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Abstract

In recent years, a lot attention has been paid to various two-dimensional materials due

to their unique properties stemming from the spacial refinement of one of the mate-

rial’s dimensions. Regardless of the incredible theoretical and experimental attention

on graphene, unoccupied electronic bands are not yet well understood and there is a

wealth of contradictory information in the literature about the band origin.

In this thesis, unoccupied electronic graphene states are investigated with a spe-

cial focus on the lowest unoccupied bands rising from the valence atomic orbitals (2s,

2px and 2pz ) localized in the graphene layer, known as the σ∗ states. As a tool for the

unoccupied band structure study, an inverse photoemission spectroscopy, is utilized.

To theoretically predict the spectrum which can be expected from measurements of

the σ∗ bands, graphene band structure is calculated from a tight-binding model. The

so-called "three step model" is used and together with a dipole and free-electron initial

state approximation results in the expected inverse photoemission spectrum. In order

to account for possible many-body effects which are present in the occupied electronic

bands and which can also be expected in the unoccupied electronic bands, electron-

phonon coupling is included in the model.

A characterization of the NTNU laboratory inverse photoemission apparatus re-

veals the resolution being too poor for the intended measurements. The final exper-

iment is performed at Physikalisches Institut, Münster, and shows a single electronic

band about 3.5 eV above the Fermi level. The intensity of the measured peak is found to

be non-vanishing at normal electron incidence which contradicts the calculated spec-

trum. The width of the peak and its position with respect to the vacuum level suggest

that this peak originates from the two lowest graphene image-potential states which

questions previously published inverse photoemission measurements.
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Preface

This thesis as a part of two year Master of Science degree in physic is submitted to Nor-

wegian University of Science and Technology (NTNU, Trondheim) to fulfil formal re-

quirements of the degree. The work corresponds to 60 out of a total 120 ECTS credits
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Chapter 1

Introduction

Despite the first theoretical study of graphene published in 1947 [1], graphene and other

two-dimensional (2D) materials served mostly as a toy model for theoretical physicists.

It was believed that a single layer graphene sheet was thermally unstable, which was,

however, proven not to be true in 2004 when a single-layer graphene sheet was mechan-

ically exfoliated for the first time [2]. This achievement and successive characterization

were awarded the Nobel prize in Physics in 2010 [3]. Due to advances in graphene pro-

duction [4, 5], graphene can be easily prepared and became commercially available.

The accessibility of graphene allowed the convergence of theoretical and exper-

imental condensed matter physics since the two-dimensional phenomenon became

suddenly accessible for experiments. Many predictions, such as the anomalous quan-

tum hall effect were observed [6], confirming the theoretical work. Due to its extraor-

dinary electron mobility [7], strong non-linear optical properties [8], flexibility and be-

ing the strongest material known [9], graphene promises huge application potential in

almost any possible field. The nature of graphene theoretically being a zero-gap ma-

terial with linear energy dispersion has prompted prompted the investment of much

effort in band gap opening [10, 11, 12]. This together with the extraordinary electron

mobility promises a new era of electronics [13, 14, 15]. Further spatial confinement

into graphene quantum dots and graphene nanoribbons extends its applicability even

further towards optoelectronic devices [16, 17, 18] and photovoltaic technology [19].

Moreover, recently revealed superconductivity [20, 21] and other topological states of

matter [22, 23] in bilayer (BL) graphene has opened its way to spintronics, vallaytronics

and quantum computing.

In order to tailor the properties for future applications, a deep understanding of

basic properties and their origin is required. This leads to a consequent need for a good

understanding of electronic band structure, which directly effects electrical and optical

properties of graphene.

3
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The valence bands of graphene have been well characterized using various tech-

niques, the most powerful and versatile of which is angle-resolved photo angle-resolved

photoemission spectroscopy (ARPES)[24] which provides a full picture of the valence

bands and confirms theoretical predictions [25]. Despite this apparent corroboration,

upon closer inspection deviations from the the theoretically predicted Dirac cone were

found and attributed to electron-electron and electron-phonon coupling [26, 27]. The

electron-phonon coupling effects were proven to be even stronger in the top-most in-

tralayer states, and can even be observed in ARPES data by the naked eye [28, 29]. The

strong electron-phonon coupling is of high interest since it serves as a mediator for

Bardeen–Cooper–Schrieffer superconductivity [30, 31], which was already reported in

the graphene-like system, MgB2 [32].

In the conduction bands, however, the electronic structure is not well understood.

Several first principle (ab initio) [33, 34] and tight binding (TB) simulations [35] were

presented, showing different positions of the lowest unoccupied intralayer σ∗ bands

and assigning different origins to the lowest unoccupied states. Moreover, to the best of

the authors’ knowledge, no complete momentum resolved band mapping of graphene

states above the vacuum level has been performed. The lowest energy region below

the vacuum level was measured by two-photon photoemission spectroscopy (2PPES)

[36] and the observed bands were assigned to image-potential states, which is also sup-

ported by ab initio calculations [37]. Be that as it may, in Ref. [34], the bands were

predicted to be ordinary Kohn-Sham LDA energy bands rather than image-potential

states. In addition to the previous work, a state at approximately the same energy (4 eV

above the Fermi level) was measured using inverse photoemission spectroscopy (IPES)

[38, 39, 40] and was identified as the σ∗ state. According to the previously mentioned

ab initio calculations, this state should be present at much higher energies. In graphite

(layered graphene), simulations of the conduction bands [41] showed an additional in-

terlayer σ∗ state at a very similar energy to the observed graphene peak. This state

should, however, not be present in graphene since it originates from wavefunctions lo-

calized between the stacked graphene sheets. Moreover, from the IPES experiments

performed on graphite, the presence of the interlayer σ∗ band could not be confirmed

[42, 43] and later image potential states were found at approximately the same en-

ergy [44].

The confusion about the graphene band origin in the literature is rather surpris-

ing, considering that graphene is structurally one of the simplest possible materials to

model, and therefore deserves attention.
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Objectives

The main aim of this thesis is to investigate what spectrum can be expected at the lowest

unoccupied intralayer σ∗ bands of grapene in the IPES experiment and consequently

compare the data to real IPES measurements. To the authors’ best knowledge, the IPES

intensity from the lowest intralayer σ∗ band has not been calculated before, but is

rather essential to fully understand the experimental result. The band origin should

be directly reflected in the IPES spectra, similarly to ARPES [28, 29], due to practically

time-reversed processes in both spectroscopic methods. The completion of this work

will allow a better understanding of the unoccupied bands, and thus will enable further

investigation of many-body effects, such as electron-electron and electron-phonon in-

teractions.

Methods and Structure of the Thesis

The main content of this thesis begins in Chapter 2, with an introduction of basic solid-

state concepts, graphene band structure, and potential processes which can strongly

effect the band structure. Consequently, a short overview of spectroscopic techniques

and techniques to investigate sample surface quality is given. The chapter is terminated

by an introduction to IPES which is the central part of this thesis.

Chapter 3 introduces theoretical necessities for the IPES spectra calculation. A tight-

binding model for graphene is described in order to calculate graphene band structure.

A many-body theory follows to account for electron-phonon coupling which also has to

be considered in the unoccupied bands [45]. In the last section, the three-step model

for IPES is described and together with a free-electron like initial state and a dipole ap-

proximation, and an expression for expected IPES intensity is derived. Chapter 4 then

summarizes the results from the simulations.

Chapter 5 presents experimental methods. The first part focuses on a character-

ization of the IPES apparatus available at the NTNU laboratory in the department of

Physics. Both the experimental approach and the analytical methods are given. The

second part of the chapter introduces the actual graphene measurements. The results

of both experimental parts are then presented in Chapter 6.

Chapter 7 discusses the results and possibilities of further work. The whole thesis is

then summarized in Chapter 8.
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Chapter 2

Background

In this first chapter concepts central to this thesis are introduced. The purpose of this

chapter is to provide a general framework and insight to the topic, rather than an ex-

act mathematical formulation. First, basic nomenclature and graphene structure are

described, followed by an introduction to the band structure of graphene and related

phenomena directly effecting it. In the second section, a brief discussion about both

structural and spectroscopical experimental methods is given. The last section then fo-

cuses on an introduction to inverse photoemission spectroscopy, which plays a central

role within this thesis.

2.1 Two-Dimensional Materials

Up to this point, 2D materials have been mentioned several times, however no proper

definition of 2D materials has been given which deserves clarification. Within this work,

2D material can be defined as a material heaving periodicity in two of the dimensions,

but with a reduced periodicity in the third dimension. This, as will be shown later, di-

rectly effects a behaviour of electrons. Due to the atomic scale, crystal dimensions in

the order of a few µm can be seen as infinite and the two dimensional character is as-

signed just to mono- or few-layer materials, such as graphene, hexagonal boron nitride,

silicene[46] or borophene[47]. In the following, the focus is on graphene even though

some parts are rather general.

2.1.1 Graphene and Graphite

Graphene is formed out of carbon atoms arranged in a honeycomb lattice and is schemat-

ically depicted in the figure 2.1a). This honeycomb lattice can be described by a unit

cell (depicted by a red rhombus), the smallest unit which possesses a discrete transla-

7
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tion symmetry defined by lattice vectors a1 and a2, which contains two inequivalent

carbon atoms (deleted by white and grey point). Their linear combination, R , spans the

whole triangular Bravais lattice and can be written as

R = n1a1 +n2a1,

where ni are integers and where R will be also referred to as a lattice site.

a)

a1

a2x

y

b)

K

M

b1

b2

ky

kxΓ

Figure 2.1: Schematic graphene structure a) and graphene’s reciprocal space b). In the
panels a), the red rhombus denotes a unit cell and ai are unit vectors in real space.
Two sets of inequivalent carbon atoms are denoted by white and grey dots. In the panel
b), first Brillouin zone is showed by red shaded hexagon with Γ, M and K being the
high symmetry points of the zone, bi denotes reciprocal lattice vectors and white points
corresponding reciprocal lattice points.

Due to discrete translation symmetry of the system, any quantity possesses the

same symmetry f (r ) = f (r + R) and can therefore be described by a Fourier series

f (r ) = ∑
fme iGm ·r = ∑

fme iGm ·r e iGm ·R , where fm are the Fourier coefficients and r is

the position vector. This also defines the reciprocal lattice as a set of all Gm satisfying

e iGm ·R = 1. Consequently, any point of the reciprocal lattice can be described similarly

to the real space as G = m1b1 +m2b1, where mi are integers and bi are the reciprocal

lattice vectors which satisfies ai ·b j = 2πδi j , with δi j being Kronecker delta.

The reciprocal space of graphene together with reciprocal lattice points (white dots)

and reciprocal lattice vector are displayed in the figure 2.1b). The black hexagons de-

note Wigner-Seitz cells, known also as Brillouin zones (BZ), are the unit cells of the re-

ciprocal space. The first Brillouin zone (1BZ)1 is grey-shaded and shows the high sym-

metry point of the Brillouin zone, Γ, M and K , the dashed red lines show the high sym-

metry lines of the zone.

1Similarly, second Brillouin zone is abbreviated as 2BZ.
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The description of graphene given up to this point concerned only mono-layer (ML)

graphene. In the experiments both ML, bi-layer (BL) and tri-layer (TL) graphene is used.

The stacking of the graphene layers then directly effects graphene properties and to the

previously mentioned superconductivity.

Similarly, graphite is nothing but many layers of graphene layered on top of each

other (it can be seen as a quasi 2D material). Due to much larger distance between the

layers than between the carbon atoms (3.35 Å [48] versus 1.42 Å[49]), graphene layers

just weakly interact with each other and many properties of graphene can therefore be

judged from graphite.

2.1.2 Electrons in Periodic Systems

As firstly shown by Bloch, in the system that possess translation symmetry (periodic

crystals), the eigenstates of Hamiltonian are of the form

ψµk (r ) = e i k ·r uµk (r ), (2.1)

with uµk (r ) having the same translation symmetry as the original system which reflects

the variation of the wavefunction within the unit cell. This formulation is generally

known as Bloch’s theorem2. The index µ is a band index and k is a wave vector of cor-

responding eigenstate, known as a Bloch state. The wave vector k

Considering k = k ′+G , where G is any lattice reciprocal vector, the wavefunction

can be written as

ψµk (r ) = e i (k ′−G)·r uµk ′−G (r ) = e i k ′·r e−iG ·r uµk ′−G (r ). (2.2)

Defining uµk ′ (r ) = e−iG ·r uµk ′−G (r ) the wavefunction can be expressed as

ψµk (r ) = e i k ′·r uµk ′ (r ) =ψµk ′ (r ). (2.3)

The consequence is that crystal momentum is not well defined and k can be modu-

lated by any G without effecting the wave function. This shows that all the information

about the particle (electron) wavefunction can be obtained just from the 1BZ. Similarly,

electronic band structure (eigenenergy of the system Ekµ) of infinite crystals can be de-

termined just by working in the 1BZ.

Since electrons are fermions they must obey Fermi-Dirac statistics

fkµ(Ekµ) = 1

e
Ekµ−EF

kBT +1

, (2.4)

2For the proof of Bloch’s theorem see for example Ref. [50] or Ref. [51].
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where Ekµ are eigenenergies of the system, kB is the Boltzmann constant, T denotes

temperature and where EF is the Fermi energy (or Fermi level) - lowest energy occupied

by electrons at temperature T = 0 K.

If one of the dimensions is reduced, the wave function cannot be periodic within

that dimension and has to rapidly decay with the distance from the sample. This corre-

sponds to a particle (an electron) localized in the thin layer of the 2D material.

2.1.3 Graphene Electron Structure and Electron Bands

As mentioned previously, graphene structure is made out of carbon atoms. The carbon

atom itself has 6 electrons, 2 core electrons occupying 1s orbital, and 4 valence elec-

trons occupying 2s, 2px ,2py and 2pz . In the following, s, px , py and pz will denote the

valence orbitals if not mentioned otherwise.

Due to graphene’s structure the valence orbitals are sp2 hybridized which is schemat-

ically depicted in the figure 2.2. The px remains still localized out of the x − y plane,

whereas in-plane orbitals s, px , py give a rise to new hybridized orbitals pa , pb and

pc with an angle of 120° between their symmetry axis and which are responsible for the

graphene interlayer bonds. However, these new hybridized orbitals can be expressed as

a linear combination of the original in-plane orbitals which will be used in this work3.

pa

pb

pc

x

yz

pa
pc

pb

pz

x

y90°

120°

120°

120°

Figure 2.2: Schematic illustration of sp2 hybridized orbitals. The newly created in-plane
orbitals pa , pb , pc are equivalent with an angle of 120° between their symmetry axis, pz

orbital is unchanged (still out of x − y plane).

In the first approximation, only valence bands of the two inequivalent carbon atoms

in the unit cell (denoted by A and B) can be considered in the band structure calcula-

tion. Due to 2×4 orbitals provided by both atoms, there will be 8 distinct Bloch waves

in the crystal giving rise to 8 electron bands. Two electronic bands stem purely from

pz orbitals due to their orthogonality to in-plane orbitals and are named π and π∗, for

bonding and anti-bonding combination of the orbitals respectively. The in-plane or-

bitals give a rise to the other 6 electronic bands, 3 bonding σ and 3 anti-bonding σ∗,

3For more details see Ref. [35].
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which are the focus of this thesis. The energy of the anti-bonding states σ∗ and π∗ is

higher than the energy of the bonding states and for perfect ML graphene lays above

Fermi level. Hence, σ∗ and π∗ are referred to as unoccupied or conduction bands.

If a more realistic model is used, for example by including d , more bands are present

above EF and the original states stemming from the valence orbitals are modified. Fig-

ure 2.3 shows an example of an existing electron band calculation taken from Ref. [52].

The results are calculated from first principles and using a TB model. Figure 2.3a) visu-

a)
b)

Figure 2.3: Graphene band structure. Panel 2.3a) shows electronic bands with an origin
in s (red), px + py (green) and pz (blue) orbitals, panel 2.3b) shows a contribution to
electronic bands from d orbitals (black). Solid lines are results of TB model.

alizes contributions of valence orbitals to the corresponding bands. The two π and π∗

bands (denoted in blue) meet at the Fermi level (here denoted by εF) at K where they

create the so called Dirac cone, which has been of main interest due its direct connec-

tion to graphene’s electronic properties. The threeσ bands are present below the Fermi

level (denoted in red and green according to their origin). The σ∗ bands are present at

much higher energies with the minimum around 8 eV at Γ. The results of the TB model

are shown by grey solid lines. Figure 2.3b) shows a contribution to the band structure

caused by d orbitals. The new free-electron like bands should be present from approx-

imately 3.5 eV above the Fermi level at Γ and as presented in Ref. [34], they develop a

continuum of states.

Moreover, if an environment is included (e.g. by including the surface), more exotic

states, such as image potential states can be expected (see the next section). In addition

once electron interactions and lattice dynamics are included the band structure can

be even further significantly modified, for instance by an electron-phonon coupling as

mentioned previously and which is discussed in section 2.1.5 and 2.1.6.
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2.1.4 Image Potential States

If an electron is in the vicinity of a conductive surface (metal, graphene/graphite), the

electronic field is screened which can be seen as an image potential on the other side

of the surface (see figure 2.4a)). As a result the electron feels a Coulomb-like attractive

potential. However, if there are no available states below the vacuum level Ev where

the electron can escape to the surface, it is trapped in the potential and quantized im-

age potential states are created. The system can be seen as one-dimensional (1D) and

develops a Rydberg-like series of image potential states [53]. For graphene on a metal-

a)

surface

e−e+

electronimage charge

b)

n = 1
n=2

E

Ev
z

Coulombic potential

Figure 2.4: Schematic illustration of image potential states. Panel a) shows an electron
in vicinity of a conductive surface (graphene). The screening due to the surface can
be seen as an image potential created on the other side. Panel b) shows an Coulomb-
like potential created near the surface. If there are no available states in the material
below the vacuum level Ev, quantized image potential states are created. Probability
amplitude (red line) of the first two image potential states (denoted by n = 1,2) is shown.

lic surface, the image potential states have already been observed [54]. For graphene

which is on a non-interacting substrate (SiC), two different Rydberg-like series [37], de-

noted by superscript + and − were predicted [37] and already experimentally reported

[55, 56], but questioned by Ref. [34] as mentioned before.

2.1.5 Phonons in Two-dimensional Materials

Similarly to energy quanta assigned to electromagnetic field - photons, the energy quanta

of collective lattice vibrations were assigned to phonons.

Due to the thermal energy and quantum mechanical effects, atoms in crystals are

not steady but oscillate around their equilibrium position. In the simplest model in

Born-Oppenheimer approximation, atomic nuclei are separated from the electronic

states and the restoring force is approximated by a harmonic model (e.g. the restoring

force is quadratic in the displacement). Considering a system of such interconnected

oscillators, an investigation of the propagation of elastic waves through the crystal char-

acterized by two quantum numbers, q , the wave vector and ν, mode (branch) quantum
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number, can be done. The energy quantum of such propagating waves (collective os-

cillations) is called phonon. There exists 3 j phonon modes for j atoms in the primitive

cell4. For graphene-like systems with two atoms in the primitive cell, there are 6 dif-

ferent modes depicted in the figure 2.5, 3 acoustic modes, where nuclei in the unit cell

oscillate in phase and 3 optical modes where the nuclei oscillate out of phase5. The

motion of nuclei can either be longitudinal with respect to the propagating wave (LA

and LO modes for acoustic and optical phonons respectively), transversal in-plane (TA

and TO modes) or transversal out-of-plane (ZA and ZO modes). The main difference

between the acoustic and optical phonons is that the frequency of acoustic phonons

goes to zero with increasing wavelength, whereas optical phonons have non-zero fre-

quency. Figure 2.6 shows phonon dispersion for both graphene (2.6a)) and graphite

(2.6b)) based on ab initio calculations (solid lines) and experiments (circles). Both

graphs are almost identical due to weak interlayer coupling between graphitic layers. If

a strong coupling between the layers is included, out-of-plane oscillations are effected

and ZA and ZO dispersions are modified. In this situation, frequency of ZA mode does

not tend to zero for long wavelengths, but has finite frequency [58].

~q
x

yz LA TA ZA LO TO ZO

Figure 2.5: Schematic illustration of phonon modes using two atoms from the unit
cell. The excited wave with wave vector q propagates in the direction of x-axis. The
graphene sheet is located in the x-y plane. From left to right: Longitudinal acous-
tic (LA) mode, in-plane traversal acoustic (TA) mode, out-of-plane transversal acoustic
(ZA) mode, longitudinal optical (LO) mode, in-plane transversal optical (TO) mode and
out-of-plane transversal optical (ZA) mode. Figure is inspired by Ref. [59].

Unlike electrons, phonons obey Bose-Einstein statistics

nqν(Eqν) = 1

e
Eqν
kB T −1

, (2.5)

where nqν is a number of particles in state q , ν, Eqν = ħωqν is the energy of corre-

sponding state with frequency ωqν, kB is Boltzmann constant and where T denotes

temperature.

4See for example textbooks from Kittel [57, 50].
5Movement of nuclei in acoustic modes resembles sound propagation in air/water, whereas optical modes

can be excited by infrared radiation (for example in NaCl) and hence the corresponding names are used.
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a) b)

Figure 2.6: Phonon dispersion for a) graphene and b) graphite. Due to weak coupling
between the graphitic layers, phonon dispersions are almost identical (200 meV corre-
sponds to 48.36 THz). Solid lines show ab initio calculations while circles denote exper-
imental data. Figures are adopted from Ref. [29] and Ref. [59] respectively.

2.1.6 Electron-phonon Interactions

In the presence of phonons, the electron with momentum k can be scattered by either

emission or absorption of the phonon with momentum q which is schematically shown

in the figure 2.7. As a consequence, both electron energy and momentum are changed

a)

k
k −q

q

b)

k k +q

q

Figure 2.7: Electron scattering by phonons. Phonon emission and phonon absorption
are shown in the panel a) and b), respectively.

which can be directly observed in experiments and which effects transport properties

of the material. Here, the focus is not graphene’s properties, but rather on effects of

electron-phonon coupling on the band structure.

One of the striking examples is strong electron-phonon coupling at the top of the

highest occupied σ bands. TO phonon mode couples to electrons which results in a

kink at the top of the band instead of a parabolic shape of the band. This is depicted

in the figure 2.8. The kink is clearly visible in both the 1BZ (2.8a)) and the 2BZ (2.8b))

at energy range around 200 meV which corresponds to the energy of the TO phonon.

Both spectra were taken by angle-resolved photoemission spectroscopy (ARPES). The

variation and consequent suppression of intensity at the top of the band is caused by

the experimental technique, not by a difference of the structure in the 1BZ and the 2BZ.



2.2. A SHORT OVERVIEW OF EXPERIMENTAL METHODS 15

a) b)

Figure 2.8: Kink observed at the top of the highest occupiedσ bands in graphene. Panel
a) shows the kink observed by angle-resolved photoemission spectroscopy measured
in the 1BZ, panel a) shows the same king measured in the 2BZ. The kink is observed
at approximately 200 meV from the top of the band which corresponds to the energy
of the optical phonon. The differences in intensity between 1BZ adn 2BZ and conse-
quent suppression of intensity at the top of the σ in the 1BZ stems from angle-resolved
photoemission spectroscopy. Adopted from Ref. [29].

In the unoccupied bands, similar kinks should be expected and should therefore be

included in the simulations. Recently, a symmetry analysis of electron-phonon cou-

pling in graphite showed that electrons present in the σ∗ bands can couple to both

LO and TO optical and LA and TA acoustic phonons [45]. Moreover, the same work

showed that the electron-phonon is actually present in the unoccupied bands. Due to

the in-plane origin of the σ∗, the bands cannot be expect to be highly effected by layer

stacking6 and so similar coupling should be also expected in Graphene.

2.2 A Short Overview Of Experimental Methods

In order to check the validity of theoretical predictions and calculations, experimental

techniques have to be utilized. In the 2D materials, surface sensitive techniques have to

be used in order to check both the quality of the materials and to investigate their phys-

ical properties. The first section presents a short discussion about techniques for band

structure investigation with a main focus on unoccupied states. In the second section

a brief discussion about possible surface quality investigation techniques is presented.

6This was shown by Ref. [28] where the same coupling was also observed in the unoccupied σ bands in
graphene.
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2.2.1 Techniques for Band Structure Investigation

After the recognition and explanation of the photoelectric effect and consequent devel-

opment of quantum physics, a strong focus was put on occupied states of materials,

especially related to semiconductor technology. Many different spectroscopic tech-

niques were developed. However, none of them are as universal for surface related

studies as photo-emission spectroscopy (PES)7. The technique direct uses the photo-

electric effect. In other words, light is incident on a material, where the energy is trans-

ferred to electrons. If the energy is high enough, electrons can escape the material and

their energy is measured. Moreover, due to the conservation of momentum parallel to

the surface8, angle-resolved photoemission spectroscopy (ARPES) can be used to map

complete band structure in k-E space. PES is depicted in the figure 2.9a).
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Figure 2.9: Comparison of different spectroscopic techniques. Panel a) shows PES,
where en electron is excited by a photon of energy ħω from its initial state with en-
ergy Ei to a final state with Ef where it eventually escapes the surface. EF = 0 stands zero
energy at Fermi level, Ev is the vacuum level, φ the work function and Ekin is the kinetic
energy of electrons. Panel b) shows the principle of 2PPES, direct transition from ini-
tial to final state is replaced by two-photon excitation through and intermediate state
with energy Em situated between Fermi energy EF and vacuum energy Ev. Panel c) then
shows principle of IPES where an electron from initial state makes transition to final
state in a conduction band. During this process radiation can be created.

7The original PES was used in X-ray region to investigate atomic binding energies [60].
8One rather intuitive explanation why the perpendicular momentum is not preserved is that the escaping

electron feels an attractive force to the surface so its momentum k⊥ is therefore changed, however, compo-
nents parallel to the surface cancel out and hence k∥ is preserved.
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In the unoccupied bands, ARPES can still be used [61, 62]. However, this requires

knowledge of initial states and therefore the analysis is not straight forward. In addi-

tion, energy levels below vacuum level Ev cannot be measured. To overcome the prob-

lem a modification of ARPES was developed: two-photon photo-emission spectroscopy

(2PPES) [63]. This method utilizes two-photon excitation of an electron to introduce an

intermediate state in the unoccupied band below the vacuum level which is depicted

in the figure 2.9b). Due to the possibility of tunable time delay between the excitations,

dynamics of the states can also be studied[64]. The main drawbacks of the technique

are a limitation to states with sufficiently long lifetime below the vacuum level9, a need

for femtosecond laser technology to control the excitation process and a need for a spe-

cial low-energy electron detector[66].

Common alternatives to 2PPES are inverse photo-emission spectroscopy and its k-

resolved version (KRIPES)[67]. An inverse process to PES is utilized where an electron

beam is incident to a material and radiation is produced10. Knowing the angle of inci-

dent electrons, their energy, and energy of outgoing photons, the unoccupied part of a

band structure can be determined. Energy diagram for IPES is shown in the figure 2.9c).

Unlike in ARPES, achieving a good resolution in KRIPES experiments is difficult and is

typically between 350 and 700 meV, which is more than an orders of magnitude worse

than in ARPES experiments. In addition, the scattering cross-section for inverse pho-

toemission is about five order of magnitude lower than for "forward" photoemission,

which causes the count rates to be extremely small [67] and requires long acquisition

times. An advantage of KRIPES is then the possibility to map the whole unoccupied

band directly from Fermi level. Due to the similarity to PES, the same theory can be

used with slight modifications11. The short mean free path of low-energy electrons in

materials (∼10 Å) in then responsible for the surface sensitiveness of the technique [68].

In order to overcome small count rates in IPES, several other methods has been

developed such as total current spectroscopy (TCS) [69, 70] and very-low-energy elec-

tron diffraction (VLEED) [71], which are based on absorption and reflectivity of low-

energy electrons respectively. Recently, a new method based on low-energy electron

microscopy (LEEM) was presented in Ref. [72] with spatial resolution better than 20 nm

which is far superior to all previously mentioned techniques12. In comparison to IPES,

however, neither TCS, VLEED nor LEEM can measure energies below the vacuum level.

9One of the main applications of the technique is an investigation of image-potential states in various
metals, see for example Ref. [65]

10The radiation is known as "bremsstrahlung" - braking radiation. In the early development of IPES, the
technique was called bremsstrahlung spectroscopy and the name is still in use for higher electron energies

11For practical purposes and application in solids, processes involved in PES and IPES are just time reversals
of each other [67].

12For IPES and other measurement techniques where low-electron beam is utilized the typical electron
beam spot size on the sample is 1-3 mm.
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For this reason and due to the availability of IPES at the home institute, IPES was chosen

for the experiments.

2.2.2 Methods to Investigate Surface Quality

Before the actual measurement of the band structure can be performed, the surface

quality has to be checked. This can be done in many different ways and at many dif-

ferent scales. The investigation on the atomic level 13 is however not very suitable for

IPES measurements due to a relatively large electron beam spot size used in the exper-

iment. Moreover, the sample has to be kept in ultra high vacuum (UHV) to prevent it

from being contaminated, which means that the instrument has to be present in the

chamber.

The most commonly used technique is low-energy electron diffraction (LEED) [73]

which is schematically shown in the figure 2.10. Incident electrons with energies be-

tween 20 and 200 eV are diffracted due to the atomic structure of the sample and max-

ima of intensity are created at certain angles γ. Due to a short mean free path of the

low-energy electrons used in LEED (∼ 10Å), the technique is surface sensitive. LEED

has the advantage of providing a real-time image.

e−1 gun

samplescreen

γ

Figure 2.10: Schematic picture of low-energy electron diffraction. Incident electrons are
diffracted due atoms in the sample and due to constructive interference, create maxima
of intensity at certain angles γ.

Alternatively, the surface quality can be checked by a comparison of results ob-

tained by other surface sensitive techniques which shows a typical future of the ma-

terial. An example is a ARPES measurement of graphene on SiC [74] which shows a very

sharp and distinct Dirac cone around K. Due to a bulk band gap of SiC from the ermi

level to approximately 2 eV below the Fermi level, graphene quality and quality of the

surface can be judged from the energy broadening of the graphene state within the SiC

ban gap.

13For example using scanning tunnelling microscopy or atomic force microscopy.
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2.3 Inverse Photoemision Spectroscopy

The concept of IPES was already introduced in the previous section, however, a deeper

discussion is needed. This section introduces basic principles and apparatus construc-

tion rather than an exhausting theoretical description. It should provide the reader with

motivation for the following, more theoretical computational chapter and an under-

standing of the structure of this thesis.

2.3.1 Basic Theory

Figure 2.11 shows a schematic picture of IPES system. Electrons are incident with an

angle θ with respect to the sample surface normal, where photons are emitted from

with an angle α. Due to the energy conservation and the conservation of momentum

parallel to the surface, the intensity can be expressed as

I (E ,K∥) ∝ (
Dtot(E)∗ Abeam(K∥)

)∗ (
ci|Mfi|2 × A+(E ,K∥)

)
, (2.6)

as is derived later in section 3.3. K∥ denotes a momentum of the incident electrons par-

allel to the sample surface and can be determined from its kinetic energy and known

angle of incidence . Dtot(E)∗ Abeam(K∥) is a convolution between the total energy res-

olution function and a momentum spread function respectively. This pre-factor ac-

counts for the broadening due the measuring apparatus itself. The second term in

round brackets,
(
ci|Mfi|2 × A+(E ,K∥)

)
, stands for the actual emitted intensity during

IPES measurement. ci is a coupling between incident electrons and the initial elec-

tronic state, Mfi are the so called matrix elements and are a measure of the probability

of electron transition from the initial state (i) to the final state (f) with a photon being

emitted, and where A+(E ,K∥) is a spectral function, in which the many-body interac-

tions are reflected. Due to low energy electrons, the whole apparatus has to be placed

in ultra height vacuum (UHV).

sample

θ
α

n̂

e− gun
detector

Figure 2.11: Schematic illustration of IPES system. Electrons are emitted from the elec-
tron fun and incident to the sample with an angle θ. Emitted photons (red curly arrow)
are collected at the detector with angle α from the surface normal. Due to low energy
electrons, the whole apparatus has to be placed in ultra height vacuum (UHV).
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2.3.2 Working Modes

Recalling the energy diagram for the IPES (figure 2.9c)), energy conservation can be

written as

Ef =φ+Ekin −ħω, (2.7)

where again, φ is the material work function. Since φ is related to measured material

and is fixed, the final energy state Ef can be scanned either by varying kinetic energy

Ekin of the incident electron or by varying photon detection energy ħω. The so called

isochromat mode utilizes tunable Ekin while keeping ħω fixed, whereas the so called

tunable photon energy (TPE) mode keeps Ekin fixed while ħω is tuned. Both modes are

schematically depicted in the figure 2.12.
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Figure 2.12: IPES working modes. Panel a) shows isochromat mode where a photon
energy is fixed while the kinetic energy of the electron is varied. Panel b) shows tunable
photon energy (TPE) mode where the kinetic energy of electron is kept constant while
the photon energy is varied.

Even though both modes allow mapping of the energy of final states, both provide

different information. In TPE mode, both k∥ and k⊥ are kept fixed for angle of inci-

dent electrons, moreover, effects of changing the initial electron states are eliminated14

which presents a great advantage when analysing data. The big disadvantage is a low

efficiency of the detector compared to isochromat mode. This will be further discussed

in section 2.3.3. The change in electron energy and the corresponding change in k⊥
for fixed angle of the electron gun then allows the investigation of k⊥-dispersion of the

energy bands which can be crucial for further band origin analysis [75].

14Remember the dependence of intensity on matrix elements - the transition probability between initial
and final states.
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2.3.3 Construction

Up to this point, working principles and working modes of IPES were discussed, how-

ever, the construction of the apparatus itself is missing to complete the picture. Here, a

description of the main two components, an electron source and a photon detector (or

a photon selector), is given.

Electron source: A good quality electron source is essential in order to achieve good

IPES results, however, meeting all the formal requirements - low angular spread (to 5°),

working range (5 - 20 eV), small focus spot (1-2 mm), reasonably high electron current,

low energy spread - is not a trivial task [67]. Figure 2.13 shows the simplest functional

design of the electron source known as the pervatron [76]. Electrons are produced

by thermal emission at low-work-function BaO which gives a low energy spread. The

electrons then pass through a slit in order to reduce angular divergence and are con-

sequently focused and accelerated by a potential between cathode and anode and on

the focal element respectively. Due to the simple design, this type of electron gun has

already been commercialized and is also present at Ny-NALOS laboratory at NTNU.

During the history of IPES development, different attempts were made in order to

improve the performance of the electron source. A design based on four lenses has

been reported [77] and successfully used [78]. The beam energy spread and divergence

can be further improved by different types of deflectors or more complex electron op-

tics. Moreover, unlike PES, the implementation of spin-resolved measurements does

not lower the count rates and can be easily achieved by illuminating GaAs by a circu-

larly polarized laser light [79, 80].

Figure 2.13: A schematic of an electron gun known as the pervatron. Electrons are
thermally emitted by a low-temperature emitter (BaO), pass through a pin hole (which
serves as a cathode and is kept at Vc ≡ 0), and are accelerated by a voltage applied on an-
ode (Va). The focus can be changed by modifying the focus voltage VF. Picture adapted
from Ref. [76].
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The electron source available at NTNU was produce by PSP Vacuum Technology. Its

construction corresponds to the pervatron previously described. The emission cathode

is made of BaO. The fact manual is available from Ref. [81].

Photon detection: In order to resolve IPES in energy, not all the outgoing photons

can be measured, but rather a specific energy has to be selected. This can be achieved

by using three different methods - band-pass detectors, grating spectrographs and re-

fracting monochromators (see figure 2.14 for a description of experimental arrange-

ment).

The first method for filtering specific energies is the band-pass filter. The band-pass

filter consists of two main consist of two main parts - a window, which serves as a low-

pass filter (typically CaF2), and a photon detector which is a high-pass filter. For the

detector, either a Geiger-Müller (GM) counter or a solid-state detector can be used.

The GM counter consists of a hollow tube with a rod in the middle which is held at

a fixed potential. The whole tube is filled with a gas (typically I2) which is ionized by

the incoming light. Due to the potential, the ions which are created are transported to

electrodes and a current can be measured. In figure 2.15a) both the ionization proba-

bility of I2 and a transmission probability of the CaF2 window are shown as a function

of energy of the incoming photons.

The typical solid-state detector consists of a photocathode (made of, for example,

NaCl/KCl/Ta) which is hit by the incoming light to emit electrons which are detected

by a photomultiplier [82]. This construction has the advantage of being fairly easy and

"pluck and play" in comparison to GM counters. On the other hand, resolution is not

optimal and the resolution function does not have a Gaussian shape [83]. The quantum

detection efficiency (QDE) for different materials is shown in figure 2.15b).

The resolution of the band-pass detectors can be improved by reducing the width of

the band-pass filter, either by moving the window transmission threshold to lower en-

ergies, or by moving the Inization probability/QDE thresshold to higher energies. The

former can be done by a choice of window material or by changing the temperature of

the windows [84, 85]. The latter can be achieved by changing the filling gas [86, 87] or

by changing the material of the photocathode (see again figure 2.15b)). It is worth not-

ing that there is a trade-off between improving the resolution and having reasonably

high count rates. The count rates can be improved by placing the detector as close as

possible to the sample in order to cover the widest possible solid angle.

The second method, grating spectrographs, utilise diffraction on a grid in order to

separate photons of different energies. This approach offers offers the possibility of

changing the photon energy (and hence work in TPE mode), but also reduces the count

rates. The low count rates can be partly overcome using simultaneous collection of

different energies, however this approach increase the cost and the complexity signifi-

cantly. Moreover, the size of such a system is much bigger than for a band-pass detector.
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Figure 2.14: Schematic of the experimental arrangement for band-pass detectors, grat-
ing spectrographs and refracting monochromators (from top to bottom). Efficiency of
a band-pass detector, here represented by a Geiger-Müller tube, can be increased by a
collecting mirror which focuses photons emitted at the sample (black rectangle). The
arrangement is often replaced by a detector as close as possible to the sample, leaving
the mirror out. In the grating spectrograph, emitted photons are incident on a grat-
ing, which due to diffraction results in energy separation of incident photons. The last
arrangement uses a lens to focus emitted photons. Due to energy dependence of the re-
fraction index (and hence different focal lengths for different energies), different pho-
ton energies transmitted through the system can be chosen by a pin hole behind the
lens. Figure is adopted from Ref. [67]

The last method to discuss is the refracting monochromator. Refracting monochro-

mators utilize a lens (for example LiF) in order to focus outgoing photons from a big

solid angle to a small area so that they can be collected by a single detector. Due to the

properties of the lens, focal length for different light energies varies and can therefore

be selected by a position of a pinhole with respect to the lens which is placed in front of

the detector. This construction is somewhere between band-pass detectors and grating
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a)

b)

Figure 2.15: Characteristics of band-bass detectors. Panel a) shows transmission char-
acteristics of CaF2 and ionization characteristics of an I2 filled Geiger-Müller counter
which together make up the band pass filter(solid line). The resolution can be improved
by using a SrF2 window (transmission characteristics is shown in panel a)). In panel b)
quantum detection efficiencies (QDE) of solid state detectors made of different mate-
rials are shown together with transmission probability of different windows. Adopted
from Ref. [24] and Ref.[83]

spectrographs due to possible tunability of selected photon energy and possible wide

angle of acceptance. Both the previously mentioned methods suffers from a finite elec-

tron beam spot size.

The detector available at NTNU is a solid state NaCl coated Ta detector based with

a CaF2 window [81].



Chapter 3

Theory and Computational

Approach for IPES Spectrum

Simulations

This chapter presents three main sub-steps which are needed in order to simulate the

IPES spectrum. The aim of this chapter is to introduce a general background for a com-

putational approach together with its limitations. In the first section, band structure

calculations focused on the graphene TB model are presented. Many-body effects are

introduced in the second section with a focus on electron-phonon coupling. The last

section revises and extends IPES theory in order to provide the necessary knowledge of

matrix element calculation.

3.1 Band Structure Calclations

After the introduction of the Schrödinger equation, it was quickly realized that an ex-

act solution was available for very simple toy-models. In the first attempts to electronic

band calculations in solids, approximate methods had to be introduced. One of the first

methods was as a linear combination of atomic orbitals (LCAO) [88] or a Bloch method

[89]. This method was later revised [90] and is today known as the tight binding model.

Later, methods utilizing electron density rather than separated wave functions, known

as density functional theory (DFT) theory [91] and many other methods were intro-

duced. However, none of them offers such simplicity nor deep insight as the TB model.

Moreover, the TB method is easily implemented and can provide a tool for further cal-

culations related to spectroscopic methods [28, 29, 92]. It is therefore used in this work

as a first approximation.

25
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In the first section, a simple 1D TB model is introduced. Subsequently, a descrip-

tion of periodic systems using Bloch and Wannier states and localized atomic orbitals

is given in the second section. In the third section, the secular equation is introduced.

This allows the eigenstates and the energy eigenvalues of the system to be determined.

Finally, the forth section presents the TB model for graphene followed by the fifth sec-

tion, which presents the results of the TB calculation.

3.1.1 Tight-Binding Model

For a simple introduction to the TB model, 1D example with a periodic potential U (x) is

considered (see figure 3.1). This potential can be created for instance by a periodic lat-

tice of atoms. If a particle (an electron) is placed in the potential with energy lower than

the potential height, its wave function (marked red) will be localized near the atomic

centres (potential minima) and will decay rapidly with increasing distance from the

centre. Therefore, the electron will have just a small probability to tunnel from a po-

sition j to j +1 or j −1 and even smaller probability to tunnel to j +2 and j −2 and so

on. If just the former is considered and later neglected, one talks about nearest neigh-

bour hopping and the Hamilton’s operator has the following form

x

E

e− e− e− e−

j j +1 j +2 j +3

U (x)

Figure 3.1: A simple schematic of one-dimensional TB model. The electrons are
trapped in the periodic potential U (x) and the wave function (marked red) are almost
localized at positions j , j +1,... . The strong localization of the wave functions causes
the overlap between the two neighbouring wave functions to be small and so is the
probability of jumping from position j to j +1 and vice versa.

H =−t
∑

j
(c†

j c j+1 + c†
j+1c j ), (3.1)

where c†
j and c j are creation and annihilation operators at site j and t is hopping in-

tegral which will be discussed later1. It is worth noting that TB model described above

treats the system as being build out of potential wells which were brought together with

the original wave functions unchanged, in other words, tight-bound to the original po-

tential well (or an atom). The solution is hence not an exact solution.

1One can think about the hopping as a two step process. First, electron is annihilated at site j and then a
new electron i created at j +1 and vice versa for the hermitian conjugated term. The probability of "hopping"
is then related to t .
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3.1.2 Construction of Bloch Waves

The Bloch waves were already introduce in the section 2.1.2 but no information how

they can be contracted was mentioned. One can try to construct the Bloch state as a

Bloch sum over the atomic orbitals ψµk (r ) = ∑
R e i k ·Rχµk (r −−−R) positioned at lattice

sites r , however the result is a set of non-orthogonal functions as discussed in [90] and

[93]. This problem was later approached and solved by Wannier [94] by introducing so

called Wannier wave functions

wµR (r ) = 1p
N

∑
k∈B Z

e−i k ·Rψµk (r ), (3.2)

where N is the number of lattice sites and the summation goes through the entire Bril-

louin zone. It is worth noting that while Bloch states were highly delocalized, Wannier

states are localized around R similarly to atomic centres, which offers better physical

interpretation.

Once Wannier states are defined, one can express the Bloch state as an inverse

Fourier transform of Wannier states

ψµk (r ) = 1p
N

∑
R

e i k ·R wµR (r ). (3.3)

Having defined Wannier functions one can calculate the value of the hopping pa-

rameter t = −∫
dx3w∗

µR (r )
(
−ħ∇2

2m +U (r )
)

wµR+a (r ). The term
(
−ħ∇2

2m +U (r )
)

is nothing

but Hamilton’s operator for a single particle in the potential U (r ) and a is the lattice

vector.

The difficult task is then to determine the Wannier states. For most of the system

the calculation cannot be done analytically, but first principle calculations are required.

For our purposes, one can approximate the Wannier states by a linear combination of

atomic orbitals 2 and the Bloch states are of the form

ψµk (r ) ≈ 1p
N

∑
R

e i k ·R ∑
Rj

∑
nlm

cµ,R j nlm(k)χµ,R j nlm(r −−−R), (3.4)

whereχµ,R j nlm(r −−−R) are the atomic orbitals centred at position Rj within the unit cell3,

cµ,R j nlm(k) coefficients to be determined and n, l , m are principal, azimuthal and mag-

netic quantum numbers respectively. The atomic wave functions are then defined as

χR j nlm(r ) ≡ 〈r |nlm〉 = Rnl (r )〈r |l m〉 = Rnl (r )Y m
l (θ,ϕ), (3.5)

2Note that the orthogonality is then preserved as discuss in [90].
3For graphene-like system with two atoms in the basis, j = A,B and corresponding to two positions RA

and RA of atoms A and B , respectively.
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where the band index µ and position index R j were dropped for convenience. Rnl (r )

and Y m
l (θ,ϕ) are respectively radial and angular parts of the wave function with Y m

l (θ,ϕ)

also known as spherical harmonics. In physical chemistry, real combinations of atomic

orbitals are used and are then commonly known as s, p, d, f,... orbitals are denoted by

index ν. The Bloch state (3.4) then becomes

ψµk (r ) = 1p
N

∑
R

ei k ·R ∑
Rj

∑
ν

cµ,Rjν(k)χµ,R jν(r −−−R), (3.6)

or in the Dirac notation

〈r |ψµk 〉 =
1p
N

∑
R

ei k ·R ∑
Rj

∑
ν

cµ,Rjν(k)〈r |R +Rj,ν〉. (3.7)

Once the Hamilton operator and its eigenstates are found, the eigenvalues of the

system - the required electronic bands can be calculated. This is the content of the next

section.

3.1.3 Secular Equation

Knowing the basis and Hamiltonian H of the system, the single-particle Schrödinger

equation can be used to determine the energy eigenstates Eµ of the system.

〈ψµk |H |ψµk 〉 = Eµ〈ψµk |ψµk 〉 (3.8)

Substituting for the Bloch states and eliminating the energy eigenstates one gets

Eµ(k) = 〈ψµk |H |ψµk 〉
〈ψµk |ψµk 〉

=
∑

RjR ′
j

∑
νν′ c∗µ,Rjν

(k)cµ,R ′
jν

′ (k)〈φνk ,Rj |H |φν′k ,R ′
j
〉∑

RjR ′
j

∑
νν′ c∗

µ,Rjν
(k)cµ,R ′

jν
′ (k)〈φνk ,Rj |φν′k ,R ′

j
〉 , (3.9)

where

|φνk ,Rj〉 =
1p
N

∑
R

ei k ·R |R +Rj,ν〉. (3.10)

Terms 〈φνk ,Rj |H |φν′k ,R ′
j
〉 and 〈φνk ,Rj |φν′k ,R ′

j
〉 are nothing but matrix elements HRjR ′

jνν
′

and SRjR ′
jνν

′ belonging to transfer and overlap integral matrices. For further conve-

nience k will be omitted, but one should keep in mind the original (k) dependence.

By differentiating Eµ with respect to coefficients c∗µ,Rjν
and setting equal to zero one

can find the local stationary point of Eµ and hence the corresponding energy bands.
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0 = ∂Eµ

∂c∗
µ,Rjν

=
∑

R ′
j

∑
ν′ cµ,R ′

jν
′HRjR ′

jνν
′ ×∑

RjR ′
j

∑
νν c∗µ,Rjν

cµ,R ′
jν

′SRjR ′
jνν

′(∑
RjR ′

j

∑
νν′ c∗

µ,Rjν
cµ,R ′

jν
′SRjR ′

jνν
′
)2

−
∑

RjR ′
j

∑
νν′ c∗µ,Rjν

cµ,R ′
jν

′HRjR ′
jνν

′ ×∑
R ′

j

∑
ν′ cµ,R ′

jν
′SRjR ′

jνν
′(∑

RjR ′
j

∑
νν c∗

µ,Rjν′
cµ,R ′

jν
′SRjR ′

jνν
′
)2 (3.11)

0 =∑
R ′

j

∑
ν′

cµ,R ′
jν

′HRjR ′
jνν

′

−
∑

RjR ′
j

∑
νν′ c∗µ,Rjν

cµ,R ′
jν

′HRjR ′
jνν

′ ×∑
R ′

j

∑
ν′ cµ,R ′

jν
′SRjR ′

jνν
′∑

RjR ′
j

∑
νν c∗

µ,Rjν′
cµ,R ′

jν
′SRjR ′

jνν
′

(3.12)

And finally substituting from equation (3.9) in the second term we arrive to so called

secular equation

∑
R ′

j

∑
ν′

(
HRjR ′

jνν
′ −EµSRjR ′

jνν
′
)

cµ,R ′
jν

′ = 0, (3.13)

or in the matrix for formalism (
H−EµS

)
cµ = 0, (3.14)

where cµ is a column vector with coefficients cµ,R ′
jν

′ . The only non-trivial solution to

equation (3.14) is when determinant det
[
H−EµS

] = 0, which is a generalized eigen-

value problem4. It is good to keep in mind thatH, Eµ,S and cµ are all k-dependent. For

the purposes of this thesis the problem is solved numerically using LAPACK [96] and the

details will not be treated here. As one will see in the following sections, eigenvectors

provide a tool to determine the intensity of the bands in the measurements.

3.1.4 Tight-Binding Model for Graphene

As discussed in the previous chapter, graphene can be described by a honeycomb lat-

tice with two atoms in the unit cell. Atomic orbitals are sp2 hybridized, which can be

described by a linear combination of s, px , py and pz orbitals. Due to the orthogonality

of pz to the other orbitals both within the atom and within the nearest neighbour, so-

lutions can be separated. Here the focus is put on s, px , py orbitals which give rise to σ

and σ∗ bands in graphene. The subsequent derivation follows Ref. [35, 97].

4In other words, det
[
H−EµS

]
has to be singular. For further explanation and discussion one can see

Ref [95].
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Having 2 atoms in the unit cell (denoted A and B) and considering just s, px , py or-

bitals, both transfer and overlap integral matrices are 6×6 matrices. Indices we shortly

abbreviated as i = 1 · · ·6, corresponding to s,px and py for atom A and B respectively.

The matrices can be further decomposed into 3x3 matrices and can be written as

H=


H11 . . . . . . H16

...
. . .

...
...

. . .
...

H61 . . . . . . H66

=
[
HA A HAB

HB A HBB ,

]
(3.15)

S=


S11 . . . . . . S16

...
. . .

...
...

. . .
...

S61 . . . . . . S66

=
[
SA A SAB

SB A SBB .

]
(3.16)

From the definition of transfer matrix elements one can write

H11 =〈φsk ,RA |H |φsk ,RA〉

= 1

N

∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|H |R ′+RA, s〉

= 1

N

∑
R=R ′′′

〈R +RA, s|H |R ′+RA, s〉

+ 1

N

∑
R=R ′′′±a

e∓i k ·a〈R +RA, s|H |R ′+RA, s〉

+ 1

N

∑
R=R ′′′±2a

...

= 1

N

∑
R ,R ′′′

ε2s + 1

N

∑
R=R ′′′±a

e∓i k ·a〈R +RA, s|H |R ′+RA, s〉

=ε2s , (3.17)

where in the last step just a nearest neighbour approximation and hopping between

atomic orbitals at same lattice side were used5. Similarly, H22 and H33 can be written

as

H22 = 〈φpx k ,RA |H |φpx k ,RA〉 = ε2p (3.18)

H33 = 〈φpy k ,RA |H |φpy k ,RA〉 = ε2p , (3.19)

5The closest atom - nearest neighbours are atoms B . Atoms A at the distance ±a correspond already to
second nearest neighbour.
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with other elements over atom A being equal to zero due to orthogonality of atomic

orbitals. Similarly, one gets H44 = ε2s and H55 =H66 = ε2p and so

HA A =HBB =

ε2s 0 0

0 ε2p 0

0 0 ε2p .

 (3.20)

Due to orthogonality of the orbitals, SA A is found to be

SA A =SBB =

1 0 0

0 1 0

0 0 1

 . (3.21)

Solving for off-diagonal matricesHAB ,HB A ,SAB andSB A is a bit more complicated and

requires the decomposition of px and py orbitals into a direction parallel (σ) and per-

pendicular (π) to a line defined by two nearest neighbour carbon atoms6. Using the

y

x

R1

R2

R3

θ1

θ3

θ2

Figure 3.2: Definition of vectors Ri corresponding to nearest neighbours and corre-
sponding angles θi of the vectors. Red and green circles show A and B carbon atoms.

definition of the overlap integral matrix elements HRARBνν′

HRARBνν′ =
1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA,ν|H |R ′+RB,ν′〉, (3.22)

defining distances Ri = R ′−R for nearest neighbours and corresponding angles of the

vectors (see figure 3.2), one can writeH14 as

H14 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|H |R ′+RB, s〉 = Hssσ

3∑
i=1

ei k ·Ri , (3.23)

6For further details see appendix B.1.
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where Hssσ = 〈R +RA, s|H |R ′+RB, s〉. Similarly, H15 can be expressed as

H15 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|H |R ′+RB, px〉 = Hspσ

3∑
i=1

ei k ·Ri cosθi , (3.24)

where Hspσ = 〈R +RA, s|H |R ′+RB, pσ〉 and pσ is a projection of the p orbital to a par-

allel direction as mentioned before. In order not to break the flow of the text, the rest of

the elements for both transfer and overlap integral matrices is listen in appendix B.2.

3.2 Many-Body Effects

In this chapter a theoretical description of how general many-body effects can be mod-

elled is given. Even though the many-body effects could be introduced directly through

a spectral function and self-energy, the first two sections are intended to provide a

deeper understanding of related physical concepts. In the last section, effects of electron-

phonon coupling are calculated.

3.2.1 Introduction to Green’s Functions

In order to understand many-body effects on the k-resolved inverse photoemission

spectroscopy (KRIPES) spectra, an important concept stemming from the theory of

ordinary and partial differential equations has to be introduces, the so called Green’s

function method.

Consider a linear differential equation

Lu(r ) = f (r ), (3.25)

where L is the corresponding linear differential operator, u(r ) is the solution of the

equation, and f (r ) is the source term. The Green’s function G(r ) of the system is then

defined as

LG(r ) = δ(r ), (3.26)

where δ(r ) is the Dirac delta function.

The solution of the differential equation can then be found by a convolution of the

Green’s function and the source function

u(r ) =
∫

dr ′′′G(r − r ′′′) f (r ′′′). (3.27)

After letting L act on the final equation and substituting from the Eq. (3.26), an identity

to Eq. (3.25) is obtained. As it can be seen from Eq. (3.27), Green’s function fully char-
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acterises the original differential equation. As it will be later shown, Green’s functions

provide a direct tool to account for many body effects in a simple scenario.

3.2.2 Green’s Function of Free Particles and the Spectral Function

In quantum theory, the Green’s functions formalism can also be adopted. The full

derivation will not be given here, but results related to this thesis will be summarized.

For a proper treatment see Ref.[98] and Ref. [51].

For a free single particle, the Schrödinger equation can be used to describe the wave,

which can be written as

(E I −H0(r ))ψ(r ) = 0. (3.28)

Defining the two-point Green’s function as

(E I −H0(r ))G0(r ,r ′,E) = δ(r − r ′), (3.29)

it can be shown that the Fourier transform of G0(r ,r ′,E) of a form G0(r t ,r ′t ′) takes a

role of a particle propagator. In other words, evolution of the wave function ψ(r , t ) is

fully determined by its initial state ψ(r ′, t ′) and the Green’s function

ψ(r , t ) =
∫

dr ′G0(r t ,r ′t ′)ψ(r ′, t ′). (3.30)

For a translationally invariant system, the resulting G0(r ,r ′,E) can only depend on the

difference r − r ′. After Fourier transforming the k-space representation, G0(k ,E) is ob-

tained.

The cumbersome description of the Green’s function was given since it has a direct

connection to the experiment, through a so called spectral function which will be intro-

duced shortly. Moreover, frequently in many-body physics, many system can be seen

as the free particle-like systems to the first approximation.

The non-interacting system can be described by the quadratic Hamiltonian

H =∑
k
ε(k)a†

k ak , (3.31)

where k is, as usual, the particle wave vector and ε(k) is an eigenvalue of the system.

The free single-particle Green’s function can then be written as

G0(k ,E) = 1

E −ε(k)+ iη(k)
, (3.32)

where iη(k) was added to prevent a divergence in the Fourier transform integrals. To ac-

count for a difference between holes (below Fermi energy EF) and electrons (above EF),
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η(k) = sgn(ε(k)−EF)η, where η is an infinitesimally small number and sgn(ε(k)−EF) =
1 for ε(k) > EF and −1 otherwise7.

As a final step, the previously mentioned spectral function can be introduced. In

the case of a particle (an electron), particle spectral function can be written as

A+(k ,E) =− 1

π
ImG(k ,E), (3.33)

where ImG(k ,E) denotes an imaginary part of the corresponding Green’s function8.

For the free particle Green’s function defined in Eq. (3.32) one gets

A+(k ,E) =− 1

π
ImG0(k ,E) = δ (E −ε(k)), (3.34)

which is nothing but a Dirac delta function. As the name suggests, A+(k ,E) reflects the

spectrum of the particles. In other words, it describes the energies the particles can

be measured with a specific k . This has a direct connection to inverse photo-emission

measurements, as will be shown later. From Eq. 3.34 one sees that the free particle can

be measured with energy just equal to ε(k) and for other energies the particle cannot

exist.

3.2.3 Quasi-Particles Picture and Self-energy

So far, the system was treated as a free single-particle system. However, in the presence

of interactions, the one-particle treatment should be replaced by proper many-body

calculations which complicates everything significantly. In many cases, however, the

quasi-particle picture can be used.

Figure 3.3 shows a positively charged particle coming into the system where the par-

ticle is consequently surrounded by a cloud of negatively charged particles. Due to the

presence of the cloud, screening effects are present, and the movement of the original

particle is modified. Moreover (again due to the screening), the newly created quasi-

particle (the original particle and the cloud) only weakly interacts with other quasi-

particles. This is why the concept is so useful. Many-body physics can be simply treated

by an introduction of quasi-particles with a finite lifetime τ to account for a decay of the

wave function in time due to the interactions. The quasi-particle is further character-

ized by a renormalized energy ε(k)′ replacing the energy ε(k) of a bare (or undressed)

particle defined in the previous section.

7Introduction of iη(k) corresponds to a modification of G0(k , t , t ′) by an exponential time decay factor
with η(k) being the decay rate.

8In the literature, different pre-factors in the definitions of the spectral function can be found. In this work,
definition used in majority of spectroscopic articles is taken.
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Figure 3.3: Quasi-particle concept illustration. A positively charged particle is sur-
rounded by a cloud of negatively charged particles and together they travel through
the medium. The incoming particle and the surrounding cloud are then called a quasi-
particle which can be characterized by its lifetime τ and by a renormalized energy ε′
and can be described using a single-particle picture.

The finite lifetime and the energy correction to the original bare energy can be in-

troduced in so called Self-energy Σ(k ,E). The renormalized energy is then given by

ε(k)′ = ε(k)+Σ(k ,E) = ε(k)+Σ′(k ,E)+ iΣ′′(k ,E), (3.35)

where Σ′(k ,E) and Σ′′(k ,E) are the real and imaginary parts of self-energy. The real

part expresses the energy correction, whereas the imaginary part accounts for the finite

lifetime and can be expressed as Σ′′(k ,E) =ħ/τ.

3.2.4 Spectral Function for Interacting Particle

Once the self energy is known, effects on self-energy can be investigated. This can be

done through Dyson equation9 which can be expressed as

G(E ,k) =G0(E ,k)+G0(E ,k)Σ(E ,k)G(E ,k), (3.36)

and formally solved by

G(E ,k) = 1

G−1
0 (E ,k)−Σ(E ,k)

. (3.37)

After substitution of the single particle Green’s function (Eq. 3.32), the previous

equation takes the form

G(E ,k) = 1

E −ε(k)−Σ(E ,k)
= 1

E − [ε(k)+Σ′(E ,k)′]− iΣ′′(E ,k)
, (3.38)

leading directly to the expression of the spectral function

A+(E ,k) = 1

π

Σ′′(E ,k)[
E − (

ε(k)+Σ′(E ,k)
)]2 +Σ′′(E ,k)2

(3.39)

9For a derivation of the Dyson equation see for example Ref. [51] or Ref. [98]
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which corresponds to the Lorentzian distribution. In other words, the quasi-particle

will not be sharply localized at E = ε(k), but distributed around the renormalized energy

E = ε(k)+Σ′(E ,k) due to the finite lifetime (represented by Σ′′(E ,k)).

Connecting this chapter to the previously described TB model, the bare band energy

ε(k) is nothing but the energy eigenvalue Eµ of the TB Hamiltonian.

3.2.5 Modelling Electron-Phonon Coupling

In section 2.1.6, a discussion about symmetries was presented with a conclusion that

electrons in occupied sigma bands of graphene can possibly couple to both acoustic

(TA, LA) and optical phonons (TO, LO). In this work, only a coupling to optical phonons

and only scattering within theσ∗ bands is considered. Due to the high acoustic phonon

energies, this type of coupling would bring the strongest effects in the energy bands.

As previously discussed, in the presence of interactions, the energy of bare bands is

modified which can be characterized by the self-energy. The imaginary part of the self

energy can be described [99, 100] by

Σ′′(Eµ) =Σ′′
0 +π

∫ ωmax

0
dω

{
α2(Eµ,ω)FE(Eµ,ω)

[
1+n(ω)− f (Eµ−ħω)

]
+α2(Eµ,ω)FA(Eµ,ω)

[
1+n(ω)− f (Eµ+ħω)

]}
, (3.40)

where α2(Eµ,ω)FA(Eµ,ω) and α2(Eµ,ω)FE(Eµ,ω) are Eliashberg coupling functions for

absorption and emission respectively, n(ω) and f (Eµ−ħω) are Bose-Einstein and Fermi-

Dirac statistics accounting for finite temperature, Eµ is the energy of the final bare elec-

tron band (calculated in the TB model), ωmax is the maximum frequency of phonons

and where Σ′′
0 accounts for electron-electron interactions and electron-defect scatter-

ing and can be considered constant for the small energy range of Eµ with which this

thesis is concerned [28].

For energies high above the Fermi level, f (Eµ−ħω) → 0 and for coupling to LO and

TO optical phonons with energies above 150 meV and room temperatures n(ω) can also

be neglected which yields

Σ′′(Eµ) =Σ′′
0 +π

∫ ωmax

0
dωα2(Eµ,ω)FE(Eµ,ω). (3.41)

In other words, the resulting imaginary part of the self-energy is dominated by phonon

emission.

To model coupling to optical phonons, Einstein phonon model is used [101]. It is

based on quantum harmonic oscillators oscillating with the same frequency ωE which

gives only one energy of phonons in comparison to Debye model [102]. This energy is
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assumed to be 190 meV which corresponds to energy of LO and TO phonons around

the Γ point (see Fig. 2.6a)).

The Eliahsber coupling function can be split into two parts, FE(Eµ,ω), phonon den-

sity of states and α2(Eµ,ω) which can be interpreted as an effective electron-phonon

coupling function averaged over the Fermi surface [99]. The former can be expressed

as a delta function δ(ω−ωE) since there are only phonons with a single frequency, ωE.

The latter has to reflect that the scattering can occur if the energy of the electron is

beyond ħωE above the minimum of the sigma band. For lower energies, the electron

cannot decay though the optical phonon since the energy difference is too small (there

no phonons within this energy range) and hence the life-time of the state will be longer

(remember the connection between life-time and the imaginary part of self energy).

For two-dimensional nearly parabolic bands the Eliahsber coupling function can be

expressed [28] as

α2(Eµ,ω)FE(Eµ,ω) =λωE

2
δ(ω−ωE)Θ(Eµ+ħωE), (3.42)

where λ is electron-phonon coupling constant and where Θ is the Heavy side func-

tion10.

To account for the broadening of the bottom of the final energy state, the Heavyside

function should be modified to a smoothly changing function which reflects the char-

acter of the broadening as suggested in Ref. [29]. The shape of the function does not

quantitatively affect the results but removes artificially high peaks in the spectral func-

tion. Since the broadening is unknown, the Heavyside function can be approximated by

a Fermi-Dirac distribution11 of a finite temperature T =400 K. Moreover, in order to ac-

count for electron-impurity scattering and electron-electron interactionsΣ′′
0 = 100 meV

is used 12. The strong coupling was represented by λ= 1 which was the first prediction

from the density function theory from other colleagues.

10The Heavy side functionΘ(x) is defined being 0 for x < 0 and 1 otherwise.
11Fermi edge corresponds to Gaussian broadening of the final.
12The values Σ′′0 = 100 meV and also T =400 K are intentionally higher than for the used previously in oc-

cupied bands [29] for more possible electron scattering events due to a presence of more energy band above
Fermi level. The constant value is just an approximation since the value can be expected to vary slowly within
the working energy range.
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3.3 Revision of IPES theory and Matrix Element Calcula-

tion

As previously described, IPES is a tool to investigate the unoccupied energy bands both

below and above vacuum level. Basic working principles and the energy diagram (2.9c))

have been already introduced in Chapter 2, but a more thorough discussion has to be

made to be able to calculate the expected intensity in an IPES experiment.

3.3.1 IPES Intensity in Ideal Systems

The formal theory for IPES was derived in the so called "one-step" model[103]. This

model simultaneously treats three main parts of the process:

i) Penetration of the electron to the surface and its coupling to the initial state

ii) Inelastic electron-electron scattering

iii) Optical de-excitation

The one-step model is not easy to implement and does not offer an easy interpretation.

An alternative is offered in the form of the "three-step" model which separates the three

previously mentioned steps. The model was firstly proposed and successfully used in

PES [104, 28, 28], however, later also modified for IPES [103, 105].

In the first step the coupling between the the incoming electron and the initial wave

function can be described by a coupling constant ci which can be calculated as an over-

lap between the corresponding wave functions [106]. Moreover, energy conservation

for transmission of an electron from vacuum to initial state has to be satisfied and can

be expressed as

Ei = Ekin +φ, (3.43)

where Ekin denotes electron kinetic energy in a vacuum, Ei is the energy of the initial

state and φ stands for the material work function.

After the electron penetration, there is a finite probability β(E) for non-radiative de-

cay mainly due to electron-electron interactions, which is the reason for the low pene-

tration depth of low energy electrons and IPES surface sensitivity [105]. The probability

for radiative processes is then 1−β(E) and is assumed to be constant for the low energy

range where the electron-phonon coupling will be investigated.

The last step is optical de-excitation. Figure 3.4 shows an example of a simple band

structure with two bands above the Fermi level and an electron transition from the ini-

tial state (denoted by subscript i) to the final state (denoted by subscript f). The tran-

sition probability inside the bulk can be determined by first-order perturbation theory
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using Fermi’s golden rule

Γi→ f =
2π

ħ |〈 f |H ′|i 〉|2δ(Ei −Ef −ħω) = 2π

ħ |Mfi|2δ(Ei −Ef −ħω), (3.44)

where |i 〉 and | f 〉 denote initial and final state respectively, H ′ is the perturbation due

to the photon field (which will be discussed later), |Mfi| are matrix elements of the tran-

sition and δ(Ei −Ef −ħω) stands for conservation of energy for the transition from the

initial to the final state while emitting s photon with energy ħω.

k

EF = 0

Ei

e−

Ev

ħω

Ef

E

Figure 3.4: Schematic illustration of electron transition from the initial state with energy
Ei to the final state with energy Ef. During the process, a photon of energy ħω= Ei −Ef

is emitted. The transition is displayed purely horizontally due to the small momentum
carried by a photon which can be neglected for photon energies below 100 eV.

Another conservation law which has to be satisfied is conservation of momentum

kf = ki +G +kphoton, (3.45)

where ki and kf are the initial and final states momenta, G stands for an arbitrary recip-

rocal lattice vector and kphoton is the photon momenta. For ultra violent (UV) transi-

tions photon momentum is small and can be neglected. Therefore, the band transitions

can be seen as vertical in a reduced Brillouin zone scheme (figure 3.4). It is worth not-

ing that the equation is only exactly valid inside the solid due to an attractive potential

near the surface. For an incoming electron with momentum K in a vacuum, however,

the perpendicular momentum is not conserved due to attractive forces in the vicinity

of the solid and hence k⊥,i > K⊥ . Only the parallel momentum is preserved which can

be expressed by

k∥,i = K∥+G∥. (3.46)

Taking into account the conservation laws (equations (3.43), (3.45) and (3.46)), a

connection between K∥ and the final band energy Ef can be written. Eliminating K∥
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from the energy kinetic energy Ekin of a free electron and using the mentioned conser-

vation laws, the final expression takes a form

K∥ =
(
2m/ħ2(Ef +ħω−φ)

)1/2
sinθ, (3.47)

where θ is the angle of incidence of electrons to the surface as defined in section 2.3.1.

The equation provides a direct possibility to map the final energy states to K∥.

If we now consider Fermi’s golden rule (equation (3.44)) in light of the conservation

rules, the final intensity of the transition is written as

I (Ekin,K∥) ∝ ci|Mfi|2δ(Ei −Ef −ħω)δ(Ei −Ekin −φ)δ(kf −ki −G)δ(k∥,i −K∥). (3.48)

In the presence of multiple initial and final states and multiple reciprocal lattice

vectors G the previous equation can be written as

I (Ekin,K∥) ∝ ∑
G ,i , f

ci|Mfi|2δ(Ei −Ef −ħω)δ(Ei −Ekin −φ)δ(kf −ki −G)δ(k∥,i −K∥), (3.49)

where the summation goes through all possible transitions with both initial and final

states above EF.

It is worth noting that Eq. (3.48) neither accounts for many-body effects nor the res-

olution of the experimental apparatus, which is the content of the next section. Without

the inclusion of many-body effects and the resolution of the experimental apparatus,

only infinitely sharp peaks would be seen in the spectrum.

3.3.2 Instrumentation and Many-body Effects

At this point, accounting for many-body physics and the measurement apparatus it-

self have not been introduced. Using a modification of the theory for ARPES [107] and

accounting for just one final state, equation (3.48) can be rewritten as

I (Ekin,K∥) ∝∑
G

∫
dω

∫
dEi

∫
dki,∥

∫
dki,⊥ci|Mfi|2 ×DE (ħω)× A(Ei −Ef −ħω)

× Abeam(Ei −Ekin −φ)δ(k∥,f −k∥,i −G∥)×δ(k⊥,f −k⊥,i −G⊥)

× Abeam(k∥,i −K∥), (3.50)

where DE (ħω) is the detector energy resolution function, A(Ei −Ef −ħω) is the parti-

cle spectral function which accounts for effects at the final electronic state, Abeam(Ei −
Ekin −φ) and Abeam(k∥,i −K∥) are the electron source energy and momentum spectral

functions and where δ(kf−ki−G) from Eq. (3.48) was split into its parallel and perpen-

dicular parts. The integration over σ comes from the necessity of including a photon

detector which serves as a band-pass filter (see section 2.3.3).
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As discussed in Ref. [107] with relation to PES, broadening of the final electronic

state is much smaller than the lifetime suggests 13 and is rather related to real-space

damping of the electronic wave function. Due to the similarity of PES and IPES, similar

effects are expected in the IPES measurements. The broadening of the initial state due

to the real-space damping can be accounted for by a Lorentzian distribution around

the undamped K 0
⊥ of the incoming electron replacing δ(k⊥,f −k⊥,i −G⊥). For 2D states,

neither of the other distributions is dependent on k⊥,i and the integral becomes 1 for

sufficiently high K 0
⊥ [108].

For the purposes of this work, ci is considered to be constant and equal for all or-

bital types, while |Mfi| is a slowly varying quantity in either of the integration variables.

Therefore, both ci and |Mfi| can be removed from the integrals. Moreover and being

just slowly varying quantity in eider of the integration variables, so both can be taken

out of the integrals. Moreover, integration over ω is just a convolution (denoted later

by ∗) between DE and A. Similarly, the integration over Ei can be also transferred to

convolution since Abeam(Ei −Ekin −φ) can be approximated by a Gaussian distribution

and is this symmetric with respect to sign change of the integration variable. Similarly,

the integration over k∥,i leads to the convolution due to the fact that A is, in general,

k∥,i-dependent14. Considering G∥ = 0 (which is proffered - see Ref. [106]), the intensity

yields a simple expression

I (E ,K∥) ∝ (
DE (E)∗ Abeam(E)∗ Abeam(K∥)

)∗ (
ci|Mfi|2 × A+(E ,K∥)

)
= (

Dtot(E)∗ Abeam(K∥)
)∗ (

ci|Mfi|2 × A+(E ,K∥)
)
, (3.51)

where E = Ekin +φ−ħω was introduced for convenience. After the change of variables,

A(Ei −Ef −ħω) is nothing but the spectral function from Eq. (3.39)

A+(E ,K∥) = 1

π

Σ′′(E ,K∥)[
E − (

ε(K∥)+Σ′(E ,K∥)
)]2 +Σ′′(E ,K∥)2

, (3.52)

where the K∥ is used instead of k in the original expression, using the conservation laws

introduced in the previous section15 and the fact that considered bands are 2D.

13remember the connection between the quasi-particle lifetime and the imaginary part of the self-energy.
14It is worth noting that this approximation is just correct for flat bands without strong dispersion due

to A being dependent on the final state momenta k∥,f and hence also dependent on k∥,i and K∥. This fact
interconnects the energy resolution to the momentum resolution. For dispersive bands, asymmetry in energy
resolution is created due to averaging over certain k∥,i. For the purposes of the thesis, however, this effect is
neglected.

15The conservation law is included in the intensity expression (3.50). The change from k∥,f to K∥ is just an
approximation which is a part of the assumption that the final K∥ broadening can be accounted for as using
the convolution.
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In this work, the detector function is approximated by a Gaussian distribution16 as

DE (E) = 1p
2πΓdet

exp

(
−1

2

E 2

Γdet

)
, (3.53)

where Γdet = ∆Edet/
p

8ln2 is determined by the detector energy resolution ∆Edet (full

width at half maxima (FWHM) of the detector band pass filter). Similarly, the electron

energy spectrum Abeam(E) can also be approximated by a Gaussian distribution using

Eq.(3.53) and exchanging∆Edet for electron beam energy spread∆Ebeam instead. In the

experiments, typically DE (E)∗ Abeam(E) is measured, not a separated component and

is denoted by Dtot(E) and has a FWHM ∆Etot. Due to the properties of the Gaussian

function, the resulting shape of Dtot(E) is also expected to be Gaussian and will be used

throughout the simulations.

The momentum spread function Abeam(K∥) is also approximated by the a Gaussian

distribution as

Abeam(K∥) = 1p
2πΓbeam,K∥

exp

(
−1

2

E 2

Γbeam,K∥

)
, (3.54)

where Γbeam,K∥ = ∆K∥
p

8ln2 with ∆K∥ being the FWHM of the electron K∥-spread. In

reality, Abeam(K∥) is not constant but changes with a change of kinetic energy and the

incident angle of electrons.

3.3.3 The Interaction Hamiltonian

So far, no attention has been paid to the matrix elements17 Mfi and corresponding inter-

action Hamiltonian H ′. Considering the non-relativistic one-particle approximation,

the particle-light interaction can be governed by a Hamiltonian of the form

H =
[

1

2m

(ħ
i
∇∇∇− e

c
A(r )

)
+V (r )2

]
(3.55)

where, A(r ) is the vector potential of the time-dependent electromagnetic field, ∇∇∇ is the

gradient operator, V (r ) denotes potential energy and m, e, c stand for electron mass,

electron charge and speed of light respectively. After subtraction of the unperturbed

Hamiltonian

H0 =− ħ2

2m
∇∇∇2 +V (r ), (3.56)

16This is true for gas detectors [109]. Solid state detectors have non-Gaussian shapes as will be shown later
in Chapter 5.

17The matrix elements were defined in Eq. (3.44) as 〈 f |H ′|i 〉 as a probability of transition from the initial to
the final electronic state.



3.3. REVISION OF THE IPES THEORY AND MATRIX ELEMENT CALCULATION 43

the interaction Hamiltonian reads

H ′ = e

2mc

[
−ħ

i

(
∇∇∇· A(r )+ A(r ) ·∇∇∇

)
+ e

c
A(r )2

]
. (3.57)

Before further steps, one important thing should questioned. The possibility to use

the previously described theory. At the beginning there are no protons present in the

IPES and hence no interactions with electrons should not be possible. This question

concerned people already in connection with spontaneous emission. For its proper

treatment A(r ) has to be quantized, as discussed in Ref. [67]. For application in solids,

the theory developed for PES can be used with hardly any changes. Since the quanti-

zation of the field is not essential for this work, semi-classical treatment developed for

PES will be followed, however, the reader is encouraged to check the formal derivation

in some of the quantum optics books.

If the electromagnetic field is weak (which is the case for IPES), the non-linear term

can be neglected. If one assumes small variations of A(r ), the first term also disappears.

The interaction Hamiltonian then reads

H ′ =− eħ
2i mc

A(r ) ·∇∇∇=− e

2mc
A(r ) ·p , (3.58)

where p is the momentum operator. In a dipole approximation one gets

H ′ =− eħ
2i mc

e ·∇∇∇, (3.59)

where e is the light polarization vector.

3.3.4 Calculation of Matrix Elements

Using the TB framework which was developed in Chapter 3.1, matrix elements can

be calculated. In ARPES, a plane wave approximation of the final electronic state al-

ready showed its validity for graphite [92] and also for unoccupiedσ bands in graphene

[28, 29] which have the same origin as the unoccupied σ states which were discussed

previously. Therefore the same assumption is used for the initial wave function. The fol-

lowing derivation of the KRIPES matrix elements is based on a thorough theory deriva-

tion presented in Ref. [110] related to ARPES.

Assume an initial electron to be free electron-like18 denoted by |ki 〉 and in position

representation ψi ≡ 〈r |ki〉 ≡ e i ki·r , where ki are the wave vector electrons in the initial

electronic state and are equal to the waves vector of incoming electrons, not consid-

ering damping of the initial wave-function. The final state, the Bloch state, with band

18This assumption seems to be reasonable due to a presence of a continuum of states above the first two
unoccupied σ∗ states (see section 4.1).
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index µ can be (in a TB approximation) written as (3.7))

|ψµkf〉 =
1p
N

∑
R

ei kf·R ∑
Rj

∑
ν

cµ,Rjν(kf)|R +Rj,ν〉, (3.60)

where, once more, kf is the wave vector of the final Bloch state, |R+Rj,ν〉 are real atomic

orbitals (indexed by ν= px , py , s) at position R +Rj. R is the lattice side position and Rj

are positions of atoms in the unit cell. The summations run over all lattice sides relevant

to the experiment and all atoms in the unit cell.

Considering an interacting Hamiltonian in a dipole approximation from the previ-

ous section (eq. (3.59)), matrix elements can be expressed as

Mfi,µ =〈ψµkf |H ′|ki 〉

∝ 1p
N

∑
R

ei kf·R ∑
Rj

∑
ν

cµ,Rjν(kf)〈R +Rj,ν|e ·∇∇∇|ki 〉

= (i e ·ki)
1p
N

∑
R

ei kf·R ∑
Rj

∑
ν

cµ,Rjν(kf)〈R +Rj,ν|ki 〉

= (i e ·ki)

p
N

V

∑
Rj

∑
ν

cµ,Rjν(kf)〈Rj,ν|ki 〉, (3.61)

where in the last step summation over R was written as an the integral N
V

∫
dR . The

matrix elements can be further rewritten as

Mfi,µ∝ e ·ki
∑
Rj

∑
ν

cµ,Rjν(kf)e i kf·Rj〈0,ν|ki 〉, (3.62)

where 〈0,ν|ki〉 is nothing but a Fourier transform of real hydrogen-like atomic wave

function and can be split into a radial fν(ki) and angular part Yν(θki ,φki ) [111] which

can be expressed as

〈0,ν|ki〉 = fν(ki)Yν(θki ,φki ). (3.63)

Angles θki and φki define a direction of ki with respect to the original axis, ki is the

amplitude of the initial wave vector. The angular part Yν(θki ,φki ) has the same form as

the radial part of the corresponding orbitals [112], whereas the radial part is expressed

using Gegenbauer polynomials (for more details see appendix B.3). The final expression

for the matrix elements can be expressed as

Mfi,µ∝ e ·ki
∑
Rj

∑
ν

cµ,Rjν(kf)e i kf·Rj fν(ki)Yν(θki ,φki ) (3.64)

has two parts, e ·ki which is determined by the polarization of the emitted light (which

is not distinguished in experiments), and a part dependent on initial and final wave
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functions. The former is not treated here and will be assumed to be constant (or slowly

varying between the measurements with different angles of electron incidence). Treat-

ment of the e ·ki factor for different light polarizations is presented in Ref. [110], Ref.

[106, 113] show that the radiation from metallic surface states can be well approximated

by dipole radiation. The latter is treated here for unoccupied σ∗ bands in graphene

which were previously discussed.
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Chapter 4

Computational Results

4.1 Band Structure Calculations

Using parameters for the TB Hamiltonian found in Ref. [35] and Ref. [52], band struc-

tures of graphene along high symmetry lines were simulated and are presented in fig-

ures 4.1a) and 4.1b), respectively. The Γ point corresponds to |K∥| ∼ 1.7Å−1.

The two sets of parameters make the bands behave quite differently and place the

unoccupied sigma bands (dark blue) at different energy levels. The first set of parame-

ters shows the minimum of the σ∗ bands at approximately 4 eV at Γ, whereas the min-

imum is at 8 eV in the case of the second set of parameters. This difference stems from

parametrization of the TB model which was determined by fitting the bands either to

experimentally observed or ab initio calculated. The character of the bands is however

the same.

Figure 4.1c) shows a graphene band structure calculated from first principles [34].

The shaded area shows a continuum of states, whereas red lines show states where sym-

metry properties could be identified. The two states between Γ and K labelled A1 and

B1 were identified as sigma bands, stemming only from interlayer s, px and py orbitals.

Hence the origin corresponds to the origin of TB σ∗ bands as will be discussed later.

47
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Figure 4.1: Graphene band structure calculated by a TB model in a) and b) and a band
structure calculated from first principles c) adopted from Ref. [34]. In a) and b)σ bands
are denoted by dark blue (and numbered µ = 1..5), whereas π bands are denoted by
light blue. It can be seen that both parametrizations place the lowest unoccupied σ∗
bands to different energies with respect to the Fermi level (approximately 4 eV and 8 eV).
The first principle calculations place the position of the lowest unoccupiedσ∗ bands to
approximately 8 eV (denoted by A1 and B1 within the shaded area) to a continuum of
states (shaded area).

4.2 Self-Energy and the Spectral Function

The results of the self energy calculations accounting for strong electron-phonon cou-

pling to TO phonon mode are displayed in the figure 4.2c). In order to account for
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effects of impurity scattering and electron-electron interactions, the self energy offset

was set to Σ′′
0 = 100 meV, as previously mentioned.

To visually illustrate the effects of self-energy on the spectral function, a parabolic

approximation of the bare σ∗ band in the vicinity of the Γ point based on the DFT cal-

culation found in Ref. [37] was used. Figure 4.2a) shows the spectral function in the

absence of electron-phonon coupling, whereas figure 4.2b) shows the same with strong

electron-phonon coupling included. The kink is clearly visible, similar to the occupied

bands (figure 2.8). The minima was shifted to E = 0eV by introducing a constant energy

shift Eσ.
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Figure 4.2: Effects of the self energy on bare band structure. Panel a) shows two sigma
bands in the Γ to K direction. The bands were approximated by a parabolic dispersion
corresponding to DFT calculations according to Ref. [37]. The effects of inter-band
electron-phonon coupling results in the typical kink b). The real and imaginary parts of
the self energy are shown in the panel 4.2c). Intense features are marked white. 1

2Γ→ K
corresponds to |K∥| ∼ 0.85Å−1.

4.3 Matrix Elements

Figure 4.3 shows results of the |Mfi,µ|2 simulation based on previously presented TB

model for two lowest unoccupied σ bands (µ = 4,5). One of the bands has matrix el-

ements equal to 0 for all values of k∥ towards K and hence should disappear from the

spectra. The second band is zero at Γ and increases towards K . This means that there

should be no measured intensity for the normal electron incidence, considering a per-



50 CHAPTER 4. COMPUTATIONAL RESULTS

fect instrument (infinite resolution). The results are calculated from the first set of TB

parameters according to Ref. [35]. The second set of parameters [37] revealed very sim-

ilar results and is therefore not included.

Γ 1
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0.6
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∣ ∣ M fi,

µ

∣ ∣2 n
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rm
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)
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Figure 4.3: Normalized magnitude of |Mfi,µ|2 of the two lowest unoccupied σ∗ bands.
One of the bands vanishes for the whole spectra, whereas the second one has just non-
vanishing intensity the Γ point. 1

2Γ→ K corresponds to |K∥| ∼ 0.85Å−1.

4.4 The Total IPES Spectrum

Figure 4.4a) shows the impact of matrix elements on the expected spectra from the two

lowest σ∗ bands . Figure 4.4b) extends the simulation to account for energy and mo-

mentum broadening due to the measuring apparatus (∆). Even if the effects of the ap-

paratus are included, no visible peak should be present in the spectra at normal elec-

tron incidence.
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Figure 4.4: Simulation of expected KRIPES spectra for the two lowest unoccupied σ∗
bands in the Γ to K direction including strong coupling to optical phonons and ma-
trix elements without instrument broadening a) and with instrument broadening b).
Intense features are marked white.
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Chapter 5

Experimental and Analytical

Methods

As was briefly mentioned before, the final measurements of graphene could not be per-

formed in the NTNU laboratories due to poor energy resolution of the instrument. Ex-

perimental work was therefore carried out at the Physikalisches Institut, Münster within

the group of Prof. Dr. Markus Donath. The methods related to the characterization

of the IPES instruments are given in the first two sections. Even though they are dis-

cussed in connection to the NTNU apparatus (manual available from Ref. [81]), the

same methods can be (and are) used for experimental characterization of all IPES in-

struments. First, a characterization of the electron beam and its divergence is presented

in the first section, followed by an energy resolution characterization. The last section

then focusses on the actual experiment performed on graphene.

5.1 Characterization of The Electron Beam

As discussed in section 3.3.2, the instrument is characterized by its resolution function

Dtot(E)∗ Abeam(K∥),

which consists of two independent parts, a total energy resolution function of the ap-

paratus Dtot(E), and Abeam(K∥) which stands for an uncertainty of K∥ due to electron

beam divergence. This will be the focal point of this section.

In order to achieve the best resolution in K∥, the electron beam has to be as parallel

as possible (in other worlds, the divergence of the beam as low as possible). Due to

the low energy electrons present in IPES the electron beam is strongly effected by their

repulsive forces and also by any magnetic/electric fields. Moreover, the final width of

53
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the electron emitter also contributes to the beam divergence. This section presents a

method how the best working conditions regarding the momentum broadening of the

electron gun can be found.

5.1.1 Experimental Method

The simplest and most commonly used method to characterize the electron beam is

based on the Faraday cup. The whole measurement device consists of a Faraday cup

with a slit in the upper plate and a collecting plate inside the cage. The slit is swept

through the electron beam and an electron current is measured on the collective plate.

Once the beam profile is known for different positions of the electron gun, an analysis

can be performed in order to find the divergence of the electron beam. This method is

schematically depicted in figure 5.1a).

a)

A

dgun

x

electron gun

plate with slits

collecting plate

b)

Figure 5.1: Schematic picture of the Faraday cup with slits in the upper plane a) and a
view of the final realization b) with 1 mm and 3 mm slits. The slit present in the upper
plate of the Faraday cup is swept through the electron beam. Electrons which pass
through are then collected on the inner plate where the current is measured.

5.1.2 Realisation of the Experiment

In figure 5.1b) a final realisation of the Faraday cup is shown. For the experiment just

the upper slit with width of 1.02±0.04 mm was used. The position of the slit x was mea-

sured by a calliper attached to a moving flange where the slit was mounted. The calliper

was aligned with the axis of the flange within 5° which gives a systematic relative mea-

surement error of 0.4 % in the position measurement. Since the error can be seen as
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constant for the small distance range used within the measurement, the effects are on

the further analysis are small and are neglected.

The position of the slit was manually adjusted by moving the flange 0.2 mm for ev-

ery step, and the current was read by a nano-ammeter for every corresponding posi-

tion. After the sweep through the full range of interest, either the gun position or the

voltage on the focus element (referred to as the focus) was changed and the whole

sweep was repeated. Due to this enormously time consuming method, every sweep

was performed just once. All measurements were performed in UHV with pressures

below 2×10−9 mbar. The filament current was set to 1.07 eV for all the measurements.

The whole experiment was performer in the preparation chamber.

As mentioned previously (section 2.3.3), the electron gun is a very simple pervatron

type emitter with a BaO cathode.

5.1.3 Fitting Procedure

In order to fit the data and determine the uncertainty of the measurement, the pro-

cedure described and used in Ref. [114] and Ref. [115] is used in the following1. To

illustrate the procedure, the figure 5.2 will be used.

From the set of the original data points (black dots), new data points (red dots) are

generated with a distribution around the original data points corresponding to their un-

certainty (the distribution is denoted by grey curves). The newly generated data points

are then fitted with a corresponding function (red curve). The curve data is saved and

the whole procedure is repeated again. In order to get a reasonably robust statistical

performance, 10000 repetitions were performed. As a result, a summary of the statis-

tical fitting parameters is obtained and a mean value and standard deviation can be

found.

a)

x

y(
x

)

b)

x

y(
x

)

Figure 5.2: Schematic of a fitting procedure. The original data (black dots) are modified
according to uncertainty distribution (grey). The new points (red dots) are randomly
generated within a distribution and then fitted (red solid line).

1The fitting procedure was successfully used to detect a position of the peaks in IPES measurements in Ref.
[114] and Ref. [115] with resolution better than the resolution of the instrument.
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5.1.4 Electron Beam Divergence and Momentum Uncertainty

Before the actual beam divergence could be calculated, a FWHM of the electronic beam

at different positions of the gun had to be determined.

Similarly to the previously described fitting procedure, the position of the original

data was modified according to the calliper accuracy (0.03 mm) and the new data were

numerically deconvoluted to account for the final width of the slit. Consequently, the

FWHM was determined from a parabolic interpolation of the deconvoluted data2. This

procedure was again repeated 10000 times in order to obtain robust results.

The newly obtained FWHM were then fitted with a polynomial function by applying

the procedure discussed in the previous section. Finally, the divergence angle together

with its standard deviation were determined from the differentiation of the polynomial.

The divergence angle was then used for a calculation of uncertainty in K∥ using the

conservation laws from previous chapters.

Note that in the analysis, the uncertainty of the current measurements and the elec-

tron gun position measurement were neglected, having much smaller effects on the

beam divergence angle uncertainty than the measurement of the slit position and slit

width.

5.2 Characterization of Apparatus Energy Resolution Func-

tion

In this section, second part of the total resolution of the experimental apparatus, Dtot(E),

is treated both experimental and analytical methods are presented.

5.2.1 Experimental Methods

To measure the energy resolution of the apparatus Dtot, two different methods can be

used. The first method utilizes the IPES measurement of an isolated state which is sharp

in comparison to the Apparatus function, such as the surface states of Cu(100) [116,

117], whereas the other method is based on IPES measurements of the Fermi edge in

metals3. Due to the apparatus resolution function both the image-potential states and

the Fermi edge are broadened which can be used for instrument characterization.

2The parabolic interpolation was used in order to characterize the beam profile as closely as possible. Note
that several different methods, including linear interpolation and polynomial fitting were accedes. Gaussian
fitting could not be reliably used due to the shape of the profile.

3The exacted curve should correspond to 1− f (E −EF) considering constant density of states which is a
good approximation for Ag and Au and was used before in Ref.[109, 118]. f (E) is the Fermi distribution to
account for final temperature.
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5.2.2 Realisation of the Experiment

In order to have a direct comparison to the specification sheet of the instrument, mea-

surement of the Fermi edge of polycrystalline silver was performed. Within the regions

around the Fermi edge, the density of states of Ag is non-zero and approximately con-

stant [119, 120] and so the effects on the shape of the Fermi edge are neglected.

The sample was glued to the sample holder by a silver glue paste(EO-TEK H21D)

cured at 120 °C for 15 min. Before the experiment, the surface was sputtered4 by argon

to obtain a clean surface. The sputtering was done at 3 kV bias at an argon pressure of

10−6 mbar for 1 h. For the measurement, the electron gun approximately 25 mm from

the sample with 30% focus, the sample current was set to 12.2 mA at 20 eV with an elec-

tron filament current of 1.09 A.

As mentioned in section 2.3.3, the detector is a simple NaCl coated Ta solid-state

detector with a CaF2 window.

5.2.3 Analytical Method

To find the energy resolution of the apparatus, the measured data were fitted with a

polynomial within the region of ±1.5 eV around the Fermi Edge. Consequently, a trial

resolution function was created and convoluted with a Fermi edge of 300 K (which ac-

counts for the broadening due to finite temperature). The result was then compared to

the polynomial fit and the trial function was modified accordingly. The whole proce-

dure was repeated until a good match was obtained5.

The whole analysis was not automatized due to the presence of convolution, but

was performed manually. The results cannot be expected to be perfect, but should pro-

vide the necessary information about the total apparatus energy resolution function.

5.3 Graphene Measurements

As mentioned before and as will be shown in the results, energy resolution of the NTNU

instrument is too poor to be able to properly distinguish the band character and pos-

sibly further investigate many-body effects. Fortunately, the experiments could be per-

formed at Physikalisches Institut, Münster within a group of Prof. Dr. Markus Donath.

4Sputtering is process where particles are ejected from a solid sample which is bombarded by high energy
particles.

5The difference between the fitted polynomial and the obtained curve was measured around the Fermi
edge (±1eV) and was required not to exceeded 2 % of the maxima of intensity within the investigated region.
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5.3.1 Experimental Method

The instrument set-up at Physikalisches Institut, Münster has already been described

in a previous work [121, 80], so only a brief discussion is given.

The electron beam is generated using a BaO cathode illuminated by a laser beam in

order to provide the smallest emission spot possible. The beam is then lead through a

90° toroidal electrostatic deflector with a 1.5 mm slit aperture at the focal point which

gives a beam divergence of±1.5° corresponding to∆K∥ ≈0.06 Å−1 at the Fermi level. The

system includes 4 independent Geiger-Müller counters working as bandpass detectors

at a fixed mean energy of 9.9 eV with ∆Etot =350 meV and a Gaussian-shaped energy

resolution function. Even though two of the detectors were equipped with heated CaF2

and possible improvement of resolution was available, the final k-resolved experiments

were performed using only one detector with ∆Etot =350 meV due to several detector

problems6. All the measurements were taken using a detector placed at 70° from the

sample surface normal at normal electron incidence.

The sample, ML graphene on 4H-SiC(0001) 7 was clamped to a sample holder and

directly transported into the chamber. It was first annealed (heated) at approximately

300 °C over 9 hours (overnight) and did show a recognisable LEED pattern [124], how-

ever, no states were observed. The sample was then annealed again at temperature

slightly above 500 °C (which was believed to be sufficient [125]). During the anneal-

ing processes, the pressure was kept below 1.8×10−8 mbar to prevent a contamination

of both the sample and the chamber. Unfortunately, due to problems with manipula-

tors and sample holders, there was no other method to properly investigate the surface

quality.

After the LEED measurement, IPES could be measured. All IPES measurements

were performed with a pressure better than 4×10−10 mbar and the measurement was

performed on a symmetry line between Γ and K .

5.3.2 Analytical Method

In order to analyse the data and the parameters of every peak, each measured spectrum

was normalized with respect to its maximal value and consequently fitted with Voigt

profile (Lorentzian convoluted with a Gaussian curve). For the fitting procedure, the

technique described in section 5.1.3 was used which allowed the determination of both

peak position, peak width, relative peak height and standard deviations.

6One of the counters was not installed, moreover, the main high-efficiency counter was not working prop-
erly and could operate reliably for just a couple of hours which was not sufficient for the measurements and
had to be disregarded from the data analysis. In order to obtain the best possible number of photon counts,
it was decided to measure with lower resolution due to dramatic reduction of count rate for lower values of
∆Etot [122, 121, 123]

7The sample was a commercial sample from Graphensic. According to the documentation and scanning
probe microscopy, the sample was 97.9% mono-layer, 2% double-layer and 0.1% tri-layer.



Chapter 6

Experimental Results

The results presented in this chapter are all determined using methods described in

the previous chapter. In the first section measurements of the NTNU apparatus are

presented. The second section presents results from IPES measurements of graphene.

6.1 NTNU Apparatus Characterization

6.1.1 Electron Beam Measurements

In figure 6.1 and 6.2 sample measurements of the electron beam profile for electron

energies 6 eV and 12 eV are shown respectively. The measured current was normalized

for simple visualisation. The beam is not well shaped for low energies and diverges

rapidly. For higher energies, the divergence is not as rapid as for the low frequencies

and the beam is preserved even for distances around 30 mm, which is beyond the rec-

ommended working distance (25 mm according to the manual [81]). It can be observed

that the beam profile moves towards higher values of x, for 30 mm gun distance and

12 eV the shift is around 1 mm. Moreover, the beam profile is not symmetric and does

not have a Gaussian shape. In general, the asymmetry gets larger with increasing focus

value.

The resulting FWHM for energies 6, 8, 10 and 12 eV are displayed in figure 6.3 by

dots. The solid lines are polynomials fitted to guide the eye. Different colours corre-

spond to different focus values. It can be seen from the figure that the beam diverges

rapidly for low energy electrons, whereas it stays fairly constant for higher energies.

Moreover, the width in the vicinity of the focus (minimal value of FWHM) seems to

correlate well with the focus value, where for higher focus values FWHM generally in-

creases. However, an exception exists at 10 eV and 30 % focus. The uncertainty of the

measurements was not included since its values were almost within the size of the dots.
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Figure 6.1: Measurements of the electron beam profile for kinetic energy 6 eV for differ-
ent focuses as a function of slit position x. The beam diverges quickly, possibly due to
electromagnetic fields in the chamber.

Standard deviations varied from 0.05 to 0.06 mm and it is mainly caused by the uncer-

tainty in the slit position measurement (even though the slit with uncertainty was also

included in the calculation).

The uncertainty of momenta parallel to the surface ∆K∥ is shown in figure 6.4. It

can be seen that the uncertainty of ∆K∥ in general decreases with increasing energy

which makes k-resolved measurements at low energy states rather difficult. Moreover,

the optimal working distance (where the solid lines cross 0) seems to increase with in-

creasing electron energy. Using the previously described method, standard deviation

was determined to range from 0.02 to 0.03 Å−1 within the region of interest. Due to the

polynomial fit, the standard deviation increases drastically for close vicinity of the elec-

tron gun as well as for a far distance from the electron gun. A figure displaying standard

deviation is attached in the appendix B.5.
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Figure 6.2: Measurements of the electron beam profile for kinetic energy 12 eV for dif-
ferent focuses as a function of slit position x. The beam profile maxima moves towards
the higher x possibly due to a electromagnetic fields in the chamber or due to slightly
tilted electron gun. The beam profile gets more asymmetric for higher values of focus.
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Figure 6.3: Calculated FWHM as a function of electron gun distance dgun for different
energies of the electron gun and different percentage of the focus knob. Dots denote
measured data which are fitted by polynomials to guide the eye. The working range
of the electron gun increases with the increasing energy of the electrons. The electron
beam spot size generally increases with increasing focus value.
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Figure 6.4: Calculated ∆K∥ values. The ∆K∥ as a function of electron gun distance
dgun for different energies of the electron gun and different percentage of the focus are
shown. The solid lines denote different values of the knob. The optimal working range
of the electron gun increases with the increasing energy of the electrons.
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6.1.2 Energy Resolution

Figure 6.5a) shows the result of IPES performed on polycrystalline silver. The measured

values are denoted by black dots (the solid line is just to guide the eye). The blue line

shows a Fermi edge which can be expected at infinite instrument resolution and at tem-

perature 300 K). The polynomial fit is displayed in green. The apparatus energy resolu-

tion function (figure 6.5b)) was determined by its convolution with the Fermi edge fitted

to the polynomial (the convolution is denoted red in the figure 6.5a)). It can be seen that

the energy resolution function does not have a purely Gaussian shape. FWHM was de-

termined to be 0.88 eV which is about 0.2 eV more in comparison to the data-sheet of

the instrument (see appendix B.4 for data-sheet analysis).
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Figure 6.5: IPES measurement of Fermi Edge on polycrystalline silver (111) a) and appa-
ratus energy resolution function b). Measured data (black dots) are fitted by polynomial
(green) which is then fitted with a curve corresponding to the determined apparatus
resolution function Dtot b) (red) which is convoluted with the Fermi edge (blue). The
resulting convolution is depicted red.
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6.2 Experiments on Graphene

6.2.1 LEED

The LEED pattern after the second annealing is shown in figure 6.6. It shows a typical

Moiré pattern of graphene on SiC [126]. Dots present due to a presence of Si in SiC are

denoted by black arrows. C corresponding to the creation of graphene is displayed by a

red arrow.

Si

C

Figure 6.6: A negative of the LEED picture taken of the graphene sample at 99 eV. It
shows a Moiré pattern typical for graphene reconstructed on SiC.

6.2.2 IPES

The preliminary measurements of graphene showed only one resolved peak at approx-

imately 3.5 eV above the Fermi level which is shown in figure 6.7. Even for higher angles

(along the high symmetry line towards K ), the preliminary results did not show any

other well resolved peaks (the possible reason will be discussed in the next chapter).

The following figure (Fig. 6.8) shows a measurement of the dispersion of the iden-

tified peak. The data for different angles (marked in the figure) were normalized to the

highest measured counts of the corresponding measurement angle and plotted with

increment 0.5 (-) in intensity for every following measurement1. The measurements

were taken using a detector placed at 70° from the sample surface normal at normal

electron incidence. The positions of both the electron gun and the detector ware fixed,

which corresponds to the increasing detector angle for higher measured angles2. Error

1For an angle of 17°, the intensity scale is correct, for the angle of 7°, the intensity is shifted by 0.5 (-) up,
for 5° by 1 (-) and so on.

2For instance, for sample measured at 7°, the detector angle was 77° from the sample surface normal.
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Figure 6.7: IPES measurement of ML graphene on 4H-SiC(0001) close to normal inci-
dence. The only resolved peak was found at approximately 3.5 eV above EF.

bars are not included to preserve clarity in the figure. Even from the raw data it can

be seen that the intensity of the peak decreases towards higher angles. An angle of 17°

corresponds to a detector axis of 87° degrees and so most of the incoming photons were

screened by the sample and sample manipulator.

In order to see the dispersion of the peak and a change in the peak height (or width),

previously described fitting procedures (see section 5.1.3) was used. The peak disper-

sion, normalized peak heights3 and peak widths are shown in figure 6.9 and are denoted

in blue, error bars for corresponding measurement points are included. The peak dis-

perses from approximately 3.5 eV towards 3.9 eV for the angle -17° (∼−0.5Å). It can be

observed that the normalized peak height decreases towards negative values of K∥ and

the intensity is not symmetric around zero. The width of the individual peaks varies

slightly but is around 0.5 eV, which is more than the energy broadening of the instru-

ment (350 meV).

3The values were normalized to the highest measured peak.
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Figure 6.8: IPES measurement of the dispersion of the state localized at approximately
3.5 eV above Fermi level on graphene on SiC after annealing at 500 °C. One can see that
the peak disperses towards higher energies for higher absolute value of the angle of elec-
tron incidence (noted above the corresponding IPES measurements) and its amplitude
with respect to the background signal decreases.
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Figure 6.9: IPES measurements of the lowest observed graphene band. Peak dispersion
a), normalized peak height b) and peak width c) are shown in blue (the blue solid line
is just displayed to guide the eye, the measured points are displayed with error bars).
In the panel a), fitted with a parabolic fit (red) to demonstrate the deviation of the data
from the parabolic dispersion. From panel b) it can be seen that the normalized peak
height is non-symmetric. The last panel (c)) shows FWHM of the measured peak which
is bigger than the instrument broadening (0.35 eV).
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Discussion

7.1 Apparatus Characterization

7.1.1 Beam Profile

In section 6.1.1, the electron beam profile was measured for various positions of the

electron gun and values of focus. The raw data showed an asymmetry of the beam

profile and its positions shift with increasing distance of the electron gun.

The first apparent explanation of the position movement could be an electron gun

which is tilted by a small angle with respect to the normal of the slit. Looking to the

data for the 12 eV measurements, the position shift is about 1 mm for a gun distance

difference of 23 mm. This would mean a tilt angle of 2° of the electron gun which is a

reasonable value due to the high forces acting on the moving flange where the electron

gun was mounted. However, for lower energies (8 eV and 10 eV) the tilt angle would

need to be almost 3° which cannot be the case. In addition, this would not explain the

asymmetry of the peak.

An alternative explanation can be found by looking back to the measurement set-up

and remembering that low-energy electrons are strongly effected by magnetic/electric

fields. The entire measurement process was performed in a preparation chamber which

was not magnetically shielded. In the presence of a magnetic field, a moving parti-

cle will experience a Lorentz force and consequently, the trajectory of the particle is

modified. This would also explain the asymmetry of the beam if one considers a non-

homogeneous magnetic field present in the chamber.

The last, most probable explanation can be the construction of the electron gun

itself which does not have to be symmetric. From the data it can be clearly seen that the

asymmetry gets larger for higher values of the focus which suggests that the focusing

coil inside the electron gun can could be non-symmetric or damaged.
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In order to further determine the reasons of the asymmetry and the beam position

shift, the electron beam profile should be checked in a magnetically-shielded chamber

when possible. If the asymmetry is still present, the electron gun should be subjected

to deeper investigation.

7.1.2 Momentum Uncertainty

The momentum uncertainty was presented in figure 6.4, together with the FWHM in

figure 6.3. The figures show that the electron gun cannot be easily used for the lowest

energies around 6 eV with a good momentum resolution; either the spot size is too big

or the beam diverges rapidly. The figures show that the optimal working distance of the

electron gun increases with increasing energy. As a consequence, k-resolved measure-

ments should be performed within a short energy range with ideal electron gun set-up.

If a long energy range is needed, the measurements should be split into several parts

while adjusting the gun between the measurements. An ultimate solution would be an

automate the procedure adjusting everything automatically.

The results suggest that the electron gun can be used in a regime with ∆K∥ = 0.0±
0.6Å−1. However, this need further discussion. The method which was used did not

account for the asymmetry of the electron beam, moreover, the electrons ware con-

sidered to have laminar flow behaviour1. This picture is rather crude, however, it was

successfully used in Ref. [80] and should provide a good estimate. If a classical picture

with non-interacting electrons is used, the worst situation which can possible occur is

an electron with a trajectory from the left of the electron gun opening to the right side

of the sample. For 12 eV, 25 % focus and a working distance of 25 mm, K∥ of the elec-

tron would be around 0.1Å−1. This is rather unlikely. If a more realistic picture was

used, electrons having straight random trajectories within the beam profile, K∥ would

be about half of that value and ∆K∥ ≈ 0.1Å−1. The value would correspondingly scale

up with a bigger electron beam spot size and shorter working distances.

It can be concluded that in order to reach the best k-resolved result, the electron

beam spot size should be kept as small as possible while maximizing the working dis-

tance and while keeping the electron beam parallel (∆K∥ = 0.0Å−1 according to figure

6.4). With this optimal set-up, ∆K∥ < 0.1Å−1 should be achievable.

7.1.3 Energy Resolution

The FWHM was determined from figure 6.5 to be 0.88 eV which is about 0.2 eV more

than the data-sheet of the instrument shows (see appendix B.4). The difference is prob-

ably caused by low power in the statistical analyses of the actual measurement. In

several consequent measurements, the results were getting worse with the increasing

1In other words, the trajectories of the particles were not crossing each other.
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number of measurements. This was attributed to surface degradation. Moreover, both

the filament current and the sample current were relatively high (1.09 A and 12.2 mA

at 20 eV, respectively), which has a direct impact on the electron beam shape and its

energy spread2. In addition to the high value of the FWHM, the energy resolution func-

tion does not have a Gaussian shape which can significantly complicate analysis of the

results.

The findings in this section correspond well to the previous work presented in Ref.

[83], where a similar solid state detector was used (Na). This makes the IPES system

at the NTNU lab not suitable for the intended measurements - for instance, two image

potential states would not be resolvable from each other.

7.2 Model Justification

The simulation of the expected IPES spectra as described and performed in Chapters

3 and 4, respectively, were based on a TB model of graphene. The two different sets of

parameters placed the minima of the two lowestσ∗ bands at Γ to very different energies

(4 and 8 eV). Moreover, the shape of the bands very roughly approximates the results of

the ab initio calculations found in the literature. Therefore, a discussion about a validity

of the TB model for the purpose of this work has to take place.

Recently, a study showing band character of graphene bands was published [33] and

which was used for model validation. Figure 7.1b) shows a band structure calculated

from first principles and figure 7.1a) depicts the corresponding band character. It both

figures, zero energy was assigned to the lowest unoccupied state at Γ (which is not the

σ∗ band). Looking back at figure 7.1b), two states at approximately 5 eV at Γwith just a

px - and py -character can be seen (marked blue). Connecting this to the corresponding

band structure calculation, 2 states with a shape of the unoccupied σ∗ bands can be

seen. This is also supported by a band structure calculation presented in the second

chapter and performed in Ref. [34]. From figure 7.1a) it can be seen that the bands

almost purely originate from px and py orbitals.

In order to confirm the character of the σ∗ bands in the TB model, a sum over

the projection of corresponding σ∗ band wave functions to px and py orbitals (
∑

px y ≡∑
R ′

j ,µ=px ,py
cµ,R ′

jν
′ ) and s orbitals (

∑
s ≡

∑
R ′

j ,µ=s cµ,R ′
jν

′ ) is shown in figure 7.2a). The pro-

jection to px and py orbitals is non-zero at Γ and is within the range of 1.5 to 2.2 for

both bands (denoted by subscript µ = 4,5 in the TB calculation). The projection to s

orbitals is zero at Γ and just slightly increases towards K for both states. This results in

a px - and py -like character of the corresponding σ∗ bands. In other words, it is in good

agreement with first principle calculations (Fig. 7.1a)). Note that the analysis is only

2The divergence of the electron beam is increased with higher sample current due to stronger repulsive
forces between the electrons. As a result, broadening in energy can be present due to averaging over certain
K∥ regions. The energy spread of the bean then increases with higher temperature of the emitter.
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a) b)

Figure 7.1: Band structure character a) and corresponding band structure calculation
b). The energy range is shifted so that zero corresponds to the energy of the lowest
unoccupied state at Γ. The lowest σ∗ bands with minimum of 5 eV (approximately 9 eV
above the Fermi level) have mostly px and py character (blue marked states in panel
a)). Both plots are adopted from Ref. [33].

shown for the first set of parameters (presented in figure 4.1a)), but a very similar result

was obtained for the second set of parameters (resented in figure 4.1c)).

Another justification has to be made regarding the assumptions made during the

calculation of matrix elements. For the derivation of the final IPES intensity a three-step

model and an assumption about slow variations of matrix elements with energy was

used. The three-step model was already shown to closely match the experiments both

within the framework of the PES [28, 29, 92] and the IPES [105]. Moreover, the model,

including the assumption about slow variations of matrix elements was also proven to

match PES experiments of occupied σ bands both related to graphene and graphite

[28, 29, 92, 125]. Due to the same origin of the σ and σ∗, time-reversal symmetry of

IPES and PES processes3 and small energy range of the simulations, the same validity

of results can be expected using the model within the IPES.

3As discussed in Ref. [67] and mentioned in section 2.2, both processes can be seen as a time-reversal of
each other in an application in solids.
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Figure 7.2: Sum over the projection σ band wave function into px and py (blue) and s
orbitals (green) a) and corresponding p-like band character of theσ orbitals b) with the
same parametrization as in Fig. 4.1a). Projection into px and py is dominant and both
σ bands are almost p-like which is in good agreement with previously published first
principle calculations.

As briefly mentioned in section 3.3.4, a free-electron like initial state can be assumed

due to a presence of a continuum of states above the vacuum level [34]. This can also be

seen from figure 7.2b) where free-electron bands are present between approximately 10

and 20 eV. Moreover, the origin of the bands is not well resolved (see figure 7.2a)) which

also supports the assumption of a free-electron-like initial state. This comes from the

initial fee-electron like state described by a plane wave, which can be further expanded

into a series of spherical harmonics (in other worlds, it is a combination of different

atomic orbitals).
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7.3 IPES Graphene

Results presented in figure 6.7 showed a single resolved peak at approximately 3.5 eV

above the Fermi level. The result is very different from the spectra measured on ML

graphene (MLG) on 6H-SiC obtained in Ref. [39], where a very distinct peak was also

measured at approximately 6 eV above EF (see figure 7.3). However, this peak (de-

noted by C) was attributed to the presence of Si vacancies in the topmost layers of the

substrate[127]. Due to a different polytype of SiC and hence different layer stacking

and structure, this peak can be missing in 4H-SiC. The first peak was assigned to the

unoccupied σ∗ band.

Figure 7.3: IPES measurement of 6H-SiC substrate (BLG), together with ML, BL and TL
graphite gown on the substrate (denoted by 1MLG, 2MLG, 3MLG). Peak B was attributed
to σ∗, peak C to the presence of Si vacancies in the topmost layers of the substrate.
Adopted from Ref. [39].

Figure 7.4 shows a modification of the previously presented IPES measurement of

the only identified peak, now also including the results from the theoretical model. In

figure 6.9b) a peak height (blue) is shown together with expected values for σ∗ calcu-

lated using the TB model, both with electron-phonon coupling (green) and without

(red). It can be seen that even strong electron-phonon coupling does not show a signif-

icantly different expected intensity, which should still be suppressed at Γ. The suppres-
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sion of intensity is also preserved even if the coupling constant ci between the initial

state and incoming electron is varied.

In the measured data, the intensity is non-vanishing at normal incidence which

suggests that the measured band is not a σ∗ band and could have been previously mis-

judged [39]. Moreover, peak height is asymmetry, which can be attributed to experi-

mental geometry and a related polarization pre-factor which was omitted in the calcu-

lations4. It is worth reminding that both the detector and the electron gun were fixed

during the measurement, whereas the sample was rotated. This resulted in a change of

angle between the sample normal and the detector.

The minimum of the energy band around 3.5 eV is below the vacuum level present

at 4.3±0.2 eV (determined by target current spectroscopy [69, 70]) which allows for the

existence of image potential states. This is in good agreement with previously published

results using 2PPES [36], where the first two image-potential states were found at 1.05

and 0.78 eV below the vacuum level. Now, consider figure 7.4c) showing the peak width.

The averaged peak width (FWHM) is just slightly below 0.5 eV which is higher than the

resolution of the instrument (0.35 eV). If the energy difference of 0.27 eV between the

two image potential states is considered and the same intensity of the peaks is con-

sidered (the peaks are very sharp and so here two delta-like peaks are considered), a

convolution with the instrument resolution of 350 meV results in a Gaussian-like peak

with FWHM of approximately 0.5 eV. This FWHM agrees well with the determined peak

width.

From the fit in Fig. 6.9a), the effective mass was determined to be 1.5± 0.2 free-

electron masses which is above the expected free-electron mass for image potential

states [36]. It is worth noting that the fit is rather rough and its minima is not at K∥ = 0

as it should be 5. The bad fit can be attributed to an insufficient amount of data points

. For further judgements of the dispersion, more data points are needed.

4In the simulations, the polarization term was considered to be constant (see section 3.3.4), resulting in an
isotropic photon emission to whole half-space above the sample.

5The value of 0.1Å−1 for the minimum of the band would correspond to a misalignment of the sample of
6°. This cannot happen - the sample holder holds stiff in the manipulator and the angle deviation is typically
within 1°)
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Figure 7.4: Peak dispersion a), normalized peak height b) and peak width c) are shown.
In panel a), measured values denoted blue (the blue line is just to guide the eye, mea-
sured point are displayed with error bars) are fitted with a parabolic fit (red). The dis-
persion seems to deviate a lot from the parabolic shape but for further judgements,
better measurement is needed. In panel b), measured normalized peak height is shown
(blue). The height is non-symmetric probably due to the geometry of the apparatus and
experimental alignment. Expected values from the band structure simulation both con-
sidering strong electron-phonon coupling and no coupling are shown for comparison
(green and read lines respectively). The last panel (c)) shows FWHM of the measured
peak which is bigger than the instrument broadening (0.35 eV, 0.1Å−1).
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7.4 Final Thoughts and Further Work

The experiments of ML graphite on 4H-SiC presented in this work showed only one

resolved state which was assigned to the two lowest image-potential states. However,

the surface quality judgement of the sample was just based on a LEED pattern which

can be misleading since no reasonable data can be obtained even if the LEED pattern

is visible. Hence, further surface quality investigation (such as ARPES as mentioned in

section 2.2.2) should be performed before the next KRIPES measurements.

The simulations or KRIPES intensity showed that no intensity should be expected

at the minimum of the lowest unoccupied σ∗ bands. The fact that the lowest state was

attributed to the image potential state suggests that further investigation at higher en-

ergy should be done. Further experiments should be started at higher angles (such as

10° from normal incidence) where the intensity of the peak should be sufficient for cer-

tain identification. The fact that the intensity is vanishing at normal incidence com-

plicates an investigation of possible electron-phonon coupling in the σ∗ band or other

many-body effects. If the band is found, the experiment should be performed with 1°

angle increments to provide a sufficient data set to see the deviations from the parabolic

shape. To further support the measurement, the polarization factor in the matrix ele-

ment calculation and the coupling constant between the initial state and in incoming

electron should be included.

This complication with a possible investigation of electron-phonon coupling in the

lowest σ∗ band rose a question about the possibility to investigate electron-phonon

coupling in the image-potential state. To the author best knowledge this has not been

done for graphene, but already some studies exist with a connection to metallic sur-

faces [128, 129]. As presented in Ref. [37], the image-potential states wave function

has a significant overlap with the atomic orbitals and thus the coupling should be pos-

sible. However, since the image-potential states are below the vacuum level, different

spectroscopic techniques such as 2PPES should be considered.

In order to be able perform the precise KRIPES experiments at NTNU laboratory,

the electron detector should be modified to improve its resolution. As discussed in sec-

tion 2.3.3, this can be achieved by a different type of window introduced in the photon

path, for instance made out of SrF2. Ideally, the window should be removable without

opening the vacuum chamber in order to allow both high efficiency and high resolution

measurements.
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Chapter 8

Conclusion

The aim of the thesis was to simulate inverse photoemission intensity from the lowest

unoccupied σ∗ band and consequently measure graphene band structure in order to

investigate the origin of the previously claimed σ∗ band found in the literature. The

tight-binding model of graphene was implemented and justified to model the band

structure. In the three-step model and with a free-electron like initial state and dipole

approximation, an emission spectrum for inverse photoemission was calculated. To

fully understand the two lowest unoccupied σ∗ bands of graphene, a possible coupling

to transversal optical phonons was included to account for many-body interactions in

graphene. This coupling has been previously showed to play a significant role in the oc-

cupied σ bands, and due to the symmetry properties of the bands can be also expected

in the unoccupied σ∗ bands.

The results from the calculations showed zero intensity at normal electron inci-

dence which is contradictory to previously published experimental results, where the

claimed σ∗ state was non-vanishing at normal electron incidence. This suggests that

the previously found state does not originate from intralayer atomic orbitals, but rather

corresponds to a different state, such as an image potential state.

In order to measure the band structure experimentally, both the energy and mo-

mentum resolution of home-lab apparatus had to be measured. Especially the former,

which was found to be below 0.80 eV, is too limiting for detailed measurements of the

band structure. The final experiments of mono-layer graphene on 4H-SiC were there-

fore performed at Physikalisches Institut, Münster. Notwithstanding the graphene sam-

ple annealing at 500 °C, the surface quality check by low energy electron diffraction and

the sample placed in an ultra high vacuum, a single peak with a minimum at approx-

imately 3.5 eV above the Fermi level was identified. The energy of the peak minimum

corresponds well to the previous experiments, where, however, other peaks were found.
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The experiment nonetheless used a different polytype of the substrate which can give a

rise to different observed states.

The position of the peak at 0.8 eV below the vacuum level is in good agreement with

previously theoretically predicted image-potential states which were studied using two-

photon photoemission spectroscopy. The intensity of the measured peak was found to

decrease towards higher electron incidence angles and being non-vanishing close to

the normal incidence. This is again contradicts the obtained values from the theoret-

ical model. Moreover, the width of the state was found to be bigger than the energy

broadening of the experiment. The determined width corresponds well to two peaks

separated by 0.25 eV which merge together due to the experimental resolution. This

again agrees well with previous experiments and theoretical predictions, where the two

lowest image-potential states are separated by 0.27 eV. For further judgements about

the origin of the state, further experimental work is required regarding both sample

quality investigation and inverse photoemission measurements.

The overall results suggest that the lowest unoccupiedσ∗ states are present at higher

energies (as predicted by first principle calculations), however, their observation and

identification seems to be rather difficult due to vanishing matrix elements at a normal

electron incidence. This rises the question of whether or not a strong electron-phonon

coupling can be observed in the lowestσ∗ bands in graphene using inverse photoemis-

sion spectroscopy.

Looking back to the results, it can be seen that an understanding of the band struc-

ture and band origin of one of the theoretically simplest materials, graphene, has proved

itself to be extremely difficult and spans far beyond this thesis.
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Acronyms

1BZ FirstBrillouin zone

1D One-dimensional

2BZ SecondBrillouin zone

2D Two-dimensional

2PPES Two-photon photo-emission spectroscopy

3D Three-dimensional

ARPES Angle resolved photo-emission spectroscopy

BL Bi-layer

BZ Brillouin zone

PES Photo-emission spectroscopy

DFT Density function theory

FWHM Full width at half maximum

GM Green’s function

HOPG Highly oriented polycrystalline graphite

IPES Inverse photo-emission spectroscopy

KRIPES k-resolved inverse photo-emission spectroscopy

ML Mono-layer
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LA Longitudinal acoustic

LAPACK Linear Algebra PACKage

LCAO Linear combination of atomic orbitals

LEED Low-energy electron diffraction

LEEM Low-energy electron microscopy

LO Longitudinal optical

TA Transversal acoustic

TB Tight binding

TCS Total current spectroscopy

TL Tri-layer

TO Transversal optical

TPE Tunable photon energy

VLEED Very-low-energy electron diffraction

TPE Tunable photon energy

UHV Ultra high vacuum

UV Ultra-violent

ZA Out-of-plane acoustic

ZO Out-of-plane optical



Appendix B

Additional Figures and Theory

B.1 Decomposition of Atomic Orbitals

=

py

+
θ

pπ pσ

cosθ × sinθ ×

Figure B.1: Decomposition of a py orbital into orbitals parallel pσ and perpendicular
pπ to the line defined by two neighbouring carbon atoms.

B.2 The Full Form of The Transfer and Overlap Integral

Matrices for Graphene

As described in the section 3.1.4, the transfer and overlap integral matrices can be ex-

pressed as

H=


H11 . . . . . . H16

...
. . .

...
...

. . .
...

H61 . . . . . . H66

=
[
HA A HAB

HB A HBB ,

]
(B.1)

S=


S11 . . . . . . S16

...
. . .

...
...

. . .
...

S61 . . . . . . S66

=
[
SA A SAB

SB A SBB

]
(B.2)
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with sub-matrices

HA A =HBB =

ε2s 0 0

0 ε2p 0

0 0 ε2p .

 (B.3)

SA A =SBB =

1 0 0

0 1 0

0 0 1

 . (B.4)

Elements of the sub-matrix HAB can be written as [97]

H14 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|H |R ′+RB, s〉 = Hssσ

3∑
i=1

ei k ·Ri (B.5)

H15 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|H |R ′+RB, px〉 = Hspσ

3∑
i=1

ei k ·Ri cosθi (B.6)

H16 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|H |R ′+RB, py 〉 = Hspσ

3∑
i=1

ei k ·Ri sinθi (B.7)

H25 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, px |H |R ′+RB, px〉

=
3∑

i=1

[
Hppσcos2θi +Hppπsin2θi

]
ei k ·Ri (B.8)

H26 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, px |H |R ′+RB, py 〉

=
3∑

i=1

[
Hppσ−Hppπ

]
sinθi cosθi ei k ·Ri (B.9)

H36 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, py |H |R ′+RB, py 〉

=
3∑

i=1

[
Hppσsin2θi +Hppπcos2θi

]
ei k ·Ri . (B.10)

The rest of the elements of sub-matrix HAB can be written using previously derived

elements as H24 = −H15, H34 = −H16 and H35 = H26. Due to the identical carbon

atoms in the unit cell, sub-matrix HB A is just a complex conjugation of HAB .

Elements of the sub-matrix SAB have the same form as elements of HAB with only

Hssσ, Hspσ, Hppσ and Hppπ exchanged for Sssσ, Sspσ, Sppσ and Sppπ in the final expres-
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sions. Here, an example of S14 is shown:

S14 = 1

N

N∑
R ,R ′′′

ei k ·(R ′−R)〈R +RA, s|R ′+RB, s〉 = Sssσ

3∑
i=1

ei k ·Ri . (B.11)

Similarly, SB A is just a complex conjugated SAB .

B.3 Real Atomic Orbitals

For better illustration, the whole theory of this work was described using the real atomic

orbitals, s, px , py and pz which are defined as a linear combination of the complex

hydrogen-like orbitals and are defined as

s = Rn,0(r )Y 0
0 (θ,φ), (B.12)

px = 1p
2

Rn,1(r )
[
Y 1

1 (θ,φ)−Y −1
1 (θ,φ)

]
, (B.13)

py = 1

i
p

2
Rn,1(r )

[
Y 1

1 (θ,φ)+Y −1
1 (θ,φ)

]
, (B.14)

pz = Rn,1(r )Y 0
1 (θ,φ), (B.15)

where n is the main quantum number, and for valence electrons which contribute to

electronic band structure n = 2. Rn,l (r ) and Y m
l (θ,φ) are the radial and the angular part

of atomic orbitals (the latter is known as spherical harmonics [112]), l and m are orbital

and magnetic quantum numbers respectively. The radial part can be written as

Rn,l (r ) ∝ er /nr0

[
2r

nr0

]l

L2l+1
n−l−1

(
2r

nr0

)
, (B.16)

where r0 is the characteristic orbital radius and for C is r0 = 62 × 10−12 m [130, 131]

and L2l+1
n−l−1

(
2r

nr0

)
are associated Laguerre polynomials [112]. The angular parts can be

written as

Y 0
0 (θ,φ) =

√
1

4π
(B.17)

Y 0
1 (θ,φ) =

√
3

4π
cos(θ) (B.18)

Y 1
1 (θ,φ) =

√
3

8π
sin(θ)eiφ (B.19)

Y −1
1 (θ,φ) =

√
3

8π
sin(θ)e−iφ (B.20)
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The Fourier transform of Rn,l (r )Y m
l (θ,φ) has a form fn,l (k)Y m

l (θk ,φk ) [111, 112],

where Y m
l (θk ,φk ) are the same spherical harmonics as defined in Eq. (B.17-B.20). The

radial part can be written as [112]

fn,l (k) ∝ (−i k ′)l

(k ′2 +1)l+2
C l+1

n−l−1

(
k ′2 −1

k ′2 +1

)
, (B.21)

where C l+1
n−l−1

(
k ′2−1
k ′2+1

)
are Gegenbauer polynomials and k ′ = nkr0. Using the definitions

for real atomic orbitals (Eq. (B.12-B.15))), the real atomic orbitals in k-space represen-

tation can be expressed as

s = fn,0(k)Y 0
0 (θk ,φk ), (B.22)

px = 1p
2

fn,1(k)
[
Y 1

1 (θk ,φk )−Y −1
1 (θk ,φk )

]
, (B.23)

py = 1

i
p

2
fn,1(k)

[
Y 1

1 (θk ,φk )+Y −1
1 (θk ,φk )

]
, (B.24)

pz = fn,1(k)Y 0
1 (θk ,φk ). (B.25)
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B.4 Energy Resolution Analysis of Instrument Data-Sheet

Figure B.2 shows energy analysis of the data-sheet listed plot. The data were digitalized

from the data-sheet [? ] and the analysis described in section 5.2 was used.
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Figure B.2: Data-sheet IPES measurement of Fermi Edge on polycrystalline silver (111)
a) and apparatus energy resolution function b). The extracted data (black) are fitted by
a polynomial (green) which is then fitted by a convolution (red) of the Fermi edge (blue)
the detector resolution function to Dtot displayed in b) (red). It can be seen that Dtot has
a non-Gaussian shape due to a presence of a "tail".
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B.5 Standard Deviation of Calculated Parallel Momenta

Deviation
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Figure B.3: Standard deviation of∆K∥ calculated using the method described in section
5.1. Due to the polynomial fit, standard deviation blows up at the vicinity of the electron
gun as well as at a far distance from the gun. In order to improve the variations of the
uncertainty, the beam profile should be measured at more values of x.
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