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Abstract

The aim of this Master thesis was to perform a theoretical study of the
electron-phonon coupling in graphene. The main results of the thesis are
the electron-phonon coupling constant as a function of the Fermi energy,
a derivation of the phonon dispersion and a calculation of the band struc-
ture. It is shown that the electron-phonon coupling constant is correlated
with the density of states, which makes it highly dependent on the electron
bands. The calculated band structure is in good agreement with literature.
For the phonon dispersion, the quantitative shape matches known results,
but lacks some of the details. Despite the lack of details in the dispersion, it
is considered sufficient for calculating the electron-phonon coupling, as the
coupling is mostly determined by the band structure.
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Sammendrag

Hensikten med denne masteroppgaven har vært å gjennomføre en teoretisk
studie av elektron-fonon-kobling i grafen. Hovedresultatene i oppgaven er
elektron-fonon-koblingskonstanten som funksjon av Fermienergien, en ut-
ledning av fonondispersjonen og en beregning av båndstrukturen. Det vises
at formen til elektron-fonon-koblingskonstanten følger formen til tettheten
av tilstander i båndstrukturen svært tett. Båndstrukturen stemmer godt ov-
erens med eksisterende resultater. Formen til fonondispersjonen er lik for-
men til eksisterende resultater, men detaljene er forskjellige. Ettersom det
primære målet med fonondispersjonen er å beregne elektron-fonon-koblings-
konstanten, som er svært avhengig av båndstrukturen, anses modellen som
brukes som god nok til sitt formål.
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Chapter 1

Introduction

1.1 Graphene - a remarkable material

The pencil, an effective tool used for communication and art, has been com-
monly used since the 16th century [1], but in recent years its popularity has
decreased as digital tools have emerged. Thus some label pencils as simple,
boring, and out of date. The discussion about whether pencils are to stay or
not will not be taken here, the focus will rather be on the truly remarkable
and highly disruptive physics contained in a simple, gray pencil mark. In
2004, a research group at the University of Manchester lead by A. Geim and
K. Novoselov was able to pick graphite apart, layer by layer, thus creating
the first two-dimensional crystalline material, graphene [2]. For the dis-
covery of graphene and exhaustive investigations of its properties [3], they
shared the Nobel prize in 2010.

Even though graphene is a simple honeycomb lattice of carbon atoms, it
shows extraordinary properties which outperforms much more complex ma-
terials in many respects. Among the mechanical properties is an immense
in-plane strength [4], a Young’s modulus of 1000GPa (for comparison, high-
strength concrete has 30GPa and steel up to 200GPa [5]), and a high thermal

1



1.1. GRAPHENE - A REMARKABLE MATERIAL

conductivity [6]. Among the electrical properties are great electron mobil-
ity [7] and the ability to sustain extremely high densities of electrical cur-
rent [8], up to a million times more than copper. Another interesting prop-
erty is that graphene shows impermeability to any gases [9], thus it is a
highly interesting material for hydrogen storage [10,11].

From a theoretical physicist’s point of view, perhaps the most interesting
aspect arise from the electron dispersion [3, 12]. At two distinct points in
the electronic spectrum, Dirac cones form [13], i.e. the electron dispersion is
linear in momentum. The electrons behave as massless relativistic particles,
known as Dirac fermions, and show exceptional transport properties [14].
Due to this, the quantum Hall effect has been observed at room temperature
[15]. As the quantum Hall effect is a purely quantum mechanical effect, one
would assume it to require extreme conditions to be observable, e.g. by using
a cold atom system. Thus the discovery of the effect at room temperature in
graphene marked the start of a new paradigm in two-dimensional electron
physics, taking it from low-temperature laboratories to the real world [16].

Recently, in March 2018, the Jarillo-Herrero group at MIT published two
papers, in which they reported bi-layer graphene to be an unconventional
superconductor and exhibit Mott-like states [17,18]. The transition temper-
ature to the superconducting state was reported to be 1.3K , which is, sur-
prisingly, a remarkably high temperature given the low carrier density [19].
An additional observation that supports labelling graphene as an unconven-
tional superconductor is the similarity of the temperature-carrier-density
phase diagram to the one obtained for cuprates [17], copper oxides known
to be unconventional superconductors. The research on high-temperature
superconductors has the last three decades focused on cuprates, but without
promising results [20], as the unconventional pairing is not fully understood.

As graphene has a simple form and is highly tuneable, it is an ideal platform
for studying strongly correlated phenomena and quantum effects. By gain-
ing a better understanding of them, one might gain insights in the physics of
high-temperature superconductors and quantum spin liquids [17]. The dis-
covery of superconductivity in bi-layer graphene might be the trigger behind
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1.2. THE AIM AND STRUCTURE OF THE THESIS

the development of a theory of unconventional superconductors and room
temperature superconductivity. These are truly exciting times!

1.2 The aim and structure of the thesis

Solids can be divided into two subsystems, an electron and a phonon system.
In this thesis, properties of the two subsystems of graphene are investigated,
both as stand-alone systems and as a single coupled system. The main result
of the thesis is the dependency of the electron-phonon coupling constant of
the Fermi energy in the low temperature limit, which is presented in section
5.3.3. In addition, the band structure and phonon dispersion, presented in
section 5.1 and 5.2, are important results. Two key questions to answer
will be how much the different electron bands couple to the different phonon
modes, and if there are any band transitions that dominate the electron
scattering process.

The structure of the thesis is as follows. In chapter 2 mathematical conven-
tions and a short introduction to second quantization is presented. Chapter
3 contains derivations of the models applied in the thesis. A brief introduc-
tion to graphene is given in chapter 4. In chapter 5 the models of chapter 3
are specialized to graphene and relevant properties are calculated. Conclud-
ing remarks are given in chapter 6.

3





Chapter 2

Preliminaries

2.1 Mathematical conventions

In this master thesis a mathematical convention common in the physics com-
munity will be used. Vectors will be bald faced, like the wave vector k and
the position vector r, where the Cartesian unit vectors are exceptions as they
are denoted with a hat, x̂, ŷ, ẑ. Scalars, complex or real, will be denoted with
a normal symbol, e.g. z, and the complex conjugate with an asterisk, z∗.

The Hermitian conjugate will be emphasized with a dagger, as in ψ†. Ma-
trices written out in component form will be enclosed by brackets. The
commutation relation between A and B is written with square brackets,
[A,B] = AB−BA, while the anti-commutator is written with curly brack-
ets, {A,B} = AB+BA. The curly brackets will also denote a set of variables
or values, e.g. {α,β}= {x, y, x} and i = {1,2,3}. It will be clear from the context
which interpretation of the curly brackets that is intended; when operators
are inside the brackets it is an anti-commutator, otherwise it denotes a set.
A sum over two sum indices where they are not suppose to be equal are
written

∑
i 6= j, as a short notation for

∑
i, j,i 6= j.
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2.2. SECOND QUANTIZATION

The creation and annihilation operators will mostly be denoted by c(†)
λ

, but

also by
(
c(†)
λ

)A
and

(
c(†)
λ

)B
, depending on the context. The subscript of the

operators will typically be written c(†)
kα, but sometimes it will be separated

by a comma, e.g. c(†)
k+q,α.

2.2 Second quantization

In 1927, P. Dirac introduced a new mathematical approach to describe QED1

systems [21]. The mathematical approach was within a few years adapted
by the community which has since then developed it to what is now known as
the second quantization formalism. The technique is adapted from quantum
field theory where particles are interpreted as excitations of fields and the
traditional wave function is replaced by occupation number states. In the
occupation number representation a state is written as |N〉 = ∣∣nλ1 ,nλ2 , ...

〉
,

where there are nλi particles in state λi and in total N particles. In second
quantization, creation and annihilation operators, c†

λi
and cλi , play a central

role as they create or remove a particle from state λi.

cλi

∣∣nλ1 ,nλ2 , ...,nλi , ...
〉=p

nλi

∣∣nλ1 ,nλ2 , ...,nλi −1, ...
〉

(2.2.1)

c†
λi

∣∣nλ1 ,nλ2 , ...,nλi , ...
〉=√

nλi +1
∣∣nλ1 ,nλ2 , ...,nλi +1, ...

〉
(2.2.2)

A many-body state can be created by employing creation operators to the
vacuum state: ∏

i=1

(
c†
λi

)nλi |0〉 = ∣∣nλ1 nλ2 ...nλl ...
〉= |N〉 . (2.2.3)

In the same manner, the vacuum state can be created by employing annihi-
lation operators on a given state

1Quantum electrodynamics
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2.2. SECOND QUANTIZATION

∏
i=1

(
cλi

)nλi |N〉 = ∏
i=1

(
cλi

)nλi .
∣∣nλ1 nλ2 ...nλl ...

〉= |0〉 (2.2.4)

For bosons there are no restrictions on the occupation number of a state,
except that it has to be a non-negative integer. In fact, all the particles
could in principle be in the same state. Fermions on the other hand, as
they follow the Pauli principle, are restricted to 0 or 1. Hence, applying
a creation operator to an already occupied fermionic state will annihilate
the many-body state. As bosons behave symmetrically and fermions anti-
symmetrically with respect to interchange of particle indices, it can be shown
[22] that the following commutation and anti-commutation relations holds:

[cλ, cλ′ ]= 0

[c†
λ
, c†
λ
′ ]= 0

[cλ, c†
λ
′ ]= δλλ′

{cλ, cλ′ }= 0

{c†
λ
, c†
λ
′ }= 0

{cλ, c†
λ
′ }= δλλ′

(2.2.5)

where the left-hand-side panel is for bosons and the right for fermions. { , }
denotes anti-commutators.

All operators can be expressed in terms of creation-annihilation-operator
pairs in the second quantization formalism. Operators will either be single-
particle or two-particle operators, where single and two refer to the number
of creation-annihilation pairs involved. If the first-quantized form of an op-
erator Ô1 =∑

i Ô1(ri) is known, the second quantized form is obtained via

O1 =
∑
λ,µ

〈λ|Ô1
∣∣µ〉

c†
λ

cµ

=
∫

dr
∑
λ,µ

ψ∗
λ(r)Ô1(r)ψµ(r)c†

λ
cµ

=
∫

dr ψ̂†(r)Ô1(r)ψ̂(r),

(2.2.6)

where the field operators ψ̂†(r),ψ̂(r) have been introduced and the specie
index is suppressed. The field operators are expressed in terms of a lin-
ear combination of creation/annihilation operators projected onto the basis
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2.2. SECOND QUANTIZATION

vectors, ψk(r), where k is the set of quantum numbers that describes the
system [22]:

ψ̂(†)(r)≡∑
k
ψk(r)(†)c(†)

k . (2.2.7)

In the same manner, the second quantized version of a two-particle operator
O2 =∑

i 6= j Ô2(ri,rj) is

O2 =
∑

λ,µ,γ,ν

〈
λµ

∣∣Ô2
∣∣γν〉

c†
λ

c†
µcγcν

=
∫

drdr′ ψ̂†(r)ψ̂†(r′)Ô2(r,r′)ψ̂(r′)ψ̂(r)
(2.2.8)

where the matrix elements are〈
λµ

∣∣Ô2
∣∣γν〉= ∫

dr1dr2 ψ
∗
λ(r1)ψ∗

µ(r2)Ô2ψγ(r2)ψν(r1).

In condensed matter physics, the system is often described as a lattice, which
makes it convenient to pick the lattice points as the basis λ. Due to the
periodicity of lattices, the Fourier transform of the operators, ck and c†k, is
introduced

cri =
1p
N

∑
k

ckeikri

c†
ri =

1p
N

∑
k

c†
ke−ikri ,

(2.2.9)

where N is the number of lattice sites in real space, ri is the position of lat-
tice site i and the sum over k runs over the first Brillouin zone. In addition,
the relation

1
N

N∑
j=1

e−i(k−k′)rj = δkk′ , (2.2.10)

is very useful.
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Chapter 3

The Fröhlich Hamiltonian

A perfect solid is made up of a lattice of atoms and electrons. In practice,
there will be some impurities in the lattice and some surface effects due to
the finite size of the crystal, they are however neglected here. Hence it is
convenient to divide the solid into two connected subsystems. The aim of
this section is to present a Hamiltonian that describes such a system and in
addition is suited for a perturbative treatment. The Fröhlich Hamiltonian
is precisely such a Hamiltonian

Ĥ = Ĥel + Ĥph + Ĥel+ph. (3.0.1)

It was originally introduced by H. Fröhlich in the 1950s to describe a con-
duction electron in an ionic crystal, basically a polaron [23]. In this thesis it
will be used to describe a solid, a coupled system of electrons and phonons.
The coupling term will be treated as a perturbation to the exactly solvable
non-interacting electron and phonon parts.

In section 3.1, a tight-binding model for the electrons is derived. Section 3.2
contains a derivation of the phonon Hamiltonian, considering up to next
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3.1. A TIGHT-BINDING MODEL FOR ELECTRONS

nearest neighbour ion interactions. Finally, in section 3.3, the electron-
phonon coupling is introduced.

3.1 A tight-binding model for electrons

Due to bonding between lattice sites, (some of) the electrons of a solid are
said to be localized, making it convenient to describe them using tight-binding
models. Such models assume that the electrons are constrained to a small
region in the vicinity of their respective atoms, hence limiting the range of
interaction to a small neighbourhood around the lattice sites. The first at-
tempt to describe solids using a tight-binding model was introduced by F.
Bloch in 1928 [24], where he approximated the wave functions by s orbitals
of the different lattice sites. In 1934, H. James, N. Mott and H. Skinner
made a huge improvement to Bloch’s model when they took different atomic
orbitals into account [25]. This 1934 model laid the foundation of the model
which is used in this thesis, the LCAO1 method. It was introduced by J.
Slater and G. Koster in the important 1954 paper [26]. The key idea is that
a superposition of the wave functions from isolated atoms is sufficient to
describe the electronic band structure of a solid.

The crystal potential is determined by the sum of the potential stemming
from the atom of the lattice

V (r)=
N∑

j=1

n∑
i=1

Vat,i(r−R j −τi), (3.1.1)

where j runs over the unit cells, i over the atoms in each unit cell, Vat,i is the
potential of a single atom of type i, R j gives the position of unit cell j and
τi denotes the relative position of atom i within the unit cell. The resulting
crystal Hamiltonian is

Ĥ =−∇2 +V (r). (3.1.2)

1Linear Combination of Atomic Orbitals

10



3.1. A TIGHT-BINDING MODEL FOR ELECTRONS

The aim is to link the electron wave function to the atomic orbitals, which
satisfy the Schrödinger equation(−∇2 +Vat,i

)
φni = Eniφni, (3.1.3)

where φni is the n’th orbital of atom type i and Eni its associated energy. As
the tight-binding model will be applied to graphene, which is only made up of
carbon atoms, the lable i is omitted from the potential and the orbitals. Due
to the periodicity of the lattice, the wave functions will be Bloch waves [27]

Φk(r)= eikruk(r), (3.1.4)

where uk(r) has the same periodicity as the lattice and k is a wavevector
from the first Brillouin zone. A linear combination of Bloch waves from the
n’th orbital from each atom is called a Bloch sum [28] for the n’th orbital

Bnk(r)= 1p
rN

N∑
j=1

r∑
i=1

eik(R j+τi)φn(r−R j −τi), (3.1.5)

where n is the orbital index, j runs over the N unit cells, i over the atoms
in each cell and the prefactor ensures normalization. The motivation behind
the name is that it satisfies Bloch’s theorem [29]

Bnk(r+R j)= eikR j Bnk(r), (3.1.6)

where R j is an arbitrary lattice vector. The Bloch sum is not an eigenfunc-
tion of the crystal Hamiltonian itself, thus the wave function is obtained as
a linear combination of the Bloch sum for different orbitals

ψk(r)=∑
n

bn(k)Bnk(r), (3.1.7)

where the coefficients bn(k) are constrained to∑
n
|bn(k)|2 = 1. (3.1.8)
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3.1. A TIGHT-BINDING MODEL FOR ELECTRONS

The coefficients bn(k) will determine the contribution from the Bloch sum
of the n’th orbital to the wave function. This wave function satisfies the
Schrödinger equation

Hψk(r)= Ekψk(r), (3.1.9)

where the eigenvalues give the electron band structure. To transform the
equation into an eigenvalue problem, it is multiplied from left by the Bloch
sum B∗

mk′δkk′ = B∗
mk and integrated over the whole space. Note that the

Bloch sum at each side of the equation have equal labels k but different
orbital indices. The eigenvalue problem takes the form∑

n
Hm,n(k)bn(k)= Ek

∑
n

Sm,n(k)bn(k), (3.1.10)

with matrix elements

Hm,n(k)=
∫

dr B∗
mk(r)ĤBnk(r)

Sm,n(k)=
∫

dr B∗
mk(r)Bnk(r).

(3.1.11)

The matrix H(k) is the Hamiltonian matrix 2, and S is called the overlap
matrix. The eigenvalue problem can be compactly expressed as a matrix
equation

[H(k)−EkS(k)]bk = 0. (3.1.12)

In general S(k) is not equal to identity, hence the matrix equation is a gen-
eralized eigenvalue problem, known as a secular equation. By using this
approach, the resulting bands will be double degenerate as there is no spin
dependency in the model.

As a last remark, note that utilizing the eigenvectors obtained by solving
the secular equation, the Hamiltonian can be diagonalized. The correspond-
ing basis is obtained as a linear combination of the old. Thus the diagonal
Hamiltonian will describe quasiparticles rather than electrons.

2It goes also by the name jumping matrix [28]
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3.2. THE PHONON HAMILTONIAN

3.2 The phonon Hamiltonian

Lattices consisting of atoms or molecules are not as perfect in the real world
as they are in theory - they contain impurity as well as atomic motion due to
thermal fluctuations. The focus of this section will be on the movement, or
more precisely, the fluctuation of the atoms around their equilibrium posi-
tion. To describe this process, the quantum mechanical concept of phonons is
introduced. Their analogue in classical mechanics are normal modes, single-
frequency lattice oscillations which forms a basis for the vibrations. The
phonon is treated as a quasiparticle as it represents an excited quantized
state of an vibrational mode of the lattice.

The concept of quantized lattice vibrations was introduced by Einstein in
1907 [30]. In 1930, the Soviet physicist I. Tamm developed these ideas
into a theory regarding quantization of elastic oscillations [31], i.e. a quan-
tized sound field. Inspired by the name photon, the fellow Soviet physicist J.
Frenkel came up with the name phonon [32], which comes from Greek and
translates to sound or voice.

Phonons are classified according to the characteristic of the lattice vibra-
tion. Thus they are divided into two branches, an acoustical and an optical.
The ions of the optical branch vibrate anti-symmetrically. As the ions are
charged, the anti-symmetric vibration will set up dipole moments that cou-
ple to the electromagnetic- or the optic field. The acoustical branch is char-
acterized by symmetric ion vibrations, just as the longitudinal mechanical
waves known as sound waves. Keeping this in mind, the names optical and
acoustical are easily justified.

The classical Hamiltonian for an ion in a lattice is:

Ĥi =
p2

i

2Mi
+

N∑
j 6=i

V (Ri −R j), (3.2.1)

where Mi is the mass of lattice site i, N is the total number of lattice sites
and the sum over j runs over all other sites of the lattice. V is a Coulomb
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3.2. THE PHONON HAMILTONIAN

potential stemming from the other ions and R j is the position of the ion at
lattice site j. The full Hamiltonian is obtained by summing the site Hamil-
tonians

Ĥ =
N∑
i

Ĥi. (3.2.2)

Solving this problem is in general too hard, as the potential is dependent on
all of the dN variables, where d denotes the dimensionality of the system
and N the total number of lattice sites. A common approximation is to de-
velop the potential in a Taylor series. Hence it is convenient to express the
position of lattice site i as a small fluctuation around its equilibrium posi-
tion. Let Ri =R0

i +ui, where R0
i is the equilibrium position of the lattice site

and ui is the small fluctuation. Further, the fluctuation is decomposed onto
the three Cartesian directions, ui = xi x̂+ yi ŷ+ zi ẑ.

Moving on, the potential is Taylor expanded in a harmonic approximation.

V (Ri −R j)=V (R0
i −R0

j )+
∂V
∂Riµ

∣∣∣
R=R0

i

∆Riµ+ 1
2

∂2V
∂Riµ∂R jν

∣∣∣
R=R0

i

∆Riµ∆R jν,

(3.2.3)
where {µ,ν} = {x, y, z} and ∆Riµ = Riµ−R0

iµ. The zeroth order term is a con-
stant and therefore excluded. The first order term involves a first order
derivative evaluated at the equilibrium position, which is zero by definition.
The lowest order remaining term is the quadratic. Written out explicitly it
reads:

V (Ri −R j)(2) = 1
2!

(
∂2V
∂xi∂x j

∣∣∣
R=R0

i

∆xi∆x j + ∂2V
∂xi∂yj

∣∣∣
R=R0

i

∆xi∆yj + ∂2V
∂xi∂z j

∣∣∣
R=R0

i

∆xi∆z j

+ ∂2V
∂yi∂x j

∣∣∣
R=R0

i

∆yi∆x j + ∂2V
∂yi∂yj

∣∣∣
R=R0

i

∆yi∆yj + ∂2V
∂yi∂z j

∣∣∣
R=R0

i

∆yi∆z j

+ ∂2V
∂zi∂x j

∣∣∣
R=R0

i

∆zi∆x j + ∂2V
∂zi∂yj

∣∣∣
R=R0

i

∆zi∆yj + ∂2V
∂zi∂z j

∣∣∣
R=R0

i

∆zi∆z j

)
.

Hence, the potential part of the Hamiltonian is
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3.2. THE PHONON HAMILTONIAN

Ĥpot = 1
2

∑
i j

∑
µν

∆RiµΦ
i j
µν∆R jν, (3.2.4)

where the force constant matrix Φµν has been defined, with {µ,ν} = {x, y, z}.
The corresponding matrix elements are

Φ
i j
µν =

∂2V
∂Riµ∂R jν

∣∣∣
R=R0

i

, (3.2.5)

where i and j give the ions involved. Having determined the force constant
matrix, one may obtain the equation of motion for ion i, e.g. by calculating
the Lagrangian of the system and the associated Lagrange’s equation∑

iµ
Mi∆R̈iµ =− ∑

i jµν
Φ

i j
µν∆R jν, (3.2.6)

where the double dots represent the second time derivative of the displace-
ment. To remove the time dependency the displacements are assumed to
follow a harmonic oscillation which motivates the ansatz

∆Riµ = uiµeiωiµ t. (3.2.7)

Inserting it into the equation of motion yields∑
iµ

Miω
2
iµuiµ =

∑
i jµν

Φ
i j
µνu jν. (3.2.8)

As the lattice is periodical, the position vector R j is decomposed into a lattice
vector giving the j’th unit cell and a component giving the relative position
of the ion within the unit cell, i.e. R j → R j +τi. Hence the matrix elements
of Φµν and the amplitude of the displacement are redefined

Φ
i j
µν→Φii′

µν( j− j′) and uiµ→ uniµ, (3.2.9)

where j, j′ runs over all unit cells and i, i′ over the atoms in the unit cell.
In addition, the force constants are assumed only dependent on the distance
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3.2. THE PHONON HAMILTONIAN

between the lattice sites and note the sites themselves. The equation of
motion takes the form∑

niµ
Miω

2
iµuniµ =

∑
j j′

∑
ii′µν

Φii′
µν( j− j′)un′ i′ν, (3.2.10)

where the eigenfrequencies are assumed independent of which unit cell they
correspond to. Further, the displacements are Fourier transformed

u jiµ =
∑
q

1√
Mi

ciµeiq(R j+τi), (3.2.11)

where ciµ is the amplitude. Introducing the vibrations in the equation of
motion and solving for ω2 yields∑

jiµ
ω2

iµciµ =
∑
j j′

∑
ii′µν

1√
MiMi′

Φii′
µν( j− j′)eiq′(Ri′+τi′ )e−iq(Ri+τi)ci′ν

=∑
j j′

∑
ii′µν

1√
MiMi′

Φii′
µν( j− j′)ei(q′−q)Ri ei(q′(∆ j′ j+τi′ )−qτi)ci′ν.

(3.2.12)

where the lattice vector ∆ j′ j = R j′ −R j. As the force constants are only de-
pendent on distance, summing over j is not an issue, and results in a factor
N and Nδ(q′−q) on respectively, the left- and right-hand side of the equa-
tion. Hence the equation of motion becomes

∑
iµ
ω2

iµciµ =
∑

ii′µν

(∑
j′

1√
MiMi′

Φii′
µν( j′)eiqRii′

j′

)
ci′ν

= ∑
ii′µν

D ii′
µν(q)ci′ν

(3.2.13)

where Rii′
j′ =∆ j′ j +τi′ −τi is the vector linking the atom at relative position

i within the unit cell of the centre of the coordinate system to the atom at
position i′ in the j′th unit cell. In addition, the matrix element D ii′

µν(q) has
been introduced:

D ii′
µν(q)=∑

j′

1√
MiMi′

Φii′
µν( j′)eiqRii′

j′ (3.2.14)
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The matrix D is the dynamic matrix and is the Fourier transform of a scaled
version of the force constant matrix. By treating the amplitudes, ciµ, as
a basis for the vibration, writing the equation in matrix form, multiplying
from left by c†

iµ, where † denotes the Hermitian conjugate, an eigenvalue
problem is obtained

ω2
q = c†D(q)c. (3.2.15)

Hence it is clear that the eigenvalues of the dynamic matrix give the eigen-
frequencies.

The resulting eigenvalue problem of d · r equations is a much simpler prob-
lem to solve than the original system of d · r ·N equations, where r denotes
the number of atoms in the unit cell and d the dimensionality of the system.
The cost of the simplification is that the dispersion has to be obtained for
each q in the first Brillouin zone. However, calculating for each q is a much
easier than solving the original system of equations.

3.3 Electron-phonon coupling

Electron-phonon coupling3 (EPC) is a fundamental interaction in condensed
matter systems as it couples the electron and ion subsystems. The interac-
tion is the mechanism behind phonon scattering of electrons, which causes
electrical resistance. In addition, the coupling is essential in the description
of conventional superconductivity due to a phonon exchange which results
in an effective attraction between electrons [33].

The Hamiltonian of a interacting electron system is

Ĥ =∑
i

p2
i

2m
+∑

j
V (ri,R j), (3.3.1)

3The electron-phonon coupling also goes by the name electron-phonon interaction.
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where pi is the momentum of electron i at position ri, V is the potential from
the lattice and R j is the position of the ion at lattice site j. The potential is
only dependent on the positions through the distance, meaning V (ri,R j) →
V (ri −R j). It is convenient to decompose the position of the ion as a small
fluctuation around its equilibrium position, R j = R0

j +u j, where R0
j denotes

the equilibrium position for ion j and u j is the fluctuation. The potential is
then developed in a Taylor series around the equilibrium position

V (ri −R j)=V (ri −R0
j )+u j∇R j V

∣∣∣
ri−R0

j
+ ... (3.3.2)

When the fluctuations are small, a development to first order is assumed to
be sufficient for describing weak electron-phonon coupling. The zeroth order
term gives the contribution from a static lattice, while the first order term is
responsible for the electron-phonon coupling.

By choosing the basis to be Bloch sums in a tight-binding model, as intro-
duced in section 3.1, the Hamiltonian is brought to second quantized form

Ĥ = Ĥ0 +
∑

k′kαβ

∫
dr φ

β∗
k′ (r)u j∇R j V (r−R j)

∣∣∣
ri−R0

j
φαk(r)c†

k′βckα, (3.3.3)

where Ĥ0 is the Hamiltonian of the unperturbed system and the electron
states are in the band basis, where the unperturbed Hamiltonian is diago-
nal. Focus on the part describing the electron-phonon coupling. Note that

∇R j V (r−R j)=−∇rV (r−R j). (3.3.4)

Integration by parts is applied to move the differentiation operator from
V (r−R j) to φ

β∗
k′ (r)φαk(r), which is convenient as the potential V (r−R j) is

unknown, while the basis φαk(r) is known

−
∫

dr φ
β∗
k′ (r)φαk(r)∇rV (r−R j)

∣∣∣
ri−R0

j
=−φβ∗

k′ (r)φαk(r)V (r−R0
j )

∣∣∣r=∞
r=−∞

+
∫

dr V (r−R0
j )∇r

[
φ
β∗
k′ (r)φαk(r)

]
.
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The surface term vanishes due to periodical boundary conditions. Note that
the factor V (r−R0

j ) is present in the expression. Previously it has been
stated that V (r−R j) is an unknown quantity, however, it is possible to ap-
proximate V (r−R0

j ) as it depends on the fixed position R0
j , rather than the

unknown R j. The derivation term is written out explicitly as

∇r
[
φ
β∗
k′ (r)φαk(r)

]
=∇r

[
ei(k−k′)ruβ∗

k′ (r)uαk(r)
]

=−iqe−iqruβ∗
k+q(r)uαk(r)

+ e−iqr
(
uβ∗

k+q(r)∇ruαk(r)+uαk(r)∇ruβ∗
k+q(r)

)
,

(3.3.5)

where q = k′−k has been introduced. The expression obtained using inte-
gration by parts is a vector quantity and is compactly defined as

Wαβ

kq ≡
∫

dr
(
−iquβ∗

k+q(r)uαk(r)+
(
uβ∗

k+q(r)∇ruαk(r)+uαk(r)∇ruβ∗
k+q(r)

)
e−iqrV (r−R0

i )
)

(3.3.6)

where the integral goes over the whole space. Hence the Hamiltonian takes
the form

Hel−ph =∑
j

∑
kqαβ

u jW
αβ

kqc†
k+q,βckα. (3.3.7)

To obtain a second quantized Hamiltonian, the displacement or fluctuation
u j is brought to second quantized form. As presented in section 3.2, the
quantized version of lattice fluctuations are phonons. In second quantization
they have the form [34]

∑
j

u j =
∑
qλ

1√
2NMωqλ

eλ(q)
(
aqλ+a†

−qλ

)
, (3.3.8)

where M is the mass of the ion, N is the number of lattice sites, eλ(q) is a
vector giving the direction of the vibration, and ωqλ is the eigenfrequency
of vibrational mode λ at q. Note that the operators aqλ and a†

−qλ are in
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the diagonal basis of the phonon Hamiltonian. Thus the electron-phonon
coupling can be expressed compactly

Hel−ph =∑
kq

∑
αβλ

gαβλk,k+qc†
k+qβckα

(
aqλ+a†

−qλ

)
, (3.3.9)

where the electron-phonon coupling constant has been introduced

gαβλk,k+q =
Wαβ

k,k+q ·eλ(q)√
2NMωqλ

. (3.3.10)

The electron-phonon coupling corresponds to the scattering process visual-
ized in Figure 3.3.1.

Figure 3.3.1: The scattering process where an incident quasiparticle in state (kα)
interacts with a phonon in state (qλ) and is scattered into the outgoing state
(k+q,β) is visualized in the figure. The vertex represents gαβλk,k+q, the probability
amplitude of the scattering process.

The physical interpretation of the coupling constant gαβλk,k+q is the probability
of the inelastic scattering process where an incident quasiparticle in state
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3.3. ELECTRON-PHONON COUPLING

(kα), assisted by the creation (annihilation) of a phonon in state a†
−qλ(aqλ), is

scattered into the outgoing state (k+q,β) [35], where {α,β} are band indices
running over the electron bands.
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Chapter 4

The bonds in graphene

As previously stated, graphene is a honeycomb lattice of carbon atoms. The
aim of this section is to understand why a two-dimensional sheet of carbon
atoms has the form of a honeycomb lattice. Section 4.1 provides an introduc-
tion to a general honeycomb lattice, where symmetries and relevant quan-
tities are emphasized. In section 4.2, the atomic orbitals are related to the
bonds of graphene.

4.1 The honeycomb lattice

The honeycomb lattice is visualized in Figure 4.1.1, and is a triangular lat-
tice with a two-atomic basis, or equivalently, two interpenetrating triangular
lattices shifted aŷ relative to one another. It is spanned by the lattice vectors
a1 = p

3a and a2 =
p

3
2 ax̂+ 3

2 aŷ, where a is the lattice constant. The lattice
vectors coincide with γ1 and γ3 in the figure.
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4.1. THE HONEYCOMB LATTICE

Figure 4.1.1: The unit cell is visualized as the dashed parallelogram and consists
of a two-atomic basis where an atom of type A is located at (0,−a/2) and an atom
of type B at (0,a/2). The lattice constant a is the distance between an atom and its
nearest neighbour. The delta vectors, δ(A,B)

j , show the relative position of the near-
est neighbours of an atom of type A or B. The gamma vector, γ, shows the relative
position of the next nearest neighbours or equivalently, the nearest neighbours on
the same sublattice, and is equal for both types of lattice sites.

The lattice exhibits mirror symmetry about the x-axis dividing any unit cell
in two mirror-symmetric parts. Thus the atoms of the unit cell, labelled A
and B respectively, experience the lattice differently. The relative position of
the nearest neighbours (NN) is denoted δA(B)

i , where i = 1,2,3.

δA
1 = aŷ

δA
2 =−a

2
(
p

3x̂+ ŷ)

δA
3 = a

2
(
p

3x̂− ŷ)

δB
1 =−aŷ

δB
2 = a

2
(
p

3x̂+ ŷ)

δB
3 = a

2
(−

p
3x̂+ ŷ)

(4.1.1)

The next nearest neighbours (NNN) of any lattice site equal the NN of the
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same sublattice. Their relative position is denoted γi:

γ1 =
p

3ax̂

γ2 = a

(p
3

2
x̂+ 3

2
ŷ

)

γ3 = a

(
−
p

3
2

x̂+ 3
2

ŷ

)
γ4 =−

p
3ax̂

γ5 =−a

(p
3

2
x̂+ 3

2
ŷ

)

γ6 = a

(p
3

2
x̂− 3

2
ŷ

) . (4.1.2)

The reciprocal lattice, as visualized in Figure 4.1.2, is itself a honeycomb
lattice, but rotated π/6 relative to the real-space lattice. It is spanned by the
reciprocal lattice vectors b1 = 2π

3a
(p

3x̂− ŷ
)

and b2 = 4π
3a ŷ. The first Brillouin

zone is marked as the green hexagon and is given as a Wigner-Seitz cell [27].
The high-symmetry points are marked according to their position.

Figure 4.1.2: The reciprocal lattice vectors b1 and b2 are plotted against the di-
mensionless variable ka. The green hexagon shows the first Brillouin zone and the
high symmetry points are marked according to their position.
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GRAPHENE

4.2 Linking the atomic orbitals to the bonds in
graphene

The carbon atom has four valence electrons and can thus form up to four
bonds. As graphene is a result of sp2 hybridization, three of the electrons are
used for creating σ bonds, while the remaining electron forms a π bond [36].
The σ bonds lies in the same plane, defined as the xy-plane, and are ori-
ented 2π/3 relative to one another. The exceptional mechanical properties,
introduced in section 1.1 are due to them, and thus they are often dubbed as
strong σ bonds. The π bond is oriented orthogonal to the plane, i.e. in the
z direction, and is responsible for the formidable electron transport prop-
erties [12]. In addition, π bonds from different sheets of graphene interact
through van der Waals forces binding the sheets together and thereby form-
ing graphite [36]. In this context, the (out-of-plane) bonds of graphene are
soft, which is why graphite is useful in pencils.

The bonds are formed by linear combinations of the eigenfunctions of the
Hydrogen atom, ψnlm, where n is known as the principal quantum number,
l the orbital quantum number and m the magnetic quantum number. They
are well known functions of generalized Laguerre polynomials and spherical
harmonic functions, and the first five, corresponding to quantum numbers
n = 1 and n = 2 are [37]

ψ100(r)= 1√
πr3

B

e−
r

rB ψ211(r)= 1√
64πr5

B

rsin(θ) eiφe−
r

2rB

ψ200(r)= 1√
32πr3

B

(
2− r

rB

)
e−

r
2rB ψ21−1(r)= 1√

64πr5
B

rsin(θ) e−iφe−
r

2rB ,

ψ210(r)= 1√
32πr5

B

r cos(θ)e−
r

2rB

(4.2.1)
where rB denotes the Bohr radius and r = (r,φ,θ) is the position expressed
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in spherical coordinates. The corresponding atomic orbitals are [38]

|1s〉 =ψ100 |2px〉 = 1p
2

(
ψ21−1 +ψ211

)
|2s〉 =ψ200

∣∣2py
〉= ip

2

(
ψ21−1 −ψ211

)
,

|2pz〉 =ψ210

(4.2.2)

where the s orbitals are symmetric, while the p orbitals are anti-symmetric.
Note that the orbitals |2px〉 and

∣∣2py
〉

are formed by linear combinations of
the eigenstates to ensure an anti-symmetric form. The π bond corresponds to
the |2pz〉 orbital, while the three σ bonds are formed by linear combinations
of the eigenstates [39]. Hence the four orbitals of each atom are:

|2pz〉∣∣sp2
1
〉= 1p

3

(
|2s〉−

p
2

∣∣2py
〉)

∣∣sp2
2
〉= 1p

3

(
|2s〉− 1p

2

∣∣2py
〉−√

3
2
|2px〉

)
∣∣sp2

3
〉= 1p

3

(
|2s〉− 1p

2

∣∣2py
〉+√

3
2
|2px〉

)

For the carbon atoms to form σ bonds, the atomic orbitals associated with
the sp2 hybridization must overlap with sp2-orbitals from other atoms. The
most stable situation, i.e. the strongest bond, is obtained by maximizing the
overlap of the orbitals, which is done by orienting them along the same line.
As the sp2-orbitals exhibit three-fold symmetry, the atoms at each end of a
σ bond must be mirror images of one another. Hence a crystal formed by
atoms exhibiting sp2 hybridization results in a honeycomb lattice, as shown
in Figure 4.1.1. As a consequence, the atomic orbitals must be labelled A(B)
to indicate their orientation
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∣∣∣2pA(B)
z

〉
∣∣∣(sp2

1
)A(B)〉= 1p

3

(
|2s〉∓

p
2

∣∣2py
〉)

∣∣∣(sp2
2
)A(B)〉= 1p

3

(
|2s〉± 1p

2

∣∣2py
〉±√

3
2
|2px〉

)
∣∣∣(sp2

3
)A(B)〉= 1p

3

(
|2s〉± 1p

2

∣∣2py
〉∓√

3
2
|2px〉

)
,

(4.2.3)

where the upper signs are for orbitals at lattice site A and the lower for
lattice site B.

An alternative notation for an orbital is φo
rB

(r)A(B) = 〈
r
∣∣oA(B)〉, where o is

the orbital index and rB denotes the Bohr radius. The Bohr radius is to be
interpreted as the most probable distance from an electron to the nucleus of
a Hydrogen atom in its ground state, 〈1s| r |1s〉 = rB. Hence it is a measure
of the width of the orbitals and thus controls the overlap of orbitals from the
different atoms.

When modelling graphene, it is crucial to pick a Bohr radius that gives or-
bital overlaps that resemble the physical situation in graphene. A measure
of the overlap is the electron density, which is plotted for three values of
the Bohr radius in Figure 4.2.1. As the figure shows, picking rB too small re-
sults in no overlap at all as the electrons are too tightly bound to the nucleus.
Picking it too large results in a strong bond between the two atoms of the
unit cell, but weak bonds between atoms of different unit cells. A suitable
value for the Bohr radius is rB = a/10, as it results in a bond that both links
the two atoms in the unit cell, as well as atoms across unit cell boundaries.
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(a) rB = a/3 (b) rB = a/10 (c) rB = a/25

Figure 4.2.1: The electron density is plotted over the unit cell for z = 0 for different
values of rB.
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Chapter 5

Results

In this section, the models introduced in section 3 are specialized to graphene.
For each of the models, an explicit expression is derived.

In section 5.1, the secular equation (3.1.12) is adapted to graphene and the
band structure is obtained. Section 5.2 contains a specialization of the dy-
namic matrix to graphene and the derivation of an analytic expression for
the phonon dispersion and its corresponding eigenvalues. Finally, in section
5.3, the electron-phonon coupling constant is adapted to the low temperature
limit and its dependency on the Fermi energy is investigated.

5.1 The band structure

The band structure are given as the eigenvalues of the electron system, de-
termined by the generalized eigenvalue problem given by the secular equa-
tion (3.1.12). By solving the equation, the electron bonds of graphene are
linked to the bands. As pointed out in section 3.1, the bonds are due to elec-
trons, while the band structure is linked to quasiparticles, given by linear
combinations of the atomic orbitals. Hence the band structure yields the

31



5.1. THE BAND STRUCTURE

allowed energies for a given band and momentum.

In section 5.1.1, the matrix elements of the secular equation are derived.
Some additional theory on decomposition of p orbitals in components paral-
lel and orthogonal to the direction of the bond, is presented in section 5.1.1.1.
In sections 5.1.2 and 5.1.3 explicit expressions for the matrix elements as-
sociated with, respectively the π and σ bands are found. Finally, in section
5.1.4, the band structure is plotted.

5.1.1 Adapting the secular equation to graphene

As introduced in section 4.2, linear combinations of the 2s, 2px and 2py
orbitals form three σ bonds while the 2pz orbital single-handedly forms a
π bond. To obtain the band structure of graphene, the tight-binding model
introduced in section 3.1 is used, under the assumption that the overlap of
orbitals is non-zero only for nearest neighbours.

To solve the secular equation (3.1.12), the matrix elements involved need
to be calculated. In addition, a well-defined basis is needed to state the
generalized eigenvalue problem properly. Here the ordering[

2sA 2pA
x 2pA

y 2sB 2pB
x 2pB

y 2pA
z 2pB

z
]T

(5.1.1)

will be used. As the 2pz orbital only contribute the π bond, the matrices
of the generalized eigenvalue problem will be Bloch diagonal, factorized in
a 6× 6 and a 2× 2 matrix. Their respective eigenvalues will give the six
bands associated with the σ bonds (three from bonding and three from anti-
bonding) and the two bands from the π bond and anti-bond [16, 40]. The
bands associated with anti-bonds are denoted by an asterisk *, i.e. σ∗

i , where
i = 1,2,3, and π∗. The π and π∗ bands are of special importance as they form
the valence and conduction band, respectively, and thus are responsible for
the magnificent electronic properties of graphene [12].

The matrix elements, given by equation (3.1.11), are expectation values
taken in two Bloch sum states. Next these matrix elements are investigated,
starting with the elements of the Hamiltonian matrix
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Hm,i′;n,i(k)=
(

1p
N

)2 ∑
j, j′

eik(R j+τi)e−ik′(R j′+τi′ )
∫

dr φ∗
m(r−R j′ −τi′)Ĥφn(r−R j −τi)

= 1
N

∑
j, j′

eik((R j′+∆ j′ j)+τi)e−ik′(R j′+τi′ )

×
∫

dr′ φ∗
m(r′)Ĥφn(r′+R j′ +τi′ − (R j′ +∆ j′ j)−τi)

= 1
N

∑
j, j′

ei(k−k′)R j′ ei(k(∆ j′ j+τi)−k′τi′ )
∫

dr′ φ∗
m(r′)Ĥφn(r′−δi′ i

j′ j)

= 1
N

∑
j, j′

ei(k−k′)R j′ ei(k(∆ j′ j+τi)−k′τi′ )Hmn(δi′ i
j′ j),

(5.1.2)
where ∆ j′ j is a lattice vector linking unit cell j′ to unit cell j, δi′ i

j′ j =∆ j′ j+τi−
τi′ , the indices j, j′ runs over all lattice sites and the integral is taken over
the whole space. The element Hmn(δi′ i

j j′) is an energy associated with the
overlap of orbital m at lattice site i′ of unit cell j and orbital n from lattice
site i in unit cell j. The vector δi′ i

j j′ links these two sites. Furthermore, the el-
ements are independent of the details of the lattice sites and only dependent
on the distance, Hmn(δi′ i

j′ j)→ Hmn(|δi′ i
j′ j|). Hence, performing the sum over j′

results in a δ-function, δkk′ , and N identical contributions, thus cancelling
the 1/N prefactor. Thus one obtains

Hm,i′;n,i(k)=∑
j

eikδi′ i
j Hmn(δi′ i

j ), (5.1.3)

where δi′ i
j′ j → δi′ i

j , i.e. everything is calculated relative to the unit cell in the
centre of the coordinate system.

A similar equation can be obtained for Sm,i′;n,i(k) by considering the overlap
of orbitals instead of the expectation value for the energy in the first line of
equation (5.1.2). The resulting matrix elements are

Sm,i′;n,i(k)=∑
j

eikδi′ i
j Smn(δi′ i

j ), (5.1.4)
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where the expectation values are

Hm,n(δi′ i
j )=

∫
dr φ∗

m(r)Ĥφn(r−δi′ i
j )

Sm,n(δi′ i
j )=

∫
dr φ∗

m(r)φn(r−δi′ i
j ), (5.1.5)

and non-zero only in the case when lattice site i′ of the unit cell defining the
origin of the coordinate system and i in unit cell j are NN or is the same
lattice point.

5.1.1.1 Decomposition of p orbitals

Before calculating the matrix elements explicitly, expectation values involv-
ing p orbitals are investigated. Consider two orbitals residing on two differ-
ent atoms, where one orbital is specified to be a p orbital while the other is
undefined. Let d be a unit vector in the direction of the bond between the
atoms and n denote a unit vector normal to d. Furthermore, let a lie in the
same plane as d and be a unit vector in one of the Cartesian directions, i.e.
oriented parallel to a p orbital. The situation is shown in Figure 5.1.1.

The p orbital can then be decomposed in two components, one parallel to the
bond, |pd〉, and one perpendicular to it, |pn〉 [40]

|pa〉 = a ·d |pd〉+a ·n |pn〉 = cos(θ) |pd〉+sin(θ) |pn〉 , (5.1.6)

where a = {x, y, z} and θ is the angle between the Cartesian axis and the
direction of the bond. The expectation value between the p orbital and an s
orbital becomes

〈s|H |pa〉 = 〈s|H |pd〉cos(θ)+〈s|H |pn〉sin(θ)= Hspσ cos(θ), (5.1.7)

as 〈s|H |pn〉 vanishes due to symmetry (s is even while pn is odd) and the
constant Hspσ = 〈s|H |pd〉 has been introduced. It is labelled spσ as it is
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calculated using an s orbital and a p orbital, while σ indicates that it orig-
inates from the effective component parallel to the bond. Matrix elements
that originate from the effective normal component to the direction of the
bond are labelled π. As interchanging the orbitals in the expectation value
is equivalent to reverting the direction of the bond, the Hermitian conjugate,
〈pa|H |s〉, is obtained by reverting the direction of the bond, d→−d, making
θ→π−θ which transform cos(π−θ)=−cos(θ). Hence 〈pn|H |s〉 =−〈s|H |pn〉.

(a) Binding between an s and a p or-
bital.

(b) Binding between two p orbitals,
where both orbitals lie in the same
plane.

Figure 5.1.1: A sketch of the binding between a p and a p or s orbtial. The vector
d is a unit vector in the direction of the bond, while the orientation of the p orbital
is given by the unit vector a. θ is the angle between the orientation of the p orbital
and the direction of the bond.

The matrix element between two p orbitals is also of interest

〈p1|H |p2〉 =
(
a1 ·d〈pd|+a1 ·n〈pn|

)
H

(
a2 ·d |pd〉+a2 ·n |pn〉

)
= Hppσ cos(θ1)cos(θ2)+Hppπ sin(θ1)sin(θ2),

(5.1.8)
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where the cross terms vanish due to orthogonality and Hppσ(π) is the value
of the matrix element between the two effective p orbitals parallel (orthog-
onal) to the bond direction. The Hermitian conjugate 〈p2|H |p1〉 is obtained
by d →−d, making θ→ π−θ which transform the trigonometric functions
according to sin(π−θ) = sin(θ) and cos(π−θ) =−cos(θ). As one sees, the net
change is identity, hence 〈p2|H |p1〉 = 〈p1|H |p2〉.
The matrix elements associated with the overlap matrix S are obtained anal-
ogously, by considering the overlap of the orbitals instead of the expectation
values of the Hamiltonian. Summarized briefly, the results are

〈s|pa〉 = Sspσ cos(θ)
〈p1|p2〉 = Sppσ cos(θ1)cos(θ2)+Sppπ sin(θ1)sin(θ2), (5.1.9)

where the Hermitian conjugates have the same structure as previously, 〈pa|s〉
= −〈s|pa〉 and 〈p2|p1〉 = 〈p1|p2〉. As a last remark, note that the relations
(5.1.6)-(5.1.9) are derived for orbitals located on different lattice sites under
the restriction that the sites are nearest neighbours. The results would have
been different if the orbitals were to reside on the same atom, as the orbitals
of an atom form an orthonormal basis.

5.1.2 Calculation of π bands

The π and π∗ bonds are only made up of the 2pz orbital. As discussed in sec-
tion 5.1.1, a convenient basis is

[
2pA

z 2pB
z
]T , which gives the Hamiltonian

and overlap matrices

H =
[
hAA hAB

hBA hBB

]
and S =

[
sAA sAB

sBA sBB

]
, (5.1.10)

where the matrix elements are given by equations (5.1.3) and (5.1.4). As
none of the NN of either sublattices belong to the same lattice, the diago-
nal elements will only depend on overlap of on-site orbitals, while the off-
diagonal elements will only depend on overlap of orbitals from NN lattice
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sites. Utilizing equation (5.1.3), the sum over j has only one contribution for
the diagonal elements, namely when δi′ i

j = δAA(BB)
j=0 = 0. Hence the diagonal

entries are simply the expectation value of the Hamiltonian taken in the 2pz
orbital of the respective lattice site

hAA = E2pz

hBB = E2pz .
(5.1.11)

To derive the off-diagonal elements, the relation for the expectation value of
two p orbitals is utilized, given by equation (5.1.8), which requires defining
the orientation of the two p orbitals. As the two orbitals are 2pz orbitals,
a1 = a2 = ẑ. Due to the two-dimensional structure of graphene, the bond
between the two atoms lies in the xy-plane, thus only the component normal
to the direction of the bond remains. Hence the elements become

hAB =∑
j

eikδAB
j H2pA

z ,2pB
z
(δAB

j )= Hppπeiky

(
1+2e−i 3

2 ky cos

(p
3

2
kx

))

hBA =∑
j

eikδBA
j H2pB

z ,2pA
z
(δBA

j )=
(
hAB

)∗ (5.1.12)

The overlap matrix is obtained in an analogous way. The diagonal elements
are identity, which is easily seen from equation (5.1.5) by setting δ = 0 and
using that the orbitals are normalized. The off-diagonal elements are

sAB =∑
j

eikδAB
j S2pA

z ,2pB
z
(δAB

j )= Sppπeiky

(
1+2e−i 3

2 ky cos

(p
3

2
kx

))

sBA =∑
j

eikδBA
j S2pB

z ,2pA
z
(δBA

j )=
(
sAB

)∗
.

(5.1.13)

5.1.3 Calculation of σ bands

Using the basis introduced in section 5.1.1,[
2sA 2pA

x 2pA
y 2sB 2pB

x 2pB
y
]T

,
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the Hamiltonian and overlap matrices factorize into 3×3 submatrices

H =
[
HAA HAB

HBA HBB

]
and S =

[
SAA SAB

SBA SBB

]
. (5.1.14)

As only NN overlap is assumed non-zero, the elements associated with equal
superscript are only dependent on orbitals residing on the same lattice site.
Hence the submatrices on the diagonals will themselves be diagonal 3×3
matrices as the orbitals at each site form an orthonormal set, as seen from
equation (5.1.5):

hAA(BB)
mn = Hmn(0)= δmnEn. (5.1.15)

Thus HAA and HBB will be equal as the energy of the orbitals is site inde-
pendent.

HAA(BB) =
E2s 0 0

0 E2px 0
0 0 E2py

 . (5.1.16)

The matrix elements of the matrices sitting at the anti-diagonal are sums
of expectation values of orbitals residing on NN lattice sites. They repre-
sent the energy associated with the different bindings and the overlap of the
orbitals, respectively. These quantities are highly important as they are re-
sponsible for the strong in-plane binding of graphene. For the Hamiltonian
matrix, the matrix elements are given by equation (5.1.3) and read

hAB
mn =∑

j
eikδA

j Hm,n(δA
j ) and hBA

mn =∑
j

eikδB
j Hm,n(δB

j ), (5.1.17)

where {m,n}= {2s,2px,2py}. The structure is similar for the overlap matrix,
and the elements can be obtained from the above equations by substituting
Hm,n(δA(B)

j )→ Sm,n(δA(B)
j ). To obtain the details of the matrix elements, the

case where a site from sublattice A is interacting with its three NN belong-
ing to sublattice B is investigated. In the following, matrix elements of HAB
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are calculated, however the elements of SAB are directly obtained by sub-
stituting the energy constants with the overlap constants. Using equations
(5.1.7) and (5.1.8), the six unique Hm,n(δA

j ) become:〈
φA

2s(r−RB)
∣∣∣H

∣∣∣φB
2s(r−RA)

〉
= Hssσ〈

φA
2s(r−RB)

∣∣∣H
∣∣∣φB

2px
(r−RA)

〉
= Hspσ cos(θ)〈

φA
2s(r−RB)

∣∣∣H
∣∣∣φB

2py
(r−RA)

〉
= Hspσ sin(θ)〈

φA
2px

(r−RB)
∣∣∣H

∣∣∣φB
2px

(r−RA)
〉
= Hppσ cos2(θ)+Hppπ(1−cos2(θ))〈

φA
2px

(r−RB)
∣∣∣H

∣∣∣φB
2py

(r−RA)
〉
= (Hppσ−Hppπ)cos(θ)sin(θ)〈

φA
2py

(r−RB)
∣∣∣H

∣∣∣φB
2py

(r−RA)
〉
= Hppσ sin2(θ)+Hppπ(1−sin2(θ))

.

The remaining three elements are obtained using the relations 〈s|H |p〉 =
−〈p|H |s〉 and 〈p1|H |p2〉 = 〈p2|H |p1〉. Thus the matrix elements of HAB

are

hAB
11 =

3∑
j=1

eikδA
j Hssσ = Hssσeikya

(
1+2e−i 3

2 kya cos

(p
3

2
kxa

))

hAB
12 =

3∑
j=1

eikδA
j Hspσ cos

(
θ j

)
= Hspσ

(
cos

(
−π

6

)
ei

(p
3

2 kx− 1
2 ky

)
+cos

(
−5π

6

)
e−i

(p
3

2 kx+ 1
2 ky

))
= Hspσ cos

(π
6

)
e−i ky

2

(
2isin

(p
3

2
kx

))

hAB
13 =

3∑
j=1

eikδA
j Hspσ sin

(
θ j

)
= Hspσ

(
sin

(π
2

)
eiky +sin

(
−π

6

)
ei

(p
3

2 kx− 1
2 ky

)
+sin

(
−5π

6

)
e−i

(p
3

2 kx+ 1
2 ky

))
= Hspσeiky

(
1−2sin

(π
6

)
e−i 3

2 ky cos

(p
3

2
kx

))
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hAB
22 =

3∑
j=1

eikδA
j (Hppσ cos2(θ j)+Hppπ(1−cos2(θ j)))

= Hppσ cos2
(π

6

)
e−i ky

2

(
2cos

(p
3

2
kx

))

+Hppπeiky

(
1+2sin2

(π
6

)
e−i 3

2 ky cos

(p
3

2
kx

))

hAB
23 =

3∑
j=1

eikδA
j (Hppσ−Hppπ)cos(θ)sin(θ)

= (Hppσ−Hppπ)
[

cos
(
−π

6

)
sin

(
−π

6

)
ei

(p
3

2 kx− 1
2 ky

)

+cos
(
−5π

6

)
sin

(
−5π

6

)
e−i

(p
3

2 kx+ 1
2 ky

)]
= (Hppσ−Hppπ)

(
cos

(π
6

)
sin

(π
6

)
e−i 1

2 ky

(
−2isin

(p
3

2
kx

)))

hAB
33 =

3∑
j=1

eikδA
j (Hppσ sin2(θ)+Hppπ(1−sin2(θ)))

= Hppσeiky

(
1+2sin2

(π
6

)
e−i 3

2 ky cos

(p
3

2
kx

))

+Hppπ cos2
(π

6

)
e−i ky

2

(
2cos

(p
3

2
kx

))

The three remaining are matrix elements are hAB
21 =−hAB

12 , hAB
31 =−hAB

13 and
hAB

32 = hAB
23 . The last two submatrices are obtained by Hermitian conjuga-

tion, HBA = (
HAB)† and SBA = (

SAB)†.

5.1.4 The band structure

Having determined the Hamiltonian and overlap matrices, the secular equa-
tion (3.1.12) can be solved. The values for the energies associated with bind-
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ing and the overlap matrix elements are chosen according to [40]

Hspσ = 5.5 eV

Hssσ =−6.7eV

Hppσ = 5.1eV

Hppπ =−3.1eV

Sspσ =−0.10

Sssσ = 0.20

Sppσ =−0.15

Sppπ = 0.12.

(5.1.18)

In Ref [40], these parameter values have been obtained by fitting tight-
binding model to experimental data of the band structure in the high sym-
metry directions (Γ−M −K −Γ). A numerical solver1 for generalized eigen-
value problems have been used to obtain the band structure. Note that the
band structure associated with the anti-bonds is omitted in this thesis. The
resulting bands are plotted over the first Brillouin zone in Figure 5.1.2.

A first note is that the electron band structure are six-fold symmetric, which
is reasonable as the honeycomb lattice is made up of two triangular lattices.
Further, all the bands are centred around the centre of the first Brillouin
zone, either being concave with the centre as the maximum of the band or
convex with the centre as the minimum. Typically, the band structure is
presented in the high symmetry directions, which is shown in Figure 5.1.3.

1Here the generalized Schur decomposition from the scientific C++ library Armadillo was
used.
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(a) π band (b) σ1 band

(c) σ2 band (d) σ3 band

Figure 5.1.2: The four electron bands are plotted over the first Brillouin zone for
parameter values given in equation (5.1.18).
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Figure 5.1.3: The band structure of graphene is plotted in the high symmetry
directions. The dashed blue line indicates the π band, while the three σ bands
are plotted as red solid lines. The four bands associated with anti-bonding are not
included in the plot.

Even though a simple NN tight-binding model has been used, the band
structure is in good agreement with band structures obtained using more
advanced methods [41, 42]. Investigating Figure 5.1.3 an important obser-
vation is that two of the σ bands intersect the π band. As a consequence,
quasiparticles in the vicinity of the intersections are able to jump from one
band to another due to phonon scattering, which is investigated section 5.3.

5.2 The phonon dispersion

The phonon dispersion is determined by the eigenvalues of the dynamic ma-
trix (3.2.15), a scaled Fourier transform of the force-constant matrix. To
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be able to obtain an analytic expression, it is assumed that ions couple up
to NNN. As both atoms of the unit cell of graphene is carbon, the masses
in equation (3.2.14) are equal, however, units have been chosen such that
M = 1.

In section 5.2.1, the dynamic matrix is specialized to account for vibra-
tions in graphene. Derivations of analytical expressions for the eigenvalues
and eigenvectors are presented in sections 5.2.2 and 5.2.3, respectively for
the out-of-plane and in-plane phonon modes. Finally, in section 5.2.4, the
phonon dispersion is plotted over the first Brillouin zone and in the high
symmetry directions.

5.2.1 Adapting the dynamic matrix to graphene

To have a well-defined eigenvalue problem, the basis c = [
xA, yA, xB, yB, zA, zB]T

is chosen in equation (3.2.15). The motivation behind grouping the z vibra-
tions at the end is that the force constants associated with a mix of in-plane
and out-of-plane movement, e.g. Φxz and Φyz, are zero due to the reflection
z → −z [43]. As a consequence, there is no coupling between in-plane and
out-of-plane movement, which makes the dynamic matrix block diagonal

D(q)=
[
Din−plane(q) 0

0 Dzz(q)

]
, (5.2.1)

where Din−plane(q) and Dzz(q) are matrices of sizes of sizes 4×4 and 2×2,
respectively.

The matrix elements of the dynamic matrix are given by equation (3.2.14).
Due to the structure of the basis, both Din−plane(q) and Dzz(q) will be on the
form [

DAA
µν (q) DAB

µν (q)
DBA
µν (q) DBB

µν (q)

]
, (5.2.2)

where {µ,ν}= {{x, y}, {z, z}} and the matrix elements are either 2×2 matrices
or scalars. The labels {C1,C2} = {A,B} and µν is to be interpreted as the
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coupling between the movement in µ direction for a fixed lattice site C1 and
the movement in ν direction for all the sites of type C2.

As the force constants are non-zero up to NNN, the sum in equation (3.2.14)
is majorly simplified as it is bounded from above. Thus elements of the dy-
namic matrix with mixed sublattice lables are single-handedly obtained by
summing over NN sites

DAB(BA)
µν (q)=

3∑
j=1
ΦAB(BA)
µν (δA(B)

j )eiqδA(B)
j , (5.2.3)

where δA(B) is given by equation (4.1.1). The elements stemming from cou-
pling of lattices sites of the same sublattice are

DAA(BB)
µν (q)=ΦAA(BB)

µν (0)+
6∑

j=1
ΦAA(BB)
µν (γ j)eiqγ j , (5.2.4)

where γ is given by equation (4.1.2) and 0 is the null vector. The first term
is the force constant associated with movement in µ and ν directions of the
same lattice site. The stability condition for the system is [43]

ΦAA(BB)
µν (0)+6ΦAA(BB)

µν (γ j)+3ΦAB(BA)
µν (δA(B)

j )= 0, (5.2.5)

which can be used to eliminate ΦAA(BB)
µν (0) by substitution. Note that a re-

quirement for ΦAA(BB)
µν (0) to be non-zero is µ 6= ν .

45



5.2. THE PHONON DISPERSION

5.2.2 Out-of-plane modes

The eigenvalue problem for the out-of-plane vibrations reads

ω2 = [
zA zB][

ΦAA
zz (q) ΦAB

zz (q)
ΦBA

zz (q) ΦBB
zz (q)

][
zA

zB

]
, (5.2.6)

where the matrix elements are given by equations (5.2.3) and (5.2.4). As
the force constants, Φii′

µν( j′), are only dependent on the distance between the
lattice sites, it is natural to introduce the constants

αz =φAB(BA)(δA(B)
j ) and γz =φAA(BB)(γ j), (5.2.7)

where δA(B)
j and γ j are any of the vectors linking the lattice site with its NN

or NNN, respectively. The diagonal matrix elements are

ΦAA(BB)
zz (q)=ΦAA(BB)

zz (0)+
6∑

j=1
ΦAA(BB)

zz (γ j)eiqγ j

= 2γz

(
2cos

(p
3a
2

qx

)
cos

(
3a
2

qy

)
+cos

(p
3aqx

)
−3

)
−3αz,

(5.2.8)
where the substitution from equation (5.2.5) with {µ,ν}= {z, z} has been used,
going from the first to the second line. To obtain the off-diagonal elements,
note that

∑
j eiqδB

j =∑
j e−iqδA

j .

ΦAB
zz (q)=αz

3∑
j=1

eiqδA
j =αzeiqy

(
1+2e−i 3

2 qy cos

(p
3

2
qx

))

ΦBA
zz (q)=αz

3∑
j=1

eiqδB
j =αz

3∑
j=1

e−iqδA
j =

(
ΦAB

zz (q)
)∗ (5.2.9)

Having established the matrix elements, the eigenvalues of the dynamic ma-
trix are

ωZO =
√
ΦAA

zz (q)+|ΦAB
zz (q)|

ωZA =
√
ΦAA

zz (q)−|ΦAB
zz (q)|,

(5.2.10)
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with eigenvectors

1p
2

−
√

ΦAB
zz (q)

ΦAB
zz (q)∗ 1√

ΦAB
zz (q)

ΦAB
zz (q)∗ 1

 . (5.2.11)

Note that all the elements of the eigenvectors have equal modulus. As the
operators which diagonalize the system are formed by a linear combination
of the original basis using the entries of each row of the eigenvectors as
weights, one concludes that the vibrational out-of-plane modes are either
symmetrical or anti-symmetrical. This justifies labelling the eigenvalues
ωZO,ZA, where Z denotes that it corresponds to vibration in the z direc-
tion and A and O denotes whether the mode is acoustical(symmetric) or
optical(anti-symmetric). The acoustical phonons are responsible for vibra-
tions where the graphene sheet vibrates as a whole unit, while the optical
describe vibrations where the two sublattices vibrate out of phase. Thus it
is understandable that the acoustical phonons are less energetic than the
optical. Another observation is that the amplitudes associated with optical
phonons must be much smaller than the amplitudes of the acoustical for the
graphene sheet not to break.

5.2.3 In-plane modes

The symmetries of the honeycomb lattice impose constraints on the dynam-
ical matrix. To make use of the symmetry properties, the new variables
ξ,η= x± i y are introduced. As each lattice site exhibits three-fold symmetry
about the z axis, the effect of C3 rotations taken at the centre of the unit cell
is investigated. The lattice sites transform as

δA(B)
1 →δA(B)

2 →δA(B)
3 , γ1 →γ3 →γ5 and γ2 →γ4 →γ6, (5.2.12)

while the new variables undergo the transformation (ξ,η)→ (ξ,η)e±i2π/3. For
a visualization, see Figure 4.1.1.
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Due to the new variables, the force constants will transform differently ac-
cording to the subscripts. Force constants with different subscripts will
transform like identity,

ΦAB
ξη (δA

1 )=ΦAB
ξη (δA

2 )=ΦAB
ξη (δA

3 ), (5.2.13)

while the force constants with equal subscripts will transform as covariate
variabeles [43], e.g.

ΦAB
ξξ (δA

1 )=ΦAB
ξξ (δA

2 )ei 2π
3 =ΦAB

ξξ (δA
3 )e−i 2π

3

ΦAB
ηη (δA

1 )=ΦAB
ηη (δA

2 )e−i 2π
3 =ΦAB

ηη (δA
3 )ei 2π

3 .
(5.2.14)

In this context, the order of partial differentiation is indifferent, thus the
force constants which differ with respect to the order of the subscripts are
equal, e.g. ΦAB

ηξ
=ΦAB

ξη
. For simplified notation the following constants are

introduced
α=ΦAB

ξη (δA
1 )

γ=ΦAA
ξη (γ1)

β=ΦAB
ξξ (δA

1 )

δ=ΦAA
ξξ (γ1)=ΦAA

ηη (γ1),
(5.2.15)

where δ is complex while the remaining are real [43]. The complex conjugate
of δ is δ∗ =ΦAA

ξξ
(γ4)=ΦAA

ηη (γ4).

The eigenvalue problem to solve is

[
uA
ξ

uA
η uB

ξ
uB
η

][
ΦAA(q) ΦAB(q)
ΦBA(q) ΦBB(q)

]
uA
η

uA
ξ

uB
η

uB
ξ

 . (5.2.16)

Note that the basis vectors have different ordering on the two sides of the
matrix, which is a consequence of the Hermitian conjugation ( as (uA(B)

ξ
)∗ =

uA(B)
η ). Each entry of the matrix is itself a 2×2 matrix, where

ΦAA(q)=
[
ΦAA
ξη

(q) ΦAA
ξξ

(q)
ΦAA
ηη (q)∗ ΦAA

ξη
(q)

]
and ΦAB(q)=

[
ΦAB
ξη

(q) ΦAB
ξξ

(q)
ΦAB
ηη (q) ΦAB

ξη
(q)

]
.
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Next the entries of the matrices above are investigated, starting with the
element corresponding to NNN and different subscripts

ΦAA
ξη (q)=ΦAA

ξη (0)+
6∑

j=1
ΦAA
ξη (γ j)eiqγ j

= 2γ

(
2cos

(p
3a
2

qx

)
cos

(
3a
2

qy

)
+cos

(p
3aqx

)
−3

)
−3α.

(5.2.17)

Equation (5.2.5) was used to eliminate ΦAA
ξη

(0), going from the fist to the sec-
ond line. For the case where the subscripts are equal, the element associated
with on-site vibration is zero. Thus the matrix elements are

ΦAA
ξξ (q)=ΦAA

ξξ (0)+
6∑

j=1
ΦAA
ξξ (γ j)eiqγ j =

3∑
j=1
ΦAA
ξξ (γ(2 j−1))eiqγ(2 j−1) +ΦAA

ξξ (γ2 j)eiqγ2 j

= δ
(
ei

p
3qx + ei 2π

3 ei
(
−

p
3

2 qx+ 3
2 qy

)
+ e−i 2π

3 e−i
(p

3
2 qx+ 3

2 qy

))
+δ∗

(
e−i 2π

3 ei
(p

3
2 qx+ 3

2 qy

)
+ e−i

p
3qx + ei 2π

3 ei
(p

3
2 qx− 3

2 qy

))
= δ

(
ei

p
3qx +2cos

(
3
2

qy + 2π
3

)
e−i

p
3

2 qx

)
+δ∗

(
e−i

p
3qx +2cos

(
3
2

qy − 2π
3

)
ei

p
3

2 qx

)
(5.2.18)

ΦAA
ηη (q)=

3∑
j=1
ΦAA
ηη (γ(2 j−1))eiqγ(2 j−1) +ΦAA

ηη (γ2 j)eiqγ2 j

= δ
(
ei

p
3qx + e−i 2π

3 ei
(
−

p
3

2 qx+ 3
2 qy

)
+ e+i 2π

3 e−i
(p

3
2 qx+ 3

2 qy

))
+δ∗

(
e+i 2π

3 ei
(p

3
2 qx+ 3

2 qy

)
+ ei

p
3qx + ei 2π

3 ei
(p

3
2 qx− 3

2 qy

))
= δ

(
ei

p
3qx +2cos

(
3
2

qy − 2π
3

)
e−i

p
3

2 qx

)
+δ∗

(
e−i

p
3qx +2cos

(
3
2

qy + 2π
3

)
ei

p
3

2 qx

)
.

(5.2.19)
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Note that ΦAA
ηη (q) =

(
ΦAA
ξξ

(q)
)∗

. Next the matrix elements associated with
NN are calculated. First out is the element with different subscripts

ΦAB
ξη (q)=

3∑
j=1
ΦAB
ξη (δA

j )eiqδA
j =αeiqy

(
1+2e−i 3

2 qy cos

(p
3

2
qx

))
. (5.2.20)

For the elements with equal subscripts the only difference is how ΦAB
ηη (δA

j )
transforms

ΦAB
ξξ (q)=

3∑
j=1
ΦAB
ξξ (δA

j )eiqδA
j

=β
(
eiqy + ei 2π

3 e−i
(p

3
2 qx+ 1

2 qy

)
+ e−i 2π

3 ei
(p

3
2 qx− 1

2 qy

))
=βeiqy

(
1+2e−i 3

2 qy cos

(p
3

2
qx − 2π

3

)) (5.2.21)

ΦAB
ηη (q)=

3∑
j=1
ΦAB
ηη (δA

j )eiqδA
j

=β
(
eiqy + e−i 2π

3 e−i
(p

3
2 qx+ 1

2 qy

)
+ ei 2π

3 ei
(p

3
2 qx− 1

2 qy

))
=βeiqy

(
1+2e−i 3

2 qy cos

(p
3

2
qx + 2π

3

))
.

(5.2.22)

The matrix elements associated with the B sublattice are obtained from
the matrix elements from the A sublattice with the transformation (x, y) →
−(x, y). Note that the phase obtained for the force-constants under transfor-
mation will switch sign due to the mirror symmetry about the x-axis. Hence
the matrix elements for the B sublattice are:

ΦBB
ξη (q)=ΦAA

ξη (q)

ΦBB
ξξ (q)=ΦAA

ξξ (q)∗

ΦBB
ηη (q)=ΦAA

ηη (q)∗

ΦBA
ξη (q)=ΦAB

ξη (q)∗

ΦBA
ξξ (q)=ΦAB

ηη (q)∗

ΦBA
ηη (q)=ΦAB

ξξ (q)∗.

(5.2.23)
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For further simplified notation, the following constants are introduced

a =ΦAA
ξη (q) d =ΦAB

ξξ (q)

b =ΦAA
ξξ (q) e =ΦAB

ηη (q).

c =ΦAB
ξη (q)

(5.2.24)

Hence the eigenvalue problem can neatly be stated

[
uA
ξ

uA
η uB

ξ
uB
η

]
a b c d
b∗ a e c
c∗ e∗ a b∗

d∗ c∗ b a




uA
η

uA
ξ

uB
η

uB
ξ

 . (5.2.25)

The eigenvalues2 are the roots of the polynomial λ4 + Aλ3 +Bλ2 +Cλ+D,
where the coefficients are

A =−4a

B = 6a2 −2(|b|2 +|c|2)−|d|2 −|e|2
C = 2a(2(−a2 +|b|2 +|c|2)+|d|2 +|e|2)− (b+b∗)(cd∗+ c∗d+ ce∗+ c∗e)

D = a4 −a2 (
2(|b|2 +|c|2)+|d|2 +|e|2)+a(b+b∗)(cd∗+ c∗d+ ce∗+ c∗e)

+|b|4 +|c|4 − (c∗)2de− c2e∗d∗−|c|2(b2 + (b∗)2)−|b|2(d∗e+ e∗d)+|d|2|e|2.

The roots are

2The eigenvalues have been obtained using Wolphram Mathematica
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ω2
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4
−2B−κ− λ

4
p
κ

ω2
LO =−A

2
+ 1

2
p
κ+ 1

2

√
3A2

4
−2B−κ+ λ

4
p
κ

ω2
TO =−A

2
+ 1

2
p
κ− 1

2

√
3A2

4
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4
p
κ

,

(5.2.26)

where the following quantities have been introduced (all defined in terms of
the coefficients of the polynomial):

ε= B2 −3AC+12D

ζ= 2B3 −9ABC+27C2 +27A2D−72BD

θ = ζ+
√

−4ε3 +ζ2

κ= A2

4
− 2B

3
+ 1

3

(
21/3ε

θ1/3 + θ1/3

21/3

)
λ=−A3 +4AB−8C.

The in-plane eigenvalues are labelled Longitudinal or Transversal and Acoustical
or Optical to indicate which phonon mode they are related to. The corre-
sponding eigenvectors are

S =


E1/J1 F1/J1 G1/J1 1
E2/J2 F2/J2 G2/J2 1
E3/J3 F3/J3 G3/J3 1
E4/J4 F4/J4 G4/J4 1

 (5.2.27)
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where the quantities used to define the different components are

E i = ba2 −ace∗−2abω2
i +b(ω2

i )2 +b∗(|c|2 −b2)+bde∗+ ce∗ω2
i + cd∗(ω2

i −a)

Fi =
(
(a−ω2

i )2 −|d|2)
(ω2

i −a)− c∗
(
c(ω2

i −a)+bd
)−b∗ (

b(ω2
i −a)+ cd∗)

G i = d(c∗)2 − (b+b∗)(a−ω2
i )c∗+|b|2d∗+ e∗

(
(ω2

i −a)2 −|d|2)
Ji = c∗(a2 +b2 −|c|2 + (ω2

i )2 −2aω2
i )+be∗(ω2

i −a)+d∗(ω2
i b+ ce∗−ab).

Keep in mind that the in-plane dispersion has been obtained using the trans-
formed variables η,ξ= x± i y. To decompose the eigenvectors onto the Carte-
sian directions, observe that the transformed variables relate to the original
as 

uA
η

uA
ξ

uB
η

uB
ξ

=


1 −i 0 0
1 1 0 0
0 0 1 −i
0 0 1 i




xA

yA

xB

yB

 . (5.2.28)

Let the transformation matrix be denoted T. Then the eigenvectors for the
original basis, which can be interpreted in terms of Cartesian directions, are
obtained by the matrix product ST.

5.2.4 The phonon dispersion

The phonon dispersion is given by the positive square roots of the eigen-
values of the vibrational modes. Values for the constants associated with
the force-constant matrix, given by equations (5.2.7) and (5.2.24), are chosen
according to [43]

α= –4.046

γ=−0.238

β= –1.096

γ= 1.107

αz =−1.176

γz = 0.190,

(5.2.29)

where all values are in units of 105 cm−2. The dispersions are plotted over
the first Brillouin zone in Figure 5.2.1, where they are in units of eV.
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(a) LO (b) TO

(c) LA (d) TA

(e) ZO (f) ZA

Figure 5.2.1: The six phonon dispersions of the system are plotted over the first
Brillouin zone for parameter values given by equation (5.2.29). The dispersions are
in units of electron volts.

A highly interesting observation is the four-fold symmetry present in the in-
plane dispersions near the centre of the Brillouin zone. From intuition one
would suspect three- or six-fold symmetry due to the geometry of the lattice.

The phonon dispersions along the high symmetry directions are shown in
Figure 5.2.2. Even though a simple nearest neighbour interaction model
has been used, the dispersions are in good quantitatively agreement with
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results obtained from more advanced methods [44,45]. However, the simple
model does not capture all details of the dispersion, thus a model including
more than NNN interactions might be more suited. During the last days
of work with the thesis, the author became aware that a model considering
interactions up to the third nearest neighbours is able to capture the details
of the phonon dispersion [46].

Figure 5.2.2: The phonon dispersion is plotted in the high symmetry directions.
The dashed red lines indicate the acoustical (ZA) and optical (ZO) out-of-plane
modes, while the solid blue lines show the in-plane modes. The four in-plane modes
are LA, TA, LO and TO, corresponding to either Longitudinal or Transversal and
Acoustical or Optical.
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5.3 Electron-phonon coupling

The electron-phonon coupling is investigated in the low temperature limit
(∼ 100 K), in which the thermal energy (≈ 9 meV) is much smaller than the
typical energy associated with phonons ≈ 190 meV [47]. Thus phonon emis-
sion is assumed to dominate phonon absorption and to be the only source of
electron scattering.

In section 5.3.1, the quantities involved in the electron-phonon coupling con-
stant derived in section 3.3 are presented. Section 5.3.2 provides restrictions
to the EPC constant, forcing it to be physically acceptable. Finally, in section
5.3.3, the total EPC of the different bands is investigated as a function of the
Fermi energy.

5.3.1 Adapting electron-phonon coupling to graphene

The general expression for the electron-phonon coupling constant is given
by equation (3.3.10). Hence the quantities Wαβ

k,k+q, ωqλ and eλ(q) are needed
in order to calculate the EPC constant. The two latter are the phonon dis-
persion and its eigenvectors, as presented in section 5.2.1. The remaining
quantity, Wαβ

k,k+q, is related to the electrons and given by equation (3.3.6).
The spatial part of the Bloch functions, uαk, is obtained as a linear combina-
tion of the basis used in the tight-binding model

uαk(r)=
8∑

i=1
wα

ikφi(r), (5.3.1)

where the basis is given by equation (5.1.1). The weights, wα
ik, are the eigen-

vectors associated with the eigenvalues Eαk and are obtained by solving the
secular equation (3.1.12). The index i runs over the columns while α gives
the row index. Each row is normalized according to

∑8
i=1 |wα

ik|2 = 1.

The orbitals are shaped as damped exponentials and require a value for the
Bohr radius. As discussed in section 4.2, a suitable value for the Bohr radius
is rB = a/10, where a denotes the lattice constant.
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5.3.2 Derivation of electron-phonon coupling constants

As the electron-phonon coupling is restricted to the low temperature limit
and only phonon emission is considered, some constraints are imposed on
the coupling constant. Let (kα) denote a quasiparticle of momentum k in
band α and (qλ) a phonon of momentum q in mode λ. Then the general scat-
tering process as presented in Figure 3.3.1 is specialized to the case where
an incident quasiparticle in state (kα) emits a phonon (qλ) and is scattered
into state (k+q,β).

By examining the scattering process, constraints on the calculation of the
EPC are derived. First it is clear that momentum transfer must be q=k′−k
to satisfy conservation of momentum. Secondly, the scattering process is
in general inelastic which relates the energies as Ekα−ωqλ ≥ Ek′β. To en-
sure that the outgoing state is unoccupied initially, the energy of the out-
going state has to satisfy Ek′β ≥ EF , where EF is the Fermi energy. Hence
Ekα−ωqλ ≥ EF , which imposes the constraint Ekα ≥ EF , as only phonon emis-
sion is considered. Thus the EPC constant, as given by equation (3.3.10), is
redefined to

gαβλk,k+q → gαβλk,k+qθ
(
Ekα−Ek+q,β−ωqλ

)
θ

(
Ek+q,β−EF

)
, (5.3.2)

where θ denotes the unit step function and conservation of momentum has
been ensured by the substitution k′ = k+q. An interesting quantity is the
total probability amplitude of scattering of the incident state (kα) by phonon
mode λ to any state in band β. This total transition probability amplitude is
obtained by summing over all momentum transfers

gαβλk =∑
q

gαβλk,k+qθ
(
Ekα−Ek+q,β−ωqλ

)
θ

(
Ek+q,β−EF

)
. (5.3.3)

Furthermore, to determine the EPC constant as a function of the Fermi en-
ergy, the coupling constant is averaged over constant energy contours, where
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the energy of the outgoing state lies on the Fermi surface

gαβλ(EF )= 1
Nβ(EF )

∑
k

gαβλk δ(Ek,β−EF ), (5.3.4)

where Nβ(EF ) = ∑
kδ(Ekβ−EF ) is the number of states in band β that lie on

the Fermi surface, which also goes by the name density of states.

5.3.3 The coupling constant as a function of EF

The electron-phonon coupling constant, given by equation (5.3.4), is plotted
for different values of the Fermi energy in Figure 5.3.1. As plotting the cou-
pling constant gαβλ(EF ) for all α, β and λ would yield 96 contributions for
each value of EF , it has been simplified to, gαβλ(EF ) → gαinter(intra)(EF ). The
subscript indicates whether the outgoing state is the same as the incoming
state (due to intra-band scattering), or the outgoing state is different (inter-
band scattering). In the plot, the components σ2,intra and σ1,inter are left out
as their values were unphysical, due to the numerical implementation by
the author. This was also the case for the calculated coupling constant corre-
sponding to scattering between bands σ2 and σ3, and σ1 and σ2. Hence they
are not included in the inter-band components of the coupling constants.

As Figure 5.3.1 shows, the coupling constant is rather rough and fluctuate a
lot, which is due to the numerical calculation. As computational complexity
turns out to be a problem, the discretization of the Fermi energy is limited.
The expression for the coupling constant involves δ functions with respect to
the Fermi energy, and when its discrete values does not match up with the
energy of the bands, the δ function gives zero. Hence the origin of the rough
and fluctuating form lies in the finite discretization of the Fermi energy.
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Figure 5.3.1: The electron-phonon coupling constant is plotted as a function of
EF . The coupling constant of each band is divided in two components, accounting
for intra and inter band scattering. To easily distinguish the coupling related to
incoming states in the π band from the incoming states in the σ bands, the EPC
constant of the π band is plotted as a negative value.

As the relative sizes of the EPC constants are comparable, both intra- and
inter-band scattering must be considered for all bands. The numerically ob-
tained results showed that the in-plane modes are the main source of the
EPC as the contribution from the out-of-plane phonons turned out to be neg-
ligible. However, they might couple stronger to the bands described by the
coupling constants that were not included due to unphysicallity.

It is interesting to compare the electron-phonon coupling constant with the
density of states in the bands, which is plotted in Figure 5.3.2. An inter-
esting observation is how closely the EPC constant follow the DOS. At first
sight it might seem a little mysterious, however keeping the physical process
of the electron-phonon coupling in mind, it makes sense. As the energies as-
sociated with the electron bands are in a much greater range (from -20 eV
to 0 eV) than the energies of the phonons (from 0 eV to 0.2 eV), it is clear
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that the energy of the outgoing quasiparticle will not be changed much with
respect to the incoming. Hence, when summing over all allowed transitions
onto a Fermi surface, the resulting coupling constant will basically follow the
density of states. Thus, it is clear that the EPC constant is closely connected
to the band structure.

Figure 5.3.2: The density of states is plotted for the four bands as a function of the
energy.

With this in mind, a conclusion can be presented in the discussion from sec-
tion 5.2.4 of whether the phonon model is sufficient or not. It is now clear, in
the context of EPC, that the qualitative shape of the phonon dispersion is far
more important than the details due to the large energy difference between
typical phonon and band energies. Hence one may conclude that the model
used for the phonon system, considering up to NNN ion interactions, is suf-
ficient for calculating EPC. However, it is not necessarily sufficient when
considering other quantities, as they may be more dependent on the details
of the dispersion.
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Chapter 6

Concluding remarks

The aim of this Master thesis was to theoretically investigate the electron-
phonon coupling in graphene. As it is a fundamental coupling between
phonons and electrons, quantities related to both phonons and electrons had
to be derived. The main results of the thesis are the electron-phonon cou-
pling constant, the derivation of the phonon dispersion and the calculation
of the band structure, all adapted to graphene.

Typically, the EPC constant is labelled by a phonon mode, and thus gives
the total probability amplitude of any of the bands being scattered by that
mode. In this thesis a more complex expression for the coupling constant
has been derived, where it has been given band indices in addition to the
phonon mode. Hence the coupling constant gives the transition probability
of a quasiparticle in band α with momentum k being scattered by a phonon
of momentum q in mode λ, either by emission or absorption, to a state k+q
in band β, where {α,β} run over the electron bands of the system.

The EPC constant has been investigated in the context of graphene in the
low temperature limit, in which phonon emission dominates absorption. The
total transition probability amplitude for a quasiparticle in band α to band
β, as a function of the Fermi energy, as shown in Figure 5.3.1. It has been
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argumented for, and visually supported that the coupling constant is highly
correlated with the shape of the DOS of the electron bands. In addition,
it has been argumented for that the EPC is more dependent on the band
structure than the phonon dispersion.

It would have interesting to investigate the electron-phonon coupling in
greater detail. The author would than suggest creating contour plots where
the coupling constant is plotted over the first Brillouin zone for different val-
ues of the Fermi energy. Especially energies near the peaks of the DOS of
the electron bands are of special interest.

The phonon dispersion was found as the eigenvalues of the dynamic matrix
(3.2.15) when interactions up to NNN were considered. Due to symmetry
constraints, in-plane and out-of-plane vibrations are decoupled. A surprising
discovery is that the dispersion of the in-plane modes, when plotted over the
first Brillouin zone, exhibits four-fold symmetry. As the honeycomb lattice
is two interpenetrating triangular lattices, one would suspect a three-fold,
perhaps a six-fold symmetry by intuition. The mechanism behind the four-
fold symmetry is not clear to the author.

The electron bands were found by solving the secular equation (3.1.12), re-
sulting in four bands, three σ bands and one π band. A linear combination
of the |2s〉 , |2px〉 and

∣∣2py
〉

orbitals provide the diagonal band basis for the σ
bands, while the diagonal basis for the π band is given by a linear combina-
tion of |2pz〉 orbitals. Hence the in-plane and z components were decoupled
for the bands as well.

Interesting applications of the results in this thesis is calculating the effec-
tive electron-electron interaction due to the EPC and calculating the spectral
function for the quasiparticles of the bands. A derivation of the effective in-
teraction is provided in the notes by R. Heid [48], where the EPC constant is
a central quantity. By calculating the effective interaction for the different
bands, it is possible to determine which bands that will display supercon-
ductivity as a function of the Fermi energy.
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