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with the dimensionless constant b setting the decay scale of Td(B), and Td(B = 0) =
270 MeV.

The resulting phase diagram with b = 70 is shown in Fig. 6.10. We have chosen a
sigma mass ofmσ = 800 MeV to be able to reach magnetic fields comparable to the largest
magnetic fields in Ref. [142]. It is clear that the critical temperature of the Polyakov
loop is driven down by a decreasing Td, while the chiral sector still displays magnetic
catalysis. The result is a splitting between the chiral and deconfinement temperatures
which is not found on the lattice [141, 142, 157]. We are not able to choose any value
for b the remedies this problem. Hence, with a magnetic field included it appears that
the χM model is suffering from the same problems as the PQM model.

It appears that some mechanism that tends to keep Tchiral ≤ Tdeconf is lacking in the
PQM model. We argued in Chapter 5 that there is a strong drive for deconfinement to
happen once the chiral transition has taken place, which tends to keep Tdeconf ≤ Tchiral.
However, the opposite does not appear to be the case, and it seems that some essential
physics is lacking from the PQM and χM models at B 6= 0.
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Figure 6.10: Phase diagram of the χM model with Td(B) as given by (6.14.1) with b = 70
compared to the phase diagram from the lattice. The sigma mass is mσ = 800 MeV.
(2 + 1)-flavor lattice data is taken from Bali et al. [142].



CHAPTER 7
Conclusion and Outlook

7.1 Summary
In this work we have studied spontaneous symmetry breaking and thermodynamics in
the two-flavor Polyakov-loop extended quark-meson model and Pisarksi-Skokov chiral
matrix model. We worked at the one-loop order and investigated the cases of nonzero
temperature and baryon chemical potentials, and nonzero temperature and magnetic
fields. As a simplifying approximation, we have neglected mesonic fluctuations, which
is equivalent to working in the large-Nc limit. Furthermore, we have fixed the coupling
constants consistently at the one-loop level, in contrast to what is most often done in
the literature on the QM model.

The Effect of One-Loop Couplings

We find that the one-loop determination of couplings could affect the validity range
of the models in terms of what particle masses yield an effective potential that has a
local minimum. Furthermore, we found that one-loop couplings could have a significant
effect on the location of the chiral transition, with the chiral transition being lowered
by approximately 25 MeV when using a tree-level determination of the couplings. When
it comes to thermodynamics, the introduction of loop corrections to the particle masses
have only a small effect.

The Phase Transition and Thermodynamics at µ = 0
We find that both models exhibit coinciding chiral and deconfinement phase transitions,
with the inflection points of the chiral condensates located at

TχMc = 181+6
−9 MeV, (7.1.1)

TPQM
c = 169+3

−3 MeV, (7.1.2)
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which both lie in the uncertainty range of the transition temeprature found on the lattice
for two flavors, which is Tc = (172± 3± 6) MeV [112]. We find that both models undergo
crossovers at the physical point, rather than true phase transitions.

Furthermore, at zero baryon chemical potential we find that the PQM and χM
models have similar predictions for thermodynamic quantities, and they mostly agree
reasonably well with QCD lattice data up to T ≈ 2Tc – both qualitatively and quanti-
tatively. However, the PQM model appears to be in better agreement with data when
it comes to the interaction measure.

For the chiral order parameter both models agree with lattice simulations. However,
when it comes to the Polyakov loop, neither model reproduce the lattice result, since
Φ in the models show a faster rise with T . However, the PQM model has a functional
form Φ(T ) which resembles lattice data, with a slower approach to the asymptotic value
Φ = 1 that is associated with a semi-deconfined region.

The Phase Diagram and Thermodynamics at µ 6= 0
At µ 6= 0 we face the problem of how to deal with a complex effective potential or a
complex gauge field. We chose to minimize the real part of the potential with a gluonic
mean field in

〈
A4
〉
∈ su(3). This has the benefit of giving a bounded effective potential

and yields a real effective potential at the minimum of the real part. However, it comes
at the cost of having the unphysical effect Φ = Φ̄.

We find that the PQM model agrees well with both the pressure and quark density
from two-flavor lattice data at nonzero chemical potentials in the region µ/T ≤ 1 and
T ≤ 1.5Tc. For T > 1.5Tc the PQM model starts to overshot the pressure and quark
number from the lattice. For the χM model we find that the pressure and quark density
is too large in the regime µ/T ≥ 0.4, but the curves have the correct qualitative shape.

In the µ−T phase diagram, the chiral condensate in the two models behaves similarly.
The chiral transition starts out as a crossover and then becomes a first order transition
at sufficiently high chemical potentials. The change of transition order is marked by a
critical point, which is located at

(µ∗, T ∗) = (262 MeV, 78 MeV), for the χM model, (7.1.3)
(µ∗, T ∗) = (262 MeV, 105 MeV), for the PQM model. (7.1.4)

A significant difference between the models was found in the deconfinement phase
diagram. In the χM model the deconfinement transition also goes from a crossover to
a first order transition, with the critical point located at the same place as the critical
point for the chiral transition. This is not the case in the PQM model, where the
deconfinement transition is a crossover for all µ. Thus, the latter model predicts that
the chiral and deconfinement phase transitions are of different order at high chemical
potentials.1 Furthermore, the χM model predicts deconfinement in the low T , high

1Note that when we say deconfinement phase transition, we are only talking about an inflection
point in Φ. We are not claiming that Φ ≈ 0.5 or even that it is much larger than zero at the critical
temperature.
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µ regime, while the PQM model predicts a quarkyonic phase. Thus, the two models
predict entirely different phases of matter in the low-temperature, high-density regime,
which is the most significant difference between the two models.

The Phase Diagram at B 6= 0

With a nonzero magnetic field, we find that both the PQM and the χM models in
their standard form exhibit magnetic catalysis at all temperatures. This is in line with
lattice data at low temperatures but contradicts them for temperatures around T = Tc.
We also find that for certain unphysical particle masses, it is possible to obtain inverse
magnetic catalysis for the Polyakov loop while still having magnetic catalysis for the
chiral condensate. Additionally, we see that a model without a chiral sector predicts
inverse magnetic catalysis for Φ.

Finally, we briefly discussed the topic of making the gluon potential dependent on
the magnetic field. We find that a B-dependent Td in the gluonic sector cannot make the
χM model display inverse magnetic catalysis, and it thus suffers from the same problems
as the PQM model at B 6= 0.

7.2 Conclusion

We find that the two-flavor χM and PQM models are in reasonable agreement with
two-flavor QCD thermodynamics at zero baryon chemical potential for temperatures up
to T ∼ 2Tc. The main problem with the models is the temperature dependence of the
Polyakov loop. At nonzero µ the PQM model appears to agree with the lattice for
T ≤ 1.5Tc in the regime of µ/T -values where data exist. The χM model overshoots
the quark number and pressure in this regime. Furthermore, the χM and PQM models
strongly disagree in the high-µ and low-T phase, predicting different states of matter.
At nonzero magnetic fields, both models do not show inverse magnetic catalysis in their
standard form and disagree qualitatively with lattice results.

7.3 Outlook

There are several natural ways to continue and extend on the work presented in this
thesis. In the following we summarize some possibilities.

Including Mesonic Fluctuations

In this work we have used the large-Nc approximation. The most obvious generalization
of our approach is to drop this assumption and include fluctuations from mesons. Several
studies taking mesonic fluctuations into account have been carried out, both with [121,
122, 158, 159] and without [160] the functional renormalization group (FRG). They seem
to indicate possible qualitative effects on the phase diagram. For example, in Ref. [122]
they find that the phase diagram splits into two branches after the critical point.
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If we would include mesonic fluctuations and still carry out consistent parameter
fixing at one loop, it would require the calculation of significantly many more diagrams
in the one-loop parameter matching procedure. Thus, the process of renormalizing the
theory becomes much more involved. Furthermore, if we do not use FRG we face the
problem of m2

π becoming negative once the temperature becomes high enough.2 Solving
this problem would require more advanced methods of perturbative thermal field theory
such as hard thermal loops, which is a reorganization of the perturbative expansion [36,
37, 39].

Investigating Minimization Scheme at µ 6= 0
We have chosen a scheme where we minimize the real part of the effective potential.
It would be illuminating to see how different the results are between this method and
saddle point method. Both methods have been compared in the PQM model, and while
they always agree at the endpoints of the phase diagram, they show potentially large
differences for the location of the critical point [74]. Since at the time of writing there
are no publications on the χM model at µ 6= 0, the saddle point method has not been
used with the χM model.

Calculation of Susceptibilities

In Ref. [21] they calculate various susceptibilities for the χM model, including baryon
number susceptibilities. Susceptibilities provide more opportunities to compare model
data to lattice simulations. Thus, more stringent tests can be put on the χM and PQM
models if we extend the study performed in this work also to include susceptibilities.

Isospin Chemical Potential

Since QCD does not suffer from a sign problem at nonzero isospin chemical potentials
µI , the scenario is open to lattice studies, and the phase diagram in the µI−T plane was
recently calculated in Ref. [161]. The PQM model can readily be extended to include
nonzero isospin, where a pion condensate appears as a new order parameter. Studies
of the PQM model at nonzero isospin has been carried out previously in Ref. [162]
and recently also with one-loop couplings in Refs. [163, 164]. Since the PQM and χM
models differ the most in their behavior at nonzero baryon chemical potential, it would
be interesting to see how the χM model behaves at nonzero µI .

2In the chiral limit m2
π becomes negative for any T > 0, since m2

π = 0 in the vacuum, and m2
π

decreases with decreasing ∆.
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APPENDIX A
Additional Derivations

A.1 Calculation of the Fermion Partition Function
We here finish the calculation of the Fermion partition function from Sec. 3.1. Using the Dirac
representation,

γ0 =
(
I2 0
0 −I2

)
γi =

(
0 σi

−σi 0

)
, (A.1.1)

where σi are the Pauli matrices, we have that

K + gAcc ≡
Dc

iβ
=
(

[−iωn + µ+ gAcc −m] I2 σipi
σipi [−iωn + µ+ gAjj +m] I2

)
, (A.1.2)

where K is defined as
K = −iωn + µ+ γ0γipi − γ0m. (A.1.3)

Let
K± = −iωn + µ+ gAcc ±m. (A.1.4)

Then Dcc reads

Dcc

iβ
=
(
K−I2 σipi
σipi K+I2

)
=


K− 0 pz px − ipy
0 K− px + ipy −pz
pz px − ipy K+ 0

px + ipy −pz 0 K+

 , (A.1.5)

which gives a determinant

detDcc = β4 [−K+K− + p2]2 = β4 [−(−iωn + µ+ gAcc)2 +m2 + p2]2
= β4 [(ωn + iµ+ igAcc)2 + ω2

p
]2

= β4 [(ωn + iµ̃c)2 + ω2
p
]2
, (A.1.6)

where
µ̃c ≡ µ+ gAcc. (A.1.7)
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Using (3.1.16), which reads

lnZ =
∑
n,p

Nc∑
c=1

ln detDc(p, n), (A.1.8)

we get

lnZ = 2
Nc∑
c=1

∑
n,p

ln
(
β2 [(ωn + iµ̃c)2 + ω2

p
])

=
Nc∑
c=1

∑
n,p

ln
(
β4 [(ωn + iµ̃c)2 + ω2

p
] [

(−ωn + iµ̃c)2 + ω2
p
])

=
Nc∑
c=1

∑
n,p

ln
(
β4 [ω2

n + (ωp − µ̃c)2] [ω2
n + (ωp + µ̃c)2])

=
Nc∑
c=1

∑
n,p

ln
(
β2 [ω2

n + (ωp − µ̃c)2])+ ln
(
β2 [ω2

n + (ωp + µ̃c)2]) , (A.1.9)

where we have used that we sum over all n ∈ Z, so that the sum is unchanged under ωn → −ωn.
Remembering that ωn = (2n+ 1)πT and using the integral∫ β2ω2

p

1

dx2

x2 + ω2
n

= ln
[
ω2
n + β2ω2

p
]
− ln

[
(2n+ 1)2π2 + 1

]
, (A.1.10)

we find

lnZ =
Nc∑
c=1

∑
p

∑
n

(∫ β2(ωp+µ̃c)2

1

dx2

x2 + (2n+ 1)2π2 +
∫ β2(ωp−µ̃c)2

1

dx2

x2 + (2n+ 1)2π2

)
,

where we dropped an irrelevant additive factor that does not affect thermodynamics. Carrying
out the Matsubara frequency sums, which are shown in Appendix A.2, and taking the large
volume limit, where ∑

p
→ V

∫ d3p

(2π)3 , (A.1.11)

we finally get

lnZ = 2V
Nc∑
c=1

∫ d3p

(2π)3

{
βωp + ln

[
1 + e−β(ωp−µ̃c)

]
+ ln

[
1 + e−β(ωp+µ̃c)

]}
. (A.1.12)

A.2 Matsubara Frequency Sums

Bosonic Sum
Consider the sum

1
4πi

∞∑
i=−∞

∮
Ci

dp0f(p0) coth
(

1
2βp0

)
(A.2.1)
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p0 p0

C0

C1

C2

C-1

C-2

C

Figure A.1: Left: each square Cn is an integration path in the complex plane. Right:
Equivalent integration path C.

where the paths Ci are shown in Fig. A.1. We have that

coth
(

1
2βp0

)
= 1 + e−βp0

1− e−βp0
(A.2.2)

has poles at

p0 = 2πinT ≡ iωn n ∈ Z, (A.2.3)

and it is analytic everywhere else. We have here introduced the bosonic Matsubara frequencies
ωn. If f(p0) is analytic we can use the residue theorem for each path Cn. Furthermore, we use
that the integral over all paths Cn is equivalent to integrating over the path C shown in Fig. A.1.
As a result we get

1
2

∞∑
n=−∞

f(iωn) Res
p0=iωn

coth
(

1
2βp0

)
= 1

4πi

∮
C

dp0f(p0) coth
(

1
2βp0

)
(A.2.4)

The pole is of first order, and the residue thus is given by

Res
p0=iωn

coth
(

1
2βp0

)
= lim
p0→iωn

(p0 − iωn)
cosh

( 1
2βp0

)
sinh

( 1
2βp0

) (A.2.5)

= 2iπT lim
k→n

(k − n)cosh(iπk)
sinh(iπk) (A.2.6)

= 2πT lim
k→n

(k − n)cos(πk)
sin(πk) (A.2.7)

= 2πT lim
q→0

q
cos(πq + πn)
sin(πq + πn) (A.2.8)

= 2πT lim
q→0

q
cos(πq)
sin(πq) (A.2.9)

= 2πT lim
q→0

q
1
πq

(A.2.10)

= 2T (A.2.11)
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Thus we get

T

∞∑
n=−∞

f(iωn) = 1
4πi

∮
C

dp0f(p0) coth
(

1
2βp0

)
. (A.2.12)

Let us now calculate the sum for

f(p0) = 1
x2 − β2p2

0
. (A.2.13)

Using that we can rewrite ∮
C

=
∫ −ε−i∞
−ε+i∞

+
∫ ε+i∞

ε−i∞
, (A.2.14)

we find ∑
n

1
x2 + (2πn)2 = β

4πi

(∫ −ε−i∞
−ε+i∞

+
∫ ε+i∞

ε−i∞

)
dp0

coth
( 1

2βp0
)

x2 − (βp0)2 (A.2.15)

We can now close each of the line integrals with a half-circle to negative and positive real infinity,
so that we again can use the residue theorem. We have poles at p0 = ± x

β , giving∑
n

1
x2 + (2πn)2 = β

4πi2πi
[

Res
p0=x/β

g(p0)+ Res
p0=−x/β

g(p0)
]
, (A.2.16)

for

g(p0) =
coth

( 1
2βp0

)
x2 − (βp0)2 . (A.2.17)

The poles are of first order, and the sum of the residues are

coth
(
x
2
)

2xβ −
− coth

(
x
2
)

2xβ =
coth

(
x
2
)

xβ
= 1
βx

(
1 + 2

ex − 1

)
. (A.2.18)

Thus ∑
n

1
x2 + (2πn) = 1

2x

(
1 + 2

ex − 1

)
. (A.2.19)

Using this gives ∫ β2ω2
p

1

∑
n

dx2

x2 + (2πn)2 =
∫ β2ω2

p

1

dx

2
√
x

(
1 + 2

e
√
x − 1

)
(A.2.20)

= βωp + 2 ln
(
1− e−βωp

)
+ const. (A.2.21)

Fermionic Sum
With the same argument as for the bosonic sum, except with Matsubara frequencies ωn =
(2n+ 1)πT and the replacement

coth
(

1
2βp0

)
→ tanh

(
1
2βp0

)
, (A.2.22)
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which has poles at p0 = iωn, we find

T

∞∑
n=−∞

f(iωn) = 1
4πi

∮
C

dp0f(p0) tanh
(

1
2βp0

)
. (A.2.23)

Let us calculate the same sum as for the bosons, except with the Fermionic matsubara
frequencies. We find∑

n

1
x2 + (2n+ 1)2π2 = β

4πi2πi
[

Res
p0=x/β

g(p0)+ Res
p0=−x/β

g(p0)
]
, (A.2.24)

where g(p0) now is

g(p0) =
tanh

( 1
2βp0

)
x2 − (βp0)2 . (A.2.25)

The sum of the residues is

tanh
(
x
2
)

2βx −
tanh

(
x
2
)

−2βx =
tanh

(
x
2
)

βx
= 1
βx

(
1− 2

ex + 1

)
(A.2.26)

Using this gives∫ β2(ωp±µ)2

1

∑
n

dx2

x2 + (2n+ 1)2π2 =
∫ β2(ωp±µ)2

1

dx

2
√
x

(
1− 2

e
√
x + 1

)
(A.2.27)

= (βωp ± µ) + 2 ln
(

1 + e−β(ωp±µ)
)

+ const. (A.2.28)

A.3 Symmetries of the QM Model

One can show that γ5 satisfies
(
γ5)2 = 1,

(
γ5)† = γ5 and

{
γ5, γµ

}
= 0. Define the operators PR

and PL as
PR = 1

2
(
1 + γ5) , PL = 1

2
(
1− γ5) . (A.3.1)

Using that (γ5)2 = 1, we find that P 2
R = PR and P 2

L = PL, which means that they are projection
operators. Since PR + PL = 1, we can write

ψ = PRψ + PLψ = ψR + ψL, (A.3.2)

where we in the last equality defined the right- and left-handed spinors, ψR = PRψ and ψL =
PLψ. We see that

γ5ψR = ψR, (A.3.3)
γ5ψL = −ψL. (A.3.4)

Inserting these relations into the Yukawa term gives

−LY = gψ̄L(χ1 + iπ · τ )ψR + gψ̄R(χ1 − iπ · τ )ψL + gψ̄L(χ1 − iπ · τ )ψL + gψ̄R(χ1 + iπ · τ )ψR.
(A.3.5)
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The last two terms vanish for the following reason. Let ξ and χ be two spinors and let P be one
of the two defined projection operators. Then

(Pχ)(Pξ) =
[(

1± γ5)χ]† γ0(1± γ5)ξ = χ†(1± γ5)γ0(1± γ5)ξ = χ†γ0(1∓ γ5)(1± γ5)ξ
= χ†γ0 [1− (γ5)2] ξ = 0.

For the kinetic terms we have that ψ̄Riγµ∂µψL and ψ̄Liγ
µ∂µψR vanish, as can be shown by a

similar calculation. Thus, the quark sector of the Lagrangian becomes

ψ̄Riγ
µ∂µψR + ψ̄Liγ

µ∂µψL − gψ̄L(χ1 + iπ · τ )ψR − gψ̄R(χ1 − iπ · τ )ψL. (A.3.6)

To make the symmetries of the Lagrangian manifest, introduce

Θ = 1
2 (χ1 + iπ · τ ) = 1

2

[
χ1 + iπ3 iπ1 + π2
iπ1 − π2 χ1 − iπ3

]
(A.3.7)

We see that

Tr
(
Θ†Θ

)
= 1

4 Tr
[
χ2

1 + π2
3 + 2π−π+ 0

0 χ2
1 + π2

3 + 2π−π+

]
= 1

2χ
2
1 + 1

2π
2, (A.3.8)

when the fields are real. We furthermore have that

Tr
(
Θ† + Θ

)
= 2χ1. (A.3.9)

Consequently we can rewrite the full quark-meson Lagrangian as

L = ψ̄Riγ
µ∂µψR + ψ̄Liγ

µ∂µψL − 2gψ̄LΘψR − 2gψ̄RΘ†ψL

+ Tr
(
∂µΘ†∂µΘ

)
+m2 Tr

(
Θ†Θ

)
− λ

6
[
Tr
(
Θ†Θ

)]2 + 1
2hTr

(
Θ + Θ†

)
. (A.3.10)

Assume now first that h = 0. Let U1 and U2 be two independent transformations in SU(2)
acting on flavor space. Consider the transformations

ψR → U1ψR, ψL → U2ψL. (A.3.11)

Since Ui acts on flavor components while γµ acts on the spinors, we find that Ui commutes with
γµ. Thus the kinetic quark terms are invariant:

U1ψRiγ
µ∂µU1ψR = ψ†RU

†
1γ

0iγµ∂µU1ψR = ψ†RU
−1
1 U1γ

0iγµ∂µψR = ψ̄Riγ
µ∂µψR,

and similar for ψL. The Yukawa-part becomes

−LY = 2gψ̄LU−1
2 Θ′U1ψR + gψ̄RU

−1
1 Θ′†U2ψL, (A.3.12)

where we assume Θ has transformed into some Θ′. We see that if we transform Θ as

Θ′ = U2ΘU−1
1 , (A.3.13)

both these terms are invariant, since U†i = U−1
i . However, we must check that the transformed

σ and π fields are still real; otherwise the way we have written the Lagrangian in (A.3.10) is not
valid. If this is the case, as we will show that it is in the following, we see that also the meson
sector of the Lagrangian invariant, since

Tr
[
(U2ΘU−1

1 )†(U2ΘU−1
1 )
]

= Tr
[
U1Θ†U−1

2 U2ΘU−1
1
]

= Tr
(
Θ†Θ

)
, (A.3.14)
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where we use the cyclic property of the trace. Thus, the Lagrangian is invariant under SU(2)R×
SU(2)L, where we have included subscripts to indicate that the Lagrangian is invariant under
separate SU(2) transformations on left- and right-handed components of the doublet.

Let us now verify that χ1 and π are still real after an SU(2)R×SU(2)L transformation. We
can write

U1 = e−
i
2 α·τ = 1− i

2α · τ , U2 = e−
i
2 β·τ = 1− i

2β · τ , (A.3.15)

for two general infinitesimal transformations, since the Pauli matrices generates a two-dimensional
representation of SU(2). Here α and β are real infinitesimal parameters. We have that the Θ
transformation on infinitesimal form reads:

(χ1 + iπ · τ )→
(

1− i

2β · τ
)

(χ1 + iπ · τ )
(

1 + i

2α · τ
)

= (χ1 + iπ · τ ) + i

2(α− β) · τχ1 + 1
2 [(β · τ )(π · τ )− (π · τ )(α · τ )]

= (χ1 + iπ · τ ) + i

(
α− β

2

)
· τχ1 +

(
β −α

2

)
· π + i

[(
β +α

2

)
× π

]
· τ

=
[
χ1 −

(
α− β

2

)
· π
]

+ i

[
π +

(
α− β

2

)
χ1 +

(
α+ β

2

)
× π

]
· τ ,

where we between the second and third line used the identity

(a · τ )(b · τ ) = (a · b) + i(a × b) · τ . (A.3.16)

Hence, an infinitesimal SU(2)R × SU(2)L transformation corresponds to changing the scalar
fields as

δχ1 = −
(
α− β

2

)
· π, δπ =

(
α− β

2

)
χ1 +

(
α+ β

2

)
× π. (A.3.17)

We see that the fields remain real, and the claim that L is invariant under SU(2)R × SU(2)L is
thus valid.

For the case h 6= 0, we see that SU(2)R×SU(2)L is broken since the term (A.3.9) is changed
when δχ1 6= 0. However, a single SU(2) symmetry remains, which corresponds to choosing the
two SU(2) transformations to be equal, U1 = U2. This implies α = β in the infinitesimal case,
which leads to δχ1 = 0. We refer to this symmetry as SU(2)V .

Conserved Currents
Let us find the currents corresponding to the SU(2) symmetries. Consider first h = 0. Choosing
β = 0 and αj = 2δij for i ∈ {1, 2, 3} gives us the conserved right-handed currents

jµi,R = ∂L
∂(∂µχ1) (−δijπj) + ∂L

∂(∂µπj)
(χ1δ

i
j + εjklδ

i
kπl) + ∂L

∂(∂µψ) (−iτiψR)

= ∂µπiχ1 − ∂µχ1πi + εijkπj∂
µπk + i(ψ̄L + ψ̄R)γµ(−iτiψR). (A.3.18)

Using that ψ̄LγµψR = 0, we get

jµi,R = ∂µπiχ1 − ∂µχ1πi + εijkπj∂
µπk + ψ̄Rγ

µτiψR. (A.3.19)

Similarly we get for the conserved left-handed currents

jµi,L = −∂µπiχ1 + ∂µχ1πi + εijkπj∂
µπk + ψ̄Lγ

µτiψL. (A.3.20)
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We can also form the vector and axial currents, which are the linear combinations

jµi,V = 1
2

(
jµi,R + jµi,L

)
= εijkπj∂

µπk + 1
2 ψ̄γ

µτiψ, (A.3.21)

jµi,A = 1
2

(
jµi,R − j

µ
i,L

)
= ∂µπiχ1 − ∂µχ1πi + 1

2 ψ̄γ
µγ5τiψ. (A.3.22)

In rewriting the quark contribution to these currents we have again used that the ψR-ψL cross-
terms vanish. Furthermore, we have used equations (A.3.3) and (A.3.4) to rewrite

ψ̄Rγ
µτiψR − ψ̄LγµτiψL = (ψ̄R + ψ̄L)γµτi(ψR − ψL) = (ψ̄R + ψ̄L)γµγ5τi(ψR + ψL).

To find the conserved currents in the h 6= 0 case we must set α − β = 0. We choose
αj + βj = 2δij and find that

δψ = − i2α · τψR −
i

2β · τψL = − i2

(
α+ β

2

)
· τψ − i

2γ
5
(
α− β

2

)
· τψ = − i2τiψ. (A.3.23)

Using this, we find exactly (A.3.21) as the conserved currents. Thus for h 6= 0, only the vector
currents are conserved. The vector currents are, as the name suggests, the currents corresponding
to the SU(2)V symmetry.

A.4 One-Loop Renormalization of the QM Model
We will here derive the one-loop self-energies in the large-Nc limit of the quark-meson model.
This section is a partial summary of the work done in Ref. [1].

Renormalized Perturbation Theory
Consider the quark-meson Lagrangian. Let the coupling constants and fields before renor-
malization be denoted with a subscript B, standing for bare. After we have expanded about
χ1,B = vB + σB we have:

L = U(vB) + 1
2(∂πB)2 + 1

2(∂σB)2 − 1
2m

2
σ,Bσ

2
B −

1
2m

2
π,Bπ

2
B + σB

(
hB −m2

π,BvB
)

+ ψ̄Bi/∂ψB −mq,Bψ̄BψB − gBψ̄B(σB + iπB · τγ5)ψB + Li,B , (A.4.1)

where

Li,B = −1
6vBλBσBπ

2
B −

λB
12 σ

2
Bπ

2
B −

1
6λBvBσ

3
B −

λB
4! σ

4
B −

λB
4! π

4
B (A.4.2)

contains all interactions except the Yukawa-term. We introduce the renormalized fields and
couplings via

πB =
√
Zππ, σB =

√
Zσσ, ψB =

√
Zψψ,

m2
B = Zmm

2, λB = Zλλ, gB =
√
Zgg, (A.4.3)

hB = Zhh, vB =
√
Zvv,
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where the Z-factors are the field, mass and coupling renormalizations. Inserting (A.4.3) into
(A.4.1) gives the Lagrangian

L = U (v) + δU + 1
2Zπ(∂π)2 + 1

2Zσ(∂σ)2 − 1
2Zσ

(
Zλλ

2 Zvv
2 − Zmm2

)
σ2

− 1
2Zπ

(
Zλλ

6 Zvv
2 − Zmm2

)
π2 + σ

√
Zσ

(
Zhh−

Zλλ

6
(
Zvv

2) 3
2 + Zmm

2
√
Zvv2

)
+ Zψψ̄i/∂ψ − Zψ

√
ZgZvmqψ̄ψ − Zψ

√
Zggψ̄(

√
Zσσ + i

√
Zππ · τγ5)ψ + Li + δLi. (A.4.4)

Here δU is the change in the tree-level potential, which we will look at later, while the countert-
erms coming from the non-Yukawa interactions, δLi, will not be needed at one-loop level in the
large-Nc limit for the renormalization scheme we will adopt. Introducing

Z = 1 + δZ (A.4.5)

for all the quantities in (A.4.3), we find that the quadratic part of the meson sector becomes

1
2(∂π)2 + 1

2(∂σ)2 − 1
2(1 + δZσ)

(
m2
σ + δm2

σ

)
σ2 − 1

2(1 + δZπ)
(
m2
π + δm2

π

)
π2

+ 1
2δZπ(∂π)2 + 1

2δZσ(∂σ)2, (A.4.6)

where we have introduced

δm2
σ = 1

2δλv
2 − δm2 + 1

2λδv
2, (A.4.7)

δm2
π = 1

6δλv
2 − δm2 + 1

6λδv
2, , (A.4.8)

δm2 = δZmm
2, δλ = δZλλ, δv2 = δZvv

2. (A.4.9)
To one-loop order, where we can drop products of counterterms, we see that the quadratic meson
part gives the counterterms

i
1
2
[
δZσ(p2 −m2

σ)− δm2
σ

]
≡ σ σ , (A.4.10)

i
1
2
[
δZπ(p2 −m2

π)− δm2
π

]
≡ π π . (A.4.11)

Note that in the definition of the vertex factor, we do not include a factor of 2! coming from the
fact that a σ or π-field can attach to the counterterm in two ways. We will instead multiply with
these factors explicitly when summing diagrams.

We notice that to one-loop order, to find the counterterms corresponding to a product of
renormalized quantities, we can effectively take the variation of the product. For example, if A
and B are being renormalized at one loop, then the counterterms corresponding to the product
AB is given by

δ(AB) ≡ (A+ δA)(B + δB)−AB = (δA)B +A(δB) + δAδB︸ ︷︷ ︸
two-loop term

. (A.4.12)

Using this we see that to one-loop order the linear counterterm becomes

1
2δZσσ

(
h−m2

πv
)

+ σ

(
δh− δm2

πv −
1
2m

2
πv
δv2

v2

)
, (A.4.13)
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σ σ = i

p2 −m2
σ

, π π = i

p2 −m2
π

,

ψ ψ =
i(/p+mq)
p2 −m2

q

, σ = i(h−m2
πv),

σ

σ σ

σ

= −i λ4! ,

σ

σσ

= −i16λv,

πi

πi σ

σ

= −i λ12

πi

πi

σ = −i16λv,

πi

πi πj

πj

=
{
−i2λ

4! , i 6= j

−i λ4! , i = j
,

ψα

ψβ

πi = g[τi]αβγ5,

ψα

ψα

σ = −ig.

Figure A.2: Vertex factors and propagators in the quark-meson model. Note that in this
definition of the vertex factors, we do not include in the vertex itself a factor n! for n
equal external legs.

with √
Zσ ≈ 1 + 1

2δZσ, δv = 1
2v δv

2. (A.4.14)

Thus, we have the counterterm

i

[
1
2δZσ(h−m2

πv)− 1
2m

2
πv
δv2

v2 + δh− δm2
πv

]
≡ σ ≡ iδt, (A.4.15)

where we have defined the δt as the expression in the braces.
From the Lagrangian we read off the rest of the Feynman rules. They are displayed in

Fig. A.2. As we will see in the following, in the large-Nc limit at one loop we will not need any
more counterterms than the ones we have derived when we use the appropriate renormalization
conditions.

Simplifications in the One-Loop Large-Nc Limit
From now on we assume that Nc is large so that we can neglect all O(N0

c )-terms. This allows
us to derive several useful relations between the various counterterms at the one-loop level. In
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this limit the quark mass receives no corrections at one loop, since the pion and sigma loops that
would renormalize the quark propagator goes as O(N0

c ). Thus, for our approximation scheme to
be consistent, we must have that the counterterms which would cancel these contributions must
vanish. This means that

ψ ψ = 0. (A.4.16)

In other words, the counterterm corresponding to ψ̄i/∂ψ −mqψ̄ψ must be zero:

δZψi/p− δZψmq − δmq = 0 ∀p. (A.4.17)

For this to hold for all p we must have that

δZψ = 0, δmq = 0. (A.4.18)

This gives

δmq = gδv + δgv = g
δv2

2v + v
δg2

2g = 1
2

(
δg2

g2 + δv2

v2

)
= 0, (A.4.19)

giving that

δg2

g2 = −δv
2

v2 . (A.4.20)

We also have that the one-loop contribution to the πψ̄ψ vertex goes as O(N0
c ) and thus is ne-

glected in the large-Nc approximation. Hence, we must have that the corresponding counterterm
also vanishes:

ψ̄α

ψβ

πj = 0⇒ Zψ

√
Zgg2

√
Zπ ≈ g

(
1 + 1

2
δg2

g2 + 1
2δZπ

)
= g, (A.4.21)

where we used Zψ = 1 and discarded two-loop corrections. This implies that we need

δg2 = −g2δZπ. (A.4.22)

Combining this relation with equation (A.4.20), we find

δv2

v2 = δZπ. (A.4.23)

From the definitions (A.4.7) and (A.4.8) we can find additional relations between the coun-
terterms. We see that

δλ = 3(δm2
σ − δm2

π)
v2 − λδv

2

v2 , (A.4.24)

δm2 = (δm2
σ − 3δm2

π)
2 . (A.4.25)

Combining (A.4.23) with (A.4.24) we find

δλ = 3(δm2
σ − δm2

π)
v2 − λδZπ. (A.4.26)
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Subtleties in Dimensional Regularization
In four space-time dimensions one has a multitude of gamma-matrix identities, but in d = 4− 2ε
dimensions several of these relations either must be modified or becomes undefined. In the original
paper by t’Hooft and Veltmann where dimensional regularization is introduced, Ref. [45], it is
illustrated how ambiguities arise in integrals involving γ5. In four space-time dimensions γ5 is
defined by

γ5 = iγ0γ1γ2γ3. (A.4.27)

However, in d = 4 − 2ε it is not clear how to define γ5. We will assume that it is somehow
possible to define γ5 in 4− 2ε dimensions such that it satisfies{

γ5, γµ
}

= 0, (γ5)2 = 1. (A.4.28)

We will not need to take the trace of γ5, since we will only evaluate diagrams where two γ5

matrices occur and thus can be combined to square to one. The justification for using these
properties of γ5 in arbitrary dimensions is discussed in Ref. [165].

The only other identities we need in the following are

Tr γµ = 0, Tr I = 4, Tr γµγν = gµν , (A.4.29)

which are not modified [11].

Pion and Sigma Self-Energies
We are now ready to calculate the self-energies of the sigma and the pions. All the relevant
one-loop terms proportional to Nc and counterterms at the same order are shown in Fig. 4.2.
Let us label the σ diagrams iΣ1

σ, iΣ1,ct
σ , iΣ2

σ, iΣ2,ct
σ from left to right, respectively, and similarly

for π. We note that in a general renormalization scheme, we would also need to account for the
rightmost diagrams in Fig. 4.2. However, we will renormalize so that m2

πv − h = 0 holds also
after renormalization, so that these diagrams vanish.

Sigma Self-Energy Diagrams
The first loop diagram is

iΣ1
σ(p2) =

= 2Nc(−1)(−ig)2Λ4−d
∫

ddk

(2π)d Tr
[
i(/k + /p+mq)
(k + p)2 −m2

q

i(/k +mq)
k2 −m2

q

]
= −8Ncg2Λ4−d

∫
ddk

(2π)d
k2 + p · k +m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

]
= −8Ncg2Λ4−d

∫
ddk

(2π)d
(k + p)2 −m2

q − p · k − p2 + 2m2
q[

(k + p)2 −m2
q

] [
k2 −m2

q

]
= −8Ncg2

{
A(m2

q) + Λ4−d
∫

ddk

(2π)d
−p · k − p2 + 2m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

]} . (A.4.30)
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where we have defined

A(m2
q) = Λ4−d

∫
ddk

(2π)d
1

k2 −m2
q

. (A.4.31)

In the second line we calculated the trace to be

Tr
[(
/k + /p+mq

)
(/k +mq)

]
= 4(k2 + p · k +m2

q) (A.4.32)

by using that Tr (γµγν) = 4gµν . We can rewrite the last integral in the parenthesis of equation
(A.4.30) as

I ≡ Λ4−d
∫

ddk

(2π)d
−p · k − p2 + 2m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

] = Λ4−d
∫

ddq

(2π)d
p · q + 2m2

q[
q2 −m2

q

] [
(q + p)2 −m2

q

] ,
(A.4.33)

where we changed variable q = −k−p in the last step. Adding both ways of writing the integral,
we find that

I = I

2 + I

2 = Λ4−d
∫

ddk

(2π)d
− 1

2p
2 + 2m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

] ≡ −1
2(p2 − 4m2

q)B(p2),

where we defined

B(p2) = Λ4−d
∫

ddk

(2π)d
1[

(k + p)2 −m2
q

] [
k2 −m2

q

] . (A.4.34)

Thus we have

iΣ1
σ(p2) = −8Ncg2

[
A(m2

q)−
1
2(p2 − 4m2

q)B(p2)
]
. (A.4.35)

The other diagram we consider is

iΣ2
σ(p2) = = 3!(−1)(2Nc)

(
−iλv

6

)
i

−m2
σ

(−ig)Λ4−d
∫

ddk

(2π)d Tr i(
/k +mq)
k2 −m2

q

= 8Ncλgvmq

m2
σ

Λ4−d
∫

ddk

(2π)d
1

k2 −m2
q

=
8Ncλm2

q

m2
σ

A(m2
q). (A.4.36)

The factor 3! comes from the fact that external propagators can attach to the σ3 vertex in 3!
ways, the (−1) comes from the fermion loop and 2Nc from the fact that we have 2 different
flavors and Nc different colors. Λ is a dimensionful scale keeping the dimensions of the integrals
the same as in d = 4. We have also used that Tr γµ = 0⇒ Tr(/k +mq) = 4mq.

Adding up the two diagrams, we find

iΣ2
σ(p2) + iΣ1

σ(p2) = −8Ncg2
[
A(m2

q)−
1
2(p2 − 4m2

q)B(p2)
]

+
8Ncλm2

q

m2
σ

A(m2
q). (A.4.37)
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Pion Self-Energy Diagrams
The Σ1

π diagram is new since we here have the pseudoscalar Yukawa vertex associated with the
term

gψ̄iγ5τiπiψ =gi[π1(ψ̄1γ
5ψ2 + ψ̄2γ

5ψ1) + π2i
(
−ψ̄1γ

5ψ2 + ψ̄2γ
5ψ1
)

+ π3(ψ̄1γ
5ψ1 − ψ̄2γ

5ψ2)]. (A.4.38)

Due to the SU(2)V symmetry which mixes components of π, the contribution of these interactions
to the self-energy is necessarily the same for all the components of π. For π3 we find Nc diagrams
for each flavor:

iΣ2
π(p2) = Nc


ψ1

ψ1

π3 π3

+Nc


ψ2

ψ2

π3 π3

 (A.4.39)

= (−1)(±g)22NcΛ4−d
∫

ddk

(2π)d Tr
[
γ5i(/k + /p+mq)
(k + p)2 −m2

q

γ5i(/k +mq)
k2 −m2

q

]

= −2Ncg2Λ4−d
∫

ddk

(2π)d Tr
[ (/k + /p−mq)

(k + p)2 −m2
q

(/k +mq)
k2 −m2

q

]
= −8Ncg2Λ4−d

∫
ddk

(2π)d
k2 + p · k −m2

q[
(k + p)2 −m2

q

] [
k2 −m2

q

] = −8Ncg2
[
A(m2

q)−
1
2p

2B(p2)
]
.

(A.4.40)

We here used that
{
γ5, γµ

}
= 0 and performed the same kind of manipulation on the integral as

with σ. If we look at π1 or π2 instead, we would have loops with two different quark flavors at
each vertex, but the final result is the same.

The Σ2
π diagram is

iΣ2
π(p2) = = 1

3 · (A.4.41)

The factor 1
3 difference is simply a result of the fact that the external pion propagators only can

connect to the σππ vertex in 2! ways instead of 3!.
The two diagrams add up to

iΣ1
π(p2) + iΣ2

π(p2) = −8Ncg2
[
A(m2

q)−
1
2p

2B(p2)
]

+
8Ncλm2

q

3m2
σ

A(m2
q). (A.4.42)
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The On-Shell Renormalization Scheme
In the on-shell renormalization scheme we demand, at T = 0, that v = h

m2
π
and 〈σ〉 = 0 also after

loop corrections. The latter means that we have the condition

+ = −8NcgmqA(m2
q) + iδt = 0, (A.4.43)

since these are the diagrams that contribute to the one-point function in the large Nc limit. This
gives

δt = −8iNcgmqA(m2
q) = −8iNcg2vA(m2

q). (A.4.44)

This fixes δt, and thus gives an expression for δh in terms of δZσ, δv2 and δm2
π through equation

(A.4.15). Condition (A.4.43) also gives us that

Σ2
σ(p2) + Σ2,ct

σ (p2) = 0, Σ2
π(p2) + Σ2,ct

π (p2) = 0, (A.4.45)

since these sums are proportional to (A.4.43). Using this we then have the inverse propagators

Gσ(p2)−1 =p2 −m2
σ + Σ1

σ(p2) + Σ1,ct
σ (p2), (A.4.46)

Gπ(p2)−1 =p2 −m2
π + Σ1

π(p2) + Σ1,ct
π (p2). (A.4.47)

The on-shell scheme is defined by the fact that the masses receive no radiative corrections [11,
26]. Hence, we demand that the full propagators have poles at the location of the renormalized
masses, meaning1

Σ1
σ(m2

σ) + Σ1,ct
σ (m2

σ) = 0, (A.4.48)
Σ1
π(m2

π) + Σ1,ct
π (m2

π) = 0. (A.4.49)

The terms iΣ1,ct
σ and iΣ1,ct

π are, up to a factor of two, given by equations (A.4.10) and (A.4.11).
Using that Σ1,ct

σ (m2
σ) = −δm2

σ and Σ1,ct
σ (m2

π) = −δm2
π, we find

δm2
σ = Σ1

σ(m2
σ) = 8iNcg2

[
A(m2

q)−
1
2(m2

σ − 4m2
q)B(m2

σ)
]
, (A.4.50)

δm2
π = Σ1

π(m2
π) = 8iNcg2

[
A(m2

q)−
1
2m

2
πB(m2

π)
]
. (A.4.51)

In the on-shell scheme one also takes as a renormalization condition that the residue of the
propagators at the mass poles are equal to i. Using the formula for a simple pole gives the
criterion

i = Res
p2=m2

G(p2) = lim
p2→m2

(p2 −m2) i

p2 −m2 + Σ(p2) = i

1 + dΣ(p2)
dp2 |p2=m2

, (A.4.52)

1We actually here mean the real part of the inverse propagators. In order to not clutter the notation
we will suppress this and discard imaginary parts. We will comment on this more in the following.
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where we used L’Hôpital’s rule. We thus find the on-shell condition

dΣ(p2)
dp2

∣∣∣∣∣
p2=m2

= 0. (A.4.53)

This condition gives

d

dp2
[
Σ1
σ(p2) + Σ1,ct

σ (p2)
] ∣∣∣∣∣
p2=m2

σ

= dΣ1
σ(p2)
dp2

∣∣∣∣∣
p2=m2

σ

+ δZσ = 0, (A.4.54)

and similarly for π. We find the expressions

δZσ = −dΣ1
σ(p2)
dp2

∣∣∣∣∣
p2=m2

σ

, δZπ = −dΣ1
π(p2)
dp2

∣∣∣∣∣
p2=m2

π

. (A.4.55)

Differentiating (A.4.35) and (A.4.40), we find

δZσ = 4iNcg2 [B(m2
σ) + (m2

σ − 4m2
q)B′(m2

σ)
]
, (A.4.56)

δZπ = 4iNcg2 [B(m2
π) +m2

πB
′(m2

π)
]
, (A.4.57)

where B′(m2) = dB(p2)
dp2

∣∣∣
p2=m2

.
To find an expression for δh, we combine (A.4.15), (A.4.23) and (A.4.44), and find

−8iNcg2vA(m2
q) = 1

2δZσ(h−m2
πv)− 1

2m
2
πvδZπ + δh− δm2

πv, (A.4.58)

which gives

δh = −8iNcg2vA(m2
q) + vδm2

π + 1
2m

2
πvδZπ −

1
2δZσ(h−m2

πv). (A.4.59)

Note that the last term vanishes since we renormalize so the minimum of the potential does not
change.

Having determined δm2
σ, δm2

π, δZσ and δZπ, we are in position to use relations (A.4.22),
(A.4.25), (A.4.26) and (A.4.59) to find δg2, δv2, δλ, δm2 and δh. We find the on-shell expressions

δm2
OS = −8iNcg2

[
A(m2

q) + 1
4(m2

σ − 4m2
q)B(m2

σ)− 3
4m

2
πB(m2

π)
]
, (A.4.60)

δλOS = −12iNcg2

v2
[
(m2

σ − 4m2
q)B(m2

σ)−m2
πB(m2

π)
]
− 4iλNcg2 [B(m2

π) +mπB
′(m2

π)
]
,

(A.4.61)
δg2

OS = −4iNcg4 [B(m2
π) +m2

πB
′(m2

π)
]
, (A.4.62)

δhOS = −2iNcg2m2
πv
[
B(m2

π)−m2
πB
′(m2

π)
]
, (A.4.63)

δv2
OS = 4iNcg2v2 [B(m2

π) +m2
πB
′(m2

π)
]
, (A.4.64)

δZOS
σ = 4iNcg2 [B(m2

σ) + (m2
σ − 4m2

q)B′(m2
σ)
]
, (A.4.65)

δZOS
π = 4iNcg2 [B(m2

π) +m2
πB
′(m2

π)
]
, (A.4.66)

where we have listed δZσ and δZπ again for completeness.
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Calculating the Loop Integrals
We want to calculate the integrals A(m2

q) and B(p2) and separate out the divergent parts so that
we can relate the counterterms and couplings in the on-shell and MS schemes.

In the following we will use the integral formula∫
ddk

(2π)d
k2a

(k2 − η)b = i(−1)a−b 1
(4π) d2

η
d
2 +a−bΓ

(
a+ d

2
)

Γ
(
b− a− d

2
)

Γ(b)Γ(d2 )
, (A.4.67)

with d = 4− 2ε. We find

A(m2
q) = Λ4−d

∫
ddk

(2π)4
1

k2 −m2
q

=
−im2

q

(4π) d2

(
Λ
mq

)4−d
Γ
(

1− d

2

)
=
−im2

q

(4π2)2

(
4πΛ2

m2
q

)ε
Γ (−1 + ε)

=
im2

q

(4π)2

[
1
ε

+ 1 + ln
(
4πe−γE

)
+ ln

(
Λ
m2
q

)]
, (A.4.68)

where we only keep terms up to order O(ε0). For the integral B(p2) we use that

1
XY

=
∫ 1

0

dx

[X + (Y −X)x]2 , (A.4.69)

where we have introduced a so-called Feynman parameter x. Defining

η(x) = p2x(x− 1) +m2
q, (A.4.70)

we then find

B(p2) = Λ4−d
∫

ddk

(2π)4
1[

(k + p)2 −m2
q

] [
k2 −m2

q

] = Λ4−d
∫ 1

0
dx
iη(x) d2−2

(4π) d2
Γ
(

2− d

2

)
= i

(4π)2

∫ 1

0
dx

(
4πΛ2

η(x)

)ε
(ε− 1)Γ(−1 + ε)

≡ i

(4π)2

[
1
ε

+ ln
(
4πe−γE

)
+ ln

(
Λ
m2
q

)
+ C(p2)

]
, (A.4.71)

where we have defined the function

C(p2) = −
∫ 1

0
dx ln

(
η(x)
m2
q

)
= −

∫ 1

0
dx ln

[
p2

m2
q

x(x− 1) + 1
]
. (A.4.72)

This integral can be calculated exactly and is found in standard integral tables. The result is

C(p2) = 2− 2

√
4m2

q

p2 − 1 arctan

 1√
4m2

p2 − 1

 . (A.4.73)

Differentiating gives

C ′(p2) =
4m2

q

p4
√

4m2
q

p2 − 1
arctan

 1√
4m2

q

p2 − 1

− 1
p2 . (A.4.74)
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Note that for p2 > 4m2
q, C(p2) and C ′(p2) get an imaginary part. Thus, the self-energy also

gets an imaginary part. This is the case for C(m2
σ) and C ′(m2

σ) if mσ > 2mq, because the sigma
then will have a finite lifetime, since the decay σ → ψ̄ψ through the Yukawa-vertex becomes
kinematically allowed. For the pions this decay will be kinematically forbidden, since we will use
a quark mass satisfying mπ < mq. In the following we will only keep the real parts of C(m2

σ)
and C ′(m2

σ). We can do this since the requirement that the inverse propagators vanish when
evaluated at the physical masses, equations (A.4.48) and (A.4.49), should really have been

ReGσ(m2
σ)−1 =0, (A.4.75)

ReGπ(mπ)−1 =0. (A.4.76)

To avoid writing ln (4πe−γE ) everywhere we redefine Λ→ ΛeγE/4π. Inserting our analytical
expressions for the integrals, equations (A.4.68) and (A.4.71), into equations (A.4.60)–(A.4.66),
we get

δm2
OS = δm2

MS +
2Ncm2

q

(4π)2v2 (m2
σ − 3m2

π) ln
(

Λ
m2
q

)
+

4Ncm2
q

(4π)2v2

[
2m2

q + 1
2(m2

σ − 4m2
q)C(m2

σ)− 3
2m

2
πC(m2

π)
]
, (A.4.77)

δλOS = δλMS +
12Ncm2

q

(4π)2v4

[
2(m2

σ −m2
π − 2m2

q) ln
(

Λ
m2
q

)
+ (m2

σ − 4m2
q)C(m2

σ)
]
,

+
12Ncm4

q

(4π)2v4
[
(m2

σ − 2m2
π)C(m2

π) + (m2
σ −m2

π)m2
πC
′(m2

π)
]
, (A.4.78)

δg2
OS = δg2

MS +
4Ncm4

q

(4π)2v4

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.79)

δhOS = δhMS + 2Ncg2m2
πv

(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π)−m2
πC
′(m2

π)
]
, (A.4.80)

δv2
OS = δv2

MS −
4Ncm2

q

(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.81)

δZOS
σ = δZMS

σ −
4Ncm2

q

(4π)2v2

[
ln
(

Λ
m2
q

)
+ C(m2

σ) + (m2
σ − 4m2

q)C ′(m2
σ)
]
, (A.4.82)

δZOS
π = δZMS

π −
4Ncm2

q

(4π)2v2

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.83)

where the 1
ε−parts, which will be common to both subtraction schemes, are

δm2
MS = 4Ncg2m2

(4π)2
1
ε
, δλMS = 8Ncg2

(4π)2
(
λ− 6g2) 1

ε
, δg2

MS = 4Ncg4

(4π)2
1
ε
, δhMS = 2Ncg2h

(4π)2
1
ε
,

δv2
MS = −4Ncg2v2

(4π)2
1
ε
, δZMS

σ = −4Ncg2

(4π)2
1
ε
, δZMS

π = −4Ncg2

(4π)2
1
ε
. (A.4.84)

These are the counterterms in the MS scheme. Note, very importantly, that the masses present
in equations (A.4.77)-(A.4.83) are the physical masses, since the renormalized and the physical
pole masses coincide in the on-shell scheme.
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We should now determine the value for Λ that is consistent with our assumption thatm2
πv−h

= 0. This assumption is valid if

∂Ωvac
∂v

∣∣∣
v= h

m2
π

= 0, (A.4.85)

i.e. if the minimum of the effective potential is the same as the minimum of the tree-level potential.
Dropping terms not proportional to Nc gives that the vacuum effective potential is,

Ωvac(v) = U(v) + δU(v) + 2Ncg4v4

(4π)2

[
1
ε

+ 3
2 + ln

(
Λ2

g2v2

)]
, (A.4.86)

We will show later that the infinite part of δU cancels the divergent part in the last term.
Assuming this, requirement (A.4.85) reads

∂

∂v

{
δU(v)finite + 2Ncg4v4

(4π)2

[
3
2 + ln

(
Λ2

g2v2

)]} ∣∣∣∣∣
v= h

m2
π

= 0, (A.4.87)

where we have that

δU = −1
2δm

2v2 − 1
2m

2δv2 + δλ

4! v
4 + λ

4!2v
2δv2 − δhv − hδv

2

2v . (A.4.88)

Inserting the finite parts of the on-shell counterterms into equation (A.4.87) and calculating the
derivative in Wolfram Mathematica, we find

C(m2
π) +m2

πC
′(m2

π) + ln
(

Λ2
0

m2
q

)
= 0. (A.4.89)

Thus, equations (A.4.77)–(A.4.83) are valid when the renormalization scale is

Λ2
0 ≡ m2

q exp
{
−C(m2

π)−m2
πC
′(m2

π)
}
. (A.4.90)

The MS Renormalization Scheme
We must have that the bare quantities are independent of renormalization scheme. Hence, we
have

m2
B = ZMS

m m2
MS = ZOS

m m2, (A.4.91)

which implies

m2
MS + δm2

MS = m2 + δm2
OS. (A.4.92)

Hence, m2
MS, and all the other couplings by the same argument, can be found by

m2
MS(Λ) = m2 + δm2

OS − δm2
MS, λMS(Λ) = λ+ δλOS − δλMS, g2

MS(Λ) = g2 + δg2
OS − δg2

MS,

hMS(Λ) = h+ δhOS − δhMS, v2
MS(Λ) = v2 + δv2

OS − δv2
MS. (A.4.93)

The difference between the OS and MS counterterms can be read off directly from the expressions
(A.4.77)–(A.4.83). Since the masses are measured in vacuum, where the minimum of the potential
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is v = fπ by assumption, we find that the running couplings are

m2
MS(Λ) = m2

σ − 3m2
π

2 +
2Ncm2

q

(4π)2f2
π

(
m2
σ − 3m2

π

)
ln
(

Λ
m2
q

)
+

4Ncm2
q

(4π)2f2
π

[
2m2

q + 1
2(m2

σ − 4m2
q)C(m2

σ)− 3
2m

2
πC(m2

π)
]
, (A.4.94)

λMS(Λ) = 3(m2
σ −m2

π)
f2
π

+
12Ncm2

q

(4π)2f4
π

[
2(m2

σ −m2
π − 2m2

q) ln
(

Λ
m2
q

)
+ (m2

σ − 4m2
q)C(m2

σ)
]

+
12Ncm2

q

(4π)2f4
π

[
(m2

σ − 2m2
π)C(m2

π) + (m2
σ −m2

π)m2
πC
′(m2

π)
]
, (A.4.95)

g2
MS(Λ) =

m2
q

f2
π

+
4Ncm4

q

(4π)2f4
π

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.96)

hMS(Λ) = m2
πfπ + 2Ncg2m2

πfπ
(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π)−m2
πC
′(m2

π)
]
, (A.4.97)

v2
MS(Λ) = f2

π −
4Ncm2

q

(4π)2

[
ln
(

Λ
m2
q

)
+ C(m2

π) +m2
πC
′(m2

π)
]
, (A.4.98)

We again emphasize that the masses on the right hand side of those equations are the physical
masses, and thus we can use these relations to calculate the running couplings at the scale Λ0.
Later we find the expressions for the couplings valid at any scale Λ via the renormalization group
equations.

Let us now find the effective potential in the large-Nc limit. In the MS scheme the vacuum
potential reads

Ωvac(v) = U(vMS) + δUMS +
2Ncg4

MSv
4
MS

(4π)2

[
1
ε

+ 3
2 + ln

(
Λ2

g2
MS
v2

MS

)]
. (A.4.99)

Since we have not explicitly demanded that the vacuum energy is finite, we should check that
this is the case. If we plug in all the counterterms in the MS-scheme into equation (A.4.88), we
find

δUMS = −
2Ncg4

MSv
4
MS

(4π)2
1
ε
. (A.4.100)

But this exactly cancels the divergence in (A.4.99). Including the temperature dependent term
and defining ∆ = vMSgMS, we find

Ω(∆, T, µq) =− 1
2
m2

MS(Λ)
g2

MS
(Λ) ∆2 + 1

4!
λMS(Λ)
g4

MS
(Λ) ∆4 − hMS(Λ)

gMS(Λ) ∆ + 2Nc∆4

(4π)2

[
3
2 + ln

(
Λ2

∆2

)]
− 4NcT

∫ d3p

(2π)3

{
ln
[
1 + e

−β
(√

p2+∆2−µq
)]

+ ln
[
1 + e

−β
(√

p2+∆2+µq
)]}

.

(A.4.101)

Note that since δ(gv) = 0, we have, to order O(N1
c ), that ∆ = vMSgMS = vOSgOS, which is

independent of Λ.
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Renormalization Group Equations
In the previous we found the grand potential in the MS scheme. However, since we have required
that the minimum of Ωvac(v) equals the minimum of the tree-level potential, we have a require-
ment on Λ, which is given in equation (A.4.90). A fundamental idea of quantum field theory is
that physical quantities should be independent of the choice of the renormalization scale Λ. This
leads us to the renormalization group (RG) equations, which is a class of equations implementing
this requirement.

We obtain the RG equations for the running couplings by simply differentiating relations
(A.4.94)–(A.4.97) and inserting the expressions for h, m2, λ and g2 in terms of hMS, m2

MS, λMS

and g2
MS to lowest order in the MS quantities. We find

dm2
MS(Λ)
d ln Λ = 8Nc

(4π)2m
2
MS(Λ)g2

MS(Λ),
dg2

MS(Λ)
d ln Λ = 8Nc

(4π)2 g
4
MS(Λ),

dhMS(Λ)
d ln Λ = 4Nc

(4π)2 g
2
MS(Λ)hMS(Λ), dλMS(Λ)

d ln Λ = 16Nc
(4π)2

[
g2

MS(Λ)λMS(Λ)− 6g4
MS(Λ)

]
, (A.4.102)

where we used d
d ln Λ = Λ d

dΛ . These are standard ordinary differential equations, and we find that
the solutions are

m2
MS(Λ) = m2

0

1− 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , g2
MS(Λ) = g2

0

1− 4Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) ,
hMS(Λ) = h0

1− 2Ncg2
0

(4π)2 ln
(

Λ2

Λ2
0

) , λMS(Λ) =
λ0 − 48Nc

(4π)2 g
4
0 ln

(
Λ2

Λ2
0

)
[
1− 4Ncg2

0
(4π)2 ln

(
Λ2

Λ2
0

)]2 , (A.4.103)

where the values with the 0-subscript are the values of the couplings at the given scale Λ0. These
relations together with the values g0, m0, λ0 and h0 calculated at the specific scale Λ0 thus gives
us these couplings at any other scale.

The Effective Potential
Inserting the running couplings into the potential gives

Ωvac(∆) =− 1
2m

2
0f

2
π

∆2

m2
q

+ 1
4!λ0f

4
π

∆4

m4
q

− h0fπ
∆
mq

(A.4.104)

+ 2Nc∆4

(4π)2

[
3
2 + ln

(
m2
q

∆2

)
− C(m2

π)−m2
πC
′(mπ)2

]
, (A.4.105)

where we used

hMS(Λ)
gMS(Λ) = h0

g0

√
1− 4Ncg2

0
(4π)2 log

(
Λ2

Λ2
0

)
1− 2Ncg2

0
(4π)2 log

(
Λ2

Λ2
0

) = h0
g0

+O
(
N2
c log2

(
Λ2

Λ2
0

))
. (A.4.106)

We drop the O(N2
c ) term as this is a two loop term. We now see that the grand potential is

independent of Λ.





APPENDIX B
Code

In the following we provide the Python and C routines used to minimize the effective potential.
The code used for plotting is voluminous and not included.

B.1 Implementation of the Effective Potential in Python

import numpy as np
import scipy
from scipy import integrate , LowLevelCallable
import mpmath
import math
import cmath
import os, ctypes
import time

#Im p o r t C f u n c t i o n s f o r i n t e g r a n d s f o r f a s t e r i n t e g r a t i o n
lib = ctypes.CDLL(os.path.abspath(’quarkIntegrand.so’))
lib.quark_integrand.restype = ctypes.c_double
lib.quark_integrand.argtypes = (ctypes.c_int, ctypes.
POINTER(ctypes.c_double))

quark_integrand = LowLevelCallable(lib.quark_integrand)

lib = ctypes.CDLL(os.path.abspath(’quarkIntegrand.so’))
lib.quark_integrand_noB.restype = ctypes.c_double
lib.quark_integrand_noB.argtypes = (ctypes.c_int, ctypes.
POINTER(ctypes.c_double))

quark_integrand_noB = LowLevelCallable(lib.
quark_integrand_noB)

#G l o b a l v a r i a b l e s p e c i f y i n g when t h e B=0 e x p r e s s i o n s
s h o u l d b e u t i l i z e d

151
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mpi = 140
B_cutoff = 1.e−2 ∗mpi ∗∗2

class CouplingSet:
def __init__(self, m_pi, m_sigma, m_quark, f_pi,
n_colors = 3):

self.m_quark = m_quark
self.m_pi = m_pi
self.m_sigma = m_sigma
self.f_pi = f_pi
self.n_colors = n_colors

self.renorm_MS0 = np.sqrt( m_quark ∗∗2 ∗ np.exp(
− self.C(m_pi) − m_pi ∗∗2 ∗ self.C_prime(m_pi) )
)

self.m0 = self.calc_m_MS()
self.lambda0 = self.calc_lambda_MS()
self.g0 = self.calc_g_MS()
self.h0 = self.calc_h_MS()
self.renorm_MS = self.renorm_MS0
self.m_MS = self.m0
self.lambda_MS = self.lambda0
self.g_MS = self.g0
self.h_MS = self.h0

def convertToTreeLevel(self):
self.m0 = np.sqrt((self.m_sigma ∗∗2 − 3.0∗self.m_pi

∗∗2) /2.0)
self.lambda0 = 3.0∗(self.m_sigma ∗∗2 − self.m_pi

∗∗2)/self.f_pi ∗∗2
self.g0 = self.m_quark/self.f_pi
self.h0 = self.m_pi ∗∗2 ∗ self.f_pi
self.renorm_MS0 = np.exp(−0.5) ∗self.g0 ∗self.f_pi
self.m_MS = self.m0
self.lambda_MS = self.lambda0
self.g_MS = self.g0
self.h_MS = self.h0
self.renorm_MS = self.renorm_MS0

def C(self, p):
" " " C ( p ) i s a m a t h e m a t i c a l f u n c t i o n a p p e a r i n g i n

t h e c a l c u a t i o n o f t h e p i o n and s i gm a self−
e n e r g i e s . " " "

if (p==0):
return 0

else:
q = 4.∗(self.m_quark ∗∗2)/p ∗∗2 − 1. + 0j
r = np.sqrt(q)
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return np.real(2.−2.∗r ∗np.arctan(1.0/r))

def C_prime(self, p):
" " " The d e r i v a t i v e o f C ( p ) . " " "
if (p==0):

return 0
else:

q = 4.∗(self.m_quark ∗∗2)/p ∗∗2 − 1. + 0j
r = np.sqrt(q)
return np.real(4.∗self.m_quark ∗∗2/(p ∗∗4 ∗ r) ∗np.
arctan(1/r) − 1./p ∗∗2)

def calc_m_MS(self):
n_colors = self.n_colors
mu2 = (self.m_sigma ∗∗2 − 3.0∗self.m_pi ∗∗2) /2.0
bigBrace = 2∗self.m_quark ∗∗2 + mu2 ∗np.log(self.
renorm_MS0 ∗∗2/ self.m_quark ∗∗2) + 0.5∗(self.
m_sigma ∗∗2 − 4.∗self.m_quark ∗∗2) ∗self.C(self.
m_sigma) − 1.5∗self.m_pi ∗∗2 ∗ self.C(self.m_pi)

mu2 += 4.∗n_colors ∗(self.m_quark ∗∗2) /(4.∗np.pi ∗
self.f_pi) ∗∗2 ∗ bigBrace

return np.sqrt(mu2)

def calc_lambda_MS(self):
n_colors = self.n_colors
Lambda = 3.0∗(self.m_sigma ∗∗2 − self.m_pi ∗∗2)/self
.f_pi ∗∗2

bigBrace1 = 2.0∗(self.m_sigma ∗∗2 − self.m_pi ∗∗2 −
2.0∗self.m_quark ∗∗2) ∗np.log(self.renorm_MS0 ∗∗2/
self.m_quark ∗∗2) + (self.m_sigma ∗∗2 − 4.0∗self.
m_quark ∗∗2) ∗self.C(self.m_sigma)

bigBrace2 = (self.m_sigma ∗∗2 − 2.0∗self.m_pi ∗∗2) ∗
self.C(self.m_pi) + (self.m_sigma ∗∗2 − self.
m_pi ∗∗2) ∗self.m_pi ∗∗2 ∗ self.C_prime(self.m_pi)

Lambda += 12.0∗n_colors ∗(self.m_quark ∗∗2) /((4.0∗np
.pi) ∗∗2 ∗ self.f_pi ∗∗4) ∗ (bigBrace1 + bigBrace2)

return Lambda

def calc_g_MS(self):
n_colors = self.n_colors
g2 = self.m_quark ∗∗2/ self.f_pi ∗∗2 + (4.∗n_colors ∗
self.m_quark ∗∗4) /((4.∗np.pi) ∗∗2 ∗ self.f_pi ∗∗4) ∗
( np.log(self.renorm_MS0 ∗∗2/ self.m_quark ∗∗2) +
self.C(self.m_pi) + self.m_pi ∗∗2∗ self.C_prime(
self.m_pi) )

return np.sqrt(g2)

def calc_h_MS(self):
n_colors = self.n_colors
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h = self.m_pi ∗∗2 ∗ self.f_pi + (2.∗n_colors ∗self.
m_quark ∗∗2 ∗ self.m_pi ∗∗2) /((4.∗np.pi) ∗∗2 ∗ self.
f_pi) ∗ ( np.log(self.renorm_MS0 ∗∗2/ self.
m_quark ∗∗2) + self.C(self.m_pi)−self.m_pi ∗∗2 ∗
self.C_prime(self.m_pi) )

return h

def v_effective(parameters , T, chem_pot , B, couplings ,
scale, potential , withPhoton=False):

" " " As sume p a r a m e t e r s o f t h e f o rm p a r a m e t e r s = [ d e l t a ,
q ] " " "

delta = parameters[0]
q = parameters[1]
r_imag = 0
r = 0

v = 0
v += v_qk_vac_noB(delta, couplings)
v += v_qk_vac_B(delta, B)
v += v_qk_thermal(delta, B, T, chem_pot, q)
v += v_meson(delta, couplings)
if(potential==’chiM’):

v += v_gluon(q, r, r_imag, T)
elif(potential==’RRTW’):

v += v_gluon_RRTW(q, r, r_imag, T)
else:

print "Invalid potential. Terminating."
return np.nan

if(withPhoton):
v += v_photon(couplings , B)

return v ∗scale

def v_meson(delta, couplings):
v_mes = −0.5 ∗ couplings.m_MS ∗∗2 ∗ delta ∗∗2 /
couplings.g_MS ∗∗2 + couplings.lambda_MS /(4.∗3.∗2.∗
couplings.g_MS ∗∗4) ∗delta ∗∗4 \

− couplings.h_MS ∗delta/couplings.g_MS
return v_mes

def v_qk_thermal(delta, B, T, chem_pot, q):
if(T == 0):

print("WARNING: T identical 0 not implemented
in thermal quark term. Choose T close to 0.
")

return np.nan
mPi = 140.
if(B < B_cutoff):

print "Warning: below magnetic field cutoff.
Evaluation will use B=0 expression.\n"
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upper_lim=np.inf
integral , err = scipy.integrate.quad(
quark_integrand_noB , 0, upper_lim , args=(
delta, T, chem_pot, q, 0))

return −4∗T ∗ integral/(2∗np.pi ∗∗2)
elif( B < 0.1∗mPi ∗∗2):

print "Warning: small magnetic field.
Evaluation will be slow.\n"

e_charge = 0.303
q_up = (2./3.) ∗ e_charge
q_down = (−1./3.) ∗ e_charge
v = double_sum(delta, B, T, q, q_up)
v += double_sum(delta, B, T, q, q_down)
return v

def v_qk_vac_B(delta, B):
" " " B− d e p e n d e n t p a r t o f t h e q u a r k va cuum e n e r g y " " "
if(B < B_cutoff):

return 0
n_colors = 3.
e_charge = 0.303
q_up = 2./3.∗e_charge
q_down = −1./3.∗e_charge
delta_up = delta ∗∗2 / (2. ∗ np.abs(q_up ∗ B) )
delta_down = delta ∗∗2 / (2. ∗ np.abs(q_down ∗ B) )
v = (q_up ∗ B) ∗∗2 ∗ (1./12. − mpmath.fp.zeta(−1,
delta_up , 1) − 1./2. ∗ delta_up ∗math.log(
delta_up) − 1./4. ∗ delta_up ∗∗2 + 1./2. ∗
delta_up ∗∗2 ∗ math.log(delta_up) )

v += (q_down ∗ B) ∗∗2 ∗ (1./12. − mpmath.fp.zeta(−1,
delta_down , 1) − 1./2. ∗ delta_down ∗math.log(
delta_down) − 1./4. ∗ delta_down ∗∗2 + 1./2. ∗
delta_down ∗∗2 ∗ math.log(delta_down) )

v ∗= 8∗n_colors/(4∗np.pi) ∗∗2
return v

def v_photon(couplings , B):
" " " B− d e p e n d e n t p a r t o f t h e p h o t o n vacuum e n e r g y . I t

h a s no e f f e c t on p h a s e d i a g r am . " " "
if(B<B_cutoff):

return 0
n_color = 3.
e_charge = 0.303
q_up = 2./3.∗e_charge
q_down = −1./3.∗e_charge
prefactor = 4.∗n_color/( 3. ∗ (4.∗np.pi) ∗∗2 )
v = 0
v += 0.5∗B ∗∗2
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v += 0.5∗B ∗∗2 ∗ prefactor ∗ (q_up ∗∗2 ∗ math.log(
couplings.m_quark ∗∗2 / ( 2.∗np.abs(q_up ∗B))))

v += 0.5∗B ∗∗2 ∗ prefactor ∗ (q_down ∗∗2 ∗ math.log(
couplings.m_quark ∗∗2 / ( 2.∗np.abs(q_down ∗B))))

return v

def v_qk_vac_noB(delta, couplings):
" " " B− i n d e p e n d e n t p a r t o f t h e q u a r k va cuum e n e r g y " " "
v = 0
delta_cutoff = 1e−9
if(abs(delta) > delta_cutoff):

v += (2.0 ∗ couplings.n_colors ∗ delta ∗∗4) /((4.∗
np.pi) ∗∗2) ∗ (1.5 + np.log(couplings.renorm_MS
∗∗2/( delta ∗∗2)))

return v

def zetaPrime(x):
" " " D e r i v a t i v e o f H u r w i t z z e t a f u n c t i o n w i t h r e s p e c t

t o f i r s t a r g um e n t e v a l u a t e d a t −1 " " "
return mpmath.zeta(−1, x, 1)

def double_sum(delta, B, T, q, charge):
" " " Sum o v e r Landau l e v e l s " " "
fpi = 93.
nTolerance = 1.e−4 ∗ fpi ∗∗4
lTolerance = nTolerance/100.

current_sum = 0.
prev_sum = 0.
sumN = True
n = 0

prefactor = np.abs(charge ∗B) ∗T/(2∗np.pi ∗∗2)
while(sumN):

if(n==0):
current_sum += l_sum(delta, B, T, q, charge, n
, lTolerance)

else:
current_sum += 2.∗l_sum(delta, B, T, q, charge
, n, lTolerance) #D e g e n e r a c y f a c t o r o f 2
f o r n >1 .

if(prefactor ∗ np.abs(current_sum − prev_sum) <
nTolerance):
sumN = False

elif(current_sum == 0):
sumN = False

n=n+1
prev_sum = current_sum
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return − np.abs(charge ∗B)/(2∗np.pi ∗∗2) ∗ T ∗
current_sum

def l_sum(delta, B, T, q, charge, n, tolerance):
" " " Sum o v e r f u g a c i t i e s " " "
current_sum = 0.
prev_sum = 0.
l = 1
continueSum = True

prefactor = np.abs(charge ∗B) ∗T/(2∗np.pi)
M = math.sqrt(delta ∗∗2 + 2∗np.abs(charge ∗B) ∗n)
while(continueSum):

l_term = (−1) ∗∗(l+1) ∗ M ∗ ( 2+4∗math.cos( 2.∗np.
pi ∗q ∗l/(3.) ) ) / (l) ∗ scipy.special.kn(1, l ∗M
/T)

current_sum += l_term
if(prefactor ∗ np.abs(current_sum − prev_sum) <
tolerance):
continueSum = False

elif(l_term == 0):
continueSum = False

prev_sum = current_sum
l = l+1

return current_sum

# G l u o n i c p o t e n t i a l
# B2 , B4 a s s um e s c om p l e x i n p u t .
def B2(x):

while(x.real >= 1.):
x = x − (1.+0j)

while(x.real < 0.):
x = x + (1.+0j)

return x ∗ ( 1 − x )

def B4(x):
while(x.real >= 1.):

x = x − (1.+0j)
while(x.real < 0.):

x = x + (1.+0j)
return x ∗∗2 ∗ ( 1 − x ) ∗∗2

# v2 , v 4 a s s um e s r e a l i n p u t .
def v4(q, r, r_imag):

r_imag = r_imag ∗(0+1j)
return B4(2.∗q/3.) + B4(q/3. + r + r_imag) + B4(q/3. −

r − r_imag)

def v2(q, r, r_imag):
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r_imag = r_imag ∗(0+1j)
return B2(2.∗q/3.) + B2(q/3. + r + r_imag) + B2(q/3. −

r − r_imag)

def v_gluon_perturbative(q, r, r_imag, T):
return math.pi ∗∗2 ∗ T ∗∗4 ∗ ( −8./45. + 4./3. ∗ v4(q,r,

r_imag) )

def v_gluon_nonperturbative(q, r, r_imag, T, Td):
c2 = 0.830
c1 = 50.∗(1−c2)/27.
c3 = (47. − 20. ∗ c2)/27.
return 4.∗ math.pi ∗∗2 /3. ∗ T ∗∗2 ∗ Td ∗∗2 ∗ ( − 1./5. ∗

c1 ∗ v2(q, r, r_imag) − c2 ∗ v4(q,r, r_imag) +
2./15.∗c3 )

def v_gluon(q, r, r_imag, T, Td = 270):
complexPot = v_gluon_perturbative(q, r, r_imag, T) +
v_gluon_nonperturbative(q, r, r_imag, T, Td)

return complexPot.real

def v_gluon_RRTW(q, r, r_imag, T, Td = 208.):
loop = polyakov_loop(q, r, r_imag)
aloop = polyakov_antiloop(q, r, r_imag)

T0 = Td
a0 = 3.51
a1 = −2.47
a2 = 15.2
b3 = −1.75
A = a0 + (T0/T) ∗ a1 + (T0/T) ∗∗2 ∗ a2
B = b3 ∗ (T0/T) ∗∗3
logArg = 1 − 6∗loop ∗aloop − 3 ∗ (loop ∗aloop) ∗∗2 + 4∗(
loop ∗∗3 + aloop ∗∗3)

U = T ∗∗4 ∗ (− 0.5∗A ∗loop ∗aloop + B ∗cmath.log( logArg )
)

return U.real

def polyakov_loop(q, r, r_imag):
r_imag = r_imag ∗(0+1j)
return 1/3. ∗ cmath.exp(2∗math.pi ∗( r+r_imag )∗(0+1j)
/3.0) ∗ ( cmath.exp( 2∗math.pi ∗(r+r_imag)∗(0+1j) )
+ 2∗math.cos(2∗math.pi ∗q/3.0) )

def polyakov_antiloop(q, r, r_imag):
r_imag = r_imag ∗(0+1j)
return 1/3. ∗ cmath.exp(−2∗math.pi ∗( r+r_imag )∗(0+1j)
/3.0) ∗ ( cmath.exp( −2∗math.pi ∗(r+r_imag)∗(0+1j) )
+ 2∗math.cos(2∗math.pi ∗q/3.0) )
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B.2 Implementation of the Thermal Quark Integrand in
C

#include <math.h>
#include <complex.h>
#include <stdio.h>

complex double quark_integrand(int n, double ∗x) {
// x [ 0 ] = p , x [ 1 ] = M_B, x [ 2 ] = T , x [ 3 ] = chem_po t , x

[ 4 ] = q , x [ 5 ] = r im a g
double p_squared = x[0]∗x[0];
double eff_energy = sqrt(p_squared + x[1]∗x[1]);
double beta_eff_energy = eff_energy/x[2];
double mu_prefactor = (2.0∗M_PI/3.0);
double complex img_unit = 0.0 + 1.0 ∗ I;
double complex betamu1 = x[3]/x[2] + img_unit ∗
mu_prefactor ∗ ( x[4] + x[5]∗img_unit);

double complex betamu2 = x[3]/x[2] + img_unit ∗
mu_prefactor ∗ ( − x[4] + x[5]∗img_unit);

double complex betamu3 = x[3]/x[2] + img_unit ∗
mu_prefactor ∗ ( −2∗x[5]∗img_unit);

double complex integrand = 0;
integrand += 1.0/(1 + cexp(beta_eff_energy − betamu1))

+ 1.0/(1 + cexp(beta_eff_energy + betamu1));
integrand += 1.0/(1 + cexp(beta_eff_energy − betamu2))

+ 1.0/(1 + cexp(beta_eff_energy + betamu2));
integrand += 1.0/(1 + cexp(beta_eff_energy − betamu3))

+ 1.0/(1 + cexp(beta_eff_energy + betamu3));
integrand ∗= p_squared / (eff_energy ∗ x[2]∗x[2]);
return creal(integrand);

}

complex double quark_integrand_noB(int n, double ∗x) {
// x [ 0 ] = p , x [ 1 ] = d e l t a , x [ 2 ] = T , x [ 3 ] = chem_po t ,

x [ 4 ] = q , x [ 5 ] = r_ imag
double complex img = 0.0 + 1.0 ∗ I;
double pSquared = x[0]∗x[0];
double energy = sqrt( pSquared + x[1]∗x[1] );
double complex exponent1 = − ( energy − x[3] ) / x[2]
+ 2∗M_PI ∗ img ∗ ( x[4] + x[5]∗img ) / 3.0;

double complex exponent2 = − ( energy − x[3] ) / x[2]
+ 2∗M_PI ∗ img ∗ ( −x[4] + x[5]∗img ) / 3.0;

double complex exponent3 = − ( energy − x[3] ) / x[2]
+ 2∗M_PI ∗ img ∗ ( −2. ∗ x[5]∗img ) / 3.0;

double complex exponent4 = − ( energy + x[3] ) / x[2]
− 2∗M_PI ∗ img ∗ ( x[4] + x[5]∗img ) / 3.0;



160 APPENDIX B. CODE

double complex exponent5 = − ( energy + x[3] ) / x[2]
− 2∗M_PI ∗ img ∗ ( −x[4] + x[5]∗img ) / 3.0;

double complex exponent6 = − ( energy + x[3] ) / x[2]
− 2∗M_PI ∗ img ∗ ( −2. ∗ x[5]∗img ) / 3.0;

double complex totIntegrand = 0;
double exponentCutoff = 10;
if(creal( exponent1 ) > exponentCutoff && creal(
exponent2 ) > exponentCutoff && creal( exponent3 )
> exponentCutoff &&

creal( exponent4 ) > exponentCutoff &&
creal( exponent5 ) >
exponentCutoff && creal( exponent6
) > exponentCutoff){

totIntegrand = pSquared ∗(exponent1+exponent2+
exponent3+exponent4+exponent5+exponent6);

}
else {

double complex arg = ( 1 + cexp(exponent1) )∗(
1 + cexp(exponent2) )∗( 1 + cexp(exponent3
) )∗( 1 + cexp(exponent4) )∗( 1 + cexp(
exponent5) )∗( 1 + cexp(exponent6) );

totIntegrand = pSquared ∗ clog(arg);
}
return creal(totIntegrand);

}

B.3 Implementation of the Global Minimization in
Python

from potentials import CouplingSet , v_effective
import numpy as np
import cmath, math
import scipy
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from joblib import Parallel , delayed
import os
import time

# S e t CPU a f f i n i t y t o a l l o w m u l t i t h r e a d i n g w i t h numpy /
s c i p y

# T h i s i s n e c e s s a r y d u e t o a b u g i n t h e BLAS l i b r a r y
n_cores = 12
os.system(’taskset −cp 0−%d %s’ % (n_cores, os.getpid()))

def opt_function(temp, chem_pot, B, couplings , bnds, model
):
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# F i n d s ( D e l t a , q ) a t g i v e n T , B
scale = (8./45. + 2.∗7./60.) ∗np.pi ∗∗2 ∗ temp ∗∗4

#N o r m a l i z e p o t e n t i a l w i t h P_SB s o i t i s o f t h e
o r d e r o f 1 .

optimizer = ’TNC’
kwargs = {’args’:(temp, chem_pot, B, couplings , 1./
scale, model), ’method’:optimizer , ’bounds’:bnds}

delta_guess = 300.0
q_guess = 0.9
res = scipy.optimize.basinhopping(

v_effective ,
np.array([delta_guess , q_guess]),
minimizer_kwargs = kwargs,
niter=30,
)

return res

def polyakov_loop(q, r, r_imag):
r_imag = r_imag ∗(0+1j)
return 1/3. ∗ cmath.exp(2∗math.pi ∗( r+r_imag )∗(0+1j)
/3.0) ∗ ( cmath.exp( 2∗math.pi ∗(r+r_imag)∗(0+1j) )
+ 2∗math.cos(2∗math.pi ∗q/3.0) )

def calc_condensates(couplings , potential , chem_pot,
B_vals, N_steps, T_lower, T_upper, delta_upper , comment
=’’):
# C a l c u l a t e c o n d e n s a t e s a s f u n c t i o n o f t e m p e r a t u r e s

f o r a l i s t o f B v a l u e s
# As s ume s B_ v a l s i u n i t s o f mp i ∗ ∗ 2 / e

header_string = ’|eB|−field values in units of m_pi^2:
%s’ % np.array2string(B_vals, precision=2)

mpi = 140
e_charge = 0.303
B_vals = B_vals ∗ mpi ∗∗2/ e_charge

# I n i t i a l i z e a r r a y s
temps = np.linspace(T_lower, T_upper, N_steps)
delta_mins = np.zeros((len(temps), len(B_vals)))
q_mins = np.zeros((len(temps), len(B_vals)))
loop_mins = np.zeros((len(temps), len(B_vals)))
results = np.empty((len(temps), len(B_vals)),
dtype = scipy.optimize.OptimizeResult)

# Ca r r y o u t m i n i m i z a t i o n p r o c e d u r e a t e a c h t e m p e r a t u r e
. Minimum i s a l w a y s l o c a t e d a t q <1 $ .

bnds = ((0.01, delta_upper), (0.005, 0.999))
start = time.time()
for k in range(len(B_vals)):
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results[:, k] = Parallel(n_jobs=n_cores)(delayed(
opt_function)(temps[i], chem_pot, B_vals[k],
couplings , bnds, potential) for i in range(len(
temps)))

print("Time spent on optimization: %.1f s" % (time.
time() − start) )

for k in range(0, len(B_vals)):
for i in range(0, len(temps)):

delta_mins[i, k], q_mins[i, k] = results[i, k
].x

loop_mins[i, k] = np.abs(polyakov_loop(q_mins[
i, k], 0, 0)) #Has i m a g i n a r y p a r t 0 , b u t
a b s n e e d e d t o c o n v e r t c o m p l e x f l o a t t o r e a l
f l o a t .

#S a v e f o r p o s t p r o c e s s i n g and p l o t t i n g .
timestr = time.strftime("%Y%m%d−%H%M%S")
filename1 = ’temps_N%.0f_msigma%.0f_mquark%.0
f_potential%s_Tmin%.0f_Tmax%.0f_%s_%s.csv’ % (
N_steps, couplings.m_sigma, couplings.m_quark,
potential , T_lower, T_upper, timestr, comment)

filename2 = ’deltas_N%.0f_msigma%.0f_mquark%.0
f_potential%s_Tmin%.0f_Tmax%.0f_%s_%s.csv’ % (
N_steps, couplings.m_sigma, couplings.m_quark,
potential , T_lower, T_upper, timestr, comment)

filename3 = ’loop_N%.0f_msigma%.0f_mquark%.0
f_potential%s_Tmin%.0f_Tmax%.0f_%s_%s.csv’ % (
N_steps, couplings.m_sigma, couplings.m_quark,
potential , T_lower, T_upper, timestr, comment)

np.savetxt(filename1 , temps, header =
header_string)

np.savetxt(filename2 , delta_mins , header =
header_string)

np.savetxt(filename3 , loop_mins , header =
header_string)

#Examp l e u s e
mpi = 140
msigma = 500
mquark = 300
fpi = 93
chem_pot = 0
N_steps = 20
delta_max = 450
T_min = 1
T_max = 250
B_fields = np.array([0, 4, 8])
default_couplings = CouplingSet(mpi, sigma, mquark, fpi)
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calc_condensates(default_couplings , ’chiM’, chem_pot,
B_fields , N_steps, T_min, T_max, delta_max)


