


5.6 Summary

D-separated when there is no information about the state of Outcome. In practice, this means
that knowing an inspection has been conducted does not change our prediction of the state of
Diameter (and thus its children), without knowing the outcome of the inspection.

As a result, the assessment of the expected costs of a policy becomes very complicated. To
conduct the analysis, evidence is to be introduced into Inspection according to the inspection
policy, followed by a systematic insertion of evidence about the state of Outcomes until all pos-
sible combinations have been covered. This is combined with the possible actions if a decision
rule is not used. For each of these combinations, the probability of failure for all time steps is
recorded to compute the risk. The expected cost of inspection is then computed by taking the
sum of the expected cost of each outcome scaled by the probability of the outcome.

This approach quickly becomes very labor-intensive. To illustrate this, consider the case where
the inspection with three potential outcomes is conducted once within the service life, without
applying a decision rule for Action. The potential combinations of outcomes and costs are
structured as a decision tree, shown in Figure 37. If the number of inspections to be conducted
is increased to two, 64 vectors that contain the probability of failure for each time step have to
be analyzed. This number can be reduced to 16 by applying a decision rule for Action, but it is
still a demanding task. As a result, it is concluded that this approach is not a practical solution,
and it is therefore not further investigated in this Thesis.

Figure 37: All combinations from an inspection with three outcomes

5.6 Summary

In this chapter, the modeling of the inspection phase is studied. The chapter opens with a brief
introduction to inspection policy before it states the underlying assumptions required to model
the inspection phase as a dynamic decision graph in GeNIe. The assumptions stated in Chapter
4 are still valid. In addition, it is assumed that the decay of structural integrity is only due
to uniform corrosion, a failure is discovered and repaired within a year, and that a replaced
mooring line is in the best state.
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5 Modeling the Inspection Phase

Two networks are made to model the inspection phase of a single mooring line and multiple
mooring lines as dynamic decision graphs. However, the use of dynamic decision graphs is
currently not supported by GeNIe. Therefore, two potential solutions are attempted. The first
approach is to create a network that is similar to the unrolled decision graph; nonetheless, this
does not work, possibly due to the high number of combinations of decisions. The second
approach is to create a dynamic Bayesian network and use vectors of evidence as the inspection
policy. However, the D-separation property of a crucial connection in the network makes the
extraction of results very labor-intensive. As a result, further investigation of the modeling of
the inspection phase is abandoned.
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6 Sensitivity and Value of Information

This chapter presents sensitivity analysis with respect to the failure event for the ULS Network
and the Safety Factor Network, and with respect to the system failure event for the Progres-
sive Failure Network. This analysis is performed to identify the nodes with the most sensitive
parameters13, which are the nodes that affect the accuracy of the results from the networks.
Furthermore, a value of information analysis is conducted to investigate the potential gain of
acquiring additional information. The results are presented and discussed before the chapter is
concluded with a summary.

6.1 Sensitivity Analysis

The sensitivity analysis in GeNIe is based on the work in Castillo et al. (1997) and implements
the algorithm proposed in Kjærulff and van der Gaag (2000). In short, the sensitivity analysis
computes the derivatives in the proximity of the current value, for all nodes in the network, with
respect to one or more target nodes. If the sensitivity for a parameter is high, a small deviation
leads to a large difference in the posterior distribution for the target node.

According to the developer, GeNIe’s sensitivity function may be applied to decision graphs.
In practice, GeNIe is unable to conduct the sensitivity analysis for the decisions graphs from
Chapter 4. Therefore, the networks are stabilized by removing the utility nodes, and by using
chance nodes as proxies for the decision nodes.

6.1.1 Sensitivity Analysis for the ULS Network

The result of the sensitivity analysis for the ULS Network is given as the tornado diagram in
Figure 38. The vertical line marks the current value of the probability. This value corresponds
to the prior probability if no evidence is observed for the system. The tornado diagram is
developed for 10% parameter spread, which means that the diagram illustrates the effect of
increasing and decreasing each parameter by 10%. The wideness of the tornado bars shows the
target value range, which is the minimum and maximum posterior probabilities given the level
of parameter spread. The color of the bars illustrates how a change in the parameter changes the
posterior distribution for the failure event; red/green means that an increase in the probability
for the parameter leads to an increase of the probability of failure, while the opposite is true for
the green/red. Note that the bars in the tornado diagram are not necessarily symmetric about the
current value.

The analysis shows that the probability of failure is most sensitive to the smaller diameters (80-
90 mm). The second and third most sensitive parameters are medium-high loads (7000-9000
kN) and medium corrosion rates (0.4-0.6 mm/year). Note that increasing the parameter D80 in
Figure 38 increases the probability of failure. This is because an increase of the parameter does

13In this chapter, parameter is used for an entry in the CPT of a node
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6 Sensitivity and Value of Information

not represent an increase of the physical diameter, but rather a bias towards this decision for
the decision-maker. This illustrates that special care ought to be used when interpreting results
arising from proxy chance nodes.

Figure 38: Tornado diagram for the ULS Network

The sensitivity plot for the ULS network is developed by conducting a sensitivity analysis for
different cases where the node Diameter had received evidence. The resulting average14 sen-
sitivities are given in Figure 39(a), where a higher number indicates a greater change of the
posterior for the target node. It is observed that sensitivities for Loads, Grade, Corrosion Rate
and Service Life increase up to a point between 90 mm and 100 mm diameter, before it decreases
for larger diameters. An explanation for this observation may be that the large diameters lead to
a highly resistant chain link, with a low probability of failure. A small change in these param-
eters does not have a significant impact on the probability of failure since they are well within
the safe domain.

6.1.2 Sensitivity Analysis for the Safety Factor Network

The sensitivity plot for the Safety Factor Network is shown in Figure 39(b) for 10% parameter
spread. As expected, the sensitivity plot is almost identical to that of the ULS Network, since
the Safety Factor Network is a variant of this network. It is observed that the curve for Loads
does not have a maximum value in this range, either because the peak is out of the domain,
or the discretization interval is not small enough to capture the peak. However, a safety factor
below or around 1 is not realistic; therefore the location of the maximum is not interesting
and therefore not further investigated. In contrast to the sensitivity plots for the ULS Network,
the sensitivity of the node Grade is almost non-existent for the Safety Factor Network. It is

14Average of all parameter sensitivities for a node
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6.1 Sensitivity Analysis

concluded that this low sensitivity is caused by the quantification process, were the sensitivity
of Safety Factor is increased at the expense of Grade.

(a) Sensitivity plot for the ULS Network (b) Sensitivity plot for the Safety Factor Network

Figure 39: Value of Information for the Progressive Failure Network

6.1.3 Sensitivity Analysis for the Progressive Failure Network

The sensitivity analysis is conducted for the Progressive Failure Network with the node System
Failure as the target node. The resulting tornado plot for 10% parameter spread, presented
in Figure 40 shows that the target node is most sensitive to the Diameter parameters. This
observation is attributed to the assumption that the mooring lines are designed equally, so the
chosen diameter greatly influences the probability of system failure.

Figure 40: Tornado diagram for the Progressive Failure Network
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6 Sensitivity and Value of Information

The sensitivity plot for the Progressive Failure Network is shown in Figure 41. It is observed
that the Grade is the most influential parameter for this network by a large margin, followed
by Corrosion Rate, which are both linked to the resistance of each mooring line. Notice that
the parameters are most sensitive between 100-110 mm, compared to 90-100 mm for the ULS
Network.

Figure 41: Sensitivity plot for the Progressive Failure Network

6.2 Value of Information

A value of information analysis is conducted for the ULS Network and the Progressive Failure
Network. The analysis assesses the value of reducing uncertainty by acquiring further infor-
mation. This value is estimated by taking the expected cost obtained by observing a specific
node, subtracted from the expected cost obtained when the node is unobserved. It follows that
the value of information cannot be negative when there are no costs associated with acquiring
the information because more information reduces the uncertainty for the decision-maker. The
results from the value of information analysis can be used by the decision-maker to determine
whether a research project should be conducted, and the amount of resources that should be
allocated.

To asses the value of information, a decision node has to be selected as the reference point. It is
not possible to calculate the value of information of descendants of this node. This is because the
marginal distribution of the descendant is used in the value of information analysis. However,
the marginal distribution depends on the decision, which creates a circular reference. In the
case for the design networks, a value of information analysis for the descendants of the decision
nodes corresponds to reducing the epistemic uncertainty before the design is conducted. Note
that a value of information analysis may be conducted for the descendants if the network is
converted to the canonical form as described in Heckerman and Shachter (1995).
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6.2 Value of Information

6.2.1 Value of Information Analysis for the ULS Network

The value of information analysis can be performed through a small modification of the ULS
Network. The modification is conducted by adding a decision node called Test, which describes
which test method to be used, and a chance node called Outcome, which describes the accuracy
of the inspection method. Outcome depends on the state of the node the analysis is conducted
for, and on the type of test conducted. Therefore, arcs are drawn from the target node and Test
to Outcome. It is assumed that Outcome is known before the design is conducted, therefore an
arc is drawn from Outcome to Grade. Finally, Test is placed within the decision hierarchy. In
this case, it is assumed that Test is the second decision to be made, after Consequence Class.
The resulting network is shown in Figure 42, where the analysis is conducted for Loads. In this
network, it is assumed that the test yields perfect information. It is possible to include several
tests with different accuracy by including additional decisions in Test, and by altering the CPT
in Outcome. The value of information is then computed as the difference between the decisions
Yes and No15.

Figure 42: Value of information analysis for the ULS Network

There are three nodes in the ULS Network that are not descendants of the decision nodes and
therefore suitable as target nodes, namely Service Life, Corrosion Rate, and Loads. Instead
of altering the network for each of the target nodes, GeNIe’s integrated value of information
tool is used to analyze the network. The results of the analysis are given in Figure 43(a) and
Figure 43(b), broken down by the node, grade and consequence class due to the ordering of

15The reader can verify that the Loads column for R4 in Figure 43(a) corresponds to the difference between the
expected value for the decisions in the node Test in Figure 42
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6 Sensitivity and Value of Information

the decision nodes. Note that GeNIe’s tool assumes perfect information about the target node.
Uncertainty may be included in the analysis by adding a chance node as a child of the target
node and to subsequently analyze the child node instead of the target node.

(a) (b)

Figure 43: Value of Information Network

It is observed from Figure 43(a) that the value of information is largest for Loads, followed by
Corrosion Rate. In contrast, Figure 43(b) shows that the opposite is true for consequence class
3, where observing Corrosion Rate is preferred. In both cases, Service Life has the lowest value
of information.

6.2.2 Value of Information Analysis for the Progressive Failure Network

For the Progressive Failure Network, three nodes per line can be analyzed, namely Service
Life, Corrosion Rate, and Load I16. In this case, there is a discrepancy between the value of
information for each mooring line which is attributed to the Monte Carlo sampling method used
for quantifying the network; therefore, the average of the results is presented in Figure 44(a)
and Figure 44(b). Note that the Service Life, Corrosion Rate, and Load I nodes are assumed to
be independent during the modeling phase17, which implies that observing one of these nodes
does not change the prediction for the rest.

In contrast to the results from the value of information analysis for the ULS Network, there are
no clear tendencies for Corrosion Rate and Service Life observed. However, both Figure 44(a)
and Figure 44(b) show that the value of information is the least for Loads when compared to
the other nodes.

16Load for the first time step in the Progressive Failure Network
17ref. Section 4.3.3
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6.3 Discussion

(a) (b)

Figure 44: Value of Information for the Progressive Failure Network

6.3 Discussion

It is observed from the bar charts obtained through the value of information analysis, that the
value of obtaining perfect information about nodes in the Progressive Failure Network is con-
sistently lower compared with their respective counterparts in the ULS Network. This may be
explained by the assumed independence of the relevant nodes since the outcome of a potential
test for one node does not change the posterior distribution for the rest.

As argued in Section 4.7, the mooring lines are correlated to some degree in reality. In fact, the
load history of each mooring line largely depends on the motion of the platform, thus ensuring
a correlation between them. The mooring lines are also subjected to the same corrosive envi-
ronment. Therefore, it is reasonable to suspect that there is some correlation between the lines
of the mooring system. Accounting for this correlation would increase the value of information,
since perfect information about one of the nodes would lead to a change in the prediction in the
other nodes, thus reducing the overall uncertainty.

6.4 Summary

The chapter opens with a brief explanation of sensitivity analysis for Bayesian networks. The
analysis is conducted for the ULS Network and Safety Factor Network with Failure as the target
node, and for the Progressive Failure Network with System Failure as the target node. For the
ULS Network and Progressive Failure Network, Diameter is the most sensitive node, and the
Safety Factor is the most sensitive node for the Safety Factor Network. The sensitivity plots are
developed for all the networks. The resulting plots show that the ULS Network is most sensitive
to Loads, Corrosion Rate, and Grade, and that the Safety Factor Network is most sensitive to
Loads, Corrosion Rate, and Service Life. In contrast to the ULS Network, the sensitivity of
Grade is almost non-existent for the Safety Factor Network. However, for the Progressive
Failure Network, Grade is undeniably the most important node, followed by Corrosion Rate
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6 Sensitivity and Value of Information

and Load I.

Potential gain from model enhancement by observing the nodes is computed through a value
of information analysis on the ULS Network and Progressive Failure Network. For the ULS
Network, the value of information is highest for either Loads or Corrosion Rate, depending on
the consequence class. For the Progressive Failure Network, there is no distinct pattern except
that Loads I gives in general lower values compared to Corrosion Rate and Service Life.
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7 Conclusions and Further Research

This project aimed to investigate how aspects of mooring line design and integrity management
could be coupled with decision theory, to develop networks that accurately captures features
from these phases. Relevant events, decisions, consequences and the associated uncertainties
had to be explored, as a prerequisite for the modeling. Three research objectives have been
formulated to aid achieving this aim: (1) represent the current design practice as a decision
graph; (2) represent the current inspection and maintenance routines as a decision graph; (3)
conduct a sensitivity analysis and determine the value of information for the resulting networks.
The overall conclusions of each research topic are presented in the section below, followed by
a section on outlook to further research.

7.1 Conclusions

Two main networks were created to model the design phase, namely the ULS Network and
the Progressive Failure Network. The Safety Factor Network, which is a variant of the ULS
Network, was created to have the safety factor as a decision variable. The assumptions and de-
cisions made to develop these networks were justified. The central assumptions were to neglect
the series effect of the mooring line components, and not to address fatigue design. Further-
more, the probability distributions for the random variables were assumed, and the method of
quantifying the nodes with Monte Carlo sampling was explained.

A parameter study was conducted to investigate how the expected cost varies with the safety
factor. From the resulting cost-optimization curves for the ULS Network, it was concluded that
the optimal safety factor is 1.2-1.3 and 1.8-2.05 for consequence classes 1 and 3, respectively.
This is below the values provided in ISO 19901-7, which is 1.5 for the survival condition,
and 2.2 for the operational condition. The optimal values found from the Progressive Failure
Network are 1.5 and 1.8-1.95 for the respective consequence classes, which is sufficient in the
first case, but not in the second.

In this context, the assumption of neglecting the series effect was discussed. It was concluded
that when the series effect was accounted for, it would decrease the resistance, and therefore
increase the probability of failure. This would lead to an increase in risk, thus making a higher
safety factor the optimal solution.

It was observed from the cost-optimization curves that the optimal safety factor might depend
on the steel grade. However, no conclusion was reached since the scatter may be caused by
neglecting the dependency between the resistance and the loads.

Furthermore, an attempt was made to model the inspection and maintenance phase as dynamic
decision graph in GeNIe. This attempt resulted in two networks; the Single Mooring Line
Network, and the Multiple Mooring Line Network. Since GeNIe does not support dynamic de-
cision graphs, two potential solutions were pursued. The first potential solution was to analyze
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7 Conclusions and Further Research

a created network similar to the unrolled version of the dynamic decision graph. However, it
was concluded that it is not feasible in the current version of GeNIe.

The second approach was to create a dynamic Bayesian network with chance nodes as proxies
for decision nodes, where the risk and policy cost would have to be computed manually. It was
concluded that this approach could work; however, the D-separation property for an essential
connection in the network made this a labor-intensive procedure. Therefore, it was concluded
that further exploration of this procedure was to be abandoned as was too demanding to be a
practical solution. Nonetheless, this work may serve as a valuable addition to the subject, and
as a starting point for progressive enhancement once improved software become available.

A sensitivity analysis was conducted for the design phase networks. The failure event was used
as the target node for the ULS Network and Safety Factor Network, and the system failure
event was used for the Progressive Failure Network. For the ULS Network and Progressive
Failure Network, the Diameter was the most sensitive node. The Safety Factor was the most
sensitive node for the Safety Factor Network. An observation made in the analysis was that
the sensitivity of Grade for the Safety Factor Network was almost non-existent, but it was the
second most sensitive node for the Progressive Failure Network. It was concluded that there
are two causes for this discrepancy. The first cause is that the assumption that all mooring
lines are of equal design increases the sensitivity of Grade in the Progressive Failure Network.
The second cause is that the quantification process for the Safety Factor Network increases the
sensitivity of Safety Factor at the expense of Grade.

The potential gain from model enhancement by observing the state of the nodes were computed
through a value of information analysis on the ULS Network and Progressive Failure Network.
This could only be done for nodes that were not descendants of the decision nodes; therefore,
the analysis only involved the node Loads, Corrosion Rate and Service Life. For the ULS
Network, the value of information was highest for Loads and Corrosion Rate for consequence
classes 1 and 3, respectively. For the Progressive Failure Network, there was no distinct pattern
except that Loads gave in general lower values compared to Corrosion Rate and Service Life.
It was observed that the value of information was consistently lower for the Progressive Failure
Network than the ULS Network. This was attributed to the assumption that Corrosion Rate,
Service Life and Loads were independent between the mooring lines.

7.2 Further Research

The study of the aforementioned research objectives yielded several additional objectives rele-
vant for further studies, which are listed below:

• How can design for the fatigue limit state be incorporated in the existing networks? It
is evident that the design against fatigue have to be accounted for in order to enhance the
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networks. This is complicated because fatigue is dependent on time, while the accidental
and ultimate limit states may be modeled as time-independent. A possible solution may
be to approximate the stress range as a Weibull distribution as done in Mathisen and
Larsen (2002). Another major challenge is to account for all these limit states in one
node, to accommodate that the failure event is a single event, regardless of the cause.

• How may the load node be enhanced to capture the dependency on the selected de-
sign? The load node have to be expanded in to a load branch by including more of its
causes, in particular pre-tension, which is typically in the range of 10-20% of the MBS.
In addition, the loads depend on the motion of the structure, which again is dependent
on the chosen configuration of the mooring system. Therefore, a natural enhancement
for the networks is to include more decisions for the design configuration and mooring
line composition such as: catenary or taut leg system, clustered or evenly spread mooring
lines, and whether to use synthetic rope, steel wire rope, and studlink or studless link. The
direct effects from the fluid-mooring line interaction may be modeled in further research.

• How can the series effect of the mooring line components be accounted for? For the
models in this Thesis, the series effect within the mooring lines are neglected, that is, only
the most loaded link is considered. A major challenge is to model this effect accurately,
especially for a segmented mooring line, without making the model too complex and
computational expensive.

• How can the consequences be elaborated, especially with respect to potential loss of
human lives? The consequences may be modeled with a non-linear utility curve to
reflect risk-averse behavior. Multiple-attribute utility theory could be used to explicitly
incorporate the decision-maker’s weighting of the attributes. A further development of the
models could be to include the marginal lifesaving cost principle, so the optimal solution
can be found by minimizing the costs while still ensuring a sufficient level of safety.
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A Quantifying the nodes with GeNIe

This section provides a tutorial on how the auxiliary18 networks are established and used to
quantify the discrete networks, exemplified with the ULS Network. Figure 45 shows the com-
plete auxiliary ULS network. The proxy decision nodes are marked with 1 and treated in Sec-
tion A.1. 2 marks the parent chance nodes, which are treated in Section A.2. The child chance
nodes are marked with 3 and they are treated in Section A.3. Finally, Section A.4 explains two
different methods for discretizing and quantifying the nodes.

Figure 45: The auxiliary ULS Network

A.1 Model a Decision

There are two approaches to model a decision in the auxiliary networks:

• Chance node with uniform outcome probability where each state corresponds to a deci-
sion. It is the preferred option when a finer discretization of decision states does not have
a physical interpretation. This is the case for Grade since this note contains maximum
five decisions.

• Equation node with a Uniform distribution. This may be applied where a finer discretiza-
tion of the decision outcome has a physical interpretation, such as for Diameter.

Figure 47(a) and Figure 47(b) show how Grade and Diameter is defined in the auxiliary ULS
Network. The red arrow in Figure 47(b) shows where the available distributions can be found.
For the equation node, the bounds must be specified as marked by the red box.

Furthermore, the equation node is discretized. The layout of the Discretization tab is shown in
Figure 48. The buttons Add and Insert marked by 1 controls how many states the nodes are dis-
cretized in. The discretization interval is uniformized in the equation domain by the Uniformize
button, marked with 2. A non-uniform interval may be created by manually changing the white

18Hybrid Bayesian networks used to quantify their discrete counterparts
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values in 4. 5 shows the current names of the states the node is discretized in. These names can
be manually changed by the user. By pressing the Rediscretize button marked by 3, the CPT,
marked by 6, appears.

Notice that the symbol above Diameter changes throughout this process. The C and double lines
show that the node in Figure 46(a) is a constant and deterministic, respectively. A deterministic
equation node is a node where no additional uncertainty is introduced. This means that all
uncertainty of this node is attributed to its parents. The symbol in Figure 46(b) shows that the
equation node is distributed but not discretized. A distributed and discretized node is shown in
Figure 46(c).

(a) (b) (c)

Figure 46: The different symbols for the equation nodes

A.2 Model a Parent Chance Node

The next step is to model the parent chance nodes. For the ULS Network, these are the nodes
Service Life, Corrosion Rate and Loads. It is not recommended to model these nodes as chance
nodes, even for simple CPTs, since it requires the user to write potentially time-consuming
switch or choose statements to relate the states to physical values.

The nodes are discretized with the methodology explained in the previous section. It is rec-
ommended to activate the tool marked by 1 in Figure 49(a) to visually inspect that the CPT
resembles the distribution. Note that a non-uniform discretization makes it harder to recognize
the distribution in the CPT. Therefore, a uniform discretization interval is recommended.

Valuable information and a graphical representation of the distribution is found in the Value tab,
as shown for Service Life in Figure 49(b).

A.3 Model a Child Chance Node

The relationship between a child and its parents is described by a function. The function de-
pends on the type of the child node. There are two types of child nodes:

• Child of equation nodes: The equation is specified with operators and node identifiers. An
example is given in Figure 50(a). Note that the node identifier ”Diameter” corresponds to
the Uniform distribution from Figure 47(b).
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• Child of proxy chance nodes: In this case, a switch or choose statement is written to
convert each state to a numerical value. This is illustrated in Figure 50(b).

Note that short node identifiers are preferred, as this eases readability.

In both instances, appropriate bounds for the equation domain must be established. It is cru-
cial to conduct a visual inspection of the CPT to ensure that the distribution is fully captured
within the bounds. An unexpected Uniform distribution means that the bounds are too strict.
In addition, GeNIe prompts a warning message stating that the samples are out of bounds and
that several entries in the CPT are not configured. The effect of strict bounds is illustrated in
Figure 51(a) and Figure 51(b).

The accuracy of the Monte Carlo sampling is dependent on the number of samples generated.
The standard number of samples in GeNIe is 10,000. To increase the number, click on the
Network menu, or right-click outside the network, and click on Network Properties. On the
resulting pop-up window, click on the Sampling tab. The Sampling tab is shown in Figure 52.

A.4 Discretization and Quantification

The discretization may be performed in two ways:

• Using the discretization tool in the Network menu. This is useful for establishing the
discrete network for the first time. The decision nodes are created by right-clicking on
the proxy nodes, then change type. The discretization tool requires that all nodes are
discretized with the aforementioned procedure.

• Manually copying the CPT for each node using the rediscretization tool. This is useful
for minor changes in the model that can easily be implemented in the auxiliary network.
Note that a change in one node requires a change of all its descendants.
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(a) Definition of Grade

(b) Definition of Diameter

Figure 47: The two different approaches for modeling a decision node
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Figure 48: Discretization tab of an equation node
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(a) The Discretization tab

(b) The Value tab

Figure 49
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(a) Child of an equation node

(b) Child of a proxy chance node

Figure 50: The Definition tab for a child chance node
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(a) Adequate bounds

(b) Bounds too strict

Figure 51: The CPT for Minimum Breaking Strength
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A.4 Discretization and Quantification

Figure 52: Layout of the Sampling tab
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