
Efficient Methods for Topology
Optimisation of Fluid flow

Petter Johnsen Frisvåg

Master of Science in Physics and Mathematics

Supervisor: Anton Evgrafov, IMF

Department of Mathematical Sciences

Submission date: July 2018

Norwegian University of Science and Technology

i

Project description
The goal of this project is to quantify the discretisation error related to the finite
element discretisation of fluid flow boundary value problems in topology optimisa-
tion, using a posteriori error analysis. This information will then be utilised in the
context of approximate linear algebraic solvers needed within topology optimisation
algorithms and in the context of adaptive mesh refinement.

ii

Abstract
We consider topology optimisation of two-dimensional Stokes flow. The objective
is to distribute a certain amount of solid material in a given domain, such that
the total power dissipation is minimised. A generalised Stokes problem acts as
the governing PDE, and both existence of solutions to the state equations and the
optimisation problem is shown. The optimisation problem is solved using the op-
timality criteria method, and the MINRES method is used for solving the algebraic
linear system arising from discretising the governing PDE with the finite element
method. Residual estimates are used in order to prematurely stop MINRES, and
the results indicate that the residual related to the momentum part of the Stokes
equations is sufficient for formulating a meaningful stopping criterion. Through
testing the algorithm on several different numerical examples, we propose a toler-
ance such that the total number of MINRES iterations is low, while largest observed
error in the resulting objective value is 3.5 % compared to when the linear system is
solved exactly. Adaptive mesh refinement based on the elementwise residual estim-
ates is performed during the course of the optimisation, and it was found that this
approach yields a significant reduction in the residuals when compared to starting
with a fine mesh.

iii

Sammendrag
Vi ser på topologioptimering av todimensjonal Stokes-flyt. Målet er å fordele en viss
mengde fast materiale i et gitt domene, slik at det totale effekttapet er minimert. Et
generalisert Stokes-problem opptrer som PDEen, og både eksistens og unikhet av
løsninger til tilstandslikningene blir vist. Optimeringsproblemet blir løst ved bruk
av optimalitetskriterier-metoden, og MINRES-metoden blir brukt for å løse det
algebraiske, lineære systemet som oppstår ved å diskretisere PDEen med element-
metoden. Residualestimater blir brukt for å tidlig stoppe MINRES, og resultatene
indikerer at bevegelsesmengde-delen av Stokes-likningene er tilstrekkelig for å for-
mulere et meningsfullt stoppkriterium. Ved å teste algoritmen på flere forskjellige
numeriske eksempler, foreslår vi en toleranse slik at MINRES bruker få iterasjoner
totalt, samtidig som den største observerte feilen i den resulterende målverdien er
3.5 % sammenliknet med når det lineære systemet løses eksakt. Adaptiv gitterfor-
fining basert på de elementvise residualestimatene blir utført under optimeringen,
og det ble funnet at denne tilnærmingen gir en markant reduksjon i residualene
sammenliknet med å starte med et fint gitter.

iv

Preface
This thesis is submitted in partial fulfilment of the requirements for a master’s
degree at the Department of Mathematical Sciences at the Norwegian University
of Science and Technology. I would like to express my gratitude to my supervisor
Professor Anton Evgrafov, for suggesting this interesting topic for my master’s
thesis and for his tireless support and supervision throughout this project. I also
want to thank my dear friend Nicolaj Nielsen, for proofreading the thesis and
suggesting numerous improving formulations.

Contents

1 Introduction 1

2 The state equations 3
2.1 The generalised Stokes equations . 3
2.2 Variational formulation . 4
2.3 Existence and uniqueness of solutions 7

3 The optimisation problem 11
3.1 Topology optimisation . 11
3.2 Existence of optimal controls . 12
3.3 Necessary optimality conditions . 16
3.4 The optimisation algorithm . 18

4 Numerical implementation 23
4.1 Finite element discretisation details 23
4.2 Choice of elements . 27
4.3 A posteriori residual estimates . 28
4.4 Convergence test . 30
4.5 Implementation of the optimisation problem 33
4.6 Numerical examples . 39

5 Adaptivity 49
5.1 Adaptive mesh refinement . 49
5.2 Numerical experiments . 51

6 Iterative approach 59
6.1 The MINRES method . 59
6.2 Behaviour of the residual estimates 66
6.3 Premature termination of MINRES 71

v

Contents vi

7 Concluding remarks 85
7.1 Conclusion . 85
7.2 Further research . 86

Appendices 89

A The zero mean constraint 91

B Code 93

Chapter 1

Introduction

Topology optimisation is a branch of optimal control which is concerned with how
an isotropic material should be distributed in a domain such that a certain property
is minimised. The fact that we want to optimise the topological properties of
a domain motivates what is in the literature referred to as a 0-1 or black-white
property, which means that we seek optimal controls which resemble an indicator
function.

Historically, topology optimisation of isotropic materials has mainly been ap-
plied to the discipline of solid mechanics, with the objective of minimising the
compliance in a structure exposed to external forces when only a limited amount
of material is available. In recent years, however, this strategy have also been ad-
apted to fluid mechanics, where both the Stokes and Navier-Stokes equations are
among the models subject to the optimisation.

In this report we will consider an optimal control problem for minimising the
energy loss of Stokes flow in a material by controlling the material distribution.
This strategy was first introduced in [BP03], where the generalised Stokes problem

−µ∆u + αu +∇p = f ,
−∇ · u = 0,

(1.1)

was used as a basis for formulating an optimal control framework for Stokes flow.
The details of (1.1) will be discussed in the following chapter, and this PDE sys-
tem will be the state equations of the optimal control problem. The idea is that
given a predetermined domain, corresponding boundary conditions and a minimum
amount of solid material occupying the domain, the goal is to distribute said ma-
terial such the dissipated power is at a minimum.

The power loss acts as the objective functional in the optimal control problem
considered, which depends on the solution of the state equations. We use the
finite element method to solve (1.1) numerically, and more precisely by using the
software library FEniCS. As it is be necessary to solve (1.1) repeatedly over the
course of the optimisation algorithm we will be using, it is crucial that this can be
done efficiently. We therefore utilise a Krylov subspace method in order to solve

1

Chapter 1. Introduction 2

the linear system, and to this end a significant part of the report will be devoted
how early this method can be stopped while still obtaining sufficiently accurate
solutions of (1.1).

The report is structured as follows. In Chapter 2 the details of (1.1) is presented,
and the existence and uniqueness of solutions is proved.

Chapter 3 then deals with the optimisation problem, and the necessary op-
timality conditions are derived. It is proven that solutions to the optimisation
problem exists, and an algorithmic framework based on the optimality conditions
is proposed for solving the problem.

Chapter 4 addresses the details of the finite element method for the generalised
Stokes problem and the properties of the resulting linear system of algebraic equa-
tions. The concept of residuals is then introduced in order to estimate the accuracy
of the numerical solution to (1.1), which will be central in later chapters. Lastly,
a numerical implementation of the algorithm discussed in Chapter 3 is presented,
which is then applied to several different numerical benchmarks.

Next, in Chapter 5 and adaptive mesh refinement strategy for the finite element
method is introduced, based on the residuals presented in the preceding chapter.
The adaptive mesh refinement is then applied to a selection of the numerical ex-
amples presented previously in order to reduce the discretisation error related to
the mesh.

Chapter 6 first presents the Krylov subspace method MINRES for solving (1.1),
and a stopping criterion based on the residuals from Chapter 4 is proposed. Finally,
MINRES with the proposed stopping criterion is then applied to all the numerical
examples considered previously, and the results are compared to those obtained in
Chapter 4.

Chapter 2

The state equations

Several differential equations for modelling viscous, incompressible fluid flow exists,
with the famous Navier-Stokes equations arguably being the most prevalent in both
the literature and engineering. Although widely used, the non-linear nature of the
Navier-Stokes equations often leads to the usage of simpler, linear models in the
development phase of numerical algorithms.

2.1 The generalised Stokes equations

In this report we will focus on the generalised Stokes equations, stated in the pre-
vious chapter. Considering (1.1), u = u(x) denotes the velocity of the fluid, where
the bold font emphasises that it is a vector-valued function. ∆ in turn denotes the
vector Laplacian, defined by taking the Laplacian in each component of u, while
p = p(x) the pressure in the fluid at a point x ∈ Ω. α = α(x) ≥ 0 is a given func-
tion which we will interpret as the inverse permeability of a porous medium, as
governed by Darcy’s law. With this interpretation in mind, the generalised Stokes
equations (2.1) will interchangeably be referred to as the Darcy-Stokes equations
in this report. Finally, µ > 0 is the viscosity and f denotes the body forces acting
on fluid.

The generalised Stokes equations appears when the non-linear convective term
in Navier-Stokes [Qua14, Ch. 16] is neglected, a simplification which is reasonable
for very slow fluids, such that the Reynold’s number satisfies the condition Re �
1. It also appears as a subproblem of the Navier-Stokes equations when solved
numerically using Picard linearisation [BL07].

Regarding the domain of (1.1), we let this be defined as Ω ⊂ Rd, which we
will assume to be open, bounded and Lipschitz continuous on the boundary. We
consider pure Dirichlet boundary conditions, such that u = g(x) on ∂Ω for a given
function g. In this report we focus on d = 2, however we note that all the results
presented will also be valid for d = 3.

3

Chapter 2. The state equations 4

Before we continue, note that if we define ũ = µu, then (1.1) can be written

−∆ũ + α

µ
ũ +∇p = f ,

−∇ · ũ = 0,

and with ũ = µg on ∂Ω. These equations are on the same form as before, meaning
α and g can be scaled such that µ disappears from the problem. Hence, without
loss of generality we will assume µ = 1 from now on, and the complete boundary
value problem reads

−∆u + αu +∇p = f in Ω,
−∇ · u = 0 in Ω,

u = g on ∂Ω.
(2.1)

The first equation describes the conservation of momentum in the fluid, while
second equation is the incompressibility constraint, which enforces the conserva-
tion of mass. The two first equations in (2.1) will therefore be referred to as the
momentum and mass equation, respectively.

Note that p in (2.1) only appears inside a gradient, meaning that it is only
uniquely determined up to a constant, provided it exists. In order to avoid this
indeterminacy we add a zero mean constraint, that is we will require∫

Ω
p = 0.

Throughout this report we will, for the sake of brevity, generally omit the integra-
tion variables in the integrals whenever it is clear what the domain of integration
is.

For the case α(x) = 0 everywhere in Ω, the generalised Stokes equations reduces
to the pure Stokes equations, and is the type of flow we ultimately want to model.
We will expand on interpretation of α and the relationship between the Darcy-
Stokes equations and the pure Stokes equations in Chapter 3. However, before
doing that we address some important properties of (2.1), starting with deriving
its weak form in the next section.

2.2 Variational formulation
Apart from deriving the weak form of (2.1), in this section we introduce some
important notation.

First, throughout this report the velocity u will formally belong to the Sobolev
space [Trö10, Sec. 2.2] of one time weakly differentiable functions, H1(Ω,R2) =
W 1,2(Ω,R2). As all vectors will be written in boldface, there is no immediate risk
for confusion, so for the sake of brevity we will generally omit the dimension and
write H1(Ω) and L2(Ω) for H1(Ω,R2) and L2(Ω,R2), respectively.

5 2.2. Variational formulation

Secondly, define the function spaces

V = H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω },

Vdiv = {v ∈ V : ∇ · v = 0 },

Q = L2
0(Ω) = { q ∈ L2(Ω) :

∫
Ω
q = 0 },

(2.2)

along with the set H1
g(Ω) = {v ∈ H1(Ω) : v = g on ∂Ω }. Here Vdiv is the space

of divergence free functions, while Q is the space of functions satisfying the zero
mean constraint mentioned in the foregoing section. All three spaces in (2.2) are
Hilbert spaces, with inner products defined as

(u,v)V = (u,v)H1(Ω) =
∫

Ω
u · v +

∫
Ω
∇u : ∇v,

(p, q)Q = (p, q)L2(Ω) =
∫

Ω
pq,

for functions u,v ∈ V and p, q ∈ Q. The vector gradient of u is defined ∇u =
[∇u1 . . .∇ud], that is the d×d matrix whose columns are the gradient of the entries
in u. Consequently, ∇u : ∇v denotes the Frobenius inner product of ∇u and ∇v,
defined as

∇u : ∇v =
d∑

i,j=1
(∇u)ij(∇v)ij .

Similarly, the norms of V and Q are naturally defined as

‖u‖V =
√

(u,u)V ,

‖p‖Q =
√

(p, p)Q,

respectively.
In order to derive the variational form of the Darcy-Stokes equations, we mul-

tiply the first equation of (2.1) with a test function v ∈ V . Taking the integral
over Ω, integration by parts then yields∫

Ω
(−∆u · v + αu · v +∇p · v) =

∫
Ω
∇u : ∇v +

∫
Ω
αu · v−

∫
Ω
p∇ · v =

∫
Ω
f · v.

Similarly, for the second equation we have simply multiply with a test function
q ∈ Q and integrate, resulting

−
∫

Ω
q∇ · u = 0.

Motivated by the form of the above two equations, we define the bilinear forms

aα(u,v) =
∫

Ω
∇u : ∇v +

∫
Ω
αu · v,

b(v, p) = −
∫

Ω
p∇ · v,

(2.3)

Chapter 2. The state equations 6

meaning the weak form of (2.1) now can be formulated as: Find (u, p) ∈ H1
g(Ω)×Q

such that
aα(u,v) + b(v, p) = (f ,v)L2(Ω) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q,
(2.4)

where we define α ∈ L∞(Ω) such that α ≥ 0 almost everywhere in Ω. As usual,
“almost anywhere” and “for almost all” refers to everywhere in Ω except possibly
on set of zero measure [Rud87].

It is possible to transform (2.4) to an equivalent formulation with homogeneous
boundary conditions, that is such that the space for the test function v and trial
function u coincide. To see this, let u = ů + Rg, where Rg ∈ H1

g(Ω) is a lifting
of the boundary datum g, such that ů ∈ V . Inserting ů + Rg into (2.4) and
rearranging, we get

aα(ů,v) + b(v, p) = (f ,v)L2(Ω) − aα(Rg,v) ∀v ∈ V,
b(ů, q) = −b(Rg, q) ∀q ∈ Q.

(2.5)

In order to continue, we need the surjectivity property of the divergence operator
in V , which we get from the following result:

Lemma 2.1. For all p ∈ Q there is a v ∈ V satisfying

∇ · v = p.

Moreover, there exists a constant C > 0 such that

‖v‖V ≤ C‖p‖Q.

The lemma is a special case of [BS07, Lemma 11.2.3], where a proof can also
be found. We let ů = ů0 + ů1, with ů0, ů1 ∈ V and such that ∇ · ů1 = −∇ · Rg.
By definition of g we have∫

Ω
−∇ · Rg = −

∫
∂Ω

Rg · n = −
∫
∂Ω

g · n = 0,

meaning −∇ · Rg ∈ Q, so ů1 exists owing to Lemma 2.1. Inserting ů0 + ů1 for ů
in (2.5) then finally yields

aα(ů0,v) + b(v, p) = (f ,v)L2(Ω) − aα(ů1 + Rg,v) ∀v ∈ V,
b(ů0, q) = 0 ∀q ∈ Q,

showing that ů0 solves the weak formulation of the Darcy-Stokes equations in the
case of homogeneous boundary conditions. Because this transformation is possible,
we will for the remaining of this chapter consider the case g = 0 in (2.4).

We restate the entire problem to avoid confusion, and for future reference: Find
(u, p) ∈ V ×Q such that

aα(u,v) + b(v, p) = (f ,v)L2(Ω) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q.

(2.6)

7 2.3. Existence and uniqueness of solutions

2.3 Existence and uniqueness of solutions
We prove existence and uniqueness of solutions to (2.6), which is equivalent to
(2.4). Starting by discussing the continuity of aα and b, we have the following
proposition:
Proposition 2.2. aα and b are continuous, meaning

aα(u,v) ≤ C1‖u‖V ‖v‖V ∀u,v ∈ V,
b(v, p) ≤ C2‖u‖V ‖p‖Q ∀v ∈ V, p ∈ Q

for positive constants C1 and C2.
Proof. The proof follows from the Cauchy-Schwarz inequality. For the first term
in aα we have∣∣∣∣∫

Ω
∇u : ∇v

∣∣∣∣ ≤ (∫
Ω
|∇u|2

)1/2(∫
Ω
|∇v|2

)1/2

≤
(∫

Ω
(|∇u|2 + |u|2)

)1/2(∫
Ω
(|∇v|2 + |v|2)

)1/2
= ‖u‖V ‖v‖V .

Similarly, for the second term∣∣∣∣∫
Ω
αu · v

∣∣∣∣ ≤ ‖α‖L∞(Ω)

(∫
Ω
|u|2

)1/2(∫
Ω
|v|2

)1/2

≤ ‖α‖L∞(Ω)

(∫
Ω
(|u|2 + |∇u|2)

)1/2(∫
Ω
(|v|2 + |∇v|2)

)1/2

= ‖α‖L∞(Ω)‖u‖V ‖v‖V .

Consequently, we get

aα(u,v) ≤ |aα(u,v)| ≤ C1‖u‖V ‖v‖V
with C1 = 1 + ‖α‖L∞(Ω).

To prove continuity for b(v, p) we need an estimate for ∇ · v. Recall that in
general v : Rd → Rd, so

(∇ · v)2 =
(

d∑
i=1

∂vi
∂xi

)2

=
d∑

i,j=1

∂vi
∂xi

∂vj
∂xj
≤

d∑
i,j=1

1
2

((
∂vi
∂xi

)2
+
(
∂vj
∂xj

)2
)

= d

d∑
i=1

(
∂vi
∂xi

)2
≤ d

d∑
i,j=1

(
∂vi
∂xj

)2
= d|∇v|2.

Hence, |∇ · v| ≤
√
d|∇v|. Continuity for b(v, p) follows immediately:∣∣∣∣−∫

Ω
p∇ · v

∣∣∣∣ ≤ (∫
Ω
|∇ · v|2

)1/2(∫
Ω
p2
)1/2

≤
√
d

(∫
Ω
|∇v|2

)1/2
‖p‖L2(Ω)

≤
√
d

(∫
Ω
|∇v|2 + |v|2

)1/2
‖p‖L2(Ω) =

√
d‖v‖V ‖p‖Q,

Chapter 2. The state equations 8

meaning C2 =
√
d.

In addition to continuity of aα(·, ·) and b(·, ·), we will also need a coercivity
property. The next proposition discusses the coercivity of aα.

Proposition 2.3. aα(·, ·) in (2.3) is coercive in V , that is there exists a constant
C > 0 such that

C‖v‖2V ≤ aα(v,v) ∀v ∈ V. (2.7)

Proof. Since α ≥ 0 almost everywhere, the second term in aα is non-negative,
yielding a0(v,v) ≤ aα(v,v)∀v ∈ V . Additionally, the Poincaré inequality [BS07,
Proposition 5.3.5] guarantees that there exists a constant C̃ > 0 such that

‖v‖V ≤ C̃‖∇v‖L2(Ω) ∀v ∈ V,

so coercivity of aα is seen by

aα(v,v) ≥ a0(v,v) =
∫

Ω
|∇v|2 = ‖∇v‖2L2(Ω) ≥

1
C̃2
‖v‖2V .

Thus, the inequality (2.7) is satisfied with C = 1/C̃2.

As the spaces in the arguments of b : V × Q → R do not coincide, another
definition than (2.7) is needed in order to examine the coercivity properties of
b(·, ·). Motivated by (2.7), define

C‖v‖V ≤ sup
w∈V

aα(w,v)
‖w‖V

,

which is equivalent to (2.7) when w = v. This is the motivation for the following
inf-sup definition, also commonly referred to as the Ladyženskaja-Babuška-Brezzi
(LBB) condition in the literature.

Definition 2.4 (inf-sup). The bilinear functional b : V × Q → R satisfies the
inf-sup condition if there exists a β > 0 such that

β‖p‖Q ≤ sup
v∈V

b(v, p)
‖v‖V

∀p ∈ Q. (2.8)

The name “inf-sup” comes from the fact that the condition necessarily also have
to hold for the p corresponding to the smallest right-hand side of (2.8), that is (2.8)
is equivalently formulated as

β ≤ inf
p∈Q

sup
v∈V

b(v, p)
‖v‖V ‖p‖Q

.

Having defined the inf-sup condition, we now state an important theorem that we
will need in order to show existence and uniqueness of p in (2.6).

9 2.3. Existence and uniqueness of solutions

Theorem 2.5 (Babuška–Lax–Milgram). Let V and Q be Hilbert spaces. Assume
that the bilinear functional b : V ×Q→ R is continuous and satisfies (2.8), and let
F ∈ V ′. Then the variational problem: Find p ∈ Q such that

b(v, p) = F (v) ∀v ∈ V,

admits a unique solution.

Proof. See [EG04, Thm 2.6].

As the name implies, Theorem 2.5 is a generalisation of the well-known Lax-
Milgram theorem. In fact, it is easy to see that if we replace Q with V in Theorem
2.5 and (2.8), Theorem 2.5 reduces to the usual Lax-Milgram theorem [BS07, The-
orem (2.7.7)].

We are now ready to address the existence and uniqueness of the solutions to
(2.6) in the following lemma.

Lemma 2.6. The solution (u, p) ∈ V ×Q of (2.6) exists and is unique. Furthermore
we have the bound ‖u‖V ≤ ‖f‖L2(Ω)/C, where C is the constant from (2.7).

Proof. In order to show existence and uniqueness of u, note that u is equivalently
defined as: Find u ∈ Vdiv such that

aα(u,v) = (f ,v)L2(Ω) ∀v ∈ Vdiv. (2.9)

As Vdiv ⊂ V , having already shown continuity of aα and b in V , along with coer-
civity of aα in V , existence and uniqueness of u in (2.9) follows immediately by
the Lax-Milgram theorem.

By Proposition 2.3 and (2.9), we have

‖v‖2V ≤
1
C
aα(v,v) = 1

C
(f ,v)L2(Ω) ≤

1
C
‖f‖L2(Ω)‖v‖V ∀v ∈ Vdiv,

yielding ‖v‖V ≤ ‖f‖L2(Ω)/C. Here we have used the Cauchy–Schwarz inequality
along with the obvious estimate ‖v‖L2(Ω) ≤ ‖v‖V . Choosing v = u, we arrive at
the desired bound.

Assume now that we have found the solution u in (2.6), for instance by solving
(2.9). The pressure p is then determined by

b(v, p) = (f ,v)L2(Ω) − aα(u,v) ∀v ∈ V, (2.10)

where right-hand side of the above equation is a member of the dual space of
V . Hence by Theorem 2.5, existence and uniqueness of p follows, provided b(·, ·)
satisfies the inf-sup condition (2.8).

Using from Lemma 2.1 that there exists a v ∈ V such that ∇ · v = −p and
1/‖p‖Q ≤ C̃/‖v‖V , we find the upper bound

‖p‖Q =
‖p‖2Q
‖p‖Q

= 1
‖p‖Q

∫
Ω
p(−∇ · v) = b(v, p)

‖p‖Q
≤ C̃ b(v, p)

‖v‖V
≤ C̃ sup

v∈V

b(v, p)
‖v‖V

,

Chapter 2. The state equations 10

showing that (2.8) holds when β = 1/C̃. Consequently, by Theorem 2.5 the vari-
ational problem (2.10) is uniquely solvable, meaning that p in (2.6) exists and is
unique.

Note that since the above argumentation holds for all α ∈ L∞(Ω) such that
α ≥ 0 almost everywhere, then if we choose α(x) = 0 for almost all x ∈ Ω, it
follows that the solution to the pure Stokes equations exists and is unique.

Chapter 3

The optimisation problem

In the previous chapter the generalised Stokes equations were introduced, a system
of two linear PDEs which can be interpreted as pure Stokes fluid governed by
Darcy’s law for fluids in a porous material [BP03]. In this chapter we interpret
α−1 as the permeability of the material, which measures how easily a fluid can pass
through it. Based on this interpretation we formulate an optimal control problem,
in addition to presenting an optimisation algorithm for solving it.

3.1 Topology optimisation
We begin by introducing the objective function. In light of (2.6), the total potential
power in the Darcy-Stokes equation is given by

Jα(u) = 1
2aα(u,u)− (f ,u)L2(Ω), (3.1)

which is a combination of the dissipative power in the fluid and the body forces f
acting on the velocity. While the first term in (3.1) is non-negative, from the minus
sign in front inner product involving f it is clear that the total power dissipation
increases when the velocity u flows in a direction opposite of the body forces.

Note that the functional v→ Jα(ρ)(v) is convex. To see this, observe first that

aα(ρ)(v,v) =
∫

Ω
|∇v|2 +

∫
Ω
α(ρ)|v|2

is continuous and convex in v, as the operator |·|2 is convex and ∇ is linear. The
third term is simply linear in and continuous in v, so it is also convex.

Next we discuss the details of the inverse permeability function α. The per-
meability is defined such that a lower permeability yields more resistance in the
material, yielding a higher energy loss. To this end, we define the ρ(x) to be the
scaled porosity of the material, that is ρ at given point x yields how large portion
of the material is empty space, meaning that fluid can flow through it. As such, ρ

11

Chapter 3. The optimisation problem 12

will act as the control function for our optimal control problem, which belongs to
the set

P = { ρ ∈ L2(Ω) : ρmin ≤ ρ(x) ≤ 1 for almost all x ∈ Ω },

where the pointwise constraints ρmin ≤ ρ(x) ≤ 1 are referred to as box-constraints.
Here 0 < ρmin � 1 will be a small lower bound, whose positivity will be necessary in
order to address some theoretical aspects of the optimisation problem. In addition
we require that the proportion of Ω occupied by fluid do not exceed some given
volume fraction γ ∈ (ρmin, 1), such that the set of admissible controls is defined

Pad = { ρ ∈ P :
∫

Ω
ρ ≤ γ|Ω| }. (3.2)

In order to relate the porosity ρ to the inverse permeability α, we define
α(ρ) : [ρmin, 1] → [0, ᾱ], for some ᾱ > 0, to be a convex, continuously differ-
entiable and strictly monotonically decreasing function. These properties will be
necessary in order to show that our optimal control problem has solutions, where
the monotonicity is intuitive considering we want a higher porosity to yield a lower
permeability.

The Darcy-Stokes equations (2.6) will naturally play the role of the state equa-
tions, meaning that the optimal control problem reads

min
ρ∈Pad

Jα(ρ)(u) where (u, p) solves (2.6) with α = α(ρ). (3.3)

In the next section the question regarding whether or not solutions to (3.3) exists
is addressed.

3.2 Existence of optimal controls
Before discussing the optimality conditions for the optimal control problem (3.3)
presented in the previous section, it is important to inspect whether or not there
exists optimal controls for this problem. More precisely we want to inspect if there
is a control ρ∗ ∈ Pad with corresponding velocity u∗ such that

Jα(ρ∗)(u∗) ≤ Jα(ρ)(u) ∀ρ ∈ Pad,

where u is the solution of (2.6) corresponding to ρ.
We start by showing that (3.3) is bounded from below. To do this, consider

first the optimisation problem

min
v∈V

Jα(ρ)(v) subject to ∇ · v = 0, (3.4)

for some ρ ∈ P . Here we have omitted the first state equation in (2.6), and we
minimise with respect to v rather than ρ. This optimisation problem has a unique
solution, which can be seen from the following proposition.

13 3.2. Existence of optimal controls

Proposition 3.1. The optimisation problem (3.4) admits a unique solution. Ad-
ditionally, the first order optimality conditions coincide with (2.6).

Proof. To address existence of stationary points of (3.4), consider instead the equi-
valent, unconstrained optimisation problem

min
v∈Vdiv

Jα(ρ)(v).

We have Jα(ρ)(v) → ∞ as |v| → ∞, which can be seen by the fact that aα is the
dominating term in J , and is coercive. By convexity and coercivity of v→ Jα(ρ)(v),
it follows that (3.4) has at least one stationary point.

Assume q ∈ Q to be the Lagrange multiplier corresponding the incompressibility
constraint, and define the Lagrangian

L(v, q) = J(ρ,v)−
∫

Ω
q∇ · v = 1

2aα(v,v)− (f ,v)L2(Ω) + b(v, q).

Denote the stationary point (u, p) ∈ V × Q, which needs to satisfy the necessary
conditions of (3.4), that is

L′v(u, p)v = aα(u,v)− (f ,v)L2(Ω) + b(v, p) = 0 ∀v ∈ V,
L′q(u, p)q = b(u, q) = 0 ∀q ∈ Q,

(3.5)

which is exactly (2.6). Since v → Jα(ρ)(v) is convex, (3.5) are also sufficient
conditions. Owing to Lemma 2.6, the stationary point exists and is unique.

As α is monotonically decreasing, we have J0(v) ≤ Jα(ρ)(v) for all ρ ∈ P and
v ∈ V . Hence, from the above proposition it follows that J0(u) is a lower bound on
(3.4), where u now is the velocity part of the solution to the pure Stokes equations.
Furthermore (3.4) is less constrained than (3.3), as in addition to not have the first
equation in (2.6) as a constraint, we are allowed to choose ρ freely. This means
that every admissible ρ and corresponding state u of (3.3) is also admissible for
(3.4), and since (3.4) is bounded from below, then so is (3.3).

Since (3.3) is bounded, the infimum

j = inf
ρ∈Pad

Jα(ρ)(u)

exists, and we choose {(ρn,un)}∞n=1 to be a minimising sequence of J . That is
Jα(un)(ρn)→ j as n→∞, where un is the state corresponding to ρn. In order to
discuss the properties of this sequence, we need the following proposition.

Proposition 3.2. Let Br ⊂ V be a closed ball [Wal14, p. 9] with radius r. The
sets Vdiv∩Br and Pad are weakly sequentially compact, meaning that every sequence
{vn}∞n=1 ⊂ Vdiv∩Br and {ρn}∞n=1 ⊂ Pad contains a weakly convergent subsequence,
with the limit being in the set.

Proof. [Trö10, Thm. 2.11] states that a bounded, convex and closed subset of a
reflexive Banach space is weakly sequentially compact, so the proof amounts to
showing that these properties hold for the two sets.

Chapter 3. The optimisation problem 14

As a function ρ ∈ Pad is bounded from below by ρmin and from above by 1 almost
everywhere, we have ‖ρ‖L2(Ω) ≤ |Ω|, showing that Pad is bounded. Furthermore,
convexity of Pad follows directly from the definition of convex sets, and reflexivity
of L2(Ω) is due to it being a Hilbert space.

To see that Pad is closed w.r.t. the L2 norm, assume that { ρn }∞n=1 ⊂ Pad
is a convergent sequence, meaning ‖ρn − ρ̄‖L2(Ω) → 0 as n → ∞ for some ρ̄ ∈
L2(Ω). As { ρn }∞n=1 converges strongly, it converges almost everywhere along a
subsequence. In other words, this subsequence converges pointwise to ρ̄(x) almost
everywhere, meaning ρmin ≤ ρ̄(x) ≤ 1 for almost all x in Ω. Convergence of the
integral in Pad follows from Lebesgue’s dominated convergence theorem [Tao11,
Thm. 1.4.49], implying that Pad is closed.

Turning our attention to Vdiv∩Br, this set is trivially bounded by r. Regarding
closedness, observe that Vdiv is by definition the null space of ∇· : V → L2(Ω). The
divergence operator can be shown to be continuous in V , where the proof is similar
to that for the continuity of b(·, ·) in the proof of Proposition 2.2. The singleton
{ 0 } is trivially closed in L2(Ω), meaning that Vdiv is closed. As the intersection of
two closed sets is closed, it follows that Vdiv ∩Br is closed.

Lastly, convexity follows form the linearity of ∇· and the fact that the intersec-
tion of two convex sets is convex, while reflexivity of V from the fact that it is a
Hilbert space.

As all the properties of [Trö10, Thm. 2.11] hold for both sets, it follows that
Vdiv ∩Br and Pad are weakly sequentially compact.

Using the bound ‖f‖L2(Ω)/C from Lemma 2.6 as r in the above proposition, we
can extract a weakly convergent subsequence from {(ρn,un)}∞n=1. For the sake of
brevity we simply reuse the index n for this new subsequence, such that

(ρn,un) ⇀ (ρ̄, ū)

as n→∞ for some (ρ̄, ū) ∈ Pad×Vdiv, which will be our candidate for a minimiser
of (3.3). In order to discuss what happens in the limit for Jα(ρn)(un) as n → ∞
we invoke the weakly lower semicontinuity of (ρ,u) → Jα(ρ)(u), which is given in
the following proposition.

Proposition 3.3. The functional (ρ,u)→ Jα(ρ)(u) is weakly lower semicontinuous
in Pad × V , meaning that for every sequence {(ρn,un)} ⊂ Pad × V such that
(ρn,un) ⇀ (ρ̄, ū) ∈ Pad × V as n→∞ we have

Jα(ρ̄)(ū) ≤ lim inf
n→∞

Jα(ρn)(un).

Proof. Writing (3.1) out as

Jα(ρ)(u) = 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω
α(ρ)|u|2 −

∫
Ω
f · u, (3.6)

we will consider weak lower semicontinuity for each term individually.

15 3.2. Existence of optimal controls

As discussed previously, the first term in (3.6) is continuous and convex in u.
The third term is simply linear in and continuous in u, so it is also convex. [Trö10,
Thm 2.12] states that every continuous and convex functional in a Banach space
is weakly lower semicontinuous, yielding

1
2

∫
Ω
|∇ū|2 ≤ lim inf

n→∞

1
2

∫
Ω
|∇un|2,

−
∫

Ω
f · ū ≤ lim inf

n→∞
−
∫

Ω
f · un.

(3.7)

In order to show weakly lower semicontinuity for the second term in (3.6), write∫
Ω
α(ρn)|un|2−

∫
Ω
α(ρ̄)|ū|2 =

∫
Ω
α(ρn)(|un|2− |ū|2) +

∫
Ω
(α(ρn)−α(ρ̄))|ū|2. (3.8)

The first term on the right hand-side can be estimated as∣∣∣∣∫
Ω
α(ρn)(|un|2 − |ū|2)

∣∣∣∣ ≤ ‖α(ρn)‖L∞(Ω)

∫
Ω

∣∣∣(|un|2 − |ū|2)
∣∣∣

= C1

∫
Ω
|(un − ū) · (un + ū)| ≤ C1‖un − ū‖L2(Ω)‖un + ū‖L2(Ω)

= C2‖un − ū‖L2(Ω),

where we have used the bound on ‖u‖V from Lemma 2.6 to conclude that ‖un + ū‖L2(Ω)
is bounded. By the compact embedding of V ⊂ H1(Ω) in L2(Ω) given by [Trö10,
Thm 7.3 (Rellich)], the weak convergence un ⇀ ū in V implies that u→ ū strongly
in L2(Ω). As ‖un − ū‖L2(Ω) → 0, the first term on the right-hand side of (3.8) tends
to 0 as n→∞.

For the second term in (3.8), since α is differentiable we have

α′(ρ̄)(ρn − ρ̄) = lim
t→0

α(ρ̄+ t(ρn − ρ̄))− α(ρ̄)
t

,

and by using that ρ̄+ t(ρn− ρ̄) = tρn + (1− t)ρ̄ in the right-hand side of the above
equation, invoking the convexity of α yields

α′(ρ̄)(ρn − ρ̄) ≤ lim
t→0

tα(ρn) + (1− t)α(ρ̄)− α(ρ̄)
t

= α(ρn)− α(ρ̄),

meaning α′(ρ̄)(ρn− ρ̄) ≤ α(ρn)−α(ρ̄) almost everywhere in Ω. Furthermore, since
|ū|2 ≥ 0 almost everywhere in Ω, the second term on the right-hand side in (3.8)
can be estimated from below as∫

Ω
(α(ρn)− α(ρ̄))|ū|2 ≥

∫
Ω
(ρn − ρ̄)α′(ρ̄)|ū|2. (3.9)

The right-hand side of the above estimate tends to zero as ρn ⇀ ρ̄ in L2(Ω)
provided α′(ρ̄)|ū|2 ∈ L2(Ω). In order to see this, consider the factors α′(ρ) and
|u|2 separately.

Chapter 3. The optimisation problem 16

First, as α is continuously differentiable in [ρmin, 1], then α′(ρ(·)) attains a
maximum and minimum in this interval for all ρ ∈ P , meaning α′(ρ) ∈ L∞(Ω).

To see that |ū|2 ∈ L2(Ω), it is necessary to use an embedding result for Sobolev
spaces. [Trö10, Thm. 7.1] provides conditions for when Sobolev spaces are con-
tinuously embedded in Lebesgue spaces, and in particular for the case Ω ⊂ R2 we
have that H1(Ω,R2) ↪→ Lq(Ω,R2) for all 1 ≤ q < ∞. Using q = 4, ū ∈ L4(Ω,R2)
implies that |ū|2 ∈ L2(Ω,R).

Finally, as α′(ρ) ∈ L∞(Ω) and |ū|2 ∈ L2(Ω), it follows that the product
α′(ρ)|ū|2 ∈ L2(Ω), meaning

lim
n→∞

∫
Ω
(ρn − ρ̄)α′(ρ̄)|u|2 = 0.

As this holds for all weakly convergent sequences {ρn}∞n=1 it also holds for a min-
imising sequence, so (3.9) becomes

1
2

∫
Ω
α(ρ̄)|ū|2 ≤ lim inf

n→∞

∫
Ω

1
2α(ρn)|ū|2, (3.10)

showing that the second term on the right-hand side of (3.8) is weakly lower semi-
continuous.

Finally, adding together the three inequalities in (3.7) and (3.10) yields the
desired result.

The rest of the proof follows from the above proposition. We have

Jα(ρ̄)(ū) ≤ lim inf
n→∞

Jα(ρn)(un) = j,

where the last equality comes from the fact that { ρn }∞n=1 is a minimising sequence.
This confirms that (ρ̄, ū) is a minimiser of (3.3).

Until now, the only time we relied on the dimension of Ω was in the proof of
Proposition 3.3, where we assumed Ω ⊂ R2 in order to conclude that u ∈ L4(Ω,R2).
However, for the case Ω ⊂ R3 we note that we still have from [Trö10, Thm. 7.1]
that H1(Ω,R3) ↪→ Lq(Ω,R3) for 1 < q ≤ 6, meaning that u ∈ L4(Ω,R3) also in
this case. In other words, the proof presented in this section also holds in three
dimensions.

3.3 Necessary optimality conditions
Having seen that there exists optimal controls for (3.3), we formulate the optimality
conditions such optimal controls has to satisfy. To this end we will use the formal
Lagrange method [Trö10, Sec. 2.10], so we formulate a Lagrangian of (3.3) as

L(ρ,u, p,Pu,Pp) = Jα(ρ)(u)
+ aα(ρ)(u,Pu) + b(Pu, p)− (f ,Pu)L2(Ω)

+ b(u,Pp).
(3.11)

17 3.3. Necessary optimality conditions

Here Pu ∈ V and Pp ∈ Q are the Lagrange multipliers corresponding to the state
equations.

In order to proceed, we derive the adjoint equations, which are the differential
equations Pu and Pp need to satisfy. This is done by finding the stationary points
of (3.11) w.r.t. to the Lagrange multipliers, that is

L′u(ρ,u, p,Pu,Pp)v = 0 ∀v ∈ V,
L′p(ρ,u, p,Pu,Pp)q = 0 ∀q ∈ Q,

(3.12)

in directions v and q. The linear terms in (3.11) are easy to differentiate, as the dir-
ectional derivative of a linear mapping is just the mapping itself. I.e. in general we
have (Au)′v = Av for a linear mapping u→ Au in a direction v. For the non-linear
term aα(ρ)(u,u) in Jα(ρ)(u), it can be verified that (aα(ρ)(u,u)′u)v = aα(ρ)(u,v)
using the chain rule from differentiation in Banach spaces [Trö10, Thm. 2.20], along
with the fact that ∇ is linear.

With this in mind, the adjoint equations (3.12) become

aα(ρ)(Pu,v) + aα(ρ)(u,v) + b(v,Pp) = (f ,v)L2(Ω) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q.

(3.13)

Since (u, p) is the solution to the state equations (2.6), (3.13) reduces to

aα(ρ)(Pu,v) = 0 ∀v ∈ V, (3.14)

with Pp = p. By the Lax-Milgram theorem (3.14) is uniquely solvable, and it is
trivial to see that Pu = 0 is the solution.

Having derived the forms of Pu and Pp, (3.11) reduces to

L(ρ,u, p) = Jα(ρ)(u) + b(u, p). (3.15)

By the formal Lagrange method, the optimality conditions of (3.3) can be stated
in terms of (3.15) by

L′u(ρ∗,u∗, p∗)v = 0 ∀v ∈ V,
L′p(ρ∗,u∗, p∗)q = 0 ∀q ∈ Q,

L′ρ(ρ∗,u∗, p∗)(ρ− ρ∗) ≥ 0 ∀ρ ∈ Pad,
(3.16)

for an optimal control ρ∗ with associated state (u∗, p∗). Here the first two equations
in (3.16) are simply the state equations, while the third equations is the variational
inequality, written out as

L′ρ(ρ∗,u∗, p∗)(ρ− ρ∗) = 1
2

∫
Ω
α′(ρ∗)|u∗|2(ρ− ρ∗). (3.17)

In treating of the optimal control problem (3.3) and corresponding optimal-
ity conditions (3.16), it is useful to introduce the notion of the reduced objective
functional. As there exists a unique state corresponding to each control, we can

Chapter 3. The optimisation problem 18

eliminate the state variables from the problem in favour for an operator ρ→ u(ρ).
Hence it takes a control ρ as input and returns the corresponding velocity u from
solving the state equations. From the context it should be clear that u(ρ) is not
to be confused with the value u(x) at the point x ∈ Ω.

We define the reduced objective functional

f(ρ) = Jα(ρ)(u(ρ)), (3.18)

meaning (3.3) can be written
min
ρ∈Pad

f(ρ). (3.19)

Although yielding a slight simplification of the optimisation problem, the main
motivation for introducing f is to be able to derive its gradient. The formal Lag-
range method enables us to formulate the gradient f ′(ρ) ∈ L2(Ω)′ in terms of
the Lagrangian L, more precisely by the simple rule f ′(ρ) = L′ρ(ρ,u, p) [Trö10,
p. 88]. Furthermore, by the Riesz representation theorem [BS07, Thm. 2.4.2] we
can identify f ′(ρ) by an element in L2(Ω), and having calculated L′ρ in (3.17) we
see that it takes the form

f ′(ρ) = 1
2α
′(ρ)|u(ρ)|2. (3.20)

Finally, using (3.20) and writing out the Lagrangian, (3.16) can be written more
explicitly as

aα(ρ∗)(u∗,v) + b(v, p∗) = (f ,v)L2(Ω) ∀v ∈ V,
b(u∗, q) = 0 ∀q ∈ Q,

(f ′(ρ∗), ρ− ρ∗)L2(Ω) ≥ 0 ∀ρ ∈ Pad.
(3.21)

3.4 The optimisation algorithm
We will now formulate a strategy for finding optimal controls ρ∗. Several algorithms
for solving (3.3) exist, like the separable sequential quadratic programming (SQP)
approach, the method of moving asymptotes (MMA) used in [BP03, Sec. 3.4], the
projected gradient method [Trö10, Sec. 3.7.1] or the optimality criteria method
(OC). Here we will use the optimality criteria method, which is presented in the
following subsection.

3.4.1 The optimality criteria method
As the name suggests, the optimality criteria method [BS11] is based on the optim-
ality conditions of (3.19). More precisely, we create a fixed-point scheme based on
(3.21), and to this end it is useful to enforce the volume constraint in Pad explicitly
using a Lagrange multiplier. (3.19) is then formulated

min
ρ∈P

f(ρ) subject to
∫

Ω
ρ ≤ γ|Ω|, (3.22)

19 3.4. The optimisation algorithm

and the optimality conditions of (3.22) become

(f ′(ρ∗) + λ, ρ− ρ∗)L2(Ω) ≥ 0 ∀ρ ∈ P,∫
Ω
(γ − ρ∗) ≥ 0,

λ ≥ 0,

λ

∫
Ω
(γ − ρ∗) = 0,

(3.23)

for a minimum (u∗, p∗, λ). λ ∈ R is the Lagrange multiplier corresponding to
volume constraint, whose non-negativity follows from the standard KKT condi-
tions, stated in [NW06, Thm. 12.1] and generalised for optimal control in [Trö10,
Thm. 6.1].

First, we give an alternative formulation of the variational inequality in (3.23).
Assuming ρ∗ is an optimal control, split Ω into the three domains Ωρmin = {x ∈
Ω : ρ∗(x) = ρmin}, Ω(ρmin,1) = {x ∈ Ω : ρmin < ρ∗(x) < 1} and Ω1 = {x ∈
Ω : ρ∗(x) = 1}. Choosing ρ ∈ P such that ρ(x) = ρ∗(x) for x ∈ Ωρmin ∪ Ω1,
and either identically ρmin or 1 in Ω(ρmin,1), then for the first of (3.23) to hold we
need to have f ′(ρ∗) + λ = 0 for x ∈ Ω(ρmin,1). Similarly, by choosing ρ ∈ P such
that ρ(x) = ρ∗(x) for x ∈ Ω(ρmin,1) ∪ Ω1, varying ρ(x) for x ∈ Ωρmin , we get that
f ′(ρ∗) + λ ≥ 0 for x ∈ Ωρmin . Equivalently we arrive at f ′(ρ∗) + λ ≤ 0 for x ∈ Ω1.
To summarise, at a minimum ρ∗ we have

f ′(ρ∗) = −λ for ρmin < ρ∗(x) < 1,
f ′(ρ∗) ≥ −λ for ρ∗(x) = ρmin,

f ′(ρ∗) ≤ −λ for ρ∗(x) = 1.
(3.24)

To get the actual scheme, instead of using ρ∗, we instead consider an iterate ρi
for i = 0, 1, . . . , and write the first equation of (3.24) as

ρi = −f
′(ρi)
λ

ρi.

Defining the left-hand side to be the next iterate ρi+1, we have

ρi+1 = ΠP

(
−f
′(ρi)
λ

ρi

)
, (3.25)

where ΠP : L2(Ω) → P is the projection onto P . In the case of box-constraints,
this projection can easily be expressed

ΠP (ρ) = min{1,max{ρmin, ρ}},

see [Trö10, p. 71]. To ensure that ρi+1 ∈ Pad, λ is defined by∫
Ω

ΠP

(
−f
′(ρi)
λ

ρi

)
= γ|Ω|.

Chapter 3. The optimisation problem 20

Using equality in the above expression, we restrict the OC method to only generate
iterates where the volume constraint is binding. This means that if there is any
hope for the OC method to converge towards a solution of (3.22), it necessary
that there actually exists an optimal control where the volume constraint is in fact
binding. This assumption is justified in the following proposition.

Proposition 3.4. There exists a solution ρ∗ ∈ Pad to the optimal control problem
(3.22) such that ∫

Ω
ρ∗ = γ|Ω|.

Proof. Let ρ∗ ∈ Pad be a global solution to (3.22) with u(ρ∗) = u∗, and assume
that ∫

Ω
ρ∗ < γ|Ω|.

From the last of the KKT conditions stated in (3.23), it follows that λ = 0. The
third of (3.23) becomes

1
2

∫
Ω
α′(ρ∗)|u∗|(ρ− ρ∗) ≥ 0 ∀ρ ∈ P, (3.26)

using the definition (3.20) of f ′(ρ). Splitting Ω into the three domains Ωρmin =
{x ∈ Ω : ρ∗(x) = ρmin}, Ω(ρmin,1) = {x ∈ Ω : ρmin < ρ∗(x) < 1} and Ω1 = {x ∈ Ω :
ρ∗(x) = 1} as before, we consider the three cases separately.

On Ωρmin , α′(ρ) < 0 for values of ρ ∈ [ρmin, 1] as α is strictly monotonically
decreasing, meaning (3.26) can only hold if u∗ = 0 on this part of the domain.
Considering Ω(ρmin,1), setting first ρ(x) = 0 and then ρ(x) = 1 for almost all x in
Ω(ρmin,1), the only way the variational inequality (3.26) can hold in both cases is if
u∗ = 0 also here. Lastly, for Ω1 (3.26) is trivially satisfied.

Define a new control ρ̂ ∈ Pad with ρ̂(x) = ρ∗(x) for almost all x ∈ Ω1 and
ρ̂(x) ≥ ρ∗(x) for almost all x ∈ Ωρmin ∪ Ω(ρmin,1) such that∫

Ω
ρ̂ = γ|Ω|.

From the above discussion we then have that u∗ = 0 when ρ̂ 6= ρ∗, and by the
definition of aα(ρ)(·, ·) we see that the only term containing ρ also contains u,
meaning u(ρ̂) = u∗. Furthermore, aα(ρ̂)(u∗, ·) = aα(ρ∗)(u∗, ·), such that f(ρ̂) =
Jα(ρ̂)(u∗) = Jα(ρ∗)(u∗). As f(ρ̂) = f(ρ∗), ρ̂ ∈ Pad is another global solution of
(3.22).

Numerical experience has shown that the (3.25) is not feasible in its current
form, so we are going to make two changes to the scheme. In order for the method
to converge, it is necessary to enforce move limits such that the next iterate does
not change too much relative to the current iterate. These limits are introduced as
pointwise upper and lower bounds, and if we let ζ > 0 be the fraction ρi+1 is allowed
to differ from ρi, we can express these move limits as (1− ζ)ρi ≤ ρi+1 ≤ (1 + ζ)ρi
almost everywhere in Ω.

21 3.4. The optimisation algorithm

The second change we want to make is to enforce some sort of damping on
−f ′(ρi)/λ. It is generally preferable that this factor should be close to 1, as this
indicates that we have converged. Hence we want values less than 1 to be amplified,
and values greater than 1 to be decreased. By taking (−f ′(ρi)/λ)ξ for some ξ ∈
(0, 1) we get exactly this effect, and a smaller value yields a greater damping around
1.

Finally, these two changes can be combined into a new operator Zλ : L2(Ω)→
L2(Ω) defined by

Zλ(ρi) = min
{

1 + ζ,max
{

1− ζ,
(
−f
′(ρi)
λ

)ξ}}
ρi,

such that the fixed-point scheme reads

ρi+1 = ΠPZλ(ρi) with λ such that
∫

Ω
ΠPZλ(ρi) = γ|Ω|. (3.27)

How accumulation points of (3.27) relates to the optimisation problem (3.22),
provided they exist, is addressed in the following proposition.

Proposition 3.5. Let ρ̄ ∈ Pad be an accumulation point of (3.27), that is

ρ̄ = ΠPZλ(ρ̄). (3.28)

Then ρ̄ satisfies the optimality conditions (3.23).

Proof. First, note that the move limits in Zλ are nowhere binding in an accumu-
lation point. To see this, assume the contrary. When the move limits are binding,
then Zλ(ρ̄) = (1 ± ζ)ρ̄, where the positive and negative case corresponds to the
upper limit and lower limit, respectively. For the case where the box constraints
in ΠP are binding, the move limits cannot be, as they in this case are a distance
ζ > 0 outside the box constraints. If the box constraints in ΠP are not binding,
then ΠPZλ(ρ̄) = Zλ(ρ̄). Hence ρ̄ = (1± ζ)ρ̄, which is a contradiction. This means
that in an accumulation point we have

ρ̄ = ΠP

((
−f
′(ρ̄)
λ

)ξ
ρ̄

)
. (3.29)

Now, consider the case where ρmin ≤ (−f ′(ρi)/λ)ξ < 1, that is the box con-
straints are not binding. (3.29) yields ρ̄ = (−f ′(ρ̄)/λ)ξ ρ̄, and by dividing by ρ̄

we see that the equation (−f ′(ρ̄)/λ)ξ = 1 is only satisfied when −f ′(ρ̄)/λ = 1,
retrieving the first of (3.24).

For the case (−f ′(ρ̄)/λ)ξ ρ̄ ≥ 1 it follows from (3.28) that ρ̄ = 1. Hence we have
(−f ′(ρ̄)/λ)ξ ≥ 1. This is equivalent to −f ′(ρ̄)/λ ≥ 1, retrieving the third of (3.24).
For (−f ′(ρ̄)/λ)ξ ρ̄ ≤ ρmin, the argumentation is completely equivalent.

Chapter 3. The optimisation problem 22

3.4.2 The stopping criterion
The last thing we will do in this section is to present a criterion for stopping the
iterations (3.27), which we will need when implementing the optimality criteria
method numerically in the coming chapter.

The simplest example of a stopping criterion is to check how much the iter-
ates between to consecutive iterations differ, that is for an iteration i we take
‖ρi − ρi−1‖L2(Ω). Although this approach can often work fairly well in practice,
there is always the possibility that for some reason the fixed-point scheme (3.27)
takes a small step in some iteration despite not having reached an accumulation
point, meaning the algorithm will terminate prematurely.

A more robust stopping criterion is to use the direction of steepest descent
−f ′(ρi), and check how much moving in this direction will differ from the current
iterate ρi. This point is given by ρi + (−f ′(ρi)) = ρi − f ′(ρi), but as it might not
be admissible, it is necessary to project back onto Pad.

To this end, write the L2 projection ΠPad
: L2(Ω) → Pad in a point ρ̂ ∈ L2(Ω)

onto Pad as the solution to the optimisation problem

min
ρ∈P

1
2‖ρ− ρ̂‖

2
L2(Ω) subject to

∫
Ω
ρ ≤ γ|Ω|.

Existence and uniqueness of the above problem is seen by convexity, coercivity and
continuity of ‖·‖2L2(Ω), along with convexity of Pad. Furthermore, the solution is
ρ∗ = ρ̂ − λ, where λ again is the Lagrange multiplier for the volume constraint.
Assuming ρ̂ 6∈ Pad, the projection ΠPad

: L2(Ω)→ Pad is given by

ΠPad
(ρ̂) = ΠP (ρ̂− λ), with λ such that

∫
Ω

ΠP (ρ̂− λ) = γ|Ω|.

In the case ρ̂ ∈ Pad, obviously ΠPad
(ρ̂) = ρ̂, that is constraint on λ in the (3.2) is

not enforced.
Having defined ΠPad

, we can define the stopping criterion as

‖ρi −ΠPad
(ρi − f ′(ρi))‖L2(Ω) < ε

for some sufficiently small ε > 0, and the projection onto Pad is illustrated in Figure
3.1.

Padρi

−f ′(ρi)
ρi −ΠPad

(ρi − f ′(ρi))

Figure 3.1: Illustration of the stopping criterion for an iteration i. The grey, dashed
line denotes the projection of the point ρi − f ′(ρi) onto Pad.

Chapter 4

Numerical implementation

In the previous chapter an optimal control problem for minimising the energy loss
in Stokes flow was introduced, and the optimality criteria method was outlined as
a strategy for finding optimal controls for the optimisation problem.

However several questions regarding actually implementing the method in prac-
tice were left unanswered, like how the state equations should be solved and how
to estimate the Lagrange multipliers appearing in the OC method. In this chapter
these details will be addressed, and we also introduce several numerical examples.

4.1 Finite element discretisation details

The finite element method (FEM) is the most commonly used discretisation tech-
nique in engineering and analysis [Qua14], and has proven well-suited for a wide
variety of differential equations, including fluid mechanics equations like the gen-
eralised Stokes equations discussed in this report.

Due to this, we will also use FEM for the numerical implementation considered,
and more precisely we will use the FEniCS platform, a collection of programs for
automatic solving of partial differential equations [LMW+12]. FEniCS is supported
with both Python and C++, where we have chosen to use the former for our
implementation. All parts of the code has been made fully MPI compliant [Nie16],
and in fact all the computations were performed in parallel on a dual-core processor.

4.1.1 Galerkin formulation of the state equations

In order to discretise the (2.6), we define Th to be a discretisation of Ω, with
discretisation parameter h. At the time of writing FEniCS only supports triangular
elements, so we assume that Th is a triangular. As such, h will denote the largest
diameter of the triangles. Lastly, if we let Vh and Qh be the discretised spaces for
the velocity space V = H1

0 (Ω) and pressure space Q = L2
0(Ω), respectively, then

23

Chapter 4. Numerical implementation 24

the Galerkin approximation of (2.6) yields: Find (uh, ph) ∈ Vh ×Qh such that

aα(uh,vh) + b(vh, ph) = (f ,vh)L2(Ω) ∀vh ∈ Vh,
b(uh, qh) = 0 ∀qh ∈ Qh.

(4.1)

The exact definition of the two families of finite-dimensional spaces Vh and Qh will
be introduced later in the next section.

For now, assume that Vh has basis ϕi, i = 1, . . . , n and Qh has basis φj ,
j = 1, . . . ,m, that is Vh = span{ϕ1, . . . ,ϕn} and Qh = span{φ1, . . . , φm}. This
means that generic functions vh ∈ Vh and qh ∈ Qh can be expressed as

vh(x) =
n∑
j=1

vjϕj(x), qh(x) =
m∑
l=1

qlφl(x), (4.2)

that is vh and qh is represented as a linear combination of the basis functions with
coefficients vi and qj , respectively. Similarly, writing the discrete solution uh and
ph as

uh(x) =
n∑
i=1

uiϕi(x), ph(x) =
m∑
k=1

pkφk(x), (4.3)

inserting (4.2) and (4.3) into (4.1) yields the linear system

m∑
j=1

(uiaα(ϕi,ϕj) + pkb(ϕj , φk)) = (f ,ϕj)L2(Ω)

m∑
l=1

uib(ϕi, ql) = 0

with i = 1, . . . , n and k = 1, . . . ,m. Furthermore, organising U = (u1, . . . , un)T
and P = (p1, . . . , pm)T , the above system can be written in matrix form as

AαU +BTP = F,
BU = 0.

(4.4)

Here Aα ∈ Rn×n, B ∈ Rm×n and F ∈ Rn, and are defined as

Aα = [aij] = [aα(ϕi,ϕj)], B = [bkj] = [b(ϕj , φk)], F = [fj] = [(f ,ϕj)L2(Ω)].
(4.5)

Lastly, it is trivial to see that the two linear systems in (4.4) can be written as a
single system with the system matrix S ∈ R(m+n)×(m+n), defined as

S =
[
Aα BT

B 0

]
.

We inspect the properties of the matrix S in the following subsection.

25 4.1. Finite element discretisation details

4.1.2 Properties of the system matrix
Proposition 4.1. The matrix S is block symmetric and indefinite.

Proof. Block symmetry of S is easily seen by the fact that A is symmetric, which
can be seen from (4.5) as aα(·, ·) is symmetric.

Showing that S is indefinite amounts to finding two vectors such that the quad-
ratic form associated with S has different signs. In order to do this, we will first
show that the matrix Aα is positive definite. Let V ∈ Rn be the column vector
with entries corresponding to the coefficients vi in (4.2), yielding

VTAαV =
n∑
i=1

n∑
j=1

viaijvj =
n∑
i=1

n∑
j=1

viaα(ϕi,ϕj)vj

= aα

 n∑
i=1

viϕi,

n∑
j=1

vjϕj

 = aα(vh,vh) ≥ 0.

As α ≥ 0 in aα(·, ·), it is obvious that aα(vh,vh) = 0 only when vh = 0, meaning
V = 0. This shows that Aα is positive definite.

Similarly as for V, let Q ∈ Rm be a column vector with elements qi from (4.2),
such that the quadratic form associated with S reads[

VT QT
][Aα BT

B 0

][
V
Q

]
= VTAαV + 2VTBTQ. (4.6)

Choosing V 6= 0 and Q = 0, by the positive definiteness of Aα it is easy to see
that the right-hand side of (4.6) is greater than zero.

To find a vector such that (4.6) is less than zero, choose Q 6= 0 and note that
the right-hand side of (4.6) can be written VT (AαV + 2BTQ). If we now define
AV + 2BTQ = −V, solving for V yields V = −2(I + Aα)−1BTQ, where I is the
identity matrix. This is possible as both I and Aα are symmetric and positive
definite, meaning I + Aα is also symmetric and positive definite, hence invertible.
The right-hand side of (4.6) is now

VT (AαV + 2BTQ) = VT (−V) = −‖V‖22 < 0

for V 6= 0, showing that S is indefinite.

Having seen that the matrix S is indefinite, we can not guarantee that the linear
system (4.4) is uniquely solvable. We need to enforce another condition for this to
be the case, which is discussed in the following proposition.

Proposition 4.2. S is non-singular if and only if b : Vh × Qh → R satisfies the
inf-sup condition (2.8).

Proof. From (2.8) it is clear that the inf-sup condition is violated if and only if
there exists a non-zero function p∗h ∈ Qh such that

b(vh, p∗h) = 0 ∀vh ∈ Vh.

Chapter 4. Numerical implementation 26

We let V and P∗ denote the column vectors whose entries are the coefficients
when vh and p∗h are represented in terms of their bases ϕ1, . . . ,ϕn and φ1, . . . , φm,
respectively. The above equation is written

BTP∗ = 0,

meaning that the inf-sup condition is violated iff the kernel of BT is non-trivial. In
other words, the inf-sup condition holds iff

kerBT = {0 }. (4.7)

If we now can prove that (4.7) holds iff S is non-singular, we are done. As Aα
is invertible, we can write the first equation of (4.4) as

U = A−1
α (F−BTP)

which inserted into the second equation and rearranging yields

RP = BA−1
α F, where R = BA−1

α BT .

P, and by extension, U, are uniquely determined provided R is invertible, so
proving the proposition amounts to showing that R is invertible iff b : Vh×Qh → R
satisfies 2.8.

To this end, assume first that kerBT is non-trivial, and consider the equation

RQ = BA−1
α BTQ = 0

for some Q ∈ Rm. In this case any Q ∈ kerBT would solve the equation, and since
kerBT is non-trivial this violates the injectivity property, a necessary condition for
invertibility.

On the other hand, if kerBT is trivial, then BT is injective. Additionally, since
Aα is positive definite then so is A−1

α , and we have

QTRQ = QTBA−1
α BTQ = (BTQ)TA−1

α BTQ ≥ 0,

with equality only when BTQ = 0. Since kerBT = {0 }, this means that QTRQ =
0 only when Q = 0, showing that R is positive definite, hence non-singular.

To get a better understanding of the above proposition, let us examine the
case where a pair of finite dimensional function spaces Vh and Qh are chosen such
that b : Vh × Qh → R violates the inf-sup condition. As we saw in the proof of
Proposition 4.2, this means that there exists a p∗h ∈ Qh such that b(vh, p∗h) = 0 for
all vh ∈ Vh. In this case, if (uh, ph) is a solution to the Galerkin problem (4.1),
then so is (uh, ph + p∗h), meaning that the pressure is not uniquely determined,
giving rise to numerical instabilities in the form of S being singular. Because of
this, we refer to pairs of spaces satisfying inf-sup as stable, while spaces that do
not, to be unstable.

27 4.2. Choice of elements

4.2 Choice of elements
The spaces Vh and Qh are in the finite element method decided by the choice
of element types used for each space, and in light of previous section we present
two different pairs of elements which we will use for comparison in our numerical
implementation.

4.2.1 Taylor-Hood
The Taylor-Hood (TH) elements are a family of elements where both Vh and Qh are
continuous piecewise polynomials. In the generalised Stokes equations the pressure
p is of order one and the velocity u of order two in terms of differentiability, so to
that end it seems reasonable to let Vh be of a higher order than Qh. More precisely,
the TH elements are commonly written as the pair Pk−Pk−1, k ≥ 2, denoting that
the basis functions of Vh should be of one order higher than those of Qh. Note that
in the case k = 1, corresponding to piecewise linear and continuous velocity and
piecewise constant pressure, is not part of the definition, and in fact it can be shown
that this pair of elements are unstable in terms of the inf-sup condition [Qua14,
p. 449]. For k ≥ 2 however, the inf-sup condition holds, and the TH elements have
been proven to be both stable and convergent as the discretisation parameter h
tends to zero [BF91].

In our numerical implementation we have chosen to use the smallest repres-
entative of TH, that is the pair P2 − P1, corresponding to piecewise continuous
quadratic basis functions in Vh and piecewise continuous linear basis functions for
Qh. The TH elements are illustrated in Figure 4.1a.

(a) Taylor-Hood (b) Crouzeix–Raviart

Figure 4.1: The two pairs of elements. The black circles and white squares denotes the
degrees of freedom for the velocity and pressure, respectively.

4.2.2 Crouzeix–Raviart
The second pair of elements we are going to consider are the Crouzeix–Raviart (CR)
elements, which were first introduced in [CR73] for solving the Stokes equations.
These elements uses linear Lagrange elements, but as opposed to TH they are
not continuous on the facets. Instead they are only required to be continuous at
the midpoint of the facet between two neighbouring elements. Because of this
discontinuity, the CR elements are not weakly differentiable in L2(Ω), meaning

Chapter 4. Numerical implementation 28

these functions are not inH1(Ω). We say that CR elements are not H1-conforming.
Although non-conforming, the CR elements are convergent.

As the bilinear forms aα(·, ·) and b(·, ·) contains a weak gradient and a weak
divergence operator, respectively, we can not evaluate aα(uh,vh) and b(vh, ·) for
two functions uh,vh ∈ Vh 6⊂ H1(Ω). Formally, for the previous section to be
meaningful it would be necessary define aα and b element-wise. That is, we would
need to replace the weak gradient operator ∇ with ∇h, the piecewise weak gradient
operator, defined by evaluating ∇ element-wise on Th. However, for the sake of
brevity we simply assume that the derivatives are understood element-wise for the
CR elements.

Furthermore, for the pressure space Qh we use piecewise constant polynomials,
meaning this also consists of discontinuous functions. However as p and q are not
weakly differentiated in (2.6), we have Qh ⊂ Q. The elements are illustrated in
Figure 4.1b.

Formally “Crouzeix–Raviart elements” refer to the velocity elements only, as we
here always use piecewise constant functions for the pressure elements along with
the CR elements, we refer to CR as the pair Vh and Qh.

4.3 A posteriori residual estimates
A crucial part of solving differential equations numerically is the question of how
accurate a computed solution is. For instance, say we have computed a solution
(U,P) for the algebraic system of equations (4.4), it would be natural to define
the residuals for this linear system as

R̃mo = F−
(
AαU +BTP

)
,

R̃ma = −BU.

Here the indices mo and ma are short for momentum and mass, as they correspond
to the momentum and the mass equation in (2.6), respectively. Even though we
would have solved (4.4) accurately such that R̃mo = 0 and R̃ma = 0 in the above
equations, this would yield no information about how well the functions (uh, ph) of
(4.1) resembles the true solution (u, p) of (2.6), which are the equations we want
to solve in the first place.

To this end, let us define the residuals of (2.6) as the linear functionals Rmo ∈ V ′
and Rma ∈ Q′ given by

Rmou,p(v) = (f ,v)L2(Ω) − aα(u,v)− b(v, p),
Rmau (q) = −b(u, q),

(4.8)

for a provided pair of functions (u, p) ∈ V ×Q. The dual norms of Rmo and Rma
are defined ∥∥Rmou,p

∥∥
V ′

= sup {
∣∣Rmou,p(v)

∣∣ : v ∈ V, ‖v‖V ≤ 1 },
‖Rmau ‖Q′ = sup { |Rmau (q)| : q ∈ Q, ‖q‖Q ≤ 1 },

29 4.3. A posteriori residual estimates

whose value can bee seen as how well (u, p) solves (2.6), and with ‖Rmo‖V ′ =
‖Rma‖Q′ = 0 iff (u, p) is the solution. Unfortunately, these dual norms are difficult
to compute directly, so in practice we need some other way of estimating them. Re-
calling that V and Q are Hilbert spaces, invoking the Riesz representation theorem
yields

(rmo,v)V = Rmou,p(v) ∀v ∈ V,
(rma, q)Q = Rmau (q) ∀q ∈ Q,

(4.9)

for some rmo ∈ V and rma ∈ Q. Now, using that

‖rmo‖V =
∥∥Rmou,p

∥∥
V ′
,

‖rma‖Q = ‖Rmau ‖Q′ ,

we get estimates for
∥∥Rmou,p

∥∥
V ′

and ‖Rmau ‖Q′ by solving (4.9), which we see are just
linear variational problem with unknowns rmo and rma. Furthermore, by the Lax-
Milgram theorem it is trivial to see that both variational problems are uniquely
solvable. Note also that the two equations are decoupled, as opposed to the state
equations, meaning they can be solved separately.

Having introduced the concept of residuals, let us adapt (4.9) to the finite
element method. Again, assume we have computed the solution (uh, ph) of (4.1)
on some triangulation Th of Ω with maximum triangle diameter h. Motivated by
(4.8), we want to estimate how well (uh, ph) solves (4.1), but at the same time
we want to capture some the discretisation error resulting from restricting the test
and trial space from the continuous space V × Q to the finite dimensional space
Vh × Qh. In order to do the latter, it is necessary to evaluate (uh, ph) on a space
with higher accuracy than Vh×Qh. In the finite element method there are mainly
two ways of achieving this, either by h-enrichment, where h in Th is decreased,
or by p-enrichment, where the order of the basis functions spanning Vh × Qh is
increased.

Here we use the former approach, that is Th will be uniformly refined by dividing
each triangular cell into four. This results in a finer mesh Th/2, as illustrated in
Figure 4.2. Next, define the corresponding trial and test space Vh/2 × Qh/2 on

Refine

Figure 4.2: Refinement of two triangular cells.

Th/2, consisting of the same type of basis functions as for Vh ×Qh on Th. We are
now ready to discretise (4.9), which we will do on Th/2. Letting rmoh/2 ∈ Vh/2 and
rmah/2 ∈ Qh/2 be trial functions and vh/2 ∈ Vh/2 and qh/2 ∈ Qh/2 be test functions,

Chapter 4. Numerical implementation 30

the Galerkin formulation of (4.9) becomes

(rmoh/2,vh/2)V = Rmouh,ph
(vh/2) ∀vh/2 ∈ Vh/2,

(rmah/2, qh/2)Q = Rmauh
(qh/2) ∀qh/2 ∈ Qh/2,

(4.10)

on the finer mesh Th/2. Here the integrals containing uh and ph from the coarser
mesh Th can be evaluated numerically on the finer mesh Th/2 simply by evaluating
the polynomials making up (uh, ph) on the new quadrature points of Th/2.

At first glance it might seem counter-intuitive to compute the residuals rmo
and rmo on a finer mesh in order to get an estimate of the discretisation error
related to (uh, ph). After all, why not just solve (4.1) on Th/2 in the first place?
The reason is that the left-hand side of the equations (4.10) are independent of the
state equations and the control. This means that the matrix in the linear system
arising from applying the finite element method to (4.10) does not change either,
only the right-hand sides. We can therefore perform the most computationally
heavy parts in the first optimisation iteration, and then reuse these computations
in the later iterations.

It can easily be shown that the matrices arising from applying the finite element
method to (4.10), as done for the generalised Stokes equations in the previous sec-
tion, are symmetric and positive definite, so for instance we could perform Cholesky
factorisation [HJ90] once on the matrices in order to later get the exact solution
for arbitrary right-hand sides relatively inexpensive. Another option is to use an
algebraic multigrid method (AMG), which is what we will use in this report due to
the generally lower memory footprint than full matrix factorisations. As we will
use the HYPRE algebraic multigrid implementation provided by FEniCS, we do
not go into the concept of multigrid methods in general here.

Lastly, we introduce the notion of relative residuals. Considering how Rmou,p and
Rmau depends on u in (4.8), and the fact that u = g on ∂Ω, it is not unreasonable
to expect that the norm of the residuals will increase with the magnitude of g. We
generally do not want the values of residuals to depend too strongly on g, as it will
make difficult to compare the residuals for different numerical examples. In order
to relate the magnitude of g to the value of the residuals, we therefore define the
relative residuals to be

ηmo =
‖rmoh/2‖ V
‖g‖L2(∂Ω)

and ηma =
‖rmah/2‖Q
‖g‖L2(∂Ω)

(4.11)

in hopes of having a quantity that will not differ too much for the different numerical
experiments that will be introduced in Section 4.6.

4.4 Convergence test
In order check the correctness of our program, let us apply the refinement on a
test example. To this end, the domain Ω, the porosity distribution ρ, the source
function f and the boundary conditions in (2.6) can be chosen arbitrarily. For

31 4.4. Convergence test

simplicity we let Ω be the unit square and ρ = 1 everywhere in Ω, that is we
recover the pure Stokes equations. Furthermore we continue to use homogeneous
Dirichlet boundary conditions, and we let the source function be defined

f(x, y) =
[
sin(x+ 2y)
sin(2x+ y)

]
for (x, y) ∈ Ω.

Having chosen a test problem, we solve the state equations for different mesh
sizes n × n exactly using a direct solver. The triangle diameter h of the mesh is
inversely proportional to n, and we use the acquired solution solution (uh, ph) in
the framework developed in Section 4.3 to estimate the residuals rmoh/2 and rmah/2.
More precisely we apply the finite element method to (4.10) and solve the resulting
linear system, again using a direct solver. We solve the test problem using both
CR and TH type elements, and the result is depicted in Figure 4.3.

10−5

10−3

10−1

‖r
m
o

h
/
2‖

V

CR
TH
O(1/n)
O(1/n2)

23 24 25 26
10−17

10−10

10−3

n

‖r
m
a

h
/
2‖

Q

CR
TH
O(1)
O(1/n2)

Figure 4.3: Log-log plot of the two residual norms for the test problem as a function of
the discretisation size n for CR TH. n ranges from 8 to 64.

Starting with the TH elements, the convergence rate appears to be quadratic
for both residuals norms. For the CR the convergence rate appears linear in for the
momentum conservation equation, while being constant for the mass conservation
equation. However, by noting the values of the axis in the second graph of Figure 4.3
we see that ‖rmah/2‖Q ∼ 10−16 in this case, which corresponds to machine precision.
In other words, second of (2.6) is solved exactly for the case of CR type elements,
owing to the piecewise constant elements for the pressure.

When defining the general TH elements Pk − Pk−1, k ≥ 2 in Subsection 4.2.1
we claimed that the lower degree for the pressure elements were necessary in order

Chapter 4. Numerical implementation 32

for the pair of elements to be stable, that is the space Vh needs to be sufficiently
“rich” compared to Qh. However we de not discuss whether or not the TH family is
optimal in terms of convergence rate, which in this situation amounts to whether or
not we obtain any additional accuracy by increasing the order of the basis functions
spanning Vh. For instance, would the pair P3 − P1 yield a more rapid convergence
rate than the TH element considered above? To test this, we solve the test problem
for the same n as previously using this new pair of elements, and the result can
be seen in Figure 4.4. From Figure 4.4 we see that the mass conservation equation

23 24 25 2610−7

10−5

10−3

n

R
es
id
ua

ln
or
m

‖rmoh/2‖ V
‖rmah/2‖Q
O(1/n2)
O(1/n3)

Figure 4.4: Log-log plot of the two residual norms for the element pair P3 − P1.

converges with the same rate as before for cubic basis functions for the velocity,
so the higher order basis functions did not result in a higher accuracy in this case.
For the momentum conservation equation we can see that there have been a slight
increase in convergent rate, appearing to converge with a rate somewhere between
cubic and quadratic. Unfortunately, cubic basis function results in a significant
increase in the number of degrees of freedom for our problem, which is noticed
as an increase in the size of the linear system (4.4). This makes the problem
significantly more costly to solve, both computationally and storage wise. To this
end we see that it is practical to continue using the TH elements.

In Section 4.3 where we introduced the residual estimates, we did not justify
whether or not these estimates sufficiently approximates the true residuals. To
address this question, we compare the residuals computed on Th/2 to the residuals
evaluated on an even finer mesh Th/4, that is where we have performed the re-
finement illustrated in Figure 4.2 twice. To capture the difference in discretisation
error, we evaluate ‖rmoh/2 − rmoh/4‖ V on Th/4 for the test example, and the results
can be seen in Figure 4.5. It is clear that between the two element types, the TH
elements yield a small change in the residuals when refining the mesh one and two
times, with about a 5 % decrease when doing two refinements compared to one.
This indicates that for the TH elements, one refinement is sufficient in order to
estimate rmo accurately. For the CR elements, the change is larger at about 25 %,
meaning that there still is a not insignificant discretisation error in rmoh/2. This is
something we will have to keep in mind when the residuals are used in Chapters 5
and 6.

33 4.5. Implementation of the optimisation problem

23 24 25 26

0.1

0.2

n

‖r
m
o

h
/
2
−

rm
o

h
/
4‖

V
/‖

rm
o

h
/
2‖

V CR
TH

Figure 4.5: Plot of the relative difference in the norms for the momentum residual
evaluated on Th/2 and Th/4 as a function of the grid size n.

4.5 Implementation of the optimisation problem
4.5.1 The discrete optimisation problem
Having introduced the finite element implementation of the generalised Stokes
equations in Section 4.1 and inspected the convergence rates of the residuals, we
now discretise the optimisation problem considered in Chapter 3.

As we already have defined the finite-dimensional spaces Vh and Qh, where h
is the maximum triangle diameter for a triangulation of Th for Ω, we additionally
have to define an appropriate space for the discretised controls ρh. Recall that in
topology optimisation we prefer ρ to resemble a characteristic function, meaning
that they will be piecewise constant, but with sudden jumps between 0 and 1. As
such, piecewise constant functions is a natural choice, that is we define the space
for the controls as

Wh = { ρh : Ω→ R : ρ(xK) = ρK ∀xK ∈ K, ∀K ∈ Th, ρK ∈ R },

along with the set of box-constrained functions Ph and the set of admissible controls
Ph,ad by

Ph = { ρh ∈Wh : ρmin ≤ ρ(x) ≤ 1 ∀x ∈ Ω },

Ph,ad = { ρh ∈ Ph :
∫

Ω
ρh ≤ γ|Ω| }.

By the boundedness of Ω we see that for a ρh ∈Wh we have(∫
Ω
|ρh|2

)1/2
=
(∑
K∈Th

∫
K

|ρK |2
)1/2

≤
√
|Ω| max

K∈Th

|ρK | <∞,

meaningWh ⊂ L2(Ω), which in turn implies that Ph ⊂ P and Ph,ad ⊂ Pad. Finally,
as for (3.3), the discretised optimisation problem reads

min
ρh∈Ph,ad

Jα(ρh)(uh) where uh solves (4.1) with α = α(ρh).

Chapter 4. Numerical implementation 34

4.5.2 The projection onto the set of admissible controls
Before stating the algorithm for the complete optimisation algorithm in the next
subsection, we present here the details for implementing the stopping criterion from
Subsection 3.4.2.

The projection ΠPh
: Wh → Ph can be defined as for P , that is

ΠPh
(ρh) = min{1,max{ρmin, ρh}}. (4.12)

Similarly, ΠPh,ad
: Wh → Ph,ad is given by

ΠPh,ad
(ρh) = ΠPh

(ρh − λ) with λ such that
∫

Ω
ΠPh

(ρh − λ) = γ|Ω|. (4.13)

In (4.13) it is necessary to estimate the Lagrange multiplier λ for the volume con-
straint in order to project onto Ph,ad, and although we have provided the equation
λ needs to satisfy, we have not specified how this equation can be solved. To this
end, we denote ∆ad

vol(ρh, λ) as the residual of the equation for λ in (4.13), i.e.

∆ad
vol(ρh, λ) =

∫
Ω

(γ −ΠPh
(ρh − λ)) .

Assuming now that we have been given some ρh ∈ Wh, estimating λ for (4.13)
amounts to finding the roots of the function λ→ ∆ad

vol(ρh, λ).
Bisection [Sau14, Sec. 1.1] is an algorithm for finding roots of continuous func-

tions in an interval, and is what we will use to estimate λ. Generally, for a con-
tinuous function g we provide two bounds λmin and λmax such that g(λmin) < 0
and g(λmax) > 0. We can without loss of generality assume that λmin < λmax, as g
can be multiplied with −1 without changing its roots. Then, by the intermediate
value theorem there exists λ ∈ [λmin, λmax] such that g(λ) = 0. Bisection works
by dividing the interval in half, and by the sign of the function value in the mid-
point determine which half contains a root. The algorithm can then be performed
recursively on this new interval until the interval containing a root is sufficiently
small. Here we use

λmax − λmin

λmax + λmin
< ελ

for some ελ > 0 as the stopping criterion for the bisection algorithm, which is
depicted in Algorithm 1.

Having introduced the bisection algorithm, we want to apply Algorithm 1 to
λ → ∆ad

vol(ρh, λ). In order to do this, we first find values for λmin and λmax such
that ∆ad

vol(ρh, λmin) and ∆ad
vol(ρh, λmax) have opposite signs. We assume that∫

Ω
ΠPh

(ρh) > γ|Ω|, (4.14)

as ΠPh,ad
(ρh) = ΠPh

(ρh) if this is not the case, so using bisection is unnecessary.
Starting with λmin, using λmin = 0 gives that ∆ad

vol(ρh, λmin) < 0 by (4.14), meaning

35 4.5. Implementation of the optimisation problem

Algorithm 1 Bisection
Require: λmin < λmax, g ∈ C([λmin, λmax]), g(λmin) ≤ 0, g(λmax) ≥ 0, ελ > 0
1: procedure Bisection(g, λmin, λmax)
2: λ← (λmax + λmin)/2
3: if (λmax − λmin)/(λmax + λmin) < ελ or |g(λ)| < ελ then
4: return λ
5: end if
6: if g(λ) < 0 then
7: return Bisection(g, λ, λmax)
8: else
9: return Bisection(g, λmin, λ)
10: end if
11: end procedure

λmax must be chosen such that ∆ad
vol(ρh, λmax) > 0. To see how this can be done,

write the box-constraints in (4.12) as

ΠPh
(ρh) =

ρmin for ρh ≤ ρmin,

ρh for ρmin < ρh < 1,
1 for ρh ≥ 1,

meaning ΠP (ρh − λ) can be written

ΠPh
(ρh − λ) =

ρmin for ρh ≤ λ+ ρmin,

ρh − λ for λ+ ρmin < ρh < 1 + λ,

1 for ρh ≥ 1 + λ.

(4.15)

Choosing λmax = maxx∈Ω{ρn(x)}, then from (4.15) we see that ΠPh
(ρh−λmax) = 0

for all x ∈ Ω, meaning ∆ad
vol(ρh, λmax) = γ|Ω| > 0.

Continuity of λ → ∆ad
vol(ρh, λ) can be seen by first observing continuity of

λ → ΠPh
(ρh − λ). This follows from the fact that λ → min{h(λ), g(λ)} and

λ → max{h(λ), g(λ)} are continuous for arbitrary continuous functions h and g.
Next, ensuring that the integral in (4.13) is continuous, it is easiest to simply rely
on the fact that the integration will be performed numerically, where we evaluate
the integral as a finite sum over some given quadrature points.

As the requirements in Algorithm 1 are satisfied, the projection onto Ph,ad is
formulated as Algorithm 2.

4.5.3 The optimality criteria method
To address the implementation details of the optimality criteria method, let us
summarise the most important details from Section 3.4 in terms of the discretised
function and corresponding sets defined in Subsection 4.5.1.

Chapter 4. Numerical implementation 36

Algorithm 2 Projection onto Pad
Require: ρh ∈Wh

1: procedure Projection(ρh)
2: if ∆ad

vol(ρh, 0) ≥ 0 then
3: return ΠPh

(ρh) . ΠPh
(ρh) already satisfies the volume constraint

4: end if
5: λmin ← 0, λmax ← maxx∈Ω{ρh(x)}
6: Set g(λ) = ∆ad

vol(ρh, λ)
7: λ← Bisection(g, λmin, λmax)
8: return ΠPh

(ρh − λ)
9: end procedure

The move limits and damping factor are given as

Zλ(ρh) = min
{

1 + ζ,max
{

1− ζ,
(
−f
′(ρh)
λ

)ξ}}
ρh, (4.16)

while the reduced gradient is

f ′(ρh) = 1
2α
′(ρh)|uh(ρh)|2. (4.17)

Again, uh(ρh) is understood as the solution uh to (4.1) with α = α(ρh). Practical
testing of the optimality criteria method showed that ζ = 0.4 and ξ = 0.5 in (4.16)
worked well overall, so these are the values we will use in the implementation.
Finally, the fixed-point scheme for the discretised problem is written

ρh,k+1 = ΠPh
Zλ(ρh,k) with λ such that

∫
Ω

ΠPh
Zλ(ρh,k) = γ|Ω|, (4.18)

with ρh,k ∈ Ph,ad for k = 0, 1,
Equivalently as for (4.13), we define

∆oc
vol(ρh, λ) =

∫
Ω

(γ −ΠPh
Zλ(ρh)) (4.19)

for (4.18), and we will again use bisection in order to compute λ. However, as
opposed to (4.13), in (4.18) it is difficult to find explicit expressions for λmin and
λmax such that ∆oc

vol(ρh, λ) have different signs for a given ρh. Instead we only show
that there exists a λ > 0 such that ∆oc

vol(ρh, λ) = 0.

Proposition 4.3. Assume that ρh ∈ Ph,ad with∫
Ω
ρh = γ|Ω|. (4.20)

We then have

lim
λ→0+

∆oc
vol(ρh, λ) < 0 and lim

λ→∞
∆oc

vol(ρh, λ) > 0.

37 4.5. Implementation of the optimisation problem

Proof. First, consider the situation λ → 0+ in (4.16) and assume that uh(ρh) 6=
0 everywhere in Ω. We do not prove the validity of this assumption, but note
that the contrary was not observed during our numerical experiments. Under this
assumption, from (4.17) we see that f ′(ρh) 6= 0 everywhere in Ω as well, meaning
that (−f ′(ρh)/λ)ξ →∞ in (4.16) yields

lim
λ→0+

Zλ(ρh) = (1 + ζ)ρh

for all x ∈ Ω. Furthermore, as ζ > 0 and ρh ∈ Ph we have ρh < (1 + ζ)ρh,

lim
λ→0+

ΠPh
Zλ(ρh) = ΠPh

((1 + ζ)ρh) ≥ ΠPh
(ρh) = ρh

for all x ∈ Ω. The inequality in the above equation is strict on the set where
ρh < 1, which is satisfied on a non-negligible part of Ω as γ < 1. Using the above
estimate along with the dominated convergence theorem [Tao11, Thm. 1.4.49], we
therefore get

lim
λ→0+

∫
Ω

ΠPh
Zλ(ρh) =

∫
Ω

lim
λ→0+

ΠPh
Zλ(ρh) >

∫
Ω
ρh = γ|Ω|,

which along with (4.20) implies that the limit as λ→ 0 in (4.19) results in

lim
λ→0+

∆oc
vol(ρh, λ) = γ|Ω| − lim

λ→0+

∫
Ω

ΠPh
Zλ(ρh) < γ|Ω| − γ|Ω| = 0.

Next, consider λ→∞ in (4.16). In this case (−f ′(ρh)/λ)ξ → 0, meaning (4.16)
yields

lim
λ→0+

Zλ(ρh) = (1− ζ)ρh.

In addition, since ρh ∈ Ph we have ρh > (1− ζ)ρh, meaning

lim
λ→∞

ΠPh
Zλ(ρh) = ΠPh

((1− ζ)ρh) ≤ ΠPh
(ρh) = ρh

for all x ∈ Ω. Again, the inequality in the above equation is strict on the set
ρh > ρmin, which is satisfied on a non-negligible part of Ω as γ > ρmin. The
dominated convergence theorem gives

lim
λ→∞

∫
Ω

ΠPh
Zλ(ρh) =

∫
Ω

lim
λ→∞

ΠPh
Zλ(ρh) <

∫
Ω
ρh = γ|Ω|,

and we arrive at the estimate

lim
λ→∞

∆oc
vol(ρh, λ) = γ|Ω| − lim

λ→∞

∫
Ω

ΠPh
Zλ(ρh) > γ|Ω| − γ|Ω| = 0.

Chapter 4. Numerical implementation 38

As for (4.13), continuity of λ → ∆oc
vol(ρh, λ) follows from the continuity of

λ → min{h(λ), g(λ)} and λ → max{h(λ), g(λ)} when h and g are two arbitrary,
continuous functions. The integral is naturally also in this case evaluated numer-
ically, implying continuity. We can therefore set λmin = 0, while for λmax we can
only conclude that since limλ→∞∆oc

vol(ρh, λ) < 0, λ→ ∆oc
vol(ρh, λ) changes sign for

some λ > 0, that is (4.18) has a root.
One way to find a valid λmax could be to first define it to be some initial value,

and then increase it with a fixed amount until ∆oc
vol(ρh, λmax) becomes positive.

For instance, for a constant c > 0 we let λmax ← λmax + c until ∆oc
vol(ρh, λmax) ≥ 0,

such that we know the interval [λmax − c, λmax] contains a root. However, in
our numerical experiment we found that simply setting λmax sufficiently large was
feasible. As such, we use will use λmin = 0 and λmax = 104 in our implementation.
Regarding the lower bound ρmin, numerical experience showed that setting ρmin = 0
did not pose any apparent problems, so that is the value we will use in practice.

Finally, the implementation of the optimality criteria method is given in Al-
gorithm 3. In our implementation we use imax = 500, that is the iterations termin-
ate after 500 iterations if the stopping criteria has not been met. For the stopping
criterion itself we will use εsc = 0.1. This value was chosen by visually inspecting
the design ρh,i and corresponding value ‖ρh,i −Projection(ρh,i − f ′(ρh,i))‖L2(Ω),
and it was found that when this value was less than 0.1 there were no visible changes
in ρh,i.

Algorithm 3 The optimality criteria method
Require: ρh,0 ∈Wh, λmax ∈ R, imax ∈ N, εsc > 0
1: for i← 0, 1, . . . , imax do
2: Get uh,i by solving (4.4)
3: Get f ′(ρh,i) by using ρh,i and uh,i in (4.17).
4: if ‖ρh,i −Projection(ρh,i − f ′(ρh,i))‖L2(Ω) < εsc then
5: break
6: end if
7: λmin ← 0
8: Set g(λ) = ∆oc

vol(ρh,i, λ)
9: λi ← Bisection(g, λmin, λmax)
10: ρh,i+1 ← ΠPh

Zλi
(ρh,i)

11: end for

4.5.4 The interpolation function

We end this section discussing the details of the inverse permeability α. Several
different choices for the choice of α exist, with the most simple being that α is linear.
[BP03] inspected this choice of α, but found that it induced a too severe penalty
on the design, often resulting in non-global solutions. Instead they proposed a

39 4.6. Numerical examples

q-parametrised function αq[0, 1]→ [ᾱ, α] defined as

αq(ρ) = ᾱ+ (α− ᾱ)ρ1 + q

ρ+ q

for a penalty parameter q > 0 and lower and upper bounds α and ᾱ, respectively.
It is easy to see that αq is continuously differentiable, convex and strictly mono-
tonically decreasing. Additionally, αq(ρ) = ᾱ(1− ρ) + ρα as q →∞, meaning that
αq will be close to linear for large q. An important result of [BP03] is that no
regularisation is required to guarantee existence of solutions to the optimal control
problem (3.3), meaning we can set α = 0 in αq to get

αq(ρ) = ᾱ

(
1− ρ1 + q

ρ+ q

)
, (4.21)

being the function we will use in the rest of this report. For ᾱ we adopt the value
chosen in [BP03], that is we set ᾱ = 2.5/0.012. To better understand how the value
of q affects (4.21), αq is plotted in Figure 4.6 with four different values of q. In our

0 0.2 0.4 0.6 0.8 1
0

1

2

·104

ρ

α
q
(ρ

)

q = 10
q = 1
q = 0.1
q = 0.01

Figure 4.6: The interpolation function (4.21).

experiments we use q = 0.1 unless other is specified.

4.6 Numerical examples
We now introduce a set of numerical benchmarks, which will be used for the rest
of this report. These benchmarks were initially introduced in [BP03], which can
be used as a reference for confirming that the results from the optimality criteria
method are reasonable.

In practice, problems are usually given in terms of g, describing the inflow,
outflow and no-slip parts of ∂Ω. It is therefore useful to consider the inhomogeneous
formulation (2.4) of the Darcy-Stokes equations. With this formulation in mind,
we present the benchmarks along with the results obtained by application of the
OC method discussed in Section 4.5.

Chapter 4. Numerical implementation 40

4.6.1 A diffuser
The first example we present is a diffuser, a common benchmark in engineering
applications and fluid mechanics. A diffuser is a device which controls the velocity
of a fluid, usually designed as an open chamber where the cross section of the inlet
is larger than that of the outlet. The design of the diffuser considered in this report
is depicted Figure 4.7, and is modelled by the domain Ω being 1× 1 box with flow
entering from the left and exiting out of a smaller outlet on the right of the box.

1

11/3

Figure 4.7: Design domain of the diffuser.

The boundary function is defined

g(x, y) =

(4y(1− y), 0) for x = 0, 0 ≤ y ≤ 1,
(108(y − 1

3)(2
3 − y), 0) for x = 1, 1

3 ≤ y ≤
2
3 ,

(0, 0), else.

where we have chosen to use quadratic functions on the non-zero parts of g such
that the maximum magnitude of the inlet velocity is 1. This models laminar flow
in a straight pipe with no-slip conditions on the walls, meaning that the inlet in
Figure 4.7 can be interpreted as being connected to a straight pipe with cross
section 1, while the outlet is connected to a smaller pipe with cross section 1/3. In
this example we let γ = 0.5 and f = 0. As the initial guess for the OC method, we
use the constant function ρh,0 = γ.

We apply the method for a 50 × 50 mesh as well as a 100 × 100 mesh, using
both the CR and the TH type elements. The final designs are presented in Figure
4.8 and the properties of the optimisation algorithm are summarised in Table 4.1.

Table 4.1: Computational data for the diffuser.

Element type Mesh size Iterations Objective value
CR 50× 50 43 30.44

100× 100 49 30.43
TH 50× 50 44 31.02

100× 100 45 30.62

41 4.6. Numerical examples

(a) 50 × 50 mesh, CR (b) 100 × 100 mesh, CR

(c) 50 × 50 mesh, TH (d) 100 × 100 mesh, TH

Figure 4.8: Resulting design of the optimality criteria method for a diffuser.

Considering Figure 4.8 and Table 4.1, the results seems to be fairly consistent
for both mesh sizes and types of elements used. In Figure 4.8, the red colour is 1
and the blue is 0. These colours will be used for all the designs depicted in this
report.

4.6.2 A pipe bend
The next benchmark we will present is the pipe bend example. Again, we consider
Ω to be the unit square, but now with an inlet on the left boundary and an equal
sized outlet on the bottom. The cross section of the inlet and outlet will be equal,
but placed such that the domain is meant to model a 90° pipe bend, and can be
seen in Figure 4.9. Here the prescribed volume fraction γ = 0.08π is chosen to be

1

1

0.2

0.2

0.2
0.2

Figure 4.9: Design domain of the pipe bend.

the area of a quarter annulus with inner and outer radius 0.7 and 0.9, respectively.

Chapter 4. Numerical implementation 42

This would correspond to a circular pipe, which is a natural design to consider for
this problem. We let f = 0, and the flow on the boundary is defined

g(x, y) =

(100(y − 7

10)(9
10 − y), 0) for x = 0, 7

10 ≤ y ≤
9
10 ,

(0,−100(x− 7
10)(9

10 − x)) for 7
10 ≤ x ≤

9
10 , y = 0,

(0, 0) else,

where again g is defined such that the maximum inflow is 1.
As before, the initial design ρh,0 = γ in the optimality criteria method and we

consider a 50 × 50 and 100 × 100 mesh for both the TH and CR elements. The
resulting designs are depicted in Figure 4.10.

(a) 50 × 50 mesh, CR (b) 100 × 100 mesh, CR

(c) 50 × 50 mesh, TH (d) 100 × 100 mesh, TH

Figure 4.10: Resulting design for the pipe bend benchmark.

The optimal design of a pipe bend appears to be wide, straight pipe between the
inlet and the outlet, rather than a torus shaped pipe arguably more common in the
fluid mechanics literature. In order to inspect this matter, we consider the reduced
objective functional f . Since f = 0 in this example, the objective functional (3.18)
becomes

f(ρ) = 1
2

∫
Ω

(
|∇u|2 + α(ρ)|u|2

)
,

meaning that the dissipated power is due to shears only. The shears in a fluid are
large when the pipe is thin, and small when the pipe is wide. A straight, wide pipe
between the inlet and the outlet is therefore natural to consider yielding minimal
shear in the fluid.

The properties of the optimisation algorithm are summarised in Table 4.2, and
although the optimisation algorithm uses a few more iterations for the 50×50 mesh
than for the 100×100 mesh for both element types, both the designs and objective
values are fairly consistent for the four experiments.

43 4.6. Numerical examples

Table 4.2: Computational data for the pipebend.

Element type Mesh size Iterations Objective value
CR 50× 50 41 9.70

100× 100 58 9.67
TH 50× 50 44 9.96

100× 100 63 9.74

4.6.3 A rugby ball
The next example is somewhat different from the preceding two. In this example
we will restrict ourselves to only look at at a 100 × 100 grid, and we will instead
vary γ for the two element types. The domain is depicted in Figure 4.11, where
the boundary function now is defined as

g(x, y) =
{

(0, 1) for 0 ≤ x ≤ 1, y ∈ {0, 1},
(0, 0) else,

and again f = 0. For the different values for the volume fraction, we will use the
three different values γ = 0.8, 0.9 and 0.95.

1

1

0.05

0.05

0.05 0.05

Figure 4.11: Design domain of the rugby ball. The grey area is prescribed to fluid.

For this problem it was observed that in the presumed global minimum all the
solid material was distributed along the left and right boundary in Figure 4.11. As
a measure to obtain a minimum where the solid material is located in the centre
of the domain, a small area close to the boundary is prescribed to fluid, i.e. ρh = 1
here.

Prescribing the area around the boundary to fluid, we found that the optim-
isation algorithm still would not converge to the preferred minimum when using

Chapter 4. Numerical implementation 44

ρh,0 = γ as an initial guess. Instead, for this benchmark we choose

ρh,0(x, y) = 0.1 + (x− 0.5)2 + (y − 0.5)2, (4.22)

which we found gave satisfactory result for the three values of γ considered.
Several initial guesses were tried and, unsurprisingly, functions which were close

to 0 around the centre of the domain and close to 1 near the boundary usually
resulted in the methods converging to the preferred local minimum. In this sense
there is nothing special about the exact choice of ρh,0, which resembles an elliptic
parabola with centre in the middle of Ω. However we do note the constant term,
which is necessary in order to have ρh,0 > 0.

Lastly, as (4.22) is independent of γ, it is obvious that we generally do not have∫
Ω
ρh,0 = γ|Ω|

when γ varies, which we initially required for ρh,0 in the optimality criteria method.
However, this is a sufficient condition for existence of a λ satisfying the equation in
(3.27), and looking at the box-constraints in (3.27), especially the definition of Zλ,
we can convince ourselves that if the move limit ζ is not too small, the equation in
(3.27) can still be solved for λ even though ρh,0 does not satisfy the requirements
exactly. We do not go into a deeper analysis of how much ρh,0 can deviate from
the requirements for the optimality criteria method, but only note that we could
successfully apply the bisection algorithm using ρh,0 as defined in (4.22) for the
three values of γ.

The optimality criteria method is performed with the initial guess discussed
above, and the result is given in Figure 4.12. Again, the resulting designs looks

(a) γ = 0.8, CR (b) γ = 0.9, CR (c) γ = 0.95, CR

(d) γ = 0.8, TH (e) γ = 0.9, TH (f) γ = 0.95, TH

Figure 4.12: Resulting design for a the rugby ball benchmark.

identical for the two types of elements, and their properties can be seen in Table

45 4.6. Numerical examples

Table 4.3: Computational data for the rugby ball.

Element type γ Iterations Objective value
CR 0.8 32 68.36

0.9 46 43.29
0.95 27 34.61

TH 0.8 31 76.58
0.9 45 51.39
0.95 26 42.68

4.3. As we would expect, the objective value decreases as γ increases, yielding
a smaller rugby ball in the centre. However, despite the results looking visually
similar in Figure 4.12 for the two elements, the objective values for the TH elements
are consistently slightly larger than those for the CR elements. As the value of the
objective functional is dependent on u, it is naturally to assume that the TH
elements will yield the most correct objective values, as the velocity elements are
of order 2, while the CR elements only are of order 1.

4.6.4 A double pipe
The last example we consider is a model of a box of height 1 and width δ which is
connected to two parallel pipes. The domain can be viewed in Figure 4.13, and in
this example we will vary the width δ of the box in order to see how the solutions
of the optimisation problem changes.

1

δ

1/4

1/4

1/6

1/6

Figure 4.13: Design domain of the double pipe example.

The flow function is in this example defined

g(x, y) =

(144(y − 1

6)(1
3 − y), 0) for x ∈ {0, 1}, 1

6 ≤ y ≤
1
3 ,

(144(y − 2
3)(5

6 − y), 0) for x ∈ {0, 1}, 2
3 ≤ y ≤

5
6 ,

(0, 0) else,

and we test the algorithms for values δ = 1 and δ = 1.5, with grid resolution
100×100 and 150×100, respectively. We will also use γ = δ/3, which corresponds

Chapter 4. Numerical implementation 46

to the area used by two straight pipes through the domain. From a numerical point
of view, acquiring good local minima has proven itself difficult for this problem,
and to that end we adopt the technique from [BP03] for finding a good initial guess.
Using an initial control ρh,0 = γ, we perform a certain number of iterations with
q = 0.01 in (4.21). We then use the function obtained from these iterations as the
initial guess, and proceed normally with q = 0.1. We found that 50 iterations were
sufficient in order to obtain the preferred solutions, and the results can be seen in
Figure 4.14. For δ = 1.0 the optimal solution is two simply straight pipes, while

(a) δ = 1.0, CR (b) δ = 1.5, CR

(c) δ = 1.0, TH (d) δ = 1.5, TH

Figure 4.14: Resulting design for the double pipe benchmark.

for δ = 1.5 the minimum seems to be attained when the two pipes joins together to
form a single, wider pipe. In light of our previous discussion regarding how wider
pipes results in a lower velocity, it is reasonable that when δ is large enough, a
single, wider pipe is optimal. The numerical results of the optimisation algorithm
are seen in Table 4.4. The first 40 iterations performed with q = 0.01 are included
in the values for the Iterations column.

Table 4.4: Computational data for the double pipe benchmark.

Element type δ Iterations Objective value
CR 1.0 44 21.88

1.5 269 24.00
TH 1.0 59 22.13

1.5 384 24.81

Considering Figure 4.14a and 4.14c, and assuming the optimal solution is in fact
two completely straight pipes with width 1/6, the objective value can be computed
analytically. In this case we can consider one of the pipes as the rectangle [0, 1]×

47 4.6. Numerical examples

[0, 1/6] containing pure Stokes flow, with inflow and outflow on the left and right
side, respectively, and no-slip conditions on the top and bottom. u is then trivially
given from the boundary function as

u(x, y) =
[
144y

(1
6 − y

)
0

]
,

and the dissipated power of the two pipes becomes

J0(u) = 2
(

1
2

∫
Ω
|∇u|2

)
=
∫ 1/6

0

[
144

(
1
6 − 2y

)]2
dy = 32.

Comparing this value to the computed values in Table 4.4, we see that the computed
value is significantly smaller than the real value. [BP03] addresses the question of
how this deviation in objective value affects the design obtained from the optim-
isation algorithm by increasing ᾱ in (4.21) and decreasing q in order to get a more
apparent 0-1 design. It is concluded that it has no visible impact on the optimal
design, meaning that we although we can not expect the computed objective value
to accurately reflect the real value, the computed design is expected to resemble
the true solution of the optimisation problem.

Chapter 4. Numerical implementation 48

Chapter 5

Adaptivity

Having introduced residuals in the previous chapter, we saw that we can get an
estimate for how well discretised a pair of discretised functions (uh, ph) satisfies the
continuous state equations (2.6). In this chapter we use these residuals to refine the
mesh locally during optimisation, in hopes of significantly improving the residuals
norms over the whole domain.

5.1 Adaptive mesh refinement
Using the Riesz representation theorem to identify functions rmo ∈ V and rma ∈ Q
as the residuals, we can estimate how well (uh, ph) satisfies (2.6) on different parts
of the mesh. This is done by calculating local norms ‖rmo‖H1(K) and ‖rma‖ L2(K)
for K ∈ Th, meaning we consider the norm of the residuals on each cell of the mesh.

Assuming (uh, ph) solves the discretised state equations (4.1) so accurately that
the discretisation error dominates in the values of the residuals, the local residual
norms give estimates of how large this discretisation error is on different parts on
the domain. This information can in turn be used to determine where reducing the
mesh size locally will yield the most significant reduction in ‖rmo‖ V and ‖rma‖Q,
so it makes sense to refine the mesh in these regions. Figure 5.1 illustrates how
the this process is performed in FEniCS when two cells marked red are subject to
refinement, reducing the local mesh size by half.

Adapt

Figure 5.1: A 3× 3 structured mesh with two marked cells before and after refinement.

How to exactly to choose which cells to be subject to the refinement can be done
in a multiple of ways. One option could for instance be to refine a fixed portion of

49

Chapter 5. Adaptivity 50

the cells with the largest local residuals in each refinement. This strategy gives a
very predictable increase in the number of cells for a refinement, which is useful in
situations where it is essential that the size of the linear system does not become
too large. This is especially the case when using higher order basis functions,
where the number degrees of freedom increases rapidly with the number of cells
in the mesh. In order to implement this strategy for a distributed program, it is
necessary to be able to select the cells with largest local residual norms distributed
among all processes. Unfortunately, FEniCS does not provide access to advanced
MPI functionality through its API, making this strategy difficult to implement in
practice.

Instead, our approach will be to define a global threshold, such that all cells
whose residual local norms exceeds this value will be refined. We derive this
threshold only for rmo, as the case rma is completely equivalent. To this end,
assume that Th/2 is the triangulation obtained when uniformly refining some tri-
angulation Th of Ω, that is when each cell in Th is refined according to Figure
4.2. Furthermore, let rmoh/2 ∈ Vh/2 be defined as in the first of (4.10) for some
(uh, ph) ∈ Vh ×Qh. We have

‖rmoh/2‖
2
V

= ‖rmoh/2‖
2
H1(Ω)

=
∑
K∈Th

‖rmoh/2‖
2
H1(K)

,

where dividing by ‖rmoh/2‖
2
V

yields

∑
K∈Th

‖rmoh/2‖
2
H1(K)

‖rmoh/2‖
2
V

= 1.

The mean of the terms in the above sum is 1/|Th|, where |Th| is the number of cells
in the mesh. We define the threshold for the cells to be subject to refinement if
the local residual norm is larger than some factor cmo > 0 of the mean, so a cell K
will be refined if

‖rmoh/2‖H1(K)

‖rmoh/2‖ V
>

√
cmo
|Th|

. (5.1)

Similarly, if we instead consider rma we have

‖rmah/2‖ L2(K)

‖rmoh/2‖Q
>

√
cma
|Th|

(5.2)

for a constant cmo > 0. The choice of values for the parameters cmo and cma will
be addressed through numerical experiments in the coming section.

We recall from Figure 4.5 that there was still a significant discretisation error
related to the momentum residuals for the CR elements after refining once. Again,
addressing this problem is outside the scope of this project, so we will for practical
reasons only consider the residuals evaluated on the one time uniformly refined
mesh, and see if yields reasonable results.

51 5.2. Numerical experiments

5.2 Numerical experiments
From the figures in Section 4.6 we got a good impression about what the optimal
design for the different benchmarks should look like. For the diffuser design in
Figure 4.8 and pipe bend design in Figure 4.10 it is clear that the designs for the
100 × 100 meshes are more smooth in the transition between the Stokes flow and
solid material parts of the domain than the 50× 50 mesh, which is natural due to
the higher resolution of the mesh. However, on the interior of the two regions the
designs for the two mesh sizes look identical, as the design is uniformly 0 and 1 here.
This means that especially for the 100× 100 mesh there might be an unnecessary
amount of cells in these regions, which could have been modelled just as well with
the mesh resolution corresponding to the 50× 50 mesh, or potentially even lower.

5.2.1 The diffuser
We consider the diffuser example. Using the adaptive refinement approach presen-
ted in Section 5.1, we start with the 50× 50 mesh and will during the optimisation
algorithm locally refine the mesh where the local residual norms are largest, ac-
cording to (5.1) and (5.2). However, it is not clear what the parameters cmo and
cma should be chosen as. One thing we immediately see is that cmo = cma = 1
corresponds to locally refining all cells where the value of the local residuals are
above average among all the residuals.

We will therefore perform the optimisation with adaptive refinement for the
three values 1, 2.5 and 5 for cmo and cma, and observe how the number of cells
increases during the course of optimisation. An important property for the a pos-
teriori residuals was that the matrix arising from applying the finite element method
to the two systems in (4.10) remains constant throughout the OC iterations, such
that the heavy lifting ideally needs to be performed only once in the beginning.
When the mesh is refined, these matrices will need to be assembled on the new
mesh, so refining the mesh in every OC iteration would not allow us to reuse the
matrices for computing the residuals. Hence, we will instead perform adaptive
refinement every 10’th iteration.

We start with considering the momentum residual, meaning we use (5.1) in order
to determine which cells to refine. In Figure 5.2 we have used the CR elements, and
we plot the number of cells along with the relative momentum residual ηmo during
the optimisation procedure. The first thing to note is that smaller cmo yields larger
increase in the number cells that are refined, which is reasonable considering smaller
cmo implies a lower threshold for cells to be subject to refinement. Furthermore,
the difference between cmo = 1 and cmo = 2.5 is quite substantial. Where the
mesh corresponding to the latter value has about 1.6× 104 cells towards the end of
the optimisation procedure, the mesh corresponding to the former value of about
1.4× 105 cells. For reference, the 100× 100 mesh has 2× 1002 = 2× 104 cells.

Considering the plot for ηmo in Figure 5.2, observe that for all three values of
cmo, the relative residual norm is in fact smaller than that for the 100× 100 mesh
towards the end. Note also that for cmo = 2.5 and cmo = 5 the number of cells
in the refined mesh is smaller than in the 100 × 100 mesh. This means that by

Chapter 5. Adaptivity 52

0

0.5

1

·105

N
um

be
r
of

ce
lls

1
2.5
5

0 10 20 30 40 50

100

OC iteration count

η
m
o

1
2.5
5

Figure 5.2: Number of cells in mesh and relative residual norm ηmo during the optim-
isation algorithms for three different values of cmo, using CR elements. The grey, dashed
line corresponds to the 100× 100 mesh without adaptive mesh refinement.

using the refinement approach during the optimisation iterations, we are in fact
able to solve the continuous equation (2.6) with greater accuracy, with a smaller
linear system in (4.4).

In Figure 5.3 the refined meshes is depicted for the three values of cmo. As

(a) cmo = 1 (b) cmo = 2.5 (c) cmo = 5

Figure 5.3: The facets of the meshes refined using the momentum residual with the CR
elements. The colour corresponds to ρh.

reflected in Figure 5.2 regarding the number of cells for cmo = 1, we see from
Figure 5.3a that the mesh has a large amount of cells. In fact it can be seen that
it has been refined on most parts of the domain, except for in a small area in the
upper and lower right corner. As the Considering Figure 5.3b, there has still been
a significant amount of refinement on the red part of the domain, corresponding
to Stokes flow. However, we also clearly see that the mesh has also been refined

53 5.2. Numerical experiments

around the transition parts of the domain. For Figure 5.3c, the refinement is
located mainly in the transition parts of the domain, although there has been some
refinement on the red parts as well, especially around the inlet and outlet of the
diffuser.

Having performed adaptive refinement using the CR elements, we perform the
same experiment again with the TH elements. We start using (5.1) as a threshold,
and perform refinement with the values 1, 2.5 and 5 for cmo. The results are
depicted in Figure 5.4. The results are fairly similar to the case with CR elements,

1

2

3

4 ·104

N
um

be
r
of

ce
lls

1
2.5
5

0 10 20 30 40 50
10−1.5

10−1

10−0.5

OC iteration count

η
m
o

1
2.5
5

Figure 5.4: Number of cells in mesh and relative residual norm ηmo during the optim-
isation algorithms for three different values of cmo, using TH elements. The grey, dashed
line corresponds to the 100× 100 mesh without adaptive refinement.

where cmo = 1 yields a significantly finer mesh than the 100 × 100 mesh in the
later iterations of the OC method. For cmo = 2.5 and cmo = 5 the resulting mesh
is coarser, but from ηmo in Figure 5.4 we see that the resulting residual norm is
overall smaller for these two values compared to the 100× 100 mesh not subject to
refinement, meaning that we again get a better approximation of the continuous
equation with a smaller linear system.

Note that for cmo = 5, the mesh is subject to an extra refinement at iteration 40
of the OC method, as the method uses about 7 to 8 extra iterations to satisfy the
stopping criterion compared to the other meshes. After this additional refinement,
the mesh still has fewer cells than towards the end than for cmo = 2.5, but from
the plot of the residual norm we can see that the resulting value of ηmo for cmo = 5
is slightly smaller than that cmo = 2.5. This means that in this case, the cost
of performing an extra refinement and 8 additional iterations, we get a resulting
design where the solution to the state equations is slightly better approximated

Chapter 5. Adaptivity 54

than for cmo = 2.5.
In Figure 5.5 the meshes from Figure 5.4 can bee seen. Again, the case cmo = 1

(a) cmo = 1 (b) cmo = 2.5 (c) cmo = 5

Figure 5.5: The facets of the meshes refined using the momentum residual with the TH
elements. The colour corresponds to the values of the resulting design ρh.

is quite different than for the two other values, as in this case a significant amount
refinement have occurred in the interior of the solid and flow regions of the solution.
This is reflected in the number of cells seen in Figure 5.4, which is significantly
more than for the other meshes. As the residual uses quadratic basis functions,
the number of degrees of freedom increases even more rapidly with the number of
cells compared to linear elements, which dictates the size of the linear system in
(4.4). Figure 5.5b and 5.5c look more similar in terms of that only small regions
of the interior flow and solid regions have been refined. Most of the refinement
have occurred on the transition between the regions, where the main difference
between cmo = 2.5 and cmo = 5 appears to be that the former has been refined
more extensively. However we emphasise again that the residual norm for the latter
is the smaller one of the two due to the extra refinement at iteration 40.

We now turn our attention to the residual associated with the mass conservation
equation. As we have seen previously, for the CR elements the mass conservation
equation in (2.6) is expected to be satisfied to machine accuracy for all mesh sizes,
so using the values of rma to determine what cells to refine does not make sense in
this case. For the TH elements however, there is a discretisation error related to the
mass conservation equation, so using the estimate of the mass conservation residual
for marking cells subject to refinement is a reasonable approach. We perform the
same experiment as for rmo above, but now we use the same values for cma as we
did for cmo, and the results can be seen in Figure 5.6.

The first thing we note is that for cma = 1, the number of cells towards the end
of the iterations is about 2.1× 104, just slightly more than for the 100× 100 mesh.
This is significantly less than when using the momentum residual in Figure 5.4,
whose mesh had about twice the number of cells towards the end of the iterations.
Furthermore, for cma = 1 and cma = 2.5 it is actually necessary to perform an
additional refinement at iteration 40 as opposed to cma = 5, which is the opposite
of what is observed Figure 5.4. Consequently, ηma is significantly lower for cma = 1
and cma = 2.5 than for cma = 5 in their respective design. That being said,
comparing ηma in the last iteration for cma = 1 with the value of ηma for cma = 2.5
and cma = 5 in the corresponding iteration, the two latter values are still smaller.

55 5.2. Numerical experiments

0.5

1

1.5

2

·104

N
um

be
r
of

ce
lls

1
2.5
5

0 10 20 30 40 50

10−1.5

10−1

OC iteration count

η
m
a

1
2.5
5

Figure 5.6: Number of cells in mesh and relative residual norm ηma during the optim-
isation algorithms for three different values of cma, using TH elements. The grey, dashed
line corresponds to the 100× 100 mesh without adaptive refinement.

We also note for all the three values of cma, the resulting ηma is smaller than that
for the 100× 100 mesh.

In Figure 5.7 the meshes from Figure 5.4 have been plotted. The tendencies

(a) cma = 1 (b) cma = 2.5 (c) cma = 5

Figure 5.7: The facets of the meshes refined using the mass residual with the TH
elements. The colour corresponds to ρh.

can be seen to similar as for the momentum residuals considered previously, and
the three meshes in Figure 5.7 are qualitatively similar in terms of where they
have been refined. For cma = 1 and cma = 2.5 a certain amount of refinement
has occurred around the interior of the free flow, more precisely around the inlet
and outlet. Although noticeably less than in Figure 5.5b, Figure 5.7c shows that
almost all the refinement has occurred in the transition region.

Considering that both Figure 5.5 and 5.7 show similar tendencies in terms of

Chapter 5. Adaptivity 56

refinement occurring in the transition region, it is to see how this affects the value
of that residual not subject to refinement. More precisely, we also compute ηmo
when (5.2) is used as the refinement criterion, and the results can be seen in Figure
5.8. Comparing Figure 5.8 and the ηmo plot in Figure 5.4, the behaviour of ηmo

0 10 20 30 40 50
10−1.5

10−1

10−0.5

OC iteration count

η
m
o

1
2.5
5

Figure 5.8: The relative residual norm ηmo during the optimisation algorithms for three
different values of cma, using TH elements. The grey, dashed line corresponds to ηmo for
the 100× 100 mesh without adaptive refinement.

seems very similar for (5.1) and (5.2), at least until iteration 30 of the OC method.
For cmo = 5, the algorithm stops after 38 iterations, where ηmo is now slightly
larger than for the 100 × 100. Although this difference is rather small, we have
in Figure 5.4 that for the corresponding iteration ηmo was smaller than for the
100 × 100 mesh when cmo = 5. As discussed previously, the OC method needs to
perform some additional iterations when (5.2) is used as the refinement criterion
for cmo = 2.5 and cmo = 5, compared to when (5.1) is used. As this naturally leads
to an additional reduction of ηmo, the consequence is that ηmo for the resulting
designs for cmo = 2.5 and cmo = 5 are approximately the same for when (5.1) and
(5.2) is used for refinement.

In light of the above experiments, let us summarise our findings so far. The
first thing to note is regarding the number of optimisation iterations necessary to
satisfy the stopping criterion when refining the mesh during the iterations. From
the findings above it appears that for the diffuser example the number of necessary
iterations was not significantly affected by ongoing refinement in any situation.
Furthermore, a significant improvement in the value of ηmo and ηma was observed
for all the experiments, resulting in a smaller residual norm than for the 100× 100
mesh, using fewer cells in the refined mesh. The exception was using (5.1) with
cmo = 1, where the resulting meshes had significantly more cells than 100 × 100
mesh.

As the 100 × 100 is already quite large considering we also perform a uniform
refinement of the mesh when calculating the residuals, a rule of thumb could be
that we ideally do not want the refined mesh such that at we at any time exceed
the number of cells corresponding to the 100×100 mesh. This means that cmo and
cma being 1 results in a too low threshold for marking cells subject to refinement.
Additionally, considering the meshes when cmo = cma = 5 , it appears that choosing

57 5.2. Numerical experiments

a value larger than this would generally result in a too high threshold, meaning we
can not expect to get a significant decrease in the residual norms in this case. We
conclude that a value between 2.5 and 5 is appropriate for cmo and cma, where the
exact value will probably depend on the benchmark considered, along with how
large an increase in the size of the linear system (4.4) is tolerable.

5.2.2 The double pipe
We conclude this section by applying the adaptive refinement approach the double
pipe benchmark from Subsection 4.6.4 with δ = 1.5. This experiment is signi-
ficantly more difficult to solve numerically than the diffuser benchmark, needing
between 400 and 500 iterations according to Table 4.4, due to slow convergence. We
start with 75× 50 mesh, and as we expect the method to perform a large number
of iterations, we refine the mesh every 50’th iteration. The refinement is performed
using (5.1), and numerical experience showed that cmo = 4 was appropriate for
both the CR and TH elements.

The numerical values are listed in Table 5.1, and the refined meshes are depicted
in Figure 5.9. Comparing the refined and non-refined method using the CR ele-

Table 5.1: Computational data for the double pipe benchmark with δ = 1.5. When
using the adaptive refinement approach, a 75 × 50 mesh is used in the beginning, while
the 150× 100 mesh is used when not using refinement.

Element type Refined Iters. J ηmo ηma Cells
CR Yes 375 23.99 1.36 1.53× 10−13 15231

No 269 24.57 1.33 1.32× 10−13 30000
TH Yes 384 24.02 0.04 0.03 26540

No 384 24.81 0.22 0.14 30000

ments, we see from Table 5.1 that the difference in number of iterations necessary is
significantly larger, using about 40 % more iterations. This is in contrast to the TH
elements, where the number is the same as for the non-refined method. There has
also been a slight decrease in the objective value J for both element type when us-
ing adaptive refinement, with a difference in about 2.4 % and 3.2 % for the CR and
TH elements, respectively. Looking at the columns for the relative residual norms
in 5.1, the values for ηmo is similar for the CR elements, with a slight increase of
2.2 %. As ηma ≈ 0 for the CR elements, small differences are likely to occur due to
round-off errors, which are of little interest. For the TH elements, the decrease in
the relative residual norms are significantly reduced when using refinement, with
an 81.8 % decrease in ηmo and a 78.6 % decrease in ηma. Comparing this to the
number cells in the mesh, we see that this decrease is achieved using 11.5 % fewer
cells in the mesh. Finally, for the CR elements we see that the resulting mesh
49.2 % smaller when using adaptive refinement, a significant reduction in the size
of the linear system.

Considering 5.9, the refined meshes have the same tendencies as for the diffuser

Chapter 5. Adaptivity 58

example. When using the CR elements, more of the refinement occurs in the

(a) CR (b) TH

Figure 5.9: Resulting refined meshes corresponding to the data presented in Table 5.1,
beginning with a 75× 50 mesh.

free flow regions of the domain. Although refinement also occurs in the transition
region, it is not as prominent as when using the TH elements, where the refinement
mainly occurs in the transition region.

Chapter 6

Iterative approach

Among the Krylov subspace methods, the conjugate gradient method is arguably
the most well-known, and usually the preferred choice when applicable. However,
the conjugate gradient method requires the matrix in question to be symmetric
and positive definite. As we saw in Section 4.1, although the system matrix S in
(4.6) is symmetric, it is indefinite. Since the conjugate gradient method cannot be
used, we will have to rely on some other method. Preferably we still want to take
advantage of the symmetry of our linear system, and to this end we will use the
MINRES method.

6.1 The MINRES method
The name “MINRES” is a contraction of “Minimal residual”, whose name come
from the fact that the 2-norm of the residual of the current iterate is minimised
over the current search space in each iteration. In the following two subsections we
give a detailed background of the MINRES method, such that if reader is already
familiar with MINRES, or is not concerned with the derivation of the method, he
or she can skip to Subsection 6.1.3.

6.1.1 The method
During our research, we were not able to find a suitable implementation of the
MINRES method readily available in the literature. While one algorithmic for-
mulation can be found in [CS06, Tab. 3.4], this implementation requires the zero
vector to be used as the initial guess. As the linear system (4.4) will be solved in
each step of the OC method, using an initial guess for MINRES based on previous
iterates could potentially reduce the number of MINRES iterations necessary to
perform in each OC iteration. Hence, we now extend the implementation given in
[CS06] to utilise a non-zero vector as the initial guess. We assume that the reader
is familiar with the concept of Krylov subspace methods and Arnoldi’s procedure
for constructing orthogonal bases of Krylov subspaces. If not, we refer to [Saa03,

59

Chapter 6. Iterative approach 60

Ch. 6] for an introduction to these concepts.
Consider the linear system

Ax = b, (6.1)

where A ∈ Rn×n is symmetric. Given an initial guess x0 to (6.1), we define the
order-k Krylov subspace as

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0},

with r0 = b−Ax0 being the residual associated with x0. Stated in [Saa03, Alg. 6.1],
Arnoldi’s procedure can be used to construct an orthonormal basis v1, . . . ,vk of
Kk(A, r0), along with an (k + 1) × k upper Hessenberg matrix H̄k. Defining the
n × k matrix Vk =

[
v1 v2 · · · vk

]
and Hk by deleting the last row of H̄k, it

can be shown that
V Tk AVk = Hk. (6.2)

Note that since A is symmetric, it can be seen from (6.2) that HT
k = Hk. Fur-

thermore, since Hk is symmetric and has all-zero entries below the subdiagonal by
construction, it follows that it is tridiagonal. As such, it is standard notation to
denote H̄k as T̄k, whose entries we can define as

T̄k =

α1 β2
β2 α2 β3

β3 α3
. . .

. βk
βk αk

βk+1

.

Similarly, we identify Tk with Hk by

T̄k =
[

Tk
βk+1eTk ,

]
, Tk =

[
Tk−1 βkek−1
βkeTk−1 αk

]
where ek is the k-th unit vector. A being symmetric gives rise to the symmetric
Lanczos algorithm [Saa03, Alg. 6.15], a simplification of Arnoldi’s procedure. The
symmetry of Tk leads to the three-term recurrence

βk+1vk+1 = Avk − αkvk − βkvk−1, (6.3)

where αk = vTkAvk, βk = 1/‖vk‖2, and the initial vectors are v0 = 0 and v1 = r0.
Equation (6.3) can be written in matrix form as

AVk = Vk+1T̄k,

and by using that the Arnoldi’s algorithm is designed to stop when βk+1 = 0, we
get

AVk = VkTk.

61 6.1. The MINRES method

In an iteration k, Krylov subspace methods seek to find the best estimate of the
solution of (6.1) in Kk(A, r0), in some sense. Any vector of the subspace Kk(A, r0)
can be written

x = Vky,

with y ∈ Rk. Defining the residual of x as r = b−Ax, we have

r = b−Ax = b−AVky = β1v1 − Vk+1T̄ky = Vk+1(β1e1 − T̄ky).

Furthermore, as the column vectors of Vk+1 are orthonormal,

‖r‖2 =
∥∥β1e1 − T̄ky

∥∥
2.

In the MINRES method ‖r‖2 in the equation above is minimised in each iteration
k, hence its name. The iterates can then be written

xk = Vkyk, where

yk = arg min
y∈Rk

∥∥β1e1 − T̄ky
∥∥2

2.

The normal equation for yk is

T̄Tk T̄kyk = T̄Tk β1e1, (6.4)

which MINRES uses QR decomposition of T̄k in order to solve. In general, the QR
decomposition of the rectangular matrix T̄k is given by

T̄k = Q̃k

[
Rk
0T
]

for an upper triangular matrix Rk and orthogonal matrix Q̃k. Q̃Tk will occur several
times in what follows, so we define Qk = Q̃Tk . This gives the QR decomposition of
T̄k the form

QkT̄k =
[
Rk
0T
]

=

γ
(1)
1 δ

(1)
2 ε

(1)
3

γ
(2)
2 δ

(2)
3 ε

(1)
4

.
. ε

(1)
k

. . . δ
(2)
k

γ
(2)
k

0

. (6.5)

Using the above equation, (6.4) becomes

[
RTk 0

][Rk
0T
]
yk =

[
RTk 0

]
Qkβ1e1,

Chapter 6. Iterative approach 62

which formulated as a least-squares problem becomes

yk = arg min
y∈Rk

∥∥∥∥[tk
φk

]
−
[
Rk
0T
]
yk
∥∥∥∥2

2
,

[
tk
φk

]
= Qkβ1e1.

Here we define tk =
[
τ1 τ2 · · · τk

]T . In order to perform the QR decomposi-
tion, let Qk = Qk,k+1 · · ·Q2,3Q1,2 be the product of (k + 1)× (k + 1) Householder
reflections [QSS10, Sec. 5.6], used to eliminate the sub diagonal of T̄k in order to
find the values of the entries for Rk in (6.5). Defining

ρk =
√

(γ(1)
k)2 + β2

k+1, ck = γ
(1)
k

ρk
, sk = βk+1

ρk
,

the action of Qk,k+1 applied to T̄k and β1e1 is given by[
γ

(2)
k δ

(2)
k+1 ε

(1)
k+1 τk

0 γ
(1)
k+1 ε

(1)
k+2 φk

]
=
[
ck sk
sk −ck

][
γ

(1)
k δ

(1)
k+1 0 φk−1

βk+1 αk+1 βk+2 0

]
,

where the values in the second matrix on the right-hand side are known from the
last iteration. In practice, however, we will compute ck, sk and γ

(2)
k from the

more stable implementation stated in Algorithm 4. That is, we use ck, sk, γ(2)
k ←

Algorithm 4 Stable computation of the orthogonal transformation related to the
Householder reflections.
1: procedure SymOrtho(a, b)
2: if b = 0 then
3: s← 0, r ← |a|
4: if a = 0 then
5: c← 1
6: else
7: c← sign(a)
8: end if
9: else if a = 0 then
10: c← 0, s← sign(b), r ← |b|
11: else if |b| = |a| then
12: τ = a/b, s = sign(b)/

√
1 + τ2, c = sτ , r = b/s

13: else if |a| = |b| then
14: τ = b/a, c = sign(a)/

√
1 + τ2, s = cτ , r = a/c

15: end if
16: return c, s, r
17: end procedure

SymOrtho(γ(1)
k , βk+1).

Defining the matrix Dk = VkR
−1
k with columns Dk =

[
d1 d2 · · · dk

]
, it

can be shown that
γ

(2)
k dk = vk − δ(2)

k dk−1 − ε(1)
k dk−2.

63 6.1. The MINRES method

Finally, the iterate xk can then be written

xk = Vkyk = VkR
−1
k tk = Dk

[
tk−1
τk

]
=
[
Dk−1 dk

][tk−1
τk

]
= xk−1 + τkdk.

In a practical implementation it is usually recommended to apply some sort of
preconditioning technique to MINRES, which we will do next.

6.1.2 Preconditioned formulation
We consider a symmetric and positive definite preconditioning M , which will be
applied as a two-sided preconditioner in order to preserve the symmetry required by
the Lanczos algorithm [CS06, p. 62]. SinceM is symmetric, its eigendecomposition
is given by M = V DV T , with D being diagonal. The square root is given as
M1/2 = V D1/2V T , which exists due to the positive definiteness ofM . Furthermore,
from its eigendecomposition it is trivial to see that M1/2 is also symmetric and
positive definite. Next, define Ã = M−1/2AM1/2 and b̃ = M−1/2b, such that the
new linear system

Ãx̃ = b̃, M1/2x = x̃ (6.6)

is equivalent to (6.1).
To derive the preconditioned Lanczos algorithm, define new vectors

zk = β̃kM
1/2ṽk, qk = β̃kM

−1/2ṽk,

meaning Mqk = zk. Here ṽk are the orthonormal Lanczos vectors, and as before
we set ṽ0 = 0 and β̃1ṽ1 = b̃− Ãx̃0. As ‖ṽk‖2 = 1 by construction,

β̃2
k =

∥∥β̃kṽk∥∥2
2 = ‖M−1/2zk‖

2
2 = (M−1/2zk)TM−1/2zk = zTkM−1zk = zTk qk,

meaning that β̃k =
√

zTk qk. Similarly, the expression for α̃k becomes

α̃k = ṽTk Ãṽk = (M−1/2ṽk)TAM−1/2ṽk = (1
β̃k

qk)TA 1
β̃k

qk = 1
β̃2
k

qTk Aqk,

and as in (6.3), three-term recurrence in the Lanczos algorithm for (6.6) is

β̃k+1ṽk+1 = Ãṽk − α̃kṽk − β̃kṽk−1. (6.7)

Finally, multiplying (6.7) with M1/2 from the left and writing ṽk in terms of zk
and qk, (6.7) becomes

zk+1 = 1
β̃k
Aqk −

α̃k

β̃k
zk −

β̃k

β̃k−1
zk−1.

Note that in order compute qk, we have to solve the system Mqk = zk in each
iteration.

Chapter 6. Iterative approach 64

The next step would now be to perform the QR factorisation of the tridiagonal
(k + 1) × k upper Hessenberg matrix arising from the Lanczos algorithm. Since
this is equivalent to the non-preconditioned case considered previously, we omit
the details. The result is

γ̃
(2)
k d̃k = ṽk − δ̃(2)

k d̃k−1 − ε̃(1)
k d̃k−2, x̃k = x̃k−1 + τ̃kx̃k,

and again multiplying the above two equations withM1/2 from the left and writing
ṽk in terms of zk and qk, we arrive at

γ̃
(2)
k dk = qk − δ̃(2)

k dk−1 − ε̃(1)
k dk−2, xk = M−1/2x̃k = xk−1 + τ̃kxk.

Here dk = M−1/2d̃k, and xk are the iterates from the original problem.
We are now ready to present the preconditioned MINRES algorithm used, and

it can be seen in Algorithm 5. When implementing iterative algorithms in practice,
it is generally not preferable to store all the vectors previously calculated, so in our
final algorithm we have omitted the subscript k. We will also like to elaborate on

Algorithm 5 A storage efficient implementation of the preconditioned MINRES
algorithm with initial guess x0. The “↔” denotes that the content of the variables
should be swapped. φ = ‖b−Ax‖2 is the 2-norm of the residual.
Require: ε > 0, kmax ∈ Z
1: procedure MINRES(A,b,M,x0)
2: x← x0, z← b−Ax, q←M−1z, β̃old ← 1, β̃ ←

√
zTq, δ̃(1) ← 0

3: c̃old ← −1, s̃old ← 0, φ0 ← ‖z‖2, φ← φ0, ε← 0, k ← 0
4: while no stopping criterion is true and k < kmax do
5: p← Aq
6: α̃← qTp/β̃2

7: zold ← 1
β̃
p− α̃

β̃
z− β̃

β̃old
zold, z↔ zold

8: qold ←M−1z, q↔ qold . Preconditioning step
9: β̃old ←

√
qT z, β̃ ↔ β̃old

10: δ̃(2) ← c̃oldδ̃
(1) + s̃oldα̃, γ̃(1) ← s̃oldδ̃

(1) − c̃oldα̃
11: c̃, s̃, γ̃(2) ← SymOrtho(γ̃(1), β̃)
12: τ̃ ← c̃φ, φ← s̃φ
13: if γ̃(2) 6= 0 then
14: dold ← 1

γ̃(2)

(
1
β̃old

qold − δ̃(2)d− ε̃dold

)
, d↔ dold

15: x← x + τ̃d
16: end if
17: ε← s̃oldβ̃, δ̃(1) ← −c̃oldβ̃
18: c̃old ← c̃, s̃old ← s̃
19: k ← k + 1
20: end while
21: return x
22: end procedure

the double arrow notation “↔” used, which denotes that we swap the content of

65 6.1. The MINRES method

two variables. In several places of Algorithm 5 we use variables from the previous
iterations, denoted by the subscript “old”. Some of these variables are vectors,
which if implemented naively would need to be copied to another location in order
to not be overwritten by the next iteration. In most modern languages, including
Python used in this report, vectors are implemented with pointers. The swapping
of two vectors can therefore be implemented efficiently by simply reassigning the
pointers pointing to the data in question, avoiding any unnecessary copying of data
in memory.

6.1.3 MINRES for the state equations
Finding a good preconditioner is arguably one of the most difficult aspects of
solving sparse linear systems. For the pure Stokes equations, a commonly used
preconditioning matrix is obtained from the Galerkin FEM discretisation of the
variational form ∫

Ω
(∇u : ∇v + pq) ,

which we recognise as
a0(u,v) + (p, q)Q.

The preconditioner is derived in [BGL05, Sec. 10.1.1], and although not directly
applicable to the Darcy-Stokes equations (2.6), a natural extension is to define

mα(u, p,v, q) = aα(u,v) + (p, q)Q (6.8)

as the variational form of a possible preconditioner to the linear system (4.4).
Assuming we have chosen Vh = span{ϕV

1 , . . . ,ϕ
V
n } and Qh = span{φQ1 , . . . , φQm}

in (4.1) to generate S in (4.6), the preconditioning matrix arising from (6.8) takes
the form

Mα =
[
Aα 0
0 P

]
. (6.9)

Here
Aα = [aα(ϕi,ϕj)], P = [(φk, φl)Q],

with i, j = 1, 2, . . . , n and k, l = 1, 2, . . . ,m. It is trivial to see that Mα is block
symmetric and positive definite, which we recall is a requirement for Algorithm 5.

As the choice of Mα is not founded in any theoretical results, we will instead
compare the MINRES method numerically, with and without preconditioning. The
preconditioner M in Algorithm 5 will naturally be Mα from (6.9) in the precon-
ditioned case, while we use the identity matrix in the non-preconditioned case.
Additionally, we want to investigate how the MINRES method behaves in prac-
tice, so to this end we apply the method to the resulting designs from the diffuser
example from Subsection 4.6.1. More precisely, we apply MINRES to the linear
system (4.4) for both the CR and the TH elements using the designs from Figure
4.8a and 4.8c, respectively.

We use the HYPRE algebraic multigrid method to perform the preconditioning
step in Algorithm 5, and observe how the relative residuals of the linear system

Chapter 6. Iterative approach 66

decreases with the iterations. This residual is denoted φ in Algorithm 5, and we
stop the iterations when either φ/φ0 < 1× 10−15 or k > kmax = 2000.

0 500 1,000 1,500 2,000
10−16

10−8

100

MINRES iteration count

φ
/
φ

0

Prec.
Non-prec.
Prec.
Non-prec.

Figure 6.1: The relative residual of MINRES applied to (4.4) for the designs in Figure
4.8a and 4.8c, using x0 = 0 in Algorithm 5. The red graphs are the CR elements and the
blue graphs are the TH elements.

The results are can be seen in Figure 6.1, and it is clear that it is not only
preferable, but in practice strictly necessary to use preconditioning for both element
types if we want to solve (4.4) accurately.

6.2 Behaviour of the residual estimates
An advantage of MINRES being an iterative method means that we can solve (4.4)
down to some preferred accuracy, potentially saving computational effort by redu-
cing the number of iterations. The question is how accurate is sufficiently accurate,
and to assess this question we will use the theory of residuals developed in Section
4.3. By observing the residual norms ‖rmoh/2‖ V and ‖rmah/2‖Q from (4.10) during
the MINRES iterations, we can detect when the discretisation error dominates the
error associated with the linear system as the residuals should no longer change.
As such, solving (4.4) down to any further accuracy will not result in the numerical
solution (uh, ph) approximating the solution to the continuous equation (2.6) any
more accurately, meaning we can stop the MINRES iterations.

We recall from Figure 4.5 in Section 4.4 that for the CR elements there was
still a certain discretisation error after refining the mesh once. To see how this
affects the behaviour of the residuals during MINRES iterations, we include both
the residuals evaluated on Th/2 and Th/4 for the CR elements in this section. The
relative residuals for the one time refined mesh will therefore be denoted

ηmoh/2 and ηmah/2

for ηmo and ηma in (4.11), respectively. Similarly, for the two times refined mesh
we write

ηmoh/4 =
‖rmoh/4‖ V
‖g‖ L2(∂Ω)

and ηmah/4 =
‖rmah/4‖Q
‖g‖L2(∂Ω)

67 6.2. Behaviour of the residual estimates

in order to separate the two.
As a starting point, consider the diffuser benchmark on the 50×50 mesh presen-

ted in the previous section. In order to understand how the residuals behave in
the different states of the optimisation algorithm, we look at an iterate in the early
stages of the OC method and one towards the end. More precisely, in order to
see how the residuals behave early on, we perform the 50× 50 diffuser experiment
using the direct solver. However, now we perform 100 MINRES iterations at OC
iteration 3, whose corresponding design ρh,3 is depicted in Figure 6.2 for the two
element types. The residual norms can be seen in Figure 6.3, where we have used

(a) CR (b) TH

Figure 6.2: The design of the 50× 50 diffuser example in iteration 3 of the OC method.

x0 = 0 in Algorithm 5.

100

101

M
om

en
tu
m

ηmoh/2
ηmoh/4
ηmoh/2

0 20 40 60 80 100
10−2

10−1

100

MINRES iteration count

M
as
s

ηmoh/2
ηmoh/4
ηmoh/2

Figure 6.3: Relative residual norms as a function of MINRES iterations for iteration 3
of the OC method for the 50× 50 diffuser example. The red plots corresponds to the CR
elements while the blue plot correspond to the TH elements. Zero is used as the initial
guess for MINRES.

The first thing to note from Figure 6.3 is that for ηmoh/2 the discretisation error

Chapter 6. Iterative approach 68

seems to dominate after about 80 MINRES iterations for both the CR and TH
elements. The TH elements converge to a value smaller than that for the CR
elements, which is expected as the TH elements using higher order basis functions
for uh and ph than CR, both appearing in the definition (4.10) of rmoh/2. For ηmah/2
in Figure 6.3, it seems to be the same tendency with graph for the TH elements,
flattening out after about 80 iterations. The CR elements, on the other hand,
seems to decrease more or less steadily. This is due to the fact that for the CR
elements, the divergence error is within machine precision for a solution of (4.1),
which was observed during the convergence test. Hence, we can generally expect
that the mass residual norm will continue to decrease as the MINRES iterates
approach the exact solution of (4.4). Comparing ηmoh/2 and ηmoh/4 for the CR elements,
they seemingly behave very similarly, only differing by a constant after about 10
MINRES iterations. For ηmah/2 and ηmah/4, the plots completely coincide.

Instead of using zero as the initial guess for MINRES, we can instead try to use
the solution of (4.4) in the previous iteration. The matrix Aα in (4.4) depends on
the design ρh,i in OC iteration i, as α = α(ρh,i). It is reasonable to assume that if
the previous design ρh,i ≈ ρh,i−1, then (uh,i, ph,i) ≈ (uh,i−1, ph,i−1) as well.

Seeing how he residuals change during the MINRES using zero as the initial
guess for OC iteration 3, we redo the experiment above, but now using the solution
(uh,2, ph,2) as the initial guess for MINRES. The results can be seen in Figure 6.4,
and by comparison with Figure 6.3, appear to be similar to the case using zero as
the initial guess in MINRES. Again, the residuals seems to become constant after

10−1

100

101

102

M
om

en
tu
m

ηmoh/2
ηmoh/4
ηmoh/2

0 20 40 60 80 100
10−14

10−6

102

MINRES iteration count

M
as
s

ηmah/2
ηmah/4
ηmah/2

Figure 6.4: Relative residual norms as a function of MINRES iterations for iteration 3
of the OC method for the 50× 50 diffuser example. The red plots corresponds to the CR
elements while the blue plot correspond to the TH elements. The previous iterate is used
as the initial guess for MINRES.

69 6.2. Behaviour of the residual estimates

about 80 MINRES iterations, except for the mass residual using CR elements,
which continue to decrease. Furthermore, the residuals in Figure 6.4 seems to
converge to the same values as in Figure 6.3, which is expected as MINRES should
converge to the solution of (4.4) regardless of the initial guess. For the CR elements,
ηmah/2 ∼ 10−14 and ηmah/4 ∼ 10−14 in iteration 0, which is due to the initial guess being
(uh,2, ph,2), which was computed with a direct solver. As the matrix B in (4.4) is
independent of the porosity distribution, it is constant in each iteration, so uh,2
accurately solves the second equation in (4.1) also for the new porosity distribution
ρh,3.

The fact that using the previous iterate did not yield any faster convergence of
the residuals in MINRES for OC iteration 3 is probably due to the fact that we are
in the early stages of the optimisation algorithm, where we can expect the designs
ρh,i to change significantly in one iteration to the next. This means is we can not
assume that ρh,i ≈ ρh,i−1, and consequently we do not have Aα(ρh,i) ≈ Aα(ρh,i−1)
in (4.4) either.

To this end, let us consider an iteration in the later stage of the OC method for
the 50× 50 diffuser example. We use a direct solver for solving the state equations
in the OC method, but this time we additionally use the MINRES in the very last
iteration, that is the iteration where the stopping criterion is satisfied. For the CR
and TH elements we see from Table 4.1 that this corresponds to iteration 43 and
44, respectively. Using zero as the initial guess, the results Figure 6.5.

100

101

M
om

en
tu
m

ηmoh/2
ηmoh/4
ηmoh/2

0 20 40 60 80 100
10−2

10−1

100

MINRES iteration count

M
as
s

ηmah/2
ηmah/4
ηmah/2

Figure 6.5: Relative residual norms as a function of MINRES iterations for iteration 3
of the OC method for the 50× 50 diffuser example. The red plots corresponds to the CR
elements while the blue plot correspond to the TH elements. Zero is used as the initial
guess for MINRES.

Chapter 6. Iterative approach 70

The first thing to note in Figure 6.5 is when the residuals become constant.
Apart from the mass residual in the case of the CR elements, which as before
continue to decrease, the other graphs seems to become constant after about 40
MINRES iterations. This is significantly lower than for the OC iteration 3 con-
sidered above, which used about 80 iterations. One possible explanation for this
difference in convergence could be the properties of ρh. The 0-1 design represent
pure Stokes flow in the regions where ρh = 1 and zero velocity when ρh = 0. As
the preconditioning matrix Mα was initially derived for the pure Stokes equations,
it may be that Mα will be more efficient for the later iterations of the OC method
where the state equations models regions of pure Stokes flow. The 0-1 property
is not particularly prominent in the early stages of the optimisation algorithm, as
Figure 6.2 illustrates.

Next, let us look at the case where the previous state is used as the initial guess
in MINRES. Using the direct solver 100 MINRES iterations are performed in the
very last OC iteration for both the CR and TH elements, and the result is seen
in Figure 6.6. Comparing Figure 6.5 and 6.6, it is clear that the previous iterate

10−0.5

100

M
om

en
tu
m

ηmoh/2
ηmoh/4
ηmoh/2

0 20 40 60 80 100
10−14

10−7

100

MINRES iteration count

M
as
s

ηmah/2
ηmah/4
ηmah/2

Figure 6.6: Relative residual norms as a function of MINRES iterations for the last
iteration of the OC method for the 50 × 50 diffuser example. The red plots corresponds
to the CR elements while the blue plots correspond to the TH elements. The previous
iterate is used as the initial guess for MINRES.

is a good initial guess for MINRES in the later stages of the OC method. The
residuals for both the CR and TH elements now converges already from the very
first iteration, with the exception naturally being the mass residual for the CR
elements.

The last question to be addressed is how the residuals depend on the mesh size
of the problem. In addition to the 50×50 mesh, consider a 25×25 and a 100×100

71 6.3. Premature termination of MINRES

mesh. We use iteration 3 of the OC method with the previous iterate as the initial
guess for MINRES, and the sequence of refined grids for both CR and TH elements
is depicted in Figure 6.7. We omit the case ηmoh/4 and ηmah/4 for the CR elements due
to their similar behaviour as ηmoh/2 and ηmah/2. The first thing to note from Figure 6.7

10−1

100

101

102

η
m
o

h
/
2

25× 25, CR
50× 50, CR
100× 100, CR
25× 25, TH
50× 50, TH
100× 10, TH

0 20 40 60 80 100
10−14

10−6

102

MINRES iteration count

η
m
a

h
/
2

25× 25, CR
50× 50, CR
100× 100, CR
25× 25, TH
50× 50, TH
100× 10, TH

Figure 6.7: Relative residual norms as a function of MINRES iterations for iteration 3
of the OC method for the diffuser example with varying grid sizes. Zero is used as the
initial guess for MINRES.

is that ηmoh/2 generally decreases as the mesh becomes finer, which is reasonable as
the discretisation error is expected to decrease. Furthermore, for the three different
mesh sizes ηmoh/2 seems to become constant after about 80 iterations for both the
CR and TH elements, suggesting that convergence of the residuals depends rather
weakly on the mesh size. Considering ηmah/2, the trend seems to be the same for
the TH elements, that is ηmah/2 decreases with increasing mesh size and becoming
constant after about 60 iterations. For the CR elements, the mesh size seems not
to affect the convergence of ηmah/2, which continuously decreases at the same rate for
the three mesh sizes considered.

6.3 Premature termination of MINRES
Considering the MINRES method in Algorithm 5, a possible stopping criterion
could be to stop the iterations when ‖b−Ax‖2 is smaller than some fixed tolerance.
As we generally do not know how accurate the linear system (4.4) needs to be solved
in each OC iteration, one option could be to solve the system to machine accuracy,
which from the perspective of the OC method would be equivalent to using a direct

Chapter 6. Iterative approach 72

solver. With this approach however, we must expect to perform an unnecessarily
large number of MINRES iterations, which is not desirable.

Instead we will compute the a posteriori residuals using the strategy formulated
in Section 4.3 in order to propose a stopping criterion for MINRES. As we have
both the mass and the momentum residuals, it is not readily obvious which one
that is appropriate to use for stopping MINRES. We therefore let η(s)

k be a linear
combination of the two residuals, defined by

η
(s)
k = sηmok + (1− s)ηmak (6.10)

for some s ∈ [0, 1]. Here k denotes a MINRES iteration, and we have omitted the
subscript h/2 as we only consider residuals evaluated on a once uniformly refined
mesh. From the previous section we saw that both residuals for the once and twice
refined mesh behaved very similarly in terms of when becoming constant during
the MINRES iterations. Based on this behaviour we therefore justify to consider
only the one time refinement, meaning we will not consider ηmoh/4 and ηmah/4 for either
element type.

As the residual norms are expected to converge towards a constant, as seen in
the previous section for all residual norms except ηma for the CR elements, we
define the relative change of the residual over one MINRES iteration

τ
(s)
k =

|η(s)
k − η

(s)
k−1|

η
(s)
k

. (6.11)

We will stop the MINRES when the change in the relative residual norm between
two consecutive iterations are sufficiently small, meaning when

τ
(s)
k < ετ (6.12)

for fixed tolerance ετ .
Having defined a stopping criterion, there are two questions we need to address.

The first question is regarding what the value of the tolerance of ετ should be. As
the direct solver solves the linear system (4.4) down to machine accuracy, this
is what we will use as a reference. Ideally we want properties like the objective
value and the residuals to coincide during iterations when using the direct solver
and when using prematurely stopped MINRES, so by executing the algorithm for
different values of ετ we can decide how small ετ needs to be for this to be the case.

The second question is what the value of s in (6.11) should be. Each value
ηmok and ηmak requires the solution of a linear system, so if for instance it appears
that only one of the residuals is sufficient in order for the OC method to converge
to the desired solution, it may be the case that the other residual is unnecessary
to compute. As it in Section 4.6 has proven itself to be the easiest among the
benchmarks, we start by consider the 50 × 50 diffuser example when addressing
these questions.

We will use the solution computed in the previous OC iteration as the initial
guess for MINRES, as this was seen to reduce the necessary number of MINRES
iterations significantly in the later stages of the OC method.

73 6.3. Premature termination of MINRES

6.3.1 The diffuser
We will start by considering the CR elements. In this case ηmak continues to decrease
with the MINRES iterations, so it is immediately clear that using s = 0 in (6.11)
does not make sense. Looking at the Momentum plot in Figure 6.4 and 6.6 we
see that ηmoh/2 appears to converge to a constant, so this appear as a viable choice.
Regarding the choice of ετ , we have chosen the three values 1× 10−2, 1× 10−4 and
1× 10−8, and the results can be seen in Figure 6.8. In the plots we have included the

101.5

102

102.5

J

Direct
1× 10−2

1× 10−4

1× 10−8

100

100.5

η
(s

)

Direct
1× 10−2

1× 10−4

1× 10−8

0 10 20 30 40 50 60 70
0

100

200

OC iteration count

k

1× 10−2

1× 10−4

1× 10−8

Figure 6.8: 50× 50 diffuser example with the CR elements for three different values of
ετ , and with s = 1 in (6.10). J is the objective value, η(1) = ηmo is the relative momentum
residual norm and k is the number of MINRES iterations.

objective value, the residual and how the number of necessary MINRES iterations
changes over the course of the OC iterations. Furthermore, we have included the
results from using the direct solver for comparison.

First, considering ετ = 1× 10−2 we see that the objective value J in the begin-
ning deviates from the value obtained with direct solver, but appears to become
fairly similar after about 10-15 iterations. For the residual norm η(s), however,
ετ = 1× 10−2 deviates noticeably from the direct solver. Despite being consider-

Chapter 6. Iterative approach 74

ably larger after about 5 iterations, we see that the OC method requires almost 70
iterations when using ετ = 1× 10−2 as a stopping criterion.

The two other values ετ = 1× 10−4 and ετ = 1× 10−8 seems to yield more
accurate results, where the latter in particular appears to coincide completely in
the plots for J and ηmo. Looking at ετ = 1× 10−4, the difference from the direct
solver is most apparent in the first 20 iterations, and it seems to converge fairly
accurately thenceforth. As the number of MINRES iterations k is significantly
lower for ετ = 1× 10−4 than for ετ = 1× 10−8, the former may therefore be an
enticing configuration despite not being completely coincident with the direct solver
during the earlier iterations.

Next we consider the case when s ∈ (0, 1) in (6.10), such that both sηmok and
(1 − s)ηmak are non-zero in ηk. Generally it is expedient to choose s such that
ηmo and ηma are of the same order, that is when ηmok and ηmak have converged.
However, considering that ηmak will only decrease with the MINRES iterations, we
can generally not expect this to be the case. More precisely, if sηmak is of the same
order as (1−s)ηmok in a MINRES iteration k, we can expect it to eventually become
lower order for later iterations. It is not obvious how this will affect the stopping
criterion for MINRES, so we will for simplicity use s = 0.5. We still consider the
CR elements with the same three tolerances for ετ as found previously, and the
results can be seen in Figure 6.9.

Qualitatively, the behaviour for the three values of ετ appears to be very similar
as for the case s = 1. For ετ = 1× 10−2, J seems to converge towards the value
calculated using the direct solver, while for η(s) the values deviate substantially.
Additionally, the OC method also uses several extra iterations in this case. Looking
at ετ = 1× 10−4 and ετ = 1× 10−8, both the graphs for both J and η(s) behaves
more similarly to the direct solver, with ετ = 1× 10−4 converging for η(s) after
about 25 iterations. Again, for ετ = 1× 10−8, the results appear to coincide with
the direct solver.

To more easily be able to compare the differences in the behaviour of the stop-
ping criterion (6.12) for s = 0.5 and s = 1, we present their properties in Table 6.1.
Considering ετ = 1× 10−4 and ετ = 1× 10−8 in particular, we note a significant

Table 6.1: Computational data the for the 50× 50 diffuser example using CR elements.

s ετ OC iters. J η(s) ktot

0.5 1× 10−2 56 35.05 3.90× 10−1 179
1× 10−4 41 30.59 2.80× 10−1 454
1× 10−8 42 30.44 2.73× 10−1 4384

1 1× 10−2 69 36.27 7.18× 10−1 175
1× 10−4 42 30.87 5.68× 10−1 434
1× 10−8 42 30.44 5.46× 10−1 3384

difference in the total number of MINRES iterations ktot in Table 6.1 for both
values of s. As our main goal should be to minimise the total number of MINRES
iterations over the whole optimisation algorithm, we see that we pay a substantial

75 6.3. Premature termination of MINRES

101.5

102

102.5
J

Direct
1× 10−2

1× 10−4

1× 10−8

10−0.5

100

η
(s

)

Direct
1× 10−2

1× 10−4

1× 10−8

0 10 20 30 40 50 60
0

100

200

OC iteration count

k

1× 10−2

1× 10−4

1× 10−8

Figure 6.9: 50× 50 diffuser example with the CR elements for three different values of
ετ , and with s = 0.5 in (6.10). The objective value J , the relative momentum residual
norm η(0.5) and the number of MINRES iterations k have been plotted for three different
values of ετ .

price for the additional accuracy ετ = 1× 10−8 offers over ετ = 1× 10−4. Further-
more, we see that the objective values are very similar between the two cases, with
the objective value differing with only 0.5 % and 1.4 % for s = 0.5 and s = 1, re-
spectively. From these observations it appears that there is not much to gain from
increasing the accuracy from ετ = 1× 10−4 to ετ = 1× 10−8 for this example,
despite the value of the relative residual norm deviating somewhat from that of the
direct solver in the first 20 iterations.

Comparing each ετ with respect to the two values of s, we see that the two
stopping criteria yield similar values for the OC iterations and objective values.
Looking at η(s), we see that the values for η(0.5) are about a half of η(1), which
is due to ηmo being multiplied by 0.5 in (6.10) for the former. The tendency
seems to be that the term sηma does not contribute significantly to the value of
η(s), indicating that for the stopping criterion, ηmo is the more important residual
of the two. Lastly, we also see that when s = 1, the total number of MINRES

Chapter 6. Iterative approach 76

iterations is 1000 less for ετ = 1× 10−8 than for s = 0.5, despite both the OC
iterations and objective value being identical.

Having considered the CR elements, we perform the same experiment using
the TH elements. We start by considering s = 1, and again choose three different
values for ετ . We still use ετ = 1× 10−2 and ετ = 1× 10−4, however his time we
found that ετ = 1× 10−6 was sufficient in order to have the values for J and η(s)

coincide with the values obtained with the direct solver.

101.5

102

102.5

J

Direct
1× 10−2

1× 10−4

1× 10−6

10−1

10−0.8

η
(s

)

Direct
1× 10−2

1× 10−4

1× 10−6

0 10 20 30 40 50
0

50

100

OC iteration count

k

1× 10−2

1× 10−4

1× 10−6

Figure 6.10: 50 × 50 diffuser example with the TH elements for three different values
of ετ , and with s = 1 in (6.10). J is the objective value, ηmo is the relative momentum
residual norm and k is the number of MINRES iterations.

Starting with ετ = 1× 10−2, the trend seems to be similar to that for the
CR elements. For J , although ετ = 1× 10−2 resembles the direct solver, it be-
comes clear from the plot for η(s) that there is a significant difference. Again,
ετ = 1× 10−2 deviates for the first 20 iterations, while converging towards a value
slightly larger than for the direct solver. Additionally, the optimisation algorithms
needs to perform some additional iterations in order to satisfy the stopping cri-
terion. Looking at ετ = 1× 10−4 and ετ = 1× 10−6, we note in particular that the
former also seems to coincide almost completely with the direct solver for both J

77 6.3. Premature termination of MINRES

and η(s), as opposed to the CR elements considered previously.
Turning our attention to the value of s, for TH elements we also want to consider

the case s < 1. As discussed previously, we want to choose s such that sηmok and
(1 − s)ηmak are of the same order in (6.10) in order to not have one of the terms
dominating the other. We can use Figure 6.6 in order to address this question, as
we can read off the values of the relative residual norms in the later iterations when
the design has more or less settled. As the y-axes in Figure 6.6 are logarithmic,
it is difficult to read off the values of the straight lines exactly. Instead we inform
the reader that the exact values are 0.21 and 0.10 for ηmo and ηma, respectively,
which are clearly of the same order. This means that we can use s = 0.5 for η(s)

k ,
and the results are seen in Figure 6.11.

101.5

102

102.5

J

Direct
1× 10−2

1× 10−4

1× 10−6

10−1

100

η
(s

)

Direct
1× 10−2

1× 10−4

1× 10−6

0 10 20 30 40
0

50

100

OC iteration count

k

1× 10−2

1× 10−4

1× 10−6

Figure 6.11: 50 × 50 diffuser example with the TH elements for three different values
of ετ , and with s = 0.5 in (6.10). J is the objective value, ηmo is the relative momentum
residual norm and k is the number of MINRES iterations.

Starting with J in Figure 6.11, we see that this time ετ = 1× 10−2 deviates
a fair amount from the direct solver for the first 6 iterations, but converges fairly
accurately in the 7’th iteration and forward. The same is true for η(s), where apart

Chapter 6. Iterative approach 78

from some small zigzags the relative residual norm appears to converge towards a
value slightly larger than that of the direct solver. Furthermore, note that ετ =
1× 10−2 stop before the direct solver, which is opposite of what we have seen
previously. For ετ = 1× 10−4 and ετ = 1× 10−6 are the same as when considering
η(s), where both coincides very accurately with the direct solver.

To better be able to compare η(1) and η(0.5), we plot their main properties in
Table 6.2. Looking at the larger of the three values for ετ , the objective value is

Table 6.2: Computational data the for the 50× 50 diffuser example using TH elements.

s ετ OC iters. J η(s) ktot

0.5 1× 10−2 37 33.48 9.30× 10−2 195
1× 10−4 40 31.14 8.35× 10−2 562
1× 10−6 42 31.02 8.32× 10−2 1169

1 1× 10−2 50 32.95 1.10× 10−1 250
1× 10−4 44 31.12 1.05× 10−1 605
1× 10−6 44 31.02 1.04× 10−1 1216

about 7.9 % higher for s = 0.5 and 6.2 % higher for s = 1 than that we get when
using the direct solver, which we from Table 4.1 know is 31.02. For ετ = 1× 10−4,
the difference in the objective value from the direct solver is 0.4 % for s = 0.5
and 0.3 % for s = 0.5, which is considerably smaller. Additionally, when using
ετ = 1× 10−6, the values obtained for J coincide with the direct solver for both
values of s. Unsurprisingly, this requires the algorithm to perform several extra
MINRES iterations in total, which we from ktot in Table 6.2 see is about twice the
number of iterations used for ετ = 1× 10−6.

Summarising what we have found so far, the most important observation for
both the CR and TH elements is arguably that the behaviour of the stopping
criterion s = 0.5 and s = 1 were fairly similar. Comparing the two values for
s, we saw from Table 6.1 and 6.2 that among each tolerance ετ the objective
value, relative residual norm and total number of MINRES iterations did not vary
significantly. This suggests that using s = 1, such that η(s)

i = ηmoi , is sufficient as
a stopping criterion, meaning we only need to solve the first of (4.10). However
we emphasise that this will usually be the larger one of the two linear systems, as
rmoh ∈ Vh and rmah ∈ Qh. This follows from the fact that the order of the basis
functions for Vh will generally be higher than those for Qh, which we recall was
necessary in order for a given pair of elements to be stable. Nevertheless, it is
certainly desirable to avoid having to compute rmah if possible.

Concerning the value of ετ in (6.12), the experiments suggests that using 1× 10−2

is too large for either type of the two types of elements considered, if we want
the iterates obtained from using MINRES to solve the linear system (4.4) to re-
semble those obtained using the direct solver. For the TH elements it appears that
1× 10−4 is sufficient, and certainly preferable over 1× 10−6. That is considering
the latter doubles the number of MINRES iterations overall, in addition to yielding
little additional accuracy in the objective value and residual. For the CR elements,

79 6.3. Premature termination of MINRES

however, it is less clear what an appropriate value of ετ is. On the one hand,
ετ = 1× 10−8 was necessary for both values of s in order to have the iterates gen-
erated with MINRES to coincide with those generated by the direct solver. On the
other hand, this resulted in a very large number of MINRES iterations compared
to ετ = 1× 10−4, which appeared to generate almost as accurate solutions of (4.4)
after about 20 iterations.

It is important to note that these observations are only valid for the 50 × 50
diffuser example, which we used specifically because it was found to be one of the
more numerically straightforward examples considered. In order to address how the
premature termination of MINRES affects more numerically challenging problems,
we will now consider the double pipe benchmark.

6.3.2 The double pipe
With the rather lengthy discussion about appropriate values for s in (6.10) and
ετ in (6.12) for the 50× 50 diffuser example, we will now use these results for the
double pipe example considered in Subsection 4.6.4. More precisely we consider
the example where δ = 1.5, such that we expect the solution to be the joining pipe
depicted in Figure 4.14. As we experienced in Subsection 4.6.4, this problem is
tricky to solve numerically. First, for the algorithm to yield the preferred design it
was necessary to first perform 50 iterations using q = 0.01 in the definition of αq
in (4.21). Secondly, the algorithm needed perform 269 and 384 iterations with the
direct solver for the CR and the TH elements, respectively, in order to converge.

Equation (6.12) is used as a stopping criterion for MINRES when solving (4.4),
and as we found s = 1 in (6.10) to sufficient and preferable for the diffuser example,
we only consider this case here. Regarding the values for ετ , we will use the same
three values for the CR and TH elements used for the diffuser example.

Starting with the CR elements, we execute the OC method with the stopping
criterion (6.12) for MINRES, and results are depicted in Figure 6.12. The first thing
to note from Figure 6.12 is the behaviour of the OC method for ετ = 1× 10−2. For
the diffuser example considered previously, we recall that this choice for ετ yielded
inaccurate estimates for J and η(s) compared to the direct solver. Now, we see
that the method stops after 20 iterations, and it goes without saying the algorithm
does not yield a meaningful resulting design. This only strengthens our impression
that ετ = 1× 10−2 is a too lenient threshold for stopping the MINRES iterations.

Turning our attention to the two smaller values of ετ , the tendencies appears
to be similar to those from Figure 6.8. For J and η(s), the case ετ = 1× 10−4

deviates somewhat from the direct solver, while ετ = 1× 10−8 appears to coincide.
However, we see that ετ = 1× 10−4 needs 163 additional OC iterations compared
to when using the direct solver. To address this issue further, we summarise the
results in Table 6.3. Looking at the column ktot for the total number of MINRES
iterations performed, it is clear that even though the case ετ = 1× 10−4 uses more
OC iterations, the overall number of MINRES iterations is significantly lower than
for ετ = 1× 10−8. More precisely, the case ετ = 1× 10−8 uses over 11 times more
MINRES iterations in total, while the objective value is only about 0.9 % smaller.
Finally, to confirm that the resulting designs for ετ = 1× 10−4 and ετ = 1× 10−8

Chapter 6. Iterative approach 80

100.5

101

101.5
J

Direct
1× 10−2

1× 10−4

1× 10−8

100.4

100.6

η
(s

)

Direct
1× 10−2

1× 10−4

1× 10−8

0 100 200 300 400
0

100

200

OC iteration count

k

1× 10−2

1× 10−4

1× 10−8

Figure 6.12: Double pipe example with δ = 1.5 using CR elements for three different
values of ετ , and with s = 1 in (6.10). J is the objective value, η(1) is the combined
relative residual norm and k is the number of MINRES iterations.

look in fact similar, we depict them in Figure 6.13. We have omitted ετ = 1× 10−2

as it is of little interest.
Considering now the TH elements, we redo the joining pipe example as before.

We still use 1× 10−2, 1× 10−4, and 1× 10−6 for ετ , and the results are seen in
Figure 6.14. Looking at the graphs for ετ = 1× 10−2, we see that this time the
OC method appears to converge to an objective value and relative residual norm
slightly larger than when using the direct solver, which is similar to the diffuser
example. ετ = 1× 10−4 resembles the direct solver more accurately, but does not
coincide completely for neither J nor η(s). Although this difference can be argued
to be fairly small, we see that it is significantly larger than for Figure 6.10 depicting
the results for the diffuser example. For ετ = 1× 10−6, however, the results still
seem to coincide completely with the direct solver.

To get a better understanding of how much accuracy is gained using ετ =
1× 10−6 compared to ετ = 1× 10−4, we list the computational data for Figure
6.14 in Table 6.4. For reference, recall that the objective obtained when using

81 6.3. Premature termination of MINRES

Table 6.3: Computational data the for the double pipe example with δ = 1.5 using CR
elements. s = 1 in (6.10).

ετ OC iters. J η(s) ktot

1× 10−2 20 2.77 2.57 22
1× 10−4 432 24.22 3.71 1682
1× 10−8 268 24.00 3.70 19154

(a) ετ = 1 × 10−4 (b) ετ = 1 × 10−8

Figure 6.13: Resulting design for the double pipe example with δ = 1.5 using CR
elements and the stopping criterion (6.12) for MINRES.

the direct solver is 24.81 by Table 4.4. To this end, the objective value obtained
with ετ = 1× 10−6 is 0.4 % smaller, while for ετ = 1× 10−4 it is 1.4 % larger.
Comparing the total number of MINRES iterations between these two values for
ετ , we see that the case ετ = 1× 10−6 uses approximately 2.8 times more iterations
than ετ = 1× 10−4. Although this factor is significantly smaller than that for the
CR elements, it is a noticeable improvement if we accept the 1.4 % error in the
objective value.

6.3.3 All examples
Having considered both the 50 × 50 diffuser example and the joining double pipe
example in details, it appears that s = 1 in (6.10) provides a reasonable stopping
criterion for MINRES for the CR and TH elements. Furthermore, based on ob-
serving the objective value and relative residual norm, it appears that by using
ετ = 1× 10−4 in (6.12) we retain a reasonable level of accuracy in the method,
while at the same time not needing to perform an excessive amount of MINRES
iterations. To complete this chapter we will therefore apply the stopping criterion
with the proposed value for s and ετ for all the examples presented in Section 4.6.

As we are mainly interested in confirming that the premature stopping of
MINRES yield satisfactory results also for the other experiments from Section 4.6,
we do not discuss the details of each experiment in detail. Starting with the CR
elements, we therefore summarise the computational results for all the experiments,
and the results is seen in Table 6.5. Looking at the column J err. in particular, we
can compare the algorithm using the stopping criterion with that using the direct
solver. We see that the largest difference in J is for the 50×50 pipe bend example,

Chapter 6. Iterative approach 82

101.2

101.4

101.6

J

Direct
1× 10−2

1× 10−4

1× 10−6

10−0.2

100

η
(s

)

Direct
1× 10−2

1× 10−4

1× 10−6

0 100 200 300 400
0

50

100

OC iteration count

k

1× 10−2

1× 10−4

1× 10−6

Figure 6.14: Double pipe example with δ = 1.5 using TH elements for three different
values of ετ , and with s = 1 in (6.10). J is the objective value, η(1) is the combined
relative residual norm and k is the number of MINRES iterations.

where the resulting objective value is 2.78 % larger than for the direct solver.
Next we perform the experiments using the TH elements, and we have listed

the results in Table 6.6. Again, the 50 × 50 pipe bend example appears to yield
the largest error in J with a difference of 3.51 %. From the two preceding sub-
sections we saw that setting ετ too small increased the total number of MINRES
iterations substantially, while setting it too large resulted in inaccurate or even
non-convergent resulting designs. Based on Table 6.5 and 6.6, it therefore appears
that using s = 1 in (6.10) and ετ = 1× 10−4 in (6.12) yield a reasonable balance
between the number of MINRES iterations necessary to perform and the accuracy
of the resulting design.

83 6.3. Premature termination of MINRES

Table 6.4: Computational data the for the double pipe example with δ = 1.5 using TH
elements. s = 1 in (6.10).

ετ OC iters. J η(s) ktot

1× 10−2 398 26.00 8.07× 10−1 1184
1× 10−4 361 25.16 7.75× 10−1 1771
1× 10−6 384 24.71 7.73× 10−1 5048

Table 6.5: Computational data the for all the experiments from Section 4.6 using CR
elements. s = 1 in (6.10) and ετ = 1× 10−4 in (6.12). The J err. column lists the error
in the objective value compared to the results in Section 4.6.

Example Property OC iters. J J err. η(s) ktot

Diffuser 50× 50 mesh 42 30.87 1.41 % 0.57 434
100× 100 mesh 48 30.54 0.36 % 0.29 467

Pipe bend 50× 50 mesh 36 9.97 2.78 % 3.79 501
100× 100 mesh 87 9.82 1.55 % 2.00 991

Rugby ball γ = 0.8 23 68.41 0.07 % 0.71 214
γ = 0.9 51 43.18 −0.25 % 0.65 279
γ = 0.95 28 34.51 −1.24 % 0.64 251

Double pipe δ = 1.0 46 22.06 0.82 % 2.08 409
δ = 1.5 432 24.22 −2.38 % 3.71 1682

Table 6.6: Computational data the for all the experiments from Section 4.6 using TH
elements. s = 1 in (6.10) and ετ = 1× 10−4 in (6.12). The J err. column lists the error
in the objective value compared to the results in Section 4.6.

Example Property OC iters. J J err. η(s) ktot

Diffuser 50× 50 mesh 44 31.12 0.32 % 0.11 605
100× 100 mesh 40 30.62 0.00 % 0.04 742

Pipe bend 50× 50 mesh 38 10.31 3.51 % 1.01 746
100× 100 mesh 85 9.82 0.82 % 0.40 978

Rugby ball γ = 0.8 37 78.25 2.18 % 1.99 247
γ = 0.9 39 51.36 −0.05 % 1.99 251
γ = 0.95 37 42.55 −0.30 % 1.99 251

Double pipe δ = 1.0 49 22.26 0.59 % 0.30 755
δ = 1.5 361 25.16 1.41 % 0.78 1771

Chapter 6. Iterative approach 84

Chapter 7

Concluding remarks

7.1 Conclusion

In order to sum up our findings, we discuss them in the order they appeared in
this report.

Starting with Chapter 5, in retrospect one could argue that the numerical exper-
iments we performed could have been carried out in a more appropriate manner.
Based on our findings in Chapter 6, it appears that the mass residual was the
less prominent of the two residuals when it comes to deciding whether or not the
discretisation error dominates in a numerical solution, so considering the mass re-
sidual in isolation might not be the most expedient approach. As this corresponds
to s = 0 in (6.10), we could therefore instead to adopt the strategy from Chapter
6 and consider s = 0.5. However, as our findings in 6 indicated that using s = 0.5
and s = 1 in (6.10) resulted in very similar behaviour of the stopping criterion, it is
not unreasonable to expect the same tendencies when also applied in the adaptive
mesh refinement.

We therefore focus mainly on the results from using (5.1) as the threshold for
refinement. For both the CR and TH elements, based on varying cmo we saw that
the region of transition between solid and flow was the first part of the design to be
subject to refinement. Although only refining in this region is not the goal of using
the residual estimates for adaptive mesh refinement, we saw that refinement in the
transition region generally yielded the largest reduction in the residual compared
to the increase in the number of cells. This observation was seen for both the CR
elements and TH elements, although the tendency of refining mainly occurring in
the transition region was more evident for the latter. As the solid and flow regions
are usually much larger than the transition region, extensive refinement in these two
regions yielded a significant increase in the number of cells in the mesh, which in
turn leads to a large linear system. In that sense, since the strategy for adaptively
refining the mesh proposed here does not provide any control over the number of
cells marked as subject to refinement, the algorithm was rather sensitive to the
choice of cmo. That being said, when the value of cmo was chosen carefully, we

85

Chapter 7. Concluding remarks 86

observed a significant decrease in the residual norms without an immense increase
in the number of cells in the mesh.

Lastly, it could of course be interesting to apply the adaptive mesh refinement
to the other numerical examples from Section 4.6, and in fact these experiments
are ready to be carried out using the code provided. We chose however not to go
into such comprehensive examination of all the numerical examples in this report.

Turning our attention to the premature termination of MINRES in Chapter
6, we focus mainly on the case s = 1 in (6.10). The experiments in Section 6.3
indicates that ετ = 1× 10−4 in (6.12) yields a reasonable trade-off between the
number of MINRES iterations perform and the accuracy of solution for both types
of elements. In this case, the largest deviation in the objective value of the res-
ulting design compared to when using the direct solver was about 3.5 %, among
all the numerical experiments considered. A significantly larger value for ετ res-
ulted in either inaccurate designs, or even the algorithm failing to converge to
any reasonable solution at all. And naturally, while a much smaller value ετ gave
more coinciding results to the direct solver, a significant increase in MINRES it-
erations was necessary. In terms the OC iterations, the number necessary when
using MINRES with ετ = 1× 10−4 in (6.12), did not appear to deviate significantly
when compared to the direct solver, strengthening our belief that this value for ετ
can be appropriate.

Finally, solving a linear system on a refined mesh in each MINRES iterations is
of course computationally expensive, so the efficiency of prematurely terminating
MINRES based on the stopping criterion proposed in this report, comes down to
how efficiently the residuals can be computed. As such, for methods where the
residuals are easily obtained, for instance like those based on least-squared finite
elements [BG09], the strategies presented in Sections 5.1 and 6.3 might be more
suitable.

7.2 Further research
We end this report by proposing some further research suggestions.

In chapter 4 it was seen that (4.18) could be used to generate iterates for the
discrete implementation of the OC method. By addressing the continuity of the
operators ΠP and Zλ from Chapter 3, we believe that Proposition 4.3 can be
extended to the continuous formulation in Chapter 3, showing existence of λ in
(3.27).

Next, in the beginning of Chapter 2 we mentioned that the generalised Stokes
equations appears as a subproblem of the Navier-Stokes equations. As the Navier-
Stokes equations are significantly more used in engineering applications, it would
be reasonable to apply the proposed methods to Navier-Stokes.

Lastly, having examined two-dimensional flow, a natural extension is consider
three dimensions. As we recall, all results presented in this report also holds in three
dimensions, and extending the code to this case should be straight-forward in FEn-
iCS. The number of degrees of freedom tends to increase dramatically when going
from two to three dimensions, meaning the amount of memory available can quickly

87 7.2. Further research

become a limitation. However, both MINRES and the algebraic multigrid method
used for the preconditioning and for the residuals, are both generally considered to
be memory efficient methods, such that they are expected to perform well also in
three dimensions. A significant amount of effort was put into making the code MPI
compliant, so it should be readily deployable to large high-performance computers.
As such, performing the algorithm on larger three dimensional problems should be
achievable in practice.

Chapter 7. Concluding remarks 88

Appendices

89

Appendix A

The zero mean constraint

During the report, how to actually enforce the zero mean constraint in order to
guarantee uniqueness of solutions for the continuous Darcy-Stokes (2.6) equations
and the Galerkin formulation (4.1), was not addressed. The space Q = L2

0(Ω) is
not readily available in FEniCS and common FEM software, meaning that in order
to have p ∈ Q, it is necessary to enforce∫

Ω
p = 0 (A.1)

explicitly.
We let p ∈ L2(Ω) and p̄ ∈ R be the corresponding Lagrange multiplier to the

zero mean constraint. Additionally, the variational form of (A.1) is trivially defined
as

q̄

∫
Ω
p = 0 ∀q̄ ∈ R,

where q̄ is the test function. The new variational formulation of (4.1) becomes:
Find (u, p, p̄) ∈ V × L2(Ω)× R such that

aα(u,v) + b(v, p) = (f ,v)L2(Ω) ∀v ∈ V,

b(u, q) + p̄

∫
Ω
q = 0 ∀q ∈ L2(Ω),

q̄

∫
Ω
p = 0 ∀q̄ ∈ R.

The details are completely equivalent as for extending the Galerkin formulation
(4.1), such that the linear system (4.4) becomes

AαU +BTP = F,
BU + Φp̄ = 0,

ΦTP = 0,

91

Appendix A. The zero mean constraint 92

with
Φ = [Φl] =

[∫
Ω
φl

]
for l = 1, . . . ,m. The rest of the variables remain the same as in Section 4.1. This
yields the new system matrix S̄ ∈ R(m+n+1)×(m+n+1) defined as

S̄ =

Aα BT 0
B 0 Φ
0 ΦT 0

,
which can easily be verified to still be symmetric and indefinite, and non-singular
when Proposition (4.2) holds. In other words, S̄ is the matrix S with an additional
row and column. As this implementation detail does not affect the values of the
numerical solution (uh, ph), it is not included in the main part of the report.

Appendix B

Code

The file main.py contains the optimisation algorithm, and takes four arguments.
The first argument is a number between 1 and 9 denoting the experiment number,
being the order in which they appear in Table 6.5 and 6.6. The second argument
is either CR or TH, denoting the element type. The third argument is either direct
or minres, denoting the solver. The fourth argument is either 0 or 1, denoting
whether or not to use adaptivity.

In order to run in parallel, execute
mpirun -np n python3 main.py arg1 ...,
where n is the number of processes.

The code has been tested with the 2017.1.0 version of the FEniCS Docker
container, and is given in its entirety below.

Code B.1: main.py. The main script containing the optimisation algorithm.

1 from dolfin import *
2 import numpy as np
3 from common import *
4 from sys import argv,stdout
5

6 comm = mpi_comm_world()
7 rank = MPI.rank(comm)
8

9 # prob,L,H,nx,ny,gamma
10 experiments = [
11 ("diffuser", 1, 1, 50, 50, 0.5),
12 ("diffuser", 1, 1, 100, 100, 0.5),
13 ("pipebend", 1, 1, 50, 50, 0.08*np.pi),
14 ("pipebend", 1, 1, 100, 100, 0.08*np.pi),
15 ("rugbyball", 1, 1, 100, 100, 0.8),
16 ("rugbyball", 1, 1, 100, 100, 0.9),
17 ("rugbyball", 1, 1, 100, 100, 0.95),
18 ("doublepipe", 1, 1, 100, 100, 1/3),
19 ("doublepipe", 1.5, 1, 150, 100, 1/3)
20]
21

93

Appendix B. Code 94

22 if len(argv) == 1:
23 experiment = 0
24 element_type = "CR"
25 solver_type = "direct"
26 perform_adaptivity = False
27 else:
28 experiment = int(argv[1])-1
29 element_type = argv[2].upper()
30 solver_type = argv[3].lower()
31 perform_adaptivity = bool(int(argv[4]))
32

33 (prob,L,H,nx,ny,gamma) = experiments[experiment]
34

35 # move limits, stopping criterion etc
36 sc_eps = 0.1
37 k_max = 500
38 prec_solver = "hypre_amg"
39 c_param = 4
40 s_param = 1
41

42 mesh = RectangleMesh(comm, Point(np.array([0.0,0.0])),
Point(np.array([L,H],dtype='double')), nx, ny)↪→

43 bndry = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
44

45 if element_type == "CR":
46 V = VectorElement("CR", mesh.ufl_cell(), 1)
47 Q = FiniteElement("DG", mesh.ufl_cell(), 0)
48 elif element_type == "TH":
49 V = VectorElement("CG", mesh.ufl_cell(), 2)
50 Q = FiniteElement("CG", mesh.ufl_cell(), 1)
51 else:
52 raise ValueError("No element type %s" % element_type)
53

54 R = FiniteElement("R", mesh.ufl_cell(), 0)
55 W = FunctionSpace(mesh, MixedElement(V,Q,R))
56 P = FunctionSpace(mesh, "DG", 0)
57

58 bc_func = {
59 "diffuser": ("near(x[0],0)*4.0*x[1]*(1.0-x[1])+\
60 (near(x[0],1) && 1.0/3 <= x[1] && x[1] <= 2.0/3)*108.0*(x[1]-1.0/3.0)*\
61 (2.0/3.0-x[1])","0"),
62 "pipebend": ("(near(x[0],0) && fabs(0.8-x[1]) <= 0.1)*\
63 (1-100*(x[1]-0.8)*(x[1]-0.8))","-(near(x[1],0) && fabs(0.8-x[0]) <= 0.1)*\
64 (1-100*(x[0]-0.8)*(x[0]-0.8))"),
65 "rugbyball": ("0","near(x[1],0) || near(x[1],1)"),
66 "doublepipe": ("(fabs(0.25-x[1]) <= 1.0/12)*\
67 (1-144*(x[1]-0.25)*(x[1]-0.25))+(fabs(0.75-x[1]) <= 1.0/12)*\
68 (1-144*(x[1]-0.75)*(x[1]-0.75))","0.0")
69 }
70

71 bcs_val = Expression(bc_func[prob], element=V)
72 bcs_expr = lambda W: DirichletBC(W, bcs_val, "on_boundary")
73

74 # integrate over the boundary to check that inflow == outflow
75 n_vec = FacetNormal(mesh)
76 bndry_integral = assemble(inner(bcs_val,n_vec)*ds(mesh))

95

77 # for the diffuser problem the integral over the outflow subdomain is not very
accurate unless↪→

78 # n is chosen such that the boundary nodes "line up" with the edges of the
79 # outlet (for instance if n = 99 or 51).
80 if abs(bndry_integral) > 1E-2: #DOLFIN_EPS
81 raise ValueError("The boundary integral of u, %f, is non-zero" % bndry_integral)
82

83 q_param = Constant(0.01)
84 f_src = Constant((0,0))
85

86 alpha = lambda rho:
Constant(2.5/1E-4)*(Constant(1)-rho*(Constant(1)+q_param)/(rho+q_param))↪→

87 a = lambda rho,u,v: (inner(grad(u),grad(v)) + alpha(rho)*inner(u,v))*dx
88 b1 = lambda v,p: -p*div(v)*dx
89 b2 = lambda p,q: p*q*dx
90 F = lambda v: inner(f_src,v)*dx
91 f_expr = lambda rho,u: Constant(0.5)*a(rho,u,u) - F(u)
92 grad_f_expr = lambda rho,u: Constant(0.5)*diff(alpha(rho), rho)*inner(u,u)
93

94 prob_name = "output/" + prob
95 if prob == "diffuser":
96 prob_name += "_%d" % nx
97 elif prob == "pipebend":
98 prob_name += "_%d" % nx
99 elif prob == "rugbyball":

100 prob_name += "_%d" % int(100*gamma)
101 elif prob == "doublepipe":
102 prob_name += "_%d" % int(10*L)
103 else:
104 raise ValueError("Invalid benchmark %s" % prob)
105 prob_name = "_".join((prob_name, element_type, solver_type, "ad",

str(int(perform_adaptivity))))↪→

106

107 file = XDMFFile(comm, prob_name+".xdmf")
108

109 rho = Function(P)
110

111 rho_v = variable(rho)
112 (u,p,p0) = TrialFunctions(W)
113 (v,q,q0) = TestFunctions(W)
114 A_ = a(rho,u,v) + b1(v,p) + b1(u,q) + b2(p,q0) + b2(p0,q)
115 M_ = a(rho,u,v) + b2(p,q) + b2(p0,q0)
116 ell = F(v)
117 w = Function(W)
118

119

120 (u,p,p0) = w.split()
121 rho.rename("rho", "Control")
122 u.rename("u", "Velocity")
123 p.rename("p", "Pressure")
124 f = f_expr(rho,u)
125 grad_f_form = grad_f_expr(rho_v,u)
126 grad_f = Function(P)
127 bcs = bcs_expr(W.sub(0))
128

129 if prob == "doublepipe" and L/H >= 1.5:
130 pre_iters = 50

Appendix B. Code 96

131 ref_freq = 50
132 else:
133 pre_iters = 0
134 ref_freq = 10
135

136 rho_presc = Function(P)
137 if prob == "rugbyball":
138 rho.assign(Expression("0.1+(4.0/(L*L))*(x[0]-L/2)*(x[0]-L/2)", L=float(L),

element=P.ufl_element()))↪→

139 rho_presc.assign(Expression("x[0] < 0.25 or x[0] > L-0.25", L=L,
element=P.ufl_element()))↪→

140 else:
141 rho.assign(Constant(gamma))
142 rho_presc.assign(Constant(0))
143

144 vol_constr = gamma*L*H
145 if assemble(rho_presc*dx) > vol_constr:
146 raise ValueError("The area of prescribed fluid exceeds the volume

constraint")↪→

147

148 if solver_type == "minres" or perform_adaptivity:
149 g_val = sqrt(assemble(inner(bcs_val,bcs_val)*ds(mesh)))
150 res = Residual(w, alpha(rho), f_src, s_param, g_val,

solver_type=prec_solver, fine_mesh=None)↪→

151

152 if solver_type == "minres":
153 solver = MINRESSolver(prec_solver)
154 solver.parameters['nonzero_initial_guess'] = True
155 solver.parameters['maximum_iterations'] = 2000
156 solver.parameters['relative_tolerance'] = DOLFIN_EPS
157 solver.parameters['relative_residual_tolerance'] = 1E-4
158

159 solver.set_res(res)
160 solver.parameters['use_residual'] = True
161 M = assemble_system(M_, ell, bcs)[0]
162 elif solver_type == "direct":
163 solver = LUSolver()
164 else:
165 raise ValueError("Invalid solver %s" % solver_type)
166

167 A,b = assemble_system(A_, ell, bcs)
168

169 if rank == 0:
170 data = np.empty([k_max+1,4])
171 print("============== Optimisation start =============")
172 stdout.flush()
173

174 for k in range(0, k_max+1):
175 if k == pre_iters:
176 q_param.assign(Constant(0.1))
177

178 if solver_type == "minres":
179 solver.set_operators(A, M)
180 ms_iters = solver.solve(w.vector(), b)
181 elif solver_type == "direct":
182 solver.set_operator(A)
183 ms_iters = 0

97

184 solver.solve(w.vector(), b)
185

186 f_val = assemble(f)
187 project(grad_f_form, P, function=grad_f)
188 sc_val = sc(rho, rho_presc, grad_f, vol_constr)
189

190 if rank == 0:
191 data[k,:] = np.array([k,f_val,sc_val,ms_iters])
192 print("k = %3d, f = %7.3f, sc = %6.4f, ms_iters = %d" %

tuple(data[k,:]))↪→

193 stdout.flush()
194

195 if k % 5 == 0 or sc_val < sc_eps: # save sol'n to file every 5'th iteration
196 file.write(rho,k,file.Encoding_HDF5)
197 file.write(u,k,file.Encoding_HDF5)
198 file.write(p,k,file.Encoding_HDF5)
199 if sc_val < sc_eps and k > 20:
200 break
201

202 rho.assign(OC(rho,rho_presc,grad_f,vol_constr))
203

204 if perform_adaptivity and k > pre_iters and k % ref_freq == 0:
205 mesh = adapt_mesh(mesh, res, c_param)
206 W = adapt(W, mesh)
207 P = adapt(P, mesh)
208 rho = adapt(rho, mesh)
209 rho_v = variable(rho)
210 rho_presc = adapt(rho_presc, mesh)
211 (u,p,p0) = TrialFunctions(W)
212 (v,q,q0) = TestFunctions(W)
213 A_ = a(rho,u,v) + b1(v,p) + b1(u,q) + b2(p,q0) + b2(p0,q)
214 M_ = a(rho,u,v) + b2(p,q) + b2(p0,q0)
215

216 ell = F(v)
217 w = adapt(w, mesh)
218 (u,p,p0) = w.split()
219 rho.rename("rho", "Control")
220 u.rename("u", "Velocity")
221 p.rename("p", "Pressure")
222 f = f_expr(rho,u)
223 grad_f_form = grad_f_expr(rho_v,u)
224 grad_f = Function(P)
225

226 bcs = bcs_expr(W.sub(0))
227 A,b = assemble_system(A_, ell, bcs)
228 res = Residual(w, alpha(rho), f_src, s_param, g_val,

solver_type=prec_solver, fine_mesh=None)↪→

229

230 if solver == "minres":
231 solver = MINRESSolver(prec_solver)
232 solver.parameters['nonzero_initial_guess'] = True
233 solver.parameters['maximum_iterations'] = 2000
234 solver.parameters['relative_tolerance'] = DOLFIN_EPS
235 solver.parameters['relative_residual_tolerance'] = 1E-4
236

237 solver.set_res(res)
238 solver.parameters['use_residual'] = True

Appendix B. Code 98

239 M = assemble_system(M_, ell, bcs)[0]
240 else:
241 solver = LUSolver()
242

243 else:
244 assemble_system(A_, ell, bcs, A_tensor=A, b_tensor=b)
245 if solver_type == "minres":
246 assemble_system(M_, ell, bcs, A_tensor=M)
247

248 if rank == 0:
249 data = data[0:k,:]
250 np.savetxt(prob_name+".csv", data,\
251 fmt=['%d', '%E', '%E', '%d'], delimiter=' ', header='k f sc

ms_iters', comments='')↪→

252

253 dump_timings_to_xml(prob_name+"_timings.xml", TimingClear_clear)
254 file.close()
255

256 if rank == 0:
257 print("============== Optimisation done ==============")
258 stdout.flush()

Code B.2: common.py. Functions and classes used by the main script.

1 from dolfin import *
2 import numpy as np
3 from petsc4py import PETSc
4

5 parameters["allow_extrapolation"] = True
6 parameters["refinement_algorithm"] = "plaza_with_parent_facets"
7

8 def OC(rho,rho_presc,grad_f,vol_constr):
9 zeta = 0.4

10 l1 = 0
11 l2 = 1E4
12 rho_vec = rho.vector().get_local()
13 rho1 = Function(rho.function_space())
14 vec = np.empty_like(rho1.vector().get_local())
15

16 while (l2-l1)/max(l2+l1,1) > 1E-10:
17 lmid = (l2+l1)/2
18 vec = np.sqrt(-grad_f.vector().get_local()/lmid)*rho_vec
19 vec = np.minimum(1,vec)
20 vec = np.maximum(rho_presc.vector().get_local(),vec)
21 vec = np.minimum(rho_vec*(1+zeta),vec)
22 vec = np.maximum(rho_vec*(1-zeta),vec)
23 rho1.vector().set_local(vec)
24 rho1.vector().apply('insert')
25

26 vol_diff = vol_constr - assemble(rho1*dx)
27 if abs(vol_diff) < 1E-10:
28 break
29 if vol_diff < 0.0:
30 l1 = lmid
31 else:

99

32 l2 = lmid
33 return rho1
34

35 def proj(rho, rho_presc, vol_constr):
36 # projects rho onto the simplex {0 <= rho <= 1, integral rho <= vol_constr}
37 rho_vec = rho.vector().get_local()
38 rho1 = Function(rho.function_space())
39

40 vec = rho_vec
41 vec = np.minimum(1,vec)
42 vec = np.maximum(rho_presc.vector().get_local(),vec)
43 rho1.vector().set_local(vec)
44 rho1.vector().apply('insert')
45 if assemble(rho1*dx) <= vol_constr:
46 return rho1
47

48 l1 = 0
49 l2 = rho.vector().max()
50

51 while (l2-l1)/max(l2+l1,1) > 10E-10:
52 lmid = (l2+l1)/2
53 vec = rho_vec - lmid
54 vec = np.minimum(1,vec)
55 vec = np.maximum(rho_presc.vector().get_local(),vec)
56 rho1.vector().set_local(vec)
57 rho1.vector().apply('insert')
58

59 vol_diff = vol_constr - assemble(rho1*dx)
60 if abs(vol_diff) < 10E-10:
61 break
62 if vol_diff < 0.0:
63 l1 = lmid
64 else:
65 l2 = lmid
66 return rho1
67

68 def sc(rho, rho_presc, grad_f, vol_constr):
69 rho_tmp = Function(rho.function_space())
70 rho_tmp.assign(rho - grad_f)
71 rho_tmp.assign(rho - proj(rho_tmp, rho_presc, vol_constr))
72 return norm(rho_tmp, 'L2')
73

74 def adapt_mesh(mesh_coarse, res, c_param = 1):
75 mesh_fine = res.mesh
76 markers_coarse = MeshFunction("size_t", mesh_coarse,

mesh_coarse.topology().dim())↪→

77

78 for c in cells(mesh_coarse):
79 markers_coarse[c] = c.index()
80

81 markers_fine = adapt(markers_coarse, mesh_fine)
82

83 res.compute()
84 loc_r_norm_fine = res.norm_loc_squared()
85

86 loc_r_norm_coarse = assemble(TestFunction(FunctionSpace(mesh_coarse, "DG",
0))*Constant(0)*dx(mesh_coarse))↪→

Appendix B. Code 100

87 tmp_vec = np.zeros_like(loc_r_norm_coarse.get_local())
88 for c in cells(mesh_fine):
89 tmp_vec[markers_fine[c]] += loc_r_norm_fine[c.index()][0]
90 tmp_vec = np.sqrt(tmp_vec)
91 loc_r_norm_coarse.set_local(tmp_vec)
92 loc_r_norm_coarse.apply('insert')
93 treshold =

res.norm()*np.sqrt(c_param/mesh_coarse.num_entities_global(mesh_coarse.topology().dim()))↪→

94 markers = MeshFunction("bool", mesh_coarse, mesh_coarse.topology().dim())
95

96 for c in cells(mesh_coarse):
97 markers[c] = loc_r_norm_coarse.get_local()[c.index()] > treshold
98

99 mesh_adapted = refine(mesh_coarse, markers, redistribute=False)
100 return mesh_adapted
101

102 class ResidualBase():
103 def set_solver(self, A, solver_type):
104 solver_type = solver_type.lower()
105

106 if solver_type == "lu":
107 solver = LUSolver(A)
108 solver.parameters['reuse_factorization'] = True
109 elif solver_type == "hypre_amg":
110 solver = AMGSolver()
111 solver.set_operator(A)
112 else:
113 raise NameError("Illegal solver type")
114

115 return solver
116

117 def rel_norm(self):
118 return self.norm()/self.g_val
119

120 class ResidualMo(ResidualBase):
121 def __init__(self, fine_mesh, u, p, alpha, f_src, g_val = 1,

solver_type='lu'):↪→

122 V = u.function_space()
123 if fine_mesh == None:
124 fine_mesh = refine(V.mesh(), redistribute=False)
125

126 deg = V.ufl_element().degree()
127 self.g_val = g_val
128 self.u = u
129 self.grad_u = Function(TensorFunctionSpace(V.mesh(), "DG", deg))
130 self.mesh = fine_mesh
131 V_fine = adapt(V, self.mesh)
132 r_mo = TrialFunction(V_fine)
133 v = TestFunction(V_fine)
134

135 mo_form = (inner(r_mo,v) + inner(grad(r_mo),grad(v)))*dx(self.mesh)
136 A = assemble(mo_form)
137 self.A = A
138 self.bcs = DirichletBC(V_fine, Constant((0,0)), "on_boundary")
139 self.bcs.apply(A)
140 self.solver = self.set_solver(A, solver_type)
141 self.r_mo = Function(V_fine)

101

142 self.r_mo.rename("r_mo", "Momentum residual")
143

144 self.L = (inner(f_src,v) - inner(self.grad_u,grad(v)) -
alpha*inner(u,v) + p*div(v))*dx(self.mesh)↪→

145

146 def compute(self):
147 project(grad(self.u), self.grad_u.function_space(),

function=self.grad_u)↪→

148 b = assemble(self.L)
149 self.bcs.apply(b)
150 self.solver.solve(self.r_mo.vector(), b)
151 return self.r_mo
152

153 def norm_loc_squared(self):
154 r_mo = self.r_mo
155 v = TestFunction(FunctionSpace(self.mesh, "DG", 0))
156 vec = assemble((inner(r_mo,r_mo) +

inner(grad(r_mo),grad(r_mo)))*v*dx)↪→

157 return vec
158

159 def norm(self):
160 return norm(self.r_mo, 'H1')
161

162 class ResidualMa(ResidualBase):
163 def __init__(self, fine_mesh, u, p, p0, g_val = 1, solver_type='lu'):
164 Q = p.function_space()
165 if fine_mesh == None:
166 fine_mesh = refine(Q.mesh(), redistribute=False)
167

168 deg = Q.ufl_element().degree()
169 self.g_val = g_val
170 self.u = u
171 self.div_u = Function(FunctionSpace(Q.mesh(), "DG", deg))
172 self.mesh = fine_mesh
173 Q_fine = adapt(Q, self.mesh)
174 r_ma = TrialFunction(Q_fine)
175 q = TestFunction(Q_fine)
176

177 ma_form = r_ma*q*dx(self.mesh)
178 A = assemble(ma_form)
179 self.solver = self.set_solver(A, solver_type)
180 self.r_ma = Function(Q_fine)
181 self.r_ma.rename("r_ma", "Mass residual")
182

183 self.L = (self.div_u*q - p0*q)*dx(self.mesh)
184

185 def compute(self):
186 project(div(self.u), self.div_u.function_space(),

function=self.div_u)↪→

187 b = assemble(self.L)
188 self.solver.solve(self.r_ma.vector(), b)
189 return self.r_ma
190

191 def norm_loc_squared(self):
192 q = TestFunction(FunctionSpace(self.mesh, "DG", 0))
193 vec = assemble(self.r_ma**2*q*dx)
194 return vec

Appendix B. Code 102

195

196 def norm(self):
197 return norm(self.r_ma, 'L2')
198

199 class Residual():
200 def __init__(self, w, alpha, f_src, s, g_val = 1, solver_type='lu',

fine_mesh=None):↪→

201 if fine_mesh == None:
202 fine_mesh = refine(w.function_space().mesh(),

redistribute=False)↪→

203

204 self.mesh = fine_mesh
205 (u,p,p0) = w.split()
206 self.s = s
207 if self.s > DOLFIN_EPS:
208 self.res_mo = ResidualMo(fine_mesh, u, p, alpha, f_src,

g_val, solver_type)↪→

209 if 1-self.s > DOLFIN_EPS:
210 self.res_ma = ResidualMa(fine_mesh, u, p, p0, g_val,

solver_type)↪→

211

212 def compute(self):
213 if self.s > DOLFIN_EPS:
214 self.res_mo.compute()
215 if 1-self.s > DOLFIN_EPS:
216 self.res_ma.compute()
217

218 def rel_norm(self):
219 norm_val = 0
220 if self.s > DOLFIN_EPS:
221 norm_val += self.s*self.res_mo.rel_norm()
222 if 1-self.s > DOLFIN_EPS:
223 norm_val += (1-self.s)*self.res_ma.rel_norm()
224

225 return norm_val
226

227 def norm(self):
228 norm_val = 0
229 if self.s > DOLFIN_EPS:
230 norm_val += self.s*self.res_mo.norm()
231 if 1-self.s > DOLFIN_EPS:
232 norm_val += (1-self.s)*self.res_ma.norm()
233

234 return norm_val
235

236 def norm_loc_squared(self):
237 norm_val = assemble(TestFunction(FunctionSpace(self.mesh, "DG",

0))*Constant(0)*dx(self.mesh))↪→

238 if self.s > DOLFIN_EPS:
239 norm_val.axpy(self.s, self.res_mo.norm_loc_squared())
240 if 1-self.s > DOLFIN_EPS:
241 norm_val.axpy(1-self.s, self.res_ma.norm_loc_squared())
242

243 return norm_val
244

245

246 class MINRESSolver():

103

247 def __init__(self, prec = None):
248 global parameters
249 self.parameters = parameters['krylov_solver'].copy()
250 self.parameters.add('relative_residual_tolerance', 1E-10)
251 self.parameters.add('use_residual', False)
252

253 if isinstance(prec, str):
254 prec = prec.lower()
255

256 self.set_preconditioner(prec)
257

258 def set_operators(self, A, M = None):
259 self.A = A
260 self.prec.set_operator(M)
261

262 def set_res(self, res):
263 self.res = res
264

265 def set_preconditioner(self, prec = None):
266 if prec == None or prec == "none":
267 self.prec = NoPreconditioner()
268 elif prec == "lu":
269 self.prec = LUSolver()
270 self.prec.parameters['reuse_factorization'] = True
271 self.prec.parameters['symmetric'] = True
272 elif prec == "hypre_amg":
273 self.prec = AMGSolver()
274 else:
275 raise NameError("Invalid preconditioning method %s" %

str(prec_method))↪→

276

277 def solve(self, x, b):
278 if self.parameters['maximum_iterations']:
279 max_iters = self.parameters['maximum_iterations']
280 else:
281 max_iters = 10000
282

283 if self.parameters['relative_tolerance']:
284 tol = self.parameters['relative_tolerance']
285 else:
286 tol = 1E-10
287

288 A = self.A
289 prec = self.prec
290

291 if not self.parameters['nonzero_initial_guess']:
292 A.init_vector(x, 1)
293

294 p = Vector()
295 A.init_vector(p, 0)
296 A.mult(x, p)
297

298 z = Vector(b)
299 z.axpy(-1.0, p)
300

301 q = Vector()
302 A.init_vector(q, 1)

Appendix B. Code 104

303 prec.solve(q, b)
304 phi_0 = sqrt(q.inner(b))
305 prec.solve(q, z)
306 beta = sqrt(q.inner(z))
307 phi = beta
308

309 z_old = Vector()
310 A.init_vector(z_old, 0)
311 q_old = Vector()
312 A.init_vector(q_old, 1)
313 d = Vector()
314 A.init_vector(d, 1)
315 d_old = Vector()
316 A.init_vector(d_old, 1)
317 beta_old = 1
318 c_old = -1
319 s_old = 0
320 delta = np.zeros(2)
321 gamma = np.zeros(2)
322 epsilon = 0
323

324 if self.parameters['use_residual']:
325 self.res.compute()
326 eta = self.res.rel_norm()
327

328 k = 0
329 while phi/phi_0 > tol:
330 if k >= max_iters:
331 raise RuntimeError("Maximum number of MINRES

iterations %d exceeded. Relative tolerance =
%.3E" % (k,phi/phi_0))

↪→

↪→

332

333 A.mult(q, p)
334 alpha = 1/beta**2*q.inner(p)
335 z_old.set_local(1/beta*p.get_local() -

alpha/beta*z.get_local() -
beta/beta_old*z_old.get_local())

↪→

↪→

336 z_old.apply('insert')
337 z,z_old = z_old,z
338

339 self.prec.solve(q_old, z) # preconditioning
340 q,q_old = q_old,q
341 beta_old = sqrt(z.inner(q))
342 beta,beta_old = beta_old,beta
343

344 delta[1] = c_old*delta[0] + s_old*alpha
345 gamma[0] = s_old*delta[0] - c_old*alpha
346

347 c,s,gamma[1] = SymOrtho(gamma[0],beta)
348

349 tau = c*phi
350 phi = s*phi
351

352 if abs(gamma[1]) > DOLFIN_EPS:
353 d_old.set_local((1/beta_old*q_old.get_local() -

delta[1]*d.get_local() -
epsilon*d_old.get_local())/gamma[1])

↪→

↪→

105

354 d_old.apply('insert')
355 d,d_old = d_old,d
356 x.axpy(tau,d)
357

358 epsilon = s_old*beta
359 delta[0] = -c_old*beta
360 c_old = c
361 s_old = s
362 k += 1
363

364 if self.parameters['use_residual'] == True:
365 self.res.compute()
366 eta_old = self.res.rel_norm()
367 eta,eta_old = eta_old,eta
368 if abs(eta-eta_old)/eta <

self.parameters['relative_residual_tolerance']:↪→

369 break
370

371 return k
372

373 class NoPreconditioner():
374 def set_operator(self, M = None):
375 return
376

377 def solve(self, q, z):
378 q.set_local(np.zeros_like(q.get_local()))
379 q.apply('insert')
380 q.axpy(1, z)
381

382 class AMGSolver():
383 def __init__(self):
384 self.prec = PETSc.PC()
385 self.prec.create()
386 self.prec.setType(PETSc.PC.Type.HYPRE)
387

388 def set_operator(self, M):
389 self.prec.setOperators(as_backend_type(M).mat(),

as_backend_type(M).mat())↪→

390 PETSc.Options().setValue("pc_hypre_type", "boomeramg")
391 self.prec.setFromOptions()
392 self.prec.setUp()
393

394 def solve(self, q, z):
395 self.prec.apply(as_backend_type(z).vec(), as_backend_type(q).vec())
396

397 def SymOrtho(a, b):
398 if abs(b) < DOLFIN_EPS:
399 s = 0
400 r = abs(a)
401 if abs(a) < DOLFIN_EPS:
402 c = 1
403 else:
404 c = np.sign(a)
405 elif abs(a) < DOLFIN_EPS:
406 c = 0
407 s = np.sign(b)
408 r = abs(b)

Appendix B. Code 106

409 elif abs(b) > abs(a):
410 tau = a/b
411 s = np.sign(b)/np.sqrt(1+tau**2)
412 c = s*tau
413 r = b/s
414 elif abs(a) > abs(b):
415 tau = b/a
416 c = np.sign(a)/np.sqrt(1+tau**2)
417 s = c*tau
418 r = a/c
419 return c,s,r

Bibliography

[BF91] Franco Brezzi and Michel Fortin, eds. Mixed and Hybrid Finite Ele-
ment Methods. Springer New York, 1991. doi: 10.1007/978-1-4612-
3172-1.

[BG09] Pavel B. Bochev and Max D. Gunzburger. Least-Squares Finite Ele-
ment Methods: 166 (Applied Mathematical Sciences). Springer, 2009.

[BGL05] Michele Benzi, Gene H. Golub and Jörg Liesen. ‘Numerical solution
of saddle point problems’. In: Acta Numerica 14 (2005), pp. 1–137.
doi: 10.1017/S0962492904000212.

[BL07] Michele Benzi and Jia Liu. ‘An Efficient Solver for the Incompressible
Navier–Stokes Equations in Rotation Form’. In: SIAM Journal on
Scientific Computing 29.5 (Jan. 2007), pp. 1959–1981. doi: 10.1137/
060658825.

[BP03] Thomas Borrvall and Joakim Petersson. ‘Topology optimization of
fluid in Stokes flow’. In: 41 (Jan. 2003), pp. 77–107.

[Bra07] Dietrich Braess. Finite Elements. Cambridge University Press, 2007.
doi: 10.1017/cbo9780511618635.

[Bre14] Susanne C. Brenner. ‘Forty Years of the Crouzeix-Raviart element’.
In: Numerical Methods for Partial Differential Equations 31.2 (July
2014), pp. 367–396. doi: 10.1002/num.21892.

[Bre74] F. Brezzi. ‘On the existence, uniqueness and approximation of saddle-
point problems arising from lagrangian multipliers’. In: Revue française
d’automatique, informatique, recherche opérationnelle. Analyse numérique
8.R2 (1974), pp. 129–151. doi: 10.1051/m2an/197408r201291.

[Bru03] Bruce van Brunt. The Calculus of Variations (Universitext). Springer,
2003. isbn: 0387402470.

[BS07] Susanne Brenner and Ridgway Scott. The Mathematical Theory of
Finite Element Methods (Texts in Applied Mathematics). Springer,
2007.

107

https://doi.org/10.1007/978-1-4612-3172-1
https://doi.org/10.1007/978-1-4612-3172-1
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1137/060658825
https://doi.org/10.1137/060658825
https://doi.org/10.1017/cbo9780511618635
https://doi.org/10.1002/num.21892
https://doi.org/10.1051/m2an/197408r201291

Bibliography 108

[BS11] Martin Philip Bendsoe and Ole Sigmund. Topology Optimization:
Theory, Methods, and Applications. Springer, 2011. isbn: 9783662050866.

[CF89] Michel Crouzeix and Richard S. Falk. ‘Nonconforming finite elements
for the Stokes problem’. In:Mathematics of Computation 52.186 (May
1989), pp. 437–437. doi: 10.1090/s0025-5718-1989-0958870-8.

[CR73] M. Crouzeix and P.-A. Raviart. ‘Conforming and nonconforming fi-
nite element methods for solving the stationary Stokes equations I’.
In: Revue française d’automatique informatique recherche opération-
nelle. Mathématique 7.R3 (1973), pp. 33–75. doi: 10.1051/m2an/
197307r300331.

[CS06] Sou-Cheng Choi and Michael Saunders. ‘Iterative methods for singu-
lar linear equations and least-squares problems’. In: (2006).

[EG04] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Fi-
nite Elements. Springer New York, 2004. doi: 10.1007/978-1-4757-
4355-5.

[HJ90] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 1990. isbn: 0521386322.

[LMW+12] Anders Logg, Kent-Andre Mardal, Garth N. Wells et al. Automated
Solution of Differential Equations by the Finite Element Method. Ed.
by Anders Logg, Kent-Andre Mardal and Garth N. Wells. Springer,
2012. isbn: 978-3-642-23098-1. doi: 10.1007/978-3-642-23099-8.

[Nie16] Frank Nielsen. Introduction to HPC with MPI for Data Science (Un-
dergraduate Topics in Computer Science). Springer, 2016.

[NW06] Jorge Nocedal and StephenWright. Numerical Optimization (Springer
Series in Operations Research and Financial Engineering). Springer,
2006.

[QSS10] Alfio Quarteroni, Riccardo Sacco and Fausto Saleri. Numerical Math-
ematics: 37 (Texts in Applied Mathematics). Springer, 2010.

[Qua14] Alfio Quarteroni.Numerical Models for Differential Problems (MS&A).
Springer, 2014.

[Rud87] Walter Rudin. Real & Complex Analysis. MHHE, 1987. isbn: 0070619875.
[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems, Second

Edition. Society for Industrial and Applied Mathematics, 2003. isbn:
0898715342.

[Sau14] Tim Sauer. Numerical analysis. Harlow, Essex: Pearson, 2014. isbn:
1292023589.

[Tao11] Terence Tao. An Introduction to Measure Theory (Graduate Stud-
ies in Mathematics). American Mathematical Society, 2011. isbn:
0821869191.

[Trö10] Fredi Tröltzsch. Optimal Control of Partial Differential Equations.
American Mathematical Society, Apr. 2010. doi: 10.1090/gsm/112.

https://doi.org/10.1090/s0025-5718-1989-0958870-8
https://doi.org/10.1051/m2an/197307r300331
https://doi.org/10.1051/m2an/197307r300331
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1090/gsm/112

109 Bibliography

[Wal14] Stefan Waldmann. Topology : an introduction. Cham: Springer, 2014.
isbn: 978-3-319-09679-7.

	Introduction
	The state equations
	The generalised Stokes equations
	Variational formulation
	Existence and uniqueness of solutions

	The optimisation problem
	Topology optimisation
	Existence of optimal controls
	Necessary optimality conditions
	The optimisation algorithm

	Numerical implementation
	Finite element discretisation details
	Choice of elements
	A posteriori residual estimates
	Convergence test
	Implementation of the optimisation problem
	Numerical examples

	Adaptivity
	Adaptive mesh refinement
	Numerical experiments

	Iterative approach
	The MINRES method
	Behaviour of the residual estimates
	Premature termination of MINRES

	Concluding remarks
	Conclusion
	Further research

	Appendices
	The zero mean constraint
	Code

