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Abstract

In light of the increasing demand for many-query and real-time PDE solutions, reduced
basis methods stand as a promising technique for developing solvers with the desired
performance. In this thesis, we present the theory to implement both a finite element
method and a proper orthogonal decomposition (POD) Galerkin reduced basis method.
Numerical analysis is done for the parametrized steady Stokes equations. For flow around
a NACA airfoil, we find that only a small number of reduced basis functions Nu and Np

for velocity and pressure, respectively, are needed to obtain a reduced solution of sufficient
accuracy. Reduced basis methods based on inf-sup stable finite element solutions do not
generally inherit the inf-sup stability of the underlying finite element method. For the
reduced basis method, we find a region of different values Nu and Np , where the reduced
solutions are stable. The reduced basis method gives a reduction in degrees of freedom
of 1500 : 1 and 360 : 1 for the reduced velocity and the reduced pressure, respectively.
This reduction gives an attractive speedup of order O(105) compared to the finite element
method. In order to expand the stable region of different values Nu and Np , a reduced basis
methodwith supremizer stabilization is implemented. Enriching the reduced velocity space
by supremizers do in fact expand the stable region, but it introduces additional degrees of
freedom to the performance-critical online stage, slowing it down.
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Sammendrag

I lyset av økende etterspørsel etter flerforespørselsløsninger og sanntidsløsninger av PDEer
står reduserte basis-metoder som en lovende teknikk for å utvikle løsere med ønsket
ytelse. I denne avhandlingen presenterer vi teorien som ligger til grunn for å implementere
både en endelig element-metode og en "ekte" ortogonal dekomposisjon (POD) Galerkin
redusert basis-metode. Numeriske analyser er gjort for de parametriserte stasjonære Stokes
likningene. For flyt rundt en NACA vingeprofil finner vi ut at kun et lite antall reduserte
basisfunskjoner Nu og Np for hastighet og trykk respektivt, er nødvendig for å oppnå en
redusert løsning med god nok nøyaktighet. Reduserte basisfunksjoner som er basert på
inf-sup stabile endelig element-løsninger arver generelt ikke inf-sup stabiliteten til den
underliggende endelige element-metoden. For den reduserte basis-metoden finner vi en
region av forskjellige verdier Nu og Np der de reduserte basisløsningene er stabile. Den
reduserte basis-metoden gir en reduksjon i antall frihetsgrader på 1500 : 1 og 360 : 1
for den reduserte hastigheten og det reduserte trykket respektivt. Denne reduksjonen
gjør at den reduserte basis-metoden løses i størrelsesorden 105 ganger raskere enn den
endelige element-metoden. For å utvide den stabile regionen av ulike verdier Nu og Np

implementeres en redusert basis-metode med maksimator-stabilisering. Ved å berike det
reduserte hastighetsrommet med maksimatorer utvides faktisk den stabile regionen, men
det fører også med seg flere frihetsgrader som gjør det ytelseskritiske online-steget tregere.
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Chapter 1
Introduction

Over recent decades the importance of numerical simulations of partial differential equa-
tions (PDEs) has increased and the numerical models are gettingmore complex. This is due
to the increased computational power of computers, and also because of the development
of numerical algorithms caused by iterative solution techniques for linear systems, such as
the conjugate gradient method, preconditioned gradient methods, and multigrid methods
[57].

Numerical simulations of complex models tend to yield a large number of degrees of
freedom which in turn gives time-consuming and computationally costly methods [10].
Well-established techniques for simulating PDEs exist, such as finite elements and finite
volumes [30]. Let us denote these classical models by high - fidelity models. With a
computation time of several hours, or even days, high - fidelity methods are no longer
sufficient for real-time problems or many - query problems [31], unless an expensive high
- performance computing device is provided. Examples of real-time problems or many -
query problems are optimal control problems [42], parameter estimation [32] and shape
optimization [40].

Common for these type of problems is that they depend on one or more input parame-
ter(s) associatedwith the output(s) of interest. Typical inputs specify the geometry, physical
properties, boundary conditions and loads/sources [32, 54]. This parameter dependency is
the key to deal with the increasing demand for real-time many - query models.

Reduced ordermodeling (ROM), also often referred to asmodel order reduction (MOR)
in the literature, is a fast-evolving field. The idea behind ROM is to transform a given high
- fidelity problem to an equivalent low dimensional reduced problem independent of the
dimension of the high - fidelity problem and hence computationally inexpensive. One of
the most interesting models in this framework is the reduced basis method. The reduced
basis method is not a new method. It was first introduced by Almroth et al. in the late
1970s [4] and further developed by Noor [43, 44] and Noor and Peters [45].

The reduced basis method transforms a high - fidelity problem to an equivalent low
dimensional reduced problem by a projection onto a subspace spanned by some solutions of
the governing PDE for a selected set of parameters [53]. Different projection methods can

1



be used, e.g. Galerkin reduced basis method or Least - squares reduced basis method [49].
Two major techniques for building the reduced space, that the original problem is projected
onto, are proper orthogonal decomposition (POD) [49, 20] and greedy algorithms [34].
The beauty of the reduced basis method becomes clear when the parameter - dependency
of the problem makes it possible to separate the computations into an expensive parameter
- independent offline stage and an inexpensive online stage, depending on the desired input
parameter.

A field of growing demand for time - effective flow simulations is the field of renewable
energy and particularly the wind sector. Simulating flow around objects such as wind
turbines is a time - consuming process. Even though many methods already exist they
often require high - performance computers [31, 46]. The governing equations in the field
of flow simulations are the Navier - Stokes equations. Recent work that is done on the
reduced basismethod for theNavier - Stokes equations can be found in e.g. [8, 31, 49, 24, 7].
Due to the limited time horizon for this thesis, the scope is set to the linear case of the
Navier - Stokes equations namely the steady Stokes equations. This is done as it is desired
to implement own solvers for the high - fidelity approximation and the reduced basis
approximation to carry out the numerical analysis. The outputs of interest for the steady
Stokes problem are the velocity field and pressure field. The reduced basis method has also
been developed for the steady Stokes method and some of the more recent contributions
can be found in e.g. [49, 53, 52, 37].

In this thesis, we first investigate the Galerkin finite element method based on isoge-
ometric analysis [22, 48]. We focus on how to build the finite element spaces in order
to obtain stable and optimal convergent solutions [48, 17]. By stable solutions we mean
in the sense of the LBB - condition (Ladyzhenskaya - Babuška - Brezzi condition) [14].
An important part of the thesis is to get to know parametrized saddle - point problems
in order to build a proper finite element solver for the steady Stokes problem. The solver
is necessary to conduct the numerical analysis given, but it is also needed as a strong
foundation for the implementation of an RB solver. We build a solver for the steady Stokes
equations where the input parameters are both physical and geometrical. Therefore we
study in detail a parametric map from a parameter - independent domain to a parameter -
dependent domain and we study how to deal with this map when deriving the equations
for the reduced basis solver.

Further, we investigate the offline-online decomposition given by the parametric -
dependence [49, 54]. In detail, we evaluate how to sample input parameters in order
to create a set of high - fidelity (HF) solutions that gives a good representation of the
entire solution space. Both regular methods [49, 62] and statistical methods [41, 56] are
investigated. The set of HF solutions, known as snapshots, is created during the offline -
stage. A POD of the snapshots is performed in order to extract low dimensional reduced
spaces for the velocity and the pressure method. During the online - stage a reduced order
approximation of both the velocity and the pressure field is obtained.

We conduct numerical error analysis in order to evaluate the stability and the accuracy
of the reduced solutions. This is done by comparing the reduced solutions to the high -
fidelity solutions. In particular, we seek to investigate for what choice of number of reduced
basis functions are the reduced solutions unstable and more important when are they not.
As reduced basis methods are one of the first choices of methods to investigate in the need
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of real-time solutions we report on the computation time of the reduced solver compared
to the high - fidelity solver.

In order to deal with pressure instability in the reduced basis context, we also investigate
the method of enriching the reduced velocity space with supremizers. We seek to fulfill
a reduced version of the LBB - condition by implementing the approximate supremizer
stabilization technique within a POD context [8]. Approximate supremizer stabilization is
used in order to preserve the offline-online decomposition of the computations. Numerical
error analysis is carried out in the same fashion as for the classical reduced basis method.
The computation time is reported in order to compare the performance of the two methods.

In Chapter 2 we study the saddle - point problem and its stability. We also present basic
theory of the finite element method, isogeometric analysis and thorough discussion on the
theory of reduced basis method with POD. This provides us with the necessary theory used
to build the isogeometric based finite element solver and the POD based reduced basis
solver.

In Chapter 3 we give two examples of non-parametrized Stokes equations. The first
example provides us with a verification of the finite element solver, whereas the second
example introduces Stokes flow around a NACA 4620 airfoil. Chapter 4 is devoted entirely
to a parametrized version of the second example, comparing a finite element solution and a
reduced basis solution for this example. Chapter 5 concludes this thesis with a discussion
of the results from the examples given and presents ideas for future work.
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Chapter 2
Theory

This chapter provides the reader with some basic knowledge on the theory this master
thesis is built upon. As the steady Stokes equations can be recognized as a saddle-point
problem, this chapter gives some theory for parametrized saddle-point problems. An effort
is made in order to develop a finite element solver, solving a non-parametrized steady
Stokes problem before moving on to a parametrized steady Stokes problem. It is worth
noting that conditions given for existence and uniqueness of solutions to parametrized
saddle-point problems, has a very similar counterpart in the non-parametrized case. In
Chapter 3 we present some further theory and examples on a type of saddle-point problem,
namely the steady Stokes equations.

At the center of attention for reduced basis methods are parameterized partial differ-
ential equations. These are PDEs depending on some set of parameters. This could be
physical parameters of the system considered such as the Reynolds number in nonlinear
viscous fluids modelled by the Navier-Stokes equations, the thermal conductivity of the
heat equation, boundary conditions and/or source- and sink terms [34, 49]. Let us denote
the physical parameters by a vector µphµphµph . Also the computational domain itself could be
represented by parameters such as scaling parameters for stretching and/or compressing.
We will denote such geometric parameters by a vector µgµgµg. Usually we will not make the
distinction between physical and geometric parameters, unless it is necessary, and hence
simply use the vector µµµ for the parameters upon which the PDEs depend on. Note that
this will also be done for spaces: given the space Y(µgµgµg) depending on some geometric
parameters µgµgµg we will for simplicity denote itY(µµµ). We denote the parameter space P such
that µµµ ∈ P ⊂ R.

2.1 Mixed variational Problems
Mixed variational problems, or also called saddle point problems, is a class of problems
that arise naturally in many different fields e.g. constrained optimization, optimal control
problems and fluid dynamics such as the Stokes equations which this thesis mainly focuses
on [59, 11, 49].
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2.1.1 Abstract weak formulation
A saddle point problem can be cast in an abstract weak formulation such as the following.
Let X(µµµ) and Q(µµµ) be two Hilbert spaces Note that they are parameter-dependent as the
domain is assumed to be parameter-dependent. Further let X′(µµµ) and Q′(µµµ) be their
respective dual spaces, that is the spaces of linear and bounded functionals defined on
X(µµµ) and Q(µµµ) respectively. Given two bilinear forms d(·, ·; µµµ) : X(µµµ) × X(µµµ) → R and
b(·, ·; µµµ) : X(µµµ) × Q(µµµ) → R and two bounded linear functionals f1(·; µµµ) ∈ X′(µµµ) and
f2(·; µµµ) ∈ Q′(µµµ) we consider the problem:
given µµµ ∈ P find (x, p) ∈ X × Q such that

d(x(µµµ),w(µµµ); µµµ) + b(w, p(µµµ); µµµ) = f1(w; µµµ) ∀w ∈ X(µµµ),
b(x(µµµ), q; µµµ) = f2(q; µµµ) ∀q ∈ Q(µµµ),

(2.1)

Throughout the thesis (x(µµµ), p(µµµ)) will be referred to as the exact solution of the physical
problem modelled by the equations (2.1), and w ∈ X(µµµ), q ∈ Q(µµµ) are called test functions
belonging to the same Hilbert spaces as the solutions (x(µµµ), p(µµµ)) respectively. The saddle-
point problem models a given problem in a given domain Ω ∈ Rd , with d = 2, 3. We
deonote by x the spatial coordinates of the domain, that is x ∈ Ω. In this thesis we
look at the 2D case. A typical problem which can be cast in the framework (2.1) is the
Stokes equations, which is analyzed by e.g. Quarteroni in [48] or Braess in [14] and
for the parametric case we refer to the work done by Manzoni in [39]. From here on
we will assume problem (2.1) to be set on a parameter-independent domain, such that
X(µµµ) × Q(µµµ) = X × Q. In Section 2.2.5 we will show how to solve a problem set on a
parameter-dependent domain.

Varying µµµ over the parameter space P we create a set of all solutions to problem (2.1).
This set is referred to as the solution manifold in [34] and is the set

M = {(x(µµµ), p(µµµ))|µµµ ∈ P} ⊂ X × Q. (2.2)

Braess gives a brief description as to why problem (2.1) is in fact a saddle point problem
[14]. For a fixed µµµ = µ fµ fµ f the couple (x, p) = (x(µ fµ fµ f ), p(µ fµ fµ f )) is a solution of problem (2.1) if
and only if it is a saddle point of the Lagrangian function

L(w, q) =
1
2

d(w,w; µ fµ fµ f ) + b(w, q; µ fµ fµ f ) − f1(w; µ fµ fµ f ) − f2(q; µ fµ fµ f ),

i.e. every solution (x, p) of problem (2.1) satisfies the following saddle point property

L(x, q) ≤ L(x, p) ≤ L(w, p).

For this to hold the bilinear forms, d(·, ·; ) = d(·, ·; µ fµ fµ f ) and b(·, ·) = b(·, ·; µ fµ fµ f ) are assumed
continuous and the former is assumed non-negative d(w,w; µ fµ fµ f ) ≥ 0, as stated in [14]. For
further details on the saddle-point problem as a Lagrangian function, see e.g. [14, 48, 49].

2.1.2 Existence, Uniqueness and Stability
Let us now define the continuity of the bilinear forms d(·, ·; µµµ) and b(·, ·; µµµ) more formally.
We endow the two Hilbert spacesX andQwith the norms ‖·‖X and ‖·‖Q respectively. Then
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the assumption that the bilinear forms d(·, ·; µµµ) and b(·, ·; µµµ) are continuous is the same as
saying there exists two constants γd(µµµ), γb(µµµ) > 0 such that for any µµµ ∈ P

|d(x,w; µµµ)| ≤ γd(µµµ)‖x‖X‖w‖X, |b(w, q; µµµ)| ≤ γb(µµµ)‖w‖X‖q‖Q ∀x,w ∈ X, ∀q ∈ Q.
(2.3)

Following the work done by Quarteroni et al. in [49] we introduce the space X0

X0 = {w ∈ X : b(w, q; µµµ) = 0 ∀q ∈ Q, ∀µµµ ∈ P},
as indeed must be a subspace of X, i.e. X0 ⊂ X. This provides us with a less strict
coercivity condition necessary for existence of a unique solution than could have been. For
a given µµµ ∈ P there exist a unique solution (x(µµµ), p(µµµ)) ∈ X×Q to the saddle point problem
(2.1) if the continuity assumptions together with the following assumptions hold.

First we assume the bilinear form d(·, ·; µµµ) to be coercive on the space X0. That is there
exist a constant α(µµµ) > 0 such that

d(w,w; µµµ) > α(µµµ)‖w‖2X ∀w ∈ X0, ∀µµµ ∈ P. (2.4)

Second we assume there exist a constant β(µµµ) > 0 such that the bilinear form b(·, ·; µµµ)
satisfies the condition

inf
q∈Q
‖q ‖Q,0

sup
w∈X
‖w ‖X,0

b(w, q; µµµ)
‖w‖X‖q‖Q

≥ β(µµµ) > 0 ∀µµµ ∈ P. (2.5)

The above condition is often referred to as the inf-sup condtion or the LBB-condition
(Ladyzhenskaya-Babuška-Brezzi condition). For a deeper analysis we refer to e.g. [39, 48].
For a proof of the existence of a unique solution (x(µµµ), p(µµµ)) see e.g. [48] or [14].
Remark 2.1.1. We note that as X0 is a subspace of X, then if the bilinear form d(·, ·; µµµ)
is coercive over the space X, then condition (2.4) automatically holds. This is in fact the
case for the Stokes equations as we will see later on.

For a fixed parameter µµµ = µ fµ fµ f such that (x, p) = (x(µ fµ fµ f ), p(µ fµ fµ f )), α = α(µ fµ fµ f ), γd = γd(µ fµ fµ f )

and β = β(µ fµ fµ f ) not only does the continuity conditions (2.3), the coercivity condition (2.4)
and the inf-sup condition (2.5) provide existence of a unique solution, moreover it provides
the stability estimates

‖x‖X ≤
1
α

(
‖ f1(·; µ fµ fµ f )‖X′ +

α + γd
β
‖ f2(·; µ fµ fµ f )‖Q′

)
‖p‖X ≤

1
β

((
1 +

γ

α

)
‖ f1(·; µ fµ fµ f )‖X′ +

γd(α + γd)

αβ
‖ f2(·; µ fµ fµ f )‖Q′

) (2.6)

The proof of the estimates in equations (2.6) is found in [48].

2.2 The Galerkin Finite Element Method
The examples given in Chapter 3 are solved using a finite element solver based on isoge-
ometric analysis using B-spline basis functions and not a classical finite element solver.
In this section we will present the details on deriving a linear system from the Galerkin
problem as this sets the foundation for the Galerkin reduced basis problem.
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2.2.1 Galerkin approximation
In order to numerically solve an infinite problem which can be written in the framework of
the weak formulation (2.1) of a saddle point problem it must be discretized. This is done
by introducing the finite dimensional subspaces Xh and Qh of the Hilbert spaces X and
Q respectively, already introduced in Section 2.1. In our case these new approximation
spaces will be finite element piecewise polynomial spaces, discretized with grid size h. We
seek the (finite) Galerkin approximations (xh(µµµ), ph(µµµ)) ∈ Xh × Qh of the truth solutions
(x(µµµ), p(µµµ)). The Galerkin approximations are also often called high-fidelity solutions.
Then for a problem in a domain Ω that can be cast in the abstract form (2.1), we introduce
the Galerkin approximation:
for a given µµµ ∈ P find (xh(µµµ), ph(µµµ)) ∈ Xh × Qh such that

d(xh(µµµ),wh; µµµ) + b(wh, ph(µµµ); µµµ) = f1(wh; µµµ) ∀wh ∈ Xh,

b(xh(µµµ), qh; µµµ) = f2(qh; µµµ) ∀qh ∈ Qh,
(2.7)

where the subscript h is related to the grid size of the high-fidelity problem. Now we
can define the discrete version of the continuous solution manifold (2.2) as following

Mh = {(xh(µµµ), p(µµµ))| µµµ ∈ P} ⊂ Xh × Qh . (2.8)

Obviously the discrete solution manifold is a subset of the exact solution mainfold, i.e.
Mh ⊂ M, and we assume that choosing the discretization fine enough, or equivalently
choosing h small enough, we can approximateM byMh within an acceptable approximation
error.

Let Nh and Mh be the dimension of the approximation spaces such that Nh = dim(Xh)

and Mh = dim(Qh). Then let {φi}Nh

i=1 and {ψi}Mh

i=1 denote two bases for Xh and Qh

respectively. Denote the spatial coordinates x ∈ Ω. Now we can write our high-fidelity
solutions as

xh(µµµ) = xh(x; µµµ) =
Nh∑
i=1

xh(µµµ)iφi(x) ph(µµµ) = ph(x; µµµ) =
Mh∑
i=1

ph(µµµ)iψi(x) (2.9)

where

xh(µµµ) = [xh(µµµ)1, . . . , xh(µµµ)Nh ]>, ph(µµµ) = [ph(µµµ)1, . . . , ph(µµµ)Mh ]>

holds the coefficients associated with the degrees of freedom of xh(µµµ) and ph(µµµ) respec-
tively. Further we can write the test functions as wh = φi(x) and qh = ψl(x) since equation
(2.7) holds for all wh ∈ Xh and all qh ∈ Qh . Inserted in the Galerkin problem (2.7)

d ©­«
Nh∑
j=1

xh(µµµ)jφ j(x), φi(x); µµµ
ª®¬ + b

(
φi(x),

Mh∑
k=1

ph(µµµ)kψk(x); µµµ

)
= f1 (φi(x); µµµ) i = 1, . . . , Nh

Nh∑
j=1

d
(
φ j(x), φi(x); µµµ

)
xh(µµµ)j +

Mh∑
k=1

b(φi(x), ψk(x); µµµ)ph(µµµ)k = f1(φi(x); µµµ) i = 1, . . . , Nh

Dh(µµµ)xh(µµµ) + B>h (µµµ)ph(µµµ) = f1h(µµµ)

(2.10)
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Kh = FhUh

Figure 2.1: The linear system in equation (2.12) with Kh = Kh(µµµ) ∈ R
Nh+Mh×Nh+Mh , Uh =

Uh(µµµ) ∈ R
Nh+Mh and Fh = Fh(µµµ) ∈ R

Nh+Mh .

and

b ©­«
Nh∑
j=1

xh(µµµ)jφ j(x), ψl(x); µµµ
ª®¬ = f2 (ψl(x); µµµ) l = 1, . . . , Mh

Nh∑
j=1

b
(
φ j(x), ψl(x); µµµ

)
xh(µµµ)j = f2(ψl(x); µµµ) l = 1, . . . , Mh .

Bh(µµµ)xh(µµµ) = f2h(µµµ)

(2.11)

That is the Galerkin high-fidelity approximation is equivalent to solving the linear
system [

Dh(µµµ) B>
h
(µµµ)

Bh(µµµ) 0

]
︸                ︷︷                ︸

Kh (µµµ)

[
xh(µµµ)
ph(µµµ)

]
︸   ︷︷   ︸

Uh(µµµ)

=

[
f1h(µµµ)
f2h(µµµ)

]
︸   ︷︷   ︸

Fh(µµµ)

, (2.12)

where the matrices Dh(µµµ) ∈ R
Nh×Nh and Bh(µµµ) ∈ R

Mh×Nh holds the elements

(Dh(µµµ))i j = d(φ j, φi; µµµ), 1 ≤ i, j ≤ Nh (Bh(µµµ))l j = b(φ j, ψl; µµµ), 1 ≤ j ≤ Nh, 1 ≤ l ≤ Mh .
(2.13)

f1h(µµµ) ∈ R
Nh and f2h(µµµ) ∈ R

Mh denote the vectors with elements

(f1h(µµµ))i = f1(φi; µµµ), 1 ≤ i ≤ Nh (f2h(µµµ))l = f2(ψl; µµµ), 1 ≤ l ≤ Mh . (2.14)

The linear system (2.7) of dimension Nh + Mh is shown in Figure 2.1.

2.2.2 Uniqueness and stability of the Galerkin high-fidelity approxi-
mation

Following what we did in Section 2.1.1 we define the discrete counterpart to the space X0,
namely

X0
h = {wh ∈ Xh : b(wh, qh; µµµ) = 0, ∀qh ∈ Qh, ∀µµµ ∈ P}.
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We still assume f1(·; µµµ) and f2(·; µµµ) to be bounded linear functionals. If the assumption
that conditions (2.3) holds, then the bilinear forms d(·, ·; µµµ) and b(·, ·; µµµ) are also continuous
on Xh × Xh and Xh × Qh respectively as Xh ⊂ X and Qh ⊂ Q.

In addition to assuming that the continuity condition holds we assume the following
two hold. First assume the bilinear form d(·, ·; µµµ) is coercive on the space X0

h
, that is there

exists a constant αh(µµµ) > 0 such that

d(wh,wh; µµµ) > αh(µµµ)‖wh ‖
2
X ∀wh ∈ X

0
h, ∀µµµ ∈ P. (2.15)

Note that this condition does not necessarily hold even if the coercivity condition (2.4)
holds in the continuous case and that is because X0

h
1 X0.

Second assume there exist a constant βh(µµµ) > 0 such that the bilinear form b(·, ·; µµµ)
satisfies the discrete inf-sup-condition

βsh(µµµ) = inf
qh ∈Qh

‖qh ‖Qh,0

sup
wh ∈Xh

‖wh ‖Xh,0

b(wh, qh; µµµ)
‖wh ‖Xh

‖qh ‖Qh

≥ βh(µµµ) > 0 ∀µµµ ∈ P. (2.16)

Then problem (2.1) has a unique solution (xh(µµµ), ph(µµµ)). The coercivity condition and
the inf-sup condition are not automatically fullfilled for weakly coercive problems even if
they hold for the continuous case. This is why they are explicitly given on the discrete
spaces Xh and Qh . Further details are given by Manzoni in [39], whereas a proof for the
parameter-independent case is found in [48].

For a fixed parameter µµµ = µ fµ fµ f such that (xh, ph) = (xh(µ fµ fµ f ), ph(µ fµ fµ f )), αh = αh(µ fµ fµ f ),
γd = γd(µ fµ fµ f ) and βh = βh(µ fµ fµ f ), if the constants αh and βh are independent of h the
following stability estimates are provided

‖xh ‖Xh
≤

1
αh

(
‖ f1(·; µ fµ fµ f )‖X′ +

αh + γd
βh

‖ f2(·; µ fµ fµ f )‖Q′

)
,

‖ph ‖X ≤
1
βh

((
1 +

γ

αh

)
‖ f1(·; µ fµ fµ f )‖X′ +

γd(αh + γd)

αhβh
‖ f2(·; µ fµ fµ f )‖Q′

)
.

(2.17)

The proof of the estimates in equations (2.17) is the same as for the stability estimates (2.6)
and is given by Quarteroni in [48].

Remark 2.2.1. Provided that the constants αh and βh can be bounded from below by
some constants c1 and c2 independent from h, then it is possible to provide error estimates
‖x − xh ‖X and ‖p − ph ‖Q with optimal convergence rate, see [48] for further details.

Remark 2.2.2. The inf-sup condition (2.16) is necessary to guarantee uniqueness of ph(µµµ)
in the solution (xh, ph). In cases where (2.16) does not hold it is possible to find functions
gh(µµµ) ∈ Qh such that

b(wh, gh(µµµ)) = 0, ∀wh ∈ Xh,

then we see from the weak formulation (2.7) that

d(xh(µµµ),wh; µµµ) + b(wh, ph(µµµ); µµµ) + 0 = f1(wh; µµµ) ∀wh ∈ Xh,

d(xh(µµµ),wh; µµµ) + b(wh, ph(µµµ); µµµ) + b(wh, gh(µµµ); µµµ) = f1(wh; µµµ) ∀wh ∈ Xh,

d(xh(µµµ),wh, µµµ)) + b(wh, ph(µµµ) + gh(µµµ); µµµ) = f1(wh; µµµ) ∀wh ∈ Xh,
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and indeed (xh(µµµ), ph(µµµ) + gh(µµµ)) would be a solution of problem (2.7) too. The functions
gh(µµµ) are called spurious modes and causes numerical instabilities, [48]. A possible way
to deal with spurious modes is to choose the finite element spaces Xh and Qh such that the
inf-sup condition (2.16) holds. See Section 2.2.3 for further details.

Manzoni also gives an alternative way to express the inf-sup condition (2.16) which
comes in handy when we work with reduced order modelling. In [39] Manzoni introduces
a parameter-dependent supremizer operator Tµµµp : Qh → Xh defined by

(Tµµµp qh,wh)X = b(wh, qh; µµµ) ∀wh ∈ Xh . (2.18)

Then the inf-sup condition (2.16) is expressed as

Tµµµp qh = arg sup
wh ∈Xh

b(qh,wh; µµµ)
‖wh ‖X

and βsh(µµµ) = inf
qh ∈Qh

‖Tµµµp qh ‖X
‖qh ‖Q

Let us further denote by Xh,x, Xh,p the matrices associated with the scalar products in the
spaces X and Q respectively. Then equation (2.18) can be cast in the linear system

Xh,xtµµµh (qh) = B>h (µµµ)qh ∀qh ∈ R
Mh . (2.19)

Then the solution tµµµh (qh) of equation (2.19) given a qh ∈ R
Mh is the supremizer realizing

the inf-sup condition (2.16).

2.2.3 The Taylor-Hood element
It is well-known that finite element approximations of saddle-point problems can be mean-
ingless because of the indefinite nature of the system. As mentioned in Remark 2.2.2 a
possible way to handle this issue is by the proper choice of finite element spaces. This class
of spaces are often called inf-sup stable elements and satisfy the discrete version of the
LBB condition (2.16) making the finite element solutions stable [8]. Chapter 3 studies the
steady Stokes equations, where the desired solutions are the velocity field and the pressure,
hence it is necessary to find proper elements for the velocity space and the pressure space.
The finite-element solver built for this uses a well-known inf-sup stable family of elements;
the Taylor-Hood elements, providing continuous velocity and continuous pressure [48].
This section is no more than a brief introduction to the Taylor-Hood elements, for a more
in-depth reading on this particular element or other elements see e.g. [14, 48, 16].

The Taylor-Hood element is a triangular or rectangular element where the velocity
polynomial has one higher degree than the pressure polynomial. The pressure must at
least be continuous so the least possible polynomial degree for the velocity is two. The
Taylor-Hood element is often denoted Pk − Pk−1, k ≥ 2 for triangular elements and
Qk − Qk−1, k ≥ 2 for rectangular elements. Here we have introduced the polynomial
notation

Pk : polynomials of degree ≤ k

Qk : polynomials of degree ≤ k in each variable.

The Taylor-Hood elements are inf-sup stable for k ≥ 2, that means the inf-sup condition
is satisfied and the finite element solutions are stable. For a proof of the inf-sup stability of
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(a) P2 − P1. (b) Q2 − Q1.

Figure 2.2: Example of Taylor-Hood elements where the black dots indicates the degree of freedom
for the velocity and the red x indicates the degree of freedom for the pressure.

the Pk −Pk−1 elements see e.g. [16] and [15] for an outline of proof for the inf-sup stability
of the Qk − Qk−1.

See Figure 2.2 for an example of Taylor-Hood elements P2−P1 andQ2−Q1 along with
its nodes for the velocity and the pressure.

An important property of the Taylor-Hood elements is that they are optimal convergent
[21, 50]. This gives us the following remark.

Remark 2.2.3. For the steady Stokes equations in Chapter 2, we seek the approximate
solutions (uh, ph) ∈ Vh × Qh of the exact solutions (u, p) ∈ V × Q. If the spaces are the
Sobolev space V = H1 and the space of all integrable functions Q = L2 respectively then
if the exact solutions (u, p) are smooth enough and the finite element solutions (uh, ph) are
polynomials of degree k and k − 1 respectively, then

|u − uh |H1 + ‖p − ph ‖L2 ∝ O(hk).

2.2.4 Parent element, index space and physical space
This section will just give an illustrative picture of how isogeometric analysis is used to
solve a physical problem. This is done to better understand how toworkwith a parametrized
physical problem where the geometry is parameter-dependent. We still assume to be in
the parameter-independent domain as Section 2.2.5 deals with the parameter-dependent
case. NURBS (non-uniform rational B-splines) are the most widely used computational
geometry technologies in isogeometric analysis. NURBS may consist of several patches,
but as this section is not meant as an introduction on NURBS, we will only consider a
single patch as this is sufficient for the work done in this thesis. For an in-depth reading on
Isogemetric analysis and NURBS we refer the reader to [22].

NURBS are, as the name might suggest, built from B-splines, which we introduce
in Section 2.3. In classical finite element analysis we partition the physical space into
elements creating a partitioning, let us say Th . Finite element methods always consist of an
integration step and in classical FEM the numerical integration is performed on a reference
element. The reference element is mapped into a single element in the partitioning Th ,
meaning that each element has its own mapping, see Figure 2.3a. In isogeometric analysis
the B-spline parameter space is partitioned into elements such that each element in the

12



(0, 0)
−1 1

1

−1

ξ

η

x

y

(a) Classical finite element analysis. The refer-
ence element is local to each individual element
in the physical space. Each element has its own
mapping from the reference element.

ξ

η

x

y

(b) Isogeometric analysis. The parameter space
is local to each patch (the entire physical space in
our case as we consider just one patch). A single
map maps all elements in the parameter space to
the corresponding element in the physical space.

Figure 2.3: Mapping from parameter space/reference element to the physical space for classical
finite element analysis and Isogeometric analysis.

physical space are images of the corresponding element in the parameter space, see Figure
2.3b. As in Figure 2.3b we name the coordinates in the parameter space ξ and η and let Ω̃e

be an element in the parameter space Ω̃. Let us further denote by x and y the coordinates
of the physical space Ω and let Ωe be the element. Then we define the mapping from the
parameter space to the physical space as Φ : Ω̃ → Ω. The numerical integration for the
isogeometric based finite element solver is done by a Gaussian quadrature rule on a parent
element, hence we denote by ξ̂ and η̂ the coordinates of the parent element Ω̂e.

Further we introduce an affine mapping Θ : Ω̂e → Ω̃e from the parent element to the
parameter element. To perform the integration on the parent element Ω̂e, we first need to
pullback the problem from the physical element Ωe to the parameter element Ω̃e through
the inverse mapping Φ−1 and further pullback the problem onto the parent element Ω̂e

through the inverse mapping Θ−1 as seen in Figure 2.4. We will however not study these
two mappings further in detail, only a third mapping introduced in Section 2.2.5. See
Section 2.2.5 and 2.2.6 for more details on mapping and change of variable formulas.

2.2.5 Mapping to the parameter independent domain
In Section 2.2.4we saw some idea on how to solve a problem set on a parameter-independent
domainΩ. In the followingwewill focus on 2D problems as introduced in e.g. [37, 49]. Let
Ω̃(µµµ) ∈ R2 be the parameter-dependent physical domain obtained as a mapping F (µµµ) from
the parameter-independent domain Ω. We notify the reader that the parameter-dependent
space Ω̃(µµµ) introduced here, is not the same as the parameter space Ω̃ introduced in the
previous section. From here on the tilde notation is used for the parameter-dependent
physical space. For a given parameter-vector µµµ ∈ P we define the parametric map as

F (µµµ) : Ω × P→ R2,
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ξ

η

x

y

ξ̂

η̂

Ωe
Ω̃e

Ω̂e

Φ−1

Θ−1

Figure 2.4: One element at the time is pulled back from the physical space to the parent element
through the parameter space. The numerical integration is done on the parent element.

and hence we obtain the parameter-dependent domain as

Ω̃(µµµ) = F (Ω; µµµ) ∀µµµ ∈ P. (2.20)

Note that we here write F (µµµ), but it should be clear for the reader that this geometric map
in fact only depends on the geometric parameters µgµgµg. Figure 2.5 shows an example of a
parametric map F (µµµ) stretching and rotating the domain Ω.

Let us denote the original problem set on the original domain Ω̃(µµµ) in the form

P̃ = P̃(Ω̃(µµµ); µµµ).

Here we use the tilde notation to denote the parameter-dependent problem yielding the
coordinates x̃ for the parameter-dependent space, whereas we denote the coordinates of the
parameter-independent space by x. In Section 2.2.4 we saw how to solve the problem once
it is set on a parameter-independent domain. Hence our goal is to pull the problem P̃, set
on Ω̃, back to the parameter-independent domain Ω through the inverse mapping F −1(µµµ)
yielding

P = P(Ω; µµµ),

but to do so, we need the proper tools.

2.2.6 Formulas for change of variable
Bymeans of the inversemappingFFF −1(·; µµµ)wewant to pull the problem set on the parameter-
dependent domain Ω̃(µµµ) back to the parameter-independent domainΩ. In order for us to do
so, here we give the definition of the Jacobian matrix JFFF(x; µµµ) ∈ R2×2 of the map FFF (·; µµµ)

(JFFF(x; µµµ))i j =
∂(x̃)i
∂(x)j

(x) =
∂(FFF (x; µµµ))i

∂(x)j
(x).

With |JFFF(x; µµµ)| we denote the determinant of the Jacobian matrix, and we assume it to be
different from 0 for any µµµ ∈ P and x ∈ Ω so that the map F (·; µµµ) is well defined. Likewise
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1
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Figure 2.5: The parameter-dependent domain Ω̃ = Ω̃(µµµ) is obtained as a parametric map of a
parameter-independent domain Ω.

the Jacobian matrix of the inverse mapping F −1F −1F −1(·; µµµ) is

(JF−1F−1F−1 (x̃; µµµ))i j =
∂(x)i
∂(x̃)j

(x̃) =
∂(F −1F −1F −1(x̃; µµµ))i

∂(x̃)j
(x̃).

With the Jacobian matrix defined for the map, it is now possible to give the change of
variable formula for any integrable function f̃ : Ω̃(µµµ) → R∫

Ω̃(µµµ)
f̃ (x̃) dΩ̃ =

∫
Ω

f (x)|JFFF(x; µµµ)| dΩ,

where f = f̃ ◦ FFF . The only thing we still need is a tool to evaluate integrals involving
derivatives. In 2D the chain rule gives us

∂ f̃ (x̃)
∂ x̃i

=
∂ f (x)
∂x1

∂x1
∂ x̃i
+
∂ f (x)
∂x2

∂x2
∂ x̃i

and then ∇̃ f̃ (x̃) can be written in the parameter-independent variables as

∇̃ f̃ (x̃) =

[
∂ f̃ (x̃)
∂x̃1
∂ f̃ (x̃)
∂x̃2

]
=

[
∂ f̃ (x̃)
∂x1

∂x1
∂x̃1
+

∂ f̃ (x̃)
∂x2

∂x2
∂x̃1

∂ f̃ (x̃)
∂x1

∂x1
∂x̃2
+

∂ f̃ (x̃)
∂x2

∂x2
∂x̃2

]
=[

∂x1
∂x̃1

∂x2
∂x̃1

∂x1
∂x̃2

∂x2
∂x̃2

] [
∂ f̃ (x̃)
∂x1
∂ f̃ (x̃)
∂x2

]
=

(
JF−1F−1F−1 (x; µµµ)

)>
∇ f (x),

(2.21)

where ∇̃ is the gradient with respect to the parameter-dependent coordinates x̃, and ∇ is the
gradient w.r.t the parameter-independent coordinates x. By the inverse function theorem
[55] Quarteroni et al. states in [49] that

JF−1 (x̃; µµµ) = (JF(x; µµµ))−1,
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holds if the Jacobian matrix of the map F (·; µµµ) is continuous and nonsingular at a point x.
Here x̃ = FFF (x; µµµ). Then the change of variable for derivatives (2.21) is given by

∇̃ f̃ (x̃) = (JFFF(x; µµµ))−> ∇ f (x).

The extension to the vector case of the formulas given in this section is pretty much
straight forward and will therefore not be given. See e.g. [49] on the vector case. The tools
given in this section is applied to an example given in Chapter 4.

2.3 B-splines
The Finite Element solver used in this thesis is based on isogeometric analysis, and hence
we will briefly discuss the topic of B-splines. We will study the B-spline basis functions in
one dimension for simplicity, and we denote the i-th basis function by Bi,p(ξ), where p is
the polynomial degree of the basis function and ξ ∈ R is the input parameter. These basis
functions are used to construct B-spline curves.

2.3.1 B-spline curves
A B-spline curve in Rd where d = 1, 2, 3, . . . is constructed in the same manner as in
classical finite element analysis (FEA) by taking a linear combination of the basis functions.
The difference is that in classical FEA, the vector-valued nodal coefficients of the basis
functions interpolates with the curve, as with B-spline curves the vector-valued coefficients,
more commonly known as control points, are in general not interpolating theB-spline curve,
only at its end-points as seen in Figure 2.6. Given n control points Ci ∈ R

d, i = 1, 2, . . . , n
and the corresponding basis functions of degree p, Bi,p(ξ), i = 1, 2, . . . , n a B-spline,
piecewise polynomial curve is given by

S(ξ) =
n∑
i=1

Bi,p(ξ)Ci.

Figure 2.6: A B-spline piecewise quadratic curve in R2 displayed with its control points only
interpolating at the end points.
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2.3.2 Knot vector
The B-spline basis functions take input values from the parameter space. A knot vector
in one dimension is a vector of non-decreasing coordinates in the parameter space. Let
us denote the knot vector ξξξ = [ξ1, ξ2, . . . , ξn+p+1], where ξi ∈ R is the i-th knot, p is the
polynomial degree of the B-spline basis functions and n is the number of B-spline basis
functions.

Knot vectors are said to be uniform if the knots are equally spaced in the parameter
space and non-uniform if the knots are not equally spaced. Some knots may be repeated,
i.e. they may have the same value and we denote the multiplicity of knot i by mi . As we
will see, the multiplicity of the knots implies important properties of the B-spline basis
functions. If the multiplicity of the first and the last knot is p + 1, the knot vector is said to
be open. Also, the distinct knots partition the parameter space into elements.

Let us explain this explicit. Let an open knot vector ΞΞΞ be given on the interval [a, b].
Then we have ξ1 = a and ξn+p+1 = b. Also let the knot vector have the same multiplicity
for all internal knots, that means m = mi, ∀i\{1, n + p + 1}. As the first an last knot is
repeated p + 1 times and the internal knots are repeated m times, we have that the number
of partitions of [a, b] or equivalently the number of knot spans must be the same as number
of unique internal knots plus one, which is nks =

(n+p+1)−2(p+1)
m + 1 = (n−p−1)

m + 1.

2.3.3 Basis functions and B-spline functions in one dimension
For a given knot vector ξξξ = [ξ1, . . . , ξn+p+1] the n B-spline basis functions are given by the
cox-de Boor recursion formula given in e.g. [22]. Starting with piecewise constants for
p = 0

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.
For p = 1, 2, 3, . . . the B-spline basis functions are given by

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ).

ξξξ = [ξ1, . . . , ξn+p+1] is the knot vector of a total of n B-spline basis functions of degree
p. The spline space Sp

ξξξ
is the linear space of all linear combinations of these B-spline

functions, i.e.

S
p
ξξξ
=

{
n∑
i=1

ciBi,p(ξ)|cj ∈ R for 1 ≤ i ≤ n

}
.

In [38] it is shown that the B-spline basis functions are linearly independent and hence they
form a basis for the space Sp

ξξξ
, i.e.

S
p
ξξξ
= span{B1,p(ξ), . . . ,Bn,p(ξ)},

and we see that dim(Sp
ξξξ
) = n. For the purpose of the examples analyzed in this thesis, it

is sufficient with uniform open knot vectors. Hence we use the following notation of the
spline space

S
p
c =

{
Bi,p(ξ)|[ξi,ξi+1] ∈ Pp ∧ Bi,p(ξ)|ξi ∈ Cc, ∀i : ξi+1 > ξi

}
.
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This space provides us with basis functions that are polynomials of degree p on each
element [ξi, ξi+1], ∀i : ξi+1 > ξi and they are c times continuously differentiable across
the element boundaries, ξi , ∀i : ξi+1 > ξi . The multiplicity of knot i is then given by the
relation

c = p − mi .

Note that mi can at most be p+ 1 as the lowest order of continuity allowed is discontinuity
C−1.

2.3.4 Basis functions and B-spline spaces in two dimension
This section shortly addresses the extension of the above Section 2.3.3 to two dimensions.
Let Ξ = [ξ1, . . . , ξnb+p+1] and H = [η1, . . . , ηmb+q+1] be two knot vectors in the ξ-direction
and the η-direction of the parameter space Ω associated with the B-spline basis functions
{B1

i,p(ξ)}
nb
i=1 and {B2

i,q(η)}
mb

i=1 respectively. p, q are the polynomial degree of the basis
functions and nb,mb are the number of basis functions in the ξ-direction and η-direction
respectively. Then the knot vectors partition the parameter space Ω into a rectangular
mesh, let us call it Rh and let h be the associated mesh size. Then we define the tensor
product B-spline basis functions associated with this mesh as

Bi j,pq(ξ, η) = B1
i,p(ξ)

⊗
B2
i,q(η) i = 1, . . . , nb j = 1, . . . ,mb,

and the spline space spanned by these basis functions as

S
p,q
c1,c2 = span{Bij,pq(ξ, η)}

nb,mb
i=1,j=1,

where c1 gives the continuity across the element boundaries in the ξ-direction of the B1
i,p

basis functions and c2 gives the continuity across the element boundaries in the η-direction
of the B2

i,q basis functions. For further details see [17].

Remark 2.3.1. As mentioned earlier, the finite element solver built for this thesis uses
Taylor-Hood elements Qk+1 − Qk for k ≥ 1. This corresponds to the choice Vh = {v :
v ◦ Φ ∈ Sk+1,k+1

0,0 × Sk+1,k+1
0,0 } for the velocity space and Qh = {q : q ◦ Φ ∈ Sk,k0,0 } for the

pressure space in the Stokes equation, [17]. Note that this is the spaces of functions which
are spline functions on the parameter space, where the mapping Φ from the parameter to
the physical space is the mapping from Figure 2.4. See Chapter 3 for further details on the
velocity and pressure space.

2.3.5 Properties B-spline basis functions
As seen in Figure 2.7a and 2.7b B-spline basis functions for p = 0 and p = 1 are the same
as ordinary FEM basis functions. For quadratic B-spline basis functions seen in Figure
2.7c and higher degree B-spline basis functions they are all identical, but shifted relative
to each other. The B-spline basis functions always share support with (including itself)
2p + 1 basis functions and each function has support on p + 1 knot spans.

For uniform and open knot vectors, B-spline basis functions are not interpolant at
internal knots, only at end knots in 1D and at corner knots in higher dimensions. In
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B1,0(ξ)
B2,0(ξ)

B3,0(ξ)
B4,0(ξ)

B5,0(ξ)
B6,0(ξ)

B7,0(ξ)
B8,0(ξ)

B9,0(ξ)
B10,0(ξ)

(a) Basis functions of degree p = 0 for uniform
and open knot vector Ξ = [0, 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5].

B1,0(ξ)
B2,0(ξ)

B3,0(ξ)
B4,0(ξ)

B5,0(ξ)
B6,0(ξ)

B7,0(ξ)
B8,0(ξ)

B9,0(ξ)
B10,0(ξ)

(b) Basis functions of degree p = 1 for uni-
form and open knot vector Ξ = [0.00, 0.00, 0.56,
1.11, 1.67, 2.22, 2.78, 3.33, 3.89, 4.44, 5.00, 5.00].

B1,0(ξ)

B2,0(ξ)
B3,0(ξ)

B4,0(ξ)
B5,0(ξ)

B6,0(ξ)
B7,0(ξ)

B8,0(ξ)

B9,0(ξ)

B10,0(ξ)

(c) Basis functions of degree p = 2 for uniform and
open knot vector Ξ = [0.00, 0.00, 0.00, 0.63, 1.25, 1.88, 2.50,
3.13, 3.75, 4.38, 5.00, 5.00, 5.00].

Figure 2.7: B-spline basis functions of degree p = 1, 2, 3 on the interval [0, 5].
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B1,0(ξ)

B2,0(ξ)
B3,0(ξ)

B4,0(ξ)

B5,0(ξ)

B6,0(ξ)B7,0(ξ)

B8,0(ξ)

C−1 C1 C1 C1 C−1C0

Figure 2.8: Basis functions of degree 2 for non-uniform and open knot vector Ξ =

[0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5] displayed with order continuity across element boundaries, i.e. the knots.

general, because the B-spline basis functions of degree p have support on p+ 1 knot spans,
repeated knots will decrease the continuous derivatives of basis functions over the knots.
In fact basis functions of degree p have p−mi continuous derivatives across knot ξi , where
mi is the multiplicity of ξi . When the multiplicity of the i-th knot is exactly p, i.e. mi = p,
the basis is interpolant at that point as seen in Figure 2.8. This differs internal knots from
internal nodes in ordinary FEM, where internal nodes are interpolation points of the basis
functions. Hence for a uniform and open knot vector the basis functions are interpolating
at the end points [ξ1, ξn+p+1] and they have p − 1 continuous derivatives across the knots
as seen for knot 1, 2 and 4 in Figure 2.8.

2.4 Sobolev space
As the finite element method is written in the language of functional analysis, we need to
provide the right tools to solve the desired problem. Therefore we familiarize the reader
with the notion of the Sobolev spaces. In Section 2.1.1 we introduced the notion of the
weak form. To solve problems cast in the framework of the weak formulation 2.1, we
need the solution (x, p) and the test functions w and q to lie in certain spaces for the weak
formulation to hold.

LetΩ be an open subset of Rn. Denote the boundary ofΩ by ∂Ω and let it be piecewise
smooth. The Sobolev spaces are built on the function space L2(Ω), that is the space of all
square-integrable functions on Ω, [14, 48]. The L2(Ω) space is defined as

L2(Ω) = { f : Ω→ R :
∫
Ω

( f (x))2 dΩ < ∞}.

We need the Sobolev spaces H1(Ω) and H1
0 (Ω) which can be found in e.g. [1, 48] and

is defined as
H1(Ω) = { f ∈ L2(Ω) : D f ∈ L2(Ω)},

and
H1

0 (Ω) = { f ∈ H1(Ω) : f |∂Ω = 0}.
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The former is the spaces of all functions f such that f and its first weak derivative D f
are square integrable on Ω and the latter is similar. We also require f to be zero at
the boundary. H1

0 (Ω) is a space used when the whole boundary of Ω, that is ∂Ω is
a homogeneous Dirichlet boundary. If just a part of the boundary is Dirichlet, with a
function value g on the boundary, we will use the space

H1
ΓD
(Ω) = { f ∈ H1(Ω) : f |ΓD = g},

where ΓD is the part of the boundary ∂Ω being Dirichlet.
The Sobolev spaces are Hilbert spaces with respect to the following inner product

( f , g)H1(Ω) =

∫
Ω

f gdΩ +
∫

Ω
∇f∇g dΩ,

which induces the H1-norm

‖ f ‖H1(Ω) =

√
( f , f )H1(Ω).

We also define the H1-seminorm

| f |H1(Ω) = ‖∇ f ‖L2(Ω)

2.5 Reduced Basis Methods
In short, reduced basis (RB) methods are used to approximate any member of the solution
manifoldM with a low number of basis functions, known as reduced basis functions. The
RB method has two stages, first a costly offline stage constructing RB functions based on
the discrete solution manifold Mh in some way. The second stage is an online stage for
(hopefully) efficient computations of the RB solution (xN (µµµ), pN (µµµ)).

We assume that for a given µµµ there exist a high-fidelity solution (xh(µµµ), ph(µµµ)) such
that we can approximate the exact solution (x(µµµ), p(µµµ)) of problem (2.1.1) with a desired
accuracy for some choice of h, i.e. ‖x(µµµ) − xh(µµµ)‖X + ‖p(µµµ) − ph(µµµ)‖Q < εtol and for a
chosen h we have that εtol can become arbitrarily small. Then by the triangle inequality
we have that

‖x(µµµ) − xN (µµµ)‖X + ‖p(µµµ) − pN (µµµ)‖Q ≤ ‖x(µµµ) − xh(µµµ)‖X
+‖p(µµµ) − ph(µµµ)‖Q + ‖xh(µµµ) − xN (µµµ)‖X + ‖ph(µµµ) − pN (µµµ)‖Q

≤ εtol + ‖xh(µµµ) − xN (µµµ)‖X + ‖ph(µµµ) − pN (µµµ)‖Q,
(2.22)

and hence the accuracy of which the RB solution approximates the exact solution can be
controlled by how good the RB solution approximates the high-fidelity solution.

Given the discrete solution manifold Mh in (2.8), we now hope that any solution
(xh(µµµ), ph(µµµ)) can be well approximated by linearly combining only a few elements ofMh ,
i.e. we want to represent the discrete solution manifold with a few number of chosen basis
functions. As pointed out by Hesthaven, choosing these basis functions, hereby called the
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RB functions, appropriately we can represent the solution manifold with a small error, see
[34].

The main idea of creating this reduced basis is to choose a set of ns selected parameters

{µµµ1, . . . , µµµns } ⊂ Q

creating a set of high-fidelity solutions that we call snapshots

{(xh(µµµ1), ph(µµµ1)), . . . , (xh(µµµns ), ph(µµµns ))}

From these we want to generate a set of Nu RB functions for the xh(µµµ) component of the
solution and Np RB functions for the ph(µµµ) component of the solution yielding

{φrb1 , . . . , φrbNu
}, {ψrb

1 , . . . , ψrb
Np
},

where Nu and Np not necessarily are equal. These RB functions spans the reduced basis
spaces XN and QN , that is the reduced basis approximation spaces to the high-fidelity
spaces Xh and Qh such that

XN = span{φrb1 , . . . , φrbNu
} ⊂ Xh, QN = span{ψrb

1 , . . . , ψrb
Np
} ⊂ Qh .

It is worth noting that these RB functions are in general not solutions of the high-fidelity
problem (2.1.1), but hopefully they will approximate the set of snapshots i.e.

XN ≈ span{xh(µµµ1), . . . , xh(µµµns )} QN ≈ span{ph(µµµ1), . . . , ph(µµµns )},

Wherewe have assumed that the set of snapshots are representative for the solutionmanifold
Mh . Further we assume low dimensionality of Mh , which implies that Nu � Nh and
Np � Mh . In Section 2.7 we will discuss how to construct N basis functions out of a set
of ns snapshots using the proper orthogonal decomposition technique.

2.5.1 Galerkin reduced basis approximation
For µµµ ∈ P we formulate the Galerkin RB approximation of the weak formulation (2.1) as:
find (xN (µµµ), pN (µµµ)) ∈ XN × QN s.t.

d(xN (µµµ),wN (µµµ); µµµ) + b(wN, pN (µµµ); µµµ) = f1(wN ; µµµ) ∀wN ∈ XN (µµµ),

b(xN (µµµ), qN ; µµµ) = f2(qN ; µµµ) ∀qN ∈ QN (µµµ),
(2.23)

As the reduced basis solutions (xN (µµµ), pN (µµµ)) are functions of XN ×QN , it can be written
as a linear combination of the RB functions spanning XN × QN ,

xN (µµµ) =
Nu∑
i=1

φrbi (xN(µµµ))i , pN (µµµ) =

Np∑
i=j

ψrb
j (pN(µµµ))j (2.24)

wherexN(µµµ) =
[
(xN(µµµ))1 , . . . , (xN(µµµ))Nu

]>
∈ RNu andpN(µµµ) =

[
(pN(µµµ))1 , . . . , (pN(µµµ))Np

]>
∈ RNp is the RB coefficients of xN (µµµ) and pN (µµµ) respectively. As the weak formulation
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(2.23) holds for all wN ∈ XN (µµµ) and qN ∈ QN (µµµ) we follow the same line of thought as in
(2.10) and (2.11). We then write the test functions wN ∈ XN as wN = φ

rb
j and qN ∈ QN

as qN = ψ
rb
l

and inserting this together with equation (2.24) into equation (2.23) we see
that as in equation (2.12) we get a linear system[

DN (µµµ) B>N (µµµ)
BN (µµµ) 0

]
︸                 ︷︷                 ︸

KN (µµµ)

[
xN(µµµ)
pN(µµµ)

]
︸   ︷︷   ︸

UN(µµµ)

=

[
f1N(µµµ)
f2N(µµµ)

]
︸    ︷︷    ︸

FN(µµµ)

, (2.25)

As the RB functions (φrbj , ψ
rb
l
) belong to XN × QN ⊂ Xh × Qh for j = 1, . . . , Nu and

l = 1, . . . , Np we can write them as linear combinations of the original basis functions

φrbj =

Nh∑
i=1
(Vu)i jφi, ψrb

l =

Mh∑
i=1
(Vp)ilψi j = 1, . . . , Nu l = 1, . . . , Np . (2.26)

Then from equation (2.26) we define the two transformation matrices Vu ∈ R
Nh×Nu and

Vp ∈ R
Mh×Np such that column vectors (Vu)j and (Vp)l of the transformation matrices

Vu = [(Vu)1 | . . . |(Vu)Nu ] and Vp = [(Vp)1 | . . . |(Vp)Np ] respectively holds the coefficients
for representing the j − th RB function φrbj in terms of the Xh-basis {φi}Nh

i=1 and the l − th

RB function ψrb
l

in terms of the Qh-basis {ψi}Mh

i=1 . From this we can compute the RB
matrices and vectors from the original ones. We compute the RBmatrix DN (µµµ) ∈ R

Nu×Nu

as

(DN (µµµ))i j = d(φrbj , φ
rb
i ; µµµ) =

Nh∑
k=1

Nh∑
l=1
(Vu)k jd(φk, φl; µµµ)(Vu)li for i, j = 1 . . . , Nu

DN (µµµ) = V>u Dh(µµµ)Vu

(2.27)

and BN (µµµ) ∈ R
Np×Nu as

(BN (µµµ))l j = b(φrbj , ψ
rb
l ; µµµ) =

Nh∑
k=1

Mh∑
i=1
(Vu)k jb(φk, ψi; µµµ)(Vp)il for l = 1, . . . , Np j = 1, . . . , Nu

BN (µµµ) = V>p Bh(µµµ)Vu

(2.28)

In the same manner we compute the RB right hand side vector f1N(µµµ) ∈ R
Nu

(f1N(µµµ))i = f1(φrbi ; µµµ) =
Nh∑
k=1
(Vu)ki f1(φi; µµµ) for i = 1, . . . , Nu

f1N(µµµ) = V>u f1h(µµµ),

(2.29)

and the RB right hand side vector f2N(µµµ) ∈ R
Np

(f2N(µµµ))i = f2(ψrb
i ; µµµ) =

Mh∑
k=1
(Vp)ki f2(φi; µµµ) for i = 1, . . . , Np

f2N(µµµ) = V>p f2h(µµµ)

(2.30)
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Kh = Fh

UN

=Uh FNKN

V>

V

V>

Figure 2.9: The linear system in equation (2.25) with Kh = Kh(µµµ) ∈ R
(Nh+Mh )×(Nh+Mh ),

UN = UN(µµµ) ∈ R
(Nu+Np ), Fh = Fh(µµµ) ∈ R

(Nh+Mh ), V ∈ R(Nh+Mh )×(Nu+Np ), KN = KN (µµµ) ∈

R(Nu+Np )×(Nu+Np ), and FN = FN(µµµ) ∈ R
(Nu+Np ).

If we make the block matrix V ∈ R(Nh+Mh )×(Nu+Np ) with Vu and Vp on the diagonal,
i.e.

V =
[
Vu 0
0 Vp

]
it is possible to compute the matrix KN (µµµ) and the vector FN(µµµ) from equation (2.25) using
the corresponding matrix and vector from the linear system (2.12) as

V>Kh(µµµ)V =
[
V>u 0
0 V>p

] [
Dh(µµµ) B>

h
(µµµ)

Bh(µµµ) 0

] [
Vu 0
0 Vp

]
=

[
V>u Dh(µµµ)Vu V>u B>

h
(µµµ)Vp

V>p Bh(µµµ)Vu 0

]
=

[
DN (µµµ) B>N (µµµ)
BN (µµµ) 0

]
= KN (µµµ)

and

V>Fh(µµµ) =

[
V>u 0
0 V>p

] [
f1h(µµµ)
f2h(µµµ)

]
=

[
V>u f1h(µµµ)
V>p f2h(µµµ)

]
=

[
f1N(µµµ)
f2N(µµµ)

]
= FN(µµµ)

The linear system of size Nu +Np in equation (2.25) is shown in Figure 2.9 to illustrate
the dimension reduction compared to the linear system in Figure 2.1.

2.5.2 Full order representation of the reduced basis approximation
vector

After solving the RB system in equation (2.25), we obtain the Nu-dimensional RB vector
xN(µ) and the Np-dimensional RB vector pN(µ). Hence we can compute the RB solution
(xN (µµµ), pN (µµµ)) given in equation (2.24). This is the approximate solution to the high-
fidelity function in equation (2.9). For error computations it is preferable if we know the
Nh-dimensional vector holding the degrees of freedom (DoF) of xN (µµµ) corresponding to
xh(µµµ) ∈ R

Nh and likewise the Mh-dimensional vector holding the DoF of ph(µµµ). To obtain
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these vectors we insert equation (2.26) into equation (2.24) which gives us

xN (µµµ) =
Nu∑
i=1

φrbi (xN(µµµ))i =

Nu∑
i=1

Nh∑
j=1
(Vu)jiφ j (xN(µµµ))i =

Nh∑
j=1

φ j

(
Nu∑
i=1
(Vu)ji (xN(µµµ))i

)
.

(2.31)

and

pN (µµµ) =

Np∑
i=1

ψrb
i (pN(µµµ))i =

Np∑
i=1

Mh∑
j=1
(Vp)jiψj (pN(µµµ))i =

Mh∑
j=1

ψj
©­«
Np∑
i=1
(Vp)ji (pN(µµµ))i

ª®¬ .
(2.32)

Fromequation (2.31)we conclude that
(∑Nu

i=1(Vu)ji (xN(µµµ))i

)
corresponds to the coefficients

(xh(µµµ))j in the first expression in equation (2.9) and hence

VuxN(µµµ) ∈ R
Nh ,

corresponds to the coefficient vector xh(µµµ). From equation (2.32) the conclusion is similar,(∑Np

i=1(Vp)ji (pN(µµµ))i

)
corresponds to the coefficients (ph(µµµ))j in the second expression in

equation in (2.9) and hence
VppN(µµµ) ∈ R

Mh ,

corresponds to the coefficient vector ph(µµµ).
To simplify notation in the following we use the compact representation of the solution

of the Galerkin problem (2.7) namely Uh(µµµ) := [xh(µµµ), ph(µµµ)]
> and the reduced solution

is UN(µµµ) := [xN(µµµ), pN(µµµ)]
>.

The transformation matrixV is constructed by a PODmethod introduced in 2.7 making
the columns of V orthogonal. As in [49] we name Ũh = Ũh(µµµ) = VUN(µµµ) ∈ R

Nh+Mh the
full order representation of UN(µµµ). If we now denote by V̂N the subspace of RNh+Mh that
is spanned by the column vectors of V , i.e. V̂N = span{(V)1, . . . , (V)N} ⊂ RNh+Mh , we
know that VUN(µµµ) ∈ V̂N as in fact multiplying with the matrix V provides an orthogonal
projection on the reduced subspace V̂N . As Uh(µµµ) ∈ R

Nh+Mh does not belong entirely in
V̂N we have that Ũh solves a high-fidelity problem, different from problem (2.12), that we
derive from problem (2.25)

KN (µµµ)UN(µµµ) = FN(µµµ),

V>Kh(µµµ)VUN(µµµ) = V>Fh(µµµ),

V>Kh(µµµ)VV>VUN(µµµ) = V>Fh(µµµ),

VV>Kh(µµµ)VV>Ũh = VV>Fh(µµµ).

(2.33)

In the third line we have assumed that V>V = IN , i.e. the columns of V are orthonormal.
In the fourth line we left multiply with V . We will come back to the assumption that
V>V = IN when constructing the transformation matrix V in Section 2.7.
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2.5.3 Error computations
In the introduction of Section 2.5 we discussed that the accuracy of the RB solution is
controlled by the second term on the right hand side of equation (2.22) and hence we write
the error we want to study as

euh(µµµ) = xh(µµµ) − xN (µµµ), ep
h
(µµµ) = ph(µµµ) − pN (µµµ), (2.34)

and from Section 2.5.2 we get that the vector representation of the error is the difference
between the high-fidelity approximation vector Uh(µµµ) and the full order representation
Ũh(µµµ), split in the two components of the solution we have

eu
h(µµµ) = xh(µµµ) − VuxN(µµµ), ep

h(µµµ) = ph(µµµ) − VppN(µµµ). (2.35)

In [49] a geometric interpretation of the error in equation (2.35) is introduced. We exploit
the fact that the transformation matrix introduced in equation (2.26) allows us to define an
orthogonal projection on the reduced subspace V̂N . We will come back to this projection
in Section 2.7, and for now we denote it by P. Then we can write the error in equation
(2.35) as

eh(µµµ) := [eu
h(µµµ), e

p
h(µµµ)]

> = Uh(µµµ) − VUN(µµµ) = (Uh(µµµ) − PUh(µµµ)) + (PUh(µµµ) − VUN(µµµ)) ,
(2.36)

where the first parentheses on the right hand side is due to the fact that the high-fidelity
approximation vectorUh(µµµ) does not strictly belong to the reduced subspace V̂N . In Section
2.7 we will see that when the projection P is defined correctly, it minimize this error. The
second parentheses is due to the fact that Uh(µµµ) solves the high-fidelity problem in equation
(2.12) and VUN(µµµ) solves the problem in equation (2.33). As P is an orthogonal projection
the expressions in the two parentheses are orthogonal as (Uh(µµµ) − PUh(µµµ)) ∈ V̂

⊥
N and

(PUh(µµµ) − VUN(µµµ)) ∈ V̂N .
It isworthmentioning that the error in the second parentheses, namely (PUh(µµµ) − VUN(µµµ))

is already minimized with respect to the POD basis V . As already mentioned, this error is
due to the fact that Uh(µµµ) solves the high-fidelity problem in equation (2.12) and VUN(µµµ)
solves the problem in equation (2.33). The latter problem is in fact derived from the former
through a Galerkin projection as described in [8]. This is obvious by the fact that the
residual we get when inserting Uh ≈ VUN into the linear system (2.12), is orthogonal to
the columns of V

V>(Kh(µµµ)VUN(µµµ) − Fh(µµµ)) = 0, (2.37)

which can be rewritten as the high-fidelity problem (2.33).
From a computational stand point it could be preferable that we express the error

between the high-fidelity approximation and the RB approximation given in equation
(2.34) using vectors

euh(µµµ) = xh(µµµ) − xN (µµµ) =
Nh∑
j=1

x j
h
(µµµ)φ j(x) −

Nh∑
j=1

φ j

(
Nu∑
i=1
(Vu)ji (xN(µµµ))i

)
= Φ>xh(µµµ) − Φ>VuxN(µµµ) = Φ>eu

h(µµµ),
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where ΦΦΦ = [φ1, . . . , φNh
]> ∈ RNh is a vector with the i-th element being the i-th basis

function of Xh , and we used equations (2.9) and (2.31) to represent xh(µµµ) and xN (µµµ)
respectively. In the same manner we get

ep
h
(µµµ) = ph(µµµ) − pN (µµµ) =

Mh∑
j=1

pj
h
(µµµ)ψj(x) −

Mh∑
j=1

ψj
©­«
Np∑
i=1
(Vp)ji (pN(µµµ))i

ª®¬
= Ψ>ph(µµµ) −Ψ>VppN(µµµ) = Ψ>ep

h(µµµ),

where Ψ = [ψ1, . . . , ψNh
]> ∈ RMh is a vector with the i-th element being the i-th basis

function of Qh , and we used equations (2.9) and (2.32) to represent ph(µµµ) and pN (µµµ)
respectively.

If we now want to measure the errors eu
h
= eu

h
(µµµ) and ep

h
= ep

h
(µµµ) expressed as the

error vectors eu
h = eu

h(µµµ) and ep
h = ep

h(µµµ) measured in some X-norm induced by some
X-inner product, i.e. ‖·‖2X = (·, ·)X and some Q-norm induced by some Q-inner product,
i.e. ‖·‖2Q = (·, ·)Q respectively, we get

‖euh ‖
2
X = (e

u
h, e

u
h)X =

(
Φ>eu

h(µµµ),Φ
>eu

h(µµµ)
)
X

= eu
h(µµµ)

>
(
Φ,Φ>

)
X eu

h(µµµ) = eu
h(µµµ)

>Xh,xeu
h(µµµ),

where Xh,x is the matrix with elements

(Xh,x)i j =
(
φi, φ j

)
X ,

for the X-inner product. In the same way we get

‖ep
h
‖2Q = ep

h(µµµ)
>Xh,pep

h(µµµ),

where Xh,p is the matrix with elements

(Xh,p)i j =
(
ψi, ψj

)
Q ,

for the Q-inner product. For the H1 seminorm, | · |H1 we have

|euh |
2
H1 = eu

h(µµµ)
>Hxeu

h(µµµ), |ep
h
|2
H1 = ep

h(µµµ)
>Hpep

h(µµµ),

where the matrix Hx and Hp have the elements

(Hx)i j =
(
∇φi,∇φ j

)
L2 , (Hp)i j =

(
∇ψi,∇ψj

)
L2 .

2.5.4 Offline/online computations
As stated in e.g. [34, 49] affine parameter dependence of the bilinear and linear forms in
(2.7) is of great importance for the efficiency of the RB methods to hold as this allows
an offline/online decomposition. In the case of non-affine problems we need to make an
approximate affine expansion to the problem using the Empirical Interpolation Method
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(EIM) [9]. Assuming affine parameter dependence means that the parametric and spatial
dependence of both the bilinear form and linear form in (2.12) can be written as

d(xh,wh; µµµ) =
Qa∑
q=1

θ
q
a(µµµ)dq(xh,wh) ∀xh,wh ∈ Xh, µµµ ∈ P

b(xh, qh; µµµ) =
Qb∑
q=1

θ
q
b
(µµµ)bq(xh, qh) ∀xh ∈ Xh, qh ∈ Qh, µµµ ∈ P

f1(wh; µµµ) =
Q f1∑
q=1

θ
q
f1
(µµµ) f1q(wh) ∀wh ∈ Xh, µµµ ∈ P

f2(qh; µµµ) =
Q f2∑
q=1

θ
q
f2
(µµµ) f2q(qh) ∀qh ∈ Qh, µµµ ∈ P

(2.38)

Here θqa : P → R, q = 1, . . . ,Qa,θqb : P → R, q = 1, . . . ,Qb , θqf1 : P → R, q = 1, . . . ,Q f1

and θq
f2

: P→ R, q = 1, . . . ,Q f2 are µµµ-dependent functions, while dq : Xh × Xh → R, bq :
Xh × Qh → R, f1q : Xh → R, f2q : Qh → R are µµµ-independent. In fact this would mean
that also the linear system (2.12) is affinely parametrized

Dh(µµµ) =

Qa∑
q=1

θ
q
a(µµµ)D

q
h
,

Bh(µµµ) =

Qb∑
q=1

θ
q
b
(µµµ)Bq

h
,

f1h(µµµ) =

Q f1∑
q=1

θ
q
f1
(µµµ)f1h

q,

f2h(µµµ) =

Q f2∑
q=1

θ
q
f2
(µµµ)f2h

q,

(2.39)

where Dq
h
for q = 1, . . . ,Qa, Bq

h
for q = 1, . . . ,Qb , fq

1h for q = 1, . . . ,Q f1 and fq
2h for

q = 1, . . . ,Q f2 are µµµ-independent and have the elements

(Dq
h
)i j = dq(φ j, φi) 1 ≤ i, j ≤ Nh, 1 ≤ q ≤ Qa, (2.40)

(Bq
h
)i j = Bq(φ j, ψi) 1 ≤ j ≤ Nh, 1 ≤ i ≤ Mh 1 ≤ q ≤ Qb, (2.41)

(f1h
q)i = f1q(φi) 1 ≤ i ≤ Nh, 1 ≤ q ≤ Q f1 . (2.42)

(f2h
q)i = f2q(ψi) 1 ≤ i ≤ Mh, 1 ≤ q ≤ Q f2 . (2.43)

This affine parameteric dependence is of great importance for the linear system (2.25)
when considered from a computational standpoint. Since the system in (2.12) is affinely
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parametrized so is (2.25)

DN (µµµ) =

Qa∑
q=1

θ
q
a(µ)D

q
N, (2.44)

BN (µµµ) =

Qb∑
q=1

θ
q
b
(µ)Bq

N, (2.45)

f1N(µµµ) =

Q f1∑
q=1

θ
q
f1
(µ)f1N

q . (2.46)

f2N(µµµ) =

Q f2∑
q=1

θ
q
f2
(µ)f2N

q . (2.47)

This allows us to efficiently assemble the RB solution matrices DN (µµµ) and BN (µµµ)
and the RB right hand side vectors f1N(µµµ) and f2N(µµµ) during the online stage of our
computations. This is done by precomputing all the following matrices and vectors during
the offline stage

Dq
N = V>u Dq

h
Vu, 1 ≤ q ≤ Qa, (2.48)

Bq
N = V>p Bq

h
Vu, 1 ≤ q ≤ Qb, (2.49)

f1N
q = V>u f1h

q, 1 ≤ q ≤ Q f1, (2.50)
f2N

q = V>u f2h
q, 1 ≤ q ≤ Q f2, (2.51)

— which in fact is possible as they are parameter independent — and computing the sums
in equations (2.44) - (2.47).

The offline stage of the computations includes equations (2.40) - (2.43). As well we
must assemble thematrices and vectors in equation (2.39) and solve the high-fidelity system
in equation (2.12), which are all (Nh +Mh) - dependent. We solve the high-fidelity system
ns times creating ns snapshots in order to construct the transformation matrices Vu and Vp

by equation (2.63) which is also (Nh + Mh) - dependent. In addition we precompute the
parameter independent matrices and vectors in equations (2.48) - (2.51), which are also
(Nh + Mh) - dependent.

The online stage of the computations consists of assembling the RB matrices and RB
right hand side vectors given by equations (2.44) - (2.47). It also requires solving the RB
linear system in equation (2.25) which are (Nu + Np)-dependent, but more importantly
(Nh + Mh)-independent which is the reason why RB methods are so efficient compared to
FEM methods for Nu � Nh and Np � Mh .

2.6 Singular Value Decomposition
We briefely introduce the singular value decomposition, SVD. For a further discussion see
[58]. For a real matrix A ∈ Rm×n with rank r ≤ min(m, n) we diagonalize A into

A = UΣZ>, (2.52)
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where the orthogonal matrices

U = [ξ1ξ1ξ1 | . . . |ξmξmξm] ∈ R
m×m Z = [ψ1ψ1ψ1 | . . . |ψnψnψn] ∈ R

n×n, (2.53)

holds the left and right singular vectors of A respectively. The matrix

Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rm×n, σ1 ≥ · · · ≥ σr > 0 (2.54)

contains the non-zero singular values of matrix A, with r ≤ min(m, n). The column vectors
of U and Z are the eigenvectors of AA> and A>A respectively. This is due to the fact that
AA> and A>A are symmetric. To make this somewhat clearer we can by the SVD (2.52)
compute the following

AA> = UΣZ>(UΣZ>)> = UΣΣ>U>, (2.55)

where
ΣΣ
> = Σ2 = diag(σ2

1 , . . . , σ
2
r , 0, . . . , 0), (2.56)

Since Z>Z = I. As AA> is symmetric, the left singular vectors of A are the eigenvectors
of AA>. The same holds for A>A regarding the right singular vectors of A. σ2

1 , . . . , σ
2
r are

the eigenvalues of AA> and A>A.

Remark 2.6.1. Worth noting is that for a symmetric matrix K ∈ Rm×m there is a close
relationship between eigenvalues and singular values as σi(K) = |λi(K)|, with λ1(K) ≥
λ2(K) ≥ · · · ≥ λm(K) the eigenvalues of K and σi(K) is the i-th singular value of K . Also,
for a symmetric positive semi-definite matrix σi(K) = λi(K) [58].

Remark 2.6.2. Because of Remark 2.6.1 and the fact that for a matrix A with r positive
singular values rank(A) = rank(Σ) = r we know that rank(AA>) = rank(A>A) = rank(A) =
r .

The singular values of a matrix A ∈ Rm×n are related to the norm of the matrix,

‖A‖F =

√√
r∑
i=1

σ2
i , ‖A‖2 = σmax,

where ‖·‖F is the Frobenius norm. This relation between the singular values and the norm
means that the singular values capture the energy of its matrix. This could be exploited by
representing the matrix A by the best n rank approximation matrix An ∈ R

m×n

An =

n∑
i=1

σiξiξiξiψiψiψi
>. (2.57)

The best n rank matrix has its application in e.g. image compression [58, 49]. To get a
good understanding of how much energy of the matrix each singular values contains and
how many singular values to include, it is good practice to plot the singluar values of the
matrix.
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2.7 Proper Orthogonal Decomposition
Proper orthogonal decomposition (POD) is Principal Component Analysis (PCA) used in
mechanical engineering. We refer the interested reader to [33] for a closer discussion of the
PCA. POD finds application in reducing dimensionality of large datasets by transforming
the original variables to a new set of uncorrelated variables called POD modes [20]. The
aim is to save most of the energy from the original system in the first few POD modes. In
this section we will construct a POD basis corresponding to a set of snapshots and storing
the POD basis in a transformationmatrixV , equivalent to those used to obtain RB functions
in Section 2.5.

We start by choosing an appropriate set of parameters

Ξtrain = {µ1µ1µ1, . . . , µnsµnsµns }. (2.58)

This set is called a training set as it will be used to create a corresponding set of high-fidelity
solutions, used to train a reduced basis model to approximate the high-fidelity model. Let
us denote the corresponding set of high-fidelity solutions by

{uh(µ1µ1µ1), . . . , uh(µnsµnsµns )}

called snapshots, where uh(µiµiµi) ∈ Vh for 1 ≤ i ≤ ns . The high-fidelity solutions could for
example be solutions to the saddle-point problem in (2.7). Given a basis {φ j}

Nh

j=1 of a finite
dimensional space Vh , where dim(Vh) = Nh , we can write the snapshot functions uh(µiµiµi)
as

uh(µiµiµi) =
Nh∑
j=1
(uh(µiµiµi))j φ j, 1 ≤ i ≤ ns

where
uh
(i) = uh(µiµiµi) = [(uh(µiµiµi))1 , . . . , (uh(µiµiµi))Nh

]>, 1 ≤ i ≤ ns

are the snapshot vectors that represents the DoF of the snapshot functions. We save these
DoF vectors, hereby called snapshots, in a matrix

S = [u(1)h | . . . |u
(ns)
h ] ∈ R

Nh×ns ,

named the snapshot matrix.
Now let the symmetric positive semi-definite matrix Xh be associated with the V-inner

product, i.e.
(Xh)i j = (φi, φ j)V

Let W = [w1 | . . . |wN] ∈ R
Nh×N be an N-dimensional and orthonormal basis with respect

to the V-inner product. As the snapshots functions uh(µiµiµi) belong to Vh , we seek a POD
basis whichminimizes the squares of errormessured in the Xh-norm between each snapshot
ui
(i) and its Xh-orthogonal projection onto the subspace spanned by W , see [49] for details.

Then we denote the Xh-orthogonal projection of a snapshot u(i)h ∈ R
Nh onto the subspace

spanned by W by

PXh
w u(i)h =

N∑
j=1
(u(i)h ,wj)Xh

wj = WW>Xhu(i)h (2.59)
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As introduced in e.g. [36, 34, 49], the POD basis V is the only one N-dimensional and V-
orthonormal basis (orthonormal w.r.t. the V-inner product) of all possible N-dimensional
and V-orthonormal bases W that minimizes the sum of squares of error between all
snapshots u(i)h , 1 ≤ i ≤ ns and their projection PXh

w u(i)h onto span(W), i.e.

ns∑
i=1
‖u(i)h − VV>Xhu(i)h ‖

2
Xh
= min

W ∈Υ
Xh
N

ns∑
i=1
‖u(i)h −WW>Xhu(i)h ‖

2
Xh
, (2.60)

where ΥXh

N = {W ∈ R
Nh×N : W>XhW = IN } and the error is measured with respect to the

Xh-norm. The sum of squares of errors between each snapshot u(i)h and its Xh-orthogonal
projection measured in equation (2.60) is by [49] the same as the sum of the squares of the
eigenvalues of the neglected POD modes, that is

ns∑
i=1
‖u(i)h − VV>Xhu(i)h ‖

2
Xh
=

r∑
i=N+1

λi . (2.61)

As in e.g., [60, 34], we introduce the correlation matrix C with elements being the
V−inner-product between the different snapshot functions uh(µiµiµi), i.e.

(C)i j = (uh(µiµiµi), uh(µjµjµj))V, 1 ≤ i, j ≤ ns . (2.62)

Remark 2.7.1. As stated in [36], the correlation matrix C is symmetric positive semi-
definite and has rank r given by the dimension of the span of the snapshot functions, i.e.
r = dim

(
span

{
uh(µ1µ1µ1), . . . , uh(µnsµnsµns )

})
.

C is the key to construct the POD basis. Let λ1 ≥, . . . , ≥ λr > 0 denote the positive
eigenvalues of C. Now we can construct a POD basis V = [ξ1ξ1ξ1 | . . . |ξNξNξN ] ∈ R

Nh×N where
N ≤ r . By choosing the N largest eigenvalues of C and its corresponding eigenvectors
ψ1ψ1ψ1, . . . , ψNψNψN we have that

ξiξiξi =
1
√
λi

Nh∑
j=1
(ψiψiψi)juj =

1
√
λi

Sψiψiψi 1 ≤ i ≤ N . (2.63)

The POD basis is orthonormal with respect to the V-inner product by construction.

2.7.1 Orthonormality of the reduced basis
We want to show that the POD basis V is orthonormal with respect to the V-inner product
and hence so is also the RB functions φrbi for i = 1, . . . , N given in equation (2.26).

Proof. We start by the V-inner product of our RB functions φrbi(
φrbi , φ

rb
j

)
V
=

(
Nh∑
k=1
(ξiξiξi)kφk,

Nh∑
l=1
(ξjξjξj)lφl

)
V

=

Nh∑
k=1

Nh∑
l=1
(ξiξiξi)k (φk, φl)V (ξjξjξj)l

= ξiξiξi
>Xhξjξjξj,

(2.64)
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where {φi}Nh

i=1 are the basis functions of Vh and ξiξiξi for i = 1, . . . , N are the column vectors
of the transformation matrix V . Studying the correlation matrix C we see that

(C)i j =
(
uh(µiµiµi), uh(µjµjµj)

)
V =

(
Nh∑
k=1

(
u(i)h

)
k
φk,

Nh∑
l=1

(
u(j)h

)
l
φl

)
V

=

Nh∑
k=1

Nh∑
l=1

(
u(i)h

)
k
(φk, φl)V

(
u(j)h

)
l
, 1 ≤ i, j ≤ ns

C =S>XhS.

(2.65)

Now, we can rewrite equation (2.64) by using the POD basis in equation (2.63) and the
correlation matrix in equation (2.62)

ξiξiξi
>Xhξjξjξj =

1
√
λi
(Sψψψi)

> Xh
1√
λj

(
Sψψψ j

)
=

1√
λiλj

ψψψ>i S>XhSψψψ j =
1√
λiλj

ψψψ>i Cψψψ j . (2.66)

As the correlation matrix C is symmetric positive semi-definite as stated in Remark
2.7.1, it has a eigenvalue decomposition

C = QΛQ>, Q = [ψψψ1 | . . . |ψψψns ] Λ = diag(λ1, . . . , λr, 0, . . . , 0),

with the same positive eigenvalues and the same eigenvectors as given in equation (2.63) and
r = rank(C). SinceC is symmetric positive semi-definite, its eigenvectors are orthonormal,
i.e. ψiψiψi>ψjψjψj = δi j , where δi j is the Kronecker Delta function. Taking advantage of this,
equation (2.66) now gives us

ξiξiξi
>Xhξjξjξj =

1√
λiλj

ψψψ>i Cψψψ j =
1√
λiλj

ψψψ>i QΛQ>ψψψ j

=
1√
λiλj

e>i Λej =
λi√
λiλj

δi j = δi j,

where ei is the i-th unit vector. Hence it follows that the RB functions are orthonormal
with respect to the V-inner product and so is the POD basis V

V>XhV = IN,

IN ∈ RN×N is the identity matrix. �

2.7.2 POD basis minimizing the ‖·‖2 norm
In [34] Hesthaven compares the relation between the SVD and POD. This is done by
changing the V-inner product in equation (2.62) with the Eucledian inner-product between
the vectors ui and uj for i, j = 1, . . . , Nh , that is the vectors of the degrees of freedom for
the corresponding snapshot functions uh(µiµiµi) and uh(µjµjµj). Then, as stated in [49], the POD
basis will minimize the ‖·‖2-norm. Hence the elements of the correlation matrix C given
in equation (2.65) would be

C = S>S (2.67)
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From Remark 2.7.1 we know thatC is symmetric positive semi-definite, and we know from
Remark 2.6.1 that its eigenvalues are the same as its singular values, i.e. λi(C) = σi(C)
for i = 1, . . . , r . Hence choosing the N largest eigenvalues of C when constructing the
POD basis in equation (2.63) is equivalent to choosing the N largest singular values of C.
As discussed in Section 2.6, these values capture as much of the energy of the correlation
matrix C as possible.

Looking at the SVD of the snapshot matrix S = UΣZ where U and Z are given in
equation (2.53) and Σ is given in equation (2.54), we must have that

Sψiψiψi = σiξiξiξi

and
C = S>S = (UΣZ)> (UΣZ) = Z>Σ>ΣZ = Z>Σ2Z . (2.68)

As discussed in Section 2.6, we now see that the right singular vectors ψiψiψi, i = 1, . . . , ns of
S also are the eigenvectors of C as

Cψiψiψi = S>Sψiψiψi = σ2
i ψiψiψi,

with eigenvalues λi = σ2
i . Hence the POD basis given by (2.63) is in fact just the left

singular vectors of S
1
√
λi

Sψiψiψi =
1
σi
σiξiξiξi = ξiξiξi 1 ≤ i ≤ N .

Since we are changing theV-inner product in equation (2.62) with the Eucledian inner-
product between the vectors ui and uj for i, j = 1, . . . , Nh , we have that the POD basis V is
an N dimensional orthonormal basis, i.e. V>V = IN .

Proof. As C = S>S gives V = [ξ1ξ1ξ1 | . . . |ξNξNξN ] we begin by the Eucledian inner product
between the POD basis functions

ξ>iξ
>
iξ
>
i ξjξjξj =

1
σi
(Sψiψiψi)>

1
σj

Sψjψjψj =
1

σiσj
ψiψiψi
>S>Sψjψjψj =

1
σiσj

ψiψiψi
>Cψjψjψj (2.69)

If we insert the SVD of C from equation (2.68) into equation (2.69) where Z holds the
orthonormal eigenvectors ψiψiψi for i = 1, . . . , ns of the correlation matrix, we get

ξ>iξ
>
iξ
>
i ξjξjξj =

1
σiσj

ψiψiψi
>Cψjψjψj =

1
σiσj

ψiψiψi
>ZΣ2Z>ψjψjψj =

1
σiσj

ei
>
Σ

2ej =
σ2
i

σiσj
δi j = δi j

V>V = IN

�

The POD basisV obtained by the correlation matrix in (2.67) minimizes the ‖·‖2−norm
of the sum of squares of error between the snapshots u(i)h and their projection onto span(V)
in equation (2.60), i.e.

ns∑
i=1
‖u(i)h − VV>u(i)h ‖

2
2 = min

W ∈ΥN

ns∑
i=1
‖u(i)h −WW>u(i)h ‖

2
2, (2.70)
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whereW ∈ ΥN = {W ∈ RNh×N : W>W = IN } is the set of all N−dimensional orthonormal
bases. Recalling the best n approximation matrix of a matrix (2.57), the best rank N matrix
approximation SN of S is given by

SN =

N∑
i=1

σiξiξiξiψiψiψi
> =

N∑
i=1

σiξiξiξi
1
σi

(
S>ξiξiξi

)>
=

N∑
i=1

ξiξiξi
(
ξiξiξi
>S

)
= VV>S

where we have used a property from the SVD of S, S>ξiξiξi = σiψiψiψi . This again coincides with
the fact that the POD basis tries to represent most of the energy from the snapshots, and it
does so by minimizing the squares of errors of the difference between each snapshot u(i)h
and the best n rank matrix approximation SN of the set of all snapshots. Also this could be
used to prove the proposition 6.1 from [49] which states that the error in equation (2.70) is
the same as the sum of squares of the singluar values of the neglected POD modes

ns∑
i=1
‖u(i)h − VV>u(i)h ‖

2
2 = min

W ∈ΥN

ns∑
i=1
‖u(i)h −WW>u(i)h ‖

2
2 =

r∑
i=N+1

σ2
i , (2.71)

where N still is the number of chosen eigenvalues in equation (2.63) and r = rank(S).

Remark 2.7.2. By choosing S̃ = X1/2
h

S and inserting instead of S in equation (2.67) we
get

C = S̃>S̃ = S>XhS

such that the SVD yields the same results as the POD method introduced in the previous
chapter. We still need to use S and not S̃ to construct the POD basis if we want to use this
method.

2.7.3 Choosing the right dimension
The goal is to choose as few POD bases, also called POD modes, as possible while still
keeping a good enough approximation of the original data set. The approximation is often
measured by the relative information content, used in e.g. [25, 49] and defined as

I(N) =
∑N

i=1 λi∑r
i=1 λi

, (2.72)

where λi is the i’th eigenvalue of the correlation matrix C. As the eigenvalues of the
correlation matrix C describes the energy captured by the snapshots, I(N) provides us with
a method of how to choose N eigenvalues from the correlation matrix by choosing N as
the smallest number such that the energy captured by the last r − N POD modes is smaller
than or equal to some tolerance of our choice ε2

tol,

I(N) ≥ 1 − ε2
tol. (2.73)

As suggested by equations (2.61) and (2.71) the sum of the squares of the singular values
corresponding to the neglected POD modes is equal to the error in the POD basis. For
instance in the case for the ‖·‖2-norm the relative error between the snapshots stored in
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the matrix S and the approximation of these VV>S provided by the chosen POD basis V is
given as

‖S − VV>S‖F
‖S‖F

=

√√∑r
i=N+1 σ

2
i∑r

i=1 σ
2
i

= ε. (2.74)

The relative error in the above equation is related to the relative information content as

I(N) = 1 − ε2 =

∑r
i=1 σ

2
i −

∑r
i=N+1 σ

2
i∑r

i=1 σ
2
i

=

∑N
i=1 σ

2
i∑r

i=1 σ
2
i

=

∑N
i=1 λ

2
i∑r

i=1 λi
.

Then the requirement in equation (2.73) is the same as requiring the relative error of the
POD approximation in equation (2.74) to be smaller than or equal to εtol

‖S − VV>S‖F
‖S‖F

≤ εtol .

2.8 Ensuring stability of the reduced saddle-point prob-
lem

In Section 2.5 we have introduced the Galerkin reduced basis formulation for a saddle-
point problem, equation (2.23), and showed how to obtain a reduced basis linear system,
equation (2.25). This is realized through the transformation matrices Vu and Vp which
we have learned how to construct by a POD method in Section 2.7. Still we have not
considered whether our reduced basis solutions will be stable or not. In order to build RB
spaces providing stable reduced basis solutions for the Galerkin RB saddle-point problem
a reduced inf-sup condition equivalent to the discrete inf-sup condition (2.16) must hold.

2.8.1 Reduced inf-sup condition
To obtain numerical stability, our goal is to avoid spurious modes and hence we must
require that there exists βN > 0 such that

βN (µµµ) inf
qN,0

sup
wN,0

qN
>BN (µµµ)wN

‖wN‖XN ‖qN‖QN

≥ βN ∀µµµ ∈ P. (2.75)

Even though the RB linear system in equation (2.25) is built on a POD basis from stable
high-fidelity solutions, this does not guarantee that the reduced inf-sup condition (2.75)
holds. Hence instead of solving the RB linear system (2.25), we should enrich the space
XN such that the condition (2.75) holds. Then instead of XN we define the space X̃N with
dimension Nu + Ns such that

X̃N = span{φrb1 , . . . , φrbNp
, χrb1 , . . . , χrbNs

}.

A function wN (µµµ) belonging to X̃N is written in terms of its basis as

wN (µµµ) =

Nu∑
i=1

wN (µµµ)
(i)φrbi +

Ns∑
j=1

sN (µµµ)(j) χrbj ∈ X̃N,

36



where the vector wN = [wN (µµµ)
(1), . . . ,wN (µµµ)

(Nu ), sN (µµµ)(1), . . . , sN (µµµ)(Ns )]> ∈ RNu+Ns

holds the reduced basis coefficients of the function wN (µµµ).

2.8.2 Enrichment procedures
There are two possible choices for enrichment of the space X̃N . The first possibility is to
solve equation (2.19) choosing qh = ξiξiξi for i = 1, . . . , Np , that is all the POD bases stored in
Vp = [ξ1ξ1ξ1 | . . . |ξNp

ξNpξNp ]
> and storing all solutions th

µµµ(ξiξiξi) in a supremizer transformation matrix
Vs = Vs(µµµ) that is

Vs = X−1
h,xB>h (µµµ)Vp .

In [8] the authors suggests that the set inVs should be orthonormalizedwith aGram-Schimdt
procedure while the authors in [49] does not.

This solution is, as we see, parameter-dependent and hence not optimal as it must be
done during the online stage and the matrix multiplications are Nh and Mh dependent. On
the other hand it is still interesting as it provides a Galerkin reduced basis solution that is
inf-sup stable, meaning that condition (2.75) holds. See e.g. [8, 49] for the proof of this.
We will move on to the next possibility as this is the interesting case for the numerical
computations.

Recalling the notion of the training set in equation (2.58), the second possibility is to
make an approximate supremizer enrichment depending only on the parameter training set
such that the entire enrichment can be done during the offline step. This is done by creating
a supremizer snapshot matrix for the parameter training set Ξtrain = {µ1µ1µ1, . . . , µnsµnsµns }. For
all training parameters we solve the linear system (2.19) and we define the supremizer
snapshot matrix

Ss = [th
µ1µ1µ1 (ph(µ1µ1µ1))| . . . |th

µnsµnsµns (ph(µnsµnsµns ))].

Then we compute a POD basis from the correlation matrix

Cs = S>s Xh,xSs,

and store Ns < ns POD modes in the supremizer transformation matrix Vs ∈ R
Nh×Ns .

Finally we define the new transformation matrix Ṽu = [Vu Vs] ∈ R
Nh×(Nu+Ns ) and the

reduced matrices and vectors in equation (2.25) becomes

DN (µµµ) = Ṽ>u Dh(µµµ)Ṽu =

[
V>u Dh(µµµ)Vu V>u Dh(µµµ)Vs

V>s Dh(µµµ)Vu V>s Dh(µµµ)Vs

]
∈ R(Nu+Ns )×(Nu+Ns ), (2.76)

BN (µµµ) = V>p Bh(µµµ)Ṽu =
[
V>p Bh(µµµ)Vu V>p Bh(µµµ)Vs

]
∈ RNp×(Nu+Ns ), (2.77)

f1N(µµµ) = Ṽ>u f1h(µµµ) =

[
V>u f1h(µµµ)
V>s f1h(µµµ)

]
∈ RNu+Ns , (2.78)

f2N(µµµ) = V>p f2h(µµµ) ∈ R
Np . (2.79)
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Chapter 3
FEM solutions of the Stokes
Equations

The foundation of a reduced basis solver is a set of high-fidelity solutions, called snapshots,
produced from a numerical solver e.g. a finite element solver or a finite volume solver. In
this chapter we study the solutions of a finite element solver for the steady Stokes equations
[14]. The steady Stokes equations describe an incompressible viscous fluid where viscous
forces are dominant and convective forces are neglected. This is a simplification of the
Navier-Stokes equations that is acceptable for low Reynolds numbers, that is Re� 1 [48].
This happens when dealing with a very viscous liquid or flows of very low velocity, also
known as creeping flows.

TheReynolds number (Re) is a dimensionless valuemeasuring the ratio between inertial
and viscous forces describing whether the flow is laminar or turbulent. Low Re indicates a
viscous creeping flow, moderate Re indicates laminar flow and high Re indicates turbulent
flow. The Reynolds number is defined as

Re =
ρUL
µ
=

UL
ν
, (3.1)

whereU and L are a characteristic velocity and length measures for the flow. The kinematic
viscosity ν = µ/ρ is the ratio between the viscosity µ and the mass density ρ. The material
property µ describes the viscosity of a fluid, high values of µmeans a thick fluid. Whereas
thick fluids also have high kinematic viscosity ν so does in fact gasses because of low mass
density ρ. See [63] for further details on the viscosity and kinematic viscosity.

3.1 The Stokes equation
It is possible to describe the motion of an incompressible, steady viscous fluid by the steady
Stokes equation [14]. The steady Stokes equations are a simplification of the Navier-Stokes
equations where the convective term is neglected due to low Reynolds numbers. This is a
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simplification that is possible for Re� 1, see [48]. We study a 2D domain Ω ⊂ R2 with a
boundary ∂Ω = ΓD ∪ ΓN . The Stokes equation is given by

−ν∇2u + ∇p = f in Ω,
div u = 0 in Ω,

u = g(x) on ΓD,
−pn̂ + ν(∇u)n̂ = h(x) on ΓN,

(3.2)

where u and p represent the velocity field and the pressure field respectively and ν is the
constant kinematic viscosity. f is some forcing term and g(x) is the prescribed velocity on
the Dirichlet boundary ΓD . h(x) describes the forces acting on the Neumann boundary
ΓN . The first equation in (3.2) describes the conservation of the linear momentum of the
fluid whereas the second equation describes the mass conservation of the fluid [49].

The first two examples we look at will be parameter-independent hence for simplicity
we have omitted the parameter-dependent notation for the solutions instead of the notation
(u(µµµ), p(µµµ)) introduced in 2 we start of by the notation (u, p). We will go back to the
parametric dependency notation in Section 4.1.

3.1.1 Weak formulation

As pointed out in Chapter 2, the Stokes equations can be cast in the weak form of the
saddle-point problem as in equation (2.1). To do so, we start by defining the space X from
equation (2.1) and denote it instead by V. V is named the velocity space and it is a Hilbert
space such that u ∈ V. We also define the Hilbert space Q such that p ∈ Q naming it the
pressure space. To derive the weak form, we multiply both equations in (3.2) with each
their proper test function and integrate over the domain Ω.

First, multiply the first equation in (3.2) by a test function v ∈ V and integrate over the
domain Ω ∫

Ω

−ν(∇2u)v dΩ +
∫

Ω
∇p · v dΩ =

∫
Ω

f · v dΩ. (3.3)

First we look at the integrals on the left hand side in equation (3.3). By the chain rule
we get∫

Ω

−ν(∇2u)v dΩ +
∫

Ω
∇p · v dΩ =

∫
Ω

ν∇u : ∇v dΩ −
∫

Ω
ν∇ · (∇uv) dΩ

+

∫
Ω

∇ · (pv) dΩ −
∫

Ω
p∇ · v dΩ

(3.4)

If we take the second and third integral on the right hand side in equation (3.4), then by
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applying Greens formula [2] we get∫
Ω

∇ · (pv) dΩ −
∫

Ω
ν∇ · (∇uv) dΩ =

∫
∂Ω
(pv) · n̂ dΓ −

∫
∂Ω
νv · (∇u)n̂ dΓ

=

∫
∂Ω

v · (pn̂ − ν(∇u)n̂) dΓ

=

∫
ΓD

v · (pn̂ − ν(∇u)n̂) dΓ +
∫

ΓN

v · (pn̂ − ν(∇u)n̂) dΓ

= 0 −
∫
ΓN

h · v dΓ.

(3.5)

In the last line we inserted the boundary conditions from (3.2) and used that v|ΓD = 0.
Using equations (3.4) and (3.5) we can write equation (3.3) as∫

Ω

ν∇u : ∇v dΩ −
∫

Ω
p∇ · v dΩ =

∫
Ω

f · v dΩ +
∫

ΓN

h · v dΓ =: f(v). (3.6)

Upon defining u = ů + rg, where rg is a lifting function such that rg |ΓD = g(x), then
equation (3.6) can also be written in the abstract form

a(ů, v) + b(v, p) = f (v) − a(rg, v). (3.7)

Here the bilinear and symmetric form a : V × V→ R is

a(ů, v) =
∫
Ω

ν∇ů : ∇v dΩ. (3.8)

The bilinear form b : V × Q→ R is

b(v, p) = −
∫
Ω

p∇ · v dΩ. (3.9)

The linear functional f ∈ V′ is

f (v) =
∫
Ω

f · v dΩ +
∫

ΓN

h · v dΓ. (3.10)

We define the right hand side of equation (3.7) as a linear functional f ∈ V′ such that

f1(v) := f (v) − a(rg, v) =
∫
Ω

f · v dΩ +
∫

ΓN

h · v dΓ −
∫

Ω
ν∇rg : ∇v dΩ. (3.11)

Notice that a(ů, v) + a(rg, v) = a(ů + rg, v) = a(u, v) =
∫
Ω
ν∇u : ∇v dΩ.

Second, multiply the second equation in (3.2) by a test function q ∈ Q and integrate
over the domain Ω ∫

Ω

q∇ · u dΩ = 0 (3.12)
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As for the first equation, we write the solution as a sum of the homogeneous solution and
a lifting function u = ů + rg, where rg is such that rg |ΓD = g(x). Then we write equation
(3.12) in the abstract form

b(ů, q) = −b(rg, q), (3.13)

where upon we define the linear functional f2 ∈ Q′ such that

f2(q) = −b(rg, q). (3.14)

From now on we write u instead of ů and we define the velocity space to be the 2D Hilbert
space V = [H1

ΓD
(Ω)]2 and the pressure space to be the space of all square integrable

functions Q = L2(Ω). The weak formulation of the problem (3.2) is given by: find
(u, p) ∈ V × Q such that

a(u, v) + b(v, p) = f1(v), ∀v ∈ V
b(u, q) = f2(q) ∀q ∈ Q,

(3.15)

and the solution of problem (3.2) is obtained as the sum u + rg. By changing the bilinear
form d(·, ·) with a(·, ·) in equation (2.1) we see that it is the same weak formulation as in
equation (3.15) (without the µµµ-dependency and the change of spaces of course).

The existence of a unique solution of problem (3.15) is proved by showing that the
following conditions holds [48]
First we require the bilinear forms a(·, ·) and b(·, ·) to be continuous, equivalent to what we
did in equation (2.3). there exists two constants γa, γb > 0 such that

|a(v,w)| ≤ γa‖v‖V‖w‖V, |b(w, q)| ≤ γb ‖w‖V‖q‖Q ∀v,w ∈ V, ∀q ∈ Q. (3.16)

Second we require the bilinear form a(·, ·) to be coercive on the space V0, that is there
exist a constant α > 0 such that

a(v, v) > α‖v‖2V ∀v ∈ V0, (3.17)

where V0 = {v ∈ V : b(v, q) = 0 ∀q ∈ Q}.
Third we require that the bilinear form b(·, ·) satisfies the LBB-condition (2.5).

3.1.2 Galerkin approximation
To obtain a numerical approximation of the weak formulation in equation (3.15), we need to
project the original infinite problem onto a finite-dimensional subspace. We approximate
the infinite space V by a finite dimensional subspace denoted Vh = [Ṽh]

2, and similar for
the infinite space Q we approximate it by a finite dimensional subspace denoted Qh . Let
the dimensions of the two approximation spaces be dim(Vh) = Nh = 2 dim(Ṽh) = 2Ñh and
dim(Qh) = Mh. Then the Galerkin approximation of the weak formulation (3.15) reads:
find (uh, ph) ∈ Vh × Qh such that

a(uh, vh) + b(vh, ph) = f1(vh), ∀vh ∈ Vh

b(uh, qh) = f2(qh) ∀qh ∈ Qh,
(3.18)

42



where the bilinear forms a(·, ·), b(·, ·) are the same as given in equations (3.8) and (3.9).
The linear forms f1(·), f2(·) are the same as in equations (3.11) and (3.14).

Let {φiφiφi}Nh

i=1 denote a basis for Vh such that {φ1φ1φ1, · · · , φÑh
φÑh
φÑh

, φÑh+1φÑh+1φÑh+1, · · · , φNh
φNhφNh
} = {

[
φ1
0

]
,

· · · ,
[
φÑh

0

]
,
[ 0
φ1

]
, · · · ,

[
0

φÑh

]
} where {φi}Ñh

i=1 denotes a basis for Ṽh . Finally, let {ψi}Mh

i=1
denote a basis for Qh .

We set the Galerkin solutions of problem (3.18) as

uh =

Nh∑
j=1

w
(j)
h
φ jφ jφ j ph =

Mh∑
k=1

p(k)
h
ψk (3.19)

where the vectors wh and ph hold the unknown coefficients w
(j)
h

and p(i)
h
. As equation

(3.18) holds for all functions vh and qh , we can choose the test functions vh = φiφiφi and
qh = ψi . Inserting these together with the formulations (3.19) into equation (3.18) we
obtain

a ©­«
Nh∑
j=1

w
(j)
h
φ jφ jφ j, φiφiφi

ª®¬ + b

(
φiφiφi,

Mh∑
i=k

p(k)
h
ψk

)
= f1(φiφiφi), for i = 1, . . . , Nh,

Nh∑
j=1

a
(
φ jφ jφ j, φiφiφi

)
w
(j)
h
+

Mh∑
k=1

b (φiφiφi, ψk) p
(k)
h
= f1(φiφiφi), for i = 1, . . . , Nh,

Ahwh + B>h ph = f1,

(3.20)

and

b ©­«
Nh∑
j=1

w
(j)
h
φ jφ jφ j, ψi

ª®¬ = f2(ψi) for i = 1, . . . , Mh,

Nh∑
j=1

b(φ jφ jφ j, ψi)w
(j)
h
= f2(ψi) for i = 1, . . . , Mh,

Bhwh = f2.

(3.21)

The elements of the matrix A are given as

(Ah)kl =



a
( [ φ j

0
]
,
[
φi

0
] )
= ν

∑1
l=0

∫
Ω
φi,xlφ j,xl dΩ 1 ≤ i, j ≤ Ñh, k = i, l = j

a
( [ φ j

0
]
,
[ 0
φi

] )
= 0 1 ≤ i, j ≤ Ñh, k = i + Ñh, l = j

a
( [ 0

φ j

]
,
[
φi

0
] )
= 0 1 ≤ i, j ≤ Ñh, k = i, l = j + Ñh

a
( [ 0

φ j

]
,
[ 0
φi

] )
= a

( [ φ j

0
]
,
[
φi

0
] )

1 ≤ i, j ≤ Ñh, k = i + Ñh, l = j + Ñh

,

(3.22)
that is A is a block matrix of the form

Ah =

[
Ah1 0
0 Ah1,

]
. (3.23)
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where
(Ah1)i j = ν

∫
Ω

φi,x0φ j,x0 + φi,x1φ j,x1 dΩ 1 ≤ i, j ≤ Ñh. (3.24)

The elements of the matrix Bh are given as

(Bh)il =


b
( [ φ j

0
]
, ψi

)
= Bh1 = −

∫
Ω
φ j,x0ψi dΩ 1 ≤ i ≤ Mh, 1 ≤ j ≤ Ñh, l = j

b
( [ 0

φ j

]
, ψi

)
= Bh2 = −

∫
Ω
φ j,x1ψi dΩ 1 ≤ i ≤ Mh, 1 ≤ j ≤ Ñh, l = j + Ñh

,

(3.25)
that is Bh is a matrix of the form

Bh =
[

Bh1 Bh2
]
. (3.26)

To write the elements of fh1 in equation (3.20) and the elements of fh2 in equation (3.21)
explicitly, we first denote the discretization of the lifting function rg by ug =

∑Nh

i=1 w
(i)
g φiφiφi

where wg ∈ R
Nh holds the known coefficients of the discrete lifting function. wg can

also be written as a concatenation of the two vectors wg1 ∈ R
Ñh and wg2 ∈ R

Ñh such
that wg =

[ wg1
wg2

]
. Here wg1 is the coefficients associated with the basis functions φiφiφi

for 1 ≤ i ≤ Ñh and wg2 is the coefficients associated with the basis functions φiφiφi for
Ñh + 1 ≤ i ≤ 2Ñh holding the x− and y−coordinates of the discrete lifting function
respectively. The elements of the vector fh1 are given as

(fh1)j =


f1

( [
φi

0
] )
=

∫
Ω
(f)1φi dΩ +

∫
ΓN
(h)1φi dΓ − (Ah1wg1 )i 1 ≤ i ≤ Ñh, j = i,

f1
( [ 0

φi

] )
=

∫
Ω
(f)2φi dΩ +

∫
ΓN
(h)2φi dΓ − (Ah1wg2 )i 1 ≤ i ≤ Ñh, j = i + Ñh,

(3.27)
where (Ah1wgr )i is the i-th element of the vector (Ah1wgr ) for r = 1, 2. The elements of
the vector fh2 are given as

(fh2)i = f2 (ψi) = −(Bhwg)i 1 ≤ i ≤ Mh . (3.28)

By equation (3.20) and (3.21) we can write the Galerkin approximation (3.18) as the
linear system

[
Ah B>

h
Bh 0

]
︸       ︷︷       ︸

Kh

[
wh
ph

]
︸︷︷︸

Uh

=

[
fh1
fh2

]
︸︷︷︸

Fh

(3.29)

where the elements are as given before. This linear system is very similar to the one for the
saddle-point problem in equation (2.12). For the Galerkin problem (3.18) to have a unique
solution, three conditions must hold as for the Galerkin approximation of the saddle-point
problem (2.7).

First the bilinear forms a(·, ·) and b(·, ·) must be continuous, that is to satisfy the
continuity condition (3.16).
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Second the former bilinear form must satisfy a coercivity condtion equivalent to(2.15),
that is there exists a constant αh > 0 such that

a(vh, vh) > αh ‖vh‖
2
V ∀vh ∈ V

0
h,

where V0
h
= {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh .

Third, the bilinear form b(·, ·) must satisfy the discrete inf-sup condition (2.16).
The first two conditions are fairly easy to prove holding, but the last must be paid some

more attention. In the case where the inf-sup condition does not hold, we get spurious
modes, or spurious pressure modes as it is named for the Stokes problem, see Remark 2.2.2
for further details. By choosing inf-sup stable elements for the finite element spacesVh and
Qh , the inf-sup condition (2.16) holds and hence the linear system (3.29) is non-singular.
This we can see by the following.

By the coercivity of a(·, ·) the Ah matrix is nonsingular and from equation (3.20) we
have that

wh = A−1
h (fh1 − B>h ph). (3.30)

Inserting equation (3.30) into equation (3.21) we get that

BhA−1
h B>h = BhA−1

h fh1 − fh2. (3.31)

Then we have a unique solution (wh, ph) in the case where equation (3.31) admits a unique
solution. Since Ah is symmetric positive definite, we get a unique solution of equation
(3.31) when ker B>

h
= {0}. As shown by Quarteroni, this is equivalent to the discrete

inf-sup condition for the Galerkin approximation (3.18), [48].

3.2 Example 1: Verification on the unit square
To verify the FEM solver this thesis is built upon, we test it for some reference solution
on the unit square [0, 1] × [0, 1]. When choosing a reference solution, certain things must
be kept in mind. First of all we want a divergence free reference solution. White explains
how this is possible when deriving the velocity vector u = [ uv ] from a clever device such
as a stream function φ(x, y), see [63]. The velocity vector is then

u =
∂φ

∂y
y = −

∂φ

∂x
=⇒ ∇ · u =

∂u
∂x
+
∂v

∂y
=

∂2φ

∂x∂y
−

∂2φ

∂y∂x
= 0.

Also it is necessary to ensure the reference solution and the boundary conditions coincides.
Last but not least, it is important that we do not choose a pure polynomial as a reference
solution in which case the FEM solver would solve the problem exactly. If so, we would
not be able to check the convergence of the method.

To verify the logic of the FEM solver used for the Stokes equations we choose the
function

φ = x2(1 − x)2y2(1 − y)2exy, (3.32)

and we get the reference solution

u =

[
∂φ
∂y

−
∂φ
∂x

]
. (3.33)
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∂Ω = ΓD

Ω

x

y

Figure 3.1: Mesh of physical space with N × N = 30 × 30 elements and the whole boundary ∂Ω
being a homogeneous Dirichlet boundary.

Also, we choose the pressure to be given as p = exy . On the unit square Ω = [0, 1] × [0, 1],
the reference solution solves the steady Stokes problem (3.2) with homogeneous Dirichlet
boundary conditions, that is

−ν∇2u + ∇p = f in Ω,
div u = 0 in Ω,

u = 0 on ΓD,
(3.34)

where ΓD is the whole boundary of the unit square, see Figure 3.1.
The weak formulation of problem (3.34) is:

Find (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = f1(v), ∀v ∈ V
b(u, q) = 0 ∀q ∈ Q.

(3.35)

where V = [H1
0 (Ω)]

2 and Q = L2
0 (Ω). From theorem 15.2 in [48] we know that (u, p)

solves equation (3.35), if and only if, it is a saddle-point of the Lagrangian functional

L(v, q) =
1
2

a(v, v) + b(v, q) − f1(v)

where the pressure q plays the role of theLagrangemultiplier associatedwith the divergence-
free constraint in equation (3.35).

Compared to the problem (3.2) we see that problem (3.34) has no boundary conditions
for the pressure p, and hence the pressure is not uniquely defined for this case. To deal
with this, we require that the integral of the pressure p over the unit square Ω to be some
value C. For this particular example C will be the value

C =
∫ 1

0

∫ 1

0
exydxdy ≈ 1.3179.
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3.2.1 Galerkin high-fidelity approximation
We denote by uh and ph the Galerkin approximation of the velocity function u and the
pressure function p respectively. Let us approximate the velocity space V and pressure
space Q with the discrete spaces Vh = {v : v ◦ Φ ∈ S2,2

0,0 × S
2,2
0,0} and Qh = {q : q ◦ Φ ∈

S1,1
0,0} respectively. These spaces are inf-sup stable Taylor-Hood element spaces from

Section 2.2.3 and the mapping Φ is the mapping from the parameter space to the original
space defined in Section 2.2.4. We derive the Galerkin formulation of problem (3.34) by
multiplying each equation with each test function vh ∈ Vh and qh ∈ Qh respectively and
integrating over the domain Ω, while at the same time requiring the pressure integral to be
constant. The Galerkin problem reads: find (uh, ph) ∈ Vh × Qh such that

a(uh, vh) + b(vh, ph) = f1(vh), ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Qh .

(ph, 1)L2(Ω) = C,
(3.36)

where the bilinear forms a(·, ·), b(·, ·) are the same as given in equations (3.8) and (3.9).
The last equation is the extra condition on the pressure, (ph, 1)L2(Ω) =

∫
Ω

ph dΩ = C. The
linear form f1(·) is

f1(vh) =

∫
Ω

f · vh dΩ. (3.37)

If we proceed in the same manner as we did when we derived the linear systems (3.20) and
(3.21), we derive from equations (3.36) the linear system

Ah B>
h

0
Bh 0 L
0 L> 0



wh
ph
l

 =

fh1
0
C

 , (3.38)

where the elements of matrix Ah and Bh are given in equations (3.22) and (3.25) respec-
tively. The elements of vector L are

(L)i = (ψi, 1)L2(Ω) =

∫
Ω

ψi dΩ. (3.39)

The elements of the vector fh1 are

(fh1)j =


f1

( [
φi

0
] )
=

∫
Ω
(f)1φi dΩ 1 ≤ i ≤ Ñh, j = i

f1
( [ 0

φi

] )
=

∫
Ω
(f)2φi dΩ 1 ≤ i ≤ Ñh, j = i + Ñh

. (3.40)

In equation (3.38) the expression l appears and it is called the Lagrange multiplier. For a
further discussion on this Lagrangemultiplier, we refer the interested reader to e.g. [11, 47].

3.2.2 Solution and convergence
For the given reference solution (3.33) we can compute f from equation (3.34) and we
obtain an approximate solution (uh, ph) solving the linear system (3.38). As the spline
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(a) The exact velocity u. (b) The Galerkin approximated velocity uh

Figure 3.2: Velocity in the x-direction for problem (3.34) both exact and Galerkin approximation.

(a) The exact velocity v. (b) The Galerkin approximated velocity vh

Figure 3.3: Velocity in the y-direction for problem (3.34) both exact and Galerkin approximation.

spaces indicate, we solve the problem using splines of polynomial degree Pu = 2 for the
velocity basis and polynomial degree Pp = 1 for the pressure basis. We solve the problem
on a 30 × 30 elements grid resulting in Nh = 2 · Ñh = 2 · 3962 Mh = 961 degrees of
freedom (DoF). The exact and approximate solution of the velocity in the x-direction, the
y-direction and the pressure is shown in Figure 3.2, 3.3 and 3.4 respectively.

When considering the convergence of the provided steady Stokes FEM solver we should
have some sort of notion of what is optimal convergence. Given a domain Ω and a smooth
function f : Ω→ R2 we approximate f with the finite element solution fh belonging to a
finite element space Vh . then we obtain optimal convergence in L2(Ω) or equivalently Vh

is optimally convergent in L2(Ω) if

inf
fh ∈Vh

‖ fh − f ‖L2(Ω) = O(hs+1), (3.41)

where s is the polynomial degree of the finite element space Vh and h is the length of the
element. For further details see [12]. In Section 2.2.3 we state that the choice of inf-sup
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(a) The exact pressure p. (b) The Galerkin approximated pressure ph

Figure 3.4: Pressure for problem (3.34) both exact and Galerkin approximation.

(a) Error of velocity in x-direction measured in
the L2-norm.

(b) Error of velocity in y-direction measured in
the L2-norm.

Figure 3.5: Convergence plots for error between exact solution (u(x, y), v(x, y)) and high-fidelity
approximation (uh(x, y), vh(x, y)). N is the element size in each spatial direction.
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Figure 3.6: Convergence plot for error between exact solution p(x, y) and high-fidelity approximation
ph(x, y) measured in the L2-norm. N is the element size in each spatial direction.

Table 3.1: Nh = 2 · Ñh degrees of freedom for the velocity field for different polynomial degrees
and grid partitioning used in the convergence plot 3.5.

(Pu,Pp )

N×N
(2,1) (3,2) (4,3)

4 × 4 124 324 620
8 × 8 532 1348 2548
16 × 16 2212 5508 10340
32 × 32 9028 22276 41668
64 × 64 36484 89604 167300

stable Taylor-Hood elements gives optimal convergence. In figures 3.5 and 3.6 we verify
optimal convergence numerically though only in the sense of the L2-norm for both velocity
and pressure. Because of the awful expressions of the velocity reference solution (3.33)
when measured in the H1-norm, this is done for mere simplicity.

The polynomial degrees Pu and Pp for the spline basis functions used to compute the
convergence in figures 3.5 and 3.6 together with the grid size and the resulting degrees of
freedom for both velocity and pressure is shown in Tables 3.1 and 3.2.

Table 3.2: Mh degrees of freedom for the pressure field for different polynomial degrees and grid
partitioning used in the convergence plot 3.6.

(Pu,Pp )

N×N
(2,1) (3,2) (4,3)

4 × 4 25 81 169
8 × 8 81 289 625
16 × 16 289 1089 2401
32 × 32 1089 4225 9409
64 × 64 4225 16641 37249
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3.3 Example 2: Stokes Flow around a NACA airfoil
We look at a more relevant example, namely Stokes flow around a NACA airfoil. Flow
simulations around objects of technical interest are under rapid evolution. Stokes flow
around aNACAairfoil is perhaps of little interest aswhen simulating flowaround airfoils the
transition from laminar to turbulent flow is an important part of quantifying the performance
of the airfoil measured by e.g. the lift and drag [26]. As laminar and turbulent flows means
high Reynolds numbers, flow simulations must be done using the Navier-Stokes equations,
not the steady Stokes equations. The Navier-Stokes equations are beyond the scope of this
thesis, simulations around a NACA airfoil using a Navier-Stokes solver can be found in e.g.
[46].

Nevertheless, we will study a steady Stokes flow around a NACA airfoil. The airfoil in
this example is of length 1 unit, where the length is measured as the length of the straight
line from the leading edge to the trailing edge of the airfoil. In this example the camber
is 4% of the chord, and the camber position is 60% of the chord. The thickness of the
airfoil is 20% of the chord. Hence the name of this airfoil is NACA 4620, see [3] for more
information on the NACA airfoil and the equations used to construct it.

We let the inflow struck the airfoil parallel with the chord choosing the Dirichlet
boundary ΓD1 as in Figure 3.7. On the Dirichlet boundary ΓD2 a no-slip boundary condition
is introduced. Let there be no forces on the rest of the boundary introducing a homogeneous
Neumann boundary ΓN . This problem is modelled by the steady Stokes equations (3.2).
Let g be the inflow velocity on the Dirichlet boundary ΓD1 . As there is no sinks or sources
f = 0 and the homogeneous Neumann condtion is h = 0. Summarized the steady Stokes
problem for this particular example reads

−ν∇2u + ∇p = 0 in Ω,
div u = 0 in Ω,

u = g on ΓD1,

u = 0 on ΓD2,

−pn̂ + ν(∇u)n̂ = 0 on ΓN,

(3.42)

In the introduction to this chapter the Reynolds number was given as Re = Ul
ν , whereU

is a characteristic velocity of the problem, l is a characteristic length and ν is the kinematic
viscosity. For the NACA airfoil the characteristic velocity is the inflow velocity g at the
Dirichlet boundary ΓD1 The characteristic length is the chord parallel to the stream, which is
the length of the straight line from the leading edge to the trailing edge of the NACA airfoil.
Without loss of generality, we choose ν = 1 and g =

[ 1
0
]
which gives a characteristic

velocity ofU = 1. As the characteristic length of the airfoil is the same as the chord length,
which is 1 unit, the Reynolds number is Re = 1.

Upon inserting f = 0 and h = 0 into equation (3.11) and ν = 1 into (3.8) we get
the weak formulation of problem (3.42) from equation (3.15). Choose the velocity space
V = [H1

0 (Ω)]
2 and the pressure space Q = L2

0 (Ω). The weak formulation reads:
Find (u, p) ∈ V × Q such that

a(u, v) + b(v, p) = −a(rg, v), ∀v ∈ V
b(u, q) = −b(rg, q) ∀q ∈ Q,

(3.43)
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ΓD1

ΓD2

ΓN

(a) Full view of Ω.

ΓD2

(b) Zoomed in on NACA airfoil.

Figure 3.7: NACA airfoil on a 15 × 15 grid displayed with its boundary ∂Ω = ΓD1
⋃
ΓD2

⋃
ΓN .

where rg ∈ H1(Ω) is a lifting function such that rg |ΓD1=1 ∧ rg |ΓD2
= 0. Then we obtain the

solution of the problem (3.42) as (u + rg, p) ∈ H1(Ω) × L2(Ω).

3.3.1 Galerkin high-fidelity approximation
To obtain numerical stable solutions, we choose Taylor-Hood finite element spaces as the
approximation spaces for both the velocity field and the pressure field. Therefore we
choose the discrete spaces Vh = {v : v ◦ Φ ∈ S2,2

0,0 × S
2,2
0,0} and Qh = {q : q ◦ Φ ∈ S1,1

0,0}
to approximate the velocity space and pressure space respectively. The map Φ is the
map from the parameter space to the original space defined in Section 2.2.4. We denote
by uh and ph the Galerkin approximation of the velocity function u and the pressure
function p respectively. Introducing the discrete approximation of the lifting function
as ug and inserting this together with the high-fidelity approximations (uh, ph) into the
weak formulation (3.43), we derive the Galerkin formulation of problem (3.42) as find
(uh, ph) ∈ Vh × Qh such that

a(uh, vh) + b(vh, ph) = −a(ug, vh), ∀vh ∈ Vh

b(uh, qh) = −b(ug, qh) ∀qh ∈ Qh .
(3.44)

Let {φiφiφi}Nh

i=1 denote a basis forVh and let {ψi}Mh

i=1 denote a basis forQh . Then we can express
the high-fidelity solutions (uh, ph) as uh =

∑Nh

j=1 w
(j)
h
φ jφ jφ j, and ph =

∑Mh

k=1 p(k)
h
ψk , where the

vectors wh and ph holds the unknown coefficients w(j)
h

and p(i)
h

associated with the degrees
of freedom of the high-fidelity solutions. The same holds for the lifting function which
can be expressed as ug =

∑Nh

j=1 w
(j)
g φ jφ jφ j with the coefficent vector wg holding the coefficients

w
(j)
g .
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If we proceed in the same manner as we did deriving the linear systems (3.20) and
(3.21) we derive from equations (3.44) the linear system[

Ah B>
h

Bh 0

] [
wh
ph

]
=

[
fh1
fh2

]
, (3.45)

where the elements of matrices Ah and Bh are given as

(Ah)i j = a(φ jφ jφ j, φiφiφi) =

∫
Ω

∇φ jφ jφ j : ∇φiφiφi dΩ, 1 ≤ i, j ≤ Nh.

(Bh)il = b(φlφlφl, ψi) = −
∫
Ω

ψi∇ · φlφlφl dΩ, 1 ≤ l ≤ Nh, 1 ≤ i ≤ Mh.

The elements of the vectors fh1 and fh2 are

(fh1)i = −(Ahwg)i, 1 ≤ i ≤ Nh .

(fh2)j = −(Bhwg)j, 1 ≤ j ≤ Mh .

Then the high-fidelity of the steady Stokes problem is obtained as

(

Nh∑
i=1
(w
(i)
h
+ w

(i)
g )φiφiφi,

Mh∑
j=1

p(j)
h
ψj)

.

3.3.2 Solutions and relative error
The linear system (3.45) is solved on a domain of 30 × 30 elements and with the given
polynomial spaces for the velocity basis and the pressure basis, this gives Nh = 2 · 3540
degrees of freedom for the velocity basis and Mh = 930 degrees of freedom for the pressure
basis. A high-fidelity velocity solution of problem (3.42) is found in figures 3.8 and 3.9.
In Figure 3.10 the velocity in both directions are illustrated as streamlines instead, and the
pressure is represented as the color map. We observe that the pressure is high in front of
the airfoil and low at the back, which seems reasonable.

(a) NACA airfoil from far out. (b) NACA airfoil close up.

Figure 3.8: Galerkin approximation of velocity in x-direction , uh , around a NACA airfoil. Solved
on a 30 × 30 grid.
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(a) NACA airfoil from far out. (b) NACA airfoil close up.

Figure 3.9: Galerkin approximation of velocity in y-direction , vh , around a NACA airfoil. Solved
on a 30 × 30 grid.

(a) NACA airfoil from far out. (b) NACA airfoil close up.

Figure 3.10: Galerkin approximation of velocity field uh and pressure ph around NACA airfoil.
Velocity field displayed as streamlines and pressure as colormap. Solved on a 30 × 30 grid.

In the previous example 3.2 we could verify the logic of the finite element solver
comparing the numerical solutions to the analytic reference solution. As we stand without
a reference solution for this example, we should still make some kind of verification of
the solver. We will use a method based on relative error. The idea is that the high-
fidelity solutions approximate the exact solutions with higher accuracy for finer grid. Then
computing a high-fidelity solution for a very fine grid we assume this solution to be
relatively close to the exact solution. If we then try to approximate this finest level solution
with solutions on finer and finer grids, but still coarser grids than the finest level, the
solutions for the coarser grids should converge towards the finest level solution.

Let us denote the solutions on the finest level grid by (uH, pH ). We measure the relative
error between the norms of the finest level solutions and the approximation on a coarser
grid relative to the norm of the finest level solutions. The velocity is measured in the H1-
seminorm and the pressure is measured in the L2-norm. Then the relative error between a
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(a) Relative error velocity field, polynomial de-
gree Pu = 2.

(b) Relative error pressure field, polynomial de-
gree Pu = 2.

Figure 3.11: Error between norms of the high-fidelity solutions (uh, ph) and the norms of the finest
level high-fidelity solutions (uH, pH ) relative to the norm of the finest level high-fidelity solutions.
Measured for finer and finer grids N × N . The finest level high-fidelity solutions are computed on
the finest grid 320 × 320.

high-fidelity solution (uh, ph) and the finest level solution (uH, pH ) is

| |uH |H1 − |uh |H1 |

|uH |H1

| ‖pH ‖L2 − ‖ph ‖L2 |

‖pH ‖L2
. (3.46)

As the finest level grid we choose a grid of 320 × 320 elements, which gives Nh =

2 · 409203 degrees of freedom for the velocity field and Mh = 102720 degrees of freedom
for the pressure field. The result of computing the relative error for increasing grid sizes
N × N is shown in Figure 3.11.
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Chapter 4
RB solutions of the Stokes
Equations

The reduced basis solver needs to be built upon a finite element solver approximating
the exact solution with a high enough accuracy. The key to a reduced basis solver is
to formulate the problem in such a way that all components can be written as affine
combinations. As discussed in [24] and also in Section 2.5.4, the affine combinations is
what makes the offline-online decomposition possible and reduced basis solvers attractive.
The offline-online decomposition can also be done for non-affine parametric dependence,
see e.g. [51]

As discussed in Section 2.5, it is required that the reduced basis solutions approximate
the exact solution within a desired accuracy. For the steady Stokes solutions (u(µµµ), ph(µµµ)) ∈
V × Q where the velocity space is the Hilbert space V = [H1(Ω)]2 and the pressure space
is the space L2(Ω), this accuracy is measured as

|u(µµµ) − uN(µµµ)|H1(Ω) + ‖p(µµµ) − pN (µµµ)‖L2(Ω) ≤ |u(µµµ) − uh(µµµ)|H1(Ω)

+‖p(µµµ) − ph(µµµ)‖L2(Ω) + |uh(µµµ) − uN(µµµ)|H1(Ω) + ‖ph(µµµ) − pN (µµµ)‖L2(Ω) ≤

|uh(µµµ) − uN(µµµ)|H1(Ω) + ‖ph(µµµ) − pN (µµµ)‖L2(Ω) + ε.

(4.1)

In equation (4.1) we require the high-fidelity solutions (uh(µµµ), ph(µµµ)) to approximate the
exact solutions (u(µµµ), p(µµµ)) within a desired accuracy ε. That is

|u(µµµ) − uh(µµµ)|H1(Ω) + ‖p(µµµ) − ph(µµµ)‖L2(Ω) ≤ ε (4.2)

4.1 A parametrized Galerkin formulation
Let us now consider the problem (3.2) upon a parameter-dependent domain Ω̃(µµµ) ∈ R2.
Let us put the parameters in a vector, and for now we will denote the parameter vector by
µµµ = (µ1, . . . , µp)

> ∈ P, where P denotes the parameter set. Let the parameter-dependent
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domain be such that it is obtained through a mapping FFF from a parameter-independent
domain Ω, i.e. x̃ = FFF (x; µgµgµg) which yields

Ω̃(µµµ) = FFF (Ω; µgµgµg) ∀µgµgµg ∈ P.
Here µgµgµg denotes the parameters that the domain depends on, called geometric parameters.
The solution now depends on geometric parameters µgµgµg, and we will also vary certain
physical parameters making the solution depend on some physical parameters µphµphµph . We
will from now on denote the parameters by µµµ, and it should be clear from the context what
parameter dependency is needed, physical, geometric or both.

The solution of the parameter-dependent problem will be given as (ũ(µµµ), p̃(µµµ)) =
(ũ(x̃; µµµ), p̃(x̃; µµµ)). Then the weak formulation of the parameter-dependent version of prob-
lem (3.2) reads: find (ũ(µµµ), p̃(µµµ)) ∈ Ṽ(µµµ) × Q̃(µµµ) such that

ã(ũ(µµµ), ṽ; µµµ) + b̃(ṽ, p̃(µµµ); µµµ) = f̃1(ṽ; µµµ), ∀ṽ ∈ Ṽ(µµµ)
b̃(ũ(µµµ), q̃; µµµ) = f̃2(q̃; µµµ) ∀q̃ ∈ Q̃(µµµ).

(4.3)

The bilinear forms ã(·, ·; µµµ) and b̃(·, ·; µµµ) are the same as in equation (3.8) and (3.9) and the
linear forms f̃1(·; µµµ) and f̃2(·; µµµ) are the same as in equation (3.11) and (3.14).

By means of the inverse mapping FFF −1(·; µµµ), we want to pull the problem set on the
parameter-dependent domain Ω̃(µµµ) back to the parameter-independent domain Ω. In order
for us to do so, we recall from Section 2.2.5 the Jacobian matrix JFFF(x; µµµ) ∈ R2×2 of the
map FFF (·; µµµ)

(JFFF(x; µµµ))i j =
∂(x̃)i
∂(x)j

(x) =
∂(FFF (x; µµµ))i

∂(x)j
(x).

Then we recall from Section 2.2.6 the change of variable formula for any integrable
function f̃ : Ω̃(µµµ) → R ∫

Ω̃(µµµ)
f̃ (x̃) dΩ̃ =

∫
Ω

f (x)|JFFF(x; µµµ)| dΩ,

where |JFFF(x; µµµ)| is the determinant of the Jacobian matrix and f = f̃ ◦ FFF . From the same
section we also recall the change of variable for derivatives

∇̃ f̃ (x̃) = (JFFF(x; µµµ))−>∇ f (x).

By this we are able to express the Galerkin formulation of the weak problem (4.3) on the
parameter-independent domain Ω as:
find (uh(µµµ), ph(µµµ)) = (uh(x; µµµ), ph(x; µµµ)) ∈ Vh × Qh such that

a(uh(µµµ), vh; µµµ) + b(vh, ph(µµµ); µµµ) = f1(vh; µµµ), ∀vh ∈ Vh

b(uh(µµµ), qh; µµµ) = f2(qh; µµµ) ∀qh ∈ Qh .
(4.4)

All forms are derived from the weak formulation (4.3). The derivation is shown in the
following.
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ã(ũh(µµµ), ṽh; µµµ) =
∫
Ω̃(µµµ)

ν∇̃ũh(µµµ) : ∇̃ṽh dΩ =∫
Ω

ν
(
(JFFF(x; µµµ))−>∇uh(µµµ)

)
: ((JFFF(x; µµµ))−>∇vh)|JFFF(x; µµµ)| dΩ

=: a(uh(µµµ), vh; µµµ),

(4.5)

here uh(µµµ) = uh(x; µµµ) = ũh(x̃; (µµµ)) = ũh(FFF (x; µµµ); (µµµ)), which for simplicity we will write
as uh(x) = ũh◦FFF (x) as the mere point is to show that uh(µµµ) and ũh(µµµ) are the same function
expressed in parameter-independent coordinates x and parameter-dependent coordinates
x̃ respectively. Similarily we have that vh(x) = ṽh ◦ FFF (x). Note that ∇ and ∇̃ are the
derivatives with respect to parameter-independent coordinates x and parameter-dependent
coordinates x̃ respectively.

b̃(ṽh, p̃h(µµµ); µµµ) = −
∫
Ω̃(µµµ)

p̃h(µµµ)∇̃ · ṽh dΩ =

−

∫
Ω

ph(µµµ)
(
(JFFF(x; µµµ))−>∇

)
· vh |JFFF(x; µµµ)| dΩ

=: b(vh, ph(µµµ); µµµ),

(4.6)

in the same fashion as for equation (4.5) we have ph(x) = p̃h ◦ FFF (x).

f̃1(ṽh; µµµ) =
∫
Ω̃(µµµ)

f̃(µµµ) · ṽh dΩ̃ +
∫

Γ̃N(µµµ)
h̃(µµµ) · ṽh dΓ̃ −

∫
Ω̃(µµµ)

ν∇̃ũg(µµµ) : ∇̃ṽh dΩ̃ =∫
Ω

f(µµµ) · vh |JFFF(x; µµµ)| dΩ +
∫

ΓN

h(µµµ) · vh |JFFF(x; µµµ)t̂| dΓ − a(ug(µµµ), vh; µµµ) =: f1(vh; µµµ)

(4.7)

f̃2(q̃h; µµµ) = −b̃(ũg(µµµ), q̃h; µµµ) =
−b(ug(µµµ), qh; µµµ) =: f2(qh; µµµ).

(4.8)

In the same manner as we did for the linear system (3.29), we can derive a parameter-
dependent linear system by inserting

uh(µµµ) =

Nh∑
j=1

wh(µµµ)
(j)φ jφ jφ j and ph(µµµ) =

Mh∑
k=1

ph(µµµ)(k)ψk

into the Galerkin weak formulation (4.4)[
Ah(µµµ) B>

h
(µµµ)

Bh(µµµ) 0

]
︸               ︷︷               ︸

Kh (µµµ)

[
wh(µµµ)
ph(µµµ)

]
︸   ︷︷   ︸

Uh(µµµ)

=

[
fh1(µµµ)
fh2(µµµ)

]
︸   ︷︷   ︸

Fh(µµµ)

.
(4.9)
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Note that by expressing the lifting function ug(µµµ) in the same manner as done earlier we
get ug(µµµ) =

∑Nh

i=1 wg(µµµ)
(i)φiφiφi . The elements of system (4.9) are then given in the following:

(Ah(µµµ))i j = a(φ jφ jφ j, φiφiφi; µµµ) 1 ≤ i, j ≤ Nh, (4.10)

where a(·, ·; µµµ) is the same bilinear form as in equation (4.5).

(Bh(µµµ))i j = b(φ jφ jφ j, ψi; µµµ) 1 ≤ i ≤ Mh, 1 ≤ j ≤ Nh, (4.11)

where b(·, ·; µµµ) is the same bilinear form as in equation (4.6).

(fh1(µµµ))i = f1(φiφiφi; µµµ) 1 ≤ i ≤ Nh, (4.12)

where f1(·; µµµ) is the same linear form as in equation (4.7).

(fh2(µµµ))i = f2(ψi; µµµ) 1 ≤ i ≤ Mh, (4.13)

where f2(·; µµµ) is the same linear form as in equation (4.8).

4.2 Example 3: NACA airfoil revisited

Now we revisit example 3.3 where we studied a Stokes flow around a NACA airfoil. It
could be interesting to study the flow around this NACA airfoil if we changed the shape of
it. More precisely we want to stretch and compress the airfoil in both x- and y-direction.
We name the scaling factors for x- and y-direction by µ1 and µ2 respectively. Also we
rotate the airfoil by an angle µ3. Figure 4.1 shows different geometry configurations. More
details on howwe do this scaling and rotation is presented in the next Section 4.2.1. Having
introduced a parameter-dependent domain Ω̃(µgµgµg) depending on the geometric parameters
µgµgµg = [µ1, µ2, µ3]

> we can express the steady Stokes problem from the previous example
3.3 on this parameter-dependent domain. Note that we will use the notation Ω̃(µµµ) instead of
Ω̃(µgµgµg) as discussed in the introduction to Chapter 2. The tilde notation is used to illustrate
that the problem is set on a parameter-dependent domain and the problem reads:

−µ4∇̃
2ũ(µµµ) + ∇̃p̃(µµµ) = 0 in Ω̃(µµµ),

div ũ(µµµ) = 0 in Ω̃(µµµ),
ũ(µµµ) = µ5g̃ on Γ̃D1 (µµµ),

ũ(µµµ) = 0 on Γ̃D2 (µµµ),

−p̃(µµµ)n̂ + ν(∇̃ũ)(µµµ)n̂ = 0 on Γ̃N (µµµ),

(4.14)

where g̃ is some function such that g̃|Γ̃D1 (µµµ)
= 1. In addition to parametrizing the compu-

tational domain we have introduced the parameter µ4 representing the kinematic viscosity
ν we used in the previous example. Also we have parametrized the velocity on the inflow
boundary Γ̃D1 (µµµ) by choosing the value µ5 for the inflow velocity.
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Γ̃D1 Γ̃N

Γ̃D2

x̃0

x̃1

(a) Parametrized NACA airfoil correspond-
ing to the reference geometric parameters
µgµgµg

re f = [1, 1, 0].

Γ̃D2

Γ̃NΓ̃D1

x̃0

x̃1

(b) Parametrized NACA airfoil correspond-
ing to the geometric parameters µgµgµg =

[5/3, 5/4, 0].

Γ̃D2

Γ̃NΓ̃D1

x̃0

x̃1

(c) Parametrized NACA airfoil corresponding to the geomet-
ric parameters µgµgµg = [1, 1, π/12].

Figure 4.1: The NACA airfoil computational domain Ω̃ corresponding to different geometric pa-
rameters.

4.2.1 A parametric map
We will vary the shape of the NACA airfoil by stretching or compressing it in either the
x̃-direction or in the ỹ-direction. Also we want the possibility to rotate it. Let x be the
coordinates of the parameter-independent domain we studied in example 3.3. Then we can
represent the rotation by µ3 radians and the (x̃, ỹ)-scaling with scaling factors (µ1, µ2) by
the map[

x̃0
x̃1

]
=

[
cos(µ3) − sin(µ3)
sin(µ3) cos(µ3)

] [
µ1 0
0 µ2

]
=

[
µ1 cos(µ3) −µ2 sin(µ3)
µ1 sin(µ3) µ2 cos(µ3)

] [
x0
x1

]
, (4.15)

where µ1 and µ2 are the stretching parameters in x− and y-direction respectively and µ3
is the counterclockwise rotation angle measured in radians. Note that equation (4.15) is
nothing but the map x̃ = FFF (x; µµµ) from equation (2.20).

Figure 4.1 shows different geometry configurations for different geometry parameter
vectors µgµgµg. The parameter configuration that gives a geometry equivalent to the parameter-

61



independent geometry we call the reference parameters and denote the vector holding
the reference parameters by µgµgµgre f . For the NACA airfoil in this example the reference
parameter configuration is µgµgµgre f = [1, 1, 0], that is scale by one in x- and y-direction and
zero rotation, seen in Figure 4.1a. Figure 4.1b shows scaling in x, y-direction and Figure
4.1c shows rotation.

Note that the Dirichlet boundary is not half of the circle as in the previous example. The
Dirichlet boundary is fixed in such a way that when rotating the airfoil to its limits either
counterclockwise or clockwise at least the left half of the circle will always be Dirichlet.
For the example given in this thesis the rotation limits are [−π/6, π/6]. Therefore the
Dirichlet boundary should be approximately π+π/6+π/6 = 4π/3, that is 2/3 of the circle
encircling the NACA airfoil. When we say approximately it is due to the fact that the circle
is not rotated around its center, we rotate in fact the airfoil around its leading edge. The
important part is that we have fixed the Dirichlet boundary.

The outer boundary ΓD1]
⋃
ΓN is chosen to be far out from the NACA airfoil such that

the simulations close to the NACA airfoil is not affected with the outer boundary of the
domain. We are only interested in the behavior of the simulations close to the airfoil and
not further out. In Figure 4.1a the radius of the outer circle is r = 3. This is due to
illustration purposes, the radius for the parameter-independent domain is r = 10 for the
actual simulations. The map F stretch the whole domain and not just the NACA airfoil.
As the outer boundary is so far away from the airfoil, ideally the stretching of the boundary
will not influence the simulations near the airfoil.

As seen from Figure 4.1a, and even more clear in Figure 3.7b, the grid-lines going in
circles around the airfoil lie closer and closer near the airfoil than they do further out. The
mesh is constructed in this way, refining the grid to have more grid lines nearer the airfoil.
The reason for this is that on the trailing edge of the airfoil it has some sharp edges because
of the way it is constructed. Then to obtain good enough numerical results in this part
of the domain it is important to have a fine enough grid in this region. A full discussion
around the mesh quality and design parameters for the meshing is beyond the scope of this
thesis. To create the NACA 4-digit airfoil the Splipy package for python is used, see [35]
for further details.

The map (4.15) is not optimal. As seen in Figure 4.1b the stretching in both x̃− and
ỹ−direction stretches the whole computational domain and not just the airfoil. Figure 4.2
shows the map from the parameter domain to the parameter-independent domain. We see
that the η-direction is mapped to the axis going radial out from the airfoil. Hence the ideal
map would be [

x̃0
x̃1

]
= (1 − η)

[
µ1 cos(µ3) −µ2 sin(µ3)
µ1 sin(µ3) µ2 cos(µ3)

] [
x0
x1

]
. (4.16)

With this map the scaling in the x̃− and ỹ-direction have less effect the further you move
out from the airfoil and in fact the effect of the scaling would be zero at the circle periphery
encircling the computational domain. This mapping yields non-affine terms though and
that is why we work with the simplified mapping (4.15). This comes at a cost, we see that
the size of the elements increase because of the scaling, just compare the elements of the
NACA domain in Figure 4.1a to Figure 4.1b. This must be kept in mind when considering
the relative error computed in the previous example 3.3. See Section 4.2.3 for a further
discussion.
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ξ

η

x0

x1

Φ

Figure 4.2: MapΦ of parameter space to a parameter idependent NACA airfoil. The domain consists
of 4 × 8 elements. The ξ-direction of the parameter space is mapped to the angular direction in the
physical space and the η-direction of the parameter space is mapped to the radial direction in the
physical space.

4.2.2 Galerkin high-fidelity approximation
With help from the equations derived in the previous Section 4.1we can derive a parametrized
Galerkin formulation and a parametrized linear system. The Jacobian matrix of the map
FFF (x; µµµ) from equation (4.15) is

JFFF(µµµ) = JFFF(x; µµµ) =
[
µ1 cos(µ3) −µ2 sin(µ3)
µ1 sin(µ3) µ2 cos(µ3)

]
. (4.17)

We can also compute the determinant of the Jacobian matrix

|JFFF(µµµ)| = µ1µ2 cos2(µ3) + µ1µ2 sin2(µ3) = µ1µ2,

and the inverse transpose

(JFFF(µµµ))
−1 =

1
µ1µ2

[
µ2 cos(µ3) µ2 sin(µ3)
−µ1 sin(µ3) µ1 cos(µ3)

]
,

(JFFF(µµµ))
−> =

1
µ1µ2

[
µ2 cos(µ3) −µ1 sin(µ3)
µ2 sin(µ3) µ1 cos(µ3)

]
.

Following the steps of Section 4.1 we pull back the original problem (4.14) from the
parameter-dependent domain Ω̃(µµµ) onto the parameter-independent domain Ω and provide
the high-fidelity solutions (uh(µµµ), ph(µµµ)) = (uh(x; µµµ), ph(x; µµµ)).

To do this we start by expressing the high-fidelity solutions by their respective basis
functions

ũh(µµµ) =

Nh∑
j=1

w
(j)
h
(µµµ)φ̃ jφ jφ j, p̃h =

Mh∑
k=1

p(k)
h
(µµµ)ψ̃k .

As the weak formulation (4.3) holds for all ṽh ∈ Ṽh and for all q̃h ∈ Q̃h we choose the
test functions ṽh = φ̃j and q̃h = ψ̃l . This we insert into the weak formulation (4.3). Then
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Introducing the notation φiφiφi =
[
(φiφiφi )0
(φiφiφi )1

]
and ∇φiφiφi =

[
(φiφiφi )0,x0 (φiφiφi )1,x0
(φiφiφi )0,x1 (φiφiφi )1,x1

]
where (φiφiφi)p,xk is the

derivative of the p-th element of the vector φiφiφi with respect to xk , we compute

(JFFF(µµµ))
−> ∇φiφiφi =

(
1

µ1µ2

[
µ2 cos(µ3) −µ1 sin(µ3)
µ2 sin(µ3) µ1 cos(µ3)

] [
(φ jφ jφ j)0,x0 (φ jφ jφ j)1,x0

(φ jφ jφ j)0,x1 (φ jφ jφ j)1,x1

] )
=

1
µ1µ2

[
µ2 cos(µ3)(φiφiφi)0,x0 − µ1 sin(µ3)(φiφiφi)0,x1 µ2 cos(µ3)(φiφiφi)1,x0 − µ1 sin(µ3)(φiφiφi)1,x1

µ2 sin(µ3)(φiφiφi)0,x0 + µ1 cos(µ3)(φiφiφi)0,x1 µ2 sin(µ3)(φiφiφi)1,x0 + µ1 cos(µ3)(φiφiφi)1,x1

]
.

Then we have got all we need to compute the bilinear and linear forms in equations (4.5) -
(4.8). The computations are omitted here, see the appendix 5.1 for the full derivation. We
get the linear system [

Ah(µµµ) B>
h
(µµµ)

Bh(µµµ) 0

] [
wh(µµµ)
ph(µµµ)

]
=

[
f1h(µµµ)
f2h(µµµ)

]
. (4.18)

where the matrices and vectors are the affine combinations

Ah(µµµ) = θ
1
a(µµµ)A1 + θ

2
a(µµµ)A2

Bh(µµµ) = θ
1
b(µµµ)B1 − θ

2
b(µµµ)B2 + θ

3
b(µµµ)B3 + θ

4
b(µµµ)B4

f1h(µµµ) = θ
1
f1
(µµµ)A1wg + θ

2
f1
(µµµ)A2wg

f2h(µµµ) = θ
1
f2
(µµµ)B1wg + θ

2
f2
(µµµ)B2wg + θ

3
f2
(µµµ)B3wg + θ

4
f2
(µµµ)B4wg.

(4.19)

Here wg is the coefficient vector of the discrete lifting function. We approximate the lifting
function with the discrete lifting function ug =

∑Nh

i=1 w
(i)
g φiφiφi , where this approximation takes

the value 1 at the boundary of the domain. Then µ5ug will obtain the right value at the
inflow Dirichlet boundary, that is µ5ug |ΓD1

= µ5.
From equation (4.19) we recognize the theta-functions first introduced in equation

(2.38). The theta-functions and the elements of the matrices and vectors in (4.19) are

θ1
a(µµµ) =

µ4µ2
µ1

(A1)i j = a1(φ jφ jφ j, φiφiφi) =

∫
Ω

(
(φ jφ jφ j)0,x0 (φiφiφi)0,x0 + (φ jφ jφ j)1,x0 (φiφiφi)1,x0

)
dΩ

θ2
a(µµµ) =

µ4µ1
µ2

(A2)i j = a2(φ jφ jφ j, φiφiφi) =

∫
Ω

(
(φ jφ jφ j)0,x1 (φiφiφi)0,x1 + (φ jφ jφ j)1,x1 (φiφiφi)1,x1

)
dΩ

θ1
b(µµµ) = µ2 cos(µ3) (B1)i j = b1(φ jφ jφ j, ψi) = −

∫
Ω

ψi(φ jφ jφ j)0,x0 dΩ

θ2
b(µµµ) = −µ1 sin(µ3) (B2)i j = b2(φ jφ jφ j, ψi) = −

∫
Ω

ψi(φ jφ jφ j)0,x1 dΩ

θ3
b(µµµ) = µ2 sin(µ3) (B3)i j = b3(φ jφ jφ j, ψi) = −

∫
Ω

ψi(φ jφ jφ j)1,x0 dΩ

θ4
b(µµµ) = µ1 cos(µ3) (B4)i j = b4(φ jφ jφ j, ψi) = −

∫
Ω

ψi(φ jφ jφ j)1,x1 dΩ

θ1
f1
(µµµ) = −

µ4µ5µ2
µ1

θ2
f1
(µµµ) = −

µ4µ5µ1
µ2

θ1
f2
(µµµ) = −µ2µ5 cos(µ3) θ2

f2
(µµµ) = µ1µ5 sin(µ3)

θ3
f2
(µµµ) = −µ2µ5 sin(µ3) θ4

f2
(µµµ) = −µ1µ5 cos(µ3),

(4.20)
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The high-fidelity solutions are then obtained as

uh(µµµ) =

Nh∑
j=1
(wh(µµµ)

(j) + µ4w
(j)
g )φ jφ jφ j and ph(µµµ) =

Mh∑
k=1

ph(µµµ)(k)ψk

where the elements of the solution vector from the linear system (4.9) are wh(µµµ) =
[wh(µµµ)

(1),wh(µµµ)
(2), . . . ,wh(µµµ)

(Nh )] and ph(µµµ) = [ph(µµµ)(1), ph(µµµ)(2), . . . , ph(µµµ)(Mh )]. wh(µµµ)
and ph(µµµ) are the vectors associated with the degrees of freedom for the RB velocity and
the RB pressure respectively.

4.2.3 Snapshots and relative error
As remarked in Chapter 3 the Stokes equations are a simplification of the Navier-Stokes
equations acceptable for low Reynolds numbers. As the Stokes equations are already
simplified linear equations, without loss of generality we choose the parameters µµµ such that
0.05 ≤ Re ≤ 30, [13].

Then we can decide the limits of the geometric and physical parameters. Let the
parameter space for the geometric parameters be [0.5, 3]2 × [−π/6, π/6]. That is scaling
in x, y-direction by scales in the interval [0.5, 3] and rotate by an angle in the interval
[−π/6, π/6]. Then we use this information to decide the physical parameters.

The Reynolds number defined in equation (3.1) is Re = VL
ν , where L, the characteristic

length, is the chord length as defined in the previous example 3.3. The chord will be at min
0.5 and max 3 due to the geometric parameter space. Let the interval for the kinematic
viscosity ν = µ4 be [1, 10] then the characteristic velocity, that is the inflow µ5 will be in
the interval [1, 10] due to the Reynolds number interval. Summarized the parameter space
is P = [0.5, 3]2 × [−π/6, π/6] × [1, 10]2, where [0.5, 3]2 × [−π/6, π/6] is the geometric
parameters and [1, 10]2 is the physical parameters.

To create a reduced basis solver we compute a set of high-fidelity solutions of the
linear system (4.18). This is done for a parameter training set Ξtrain = {µ1µ1µ1, . . . , µnsµnsµns }
creating the corresponding high-fidelity velocity snapshots {uh(µ1µ1µ1), . . . , uh(µnsµnsµns )} and the
corresponding high-fidelity pressure snapshots {ph(µ1µ1µ1), . . . , ph(µnsµnsµns )}. The snapshots are
saved in their respective snapshot matrices

Su = [uh(µ1µ1µ1)| . . . |uh(µnsµnsµns )] Sp = [ph(µ1µ1µ1)| . . . |ph(µnsµnsµns )]. (4.21)

Figures 4.3 and 4.4 shows a couple of snapshots for a couple of different parameter
configurations.

As seen in Section 4.2.1 the element size increase because of the mapping. At the most
the elements are scaled by a factor of 3 in both directions. This must be kept in mind when
studying the relative error introduced in the previous example in Section 3.3.2. Hence
we must make sure the grid is refined such that we have enough grid-lines close to the
airfoil to obtain good enough accuracy (our choice) also for the scaled airfoil (equivalent to
scaled elements). We require in the following that the high-fidelity solutions approximate
the exact solutions good enough, that is for a ε of our choice in equation (4.2). This we
do by requiring the relative error (3.46) between the finest level high-fidelity solutions
and the high-fidelity solutions to be smaller than or equal to 10−3. Then we are satisfied
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(a) NACA airfoil far out. (b) NACA airfoil close up.

Figure 4.3: Galerkin approximation of velocity field uh and pressure ph around stretched and rotated
NACA airfoil. Velocity field displayed as streamlines and pressure as colormap. Solved on a 80× 80
grid. Snapshot corresponding to the parameters µµµ = [2, 1.5,−π/8, 5, 8].

(a) NACA airfoil far out. (b) NACA airfoil close up.

Figure 4.4: Galerkin approximation of velocity field uh and pressure ph around stretched and rotated
NACA airfoil. Velocity field displayed as streamlines and pressure as colormap. Solved on a 80× 80
grid. Snapshot corresponding to the parameters µµµ = [1.5, 2, π/8, 5, 8].
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(a) Relative error velocity field. (b) Relative error pressure field.

Figure 4.5: Error between norms of the high-fidelity solutions (uh, ph) and the norms of the finest
level high-fidelity solutions (uH, pH ) relative to the norm of the finest level high-fidelity solutions.
Measured for finer and finer grids N ×N , with full scaling µ1 = µ2 = 3. The finest level high-fidelity
solutions are computed on the finest grid 320 × 320.

with the accuracy of which the high-fidelity solutions in equation (4.2) approximate the
exact solutions. Then the accuracy of which the reduced solutions approximate the exact
solutions is decided by how good the reduced basis solutions approximate the high-fidelity
solutions.

As the map (4.15) scales the elements we compute the relative error as in Figure 3.11
for a max scaled grid and we obtain the relative error seen in Figure 4.5. Then to obtain the
desired relative error of 10−3 we will in the following do all computations on a 80×80 grid
which gives Nh = 2 ·25499 degrees of freedom for the high-fidelity velocity approximation
and Mh = 6480 degrees of freedom for the high-fidelity pressure approximation.

4.2.4 Eigenvalues of the correlation matrices

When considering to make a reduced order model of some given problem, certain pre-
liminary work should be done to consider the reducibility of the problem at hand. Before
even doing computations, aspects such as the parametric complexity of the problem could
be considered. This is reflected by the number of affine terms given by the numbers
Qa,Qb,Q f1 and Q f2 in the affine expansions (2.39). A high model complexity is equivalent
with high number of affine terms and can make the problem less attractive to reduced order
modeling. More details on this and other possible methods such as Kolmogorov n-width
can be found in e.g. [49, 18]. This section discuss observations made after high-fidelity
solutions are computed.

To understand if problem (4.14) is reducible or not we should compute a set of snapshots
for both the velocity and the pressure and store them in the snapshot matrices Su and Sp
in equation (4.21). Further we compute the corresponding correlation matrices Cu and
Cp defined by equation (2.65), where we have used the inner product associated with the
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Table 4.1: Number of parameter values in each parameter interval for different regular grids.

Parameter µ1 µ2 µ3 µ4 µ5
Interval [0.5, 3] [0.5, 3] [−π/6, π/6] [1, 10] [1, 10]
uniform grid 1 6 2 2 2 2
uniform grid 2 2 6 2 2 2
uniform grid 3 2 2 6 2 2
uniform grid 4 2 2 2 6 2
uniform grid 5 2 2 2 2 6
uniform grid 6 4 4 1 1 1
uniform grid 7 6 6 1 1 1
uniform grid 8 8 8 1 1 1
uniform grid 9 6 6 3 1 1
uniform grid 10 6 6 1 3 1
uniform grid 11 6 6 1 1 3
uniform grid 12 6 6 2 2 1
uniform grid 13 6 6 2 1 2
uniform grid 14 6 6 1 2 2
uniform grid 15 7 7 3 1 1
uniform grid 16 6 6 4 1 1
uniform grid 17 7 7 3 2 2
uniform grid 18 8 8 3 1 1
uniform grid 19 11 11 5 1 1
gauss legendre 7 7 3 1 1

H1-seminorm for the velocity space and the L2-inner product for the pressure space, that is

Cu = S>u Xh,uh Su Cp = S>p Xh,ph Sp . (4.22)

Here we have used the notation of the inner product matrices in Section 2.5.3, that is
(Xh,uh )i j =

(
∇φi,∇φj

)
L2(Ω) and (Xh,ph )i j =

(
ψi, ψj

)
L2(Ω) .

Furthermore we should check the decay of the eigenvalues of the correlation matrix.
The eigenvalues are associated with the energy of the snapshots so for a sufficient rapid
decay the energy of the solution set could be represented by a limited number of POD
modes. Then if the solution set reflects the solution manifoldMh it means that the solution
manifold could be approximated by a limited number of POD modes and a reduced order
model is preferable.

Then the challenge is to choose a parameter training set Ξtrain such that the snapshots
constructed from these parameters in fact is a good enough representation of the solution
manifold. In order to capture the variability of the snapshots as the parameters vary over
the parameter space P we will investigate different sampling strategies to compute the
snapshots (uh(µiµiµi), ph(µiµiµi)). We think of the parameter space P as a five dimensional space
and choose different number of points in each parameter direction to vary the parameter
vectors µiµiµi .

Two ideas on how to sample the parameter sets comes to mind, by a form of regular
sampling method and by a form of random sampling method. Here uniform grids, that
is grids with equidistant spacing, are used to better understand which parameters are
important to capture the variability of the snapshots. See Figure 4.10a for an example of
a uniform grid of a [−1, 1]2 parameter space. Afterwards we compare the uniform grids
with an other regular grid made by Gauss-Legendre sampling, a random sampling method
and a Latin Hypercube sampling method. All regular grids used are summarized in Table
4.1 and all random sampling methods used are summarized in Table 4.2.
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Table 4.2: Number of parameter vectors for different random based sampling methods

Parameter µiµiµi = [µ1, µ2, µ3, µ4, µ5]
>

i
LHS 1 50
LHS 2 150
LHS 3 200
LHS 4 300
LHS 5 400
LHS 6 605
random 150

(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.6: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
uniform grid 1 − 5. All eigenvalues are normalized with respect to λ1.

One could wonder what we look for when plotting the eigenvalues. Since the eigen-
values of the correlation matrix represents the energy of the solution manifold in some
way we seek the parameter-set best representing the energy of the solution set. We do not
know how many non-zero eigenvalues, but given two sets of eigenvalues corresponding to
each their snapshot matrix the one with the most nonzero eigenvalues — and hence most
probably the largest total sum of the eigenvalues —would seem to be the one capturing the
most of the total energy. After we have found a training set that gives a good representation
of the solution manifold, then we evaluate the rapid decay of the eigenvalues.

First we start of by five uniform grids named uniform grid 1 − 5. As seen in Table 4.1
we choose two uniform values in the parameter interval for four parameter directions at a
time while the fifth parameter direction has 6 uniform values. When plotting these grids
in Figure 4.6 we observe that for the pressure correlation matrix Cp it is important to have
a larger number of points in the parameter direction µ1 and µ2 to capture the variability
of the solution set, shown in Figure 4.6b. Figure 4.6a also shows that uniform grid 3, that
is a larger number of points in the parameter direction µ3, is not as important µ1 and µ2
to capture the variability of the solution set, but it is still more important than parameter
directions µ4 and µ5, which in fact seems equally unimportant. These results could lead
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(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.7: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
uniform grid 6 − 8. All eigenvalues are normalized with respect to λ1.

the reader to wonder if it is possible to better capture the variability of the solution set by
combining a large number of points in some of the parameter directions. As the parameter
directions µ1 and µ2 seems equally important we choose the same number of points in
these directions. In Figure 4.7 we seek to find how many equally spaced points for both µ1
and µ2 seems to be sufficient, while fixing only one point in the other parameter directions.
We conclude that six points in each direction seems to suffice for now.

Next we see what happens if a larger number of points in some of the other parameter
directions is combined with a larger number of points in the directions µ1 and µ2. Figure
4.8 shows that uniform grids 9, 12 and 13 seems to be better than uniform grids 10, 11 and
14. We note that uniform grids 9, 12 and 13 have in common a larger number of points in
the directions µ1, µ2 and µ3. From Figure 4.8a the best of the methods is uniform grid 9
which has the largest number of points in parameter directions µ1, µ2 and µ3.

As uniform grid 9 seemed as a good way of choosing parameter values we study this
grid further by comparing it to larger grids. Figure 4.9 shows that further increasing the
number of points in parameter direction µ3, such as uniform grid 16, gives no improvement.
Increasing the number of points in direction µ1 and µ2 by one or two points gives uniform
grid 15 and uniform grid 18 respectively, which are slightly better than the other. As the
uniform grids 15 and 18 are very close to each other we would say that uniform grid 15 is
maybe better than 18 as the difference in parameter configurations is 7×7×3×1×1 = 147 to
8×8×3×1×1 = 192. That is an increase of approximately 30% in the amount of parameter
configurations from uniform grid 15 to 18 and as the two grids are almost equally good at
explaining the variability of the solution set, uniform grid 15 is preferred due to limited
computational resources. Uniform grid 17 confirms that parameter directions µ4 and µ5
seems unimportant to better capture the variability of the solution set as uniform grid 15 and
17 seems to be equally good. As we are satisfied with how the uniform grid 15 performs we
try another regular grid with the same parameter configuration, namely Gauss-Legendre
sampling with parameter configuration 7 × 7 × 3 × 1 × 1, see Table 4.1. Gauss-Legendre
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(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.8: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
uniform grid 9 − 14. All eigenvalues are normalized with respect to λ1.

points gives a regular grid with points slightly pushed closer to the boundary than a uniform
grid as shown in Figure 4.10b. In [62] we see an example of Gauss-Legendre points used
for a Weighted POD method. See [49] for examples of other regular grids. Figure 4.9
shows that the Gauss-Legendre grid performs slightly worse than the uniform grid 15.

Beside regular grids, an other intuitive way of choosing our training set Ξtrain is
choosing it somehow random. In [41] the use of simple random sampling and Latin
Hypercube sampling (LHS) is recognized as good methods for selecting values of input
parameters when analyzing output from a computer code. Lhs is used e.g. in [19] as a
method to provide coverage of the parameter space in Population of models. Lhs is also
a random sampling such as the simple random sampling method, but LHS is a method
designed by partitioning the parameter space into equally large cells and if a cell is filled
with a parameter value, then that cell will not be chosen again. This makes LHS an
improved version of the simple random sampling as it is designed such that the chosen
points are marginally spread over the parameter interval for each parameter. See [56]
for further details. An example of 50 sampled parameter values by the methods simple
randdom sampling and LHS sampling for a 2D parameter space [−1, 1]2 can be seen in
figures 4.11a and 4.11b respectively.

As we where satisfied with uniform grid 15 yielding 147 parameter vectors we use
approximately the same amount of points for the simple random sampling and the Latin
Hypercube sampling when comparing them to each other in Figure 4.12. As observed they
are hard to differ, and the reader can trust the author that they also are hard to differ for
larger number of points so we will only study LHS in the following.

Now we study the influence of the number of snapshots ns on the eigenvalues of the
correlation matrices Cu and Cp . In figures 4.13a and 4.13b we see up to the first 100
eigenvalues of the correlation matrices Cu and Cp obtained using increasing number of
Latin Hybercube samples. We observe that ns = 300 LHS, that is sampling method LHS 4,
is more than sufficient for both the velocity correlation matrix and the pressure correlation
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(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.9: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
uniform grid 9,uniform grid 15−18 and Gauss - Legendre sampling. All eigenvalues are normalized
with respect to λ1.

(a) 5 × 5 uniform grid (b) 5 × 5 Gauss-Legendre grid.

Figure 4.10: Regular grids to sample a 2D parameter domain.
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(a) 50 points sampled using a simple random
sampling strategy.

(b) 50 points sampled using a Latin Hypercube
sampling strategy.

Figure 4.11: Random sampling points to sample a 2D parameter domain.

(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.12: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
Latin Hypercube sampling and simple random sampling. All eigenvalues are normalized with respect
to λ1.
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(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.13: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
Latin Hypercube sampling 1 − 4. All eigenvalues are normalized with respect to λ1.

matrix. Let us also compare LHS 4 to the uniform grid 15. Observed from Figure 4.14 both
methods seems to have about the same amount of non-zero eigenvalues, but the LHS 4 has
a more linear decay of eigenvalues than the uniform grid as the uniform grid gives a more
curved decay of the eigenvalues. An interesting characteristic of the different methods
which can also be observed in similar plots, e.g. see [49].

Last, but not least we check if the methods uniform grid 15 and LHS 4 actually are good
enough. We do this by comparing them to a great deal larger grid and sampling method,
that is the uniform grid 19 from Table 4.1 with 11 × 11 × 5 × 1 × 1 sampling points and
the LHS 6 consisting of the same number of points, that is 605 points. From Figure 4.14
we observe that LHS 4 is pretty much similar to LHS 6, only for small eigenvalues do they
differ, and the same goes for uniform grid 15 compared to uniform grid 19. Also note that
the increased number of points in uniform grid 19 has made the decay of eigenvalues more
linear than uniform grid 15 has, making it look more like the decay in the eigenvalues of the
methods LHS 4 and 6. My guess is that this is the more correct decay of the eigenvalues,
especially since the LHS method gives this decay and LHS is a method developed to give a
good representation of the parameter space (and equivalently a good representation of the
solution set). Still uniform grid 15 and LHS 4 seems to be more than sufficient methods
and much less demanding than uniform grid 19 and LHS 6 with respect to computational
resources.

In the end we make some last remarks. As less than the 100 first eigenvalues of the
correlation matrices Cu and Cp captures the energy of the solution manifold represented by
ns snapshots computed from a system of Nh = 2 ·25499 and Mh = 6480 degrees of freedom
for the velocity field and the pressure field respectively, the decay of these eigenvalues is
rapid enough to make a reduced order model.

The last figures 4.14 and 4.15 shows that the uniform grid methods gives slightly
better representation of the eigenvalues than the LHS methods, or at least much less points
are needed for the training set Ξtrain using uniform grids than LHS methods to obtain
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(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.14: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
uniform grid 15 and Latin Hypercube sampling 4. All eigenvalues are normalized with respect to λ1.

(a) Eigenvalues corresponding to the correlation
matrix Cu .

(b) Eigenvalues corresponding to the correlation
matrix Cp .

Figure 4.15: 100 first eigenvalues of correlation matrix corresponding to the sampling strategies
uniform grid 15, uniform grid 19, Latin Hypercube sampling 3 and Latin Hypercube sampling 5. All
eigenvalues are normalized with respect to λ1.
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the same accurate approximation of the spectrum of the solution set. When it comes
to computational efficiency this makes the uniform grids more attractive than the LHS
methods for this problem. Note that this is in fact problem dependent, see [49] for an
example where it is the other way around. A hypothesis to why it is like this for the
Stokes problem on the NACA airfoil is that since only the three first parameters µ1 − µ3 is
important to vary to get a good approximation of the solution set the best uniform grids can
be designed to vary only these values, whereas the Latin Hypercube sampling is designed
to represent the whole parameter space. By constructing a LHS method for only the first
three parameters LHS would probably perform better.

The last remark of this section is given to the three significant parameters µ1 − µ3 and
as why they seem more important than µ4 and µ5. From a physical perspective µ1 − µ3
changes the characteristics of the problem drastic as they stretch/compresses the airfoil and
rotate it giving fundamental different solutions whereas µ4 and µ5 decrease/increase the
kinematic viscosity slightly or increase/decrease the inflow slightly.

This is also expressed algebraic. In equation (4.19) the three parameters µ1 − µ3 are
included in more theta-functions than µ4 and µ5 as we see in equation (4.20). Also µ4 and
µ5 are mainly in the theta functions for the right hand side functions and does not affect the
rank of the solution set much. On the other hand µ1− µ3 are in almost every theta-function.
As discussed in the introduction to Section 4.2.4 it is the number of theta-functions for
the A and B matrix, namely Qa and Qb that decides the complexity of our model. Hence
varying parameters µ1− µ3 is needed for the computed snapshots to capture the complexity
of our model.

4.2.5 Accuracy of the Galerkin reduced basis approximation
The reduced basis functions are linear combinations of the high-fidelity basis functions
with coefficients given from a PODmethod, as in equation (2.26). These coefficients stored
as columns in a transformation matrix V are called a POD basis or POD mode. We need
to compute a POD basis for both the velocity snapshots Su and the pressure snapshots Sp .
This is done as in equation (2.63) and we obtain

ξuiξ
u
iξ
u
i =

1√
λui

Suψu
iψ
u
iψ
u
i 1 ≤ i ≤ Nu

ξ
p
i
ξ
p
iξ
p
i =

1√
λ
p
i

Spψ
p
i
ψ
p
iψ
p
i 1 ≤ i ≤ Np,

(4.23)

where λui , λ
p
i are the eigenvalues associated with the velocity and pressure correlation

matrices (4.22) respectively and ψu
i
ψu
iψ
u
i , ψ

p
i
ψ
p
iψ
p
i are the corresponding eigenvectors. We choose

Nu, Np largest eigenvalues of the correlationmatrices when constructing the transformation
matrices as the eigenvalues are associated with the energy of the system.

The POD modes ξuiξ
u
iξ
u
i , ξ

p
j
ξ
p
jξ
p
j 1 ≤ . . . i ≤ Nu 1 ≤ . . . j ≤ Np are stored in each their

transformation matrix as Vu = [ξ
u
1ξ
u
1ξ
u
1 | . . . |ξ

u
Nu
ξuNu
ξuNu
] and Vp = [ξ

p
1ξ
p
1ξ
p
1 | . . . |ξ

p
Np
ξ
p
Np
ξ
p
Np
]. Further we denote

by (uN(µµµ), pN(µµµ)) ∈ R
Nu × RNp the reduced basis solutions such that uh(µµµ) ≈ VuuN(µµµ)

and ph(µµµ) ≈ VppN(µµµ). VuuN(µµµ) and VppN(µµµ) are the full order representation of the RB
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velocity vector and the RB pressure vector respectively equivalent to what is introduced in
Section 2.5.2. Then by storing the transformation matrices as

V =
[
Vu 0
0 Vp

]
the Galerkin reduced basis linear system can be obtained as a Galerkin projection. We
insert the full order representation of the RB velocity vector and the RB pressure vector
into the linear system (4.18) and require the residual to be orthogonal to the columns of V :[

V>u 0
0 V>p

] [
Ah(µµµ)VuuN(µµµ) + B>

h
(µµµ)VppN(µµµ) − f1h(µµµ)

Bh(µµµ)VuuN(µµµ) − f2h(µµµ)

]
=

[
0
0

]
This is equivalent to the linear system[

AN (µµµ) B>N (µµµ)
BN (µµµ) 0

] [
wN(µµµ)
pN(µµµ)

]
=

[
f1N(µµµ)
f2N(µµµ)

]
. (4.24)

where we have defined the matrices and vectors

AN (µµµ) = V>u Ah(µµµ)Vu BN (µµµ) = V>p Bh(µµµ)Vu

f1N(µµµ) = V>u f1h(µµµ) f2N(µµµ) = V>p f2h(µµµ).
(4.25)

As the high-fidelity matrices and vectors in equation (4.25) can be written as affine com-
binations so can the reduced matrices and vectors in equation (4.25)

AN (µµµ) = V>u Ah(µµµ)Vu = θ
1
a(µµµ)V

>
u A1Vu + θ

2
a(µµµ)V

>
u A2Vu

BN (µµµ) = V>p Bh(µµµ)Vu = θ
1
b(µµµ)V

>
p B1Vu − θ

2
b(µµµ)V

>
p B2Vu + θ

3
b(µµµ)V

>
p B3Vu + θ

4
b(µµµ)V

>
p B4Vu

f1N(µµµ) = V>u f1h(µµµ) = θ
1
f1
(µµµ)V>u A1wg + θ

2
f1
(µµµ)V>u A2wg

f2N(µµµ) = V>p f2h(µµµ) = θ
1
f2
(µµµ)V>p B1wg + θ

2
f2
(µµµ)V>p B2wg + θ

3
f2
(µµµ)V>p B3wg + θ

4
f2
(µµµ)V>p B4wg.

(4.26)

where the theta-functions are as defined in equation (4.20). During the offline stage we
pre-compute all parameter-independent matrices and vectors in equation (4.26) and during
the online stage we compute the sums for a given input parameter vector µµµ, equivalent to
what is introduced in Section 2.5.4.

When deciding how to sample snapshots we need to consider how we can expect the
input parameter vector µ to vary. In the following we will see that if the input parameters
are expected to be random values then the RB model should be trained on a training set of
random parameters and if the input parameters are expected to be regular the RB model
should be trained on a training set of regular parameters. As in the previous Section 4.2.4 let
us make our training setΞtrain using uniform grid 17 and LHSwith 300 sampled parameter
vectors and see how they affect the accuracy of the RB solution when the test set Ξtest is
constructed by simple random sampling or from an equally spaced grid respectively. Note
that the test sets contains a larger number of values than the training sets. The random test
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(a) The error between the high-fidelity solution
uh(µµµ) and the reduced basis solution uN(µµµ)mea-
sured in the H1-seminorm.

(b) The error between the high-fidelity solution
ph(µµµ) and the reduced basis solution pN (µµµ)mea-
sured in the L2-norm.

Figure 4.16: The average error between high-fidelity solutions and RB solutions measured in their
natural norm. Computed on a test set of 350 random sampled parameters using a uniformly spaced
training set of 7 × 7 × 3 × 2 × 2 parameters, uniform grid 17.

set consists of 350 samples and the uniform grid test set is 8 × 8 × 6 × 1 × 1 parameter
vectors different from the training set, all values contained inside the parameter interval
from Table 4.1. Also note that the reason why we use uniform grid 17, even though we
concluded in Section 4.2.4 that uniform grid 15 was sufficient, is that we want the whole
parameter interval for parameters µ4 and µ5 to be represented.

We study the accuracy of RB functions (uN(µµµ), pN (µµµ)), obtained through solving
equation (4.24), constructed from the training set Ξtrain for both the methods uniform
grid 17 and LHS 4. The accuracy of the RB solutions is measured in their respective
natural norm, that is the H1-seminorm and L2-norm respectively, yielding the errors
|uh(µ) − uN(µ)|H1 = ‖∇(uh(µ) − uN(µ))‖L2 and ‖ph(µ) − pN (µ)‖L2 respectively. As this
is done for all parameter vectors µiµiµi in the test set Ξtest = [µ1µ1µ1, . . . , µnµnµn]

> we compute the
mean of the error over all n test parameters. We then plot the errors relative to the mean of
the respective high-fidelity solutions measured in their natural norm. That is we plot

|uh(µ) − uN(µ)|
mean
H1

|uh(µ)|
mean
H1

‖ph(µ) − pN (µ)‖
mean
L2

‖ph(µ))‖mean
L2

.

We also plot the largest and the smallest values of the error denoted bymax andmin divided
with the mean of the respective high-fidelity solution measured in their natural norm, that
is

|uh(µ) − uN(µ)|
min
H1

|uh(µ)|
mean
H1

|uh(µ) − uN(µ)|
max
H1

|uh(µ)|
mean
H1

‖ph(µ) − pN (µ)‖
min
L2

‖ph(µ))‖mean
L2

‖ph(µ) − pN (µ)‖
max
L2

‖ph(µ))‖mean
L2

These error computations are done for increasing number of reduced basis functions Nu

and Np . We choose the numbers Nu of the reduced velocity basis functions and the number
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(a) The error between the high-fidelity solution
uh(µµµ) and the reduced basis solution uN(µµµ)mea-
sured in the H1-seminorm.

(b) The error between the high-fidelity solution
ph(µµµ) and the reduced basis solution pN (µµµ)mea-
sured in the L2-norm.

Figure 4.17: The average error between high-fidelity solutions and RB solutions measured in
their natural norm. Computed on a test set of 350 random sampled parameters.The training set is
constructed using a Latin Hypercube sampled training set of 300 parameters, LHS 4.

Np of the reduced pressure basis functions such that Nu = 2 · Np , always making sure that
both Nu is less than the rank of Cu and Np less than the rank of Cp .

First we choose a test set of 350 parameter vectors sampled by a simple random sampling
method. The error between the high-fidelity solutions and the RB solutions constructed
by a training set based on the uniform grid 17 is given in Figure 4.16. In Figure 4.17 the
error between the high-fidelity solutions and the RB solutions constructed by a training set
based on LHS 4 is given. The mean of the error is plotted together with the maximum and
the minimum of the measured errors to show the variability in the error computations over
the test set.

In Figure 4.18 we compare the average errors from figures 4.16 and 4.17 and we see
that the RB solutions based on a training set from a LHS method have a better accuracy
than the RB solutions based on the uniform grid 17 when the test set is based on the single
random sampling method.

Second we choose a test set of 8 × 8 × 6 × 1 × 1 parameter vectors from a uniform grid
method. The mean of the error between the high-fidelity solutions and the RB solutions
constructed by a training set based on the uniform grid 17 is given in Figure 4.19. In
Figure 4.20 the mean of the error between the high-fidelity solutions and the RB solutions
constructed by a training set based on LHS 4 is given. The maximum and the minimum of
the measured errors are also plotted. We observe that the min-max interval in Figure 4.20
is somewhat wider than the min-max interval in Figure 4.19 and since it is the same test
set, this means that the training set from the LHS method does not cover the solution set as
good as the training set from the uniform grid 17 does (for this type of test set), and hence
naturally we get a wider min-max interval as the test set is a large uniform grid.

In Figure 4.21 we compare the average errors from figures 4.19 and 4.20 and we see
that the RB solutions based on a training set from the uniform grid 17 most often have a
better accuracy than the RB solutions based on the LHS method when the test set is based
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(a) The error between the high-fidelity solution
uh(µµµ) and the reduced basis solution uN(µµµ)mea-
sured in the H1-seminorm.

(b) The error between the high-fidelity solution
ph(µµµ) and the reduced basis solution pN (µµµ)mea-
sured in the L2-norm.

Figure 4.18: The average error between high-fidelity solutions and RB solutions measured in their
natural norm. Computed on a test set of 350 random sampled parameters. The training sets are
constructed using 7 × 7 × 3 × 2 × 2 uniformly spaced parameters and 300 Latin Hypercube sampled
parameters respectively.

(a) The error between the high-fidelity solution
uh(µµµ) and the reduced basis solution uN(µµµ)mea-
sured in the H1-seminorm.

(b) The error between the high-fidelity solution
ph(µµµ) and the reduced basis solution pN (µµµ)mea-
sured in the L2-norm.

Figure 4.19: The average error between high-fidelity solutions and RB solutions measured in their
natural norm. Computed on a test set of 8 × 8 × 6 × 1 × 1 uniformly spaced parameters using a
uniformly spaced training set of 7 × 7 × 3 × 2 × 2 parameters.
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(a) The error between the high-fidelity solution
uh(µµµ) and the reduced basis solution uN(µµµ)mea-
sured in the H1-seminorm.

(b) The error between the high-fidelity solution
ph(µµµ) and the reduced basis solution pN (µµµ)mea-
sured in the L2-norm.

Figure 4.20: The average error between high-fidelity solutions and RB solutions measured in their
natural norm. Computed on a test set of 8× 8× 6× 1× 1 uniformly spaced parameters using a Latin
Hypercube sampled training set of 300 parameters.

on a uniform grid.
Hence we state that it is of great importance to knowwhether the input parameter vector

will be random or regular to compute RB solutions of best possible accuracy compared
to the high-fidelity solution of the input parameters. From the previous Section 2.54 we
saw that a larger number of parameter vectors are needed for the LHS method than for a
uniform grid to approximate the spectrum of the solution set accurate enough. Still, the
results of this section shows that the RB solutions bases on the LHS method still yields a
better accuracy than RB solutions based on a uniform grid when the input parameter vector
for the problem is chosen random. We have also seen that vice versa is true.

Remark 4.2.1. Here it is in place to make some remarks on the accuracy observed. For
the Figures 4.16-4.21 the best observed relative error is approximately O(10−4). If we
for some reason would like to obtain an error of, let us say O(10−8) then we cannot use
the eigenvalues and eigenvectors of a correlation matrix defined by C = S>XhS. As we
observe from the previous section, the smallest eigenvalues of C are of approximately size
O(1015−1016), that is they hit zero in machine precision. The eigenvalues ofC are the same
as the square of the singular values of the matrix S̃ = X1/2

h
S, see Remark 2.7.2. As seen

from the previous Section 4.2.4 the decay of the eigenvalues are approximately linear, and
therefore the singular values corresponding to the smallest eigenvalues are approximately
O(10−8). This means that because of machine precision we loose some information stored
in S̃ when we compute C = S̃>S (as all eigenvalues corresponding to the singular values
smaller than O(10−8 is lost). To handle this we can solve the SVD of the matrix S̃ and
equivalently obtain the POD basis as

V = [X1/2
h
ξ̃1 | . . . |X

1/2
h
ξ̃N ],

where ξ̃i is the i-th left singular vector of the matrix S̃.
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(a) The error between the high-fidelity solution
uh(µµµ) and the reduced basis solution uN(µµµ)mea-
sured in the H1-seminorm.

(b) The error between the high-fidelity solution
ph(µµµ) and the reduced basis solution pN (µµµ)mea-
sured in the L2-norm.

Figure 4.21: The average error between high-fidelity solutions and RB solutions measured in their
natural norm. Computed on a test set of 8× 8× 6× 1× 1 uniformly spaced parameters. The training
sets are constructed using 7 × 7 × 3 × 2 × 2 uniformly spaced parameters and 300 Latin Hypercube
sampled parameters respectively.

In the following we work with a reduced basis solver based on a training set with
parameters sampled from uniform grid 17.

4.2.6 Choosing the reduced basis dimension
A common way of choosing the number of reduced basis functions is the relative informa-
tion content I(N) equation (2.72). For a choice N the energy retained by the r − N POD
modes not included in the POD basis stored in V is smaller than or equal to ε2

tol
. Here r is

the rank of the correlation matrix. Figure 4.22 shows a plot of I(N) for both the velocity
correlation matrix and the pressure correlation matrix. We see that the total energy of the
system is mainly stored in the first few eigenvalues.

In the following we will explain how to choose the reduced basis dimension in general,
beforewe turn back to the case for the velocity and the pressure. By choosing N PODmodes
to store in V , the projection error done is given by equation (2.61). Here uh(µµµi) = uh

(i)

for 1 ≤ i ≤ ns is the ns provided snapshots and ‖·‖Xh
is the abstract norm associated

with the natural norm of the snapshots. Assuming that these snapshots are a sufficient
representation of the solution set, then, from the same equation (2.61), we get that the mean
projection error for an arbitrary solution coefficient vector uh(µµµ), should be approximately

‖uh(µµµ) − VV>Xhuh(µµµ)‖Xh
≈

√∑r
i=N+1 λi

ns
, (4.27)

where λi is the i-th eigenvalue of the correlation matrix.
From equation (2.36) we have that the error of the reduced basis solution can be written

as

‖eh(µµµ)‖Xh
≤ ‖

(
uh(µµµ) − VV>Xhuh(µµµ)

)
‖Xh
+ ‖

(
VV>Xhuh(µµµ) − VuN(µµµ)

)
‖Xh

, (4.28)
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(a) The I(N) function based on the correlation
matrix Cu of the velocity snapshots.

(b) The I(N) function based on the correlation
matrix Cp of the pressure snapshots.

Figure 4.22: The function I(N) from equation (4.30). Here plotted for the 100 first eigenvalues.

where we have inserted the V-orthogonal projection from definition (2.59). The second
term in the right hand side of the error is minimized as discussed in Section 2.5.3. The
first term of the error is minimized by the definition of the POD basis from equation (2.60)
and it is (approximately) given by equation (4.27). If we assume optimal convergence for
both terms of the error in equation (4.28), then the error on the left hand side of the same
equation and the error in (4.27) converge optimal in the same norm and only a constant
should separate them. In fact we see that this holds for both the velocity and the pressure
in our case, see Figure 4.23.

We want the error in equation (4.28) to be smaller than some ε of our choice. Then
as only a constant k separates this error from the error in equation (4.27) we choose the
smallest N as our reduced basis dimension such that the following holds

‖eh(µµµ)‖Xh
= k

√∑r
i=N+1 λi

ns
≤ ε. (4.29)

Note that since the relative information content in equation (2.72) is given as

I(N) =
∑N

i=1 λi∑r
i=1 λi

= 1 −
∑r

i=N+1 λi∑r
i=1 λi

, (4.30)

then the condition for choosing the reduced basis dimension in equation (4.29) relates to
the relative information content as:
choose the smallest N such that the following holds

I(N) ≥ 1 −
ns∑r
i=1 λi

ε2

k2 . (4.31)

From Figure 4.23 we have that for the two constants k1 ≈ 5 · 102 and k2 ≈ 102 we get
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(a) The error of the reduced velocity. (b) The error of the reduced pressure.

Figure 4.23: The error from equation (4.28) plotted against the error in equation (4.27) for different
choises of N reduced basis functions.

the error of the velocity and the pressure respectively

‖eu
h(µµµ)‖Xh,u = k1

√∑ru
i=Nu+1 λ

u
i

ns
≤ εu, ‖ep

h(µµµ)‖Xh,p = k2

√∑rp
i=Np+1 λ

p
i

ns
≤ εp,

(4.32)
where λui , λ

p
i are the i-th eigenvalue of the velocity correlation matrix and the pressure

correlation matrix respectively and ru, rp are likewise their rank. We choose ε = εu = 10−3

for the accuracy of the reduced velocity solution, insert it in equation (4.31), and choose
the smallest Nu such that it holds. Then we need Nu = 34 which matches what we observe
in Figure 4.23a. In the same manner we choose ε = εp = 10−3 for the accuracy of the
reduced pressure solution, insert it in equation (4.31), and choose the smallest Np such that
it holds. Then we need Np = 18 which matches what we observe in Figure 4.23b.

4.2.7 Computational performance
In the end, the whole point of RB methods is to reduce computational time (CT) of the
problem at hand. As described in Section 2.5.4 the computation of a RB solution consists
of a expensive offline stage as it depends on the high-fidelity dimension Nh +Mh and a fast
online stage independent of Nh + Mh . To measure computation time of the high-fidelity
solver, the offline stage and the online stage, the calculations are done on a HPC cluster.
This is done to obtain as accurate measures of computation time as possible. This cluster
uses a job scheduling system named Slurm and hence no other processes like background
programs and other disturbances can interupt the computations and hence they get more
accurate. See [6] for more information.

The steady Stokes problem is solved on a geometry partitioning of 80×80 Taylor-Hood
elements with polynomial degree Pu = 2 for the velocity basis and Pp = 1 for the pressure
basis. This gives Nh = 2 · 25499 degrees of freedom for the velocity field and Mh = 6480
degrees of freedom for the pressure field. The computational time of the high-fidelity
solution using the finite element method (assembly and solution) takes on average 1min
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Table 4.3: Mean computation time and standard deviation of the FE model and the RB model.

Model Number of runs Mean CT standard deviation of CT
FE (assembly+solution) 200 1 min 51 s 2.144412 s
RB offline 10 45 min 51 s 28.924272 s
RB online 200 0.000343 s 0.000049 s

and 51s with a standard deviation of 2.1s. We create the RB solutions using the uniform
grid 15 as the training set. As we want a error of O(10−3) for the RB solutions, we know
from the previous Section 4.2.6 that we should choose Nu = 34 reduced basis functions for
the velocity field and Np = 18 reduced basis functions for the pressure field. This gives us
a reduction of 1500 : 1 in the degrees of freedom for the velocity field and a reduction of
360 : 1 for the pressure field. The offline computation time of RB method was on average
45min 51s with a standard deviation of 28.9s. The online computation time was on average
3.43 · 10−4s with a standard deviation of 4.9 · 10−5. This provides a speedup of order
O(105). The numerical results are summarized in Table 4.3 together with the number of
runs used to calculate each computation time and the standard deviation of the calculated
times.

The numerical results were obtained on a computing server of the type Dell PE630
with 2× Intel Xeon E5-2630 v4 10 cores 2.20GHz, 128GB RAM, 300GB local disk. The
solver is built upon the Python packages NumPy and Ntils which both contain routines for
parallel programming. The packages are in a way self optimizing as using these routines
the packages will run the code in parallel in case this is faster, see [5] and [61] for more
details.

4.2.8 Stability of solutions
As introduced in Section 2.8.2 we must enrich the velocity space in order to be certain the
reduced solutions are stable. Still we have up to this point not enriched the velocity space
and still our reduced solutions seem to be stable. This makes us wonder whether there is
possible to compute stable reduced basis solutions, that we know are stable, without the
enrichment of the velocity space discussed in Section 2.8.

Several authors seem to be doing RB methods for the steady Stokes and the Navier-
Stokes equations with the same number of reduced basis functions for both the velocity
field and the pressure field, that is Nu = Np , see e.g. [49, 8, 23]. This thesis on the other
hand has so far only studied the case where Nu = 2 · Np . In the following we conduct the
error analysis over a grid of different values for Nu and Np , exploring other relations than
just Nu = 2 · Np .

In particular we start of by the number of RB velocity functions

Nu = [3, 8, 12, 17, 22, 25, 28], Np = [3, 8, 12, 17, 22, 25, 28],

and we conduct error analysis on the grid Nu × Np . Note that this grid has the diagonal
Nu = Np and this is the choice used for the RB solver in e.g. [8], where enrichment of the
velocity space by supremizers is used. The training set used to compute the RB solutions
is the uniform grid 17 from Table 4.1 and the test set used to compute the mean of the
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(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.24: Error analysis of the reduced basis velocity uN(µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np .

(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.25: Error analysis of the reduced basis pressure pN (µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np .
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(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.26: Error analysis of the reduced basis velocity uN(µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Different spacing in Nu and Np such that the diagonal of the 2D surface is Nu = 2 ·Np .

error is a (8× 8× 4× 1× 1) uniform grid. The error between the reduced solutions and the
high-fidelity solutions are measured in their natural norm, that is the H1-seminorm for the
reduced velocity and the L2-norm for the reduced pressure.

Figure 4.24 shows that the diagonal Nu = Np does not yield a decreasing error for
increasing number of RB functions for the reduced velocity, and the same holds for the
corresponding reduced pressure in Figure 4.25. We observe that we need Nu > Np in order
to obtain a decreasing error for increasing number of RB functions. Do also note that we
need Np > 8. Observe from Figure 4.25b that the region on and above the diagonal, that is
Np ≥ Nu , we have infinite error for the reduced pressure, that is the reduced LBB-condition
(2.75) is not satisfied and the linear system (4.24) is singular.

Next we look at the number of RB velocity functions Nu and Np such that

Nu = [4, 12, 19, 26, 34, 39, 44] Np = [2, 6, 10, 13, 17, 20, 22].

We conduct the error analysis on the grid Nu × Np . Note that this grid has Nu = 2 · Np on
its diagonal. In this case the diagonal in figures 4.26 and 4.27 gives a decreasing error for
both the reduced velocity and the reduced pressure confirming the results from the previous
Section 4.2.5.

Still it is a thin line to walk, we need Nu > Np in order to have a decreasing error
for increasing number of basis functions. Figures 4.26 and 4.27 shows clearly that just of
diagonal, that is right above the diagonal Nu = 2 · Np increasing Np slightly, the pressure
is unstable and the velocity does not converge.

To complement the error analysis we look at the divergence property of the reduced
velocity solution. From the problem description (4.14) we have that the divergence of
the velocity should be zero. This is only true over the whole domain and not point-wise
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(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.27: Error analysis of the reduced basis pressure pN (µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Different spacing in Nu and Np such that the diagonal of the 2D surface is Nu = 2 ·Np .

(a) 3D view of the divergence. (b) 2D view of the divergence.

Figure 4.28: Mean divergence of the reduced basis velocity uN(µµµ), measured in the H1-seminorm
for different number of velocity reduced basis functions Nu and pressure reduced basis functions Np .
Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np .
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because the weak formulation (4.3) only requires weak divergence. The map (4.15) does
in fact not preserve divergence of vector fields either. Hence the divergence of the reduced
velocity should not be exactly zero. In order to preserve divergence a different divergence-
preserving transformation must be used as done by Evans and Hughes in [27, 29, 28]. Such
a transformation is called Piola transform and is beyond the scope of this thesis.

Still we expect the divergence of the reduced velocity to be close to zero and we plot
the divergence for the same grid as in Figure 4.24, seen in Figure 4.28. We observe the
divergence of the velocity to be closer to zero for the part of the domain where Nu > Np

which is consistent with the observations already done. The divergence increase when Np

is large compared to Nu .

4.2.9 Supremizer
In this section we introduce a RB method with supremizer stabilization. This is done so
that we can compare it to the reduced basis method used in this thesis with respect to both
error analysis and computational performance.

As discussed in Section 2.8 there is two possible ways to enrich the reduced velocity
space, by exact supremizer and by approximate supremizer. The exactmethod can be proven
to satisfy the reduced inf-sup condition (2.75), but this method gives a parameter-dependent
transformation matrix Vs for the supremizers. Thus it is not possible to conduct the offline-
online decomposition. Due to computation time, this is not interesting. The approximate
supremizer method makes it possible to conduct the offline-online decomposition, but it is
not possible to show rigorously that the reduced inf-sup condition (2.75) holds. Ballarin et
al. give heuristic criteria for the approximate supremizer enrichment such that the reduced
inf-sup condition holds, see [8].

The supremizers are computed from the linear system

Xh,utµµµh (ph(µiµiµi) = B>h (µµµ)ph(µiµiµi) 1 ≤ i ≤ ns, (4.33)

where ns is the number of snapshots, ph(µiµiµi) is the pressure snapshot corresponding to
parameter (µiµiµi) and Xh,u is the matrix associated with the scalar product in the velocity
space V = [H1(Ω)]2, that is (Xh,u)i j = (∇φiφiφi,∇φ jφ jφ j)L2(Ω). This is equivalent to the linear
system (2.19). We store all the solutions of equation (4.33) in the supremizer snapshot
matrix

Ss = [th
µ1µ1µ1 (ph(µ1µ1µ1))| . . . |th

µnsµnsµns (ph(µnsµnsµns ))],

and compute a POD basis from the correlation matrix Cs = S>s Xh,uSs . The POD modes of
the transformation matrix Vs = [ξ

s
1ξ
s
1ξ
s
1 | . . . |ξ

s
Ns
ξsNs
ξsNs
] ∈ RNh×Ns for the supremizers are computed

as
ξsiξ
s
iξ
s
i =

1√
λsi

Ssψs
iψ
s
iψ
s
i 1 ≤ i ≤ Ns

Nowwe define the new transformation matrix Ṽu = [Vu Vs] ∈ R
Nh×(Nu+Ns ) and the reduced

matrices and vectors in equation (4.24) becomes

AN (µµµ) = Ṽ>u Ah(µµµ)Ṽu =

[
V>u Ah(µµµ)Vu V>u Ah(µµµ)Vs

V>s Ah(µµµ)Vu V>s Ah(µµµ)Vs

]
=

[
AN,uu(µµµ) AN,us(µµµ)
AN,su(µµµ) AN,ss(µµµ)

]
∈ R(Nu+Ns )×(Nu+Ns ),

(4.34)

89



(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.29: Error analysis of the reduced basis velocity uN(µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np and
Ns =

⌈
Np+1

2

⌉
.

BN (µµµ) = V>p Bh(µµµ)Ṽu =
[
V>p Bh(µµµ)Vu V>p Bh(µµµ)Vs

]
=

[
BN,pu(µµµ) BN,ps(µµµ)

]
∈ RNp×(Nu+Ns ),

(4.35)

f1N(µµµ) = Ṽ>u f1h(µµµ) =

[
V>u f1h(µµµ)
V>s f1h(µµµ)

]
=

[
f1N,u(µµµ)
f1N,s(µµµ)

]
∈ RNu+Ns , (4.36)

f2N(µµµ) = V>p f2h(µµµ) ∈ R
Np . (4.37)

The affine combinations of the reduced matrices and vectors in equations (4.34)-(4.37)
follows directly from inserting the affine combinations of the high-fidelity matrices and
vectors in equation (4.19). Then it is possible to do an offline-online decomposition of the
reduced system.

We solve the reduced linear system (4.24) for the new reduced matrices and vectors
in equations (4.34)-(4.37). As done in section (4.2.8), we will in the following conduct
a error analysis for different choices of Nu, Ns and Np . For a physical and geometric
parameter-dependence Ballarin et al. states by heuristics that Ns > Np/2 gives a reliable
method for the Navier-Stokes equations, [8]. Motivated by this we choose Ns =

⌈
Np+1

2

⌉
and we conduct the error analysis on the grid Nu × Np such that

Nu = [6, 9, 12, 16, 19, 22, 25, 29] Np = [6, 9, 12, 16, 19, 22, 25, 29].

The training set used to compute the RB solutions is the uniform grid 17 from Table 4.1
and the test set used to compute the mean of the error is a (8 × 8 × 4 × 1 × 1) uniform grid.
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(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.30: Error analysis of the reduced basis pressure pN (µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np and
Ns =

⌈
Np+1

2

⌉
.

The error between the reduced solutions and the high-fidelity solutions are measured in
their natural norm, that is the H1-seminorm for the reduced velocity and the L2-norm for
the reduced pressure.

From Figure 4.29 we observe that the error of the reduced velocity decrease for increas-
ing number of reduced basis functions Nu and Np . Observe that as for the case in Figure
4.24 for low Nu , increasing Np also increases the error slightly. From Figure 4.30b observe
that in the top left corner of the domain, we observe that the pressure still goes towards
infinity and the reduced inf-sup condition (2.75) is not satisfied. Comparing Figure 4.30 to
4.25 the instability of the pressure seems to creep back since we introduced the supremizer
stabilization. Seen in Figure 4.31 the jump of the divergence in the top left corner confirm
the resent thoughts. In the region with unstable pressure we get a stable velocity solution,
but at the expense of the divergence.

As the reduced pressure was not stable for the whole grid in Figure 4.30, we increase
Ns such that Ns = Np . Besides this we study exactly the same case as above. As observed
in Figure 4.32 the error of the reduced velocity behaves pretty much as in Figure 4.29.
What is interesting, is what we observe in Figure 4.33 where the instability of the pressure
has almost disappeared. This is also reflected in Figure 4.34 where the divergence is much
lower compared to to what we observe in Figure 4.31 for the case where Ns =

⌈
Np+1

2

⌉
and

also in Figure 4.28 where Ns = 0.
Some last remarks on this section. As long as we choose Nu and Np carefully, we

observe that it is possible to obtain the same convergence in the error of the reduced
velocity approximation with and without stabilization. This is also true for the reduced
pressure. But as observed, the reduced pressure is much more sensitive to the choice of
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(a) 3D view of the divergence. (b) 2D view of the divergence.

Figure 4.31: Mean divergence of the reduced basis velocity uN(µµµ), measured in the H1-seminorm
for different number of velocity reduced basis functions Nu and pressure reduced basis functions Np .
Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np and Ns =

⌈
Np+1

2

⌉
.

(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.32: Error analysis of the reduced basis velocity uN(µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np and
Ns = Np .
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(a) 3D view of the mean of the error. (b) 2D view of the mean of the error.

Figure 4.33: Error analysis of the reduced basis pressure pN (µµµ). Mean error measured in the H1-
seminorm for different number of velocity reduced basis functions Nu and pressure reduced basis
functions Np . Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np and
Ns = Np .

(a) 3D view of the divergence. (b) 2D view of the divergence.

Figure 4.34: Mean divergence of the reduced basis velocity uN(µµµ), measured in the H1-seminorm
for different number of velocity reduced basis functions Nu and pressure reduced basis functions Np .
Equal spacing in Nu and Np such that the diagonal of the 2D surface is Nu = Np and Ns = Np .
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number of reduced basis functions for the case without supremizer stabilization.

4.2.10 Computation time with supremizer
From equations (4.34)-(4.37) we understand that the reduced solver becomes slightly more
complicated when introducing the supremizer stabiization. In particluar we now need to
solve one additional system in the offline stage, namely the linear system (4.33). Also the
linear system (4.24) changes size from (Nu+Np)×(Nu+Np) to (Nu+Np+Ns)×(Nu+Np+Ns)

which affects the online stage. As thewhole point of RBmethods is to reduce computational
time (CT) of the problem at hand we should measure the computation time for the reduced
basis solver with supremizer stabilization as we did for the reduced basis solver without
supremizer stabilization.

The calculations of the computation times is carried out in the same way as in Section
4.2.7. The steady Stokes problem is solved on a geometry partitioning of 80 × 80 Taylor-
Hood elements with polynomial degree Pu = 2 for the velocity basis and Pp = 1 for the
pressure basis. This gives Nh = 2 · 25499 degrees of freedom for the velocity field and
Mh = 6480 degrees of freedom for the pressure field. The computational time of the
high-fidelity solution using the finite element method (assembly and solution) takes on
average 1min and 54s with a standard deviation of 1.9s. Note that this is approximately the
same as in Table 4.3 as it should be.

We create the RB solutions using the uniform grid 15 as the training set. As we want an
error of O(10−3) for the RB solutions, we know from Section 4.2.6 that we should choose
Nu = 34 reduced basis functions for the velocity field and Np = 18 reduced basis functions
for the pressure field. As observed in Section 4.2.9, the supremizer stabilization does not
influence the accuracy of the velocity, at least not in the region already stable. The results
from Section 4.2.6 holds. We also choose Ns = 18.

As the Ns supremizers enriches the reduced velocity basis, we get a reduction of 981 : 1
in the degrees of freedom for the velocity field and a reduction of 360 : 1 for the pressure
field. The offline computation time of RB method was on average 49min 27s with a
standard deviation of 13.2s. The online computation time was on average 7.28 · 10−4s with
a standard deviation of 8.8 ·10−5. This provides a speedup of order O(105). The numerical
results are summarized in Table 4.4 together with the number of runs used to calculate
each computation time and the standard deviation of the calculated times. The difference
between the offline computation time between the two methods are 4−5min and the online
computation time seems to have doubled.

Table 4.4: Mean computation time and standard deviation of the FE model and the RB model using
a supremizer stabilization.

Model Number of runs Mean CT standard deviation of CT
FE (assembly+solution) 200 1 min 54 s 1.904436 s
RB offline 15 49 min 27 s 13.216114 s
RB online 200 0.000728 s 0.000088 s
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Chapter 5
Conclusion

Throughout this thesis, we have built a finite element solver and a reduced basis solver
for a steady Stokes flow around a NACA airfoil. We compared the performance of the
reduced basis solver to the finite element solver in terms of both numerical error analysis
and computation time.

The first step of this master thesis, as presented in the introduction, was to build a finite
element solver for the Stokes equations to provide this thesis with the desired numerical
results. A solver is implemented for both a unit square verification example and for a
parametrized Stokes flow around a NACA airfoil. As seen by the convergence results in
Figure 3.5 and Figure 3.6 and the relative error in Figure 4.5 the solver must be said to
be of good enough accuracy. All numerical results in this thesis are provided directly or
indirectly from this solver.

As we solve the parametrized steady Stokes equations where the geometry is parameter-
dependent, the second step of this thesis was to express the reduced system matrices and
vectors as affine combinations. This was a must in order to ensure a time-effective offline-
online decomposition of the reduced basis (RB) solver. As seen in Section 4.2.2 the
parametric map F made it possible to obtain all matrices and vectors of the high-fidelity
system as affine combinations, see equation (4.19). Therefore the equations of the reduced
basis system are also affine combinations as seen in equation (4.26) and we have ensured
a time-effective offline-online decomposition.

We also wanted to investigate how to sample the parameters in order to span the
solution set of the high-fidelity problem in a best possible way. For this particular problem
we learned that the following holds: in order to create snapshots that span thewhole solution
set, it is more important to vary the geometric parameters over the parameter space than
the physical parameters. This is due to the fact that changing the geometry changes the
characteristics of the flowmore drastic than the physical parameters do. Therefore, choosing
the input parameters from a uniform grid with more points in the parameter directions of
the geometric parameters seems to be one of the best strategies for parameter sampling.
This method of uniform sampling captures the variability of the solution set better than
sampling from Gauss-Legendre, Latin Hypercube, and simple random sampling. This is
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interesting since other problems such as the steady heat conduction-convection problem in
[49] clearly shows that a Latin Hypercube sampling captures the variability of the solution
set better than any other regular grid. This means that without any further analysis of
parameter sampling for different problems, one should always consider different sampling
methods when considering to make a reduced model.

The reduced basis solver was trained on two different training sets. One training set
of a sufficient number of uniform parameter configurations and the other training set of
a sufficient number of LHS parameter configurations. This showed that when the test set
of input parameters were equidistant, the reduced basis solver showed the best accuracy
when based on the uniform training set, see Figure 4.21. Also, when the test set of input
parameters were chosen by simple random sampling, the reduced basis solver showed the
best accuracy when based on the training set of LHS points, see Figure 4.18. Indeed, we
conclude that the training set must be chosen sufficiently large to capture the variability
of the solution set, but not too large because of computational efficiency. In addition, the
sampling method for the training set should be based on the expected input parameters.
For random input parameters, the training set should be sampled from a random sampling
procedure. When expecting regular input parameters the training set should be sampled
from a uniform grid for this particular problem.

These results were conducted using a reduced basis solver without supremizer stabi-
lization. For this analysis I suggested to use Nu reduced velocity basis functions and Np

reduced pressure basis functions such that Nu = 2 ·Np . To confirm that this choice is stable
for the problem at hand, the mean error was plotted for different number of reduced basis
functions. As observed from figures 4.26 and 4.27 both errors seem to converge along
the diagonal, that is where Nu = 2 · Np . Do note that this is a very thin line to walk as
increasing the number of reduced pressure basis functions slightly gives unstable solutions,
as illustrated in figures 4.24 and 4.25, where the diagonal Nu = Np gives unstable solutions.

For the desired accuracy of the high-fidelity solver, the computations were done on a
grid of 80 × 80 elements with Nh = 2 · 25499 degrees of freedom for the high-fidelity
velocity and Mh = 6480 degrees of freedom for the high-fidelity pressure. In comparison,
Nu = 34 reduced velocity basis functions and Np = 18 reduced pressure functions were
necessary for the desired accuracy of the reduced basis model. This is a reduction of
1500 : 1 in degrees of freedom for the velocity and 360 : 1 in degrees of freedom for
the pressure. The computation time for the high-fidelity solver was on average 1min 51s.
The computation time for the online stage of the reduced basis solver was on average
3.43 · 10−4s. This provides an attractive speedup of O(105) for the reduced basis solver.
The computation time for the offline stage was on average 45min 51s.

As the reduced basis solver was not stable for all possible number of reduced basis
functions, an additional solver was built by enriching the reduced velocity space with
supremizers to make the solver more stable [8]. By choosing Ns = Np/2 supremizers,
we learned that a larger portion of the grid from Figure 4.25 (made by different number
of reduced velocity basis functions and different number of reduced pressure functions)
becomes stable. This is seen by comparing Figure 4.30 to Figure 4.25. Further increasing
the number of supremizers to Ns = Np makes approximately the whole grid stable,
comparing Figure 4.33 to Figure 4.30.

A reduced basis solver with supremizer stabilization comes at a cost. First of all, an

96



additional linear system was solved for each snapshot created, see equation (4.33). Still, as
the size of this linear system was Nh × Nh it involved less operations than the high-fidelity
system in equation (3.45) of size (Nh + Mh) × (Nh + Mh) also solved for each snapshot,
so the increased computation time was not significant. Second of all the reduced linear
system in equation (4.24), solved in the online stage, was larger for a reduced basis solver
with supremizer stabilization than without. In fact, this linear system increase from the
size (Nu + Np) × (Nu + Np) without supremizer to (Nu + Ns + Np) × (Nu + Ns + Np) with
supremizers.

Of this particular reason, we have measured the time complexity also for the reduced
solver with supremizer stabilization. We have used Nu = 34 reduced velocity basis
functions, Np = 18 reduced pressure basis functions and Ns = 18 supremizers where the
latter are used to enrich the velocity space. For the same high-fidelity system as earlier,
this gave a reduction in degrees of freedom of 981 : 1 for the velocity and 360 : 1 for
the pressure. The computation time for the online stage of the reduced basis solver was
on average 7.28 · 10−4s. This is approximately the double of the computation time for the
solver without supremizers, but still, it provided a speedup of O(105) for the reduced basis
solver. The computation time for the offline stage was on average 49min 27s, this is an
increase of approximately 7% of the time spent in the offline stage.

This means that in this case, building the reduced basis solver with supremizer sta-
bilization adds unnecessary complexity to the solver as equally good results are obtained
without the supremizers. Building the solver without supremizers requires that a further
stability analysis is done in order to not use an unstable combination of Nu reduced velocity
basis functions and Np reduced pressure basis functions. But this is in fact also required
by the solver with supremizers, as the wrong choice of number of supremizers could give
unstable solutions. Still, the solver with supremizers gives you a much better choice of
how to choose your reduced basis functions.

Future work
To expand the stability analysis provided here, an analysis of the stability factor βN (µµµ)
should be provided by checking its value for different numbers of reduced basis functions
Nu and Np . This is a good way of providing numerical evidence of stability, and could
perhaps be used to provide bounds on the number of reduced basis functions Nu and Np for
which choices that gives stable solutions or not. This analysis could also be helpful in the
case of the reduced solver with supremizer stabilization. Analyzing the stability factor can
be used to provide bounds for which numbers Ns of supremizers the solutions are stable,
similar to what is done for the Navier-Stokes equations in [8].

The natural expansion of the steady Stokes equations are the Navier-Stokes equations.
It would be interesting to do similar analysis for the Navier-Stokes equations to see if
there is a natural choice of the reduced basis functions that gives stable solutions without
introducing stabilization techniques. Then it could also be interesting to build the high-
fidelity solver, that the reduced basis solver is based on, from other stable finite elements
than the Taylor-Hood elements. This in order to see if the high-fidelity snapshots affect the
stability of the reduced basis solutions. If this is the case, then it is interesting to see if it is
possible to choose the number of reduced basis functions in such a way that the solutions
are stable without introducing stabilization techniques.
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Appendix

5.1 Full derivation of the Steady Stokes linear system on
a parameter-dependent domain

Following the steps of Section 4.1 we pull back the original problem (4.14) from the
parameter-dependent domain Ω̃(µµµ) onto the parameter-independent domain Ω and provide
an approximate solution (uh(µµµ), ph(µµµ)) through the linear system (4.9). The following
components are needed.

The Jacobian matrix of the map FFF (x; µµµ) from equation (4.15) is

JFFF(µµµ) = JFFF(x; µµµ) =
[
µ1 cos(µ3) −µ2 sin(µ3)
µ1 sin(µ3) µ2 cos(µ3)

]
.

We can also compute the determinant of the Jacobian matrix

|JFFF(µµµ)| = µ1µ2 cos2(µ3) + µ1µ2 sin2(µ3) = µ1µ2,

and the inverse transpose

(JFFF(µµµ))
−1 =

1
µ1µ2

[
µ2 cos(µ3) µ2 sin(µ3)
−µ1 sin(µ3) µ1 cos(µ3)

]
,

(JFFF(µµµ))
−> =

1
µ1µ2

[
µ2 cos(µ3) −µ1 sin(µ3)
µ2 sin(µ3) µ1 cos(µ3)

]
.

we introduce the notation φiφiφi =
[
(φiφiφi )0
(φiφiφi )1

]
and ∇φiφiφi =

[
(φiφiφi )0,x0 (φiφiφi )1,x0
(φiφiφi )0,x1 (φiφiφi )1,x1

]
where (φiφiφi)p,xk is

the derivative of the p-th element of the vector φiφiφi with respect to xk .
First we compute

(JFFF(µµµ))
−> ∇φiφiφi =

(
1

µ1µ2

[
µ2 cos(µ3) −µ1 sin(µ3)
µ2 sin(µ3) µ1 cos(µ3)

] [
(φ jφ jφ j)0,x0 (φ jφ jφ j)1,x0

(φ jφ jφ j)0,x1 (φ jφ jφ j)1,x1

] )
=

1
µ1µ2

[
µ2 cos(µ3)(φiφiφi)0,x0 − µ1 sin(µ3)(φiφiφi)0,x1 µ2 cos(µ3)(φiφiφi)1,x0 − µ1 sin(µ3)(φiφiφi)1,x1

µ2 sin(µ3)(φiφiφi)0,x0 + µ1 cos(µ3)(φiφiφi)0,x1 µ2 sin(µ3)(φiφiφi)1,x0 + µ1 cos(µ3)(φiφiφi)1,x1

]
Now it is possible to compute all the bilinear and linear forms in equations (4.5) - (4.8).
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(A(µµµ))i j = a(φ jφ jφ j, φiφiφi; µµµ) =
µ4
µ1µ2

[

∫
Ω

(
µ2 cos(µ3)(φ jφ jφ j)0,x0 − µ1 sin(µ3)(φ jφ jφ j)0,x1

) (
µ2 cos(µ3)(φiφiφi)0,x0 − µ1 sin(µ3)(φiφiφi)0,x1

)
dΩ

+

∫
Ω

(
µ2 cos(µ3)(φ jφ jφ j)1,x0 − µ1 sin(µ3)(φ jφ jφ j)1,x1

) (
µ2 cos(µ3)(φiφiφi)1,x0 − µ1 sin(µ3)(φiφiφi)1,x1

)
dΩ

+

∫
Ω

(
µ2 sin(µ3)(φ jφ jφ j)0,x0 + µ1 cos(µ3)(φ jφ jφ j)0,x1

) (
µ2 sin(µ3)(φiφiφi)0,x0 + µ1 cos(µ3)(φiφiφi)0,x1

)
dΩ

+

∫
Ω

(
µ2 sin(µ3)(φ jφ jφ j)1,x0 + µ1 cos(µ3)(φ jφ jφ j)1,x1

) (
µ2 sin(µ3)(φiφiφi)1,x0 + µ1 cos(µ3)(φiφiφi)1,x1

)
dΩ]

=
µ4
µ1µ2

[

∫
Ω

µ2
2 cos2(µ3)

(
(φ jφ jφ j)0,x0 (φiφiφi)0,x0 + (φ jφ jφ j)1,x0 (φiφiφi)1,x0

)
+ µ2

2 sin2(µ3)
(
(φ jφ jφ j)0,x0 (φiφiφi)0,x0 + (φ jφ jφ j)1,x0 (φiφiφi)1,x0

)
dΩ

+

∫
Ω

µ2
1 cos2(µ3)

(
(φ jφ jφ j)0,x1 (φiφiφi)0,x1 + (φ jφ jφ j)1,x1 (φiφiφi)1,x1

)
+ µ2

1 sin2(µ3)
(
(φ jφ jφ j)0,x1 (φiφiφi)0,x1 + (φ jφ jφ j)1,x1 (φiφiφi)1,x1

)
dΩ

+

∫
Ω

µ1µ2 cos(µ3) sin(µ3)
(
(φ jφ jφ j)0,x0 (φiφiφi)0,x1 + (φ jφ jφ j)0,x1 (φiφiφi)0,x0 + (φ jφ jφ j)1,x0 (φiφiφi)1,x1 + (φ jφ jφ j)1,x1 (φiφiφi)1,x0

)
dΩ

−

∫
Ω

µ1µ2 cos(µ3) sin(µ3)
(
(φ jφ jφ j)0,x0 (φiφiφi)0,x1 + (φ jφ jφ j)0,x1 (φiφiφi)0,x0 + (φ jφ jφ j)1,x0 (φiφiφi)1,x1 + (φ jφ jφ j)1,x1 (φiφiφi)1,x0

)
dΩ]

=
µ4
µ1µ2

[

∫
Ω

µ2
2
(
(φ jφ jφ j)0,x0 (φiφiφi)0,x0 + (φ jφ jφ j)1,x0 (φiφiφi)1,x0

)
dΩ

+

∫
Ω

µ2
1
(
(φ jφ jφ j)0,x1 (φiφiφi)0,x1 + (φ jφ jφ j)1,x1 (φiφiφi)1,x1

)
dΩ] =

µ4µ2
µ1

a1(φ jφ jφ j, φiφiφi) +
µ4µ1
µ2

a2(φ jφ jφ j, φiφiφi) =
µ4µ2
µ1
(A1)i j +

µ4µ1
µ2
(A2)i j 1 ≤ i, j ≤ Nh .

(5.1)

(B(µµµ))i j = b(φ jφ jφ j, ψi; µµµ) = −
∫
Ω

ψi

(
1

µ1µ2

[
µ2 cos(µ3) −µ1 sin(µ3)
µ2 sin(µ3) µ1 cos(µ3)

]
∇

)
· φ jφ jφ j µ1µ2 dΩ =

−

∫
Ω

ψi

[
µ2 cos(µ3)

∂
∂x0
− µ1 sin(µ3)

∂
∂x1

µ2 sin(µ3)
∂
∂x0
+ µ1 cos(µ3)

∂
∂x1

]
φ jφ jφ j dΩ

= −µ2 cos(µ3)

∫
Ω

ψi(φ jφ jφ j)0,x0 dΩ + µ1 sin(µ3)

∫
Ω
ψi(φ jφ jφ j)0,x1 dΩ

− µ2 sin(µ3)

∫
Ω

ψi(φ jφ jφ j)1,x0 dΩ − µ1 cos(µ3)

∫
Ω
ψi(φ jφ jφ j)1,x1 dΩ

= µ2 cos(µ3)b1(φ jφ jφ j, ψi) − µ1 sin(µ3)b2(φ jφ jφ j, ψi) + µ2 sin(µ3)b3(φ jφ jφ j, ψi) + µ1 cos(µ3)b4(φ jφ jφ j, ψi)

= µ2 cos(µ3)(B1)i j − µ1 sin(µ3)(B2)i j

+ µ2 sin(µ3)(B3)i j + µ1 cos(µ3)(B4)i j 1 ≤ i ≤ Mh, 1 ≤ j ≤ Nh .
(5.2)

For the elements of the vector f1(µµµ) and f2(µµµ) we express the approximation of the lifting
function as ug =

∑Nh

i=1 w
(i)
g φiφiφi , where this approximation takes the value 1 at the boundary
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of the domain. Then µ5ug will obtain the right value at the inflow Dirichlet boundary, that
is µ5ug |ΓD1

= µ5. This gives us the following

(f1(µµµ))i = f1(φiφiφi; µµµ) = −
Nh∑
j=1

a(φ jφ jφ j, φiφiφi; µµµ)µ5w
(j)
g =

−
µ4µ5µ2
µ1

Nh∑
j=1

(
a1(φ jφ jφ j, φiφiφi)w

(j)
g

)
−
µ4µ5µ1
µ2

Nh∑
j=1

(
a2(φ jφ jφ j, φiφiφi)w

(j)
g

)
=

−
µ4µ5µ2
µ1

Nh∑
j=1

(
(A1)i jw

(j)
g

)
−
µ4µ5µ1
µ2

Nh∑
j=1

(
(A2)i jw

(j)
g

)
1 ≤ i ≤ Nh,

(5.3)

where the lifting function coefficients are stored in the vector wg = [w
(1)
g ,w

(2)
g , . . . ,w

(Nh )
g ].

(f2(µµµ))i = f2(ψi; µµµ) = −
Nh∑
j

(
b(φ jφ jφ j, ψi; µµµ)µ5w

(j)
g

)
=

−µ2µ5 cos(µ3)

Nh∑
j

(
b1(φ jφ jφ j, ψi)w

(j)
g

)
+ µ1µ5 sin(µ3)

Nh∑
j

(
b2(φ jφ jφ j, ψi)w

(j)
g

)
− µ2µ5 sin(µ3)

Nh∑
j

(
b3(φ jφ jφ j, ψi)w

(j)
g

)
− µ1µ5 cos(µ3)

Nh∑
j

(
b4(φ jφ jφ j, ψi)w

(j)
g

)
=

−µ2µ5 cos(µ3)

Nh∑
j

(
(B1)i jw

(j)
g

)
+ µ1µ5 sin(µ3)

Nh∑
j

(
(B2)i jw

(j)
g

)
− µ2µ5 sin(µ3)

Nh∑
j

(
(B3)i jw

(j)
g

)
− µ1µ5 cos(µ3)

Nh∑
j

(
(B4)i jw

(j)
g

)
1 ≤ i ≤ Mh,

(5.4)
Equations (5.1) - (5.4) can be written as the linear system[

Ah(µµµ) B>
h
(µµµ)

Bh(µµµ) 0

] [
wh(µµµ)
ph(µµµ)

]
=

[
f1h(µµµ)
f2h(µµµ)

]
. (5.5)

where the matrices and vectors are the affine combinations

Ah(µµµ) =
µ4µ2
µ1

A1 +
µ4µ1
µ2

A2

Bh(µµµ) = µ2 cos(µ3)B1 − µ1 sin(µ3)B2 + µ2 sin(µ3)B3 + µ1 cos(µ3)B4

f1h(µµµ) = −
µ4µ5µ2
µ1

A1wg −
µ4µ5µ1
µ2

A2wg

f2h(µµµ) = −µ2µ5 cos(µ3)B1wg + µ1µ5 sin(µ3)B2wg − µ2µ5 sin(µ3)B3wg − µ1µ5 cos(µ3)B4wg,
(5.6)

where the elements of the matrices A1, A2, B1 and B2 are given in equations (5.1) and
(5.2). The linear system (5.5) along with its components are the same as the linear system
in equation (4.18)
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