
using a default gamma of 0 which means we are not utilizing one of the strongest features
of XGBoost.

58

7.1 Discussion of results

Because of this we believe Gradient Boosted Trees implemented in XGBoost could
achieve much better results than the popular RankLib + Random Forests approach if we
properly estimated hyper-parameters. Unfortunately hyper-parameter estimation is diffi-
cult due to the fact that there is no validation set for the TREC KBA track which limits
exploration of this idea.

7.1.3 Choice of features

From our comparison with other participants of the 2014 TREC KBA track we can see
that the basic feature set even though being based on relatively simple features originally
created for the 2012 TREC KBA track, can still perform admirably for 2014 TREC KBA
track. This is exemplified by the fact that our system using only the basic feature set still
places 2nd in the TREC KBA track. This results shows that this feature set is still a good
basic feature set even in the 2014 TREC KBA track. The performance also indicates that
the improved profile generation algorithm we implement is effective at generating entity
profiles in the absence of existing Wikipedia profiles. Since our approach to reproducing
the basic feature set does not depend on any Wikipedia data and still performs well it calls
into question whether temporal and document similarity features that use Wikipedia data
are actually needed in CCR. If this is the case then it would be beneficial if could remove
Wikipedia based features without having to fear losing model performance because of it.
Since the approach to generating entity profiles we implement is easy to generalize to
entities that have no Wikipedia page it could be beneficial to simply drop the Wikipedia
based features and use the profile generation approach we present.

Our second feature set is the extended feature set which adds more features to the basic
feature set. As we saw in Figure 6.3 the extended feature set outperforms the basic feature
set for all approaches to ranking and therefore seemingly contains useful features for CCR.

When we add different document-representations we see that that there is a clear win-
ner in the simplest document-representation which is based on representing verbs from
relation pairs that mention the entity with vector-space model and using simple binary
weights. When we instead represent the same verbs with the mean of word-vector based
representation we see that this variant has an overall negative impact on performance.

As for why the vector-space model representation on verbs outperforms the mean of
word-vectors representation one reason could be that using vector-space model is simply a
good fit for capturing the relevant information contained in the document: As we mention
in Section 4.2.2 the criteria of vitality is that the entity must perform some action in the
event described by the document. When representing the verbs from relation pairs with
binary weights with the vector-space model it is trivial to determine if the entity has per-
formed some action: We simply check if the feature value for a given verb is 0 or 1. When
we want to extract the same information from the mean of word-vectors representation
however the task is more complex: Since a verbs representation is distributed across multi-
ple dimensions the task of determining if an entity has done something related to a specific
verb becomes much harder.

59

Chapter 7. Discussion & Conclusion

The original idea behind using the mean of word-vectors was that the model would
learn which dimensions in the distributed representation correspond to important verbs,
and thus be better at handling verbs that are not seen in the training set. However given
the model performance is much worse it is apparently not able to do this, which could be
because we simply do not have enough training data to determine which dimensions are
important. It would therefore be interesting to try the same approach with a much larger
training set.

Furthermore the mean of word-vectors representation will obviously be affected by
the quality of the underlying word-vectors we use to generate the representations for text.
Since we train our own word-vectors the performance of word-vector based features will
depend on the quality of this model: If the word-vector model we created is of low-quality,
either because of a too small training corpus or mistakes on our part when we created them,
then the performance of these features will suffer as well.

Our attempt at augmenting the vector-space model with hypernyms in order to bet-
ter handle unseen verbs also does not appear to have a positive impact on model perfor-
mance. As with the distributed representations our initial idea for this representation was
that adding hypernyms would improve the model’s ability to handle unseen verbs. As for
why this does not work it may be that adding more verbs simply makes it harder for the
ranking model to learn which specific verbs are important, which reduces the precision of
the model. In this case the added hypernyms are then simply not utilized and instead act as
noise to the ranking model.

As for which document-representation we can recommend based on our results, we can
really only say that until more training data is available for CCR, using the vector-space
model on verbs extracted from relation pairs is the most promising. When more training
data is available it would be interesting to see if distributed representations are able to beat
the simpler vector-space model.

7.2 Contribution

The main contribution of this thesis is the implementation of the CCR system we described
in Chapter 5. The other contributions of this thesis come from how we use this system
to answer the research questions we presented in Chapter 1. We will now revisit these
questions and provide answers based on our results:

RQ1 How can we effectively filter out new, relevant information related to a set of
entities given a stream of documents?

60

7.2 Contribution

In this thesis we have explored several different approaches to creating LTR based rank-
ing systems for CCR. Our results show that an LTR based system can achieve competitive
results for the CCR track, which is exemplified by our system placing 2nd compared to
the participants of the 2014 TREC KBA track. The fact that the system which placed 1st
in the 2014 TREC KBA track is also an LTR-based system shows that LTR-based sys-
tems are currently some of the most effective CCR approaches which have been evaluated
independently.

While LTR-based systems are currently achieving the best results for CCR we still
question if their performance is good enough to be used in the real world. Currently no
system we have seen have achieved an F1 measure above 0.6, indicating that there is still
room for improvement. As we have not been able to achieve results close to this threshold
with any of our LTR based approaches, we think researchers in the future should explore
alternative solving the relevancy filtering problem of CCR.

RQ2 How does the Random Forest algorithm compare to Gradient Boosted Trees
when used for ranking?

Our results show that Gradient Boosted Trees is a viable contender to the more popular
Random Forests approach when using an LTR based approach. We are able to achieve
our best results with Gradient Boosted Trees and we show that Gradient Boosted Trees
is a better choice than Random Forests when using an entity-dependent approach. While
our results with Gradient Boosted Trees show that this method is competitive, it does not
achieve good enough results to warrant completely replacing Random Forests as the stan-
dard machine-learning algorithm for CCR. However our results indicate that future work
on building LTR based CCR systems should not assume the established RankLib + Ran-
dom Forest implementation is the best off-the-shelf ranking library to use. We also have
reason to believe that with good hyper-parameter estimation Gradient Boosted Trees can
outperform Random Forests, but experiments into this are currently limited by the lack of
a validation set for the TREC KBA track truth data.

RQ3 How does entity-dependent approaches compare to entity-independent
approaches for ranking?

Our results show that the choosing an entity-dependent approach can give better re-
sults in terms of the F1 measure than using an entity-independent approach. Our results
also show that the choice of machine-learning algorithm must be taken into considera-
tion when choosing between an entity-independent vs entity-dependent approach, as the
Random Forests algorithm seeming performs better under an entity-independent approach
while Gradient Boosted Trees performs better with the entity-dependent approach. The fact
that we are unable to create a entity-dependent run which produces statistically significant
results over a entity-independent baseline implementing indicates that the choice between
entity-dependent or entity-dependent approach should not be a major focus in future re-
search, at least given the current state of the truth data used in the TREC KBA track. In
the event that a larger training set becomes available for CCR we believe it would be worth
reevaluating the choice of using an entity-dependent vs entity-independent approach.

61

Chapter 7. Discussion & Conclusion

RQ4 How does the choice of features affect the performance of supervised learning
approaches?

Our system performs surprisingly well when using only a simple feature set based on
the work presented in Balog Krisztian et al. (2013). By expanding the basic feature set
with additional features specifically engineering for aiding the system distinguish between
vital and non-vital documents and showing this improves performance across all LTR-
based approaches we show that good feature engineering is a consistent way of improving
performance of LTR-based CCR systems. We also show that high-dimensional document-
representation features can improve model performance in some cases, however the spe-
cific way these features are implement is important because some variants we implemented
negatively affect model performance.

7.3 Conclusion

In this thesis we have implemented an LTR-based CCR system which produces good re-
sults when evaluated against other approaches in the 2014 TREC KBA track. Our im-
plementation of different variants of the LTR-based approach show that there are interest-
ing relationships between the choice of machine-learning algorithm and choice of either
a entity-dependent or entity-independent approach, and that some machine-learning algo-
rithms seem to work better with one than the other. Our implementation of several novel
features as well as an improved method of creating entity profiles seems to result in an im-
provement of the performance across all approaches which shows the importance of feature
engineering in CCR.

In our discussion we present some of our ideas as to what prevents our solution from
getting better results. One recurring trend in the discussion is that many of the limitations
and problems when creating CCR systems originate in the current state of StreamCorpus
and the associated truth data. We believe based on our findings in this thesis that research
on CCR is currently limited by (1) the lack of balanced training sets for all target en-
tities which limits the effectiveness of entity-dependent approaches and (2) the lack of a
validation set which effectively limits research on CCR to using relatively simple machine-
learning algorithms on their default settings.

There is really only one way to fix this issue, which is to create better truth data with
more evenly distributed training data across target entities. Considering there have been no
attempts (to our knowledge) at updating the truth data for CCR since the 2014 TREC KBA
track, we believe it would be highly beneficial to future research on CCR for someone to
create better truth data for CCR with more and better training data.

Once this happens we believe it would be interesting to revisit the research questions
posed in this thesis. Given more and better training data we believe we can achieve better
results by training better entity-dependent ranking models, and using the parameters of
machine-learning algorithms more properly.

62

7.4 Future work

7.4 Future work

During our work on this thesis we came up with several ideas which we would like to
explore further, but weren’t able to due to either time constraints or the idea being too
unrelated to the main goals of this thesis. In this section we will briefly present some of
these ideas which we believe could be of interest in future research on cumulative citation
recommendation.

7.4.1 Investigate effects of hyper-parameters on model performance

As we discussed earlier one of the interesting contributions of this thesis is that using Gradi-
ent Boosted Trees in ranking mode via XGBoost performs at least as good if not better than
Random Forests using default settings. While the Random Forest algorithm is relatively
limited in the choices of hyper-parameters, XGBoost provides several hyper-parameters
which could significantly affect model performance. We are especially interested in look-
ing at the effects of tuning the regularization parameter of XGBoost since this is one of the
major advantages XGBoost has over similar machine-learning algorithms such as Random
Forests. We believe that proper hyper-parameter is much more important for when using
XGBoost than Ranklib + Random Forests since there are many more hyper-parameters in
XGBoost than Ranklib’s Random Forests implementation.

One of the things making hyper-parameter estimation difficult when using the truth
data from the 2014 TREC KBA track is that there is no validation set with which to make
model choices with. One possible way to resolve this is to create a validation set by splitting
the entity-document pairs in the training set in order to create a smaller training set with
associated validation set. This is however not trivial because one has to ensure there are
enough document-entity pairs in both the training set and validation set, which could be
problematic given there is very few document-entity pairs for some of the entities: Splitting
these further may results in too few training instances for some entities.

7.4.2 Research the UX aspects of CCR

This thesis as well as most other papers relating to CCR address the task of filtering vital
documents from a collection. However to our knowledge little to no research has been done
on on the user experience (UX) aspect of CCR or KBA in general. We believe that without
a proper front-end system to present the filtered documents, CCR will forever remain a
research topic and never be of use outside academia.

63

Chapter 7. Discussion & Conclusion

For this reason we believe that a natural next step in the evolution of CCR systems
is the design and implementation of a front-end for these systems that can present the
filtered documents in a way that will allow knowledge base editors to browse the filtered
documents and easily integrate the information they contain into existing knowledge bases.
Research into this front-end has to find innovative ways to explain to the user why each
filtered document is relevant, which parts of the document are relevant and which are not,
and possibly even improve the system performance by having humans judge the filtered
documents by identifying false positives. We propose that a type of CCR based search
engine could be developed which allow knowledge base editors to search for new relevant
documents to cite for a given entity. This research could take inspiration from existing
research on UX for recommender systems such as Knijnenburg et al. (2012).

7.4.3 Create a combined document collection for the 2012-2014 TREC
KBA tracks

In all works on the TREC KBA track CCR task we have seen a choice is always made to
use only the StreamCorpus collection and associated truth data from one of the 2012, 2013
or 2014 TREC KBA tracks. All of these tracks have different target entities, and therefore
disjoint truth data. In order to create a larger collection of truth data it would be possible
to combine the target entity list of the 2012-2014 TREC KBA tracks, effectively creating
a much larger training and testing set, with considerably more target entities. Since the
2014 StreamCorpus iteration also is a superset of all previous StreamCorpus collections, it
would be possible to combine the truth data from the three TREC KBA tracks and simply
use the 2014 StreamCorpus. This could make it possible to train more complex models as
more training data is available.

This task is however not trivial because of the size of the 2014 StreamCorpus. Almost
all participants in the 2014 TREC KBA track use the filtered version of the 2014 Stream-
Corpus collection, which contains significantly fewer documents, but also cannot be used
for the 2012 and 2013 target entities because many documents that mention these entities
are filtered out of the collection. Given sufficient computational power, such as with a large
cluster computing network it would be possible to download the whole 2014 StreamCorpus
and create a new filtered collection that filters out documents mentioning the target entities
from all TREC KBA tracks which makes working with combined target entity list feasi-
ble for researchers with less available computational power. If this new filtered collection
could be made publically available it would also allow other researcher to access this larger
training and testing set which could lead to many interesting new approaches to CCR.

64

Bibliography

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. “Lever-
aging Linguistic Structure For Open Domain Information Extraction”. In: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing. 2015, pp. 344–354.

Ricardo Baeza-Yates A. and Berthier Ribeiro-Neto. Modern Information Retrieval. 1999.

Balog Krisztian, Takhirov Naimdjon, Ramampiaro Heri, and Nørvåg Kjetil. “Multi-step
Classification Approaches to Cumulative Citation Recommendation”. In: Proceedings of
the 10th Conference on Open Research Areas in Information Retrieval. 2013, pp. 121–128.

Krisztian Balog and Heri Ramampiaro. “Cumulative Citation Recommendation : Classifi-
cation vs . Ranking”. In: Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. ACM. 2012, pp. 941–944.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. “A Neural
Probabilistic Language Model”. In: The Journal of Machine Learning Research 3 (2003),
pp. 1137–1155.

Richard Berendsen, Edgar Meij, Daan Odijk, Maarten de Rijke, and Wouter Weerkamp.
“The University of Amsterdam at TREC 2012”. In: Proceedings of The Twenty-First Text
REtrieval Conference. 2012.

Ignacio Cano, Sameer Singh, and Carlos Guestrin. “Distributed Non-Parametric Represen-
tations for Vital Filtering: UW at TREC KBA 2014”. In: Proceedings of The Twenty-Third
Text REtrieval Conference. 2014.

Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 2016.

Cedric De Boom, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. “Representa-
tion learning for very short texts using weighted word embedding aggregation”. In: Pattern
Recognition Letters 80 (2016), pp. 150–156.

Laura Dietz, Jeffrey Dalton, and Krisztian Balog. “Time-aware Evaluation of Cumulative
Citation Recommendation Systems”. In: Proceedings of SIGIR 2013 Workshop on Time-
aware Information Access. 2013.

65

Miles Efron, Jana Deisner, Peter Organisciak, Garrick Sherman, and Ana Lucic. “The Uni-
versity of Illinois’ Graduate School of Library and Information Science at TREC 2012”.
In: Proceedings of The Twenty-First Text REtrieval Conference. 2012.

William B. Frakes and Ricardo Baeza-Yates. Information Retrieval: Data Structures and
Algorithms. Prentice Hall, 1992.

John R. Frank, Steven J. Bauer, Max Kleiman-Weiner, Daniel a. Roberts, Nilesh Tripura-
neni, Ce Zhang, Christopher Re, Ellen Voorhees, and Ian Soboroff. “Evaluating Stream Fil-
tering for Entity Profile Updates for TREC 2013”. In: Proceedings of The Twenty-Second
Text REtrieval Conference. 2013.

John R Frank, Max Kleiman-Weiner, Daniel A Roberts, Ellen Voorhees, and Ian Soboroff.
“Evaluating Stream Filtering for Entity Profile Updates in TREC 2012, 2013, and 2014”.
In: Proceedings of The Twenty-Third Text REtrieval Conference. 2014.

Gebrekirstos G Gebremeskel, Jiyin He, Arjen P De Vries, and Jimmy Lin. “Cumulative
Citation Recommendation: A Feature-Aware Comparison of Approaches”. In: 25th Inter-
national Workshop on Database and Expert Systems Applications. 2014, pp. 193–197.

Jingtian Jiang, Chin-yew Lin, and Yong Rui. MSR KMG at TREC 2014 KBA Track Vital
Filtering Task. Tech. rep. 2014.

Nattiya Kanhabua, Roi Blanco, and Kjetil Nørvåg. “Temporal Information Retrieval”. In:
Foundations and Trends in Information Retrieval. Vol. 9. 2015, pp. 91–208.

Bart P Knijnenburg, Martijn C Willemsen, Zeno Gantner, Hakan Soncu, and Chris Newell.
“Explaining the user experience of recommender systems”. In: User Modeling and User-
Adapted Interaction 22 (2012), pp. 441–504.

Matt J Kusner, Yu Sun, Nicholas I Kolkin, and Kilian Q Weinberger. “From Word Embed-
dings To Document Distances”. In: Proceedings of the 32nd International Conference on
Machine Learning. 2015, pp. 957–966.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011.

Rachel Tsz-Wai Lo, Ben He, and Iadh Ounis. “Automatically Building a Stopword List for
an Information Retrieval System”. In: JDIM 3 (2005), pp. 3–8.

Lerong Ma, Dandan Song, Lejian Liao, and Yao Ni. “A joint deep model of entities and
documents for cumulative citation recommendation”. In: Cluster Computing (2017).

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

Trevor N. Mansuy and Robert J. Hilderman. “Evaluating WordNet Features in Text Classi-
fication Models”. In: Proceedings of the Nineteenth International Florida Artificial Intelli-
gence Research Society Conference (2006), pp. 568–573.

Jiana Meng, Hongfei Lin, and Yuhai Yu. “A two-stage feature selection method for text
categorization”. In: Computers & Mathematics with Applications 62 (2011), pp. 2793–
2800.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estimation of Word
Representations in Vector Space”. In: CoRR (Jan. 2013).

George A. Miller. “WordNet: A Lexical Database for English”. In: Communications of the
ACM 38 (1995).

66

Margaret Mitchell. “Overview of the TAC2013 Knowledge Base Population Evaluation:
English Sentiment Slot Filling”. In: Proceedings of the Sixth Text Analysis Conference.
2013.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012.

Hung Nguyen, Yi Fang, Sandhya Gade, Vijay Mysore, Juan Hu, Sabita Pandit, Aparna
Srinivasan, and Miao Jiang. “A Pattern Matching Approach to Streaming Slot Filling”. In:
Proceedings of The Twenty-Second Text REtrieval Conference. 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. “GloVe : Global Vectors
for Word Representation”. In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (2014).

Ridho Reinanda, Edgar Meij, and Maarten de Rijke. “Document Filtering for Long-tail
Entities”. In: Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. 2016, pp. 771–780.

S Robertson and I Soboroff. “The TREC 2002 Filtering Track report”. In: The Eleventh
Text REtrieval Conference. 2002, pp. 27–39.

Hassan Saif, Miriam Fernández, Yulan He, and Harith Alani. “On Stopwords, Filtering
and Data Sparsity for Sentiment Analysis of Twitter”. In: Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation. 2014, pp. 810–817.

Tetsuya Sakai. “Statistical Reform in Information Retrieval?” In: SIGIR Forum 48 (2014),
pp. 3–12.

G. Salton, A. Wong, and C. S. Yang. “A Vector Space Model for Automatic Indexing”. In:
Communications of the ACM 18 (Nov. 1975), pp. 613–620.

Michael Schmitz, Robert Bart, Stephen Soderland, and Oren Etzioni. “Open language
learning for information extraction”. In: Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning. 2012, pp. 523–534.

Mark D Smucker, James Allan, and Ben Carterette. “A Comparison of Statistical Signif-
icance Tests for Information Retrieval Evaluation”. In: Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge Management. 2007, pp. 623–
632.

Alper Kürşat Uysal and Serkan Gunal. “The impact of preprocessing on text classification”.
In: Information Processing & Management 50 (2014), pp. 104–112.

Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Probability and
statistics for engineers and scientists. Ninth Edition. Pearson London, 2012.

Jingang Wang, Lejian Liao, Dandan Song, Lerong Ma, Chin-Yew Lin, and Yong Rui.
“Resorting Relevance Evidences to Cumulative Citation Recommendation for Knowledge
Base Acceleration”. In: Web-Age Information Management. Springer International Pub-
lishing, 2015, pp. 169–180.

Jingang Wang, D Song, CY Lin, and L Liao. “BIT and MSRA at TREC KBA CCR Track
2013”. In: Proceedings of The Twenty-Second Text REtrieval Conference. 2013.

67

Jingang Wang, Zhiwei Zhang, Ning Zhang, Dandan Song, and Luo Si. “BIT and Purdue at
TREC-KBA-CCR Track”. In: Proceedings of The Twenty-Third Text REtrieval Conference.
2014.

Chuan Wu, Wei Lu, Pengcheng Zhou, and Xiaohua Feng. “WHU at TREC KBA Vital
Filtering Track 2014”. In: Proceedings of The Twenty-Third Text REtrieval Conference
(2014).

68

Appendix A
Per-topic training data distribution

Entity Non-referent Unknown Useful Vital

Rick Hansen 2433 0 30 8
Jean Luc Bilodeau 0 0 3 2
Randy Dorn 0 2 157 74
Shelley Redinger 0 0 0 50
Maelle Ricker 1 0 54 17
Rose Egge 0 0 1 1
Jessie Kaech 0 0 10 3
Nolan Watson 0 0 14 7
BNSF Railway 5 11 384 34
Theresa Spence 0 0 73 63
Peter Goldmark 19 1 152 27
Robyn Gervais 0 0 1 33
Bill Templeton 0 0 19 5

Jeff Mangum 1 0 21 20
King Cat Theater 2 82 23 36
Missing Women
Commission of Inquiry 0 0 37 45
Lisa Brown 17 0 21 6
Ted Prior 2 0 1 3
Nordic Heritage Museum 0 0 16 21
Paul Watson 12 1 33 2
Stephen Buxbaum 0 0 4 4
Jim Busey 0 0 12 24
Damien Jurado 0 1 70 13
Josh Vander Vies 0 0 0 3
Susan Chapelle 0 0 5 5
IslandWood 1 274 58 2
Shawn Atleo 0 0 38 73
Bryce Leavitt 0 0 56 14

69

Cameron Ward 1 3 30 11
Dan Satterberg 2 62 415 13
Lisa Muri 0 0 6 3
Lizette Graden 0 0 0 62
Brock Schuh 0 0 9 15
Mark Lindquist 24 33 468 20
Brodie Clowes 14 0 3 3
Paul Brandt 0 9 9 13
Dow Constantine 1 5 488 33
Nancy Wilhelm Morden 0 0 3 14
Carmela Dellino 0 0 25 17
Abbotsford Arts Centre 0 0 24 1
Mason Wilgosh 0 0 18 20
Ralph Dannenberg 0 0 54 7
Andy Billig 0 0 25 22
Anne Blair 3 0 9 8
Marty McLaren 0 0 27 6
Tulalip 555 3 62 12
Leona Aglukkaq 0 1 680 33
3NIbfDpEdTwZ 0 0 7 6

Mike Kluse 0 0 17 2
Snohomish High School 0 1 200 4
Tsawwassen First Nation 0 0 22 16
J. Tillman 2 1 46 19
Elmer Derrick 0 0 3 64
Bryan Raiser 0 0 3 3
Jonathan Meline 0 0 1 46
Ted Sturdevant 0 0 179 17
Spokane Tribe 0 0 83 19
Spokane County Raceway 196 0 70 11
Corisa Bell 0 0 3 18
Semiahmoo First Nation 0 0 4 4
Tsleil-Waututh First Nation 0 0 2 2
Genaveve Starr 0 0 3 3
Chad Kroeger 1 0 287 115
Georgie Bright Kunkel 0 0 8 4
Rob Kirkham 0 0 3 1
Joby Shimomura 0 0 21 19
Spokane Convention Center 0 0 77 16
matt manweller 0 0 142 16
Jacob Hoggard 0 4 38 9
Dave Rosin 0 0 0 1

Kshama Sawant 0 2 229 15
Jesse Sykes 2 0 21 4
Kalispel Tribe 0 0 184 8
James Windle 8 26 181 10

70

Table A.1: Number of training examples for each relevancy level per entity in the training data of
the 2014 TREC KBA track (Target entities of the CCR task only)

71

72

Appendix B
Command-line used for evaluating runs

python -m kba.scorer.ccr
--cutoff-step 1
--any-up
[runfile directory]
[annotation file]

73

	Abstract
	Sammendrag
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research questions
	Outline

	Preliminaries
	Supervised learning
	Document processing
	Text representations for supervised learning
	Evaluation of information retrieval systems

	Related Work
	Cumulative citation recommendation
	Knowledge base population

	TREC Cumulative Citation Recommendation
	The TREC KBA track
	Task description and definitions
	Document collection and truth data
	Evaluation metrics

	Implementation
	Architectural overview
	Building word vectors for temporally sensitive tasks
	The document processing system
	The Vital Filtering System

	Experiments & Results
	Document collection and truth data
	Evaluation methodology
	Experimental overview
	Results

	Discussion & Conclusion
	Discussion of results
	Contribution
	Conclusion
	Future work

	Bibliography
	Per-topic training data distribution
	Appendix
	Command-line used for evaluating runs

