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The question for discussion is how digital workflow, based on a parametric model, can be used as a method 
of design to increase the efficiency of spatial structure design. The study focus on the development of 
connections in timber gridshells. With a flexible digital workflow, the user is able to automatically generate 
structurally valid gridshell connections according to the gridshell properties. Such a workflow is supposed to 
enable more efficient communication between architects and engineers during the design process, by 
enabling the optimization of the economic, structural and conceptual sides of a project. 
 
The digital workflow was implemented in a case study to engineer a spatial cabin structure in Norway and 
tested for different grid patterns and cross-sections. The case study involved cross-disciplinary work between 
two teams of engineers and one architect, increasing the realism of the research project. 
 
The research lead to a digital workflow based around a particular proposed gridshell connection design. A 
parametric model with scripted structural verification algorithms was developed, and certain components 
were verified with a Finite Element Analysis. The structural verification mimics the intuitive engineering 
approach of testing different configurations, from simple to complex, until a valid configuration is found. The 
gridshell connection design proposed in the thesis also shows how the timber failure modes are critical in 
traditional slotted plate connection types. 
 
The study finds clear advantageous with a digital workflow, e.g., better communication between architects 
and engineers and better predictions regarding structural stability. An on-hand parametric visualization of the 
structure facilitates for better understanding and communication, easier troubleshooting and less redundant 
work. It also makes it easier to experiment with changes and communicate options across disciplines, due to 
a work culture built on common terms. 
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Abstract

Timber gridshell structures are an efficient way of covering large spaces, while it also has

an extraordinary ability to capture architectural interest and exploit material properties.

From an engineering point of view, the success of a project can be achieved through

innovative design of form, that takes advantage of the unique structural load carrying

capability of a gridshell. As gridshell design is to consider as an emergent technology,

there is still a lot of potential in this research field.

The question for discussion is how digital workflow, based on a parametric model,

can be used as a method of design to increase the efficiency of spatial structure

design. The study focuses on developing connections in timber gridshells. With

a flexible digital workflow, the user can automatically generate structurally valid

gridshell connections according to the gridshell properties. Such a workflow enables

more efficient communication between architects and engineers during the design

process, by allowing optimization of the economic, structural and conceptual sides of

a project.

The digital workflow was implemented in a case study to engineer a spatial cabin

structure in Norway, and tested for different grid patterns and cross-sections. The

case study involved cross-disciplinary work between two teams of engineers and one

architect, increasing the realism of the research project.

The research led to a digital workflow based on a particular proposed gridshell

connection design consisting of aluminum gusset plates, slotted in the glulam beams

and attached to a center thin-walled aluminum cylinder. A parametric model, with

parallel structural verification algorithms, was developed, and specific components

were verified with further structural analysis. The structural verification mimics

the intuitive engineering approach of testing different configurations, from simple

to complex, until a valid configuration is found. The gridshell connection design

proposed in the thesis also shows how the timber failure modes are critical in traditional

connections with slotted plates.

The digital workflow succeeded in generating and structurally validating custom

gridshell connections. The results can be used when discussing the structural ability

of different gridshell forms and beam sizes. The study finds clear advantages with

a digital workflow, e.g., better communication between architects and engineers and

better predictions regarding structural stability. An on-hand parametric visualization

of the structure facilitates for better understanding, easier troubleshooting and less

redundant work. It also makes it easier to experiment with changes and communicate

options across disciplines, due to a work culture built on common terms.
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Sammendrag

Gitterskall i tre er en effektiv konstruksjonstype for store spenn, samtidig som det har

en spesiell evne til å vekke interesse blant arkitekter og utnytte fordelene ved tre som

materiale. Fra et ingeniørperspektiv vil et innovativt design, som effektivt utnytter den

spesielle bæreevnen, kunne skape stor konstruksjonsmessig glede. Ettersom gitterskall

i tre fortsatt er å anse som en fremvoksende teknologi, finnes det stort potensiale i dette

som et forskningsfelt.

Forskningsspørsmålet som skal undersøkes er hvordan en digital arbeidsflyt, basert på

en parametrisk modell, kan bli brukt som en designmetode for å øke effektiviteten i

design av romlige gitterskallkonstruksjoner. Denne oppgaven fokuserer på utviklingen

av knutepunktene i gitterskall av tre. Med en fleksibel digital arbeidsflyt vil brukeren

ha muligheten til å automatisk generere godkjente knutepunkter i henhold til de gitte

gitterskallegenskapene. En slik arbeidsflyt muliggjør en mer effektiv kommunikasjon

mellom arkitekter og ingeniører under designprosessen. Dette muliggjøres gjennom

både økonomiske, strukturelle og konseptuelle sider av et prosjekt.

Den digitale arbeidsflyten ble implementert i en casestudie som går ut på å

konstruere en hytte med en romlig gitterskall struktur. Den ble så testet for ulike

typer gitterskallformer og tverrsnitt. Casestudien innebar også tverrfaglig arbeid

mellom to grupper med ingeniørstudenter og en arkitekt, for å gjøre prosjektet mer

virkelighetsnært.

Forskningen resulterte i en digital arbeidsflyt basert på et bestemt forslag til

gitterskallknutepunkt. En parametrisk modell med programmerte verifikasjons-

algoritmer for konstruksjonen ble utviklet, og visse komponenter ble ytterligere

verifisert ved hjelp av elementmetodeanalyse. Denne verifikasjonsmetoden etterligner

den intuitive ingeniørtilnærmingen med å teste forskjellige konfigurasjoner, fra enkel

til kompleks, helt til en gyldig konfigurasjon er funnet. Knutepunktsdesignet for det

gjeldende gitterskallet foreslått i denne oppgaven viser også hvordan brudd i trevirket

er kritisk for tradisjonelt innslissede plater.

Studien finner klare fordeler ved bruk av digital arbeidsflyt, blant annet bedre

kommunikasjon mellom arkitekter og ingeniører og bedre forutsigelser knyttet til

konstruksjonens stabilitet. En parametrisk visualisering av konstruksjonen muliggjør

bedre tverrfaglig forståelse, enklere feilsøking og mindre overflødig arbeid. Den vil

også gjøre det enkelt å eksperimentere med endringer i designet, samt å kommunisere

ulike alternativer i et prosjekt på tvers av fag, ettersom prosjektet er bygget på felles

premisser.



IV



V

Problem Description

The topic of interest is the use of digital workflow to create connections in spatial

structures. With increased computer technology, and new production methods suited

for custom fabrication, more projects can take advantage of automating the detailing

process. By using the concept of parametric design, the architects and engineers can

alter the properties of the connections, and experiment with form. The tool also enables

the users to quickly mass produce 3D-models of all the connections in a given structure,

to create digital documentation and visual facilities efficiently.

This thesis will focus on using digital workflow in the design of the connections

in a timber gridshell. The task involves researching different connection designs

and creating a digital workflow based on a parametric model that generates the 3D-

models. The digital workflow must include calculations and structural verifications

of the connections, and necessary controls for the assembly of the connections. The

connections are optimized according to the design forces and the calculated capacity.

The process will involve exploring different existing connection designs and propose a

design concept for a case study.

The digital workflow shall be tested for realistic use in a case study, involving the design

of a timber gridshell roof for the cabin. Another pair of master students will collaborate

on the project, proposing a global form and grid pattern. The compatibility between

the digital workflow of the two teams is, therefore, a critical success factor.

Research question:

How can a digital workflow based on the parametric modeling be used

as a method of design to increase the efficiency of spatial structure detail

design?

Research goals:

• Proposing a digital workflow for design of gridshell connections, from design to

fabrication.

• Proposing a gridshell design suitable for an automated digital workflow.

• Additional structural verification of the connection joints to compare the

reliability of the digital workflow.

• Investigate the opportunities with use of digital workflow in collaboration

between architecture, engineering and construction sector.

• Propose connection design for a timber gridshell cabin.
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Chapter 1

Introduction

1.1 Architecture, Engineering and Construction (AEC)

In the 19th century, the building industry saw the rise of engineering, bringing

about a more scientific approach to constructions. The old principles of structures

used by architects were slowly dismissed in exchange of engineering theory, and

the collaborative relationship between the engineers and the architect became more

important. The 20th century saw the rise of computer technology and the power of fast

calculations. With the development of the building industry towards more complicated

processes, more documentation and interaction between different fields of expertise

were needed. The use of computer-aided methods equipped businesses with more

efficient tools to handle complex challenges.

Lately, with the introduction of digital collaboration platforms, like Building

Information Modeling (BIM) in the 1970’s, the focus on the collaboration and precision

through a Digital Workflow has increased in popularity. According to National Bim

Standard [1], BIM can be described as:

... a digital representation of physical and functional characteristics of a

facility. A BIM is a shared knowledge resource for information about a

facility forming a reliable basis for decisions during its life-cycle; defined

as existing from earliest conception to demolition.

The methodology of digital workflow uses digital software to handle and coordinate

different tasks of a more extensive procedure. Because of the close intertwinement of

the three AEC subjects, establishing effective and efficient communication becomes

essential for the success of a project. For example, a sudden change from the

1



2 CHAPTER 1. INTRODUCTION

architect often leads to the engineers and manufacturers having to change calculations,

documentation or machine settings. It is therefore crucial that the upset has a minimal

effect on the project schedule.

Figure 1.1: Intertwined and individual methodology in AEC.

Architecture, engineering, and construction involve very different processes and tasks.

This is a very interesting topic since communication often can be a problem without

cross-disciplinary understanding. Figure 1.1 shows the three subjects in a Venn-

diagram, displaying how they have separate tasks and also where the three subjects

meets. It is in the intersection between the different disciplines that the most

interesting and innovative projects develops. As IPENZ [2] points out:

A cultural shift is required for both engineers and architects. Engineers

need to adapt positively to architects’ iterative design approaches, while

architects, drawing upon engineers’ specialist expertise, must understand

structural principles and incorporate core engineering requirements into

their design imagination.

Having all the different design tools available also contributes to the developing and

changing of the traditional roles for the architect and engineers. Calculations are

automated, and the visualization of the whole structure is better. The process of
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developing a connection detail of a structure is an excellent example of when it

is necessary for the engineer to make design decisions. It can be challenging to

understand the details of how the force distribution of the connection works, since

it demands a specific knowledge. Many of the decisions during the process of

development depend on the force channeling and how the connection works statically.

For situations where these kinds of decisions have to be made, the engineers becomes

the only one capable of making such a design decision.

1.2 Concept of Shell Structures

The shell structures especially depend on the work of the engineer since the form of

the structure often is directly derived from the flow of the forces. To make the structure

work, it has to be light and robust. The challenge of constructing light, thin, and at

the same time, strong roof structures led modern engineering to develop numerous

different solutions. From the classical systems based around familiar elements, such

as beams, columns, and slabs, to the free-formed designs of modern architecture, with,

e.g. double curved shells or geometries with other irregularities.

1.2.1 Shell

To understand the structural reasoning behind the gridshell, it is important to

understand the general shell structure and the type of forces that occur on a surface.

Basic plate theory is used to explain this.

It is advantageous to divide the forces into the two following groups:

• Membrane forces (see Figure 1.2)

• Bending forces (see Figure 1.3)

The membrane forces are forces acting parallel to the surface. This includes both axial

forces and shear forces. The bending forces consist of moments bending the plate

around one of the membrane axes or shear forces acting perpendicular to the surface.

Since the shell usually has a low thickness, is the corresponding moment of inertia often

very low in comparison to the surafce area. Therefore, the shell might be badly suited

for bending moments but well suited for membrane forces. These two groups of forces

do not affect each other.
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Figure 1.2: Plate membrane forces, [3].

Figure 1.3: Plate bending forces. (a) Displayed as stresses. (b) Displayed as resultant
forces, [3]

The motivation behind the shell structure is designing a structure that can span long

without needing tall cross-sections to handle the bending moment. It is therefore in

the interest of the designer to make the forces in the structure act as membrane forces

as often as possible. Shaping the shell in a funicular shape turned upside down proves

to be a solution to this problem.

The concept of using funicular shapes for shell structures originates from Robert Hooke

(1635-1703). Hooke [4] proposed already in 1676 that a hanging chain turned upside

down will stand in pure compression (see Figure 1.4). This concept is also transferable

to 2D. By flipping a hanging membrane, we can get a shell which takes pure membrane

forces. Ochsendorf and Block [5] point out that there is an infinite amount of possible

funicular surfaces that can work in pure compression. It all depends on how much
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material is available and the distribution of it. Using surfaces with holes or free edges is

also possible.

Figure 1.4: Hooke’s hanging chain, [5].

Ney and Adriaenssens [6] distinguish types of structures between form-active systems

and form-passive systems. Form-active structures are structures that change shape as

a reaction to the forces. While the hanging cable becomes funicular due to the tensile

forces acting, a gridshell must be placed in the desired shape when assembled since the

deformations will amplify. Another way to describe it is thinking of the hanging cable

as a system in stable equilibrium and the shell as a structure in unstable equilibrium.

A consequence of this is that changes in the force distribution in the shell lead to

a nonlinear increase in forces due to the deformation. This can particularly lead to

challenges regarding unsymmetrical and horizontal load cases.

1.2.2 Gridshell

The gridshell distributes forces along bars instead of the shell surface. By applying

the principle of "forces follow the path of least resistance (energy)," it is clear that

a fine mesh with multiple possible force paths makes the gridshell share force flow

properties with the ordinary shell. This shows to be a very efficient geometry avoiding

large concentrated forces by distributing the forces more efficiently over the shell. The
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open topology of the gridshell also makes the gridshell light in comparison to compact

shells.

The gridshell shares a lot of the properties with the beam grid. They are both built of

bars connected to form a lattice, usually creating triangular, quadrilateral or hexagon

openings in the surface. What differentiates the two types is the curved surface of

the gridshell in contrast to the planar surface of the beam grid. A modern gridshell

project which well represents a gridshell structure is the ceiling of the British Museum

in London showed in Figure 1.5.

Figure 1.5: Gridshell structure in the ceiling of the British Museum in London, [7].
.

As the structure is no longer continuous, connections have to be designed carefully to

distribute the forces from one bar to another correctly. The relatively small connections

in a large long-span structure may seem somewhat trivial, but the connection is often a

weak point in the structure and needs to be taken into consideration during the design

process.

1.2.3 Kinematic Gridshell

A kinematic gridshell is a gridshell structure where the bars intertwine, and there is

not a stiff connecting joint in the intersecting point of two bars. The first large-scale

gridshell structure built, Mannheim Multihalle (1974) was built using this concept. An

example of another kinematic gridshell structure, Trondheim Pavilion is illustrated in

Figure 1.6.
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Figure 1.6: Kinematic Gridshell from Trondheim Pavilion, [8].

The process of making a kinematic gridshell is entirely different from assembling a

normal gridshell. The kinematic gridshell construction process consists of building the

whole grid flat. It can be built on the ground and then be pushed upwards to the desired

form, or it can be built on a certain height, and lowered by gravity. The shaping process

can either be done by lifting the grid from a point within the structure, or by pushing

the anchor points from the edge to the correct position.

This shaping process is inducing bending moments in the structure. Unlike the normal

gridshell, the kinematic gridshell is thereby a structure carried by bending moment in

addition to the compression forces. It is therefore essential for a kinematic gridshell

structure to be anchored with bending resistant connections.

1.2.4 Timber Gridshell

Timber gridshells is a modern and efficient way of providing unique architecture and

at the same time taking advantage of material properties. Timber, if provided from

certified sources, is by many considered as environmentally friendly. It provides a

noticeable amount of CO2 storage, which could lead to a negative carbon footprint [9].

The fact that it is well suited for long-span, light-weight, affordable and sustainable

structures, makes it easy applicable to the modern paradigm of sustainability while it

also fits the developmental architectural programs of today.

Different types of timber can be used, but often is Engineered Wood Products (EWP)

quite suitable for structures like this. Glued Laminated Timber (Glulam) is suitable

for this type of structure due to its lightness, ductile abilities, and strength. It shares
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a lot of the structural properties of traditional sawn timber. The fact that the material is

orthotropic and noticeable weak in its weak direction is not necessarily a problem since

the members usually are loaded axially. Hence, one is taking advantage of the benefits

of timber as a material, which is assumed to be one of the main reasons why timber is

so well suited for gridshell structures.

Figure 1.7: Timber gridshell from The Wooden Geodesic Dome in St. Petersburgh, [10].

1.3 Digital Workflow in Fabrication

Digital methods of fabrication is a relatively new subject of research. The development

of the field has been growing rapidly since the second world war, mostly driven

by the development of computer technology [11]. The topic treats the challenges

of connecting the design process with the production process through digital

workflow.

Caneparo [11] propounds that there exists a digital continuum between design and

manufacturing, and claims that the digital methodology links design and craftsmanship

closer together – despite the occasional view by designers of digitalization as a threat

to the physical aspect of design. He further points out that there are primarily

three technological methods that digitalize this continuum; computer aided design,

engineering or manufacturing (CAD, CAE or CAM), numerical control (NC) and

prototyping. This thesis will focus primarily on the use of CAD, CAE, CAM, and

prototyping as a methodology of design, but also investigate NC as a method of
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manufacturing.

According to Narayan et al. [12], CAD involves the use of computer technology to create,

modify, analyze or optimize a design. This definition extends the definition of CAD

beyond the conception of design only being about creating drawings and instructions,

but instead of being a method for a more flexible design process. CAD offers a vast

amount of different software, using different methods which can perform differently

depending on the type of project.

CAD is often distinguished from CAE and CAM. By applying the proposed definition

of CAD from Narayan et al. [12] to define CAE, it could involve the use of computer

technology in engineering processes. A typical example of this is Finite Element Analysis

(FEA), based on the Finite Element Method (FEM), which uses the large computing

capacity of modern computers to make a discrete model of a system that approaches

the analytic solution. In the same way, CAM might be the use of computer technology

in manufacturing and fabrication. By combining CAD, CAE and CAM methodology, the

people involved in a project can create a digital workflow in fabrication projects.

NC, also called computer numerical control (CNC), is a method developed by American

aerospace industry in 1949 [11]. The method aims to use digital instructions to control

machines during production. The development was fueled by the industry’s need for

efficient production with low tolerance and high precision. According to Caneparo

[11], the earliest example of the method is John Parsons and Frank Stulen’s use of a

programmable milling cutter to produce steel stringers for rotor blades in 1940. It

used electric motors to move the cutter based on 200 control points programmed with

punching cards.

The method of NC has developed immensely since the 1940’s, and production is not

limited to the number of control points, 2D or milling machines anymore. Laser cutters,

milling cutters, lathes and 3D printers are examples of modern machines that make

use of this technology with much more complexity than before. The 3D printer has

created particular interest due to its ability to produce cheap components with complex

geometry.
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Figure 1.8: The MX3D team 3D-printing a steel bridge, [13].

A particularly interesting project exploring the use of 3D-printing in construction was

the MX3D Bridge Project. According to MX3D [14], the goal of the project was to

create an entirely 3D-printed steel bridge to cross the Oudezijds Achterburgwal Canal in

Amsterdam. The project involved the use of CAD- and CAE-software to draw, analyze

and optimize the structure, leading to a very complex geometry for fabrication. The

monolithic nature and scale of the structure created the most significant challenges.

It made, for instance, the structure very hard to cast. The solution was to 3D-print

the entire structure using a welder attached to a robot arm. Using NC-methods, the

machine could add more steel to the bridge according to the digital design.

For completeness of the description of the digital continuum in Caneparo [11],

prototyping is defined by Chua et al. [15] as:

An approximation of a product (or system) or its components in some form

for a definite purpose in its implementation.

Prototyping is particularly efficient when production cost is low. The technological

development, leading to a more efficient production with less use of workers, has

therefore opted for the possibility of more prototyping in design.

When deciding on the methodology, the digital workflow has to reflect the specific

character of the project. Some examples of this could be the need for mass production

of standard parts, or production of a custom high-performance part. If a process needs
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mass production of standard parts, it should be possible in the CAD-software to easily

copy or duplicate the model and make minor changes if needed. The fabrication

method should be able to produce the same part over and over again. This could,

for instance, be solved by creating one mold using NC and re-using it for molding

multiple parts. For fabricating a customized part, the CAD- and CAE-software might

need to be more advanced, giving the user better opportunities regarding analysis and

optimization. The CAM-method of choice should also be able to tackle the irregularities

that occur as a result of the design.

The most significant challenge comes to situations with a need for mass production

of customized parts. Suddenly there has to be an NC-method with different machine

instructions for every part, and every single part needs their CAD- and CAE-model, and

all this must still be cost-efficient. The customization of gridshell connections could

be such a process. Every connection needs to be able to handle incoming beams with

a different orientation. This makes the design requirements different for every single

connection. 3D-printing as a NC-method yield good accuracy’s regarding fabrication

of custom parts. The machine needs few hands to operate, has high precision and is

suitable for different machine instructions. The downside is slow production speed and

high cost per part. The CAD- and CAE-methods for such a project needs to balanced

between the ability to optimize and the ability to duplicate. Such a method could be a

parametric approach.

1.4 Parametric Approach to Computer Aided Design

The design process demands a significant amount of decision making, and the

fundamental design choices can often lead to results of very different quality. An

inefficient solution can often be expensive while a well designed, more efficient

solution often takes time to accomplish. Having tools that ensure an efficient digital

workflow can help the designer make more efficient choices and hence easily improve

the quality of the project.

Parametric modeling uses CAD as a method of design to model the structure.

The approach focuses on the possibilities of changing the design and analyze the

corresponding effect. The basis of the concept is to represent different characteristics of

the design by parameters, so effects in the model are displayed as the designer changes

the parameters.

This approach fits with the challenges concerning gridshell connections. Parameters

can represent the characteristics of the different connections, and be changed during

the process. The process of verifying the structural stability can be implemented in
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a model such that the model can be optimized on the basis of this. For gridshell

connections, this is primarily about ensuring that the beams connects properly, and

that the connections transfer the forces correctly. There must be algorithms to verify

the quality of every single connection. Still, the designer decides how to prioritize the

changes in the model when a parameter is changed.

The parametric approach is although a comprehensive process. The designer must

develop new custom tools for the current project, or seek out and combine existing

tools. The tools must be robust, as they need to handle every possible problem that can

occur. This is something which leads to a broader and far more complicated calculation

scope than the often pragmatic approach in traditional engineering.

1.5 Manufacturing Methods for Aluminum

The different manufacturing methods presented in this sub chapter are suitable for

a digital workflow, as the CAD geometry can be used in the manufacturing process.

NC-instructions with the designed connections will now be sent directly to the

manufacturing, automatically generated by the parametric model. Demands from the

manufacturing process shall also be implemented in the digital workflow to ensure a

seamless process. The different methods will be presented briefly for completeness,

not for a discussion of selecting manufacturing method, as this is out of scope for this

thesis.

1.5.1 Additive Manufacturing

According to [16] the definition of Additive Manufacturing (AM) is:

A process of joining materials to make objects from 3D model data, usually

layer upon layer, as opposed to subtractive manufacturing methodologies.

The application of this technology has in many ways changed the manufacturing sector.

It is a new and innovative technique, and has caught great interest in both the AEC-

industry, and received a great deal of publicity [17].

For AM the material could, for instance, be plastic, aluminum or concrete. Common

for AM technologies is to use a CAD representation of the intended geometry. From the

created CAD model, the AM equipment reads the data and adds the layers of liquids,

powder, sheet material or other, using the layer-upon-layer technique to fabricate the

3D object. A typical production technique associated with AM is 3D-printing, but AM
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also includes, for instance, Rapid Prototyping (RP) and Direct Digital Manufacturing

(DDM).

Aluminum 3D Printing

Aluminum is a popular material because it has a unique combination of properties,

which makes it desirable for many applications. One of the attributes that make

aluminum stand out from other materials is its high strength-weight ratio, which is why

it is used for aerospace components, laptops, phones and sports equipment. It can be

machined, welded, polished and coated. Aluminum also has good thermal conductivity

[17].

For aluminum, there are different methods of 3D printing. Selective Laser Sintering

(SLS) is a method where the aluminum powder is not fully melted, but instead heated

up to a specific point where the powder grains can fuse together. This is allowing the

porosity of the material to be controlled. However, since the powder is fused together,

and not completely melted, this method will not give a homogeneous and as strong

material as other methods [17].

The Direct Metal Laser Sintering (DMLS) method, also often referred to as Selective

Laser Melting (SLM), is another method used for 3D printing in aluminum that goes

one step further than SLS. This is an advanced manufacturing method that melts the

powdered metal layer-by-layer. The printer uses a high powered laser that binds the

metal particles together in the melting process. Unlike the SLS method, this method

can entirely melt the metal powder into a homogeneous, solid 3D part. For this method,

an automatically generated support structure is needed. This structure will later be

manually removed. 3D printed models in aluminum are known to be very strong,

precise and can handle details of 0.25 mm. This technique will also make it possible

to make complex geometries that would be very difficult or impossible to obtain with

other manufacturing methods, e.g. interlocking parts [18].

1.5.2 Aluminum Sand Casting

Additive manufacturing has proven its potential in many different fabrication areas, but

despite this potential, most of the techniques still have limited production dimensions,

high cost and advanced, and sometimes non-optimal material properties. The process

is also quite time-consuming, especially for bigger dimensioned objects. In many cases,

sand casting will be faster, have the same high precision and have lower material price

[19].
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Most of the metal castings are produced by sand casting. Sand casting is a quick

and cost-effective production method, that is especially suited for prototyping and

developing new products that don’t require an accurate shape repeatably. The sand is

especially well suited for this purpose because it is refractory and chemically inert, and

at the same time a low-cost material. As the sand mold must be destroyed to remove

the casting, sand casting typically has a low production rate. At the same time, sand

casting may be the only solution for very large objects which cannot be produced with

other mass production casting techniques [20].

The process of aluminum sand casting most commonly uses Green sand as the

aluminum expandable mold. Green sand could be new, or regenerated sand which is

mixed with natural or synthetic binders [20]. The Green sand will still be moist when

the aluminum is poured into the sand mold. As the sand is refractory, both sand and the

replica of the object is reusable, which makes this manufacturing process sustainable

[21].

This mold is placed on a replica of the casting object. This first part of the process is

usually done by machinery to obtain the highest precision possible, though it could be

done by hand. Then the replica of the object is removed, and the cavity in the sand

mold will have the shape of the object to cast [20].

The sand mold must have at least two parts, sometimes more. The upper part is called

the cope, while the bottom part is called the drag. The sand mold is formed in a two-

part box for protection. This box is often called a flask. The two molds are uncased in

the flask halves, and before it is closed a hole in the sand, called a sprue, is formed in

order to allow the molten aluminum to be filled into the cast using the so-called gravity

filling method [20].

The mold is closed and clamped together, and the molten aluminum is poured into the

sprue. Then it flows into the mold cavity and into the negative space left by the replica

of the casting shape. Before removal of the sand, the aluminum needs to cool down.

Because the green sand does not absorb heat, this cooling process is much longer

than other casting methods. Because of this, the material properties are noticeably

decreased. Also because of the heat from the molten aluminum, the moist in the

sand is dried out, which allows the cast to crack open when the aluminum has cooled

down. Common defects from aluminum casting are a residual oxide film, inclusion,

core erosion, gas holes and shrinkage porosity [20]. The principle of sand casting is

illustrated in Figure 1.9.



1.6. DIGITALIZATION IN AEC 15

Figure 1.9: Principal of sand casting, [21].

1.6 Digitalization in AEC

As the digitalization changes the everyday of structural engineers all over the world, it

is essential to keep up with the changes. Being in the lead of this development involves

innovative use of digital methods. This will again lead to a more efficient workflow,

making digital competence essential to cope with competition in the industry now and

in the future.

The different tools presented in this thesis will, if used correctly, both simplify and

clarify the digital workflow within AEC. The AEC-industry uses extensive information

flow between and in the different fields. This methodology of design has a high

potential to equip smarter and more efficient tools to create an interesting and

cost-effective design. The workflow and tools exemplified in this thesis will display

design methodology that exploits the computer’s ability in data processing and

algorithmic logic.

Different concepts for gridshell connections will be presented along with general

design principles for connections and parametric models. A parametric model of all

the connections within a given gridshell is produced in Rhino with the plug-in

Grasshopper for the parametric modeling. The model is optimized using Karamba FEA

Software along with implemented Eurocode checks for the different materials. Parts of

a final connection is then verified using Abaqus CAE Software.

The model will be used in a case study to design valid gridshell connections for the

roof of a spatial cabin. For a master thesis that is shaped based on a concrete case
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study, it is easy to focus on the project design rather than the research question. The

goal of solving the case efficiently can steal the attention from the overall goal of the

research, mainly since the process of design has to be efficient to satisfy all involved

parties. It is, therefore, worth to notice that the following thesis tries to find a balanced

approach to the two goals, both studying the vast possibilities of digital workflow, but

also early proposing a digital workflow and a general design for the connections.



Chapter 2

Connection Design for Timber

Gridshells

When optimizing any structural component, an open and general approach enabling

a vast amount of different solutions will, with enough time, often result in a better

and more efficient structure. In theory, if a software had an infinite amount of time

to investigate grid shell connections, it could look at every way of attaching the bars,

with every type of material, with every type of attachment and with every type of shape.

Such a software would be able to create the perfect custom solution for every grid shell

configuration possible.

A software like this would never be useful in practical engineering, where time means

money and the customers demand efficiency. This points to the conclusion that there

must be some common restrictions and limitations on the design, and the limitations

must be based on economical, structural and practical considerations.

From a practical perspective, it is essential that the connection is based on more or less

well-known techniques for attaching the timber beams to each other, e.g., nails, bolts,

dowels or even carpenter joints. This might seem like a trivial thing to point out, but it

is essential to understand the logic behind the approach used in this thesis.

The economic and structural limitations is often strongly connected. More material

means better structural performance, but at a cost. There is a vast amount of advanced

computational techniques to optimize based on these considerations, like for instance

topology optimization. Using traditional engineering reasoning is although a much

cheaper option where calculation time can be severely reduced by conservative design

decisions, that simplify necessary calculations. Methods like topology optimization is

17
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also more expensive due to customized fabrication.

2.1 Status About Gridshell Connections

Gridshells are often more efficient ways of covering large spans than traditional shells.

As this kind of structure still is considered as an emergent technology, the design of such

buildings is mostly developed through a substantial amount of experimental work. It is

therefore interesting and useful to further investigate existing gridshell projects.

Connections in timber structures are often the weak point, and the limiting factor for

the gridshell structure. It is especially advantageous to look at reference projects due to

the limited amount of large-scale gridshell structure. Especially crucial for connection

in this kind of structures, is its ability to make room for the natural shrinkage and

expanding of the wood. The connections designed for kinematic timber gridshells

additionally needs to allow movement for the construction process, as the structure

often is built on the ground and lifted up to the correct form, or built on certain height

and lowered by gravity. As mentioned earlier, the focus will be on gridshells, more

than kinematic gridshells, but for completeness, this section will still present the most

common types of connections for kinematic gridshells [22].

2.1.1 Slotted Hole Connection

Figure 2.1: Slotted hole connection for a double layered gridshell, [23].

The slotted hole connection illustrated in Figure 2.1 can be used on both single and

double layered kinematic gridshells. It is a quite simple solution for a connection where

the size of the slots can be modified according to the necessary movement during

construction, but also movement from shrinkage of the timber. The benefits of this

solution is that one does not need an additionally manufactured connection. The
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only thing needed, other than the timber itself, is the bolt. A disadvantage is that the

members need to be slotted, and there will be a weakness of the material in this area.

It will also be essential that the slot is not made in a part of the timber where there

is other weaknesses. This is the connection type that was used in the first large-scale

timber gridshell, Mannheim Multihalle in 1974 (Figure 2.2 and Figure 2.3) [24].

Figure 2.2: Mannheim multihalle, [25].

Figure 2.3: Connection detail from Mannheim multihalle, [26].
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2.1.2 Plates and External Bolts Connection

Figure 2.4: Plates and external bolts connection for a double layered gridshell, [23].

This is a patented connection first suggested by Andrew Holloway. The plates and

external bolts connection is used for kinematic gridshells. For a double layered

kinematic gridshell it consists of three clamping plates connected by four external

bolts (see Figure 2.4). The bolt does not pass through the timber and therefore does

not weaken the timber laths. This connection allows the timber laths to slide and

rotate during the construction process, which is essential for kinematic gridshells. The

improvement from the slotted hole connection is the way the intersections now can

be fixed into place. To fix the position of the joint, and to ensure constant spacing

in the whole structure, the middle plate in the connection has a point that inserts in

the two central timber laths. The two outer layers are then free to rotate and slide

freely to find the optimal position [24]. This intersection technique was used in the

Weald & Downland Gridshell in Sussex, which was completed in 2002 (see Figure 2.5)

[26].
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Figure 2.5: Downland Gridshell, [26].

2.1.3 Ball Joint

Figure 2.6 illustrates the principle of the ball Joint used in the Computer Morphogenesis

Lab project at Politecnico di Torino. The ball joint is spherical shaped, which gives it

great flexibility in the sense that the bars can be connected perpendicular to the joint

at all parts of the surface. With perpendicular bars there is no eccentricity, hence no

bending moment in the joint. This is especially advantageous when used with soft

material like timber [27].
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Figure 2.6: Ball joint used in the Computer Morphogenisis Lab project at Politecnico di
Torino, [28].

Another reference project worth mentioned is the Roppe Bridge - a rotational

parametric pedestrian bridge developed by architect Andrej Nejur and Szende Szentesi.

For this project, all the geometry was developed using Grasshopper [29]. The joint

consist of a plain ball joint with several connected beams. The beams are connected

with crossed slotted plates that provide a certain stiffness in both directions of the cross-

section [30]. Similar to the project in Turin, the ball joint is flexible in the way the beams

are connected. A disadvantage of this solution is the amount of material used in the

sphere. The connection is massive and similar for all the different nodes, which means

that there is a lot of unexploited area in the joints.

Figure 2.7: Ball joint used in Roppe Bridge project in Romania, [29].
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2.1.4 Bolted Steel Plate Joint

The connection was developed during SUTD Library Pavilion project in 2013. The

connection is illustrated in Figure 2.8. A steel plate is bolted onto a piece of plywood

bolted between two flat profiles forming the bars in the grid. The incoming members

to the node has a certain thickness, which leaves an empty void in the center of each

node. The team had a structural challenge with transferring the forces continuously

through the node, and came up with this solution. To achieve a direct load path, the

steel plate is placed on the top and bottom of the joint. Since the edges of the plywood

still are in contact with each other, this solution will establish two different load paths.

One directly through the steel plate and one following the edges of the plywood [31].

This is illustrated in Figure 2.9.

Figure 2.8: Detail of the bolted steel plate connection, [32].

A disadvantage of this connection type is the limited customizability. For the specific

SUTD Library Pavilion project, the dimensions and incoming angles of the different

beams is more or less equal for the whole grid shell (see Figure 2.10). When developing a

more dynamic and customized structure with steep angles, this connection type would

probably be difficult to use. Beams with different dimensions and angles result in an

eccentrically loaded connection, and unwanted bending moments will appear. The

angles of the beams in the plane of the steel plate can easily be adjusted by cutting the

steel plate according to these angles. Rotation in the other two planes will be more

problematic and cause eccentricities.
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Figure 2.9: The two different load paths through this node illustrated by the two green
arrows, [32].

Figure 2.10: Overview of the SUTD Library Pavilion project, [32].

2.1.5 Circular Tube with Welded Plates Connection

For the Lo-Fab Pavillion project [33], the Mass Design Group used cylindrical tubes

with welded plates as connections as illustrated in Figure 2.11 and 2.12. The joints

were automatically assembled in a custom robotically assisted welding process and

fabricated using a combination of robotic fabrication and traditional craftsmanship.

The structure contained 1880 steel parts making up 376 joints.



2.1. STATUS ABOUT GRIDSHELL CONNECTIONS 25

Figure 2.11: Lo-Fab Pavilion, Design
Boston Biennial, [33].

Figure 2.12: Lo-Fab Pavilion,
connection detail, [33].

With this amount of parts, the construction process will have some practical issues.

This aspect is the main reason why an automatically robotic workflow makes the

process a lot easier [33]. Therefore this project is an excellent example of how practical

issues must be taken into consideration during decision making early in the process.

Properties that should be taken particularly into consideration for this connection type

would be, e.g., the meeting edges of the bar. In the Lo-Fi Pavillion project is it only four

connected bars, so this would not be a concern.

Considering another similar structure, The Wooden Geodesic Dome in St. Petersburg,

this had to be taken into account [10]. Connection detail is illustrated in Figure

2.13. The steel plates had to be long enough to avoid the intersection of the beam

corners. For this project, there is also added stiffening plates between the slotted

plates to the connection, as illustrated in Figure 2.14. This steel connection is called a

"Haeckel." As the plates in this kind of connection do not give much support to rotation

perpendicular to the plate, it would be necessary with extra stiffening in this direction

in some cases. The "Haeckel" would be one way to solve this possible problem. When

avoiding the beam edges to intersect, the force path will go directly through the steel

node. The steel ring, slotted plates, bolts and timber bars all together have to provide

the necessary capacity.
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Figure 2.13: Detail from The Wooden
Geodesic Dome in St. Petersburg, [10].

Figure 2.14: Joint used in the Wooden
Geodesic Dome in St. Petersburg, [10].

2.2 Designing Timber Connections

The properties and behavior of timber makes it a demanding material in design. Timber

is restrictive to a multiple of manufacturing processes that involve joining processes.

While steel and aluminum can be welded and concrete can bond, timber is restricted to

dowel connections. Timber also demands extra care for its very orthotropic properties.

It has high strength in the fiber direction, but it is very weak perpendicular to the fiber

direction. Hence, to orientate the timber such that the strong axis takes most of the

forces is of importance [34].

Additionally, different conditions like load duration and relative moisture have to be

taken into account. Because of the hygroscopic properties of wood, it will swell and

shrink depending on the relative moisture. The connections are often the weak point in

the structure, and therefore they can determine the load carrying capacity of the whole

structure. As a poorly designed connection can lead to brittle fracture, it is not only the

strength of the connection but also its ductility that determine its quality.

The geometry of the connection will in many cases inflict damage in the wood. By

making holes and slots in the timber, its effective cross-section will be reduced. The

metal parts that are used in the connection can, due to corrosion and low carrying

capacity at high temperatures, become the weakest element in the connection. This

is also important to take into consideration in the design process [35].

Because of the limitations of traditionally sawn sections of wood, EWPs (Engineered

Wood Products) has developed a lot. EWPs comes in different forms, like cross-

laminated timber (CLT), laminated veneer lumber (LVL) or glued-laminated timber

(glulam). Many of these products overcome a lot of the limitations of traditionally

sawn timber and are therefore becoming popular for structures like timber gridshells.
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These products can be bent and shaped on a much greater scale than traditional timber.

Regarding connections, products with increased strength in multiple directions will

have enhanced connector strength and splitting resistance.

2.3 Design Requirements

When developing a connection design, certain attributes have to be taken into account.

Succeeding in such a development process means having considered all of this. For a

digital workflow, this is especially important because many of the decisions that have to

be made during the development. When establishing the design requirements, one has

to make sure that all the connections obtain sufficient quality. In this section, essential

design requirements for connections in gridshells will be studied.

2.3.1 Customizability

In a process where the connection is going to be optimized depending on the different

forces working on it, it is essential that the design allows adjustments. The forces in

the connecting bars can vary between compressive and tensile forces, shear forces

or moment force. Hence, the expected properties and dimensions will then vary

depending on the load case. Other parameters that need to be adjustable is, e.g.

number of connected beams, angles of the connected beams, the cross-section of the

connected beams, and number of bolts.

It is essential that the design is equipped with components that manage to transfer

the loads desirably. Since the connections in a grid shell can have a varying number

of connected bars with varying angles, it has to be ensured that for all these different

connections, the forces are checked correctly.

2.3.2 Material Efficiency

Like many other design problems, a critical factor is the strength-to-material ratio. It

is desirable to achieve as much strength as possible from as little material as possible.

With this said, many will immediately think of topology optimization, the mathematical

method that optimizes the material layout by minimizing the amount of material on a

given design space. An example of a closely related project using this principle in the

design is the pavilion structure presented in Williams et al. [36]. The fabricated plastic

nodes are topology optimized and manufactured through Fused Deposition Modelling
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(FDM) as illustrated in Figure 2.15. for this thesis, topology optimization will be out of

scope.

Figure 2.15: An example of a fabricated prototype node, [36].

One way of making an as efficient design as possible is to make conscious priorities

of what parameters to modify in the optimization process. This is described more

detailed in Chapter 4.4.3. To maximize the efficiency of the connection, it would, for

instance, be better to increase the diameter of the bolt before adding a new bolt with the

previous diameter. It will also be better to increase the bolt diameter before increasing

the thickness of the plate.

2.3.3 Assembly

It is easy to forget the assembly process as the design process often focuses on the

structural aspects. It is essential to make sure the proposed design is feasible and

convenient for assembly. Included in this consideration are the number of individual

parts that need to be assembled, and the total weight of the materials that need to be

transported. With fewer parts, it will be less work, and with less weight, it will be faster

assembly and transport. It is also important to imagine how the assembly is going to be

carried out. If there is a significant number of different parts, it would be useful with a

numbering system, or another system to help to keep track of the process.

Another practical issue related to the assembly process is the insertion of the bolts. The

beams have to be attached to the connection in such a way that it will be possible to

insert the bolts and tighten the nuts. At least one of the angles needs to be big enough

for this, and the bolts for one of the connecting beams has to be assembled last.

In general, for the assembly, it will be advantageous with as many similar parts as

possible. E.g., the same bolt dimensions for the whole structure, and the same
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connections for similar situations. This will make the assembly a lot easier, and

also cost-efficient. At the same time, parametric optimizing of the structure will find

individual solutions for each connection. Trying to find a combination of the individual

solutions and practical limits will be an essential challenge. It is also important to point

out that the optimization can be done based on a lot of different criteria’s. Considering

this as a quite comprehensive and time-consuming process, parts of this will be out of

scope for this thesis.

2.3.4 Structural Verification

Having a connection consisting of well-known components will, in general, implicate

having well-known verification methods. The Eurocode has well-known verification

methods for individual parts of a connection. As a connection consists of different

materials, different Eurocodes needs to be involved in the verification process. Having a

design that is not too complex will also simplify structural verification in other software

as well.

There are vast amounts of standardized methods in the structural codes regarding

calculations of dowel type connections. By smart positioning of the dowel connections

to fulfill the requirements, the calculation methods can be simplified and reliable. It

can, for instance, be advantageous if the dowels are placed in rows and columns, as the

calculation methods for such dowel configurations are well known.

2.3.5 Manufacturing

Different methods of manufacturing is presented in Chapter 1.5. In the design process,

it is essential to take the necessary considerations to make the manufacturing process

as efficient as possible. It is important not to make the geometry too complicated,

as many methods of manufacturing are limited when it comes to geometry and size.

Making the right design decision for the manufacturing also depends on the chosen

material. Most materials have strengths and weaknesses, and the manufacturing will

often influence these. It is essential to choose a manufacturing process which takes

advantage of the material strengths.

2.4 Design Proposal

The design proposed in this thesis is based on well-known and simplistic components

which offer the possibility to dimension the connections using standardized methods.
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The center of the connection consists of a thin-walled cylinder, connected to four plates

that are angled according to the incoming beams (see Figure 2.16). Then the plates are

slotted in the glulam beams and fastened with bolts in a regular rectangular grid.

Figure 2.16: The design proposed, based on the requirements and specifications.

Using a cylinder as the core of the connection makes sense considering both production

and structural characteristics. The cylinder distributes the forces between the gusset

plates and makes it relatively stiff in comparison to other designs. At the same time,

the cylinder is moving some of the mass out of the center of the connection, making

the buckling length of the gusset plates shorter, and reducing the mass by not letting

the gusset plates meet in the middle. Making the cylinder thin-walled will save material

and at the same time maximize the effect of the material used. It also makes sense

considering production, since the shapes both can be cast or welded from standard

parts.

The slotted aluminum plates are calculated according to the Eurocode 9 [37], Eurocode

3 [38], and Eurocode 5 [39], using well-known formulas. Depending on the method of

fabrication there might be particular verification methods needed.

As seen in the Lo-Fi pavilion project in Chapter 2.1.5, a similar design with cylinder

and plates has been done before on a double curved roof. Hence it should be

possible to implement for other similar projects parametrically. Another inspiring and

close related project is Roppe Bridge mentioned in the section about Ball joints (see

Chapter 2.1.3). The models were fully parametrically developed in the parametric CAD-

software Grasshopper, and the design is flexible for parametric adjustments. In the

project, the structure required rotational stiffness in both directions, hence the crossing
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plates.

The proposed design is not very complicated, and possible to customize in many

ways. The dimensions of each connecting plate, bolt holes and bolts can be adjusted

individually. The diameter and thickness of the cylinder can also be changed according

to the needs for the individual connections. Considering a double curved shape, the

angles of the connected plates will have to vary in all three rotational directions. Using

this design, all of the above attributes will be feasible, and it will just be a matter of

adjustments in the parameters. All the modifications can be made advantageously in a

parametric model.
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Chapter 3

Structural Verification of

Connection Design

An essential part of the digital workflow, is the structural verification of the connections.

The methods shall be general, such that every possible configuration of the connections

can be verified. The simplicity of the methods is therefore important, as it both

simplifies the process of programming and the necessity for documentation showing

the validity of the program.

All the failure modes can be separated to three categories for the connection: Failure in

timber beam, gusset plate and cylinder. The following chapter will briefly introduce the

failure modes and establish a workflow for calculations.

3.1 Connections with Multiple Dowel Fasteners Loaded

Eccentrically

For connections with multiple fasteners such as screws, bolts or nails, it is essential to

determine the forces working on the different fasteners initially. For a concentrically

loaded connection, the forces acting on the different fasteners are equal and parallel to

the external load:

Ff =
N

nf
(3.1)

If the connection is loaded eccentrically, the load distribution changes. The eccentrical

33
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force will give momentum to the group of fasteners. The load from this force acting on

fastener i was proposed by Larsen and Enjily [34] to be:

Fm,i = r ·R

Ip
· ri (3.2)

Where Ip is the moment of inertia of the fastener group, ri is the radius vector to bolt

i , R is the force, and r is the distance from the origin. Note that Ip is defined without

regard to the cross-sectional area of the bolt, meaning the formula only works for bolt

groups with equal bolt size. The moment of inertia is therefore defined as in Larsen and

Enjily [34]:

Ip =
n∑

n=1
(xi

2 + yi
2) (3.3)

Where xi is the distance from the origin in x-direction, and yi the distance from

the origin in y-direction. If a connection is subjected to both a concentrically and

eccentrically force, the different contributions for each fastener have to be summed

up. It is also advantageous to separate between the contribution in x- and y-direction,

as capacity calculation for timber often separates between loads in the fiber direction

and perpendicular to it.

3.2 Spacing of Bolts

For the calculations of the gusset plates in the connection, it is important to verify

that the bolts are spaced sufficiently. For aluminum plates, recommended values for

minimum spacing can be retrieved from Eurocode 9, Table 8.2 [37]. The values are

displayed in Table 3.1.

Table 3.1: Minimum spacing for bolts, [38].

Distance Minimum

End distance e1 1.2 ·d0

Edge distance e2 1.2 ·d0

Spacing p1 2.2 ·d0

Spacing p2 2.4 ·d0
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Figure 3.1: Symbols for spacing of multiple fasteners, [39].

For bolted connections in timber, minimum spacing is given in Eurocode 5 [39] and

given in Table 3.2:

Table 3.2: Minimum spacing for bolts, [38].

Distance Angle Minimum

Spacing within one row parallel to grain a1 0◦ ≤α≤ 360◦ (4+|cosα|) ·d
Spacing of rows perpendicular to grain a2 0◦ ≤α≤ 360◦ 4 ·d
Distance between bolt and loaded end a3,t −90◦ ≤α≤ 90◦ max[7 ·d , 80mm]

90◦ ≤α≤ 150◦ (1+6 · |si nα|) ·d
Distance between bolt and unloaded end a3,c 150◦ ≤α≤ 210◦ 4 ·d

210◦ ≤α≤ 270◦ (1+6 · |si nα|) ·d
Distance between bolt and loaded edge a4,t 0◦ ≤α≤ 180◦ max[(2+2 · si nα) ·d , 3 ·d ]
Distance between bolt and unloaded edge a4,c 180◦ ≤α≤ 360◦ 3 ·d

Figure 3.2: Symbols for spacing of multiple fasteners, [39].

As a1 and a2 always will be larger than p1 and p2, it is only necessary to calculate a1

and a2. Since a4 is larger than e2 and the beam and plate edges are in line, e2 can also

be neglected.

It is also advantageous to have the perpendicular edge spacing a4,c and a4,t equal to
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each other, avoiding further eccentric loads by making the center line of the glulam

beam intersect the center of the bolt group. Therefore:

a4 = max
((

2+2sin α
) ·d , 3 ·d

)

3.3 Timber Capacity

3.3.1 Johansen’s Approach

Johansen [40] describes what has been later known as Johansen theory or Johansen’s

approach. This is a simplified theory for calculation of the plastic load-carrying

capacity of dowel-type timber connections without the effect of tension force in the

dowel. A dowel type connection is a connection consisting of dowel-type fasteners such

as nails, bolts, dowels, and screws. K.W Johansen first proposed the theory in 1941.

Today it is often known as the European Yield Model (EYM). It is described closely in

Porteous and Kermani [41] and Larsen and Enjily [34].

The Johansen Theory is considering connections with both single and double shear

planes consisting of timber-timber, timber-wood or steel-timber. It is only valid if the

failure is ductile and not brittle such as splitting. In Eurocode 5 [39], methods have

been developed to ensure that the failure is in ductile rather than brittle mode. For

example, if the minimum spacings and edge or end distances prevent splitting when

the connection is subjected to a lateral load.

It is assumed that the fastener acts as a laterally loaded beam, loaded by a constant

contact pressure q per unit length. According to the ductile failure theory for dowel-

connections, the fastener and the timber or wood-based material connected will

behave as essentially rigid plastic materials. This assumption simplifies the analysis

for the Johansen equation.

Figure 3.3: Strength/strain relationship used for dowel connections, [41].

The possible failure modes that can arise is often referred to as modes type 1,2 and 3.

Mode type 1 is when failure only occurs by embedment of the connection material, and
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there is no yielding in the fastener. Mode type 2 is when failure is due to a combination

of material embedment failure and single yield failure in the fastener. Mode type 3 is

when there is a combination of material embedment failure and double yield failure in

the fastener. The three different modes can arise for all the different connection types

(see Figure 3.4, 3.5, 3.6 and 3.7) [41].

Figure 3.4: Failure modes for single shear plane for timber-timer and timber-wood
based connections, [41].

Figure 3.5: Failure modes for double shear plane for timber-timer and timber-wood
based connections, [41].

Figure 3.6: Failure modes for single shear plane for steel-timber connections, [41].

Figure 3.7: Failure modes for double shear plane for steel-timber connections, [41].

For the proposed connection, the failure modes and associated strength equations for

the double shear plane steel-timber connection are used (see Figure 3.7). The equations

are dependent on the geometry of the connection, the embedment strength of the

timber and the bending strength of the fastener. It is also required that the fastener

will not withdraw from the connection. For timber-steel connections, the capacity of

the steel plate must also exceed the connection strength. If the thickness of the steel
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plate is less than or equal to 0.5 ·d , it classifies as a thin plate. If it is thicker or equal

to d , and the tolerance of the hole diameters is less than 0.1 ·d it is classified as a thick

plate. For plates with a classification between thin and thick plate, the result can be

found by linear interpolation between the two capacities [41].

When calculating for a steel plate as a middle member, the equations are valid for any

thickness of the steel plate. The characteristic load carrying capacity per shear plane

per fastener for this type of connection is the least of the three following equations

[39]:

Rv,k = fh,α,k · t1 ·d (3.4)

Rv,k = fh,α,k · t1 ·d

(√
2+ 4 ·My,Rk

fh,k ·d · t 2
1

−1

)
+T (3.5)

Rv,k = 2.3 ·
√

My,Rk · fh,α,k ·d +T (3.6)

Where Equation (3.4) is for failure mode f (mode type 1), Equation (3.5) is for failure

mode g (mode type 2) and Equation (3.6) is for failure mode h (mode type 3) as shown

in Figure 3.7. T is the rope effect (see Chapter 3.3.2) and fh,α,k is the characteristic

embedment strength at an angle α to the grain. It is given by:

fh,α,k =
fh,0,k

k90 · sin2(α)+cos2(α)
(3.7)

fh,0,k is the characteristic embedment strength parallel to the grain. As explained in

Porteous and Kermani [41] the embedment strength of timer or a wood-based product,

fh, is the average compressive strength of the timber or wood-based product under the

action for a stiff straight dowel loaded as shown in Figure 3.8.
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Figure 3.8: Embedment strength of a timber or wood-based material, [41].

fh,0,k = 0.82 · (1−0.01 ·d) ·ρk (3.8)

k90 is a constant dependent on the type of wood.

k90 =


1.35+0.015 ·d (softwood)

1.30+0.015 ·d (LVL)

0.90+0.015 ·d (hardwood)

(3.9)

The values for softwood will be used, as it better matches the properties for Norwegian

spruce or pine.

My,Rk is the characteristic yield moment of the fastener. The original Johansen theory

calculated this value as the moment at the elastic limit of the fastener, so it was

derived as the product of the yield strength and the elastic modulus of the fastener.

As the method developed, researchers concluded that this method gave a lower bound

strength, and started to use the elasto-plastic strength. This takes into account the

amount of rotation in the failure state for different kind of fasteners. It depends on

the tensile strength of the fastener which includes the effect of strain hardening as well

as the variation in the material strength [41]. For bolts the characteristic yield moment

is:

My,Rk = 0.3 · fuk ·d 2.6 (3.10)

Where fuk is the characteristic tensile strength of the bolt.
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3.3.2 The Rope Effect

In Equation (3.5) and (3.6) there is a contribution T to the capacity. T is called

the friction effect, or rope effect. The friction forces between the members and the

withdrawal resistance have been neglected in the original Johansen theory. In EC5 the

equation has been modified to include the rope effect. However, this contribution is

only relevant for the failure modes that involve yielding of the fastener.

Different types of friction can occur in a connection. The friction of interest in this

chapter is the type of friction that occurs when the fastener starts to yield and pulls the

members together as it deforms under the lateral load. Hence this is a type of friction

that will always arise in failure modes where the fastener yields. The vertical forces

caused by the bending of the fastener and the friction has to be added to the Johansen

equation [41].

Figure 3.9: Illustration of the rope effect.

Consider a single shear connection consisting of a timber member connected to a thin

steel plate by a single dowel-type fastener. This situation is shown in Figure 3.9. Under

the lateral shear force, the fastener bends in the timber member and allows to rotate

with an angle θ to the original position. Hence, besides being subjected to bending, the

fastener will be subjected to a tension force Nd due to the withdrawal effect. Nd will

have both a vertical (Nd · sinθ) and a horizontal (Nd ·cosθ) component. The horizontal

component will press the steel plate onto the timber member and add a vertical

resistive force. If the coefficient of the friction between the steel plate and the timber

member is assumed to be µ, this additional contribution will be µ ·Nd ·cosθ.

The contribution from the rope effect will then be the sum of all these vertical forces;
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Nd·(sinθ+µ·cosθ). In EC5 the component Nd·sinθ is replaced with Fax,Rk/4. Fax,Rk is the

characteristic withdrawal capacity of the connection. The other component; Nd · sinθ

is set to be a percentage of the Johansen contribution of the capacity, which means that

the contribution from the rope effect is Fax,Rk/4. This is limited to be maximum a given

percentage of the Johansen contribution (see Table 3.3).

Table 3.3: Limiting percentages for the "Rope effect", [39].

Fastener type Percentage

Round nails 15 %
Square nails 25 %
Other nails 50 %
Screws 100 %
Bolts 25 %
Dowels 0 %

For bolts, Fax,Rk is the least of the design strength of the bolt and the design capacity of

the washer ([41]):

Fax,Rd,bolt = 0.9 · fuk ·
1

γM2
· Abolt (3.11)

Fax,Rd,washer = 3
kmod · fc,90,k

γM,Connection
· π

4
· (d 2

w − (d +1)2)· (3.12)

3.3.3 Effective Characteristic Capacity for Row of Bolts

The capacity for a row of bolts placed in the direction of the fibers shall also be

calculated for a reduced capacity due to the number of bolts. Eurocode 5, 8.1.2 [39]

states that the capacity for the row of bolts in the direction of fibers can be calculated

as:

Fv,eff,Rk = neffFv,Rk (3.13)

where Fv,Rk is the capacity of a single bolt in the direction of fibers, while neff is the

effective number of bolts. If the load acts parallel to the fibers, neff is calculated

by:

neff = min

n

n0.9 4
√

a1
13d

(3.14)

neff = n if the load is perpendicular to the fibers. Loads with angle can be linearly

interpolated between the two results.
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3.3.4 Timber Splitting Verification

Splitting is a brittle failure mode that is a result of crack formation parallel with the

wood fibers due to shear forces acting on the bolt group. Eurocode 5 suggests a method

of calculation to ensure that Johansen failure occurs before splitting [39].

Fv,Ed ≤ F90,Rd (3.15)

Fv,Ed = max
(
Fv,Ed,1, Fv,Ed,2

)
(3.16)

F90,Rk = 14bw

√√√√ he(
1− he

h

) (3.17)

where w = 1 for bolt connections. Figure 3.10 shows how splitting can be calculated for

connections with a diagonal force acting upon it.

Figure 3.10: Splitting of timber, [39].

3.4 Gusset Plate Capacity

When calculating the capacity of an aluminum plate with multiple fasteners, one has to

take into account several types of failures. For a plate subjected to mainly normal force,

but also momentum and shear, the capacity checks that have to be done is:

• Shear Resistance for Bolt

• Bearing Resistance

• Cross-Section Capacity

• Block Tearing

• Buckling Capacity
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3.4.1 Shear Resistance Bolt

As every bolt has two shear planes, the capacity becomes according to Eurocode 3,

Table 3.4 [38].

Fv,Rd = 2 · αv · fub · A

γM2
(3.18)

Where A is the tensile stress area of the the bolt As. αv is dependent on the bolt classes.

for classes 4.6, 5.6 and 8.8 αv = 0,6 and for classes 4.8, 5.8, 6.8 and 10.9 αv = 0,5.

It is assumed in this thesis that the bolts are steel bolts of class 8.8.

3.4.2 Bearing Resistance

The bearing resistance is calculated according to Eurocode 9, Table 8.5 [37]

Fb,Rd = k1 ·αb · fu ·d · t

γM2
(3.19)

Where αb is the smallest of αd, fub
fu

or 1,0.

αd will be, in the direction of load transfer:

For end bolts

αd = e1

3 ·d0
(3.20)

For inner bolts

αd = p1

3 ·d0
− 1

4
(3.21)

k1 will be, perpendicular to the direction of load transfer, the smallest of:

For edge bolts

2,8 · e2

d0
−1,7 or 2,5 (3.22)

For inner bolts

1,4 · p2

d0
−1,7 or 2,5 (3.23)

3.4.3 Cross-Section Capacity

The cross-section must have sufficient elastic or plastic cross-sectional capacity to

handle the design loads. It is therefore necessary to check if the cross-section is valid

for the actual forces, e.g. tension, compression, shear, bending moment and the
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combination. For simplicity, the plates are calculated using the cross-sectional control

according to Eurocode 9, Chapter 6.2 [37] for compression, tension, bending moment

and the combination of all.

3.4.4 Block Tearing

Eurocode 9, Chapter 8.5.2.2 [37] gives the design capacity for the block shear tearing

resistance of a concentric loaded bolt group:

Veff,1,Rd = fu · Ant

γM2
+ fy · Anvp

3 ·γM0
(3.24)

As the yield line is perpendicular to the force direction through the entire cross-section,

the formula becomes equal to Equation (3.24) which is arleady calculated.

3.4.5 Buckling Capacity

The plate are very slender. This makes it necessary to control for column buckling. The

following criterion can be used as a verification, according to Eurocode 9 [37]:

Nb,Rd = κχ fo Aeff

γM1
(3.25)

where χ is the reduction factor due to slenderness and defects while κ is the reduction

factor due to welding of aluminum.

χ can be decided by

χ= 1

Φ+
√
Φ2 −λ2

≤ 1,0 (3.26)

where

Φ= 0.5
[

1+α(
λ−0.2

)+λ2]
(3.27)

α is the imperfection factor. The most conservative estimate is to set α equal to 0.32,

[37].

λ is the relative slenderness of the plate. This can be calculates using the

relationship:

λ=
√

A fo

Ncr
= Lcr

i

1

π

√
fo

E
= kL

π

√
fo A

E I
(3.28)
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It is reasonable to assume that the buckling length of the plate will be equal to the length

from the outer radius to the timber edge, meaning k = 1.0. There could be an issue

where the plate bends inside the timber slot, maybe necessitating k = 2.0 at worst case

scenario, but for simplicity, k = 1.0 is assumed.

Remark: If the aluminum connection uses a production method without welds, set

κ= 1.0.

3.5 Cylinder Capacity

The cylinder is the key to transfer the forces between the gusset plates. The circular

shape enables the forces to travel both clockwise and counterclockwise through the

cylinder wall, making it hard to find a simple way of calculating the stress in the cylinder.

As a result, a collection of key failure modes were located, and corresponding simplified

methods of calculation were selected.

As aluminum and steel share many properties, the method for gusset plates connected

to a circular CHS-profile (described in Eurocode 3, Chapter 7.4 [38]) can be used to find

the fundamental failure modes and calculation methods for the aluminum connection.

Figure 3.11 shows the connection.

Figure 3.11: Plates connected to a CHS-profile, [38].

3.5.1 Punching Shear Failure

Thin walled cylinders, where 10 ≤ d0/t0 ≤ 50, shall always be checked for punching

shear failure. Eurocode 3, Chapter 7.4 gives formulas for plates welded to CHS-profiles
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[38]:

σmaxt1 =
(

NEd

A
+ MEd

Wel

)
· t1 ≤

2t0
(

fy0/
p

3
)

γM5
(3.29)

Although this formula is supposed to be used for truss systems where the CHS-profiles

are considerably longer than the cylinders used in this connection design, it should not

make too much difference since it will not alter the shear stress path.

The choice of γM5 varies considerably for different materials and production

techniques. γM5 is set to 1.00 for welded steel connections [38]. For cast aluminum,

the yield strength is usually reduced by a safety factor of 1.10 [37]. It therefore makes

sense to set γM5 = 1.10 for cast aluminum connections. If the connection between the

gusset plate and the cylinder is created by welding wrought aluminum, the reduction

in the yield strength of aluminum in the heat affected zone shall be taken into account

[37].

3.5.2 Cylinder Face Failure

Eurocode 3, Table 7.3 also describes formulas for testing a thin cylinder wall for yield

stress [38]:

N1,Rd = 5kpµ
fy0

γM5
t 2

0

(
1+0.25η

)
(3.30)

Mip,1,Rd = h1 ·N1,Rd (3.31)

Mop,1,Rd = 0 (3.32)

so that
Ni,Ed

Ni,Rd
+

[
Mip,i,Ed

Mip,i,Rd

]2

+ |Mop,i,Ed|
Mop,i,Rd

≤ 1.0 (3.33)

η is defined as h1/d0. Since the cylinder does not act as a truss system chord, it is

assumed that the stress axially in the cylinder σ0,Ed = 0, meaning that kp can be set to

1.0. µ is a reduction factor due to the multiple gusset plates spaced around the cylinder

(as described in Chapter 3.5.3).

It is not as clear whether this formula works properly for this connection, especially

since the form of the equation is very simplified and unfamiliar from an analytically

perspective, and cannot be traced back to a more precise equation. It is

also problematic to identify the additional structural effects of the connection in
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comparison to a truss system due to the same reasons. It is therefore essential to

compare the utilization from this method with the FEA results from Chapter 5.4.

3.5.3 Effect from Spatial XX-Connection Type

The XX-connection is considered in the Eurocode 3 [38] as a spatial connection where

four bars are connected to the cylinder in the same cross-sectional plane. Figure 3.12

shows how the different bars act on the cylinder.

Figure 3.12: Spatial XX-connection [38].

Eurocode 3 [38] states that for XX-connection types, there should be used a capacity

reduction factor equal to

µ= 1+0.33N2,Ed/N1,Ed (3.34)

where |N2,Ed| ≤ |N1,Ed|.
As many of the connections can be considered XX-connections, the following method

seems reliable for calculating the combined effect if it can be considered conservative

enough. This is mainly since the worst case scenario for the cylinder for any number of

bars, is when N2,Ed and N1,Ed act correspondingly as tension and compression with the

same magnitude. Therefore, it can be assumed that such a situation can be used as a

conservative estimate for connections with more gusset plates than four, applying the

maximum tensile and compressive force as N1,Ed and N2,Ed.

The angular difference between the beams should not matter, as it will not exceed

the conservative estimate. As long as the angular difference is larger than 30°, the

calculations will still be valid, as stated in Eurocode 3, Chapter 7.1.2(3) [38].
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Remark: It can also be considered conservative to calculate with the reduction factor

µ= 0.67 constantly for every connection.

3.5.4 About the Accuracy of Calculations

As previously stated, according to Eurocode 3, Chapter 7.4, the simplified approach is

only valid for thin-walled cylinders where 10 ≤ d0/t0 ≤ 50. This is not the case for all of

the connections because of a production criterion where the thickness of the cylinder

wall was set to be minimum 40 % of the thickness of the gusset plates. This can, in

some cases, lead to cylinders with d0/t0 < 10. According to Eurocode 3, Chapter 7.4.1,

this makes it necessary to calculate all of the failure modes in Eurocode 3, Chapter 7.2.2

[38]. Such specimens shall be re-examined through calculation of more failure modes

or more advanced structural analysis, like FEA.

The choice of safety factors and calculation methods is partly out of scope of this

thesis – since this thesis primarily focuses on the possibility of parameterization of

connection design, and less on related calculation theory. It was therefore favorable

to reduce the time used in finding accurate formulas for the static behavior, and

instead spend time solving the practical and structural challenges with parametric

models. Therefore the material strength and cylinder calculations used should not be

considered anything else than a rough estimate. The FEA in Chapter 5.4 does, however,

look more into the accuracy of these calculation methods and can potentially validate

this approach.



Chapter 4

Parametric Design of Grid Shell

Connections

4.1 Software for Digital Workflow

4.1.1 Rhino 3D

Rhino 3D is a CAD-software licensed by Robert McNeel Associates for 3D-modelling

and rendering. Particularly important is the ability of Rhino to export 3D-models in

sat-file format, which will later be used for structural analysis in this theses.

4.1.2 Grasshopper

Grasshopper is a visual programming tool developed to create parametric models. It

comes as a plugin for Rhino, enabling Grasshopper to use the geometry library of Rhino

when operating on 3D-objects.

Programming in Grasshopper consists of connecting small objects, called components,

together in more complicated structures. The components takes an input, processes

the data, and generates output. E.g., Circle CNR is a component that takes a center

point, a normal vector, and a radius as input, and creates a circle-object as output.

Figure 4.1 shows this component. Three parameters (A Point, Vector and a value of

1.00) are connected to the component at the corresponding connection on the left

side, and a circle parameter extracts the circle object from the component on the

right side. By connecting multiple components, the user can construct more complex

49
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processes with multiple different components. Grasshopper offers a vast library of

built-in components but also enables the user to download custom toolkits from other

developers, or even to program custom components in C# or Visual Basic.

Figure 4.1: The Circle CNR-component working in the Grasshopper interface.

Data Trees

A key concept in Grasshopper is the Data Tree-object. The data tree is a hierarchical

data structure where data is stored in branches. Figure 4.2 visualizes a data tree with

four levels of branches. The orange points with red lines symbolize the data stored in

the different branches.

Figure 4.2: Visualizing the hierarchical structure of a data tree.
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4.1.3 Karamba

Karamba is a plugin developed for use in Grasshopper. It implements FEA for beam

and shell models with different components for different types of analysis, e.g. linear

static analysis, nonlinear static analysis, linear buckling analysis or dynamic modal

analysis.

It also comes with components to read beam forces and displacements. This makes it

easy to find the forces acting on the connections and find the nodal displacement, later

used in Chapter 5.4 to apply the loads to the bolts in the FEA.

4.2 Scope of the Parametric Model

The development of a parametric model for grid shell connections is motivated by the

need for structural analysis and customization of the grid shell connections. The main

tasks are to propose a custom connection design for every grid shell connection, verify

the capability of handling the design load, and generate the corresponding 3D-models

for analysis and manufacturing.

The strategy for creating a fully automated connection generator is heavily dependent

on the choices made in Chapter 2, where some fundamental choices for the design were

made to simplify the parametric model. The choice of designing the connection of a

cylinder connected with flat gusset plates makes it simple to generate the necessary

geometries and assemble the 3D-model, as shown in this chapter. Figure 4.3 shows the

proposed parametric model. The model uses a combination built-in components and

custom C# components.



52 CHAPTER 4. PARAMETRIC DESIGN OF GRID SHELL CONNECTIONS

Figure 4.3: Screenshot of the entire parametric model. The left side continues on the
right side.
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4.3 Coordinate Systems

The connection needs multiple different coordinate systems when handling the

geometry in different situations. The following coordinate systems were used with

corresponding transformation rules.

4.3.1 Global Cartesian Coordinates

The global coordinate system corresponds to the defined coordinate system of the

structure. All the connections will finally be generated in the global coordinates x, y

and z. Since this coordinate system is standard for all connections, all the connections

and beams can be plotted in the same space – simplifying the visualization of the entire

structure to ensure that none of the connections or beams intersect. Figure 4.4 shows

a gridshell where all connections and beams are generated in the global coordinate

system.

Figure 4.4: Example of gridshell where all connections and beams generated together
in the global coordinate system.
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Figure 4.5: Local spherical coordinates for the connection.

4.3.2 Local Spherical Coordinates for the Node

The nodal coordinates are modified spherical coordinates, describing how the different

plates are connected to the cylinder. Using spherical coordinates enables us to easier

find the relevant angles for the gusset plates and simplifies the spacing verification

considerably. This is further described in Chapter 4.4.2. The set of coordinates used

are θ, φ, r and ω. Figure 4.5 shows how the different coordinates are defined, including

ω which describes the rotation of the plates.

The transformation between nodal coordinates and global coordinates is made by first

defining a plane with a normal perpendicular to the shell surface, and projecting the

axial vector of the beam with index 0 onto that plane. Then, let the projection define the

r -axis, and let the preceding plane be the horizontal plane in the spherical coordinate

system.

In certain situations, it might be necessary to transform the local spherical coordinates

to local cartesian coordinates, mainly since most geometry is generated in cartesian
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coordinates. Then, the normal vector to the shell surface is the local z-axis, the r -vector

is the local x-axis, and the origin is unchanged.

4.3.3 Local Cartesian Coordinates for the Plate

Figure 4.6: Local cartesian coordinates for the plate.

Figure 4.6 shows the definition of the coordinates. The coordinate system is defined

with the origin placed both in the center of the bolt group and the center of the cross-

section of the beam.

The plate coordinates are primarily used in verification of the bolt connection between

the aluminum and timber. The directions of the axes are the same as the local

coordinates of the beams, which avoids transformations of the beam forces. Using the

method described in Chapter 3.1, it is easier to calculate the moment of inertia for the

bolts when the origin is positioned in the mass center of the bolt group.

When rotating the plates according to the cylinder, a reliable method of transformation

is needed. Aircraft principal axes (pitch, roll, and yaw) was chosen for transformation

from plate coordinates to local node coordinates. Figure 4.7 shows the different

rotational motions. All rotations use the local origin as the center of rotation, making

all the forces from the beams act in one point. Rotation is always relative to the

original plate coordinate system, implying that the coordinate system does not change

orientation during transformation. The procedure of rotating a plate correctly relative

to the cylinder is shown in Figure 4.8, according to the angles in Figure 4.5. The r -vector

can be used to translate the object according to the new origin.

The reasoning behind the use of aircraft principal axes rests primarily on the

simplicity of the system and its ability to describe any 3D-configuration in an
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understandable language, making communication and debugging of the program more

convenient.

Figure 4.7: The transformation between plate coordinates and node coordinates uses
the same notation as aircraft principal axes.

Figure 4.8: The three rotational motions orienting the plate correctly according to the
node. From left to right; unrotated, roll, pitch and yaw.

4.4 Processes and Sub-Processes

To simplify and organize the concept of the parametric model, the model is divided into

smaller parts. Each part is responsible for solving a smaller portion of the problem and

deliver a valid solution with all necessary data.

Figure 4.9 visualizes the partition of the process and creates a very simple chart of how



4.4. PROCESSES AND SUB-PROCESSES 57

the program works. The program is partitioned into four parts; input processing, spatial

limitations, structural verification and optimization and generating 3D-models.

Figure 4.9: The general flow of information in the parametric model.

4.4.1 Input Process

The main tasks of the input processing are to collect the information about the

gridshell, and establish a data tree structure to store the information more conveniently.

The data tree also has to collect information about the general orientation of the plates,

number of attached plates and the dimensions of the connected beams. The input

processing takes four data inputs; the surface of the structural grid, a list of lines

representing the position of the beams in the global coordinate system, the height

and width of the beams and the forces corresponding to the beams. The flow chart

in Figure 4.10 displays the general tasks and information flow.

Figure 4.10: The general outlines of the input processing.
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By constructing data trees where the first layer of branches corresponds to the nodes

and the second layer corresponds to the plates, it becomes easier to fetch information

about a plate when needed. Every node is assigned an index value and the plates

connected to the node also get separate indexing. E.g. a system of nodes might have

the following plate indices: {0,0}, {0,1}, {1,0}, {1,1}, {1,2} and {2,0}. This system has three

nodes. The first node is connected to two plates, the second node is connected to three

plates while the last one only got one plate.

The Input Processing creates Plate Properties Data Tree and Node Properties Data Tree

to store lists of properties for every plate and node. The information in Table 4.1 and

Table 4.2 is attached to the list in the data tree during the input processing. The different

components in the model take the data trees as input, append more information to the

lists and outputs the updated data tree.

Table 4.1: Information in Plate Properties Data Tree from input processing.
Index Information

0 Width of timber beams
1 Height of timber beams
2 Roll of plates
3 Yaw of plates
4 Pitch of plates

Table 4.2: Information in Node Properties Data Tree from input processing.
Index Information

0 Node center coordinate in global x-direction
1 Node center coordinate in global y-direction
2 Node center coordinate in global z-direction
3 Normal vector on surface in node, x-component
4 Normal vector on surface in node, y-component
5 Normal vector on surface in node, z-component

By looping over all the lines and locating their start points and end points, the model

creates a connectivity data tree where every branch corresponds to a gusset plate. Every

branch stores two values; the line index and whether the node is the start point or end

point of the line. Figure 4.11 shows the module where the connectivity data tree is

generated from the lines. The connectivity data tree is primarily used for two things;

assigning beam forces to the correct plate, and calculating the orientation of the gusset

plates in local spherical node coordinates.

The assignment of beam forces is shown in Figure 4.11. A programmed component

called Assign Beam Forces is used to create a data tree with three levels of branches;
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node, plate, and load case. Then it assigns beam forces according to the connectivity

data tree.

Figure 4.11: Components creating the connectivity data tree, beam forces and some
other input processing.

The parametric model only fetches the axial forces Nx , vertical shear forces Vz and

in-plane bending moments My . This is due to the assumption that the nodes are

hinged for in-plane rotation. The model is although flexible enough to allow appending

other beam forces, e.g. Vz , Mz or Mx , at a later point. This might be necessary if

the connection design changes to a stiffer type. By adding more input nodes to the

component, and appending this information in the C# component, more force data

will automatically be fed to the structural verification code where it can easily be

fetched.

Calculating the orientation of the plates is primarily done using built-in components

from the standard library of Grasshopper. The assembly of the components is shown

in Figure 4.14. The component group defines a plane tangential to the shell surface

(see Figure 4.12) and planes normal to the beams (see Figure 4.13). The planes are used

together with the normal and axial vectors of the beams to find the rotation angles ω, φ

and θ for all plates. The normal to the beams are found using the component group in

Figure 4.15.
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Figure 4.12: A plane tangential to the gridshell surface at the node.

Figure 4.13: A plane normal to the beam vector and aligned with the surface normal
vector at the middle point of the beam.
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Figure 4.14: Components finding the necessary rotations to transform the plates from
plate coordinates to node coordinates.

Figure 4.15: A code block finding the normal vector on the surface for the middle point
of every line.

4.4.2 Spatial Limitations

After the input has been stored and transformed into more suitable data, the

necessary dimensions and configuration of the connection have to be calculated.

For convenience, the processes concerning the dimensions of the connections have

been split into two sub-processes; spatial limitations and structural verification and

optimization. The first process covers mainly spacing and dimensioning to ensure the

practicality and possibility of assembly, e.g., avoiding overlapping parts or incomplete

connection between components. The latter investigates the structural behavior of the

connections and choose, e.g., necessary gusset plate thickness, bolt size and number of

bolts to ensure structural stability during all design loads.
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It is important to note that the two sub-processes depend heavily on each other. The

necessary cylinder diameter is, for instance, dependant on the thickness of the gusset

plates, while the thickness of the gusset plates is calculated from elastic buckling,

which depends on the cylinder diameter. This interaction might indicate that two

sub-processes should be collectively calculated in the optimization process. Splitting

them does, however, lead to particular advantages organizationally, primarily about

the complexity of the optimization process. Merging them would lead to a messy and

unorganized code block.

Figure 4.16: The Constructional Limitations Calculations are computed in the
components surrounded by the red rectangles.

Figure 4.16 shows the four problems that the spatial limitations sub-process has

to solve. The Get Cylinder Diameter-process works out a minimum outer cylinder

diameter to avoid the gusset plates from overlapping. The Get Distance To Timber-

component calculates how far the timber beams have to be placed from the node

origin to prevent intersecting beams. The Calculate Top and Bottom Edge of Cylinder-

component calculate how tall the top and bottom edge of the cylinder has to be to

ensure that all of the plates are connected to the cylinder surface. The Calculate

Distance To Bolt Group-component calculates the necessary distance to the center of

the bolt group from the node center based on the required timber spacing and the

required spacing of bolt. All the information is appended to Plate Properties Data Tree

and Node Properties Data Tree as shown in Table 4.3 and 4.4. Note that the indices

leap, due to some of the components running after the structural verification and

optimization component.
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Table 4.3: Information appended to Plate Properties Data Tree from Construction
Limitations.

Index Information
5 Necessary distance to timber edge [m]

19 Distance to Bolt Group Center [m]

Table 4.4: Information appended to Node Properties Data Tree from Construction
Limitations.

Index Information
6 Cylinder diameter [m]
7 Cylinder thickness [mm]
8 Top Edge of Cylinder [m]
9 Bottom Edge of Cylinder [m]

Space Requirements for Beams

Figure 4.17: The component for calculating space requirements for beams.

When connecting the beams to the gusset plates, there are multiple practical challenges

to solve. It is, for instance, essential that the beams do not intersect or collide with each

other and that the beams are spaced in such a configuration that it is easy to insert bolts

and tighten the nuts.

The latter issue has been decided to be out of scope. This due to the decision in the

case study to use connections with four plates, which means that there will always be

one plate with an adjacent plate more than 90 degrees to it. The result is that there will

always be at least one way of assembling the connections.

Regarding the first issue, by dividing the volume around the node into sections

corresponding to each of the beams, it is possible to constrain the beams to stay inside

the section. A convenient way of defining the sections is by spherical wedges, as in
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Figure 4.18. Figure 4.19 shows the concept from a planar view. The following set of

equations were found through the derivation in Appendix C.1

l1 = w2 +w1 ·cos θ

sin θ
(4.1)

l2 = w1 +w2 ·cos θ

sin θ
(4.2)

Figure 4.18: The geometry of a spherical wedge, [42].

Figure 4.19: Planar view of the spherical wedges defining the allowed space for each
beam.
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Equation C.5 and C.6 describe the necessary distance from the nodal coordinate’s z-axis

to the closest edge of the beams. All adjacent beams have to be checked to verify that

the length is sufficient, something that necessitates sorting the yaw angles to identify

adjacency.

When pitching the plates, the timber edges get pulled closer to the cylinder. To

counteract this effect, it is necessary to lengthen the plates relative to the pitch angle.

The effect calculated in Appendix C.4, gives us the following formula:

l1,edit = l1 sec φ+h/2 · tan φ (4.3)

Figure 4.20: Effective cross section of a rolled rectangular cross section.

The roll of the plate will also create issues when it comes to spacing. The corners of the

cross-section might occupy the adjacent space. A simple way of solving this problem

is to define an effective rectangular cross-section where the rectangle is oriented

orthogonal to the nodal coordinate system. This is not a solid cross-section, but rather

a rectangular space to constrain the real cross-section. If the section fits in this effective

section, it will also not have problems with intersecting other beams. Figure 4.20 shows

how a rolled rectangular cross-section (e.g., a glulam beam) can be fitted optimally in

the effective rectangle. This means that we f f and he f f can be calculated using:

weff = |w cos ω|+ |h sin ω| (4.4)

heff = |h cos ω|+ |w sin ω| (4.5)

Figure 4.21 displays a flowchart of the process of calculations. The corresponding script

can be found in Appendix B.2.
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Figure 4.21: The algorithm for spacing the beams.
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Minimum Cylinder Diameter

Figure 4.22: The component for calculating minimum cylinder diameter.

The attachment of the plates to the cylinder must happen in such a way that none of

the plates are in contact with each other. This ensures that the forces go through the

cylinder, and does not find any spurious paths between the plates. Although the gusset

plates are very thin, many of the plates are rolled slightly which increases the effective

width of the plates. In this case, the minimum cylinder diameter might be controlled

by the top or bottom parts of the rolled plates and whether they intersect with adjacent

beams.

The strategy used is similar to the strategy for finding the distance to the timber edge,

namely the quadrilateral strategy used in Appendix C.1. The space around the node

is divided into spherical wedges and distributed between the gusset plates. Now the

cylinder diameter is the same for all the plates, while the distance from the cylinder

to the timber edge is individual. This means that calculating the minimum cylinder

diameter involves calculating a diameter for all of the plates and then choosing the

maximum value. The diameter of the cylinder has to be chosen such that the plates do

not intersect, which means that the radius is the line to the intersection point, between

the plate edges. This makes some changes in the equations (as shown in Appendix C.2).

The set of equations can, for instance, be reduced to one single equation:

r = csc θ
√

w2
1 +w2

2 +2w1w2 cos θ (4.6)

where w1 and w2 are the effective section width for the plates, while θ is the difference

in yaw angle between the plates.
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Figure 4.23: The component for calculating top and bottom height of the cylinder.

Calculation of the Top and Bottom Height of the Cylinder

The height of the cylinder is primarily decided by the footprint of the plates on the outer

surface of the cylinder. By looping over all the plates connected to the node and finding

the highest and lowest points of the footprint, the top and bottom of the cylinder can

easily be calculated. Figure 4.23 shows the component used in the calculations. The

footprint effect is derived in Appendix C.3 and scripted in Appendix B.4.

Calculation of the Distance to the Bolt Group

The component finds the distance between the origin in plate coordinates and the

origin in node coordinates, using the equation:

Dbolt group = Dtimber edge +a3 +a1 ·
(
nbolts,x −1

)
/2 (4.7)

where Dtimber edge is the distance to the timber edge l , calculated in Chapter 4.4.2. The

component is shown in Figure 4.24 and the script can be found in Appendix B.5.

Figure 4.24: The component for calculating distance to the center of the bolt group in
node coordinates.
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4.4.3 Structural Verification and Optimization

The structural verification and optimization are processed in one component. The

component runs an incremental optimization strategy with multiple nested loops

increasing one parameter at a time until it reaches a valid solution. Upon the reach

of a valid solution the current configuration properties are appended to the plate

properties, node properties and bolt properties data trees as described in Table 4.5,

4.6 and 4.7.

Table 4.5: Information appended to Plate Properties Data Tree from structural
verification and optimization. The spacing parameters are according to Chapter 3.

Index Information
6 Number of Bolts in x-direction
7 Number of Bolts in z-direction
8 Thickness Gusset Plate [mm]
9 Boltsize [mm]

10 Utilization of Plate
11 Spacing Parameter, a1 [mm]
12 Spacing Parameter, a2 [mm]
13 Spacing Parameter, a3 [mm]
14 Spacing Parameter, a4 [mm]
15 Spacing Parameter, e1 [mm]
16 Spacing Parameter, e2 [mm]
17 Spacing Parameter, p1 [mm]
18 Spacing Parameter, p2 [mm]

Table 4.6: Information appended to Node Properties Data Tree from structural
verification and optimization.

Index Information
7 Thickness of cylinder [mm]

Table 4.7: Information appended to Bolt Properties Data Tree from structural
verification and optimization.

Index Information
0 x-coordinate of bolt in plate coord. system [m]
1 z-coordinate of bolt in plate coord. system [m]

The structural verification is split into different code blocks in the script according to

the failure mode. Table 4.8 lists all the different failure modes with corresponding

failure mode index and a reference to the chapter covering the calculation methods
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used in the script. The methods are displayed in the flowchart in Figure 4.25 and the

corresponding script can be found in Appendix B.1.

Table 4.8: The different failure modes for the plates as output from the structural
verification and optimization component.

Notation Failure Mode Ref:
A1 Johansen Theory: Capacity of Individual Bolts 3.3.1
A2 Johansen Theory: Effective Capacity for Row of Bolts 3.3.3

B1X Bearing Resistance Bolt Group x-dir. 3.4.2
B1Z Bearing Resistance Bolt Group z-dir. 3.4.2

B2 Cut-Off Capacity Bolts 3.4.1
C Timber Splitting 3.3.4

D1 Gusset Plate Tension 3.4.3
D2 Gusset Plate Compression 3.4.3
D3 Gusset Plate Shear 3.4.3
D4 Gusset Plate Bending Moment, Axial and Shear Forces 3.4.3
D5 Gusset Plate Buckling 3.4.5

E Cylinder: Punching Shear or Cylinder Face Failure 3.5

Incremental Improvements Optimization Approach

The incremental optimization approach is based on the concept of starting with the

minimum configuration (e.g. 1x2 M12 bolts or 12 mm gusset plates), checking if the

configuration is sufficient and if not, improving one parameter at a time until the

configuration is sufficient in regards to the chosen verification. The method builds

on the concept of brute force algorithms – where the algorithm tests every possible

configuration, one at a time. The space to be searched can be considered a 5-

dimensional space since the algorithm only varies five different parameters.

The approach can be seen as a hierarchic approach to optimization. The different

properties are layered in different loops, prioritizing some parameters over others.

In general, choosing prioritization for parameters should be based on the economic

impact, as the cost of a project is an important success factor. In this case, changing the

position of the bolt has close to none economical impact while increasing the number

of bolts might have a significant impact. Therefore it is advantageous to prioritize bolt

placement ahead of the number of bolts.

The prioritization of parameters can lead to cases where the optimized solution

does not converge to the best solution, particularly if a lower prioritized parameter

increment can lead to an economically better solution. It is also important to notice

that setting high priority for parameters with little need for bigger dimensions might

make the process run considerably faster.
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Figure 4.25: The process of optimizing the connection.

Table 4.9 shows how the different parameters are prioritized. Notice that the cylinder

thickness has top priority. This is because it has a minimal impact on the rest of

the model. By quickly searching the 1-dimensional space for cylinder thickness, the

optimization process will not have to check the much larger 4-dimensional space of

solutions that are invalid.
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Table 4.9: Hierarchy of parameters.
Priority Parameter

High Cylinder Thickness
Bolt Spacing Vertically
Bolt Size
Thickness of Gusset Plate

Low Number of Bolts

Genetic Algorithm Optimization Approach

The genetic algorithm was also examined as a potential optimization method. The

method was rejected due to slow convergence and efficiency, but for completeness, it

deserves a brief review.

The genetic algorithm is potentially the most general and open approach to

optimization in comparison to the incremental improvements approach. Applying the

explanation proposed by Gen and Cheng [43] in the context of this thesis, the genetic

algorithm can be described as an approach based on creating a population of individual

connections, with random parameters. The different individuals are given a fitness

score based on specifications, in this case, weight and utilization. A new generation

of individuals is created based on the best solutions from the previous generation.

The new population is generated by mixing the parameters of the previous generation.

Repeating this process over many generations will, in theory, converge towards an

optimal design.

The algorithm did however not produce results as efficiently as wanted. It was often

more efficient to alter the parameters than letting the algorithm do it manually. There

are possibly many reasons why the algorithm did not work as efficiently as wanted,

and suggesting reasons is out of scope for this thesis. The algorithm did have some

advantages regarding weight optimizing, something the incremental improvements

approach does not allow – although going from simple to complex design often lead

to light connection solutions.

4.4.4 3D-Models

The 3D-models were created of four different types of parts: the center cylinder, the

gusset plates, the bolts and the beam end. The process of generating the 3D-models

consists of generating each of the components in local plate coordinates, rotating the

geometry to the correct configuration according to spherical node coordinates, moving

the geometry to the correct location according to the global coordinates, removing
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excess volume and merging the geometry to solid geometries. Figure 4.26 shows the

outlines of the 3D-processing.

Figure 4.26: The process of generating 3D-geometries.

Plates

The plates are generated as box-objects in custom C#-components. The boxes are

defined from two points; close to the origin, and a point distanced the necessary length

of the plate from the origin. It is important to note that the plate shall not intersect

with the nodal origin, due to problems trying to merge boundary representations with

intersecting faces or edges. If the boundaries intersect, the components might return

an error.

Center Cylinder

The approach for creating the cylinder consists of making a massive solid cylinder

with outer radius and merging it with the gusset plates. The excess volume from

the geometry is removed by creating a massive cylinder with the inner radius

and subtracting it from the connection geometry. This also removes excess plate

volume.

Bolt Holes

The bolt holes are generated as cylinder-objects defined with radius according to

necessary bolt holes and tolerance – this means the bolt holes should be 2 mm wider

than the bolt size.
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Bolts and Timber Ends

For completeness of the 3D-model and visualizing the spacing of beams, the bolts and

timber ends are generated. The bolts are created as solid cylinders as a simplified

visualization of their positioning. It is important to note that the bolts will have a

smaller diameter than the bolt holes due to tolerance requirements. Therefore, it is not

possible to use the same geometry to create bolts and subtract bolt holes from timber

ends and gusset plates – they have to be generated individually. The timber edge uses

much of the same algorithm as the algorithm creating the plates. The only differences

are the coordinates where the beams are made in plate coordinates and the width of the

beams.

4.5 Parametric Model Verification

To verify the parametric nature of the model, assume a simple example with one

connection. The node is defined in the global origin, and with n number of cantilever

beams connected to it.

The materials used in the verification are nickel-aluminum-copper alloy connections

(as in Appendix D), steel bolts of material quality 8.8 and GL32c glulam timber beams.

If not specified, the cross-section is 220 x 115 mm. All tolerance criterion is set to 0 to

test the algorithm to its most extreme.

4.5.1 Constructional Challenges

Figure 4.27 shows how the parametric model reacts to a planar node with 2, 3, 4, 5, 6

and 16 plates connected to it. It is clear that there are no problems with the spacing of

the beams or any overlapping plates when increasing the number of beams. It is also

clear that the spacing algorithm for the beams works well when increasing the number

of beams since no beams intersect each other. For the case with two beams, it is clear

that the distance to the timber edge equals the outer radius of the cylinder. This shows

that the minimum criteria are activated upon possible intersection between the beam

and the cylinder.

It is although worth to notice that some of the fictive bolts intersect for the connection

with 16 beams. Since we decided to let this issue be out of scope, the model will not

notice this. It is although easy to add a tolerance (as shown in Chapter 4.4.2) when

spacing the beams, to take the bolts into account.
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Figure 4.27: Validating different number of beams connected to the node.

To test the model’s reaction to pitch, one of the cantilever beams is pitched a bit

upwards. Figure 4.28 shows how the top edge of the cylinder is raised when the footprint

from the gusset plate shifts. By pitching the cantilever even more, a slight gap appears,

as shown in Figure 4.29. This is due to the definition of the plates, as from the center of

the cylinder and rotated around the same point. This is a weakness of the model and

method of creating the geometry, rather than the calculations. By also applying a roll to

the plate, the diameter increases and the gap disappears, as seen in Figure 4.30 and 4.31.

It can be derived that the gap might occurs when the angle φ becomes larger than

arctan
(
d/h ·cosφ

)
.

Figure 4.28: By pitching one of the beams, the top edge of the cylinder raised to react to
the shifted contact surface.
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Figure 4.29: If the pitch compared to the diameter of the cylinder becomes too high,
there might be a problem with generating the connections and the plates does not get
sufficient contact with the cylinder.

Figure 4.30: When the plate is rolled, the diameter increases and the problem in
Figure 4.29 do not appear for low pitch angles.
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Figure 4.31: By rolling one of the plates, the cylinder diameter increases to avoid plate
overlapping.

4.5.2 Structural Stability

To verify that the parametric model adapts to increased loads, a test with increasing

compression loads was carried out. Figure 4.33 shows the effect on the planar node as

a compressive force applied on plate 2 vary from 10 kN to 40 kN.

From 0 to 10 kN, there was no effect on the connections, and the minimal configuration

was sufficient. For 20 kN to 35 kN, the bolt size, thickness of the plate, thickness of the

cylinder and bolt spacing increases, as predicted.

For 40 kN, the bolt group makes a leap in the number of bolts from 2 to 6, skipping bolt

groups with 4 bolts. The reason for this is the reduced effect of having multiple bolts

in a row parallel to the fibers in the timber. This effect is described in Chapter 3.3.1.

Figure 4.32 shows how the failure mode has changed from A1 to A2, according to the

notation in Table 4.8.

Figure 4.32: Failure modes and utilization for 40 kN compression on plate 2.
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Figure 4.33: Planar node with compression force applied on the right plate: (a) 10 kN,
(b) 20 kN, (c) 25 kN, (d) 30 kN, (e) 35 kN and (f) 40 kN.

To get connections with 2x2 bolt groups, the connections should instead be checked for

a combination of shear forces and bending moment, since this will induce minimal bolt

forces in the direction of fibers. Figure 4.34 shows that the application of a vertical shear

force of 3 kN and a bending moment of 1.697 kNm creates a plate with 4 bolts.
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Figure 4.34: Planar node with shear force of 3 kN and bending moment of 1.697 kNm.

4.5.3 Applied in a Gridshell

Consider a 3x3 point grid, quadratic interpolated between the points to create a double

curved surface, as shown in Figure 4.35. For simplicity, assume no applied loads and

90x90 mm glulam cross-section.
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Figure 4.35: The geometry for the test grid shell.

The resulting 3D-geometries are generated and visualized in Figure 4.36. All the

connections were generated successfully. The beams and plates are also sufficiently

spaced according to the constructional limitations, e.g. beam spacing, plate spacing,

bolt spacing. Note that the bolts are placed in a row parallel to the fiber direction

despite the optimization algorithm checking the opposite as advantageous. This is due

to timber beam not having enough height to fit two bolts vertically. If the cross-section

height was increased, the bolts would be spaced differently.
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Figure 4.36: The 3D-model generated through the digital workflow.
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Chapter 5

Case Study: Grid Shell Student

Cabin in Norway

5.1 General About the Project

As a part of this thesis, the digital workflow developed in the previous chapters

was implemented into an actual project to test the methodology of design. The

case of interest involved the design of a student cabin in Fosen, Norway. The

Conceptual Structural Design Group (CSDG) at the Norwegian University of Science

and Technology (NTNU) was engaged by the student sports organization at NTNU

(NTNUI) to research the possibility of creating a cabin with a spatial roof structure.

The decision of designing a timber gridshell is motivated by previous research done

by CSDG.

The case study has been a collaboration between CSDG and two groups of master

students at NTNU; Huseby and Eliassen [44] and the authors of this thesis. The

two groups of master students have looked at different parts of the digital workflow

concerning design and engineering in the project. Huseby and Eliassen [44] studied

how a digital workflow oriented around a parametric model can be used in the design

of global shape in spatial structures and used their results to propose shape, grid pattern

and connection placement, together with PhD candidate Steinar Dyvig.

83
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Figure 5.1: A basic render of the architectural concept behind the cabin (render by PhD
candidate Steinar Dyvig).

The shape of the roof follows a double curved surface seemingly mimicking a barrel

vault (illustrated in Figure 5.1 and 5.2). The grid is quadrilateral meshed and will feature

a primary structural system connected to a secondary structural system that supports

the cladding. The secondary structural system has been deemed out of scope for this

research due to the complexity.

5.2 Basis for Optimization

The parametric model in this thesis has been developed to connect to the parametric

model in Huseby and Eliassen [44]. This makes it easy to fetch the necessary

information without manually inputting it. Figure 5.3 shows where the information is

collected from the parametric model, fetching the following data: lines corresponding

to the beams, the surface of the gridshell, the forces and moments for the beams

and the cross-section used in the model. By attaching this information to the

components shown in Chapter 4, this should be enough to generate connection designs

automatically.

A result of the integration of the two models was the ability to experiment with

different assumptions and study the effect. This enabled research of how different

cross-sections, different grids, or different joint definitions (in Karamba) influence the

necessary design of connections.
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Figure 5.2: The goal of the model is to produce a valid connection design for all
connections and corresponding 3D-models.
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Figure 5.3: Extracting information from the parametric model of Huseby and Eliassen
[44].

5.2.1 Joint Definition Assumptions

A study of different rotational definitions for the joints was carried out by testing the

grid for:

1. No in-plane rotational stiffness (Cr,x = 0 and Cr,z = 0)

2. Fixed against in-plane rotation

The first definition reflects the properties of the connection design more accurately,

while the latter simulates a situation where the connection has been strengthened. The

study is particularly interesting in order to verify whether the connections have to be

made stiffer due to the rectangular grid pattern or not. Figure 5.4 shows how the first

joint type is defined in Karamba.
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Figure 5.4: The joint definition in Karamba that most realistically reflects the properties
of the connection.

5.3 Results from Optimization

As the essence of a parametric model is its ability to verify multiple solutions quickly, the

set of dimensions for glulam beams presented in Table 5.1 was tested in the model. The

dimensions are according to some of the standard glulam beam dimensions from the

distributor Moelven [45]. The table also presents if the different cross-sections have a

valid solution or not. Based on the results, the following two cross-sections were chosen

for further investigation: 360 x 140 mm and 225 x 115 mm.

For completeness, the different beams where also tested for a triangular grid, also

proposed by Huseby and Eliassen [44], and visualized in Figure 5.14.

Table 5.1: Checking for success in convergence to a valid clamped or free connection
design for rectangular grid or free connection design for triangular grid. O = Model
converged to solution, X = Model did not find a solution.

Clamped Free Triangle
H/W 90 115 140 90 115 140 90 115 140
90 X X X X X X X X X
115 X X X
135 X X X X X X X X X
180 X X X X X X X X X
225 X O O X X X O O O
270 O O O X X X O O O
315 O O O X X X O O O
360 O O O X X O O O O
405 O O O X O O O O O
450 O O O X O O O O O
495 O O O X O O O O O
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5.3.1 Different Cross Sections

360 mm x 140 mm GL32c Cross Sections

This cross-section does not have noticeable problems with the capacity. The

verification and optimization component gives a valid configuration with all plates

when the limit is set to 100 % utilization. When all joints are clamped, the failure

mode for all gusset plates is according to Johansen theory. By releasing the rotational

freedom in the surface plane, the failure modes of some joints change to vertical

bearing resistance.

The freedom of rotation due to the connection design creates some issues for the

connections. Some particular areas are exposed to large forces when the surface is

curved. Particularly the inner parts of the convex area need high connection capacity,

as seen in Figure 5.5.

The freedom of rotation also causes a few problems regarding the space between the

connections. As shown in Figure 5.13, many beams have limited space to fit the gusset

plates and bolts groups. This is not a possible solution.

For the clamped joint definition, all bolt groups use two bolts positioned vertically, and

the height of the beam enables the joints to position the bolts far from each other. This

creates extra bending capacity for the bolt group and makes smaller bolts possible,

which shortens the gusset plates. This decreases the need for space. The bolt placement

close to the top and bottom edge of the gusset plate might also be the reason why

bearing resistance becomes the failure mode for some of the connections.

The height of the cross-section might create problems regarding the applicability of

beam theory. Some of the beams are very thick in comparison to the length, as

illustrated in Figure 5.6. This could create issues regarding the transfer of forces through

the bolts. It might be problematic if the forces in the timber find more efficient paths

because of the spurious geometry. Hence some bolts take more forces than expected.

This is further discussed in Chapter 5.3.4.
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Figure 5.5: The different connections configurations for 360x140 based on joint
definition; clamped to the left and free to the right.

Figure 5.6: Beam 346 from the rectangular grid is actually taller than its length for
360x140 mm beams.

Figure 5.7 shows the weight of the ten heaviest connections in the grid for clamped
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connections and pinned connections. Both joint definitions (Chapter 5.2.1) are around

2 metric tonnes in total, but the pinned connection has larger extreme values than the

fixed one. The parametric model used approximately 4 minutes to generate the 3D-

models and 15 seconds to optimize.

Figure 5.7: The weight of the connections for 360 x 140 mm cross-sections. The left side
is for clamped while the right side is for the real joint definition.

225 x 115 mm GL32c Cross Sections

The chosen cross-section is only structurally valid for the rectangular grid, when the

connections are clamped. It does, however, have massive problems with fitting all the

plates and bolts due to the low timber profiles. As shown in Figure 5.8, the plates often

intersect with adjacent connection, which is unacceptable.

The weight of the connections is relatively high. Figure 5.9 shows the weight of the 10

heaviest connections, almost reaching 20 kg. The total weight of all the connections is

still around 2 metric tonnes.
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Figure 5.8: 225 x 115 mm cross-section for the rectangular grid. Many beams and bolts
intersect with adjacent connections.

Figure 5.9: Mass of the connections for the 225 x 115 mm cross-section for the
rectangular grid.

The design used 59 seconds for structural optimization of the connections while the

geometry modelling took approximately 3.5 minutes. The optimization was computer

costly due to the number of bolts required. Structurally, close to all plates fail by

Johansen theory before any other failure modes.
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5.3.2 Triangular Grid

By applying the digital workflow on the triangular grid proposed in Figure 5.14, it

appears to be no problems with the grid when it comes to structural stability, spacing

the beams or overlapping plates from adjacent nodes. Figure 5.10 shows no problems

with too little bolt group distance which occurred with the rectangular grid. The

screenshot is taken close to the position of beam 346 from the rectangular grid, and

there is clear evidence that it does not suffer the same issues.

Figure 5.10: There are no indications for the same problems as in Figure 5.6 for the
225 x 115 mm cross-section in a triangular grid.

As shown in Figure 5.11, due to the extra (but lighter) gusset plates necessary to

achieve the triangular grid, the heaviest connection mostly weigh around 12 kg, with

the exception of one connection at 17 kg. It is although clear that the grid type saves

around 20 % off the total mass of all the connections.

The program use 2.4 seconds for the optimization, which is a lot faster than the previous

cases. It however used 4 minutes to generate the 3D-models.
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Figure 5.11: Mass of the connections for the 225 x 115 mm cross-section for the
triangular grid.

5.3.3 About the Lack of Shear Stability

The grid proposed in Huseby and Eliassen [44] is built using only rectangular shapes.

This creates some challenges when it comes to lateral stability. If the grid were flat,

there would be no resistance to the shear forces, and such a grid would collapse. The

double curved surface will, however, have some stiffness because of its shape, but

barely enough to be significant. The choice of the rectangular grid will therefore create

difficulties with the type of connection proposed in this approach, especially since it

demands very large dimensions for both glulam beams and the connections.

5.3.4 About the Lack of Room between Connections

The effect of short and tall beams and the large bolt groups might cause problems

regarding the spatial orientation of the beams and bolt groups. In the worst case of

the current configuration, some beams are as short as 0.5 meters, while being 140 mm

wide.

Even in situations where the plates of adjacent connections do not intersect, there still

might be problems with bolt groups placed too close together. Particularly the shear

forces will behave with local effects, as seen in Figure 5.12. A simple experiment of a

beam with two bolt groups in Abaqus CAE shows how fixing one of the bolt groups while

displacing the other rigidly and vertically induces different stress-pattern in a short and

a long beam. All parameters are equal except the length between the bolt groups. length

corresponds to the total length of the plate. It is clear that the two beams have different

load distributions, and as a consequence, the bolt forces are highly unpredictable and

should not be evaluated according to classic beam theory for slender beams.
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The grid proposed in Huseby and Eliassen [44] has beams as short as 0.568 m,

something that can be problematic, particularly with beams higher than 200 mm.

Figure 5.13 shows an actual situation where the forces will not behave as they would

in a slender beam. Due to this, all beams with the possibility of less predictable shear

force distribution, should be analyzed further, through a more detailed shell or solid

FEA. Then is will be possible to map the local effects from the shear forces and give a

realistic picture of the actual stress distribution.

Figure 5.12: A simple experiment in Abaqus showing the local effect on stress due to
thick beams in comparison to slender beams when subject to shear forces. Red or gray
indicates large stress while dark blue indicates small stress.

Figure 5.13: When the beams become very high in comparison to the length of the
beams, ordinary beam theory might not apply.
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Figure 5.14: A 3D-model of the triangular grid, also proposed in Huseby and Eliassen
[44].

5.4 Structural Verification in Abaqus CAE

To verify the results from the parametric model, one of the connections was further

analyzed using FEM in Abaqus CAE Software. Node number 83 was arbitrarily chosen

as the representative connection for the structure. Load case 3 was also chosen since

this yields the largest design load.

From the fact that the Johansen approach and verification methods for bolts are well

known through the Eurocodes, as well as the theory elaborated in Chapter 3.5, it was

concluded that structural verification of the aluminum part of the connection should

be in focus.
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Figure 5.15: Position of node 83 in the gridshell.

5.4.1 Abaqus CAE Software

Abaqus is a FEA software developed by Dassault Systems. It is very flexible in solving

different types of physical situations and enables the user to model a vast amount of

different phenomenon in mechanics, thermomechanics, and viscomechanics. The

software is a low-level software, where the interaction with the model happens on

an elementary level, enabling the user to solve most engineering problems. Parts of

the software are also implemented with advanced tools for solving problems, without

having to interact on detail basis.

The basis of FEM and the general use of the Abaqus software is considered as general

knowledge and is therefore not elaborated any further. Thus, it is important to point

out that this chapter will only present some basic theory of special topics of interest in

the use of FEM.

5.4.2 FEA Characteristics

The connection is modeled as a solid geometry in Rhino. The geometry is directly

imported as individual parts from Rhino into Abaqus. The linear analysis is done in

Abaqus Standard.
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Discretization

To obtain as accurate and trustworthy results as possible using FEM, it is essential to

define a good mesh. There are lots of different types of elements available in Abaqus,

which makes it possible to mesh a wide range of geometries and structures. All the

element types can be characterized by the number of nodes along the edges. Elements

consisting only of corner nodes are called first-order elements (or linear elements).

The first-order element is limited to linear interpolation along the edge because of

the number of known nodes to extract values. If an edge-node is introduced, the

element becomes a second-order element (or quadratic element) due to the possibility

of extracting values from three nodes, and thereby quadratically interpolating over the

edge.

A hexahedron element is categorized as a brick-element. It is a polyhedron consisting of

six faces, eight corners, and twelve edges. It is used to model three-dimensional solids.

The first and second-order hexahedron elements are illustrated in Figure 5.16. Three-

dimensional triangular and tetrahedral elements are used in a lot of automatic mesh

generators, including Abaqus CAE, as it is a convenient element for complex shapes.

However, hexahedrons have a better convergence rate and usually provides a solution

with the same accuracy at less cost. In case of very large distortions, the brick element

will in general be more sensitive to this than the tetrahedral.

Figure 5.16: (a) First- and (b) second-order hexahedral elements [46].

For the model the chosen element type is C3D8R; 8-node Linear Brick Element with

Reduces Integration and Hourglass control. Reduced integration implies that an

integration scheme of a lower order is used. For first-order elements, this means

integrating over only one point per element. With this comes the risk of spurious zero-

energy modes because of the lack of integration points. In Abaqus, this is solved by

introducing an hourglass control. In the Abaqus Manual [46], it is also recommended

that these kinds of elements is used with reasonably fine meshes. The hexahedron

elements used for this analysis has three degrees of freedom in each node and has

approximate element size of 4 mm. The meshed model is shown in Figure 5.17.
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Figure 5.17: Mesh of the solid model.

Model Properties

Connection properties for node 83 used in the FEA are given in Table 5.2 and 5.3.

Table 5.2: Node properties for node 83, all distances in meter.

Node Properties
Diameter of cylinder 0.0927
Thickness of cylinder 4.8
Top edge of cylinder coord. 0.189
Bottom edge of cylinder coord. -0.204
Height of cylinder 0.370
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Table 5.3: Plate properties for node 83, all distances in meter.

Plate Properties Connecting Node
72 94 82 84

Width of timber 0.140 0.140 0.140 0.140
Height of timber 0.370 0.370 0.370 0.370
Rotation roll [Rad] 6.268 0.017 0.025 0.019
Rotation yaw [Rad] 4.728 1.842 3.149 0.017
Rotation pitch [Rad] -0.023 -0.029 -0.201 -0.186
Distance to timber edge 0.078 0.102 0.136 0.109
nBoltsX 1 1 1 1
nBoltsZ 2 2 2 2
Thickness of gusset plate 0.012 0.012 0.012 0.012
Boltsize 0.012 0.012 0.012 0.012
Utilization 92 % 99 % 95 % 91 %
Spacing parameter a1 0.060 0.060 0.060 0.060
Spacing parameter a2 0.161 0.161 0.298 0.236
Spacing parameter a3 0.084 0.084 0.084 0.084
Spacing parameter a4 0.104 0.104 0.036 0.067
Spacing parameter e1 0.016 0.016 0.016 0.016
Spacing parameter e2 0.016 0.016 0.016 0.016
Spacing parameter p1 0.029 0.029 0.029 0.029
Spacing parameter p2 0.031 0.031 0.031 0.031
Distance to Bolt Group Center 0.162 0.186 0.220 0.193

Material Properties

The material data used for the connections is corresponding to the Nickel-Aluminum-

Bronze alloy C95500, produced by Green Alloys (further presented in Appendix D). It is

defined as an Elastic Isotropic material with Young’s Modulus 110 GPa and Poisson’s

Ratio 0.32. The yield strength is 290 MPa while the ultimate tensile strength is 655

MPa.
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Figure 5.18: Node 83 with connecting nodes and beams.

Application of Load

The loads are applied to the model as rigid displacements of the bolt hole. Grasshopper

node 83 is connected to four other nodes in the grid (see Figure 5.18). To achieve a

conservative estimate, the displacement of the bolt group is fetched at the midpoint of

the beams (also illustrated in Figure 5.18), where the long distance between measuring

points will lead to a larger displacement difference between the bolts. The values of the

displacement are derived from a Karamba analysis in the parametric model of Huseby

and Eliassen [44]. The displacements are then applied around the inner surface of the

bolt hole. All the displacements are presented in Table 5.4.
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Table 5.4: Applied displacements for the individual plates from the digital workflow in
the direction of the given connected nodes.

Connecting Node Displacement [m]

72
X -0.001566
Y -0.000041
Z -0.000517

94
X -0.001581
Y -0.00004
Z -0.000539

82
X -0.001565
Y -0.000031
Z -0.00026

84
X -0.001678
Y -0.000054
Z -0.002369

Results

With reference to the plot of the Von Mises stress in Figure 5.19, the stress is mainly

gathered close to the bolt holes, but also perceptible in the cylinder. It is clear that

the stresses do not exceed the yielding strength of the material in any areas (Equation

(5.1)). The continuous flow of stress between the opposing plates implies an accurate

distribution and strengthens the validity of this model.

σModel,max ≤
σy,C95500

γM0

171 ≤ 290

1.15
= 252

(5.1)
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Figure 5.19: Overview of the Von Mises stress distribution [kPa].

As all models, this should be interpreted on the basis of the given model features. As

this is a simplified FEA, it is necessary to point out that application of the displacement

throughout the bolt holes will not give an accurate result near these. This kind of

application will lead to an overly constrained model without the necessary freedom of

rotation in the bolt holes, hence the stresses in the areas close to the bolt holes will be

unreliable.

The stress distribution in the other parts of the model will, on the other hand, give

a more accurate indication of the behavior. This includes the concentration of shear

forces, between the cylinder and the gusset plate, which could result in punching shear

failure, and generally how the plates and cylinder behave together. The interesting

area is then where the forces is transferred between the opposing plates through the

cylinder. According to the model, this is not critical for node 83.
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Figure 5.20: Deformation with scale factor 15.

Figure 5.21: Deformation contour plot.

The deformation of the connection is illustrated in both Figure 5.20 and 5.21. The

maximum deformation appears in the node pointed out in Figure 5.21, and has a

magnitude of 3,3 mm. The relative displacement to the 4,8 mm thick cylinder is

then quite noticeable. Nevertheless, considering both the conservative application of

the load, and the fact that this load case it the worst possible case, this deformation

will be considered as reasonable. The deformation is illustrated in 1:1 scale in Figure

5.22.
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Figure 5.22: Deformation contour plot with scale factor 1.

5.4.3 Comparison of Parametric Results and FEA

In the parametric model (see Chapter 4), two different failure modes for the cylinder

is validated; the punching shear capacity and the cylinder face failure capacity. By

extracting from the Structural Verification and Optimization component, the maximum

utilization derived for node 83 is 14.94 %, and is caused by cylinder face failure. The

maximum utilization for shear punching is 2.63 %.

Considering the shear punching, it is clear that this is not a critical failure mode

according to the Grasshopper model. Looking at the stress distribution in Figure 5.23

from the Abaqus model, the concentration of forces that characterize shear punching

is not present in the stress distribution. Comparing this to the 2.67 % utilization value

from Grasshopper gives reason to consider the values from Abaqus as reasonable, but

not evident that the calculations are correct.
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Figure 5.23: Illustration of where the stressed areas should appear in case of shear
punching.

To compare the cylinder face failure utilization at 14.94 % with the results from Abaqus,

the stress in an element in the cylinder wall is derived from one of the most stressed

areas. The value of the Von Mises stress at this point (see Figure 5.24) is 32 MPa, which

gives a dimensioning utilization of 12.7 %. The Grasshopper gives a higher utilization

rate, which indicates that the Grasshopper model calculations are more conservative

than the Abaqus model.

Figure 5.24: Element used for collecting values from the cylinder wall.
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As it is clear that the two models are highly comparable, it is interesting to discuss the

accuracy of both. The Abaqus model has applied displacements and not forces. These

displacements are derived from the midpoint of the glulam beam. As glulam is a lot

softer than the alloy C95500, applying the displacement from the middle of the glulam

beam to the bolt holes is a very conservative assumption. Additionally, the application

method makes it meaningless to check for bearing capacity in the bolt holes.

There are also conditions which affect the Abaqus model non-conservatively. As

mentioned, the application method of the load results in an overly constrained model.

The results can often be unrealistically high stresses. The application of the load could

also be less conservative as the same displacement is applied in both bolt holes for all

the plates. On the one hand, this is preventing a possible bending moment in the plate

caused by rotation of the bolts. On the other hand, it also introduces extra shear forces

throughout the connection since the connection no longer can rotate.

In Grasshopper, the calculations are implemented from the Eurocodes, which contains

several conservative safety factors. In addition to this, certain simplifications have been

made to save both time, work and computational cost. E.g. the algorithm for spacing

is conservatively calculating the minimum spacing needed for the beams without

taking into account the possibility to translate the beams different distances from the

connection center. The multiple safety factors, combined with the simplifications

made in Grasshopper, result in a conservative model.

From the considerations above, the FEA in Abaqus has given a good indication of the

accuracy of the cylinder calculations. The level of the stresses from the two models

seems to resemble each other, and the utilization from the FEA is slightly lower than

the utilization from the Grasshopper model. There are too many influence factors to

verify the certain calculations, but this gives a good indication that the digital workflow

offers rational values, and calculates slightly more conservative than the FEM model.

The deformation of 3.3 mm also indicates what kind of tolerance to use for the spacing

algorithm.



Chapter 6

Discussion

6.1 Critical Components of the Structure

The results from the parametric model and the case study show that failure according

to the Johansen theory often is the limiting failure mode for the connections. Only

the bearing resistance in the aluminum plate occasionally appears as the failure

mode for gusset plates with small distance between the edge and bolt hole. As the

Johansen theory is a well known experimental method and the implementation of it

in this connection design follows traditional use, the results should be accurate and

reliable.

An issue propounded in the case study in Chapter 5 is regarding the connections’

resistance against in-plane rotation. As previously stated, the rectangular grid shape

combined with the current connection design induces problems with the global static

stability of the construction. There are primarily two solutions that fix this issue while

keeping most of the simplicity of the design: making the grid triangular instead of

rectangular or making the connections stiffer.

The issue raised is of particular interest due to the conflict of interest between the

two fields of architecture and engineering. The triangular grid makes sense from

an engineering perspective while strengthening the connections showed to be a

better option from the architectural perspective. An engineer’s ability to consider

the architectural concept is essential for a productive discussion climate. Since the

connections can be strengthened, it is a more reasonable option to strengthen them

rather than changing the grid design, hence keeping the concept of the architect.

Also put forward in Chapter 5 is the issue of spatial configuration of beams and plates.
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The beams and connections have problems fitting in the grid when the cross-section or

bolt group becomes large. This is mainly a problem because of the stability problem,

described in Chapter 5.3.4, redistributing the related forces in less advantageous ways.

From the model, it also seems like having rows with two or more bolts often create

issues due to the necessary spacing distance between the bolt holes. It is therefore

better to expand the bolt groups perpendicular to the surface rather than parallel to

it, by ,e.g., increasing the height of the beam cross-section. If the decision is to alter the

design, the bolts should be placed as close to the connection as possible.

6.2 Flexibility

The parametric model, proposed in this thesis, worked efficiently on different

gridshells, as shown in Chapter 4.5. The shorter processing time of the parametric

model, in comparison to traditional CAD, enables quick and low-cost simulations

of the gridshell, again making the digital workflow between CAD and CAE more

efficient. It became clear during the case study that the 3D-generation of the model

was much more computer costly than the optimization process. This made it practical

to disconnect the 3D-modelling process when researching the structural behavior

of different grids, and only activate it when a visual inspection was necessary. It

was also often advantageous to isolate the connections of particular interest, and

only display that particular connection to save computing time. Clever use of data

structures, e.g. data trees, can potentially increase efficiency, since storing the

properties and geometries of the connections separately and organized enables the

user easy access.

For the connection design in consideration, the model is flexible and fully parametric.

The model automatically treats the individual parts (e.g., bolts, steel elements, and

beam members) differently and calculates according to the material. The parametric

model was also successfully connected to the parametric model of Huseby and Eliassen

[44]. By close collaboration (both digitally and through meetings), the two teams

of engineers could communicate and discuss the specifications required for such an

interaction. The data transferred between the model was kept to the absolute minimum

to ensure compatibility.

6.3 Troubleshooting of the Parametric Model

Having an on-demand visualization of the structure helps discovering errors more

quickly. The implementation of methodology will always reflect the user’s ability to
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visualize and identify problems. The use of computer technology to enhance the visual

experience should therefore lead to more accuracy in the model. An iterative approach

of implementation and visual control can create a feedback loop, incrementally

improving the model (see Figure 6.1). Many errors from hand calculation in traditional

engineering are not discovered, as the presentation only contains numbers. Once

these numbers are directly connected to a parametric model, they are represented and

visualized in 3D. The different components are visualized simultaneously, which makes

abnormalities easier to discover. This applies to, e.g., dimensions or the orientation of

the individual parts. A complex parametric model often contains multiple coordinate

systems which need to be organized.

Figure 6.1: Principle of visual control.

An interesting perspective that reflects the feedback loop is the global overview of

the model behavior, and the realistic consideration of the model. An example of a

discovered problem from the case study was intersecting plates (see Chapter 5.3.4).

At a point during the development of the gridshell connections, the input grid to the

parametric model was highly refined, which was problematic due to the small distance

between the connections. For some of the beams, the slotted plates from both sides of

the beam intersected. Due to this, the design decision of the refinement of the grid had

to be taken into account during the optimization process. This error would probably be

discovered during other design processes as well, but it is worth mentioning that this

was a trivial error to discover during this process.

Validation of both the structural calculations and the geometrical algorithms in the

model is also done through testing of several input grids. Even if the model seems to

behave correctly in one case, does not imply that the model is verified. In this sense, it

is difficult to make a final verification, as it will be impossible to test an infinite number

of input grids. Testing the model with different input grids will nevertheless give an

increasingly improved model.

Another key point when it comes to troubleshooting is the problem with an
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undiscovered error. For a complex parametric model, an error can influence the whole

model. This, for instance, could be a logic mistake in the code or the design approach,

implemented calculation methods or software bugs. During the process of developing

such a digital workflow, it is therefore essential to implement the different features as

accurate as possible. Therefore, the possibility of developing customized verification

methods to ensure the validity of the methods of design should be examined. Currently,

the process is limited when it comes to checking the validity, which increases the

probability of undiscovered errors. The troubleshooting is mostly based on visual

control in Rhino and engineering experience.

6.4 Reduction of Redundant Work through

Generalization of Code

Despite the model working well with the developed connection type, it is important to

point out that the digital workflow used is customized for this specific connection type,

but generalized for every input grid. This is considered to be necessary as the process

of making a generalized parametric model for multiple connection types would be very

time-consuming. Although the customized model facilitates an efficient process of

designing the digital workflow, the simplicity can also be a problem. As uncovered in

Chapter 5, the problems of the selected grid, makes the chosen connection type lack in

compatibility with the grid. Completely altering the design concept can be problematic

with the selected workflow. It requires reprogramming of Grasshopper-components for

structural verification and spatial limitations, in addition to changing the methods of

structural analysis. This is particularly pointed out by the lack of stability of the gridshell

for in-plane transverse motion, where the connections have to be stiffened. This shows

the importance of establishing design requirements, as in Chapter 2.

It is advantageous to make digital code reusable for other projects, particularly

regarding structural verification and spatial calculations which is particularly exposed

to simple calculation mistakes. Creating generalized calculation tools is therefore

potentially very profitable, particularly if direct implementation to a new model is

possible. A detailed study about generalized code was considered out of scope for this

thesis.

Still, many choices in the parametric model makes the code generalized, e.g., due

to the choice of treating any cross-sections as inscribed in a rectangle during spatial

calculations, the choice of cross-section or the choice of connection type does not alter

the code or method of calculation. This quality makes researching different designs or
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making alterations potentially more efficient and profitable.

6.5 AEC Collaboration

Developing the connections and being a part of the NTNUI cabin project has proven to

be a good example of working in the intersection between engineering and architecture.

The engineer, as well as the architect, has to take responsibility for the form of the

shell geometry. This is, among other things, because of the structural challenges

related to the smoothness of the gridshell. The angle of the connection will to a

high degree influence the design. As found in Chapter 5.3.4, it is disadvantageous to

have connected beams with too much angular difference, as this can complicate the

connection geometry, as illustrated in Figure 4.29.

The model’s ability to give solutions for different shell geometries increases

the possibilities for improved cross-disciplinary discussion between architect and

engineer. There should always be a balance between the architectural opinion about

the form, and the structural considerations of the engineer. Using a digital workflow

raised the communication to a higher level. The communication has the possibility

to evolve around more complex and detailed subjects where both the engineer and

the architect, with a common digital platform, easily can visualize how new input

parameters may change the whole design (see Figure 6.2).

Figure 6.2: Visualization of digital workflow approach.

Even though the benefits of the digital workflow in the case study are many, the model

does not work perfectly with the specific requirements from the architects as explained

above. Much of the reason for this is the incompatible terms between engineers and

architects. A possible solution to this could be to generalize the digital workflow and

disconnect it from a specific design. This would require a digital platform with a more
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general framework between the three teams, that also has the possibility to evaluate

different solutions. Possible solutions could involve the use of GA, as briefly introduced

in Chapter 4.4.3, but could also be solved with the traditional approach.



Chapter 7

Conclusion and

Recommendations for Further

Work

7.1 Conclusion

Using a digital workflow has shown to entail great advantages. Mostly because of

the on-hand visual control that creates a feedback loop for the participants. This

leads to increased probability of discovering errors and less redundant work. The

digital workflow approach creates a common digital platform built on common terms

where different participants can experiment with changes, and quickly communicate

opinions across disciplines.

The digital workflow is based on simple and established theories. It is based on

a traditional engineering approach to structural problems, where the computer is

instructed to mimic engineering decisions. For the case study, the connection design

in the digital workflow did not work perfectly with the gridshell design proposed. The

workflow still performed very well with terms established early in the process. The

incompatibility between the terms of the architect and the engineers could be solved

with better communication from early in the project, and in this case, understanding

the impact on the connection design of different grid types.

The case study project consisting of groups with different perspectives create a

foundation for a realistic process with many participants. It is reasonable to think
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that a process of bigger scale can increase in complexity and the demand for efficient

communication. The experience through the case study shows that the use of a digital

workflow involving a parametric model creates an enhanced work culture. The results

acquired in this project therefore suggests that an efficient digital workflow can be a

success factor for bigger projects involving spatial structures.
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7.2 Recommendations for Further Work

This master thesis builds the foundation for further research on the following

topics:

Implementing FEA-software in the Digital Workflow

To improve the digital workflow, further researching could be extended with individual

FEA-software verification from the parametric model. Verifying critical parts of the

connection could be essential for the results, and should be done for more than a single

arbitrary node to ensure validity. This could be done by scripting in Abaqus CAE. The

amount of work needed is hard to predict, but the computational cost of the digital

workflow will increase drastically. The verification could be done either for a few or all

connections.

Topology Optimization of Connections

Designing connections with broader possibilities of free-form could improve the

customizability of the connection design. The parametric model in Grasshopper can

be a suitable platform to implement topology optimization. The methodolgy presented

in this thesis will not be a suitable foundation for such an approach, but certain parts

concerning the timber to aluminum attachment could be applied to the model.

GA in Gridshell Connection Optimization

GA has a huge potential when it comes to the optimization process. This technology

will be more effective and efficient with increasing computer capacity, and it is therefore

essential with a future-oriented approach to the subject. Grasshopper comes with the

Galapagos plugin, which offers easy connection to the parametric model. Although

this thesis barely scratched the surface of the topic, there still exist a vast amount of

possibilities regarding the subject.

Implement Gridshell Assembly Instruction

This parametric model is mainly oriented towards collaboration between architects

and engineers, but it is also interesting to look more at the interaction between

design and assembly. The assembly process for a gridshell with the individual,

optimized connections for every joint is a comprehensive and complicated process.
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As a method to simplify the process, a procedure for an optimized assembly process

could be produced from the digital workflow. Some of the aspects it could contain are

numbering of beams and connections, verifying that the assembly of bolts and beams

is feasible, propose an optimal order of assembly regarding practical issues and provide

further documentation of the parts.
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Appendix A

Acronyms

AEC Architecture, Engineering and Construction

AM Additive Manufacturing

BIM Building Information Model

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Aided Manufacturing

CNC Computer Numerical Control

CSDG Conceptual Structural Design Group at NTNU

DDM Direct Digital Manufacturing

DMLS Direct Metal Laser Sintering

EWP Engineered Wood Product

FDM Fused Deposition Modelling

FEA Finite Element Analysis

FEM Finite Element MEthod

GA Genetic Algorithms

HSE Health, Safety and Environment

NC Numerical Control

RP Rapid Prototyping
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SLM Selective Laser Melting

SLS Selective Laser Sintering



Appendix B

Custom Components for the

Parametric Model with C#

Script

B.1 Structural Verification and Optimization

Figure B.1: Structural verification and optimization component

1 private void RunScript(DataTree<double> BeamForces, DataTree<double>
PlatePropsDataTreeInc1, DataTree<double> NodeDataTreeInc1, ref object
PlatePropsDataTreeInc2, ref object NodeDataTreeInc2, ref object

123
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BoltPropsDataTree, ref object FailureModeDataTree, ref object
FailureUtilDataTree)

2 {
3 GH_Path GH_Path_Plate = new GH_Path();
4 GH_Path GH_Path_Node = new GH_Path();
5 GH_Path GH_Path_BeamForceLC = new GH_Path();
6 GH_Path GH_Path_BoltForceLC = new GH_Path();
7 GH_Path GH_Path_Bolt = new GH_Path();
8 DataTree<int> nBoltsX_ = new DataTree<int>();
9 DataTree<int> nBoltsZ_ = new DataTree<int>();

10 DataTree<double> SpacingDataTree_ = new DataTree<double>();
11 DataTree<double> BoltForces_ = new DataTree<double>();
12 DataTree<double> XCoord = new DataTree<double>();
13 DataTree<double> ZCoord = new DataTree<double>();
14 DataTree<double> BoltPropsDataTree_ = new DataTree<double>();
15 DataTree<string> FailureModeDataTree_ = new DataTree<string>();
16 DataTree<double> FailureUtilDataTree_ = new DataTree<double>();
17 double anglePitch;
18 int maxIterationsNBolts = 5, nBoltsIterations;
19 int nPlates, nNodes, nLCs, nBoltsX, nBoltsZ, nBolts = 0, nBoltsTemp,

nBoltsZ_max, counter;
20 double utilization, tempUtilization, tempUtilizationPunching, maxUtilization =

1.00, ratioUtil;
21 double forceAngle = 0;
22 double boltsize = 0, A_bt, e1 = 0, e2 = 0, p1 = 0, p2 = 0, a1 = 0, a2, a2edit =

0, a3 = 0, a4, a4edit = 0, d, d0, d_w, eta, Ip_sum, h_eff, N_Ed, V_Ed,
M_Ed, R_90d;

23 double extraHeight, thicknessGussetPlate = 0, t_1, widthTimber, heightTimber,
thicknessRing, thicknessRingPlate, thicknessRingOutput, ringDiameter;

24 double h_boltGroup, w_boltGroup, x_, z_, phi, areaGussetPlate, W_el_GussetPlate;
25 double fxBolt, fzBolt, fBolt, fAngleBolt;
26 double F1_axRd, F2_axRd, F_axRk, M_yRk, k_90, f_h0k, f_hak, F_vRk_f, F_vRk_g,

F_vRk_h, MinJohansenPart, n_eff;
27 double F_vRd_cutOffBolt, f_vRd_x, f_vRd_z;
28 double alpha_d, alpha_b, k_1;
29 bool innerBoltX, innerBoltZ;
30 double N_1_Ed, M_ip_1_Ed, N_1_Rd, M_ip_1_Rd;
31

32 // -------------- Plate capacity -----------------
33 double rho, relativeSlenderness, imperfectionfactor = 0.32, ksi, Phi, lambda_1,

N_Cr, N_bRd, N_cRd, N_tRd, N_plRd, N_uRd, V_plRd, M_NRd, M_plRd;
34 double areaGussetPlate_net, I_weak, I_strong, W_pl_strong, DistToBeamEdge, L_Cr;
35

36 // -------------------------------
37

38 // Material values
39 double rho_k = 410; // [kg/m^3] // Must check!
40 double k_mod = 0.6;
41 double f_c90k = 2.5; // [MPa]
42 double f_ukb = 490; // [MPa]
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43 double fy_alu = 290; // [MPa] // https://www.concast.com/c95500.php
44 double fu_alu = 655; // [MPa] // https://www.concast.com/c95500.php
45 double kp = 1;
46 double alpha_v = 0.6;
47 double E_Alu = 110000; // [MPa]
48 double G_Alu = E_Alu / (1 + 0.32); // [MPa]
49 double epsilon = Math.Sqrt(235 / fy_alu); // MUST BE CHANGED!!
50 double kappa = 1.0; // Weakening of wielding
51

52 // Material safety factors according to NS-EN 1993-1-1, NS-EN 1995-1-1 and
NS-EN 1999-1-1

53 // Timber
54 double gamma_M_Glulam = 1.15;
55 double gamma_M_Connection = 1.3;
56

57 // Alu
58 double gamma_M0_Alu = 1.10;
59 double gamma_M1_Alu = 1.10;
60 double gamma_M2_Alu = 2.0;
61 double gamma_M5_Alu = 1.10;
62

63 // Bolt
64 double gamma_M2_Bolt = 1.25;
65

66 // Count number of nodes
67 nNodes = 0;
68 GH_Path_Plate = new GH_Path(0, 0);
69 while (PlatePropsDataTreeInc1.PathExists(GH_Path_Plate))
70 GH_Path_Plate = new GH_Path(++nNodes, 0); //
71

72 // Count number of load cases
73 nLCs = 0;
74 GH_Path_BeamForceLC = new GH_Path(0, 0, 0);
75 while (BeamForces.PathExists(GH_Path_BeamForceLC))
76 GH_Path_BeamForceLC = new GH_Path(0, 0, ++nLCs);
77

78 for (int m = 0; m < nNodes; m++) // Loop over all nodes
79 {
80 GH_Path_Node = new GH_Path(m);
81

82 // Count number of plates per node
83 nPlates = 0;
84 GH_Path_Plate = new GH_Path(m, 0);
85 while (PlatePropsDataTreeInc1.PathExists(GH_Path_Plate))
86 GH_Path_Plate = new GH_Path(m, ++nPlates);
87

88 ringDiameter = NodeDataTreeInc1.Branch(GH_Path_Node)[6];
89 thicknessRingOutput = 0;
90

91 for (int n = 0; n < nPlates; n++) // Loop over all plates in the current node
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92 {
93 // Address for output data and input from ’PlatePropsDataTree’
94 GH_Path_Plate = new GH_Path(m, n);
95 widthTimber = PlatePropsDataTreeInc1.Branch(GH_Path_Plate)[0];
96 heightTimber = PlatePropsDataTreeInc1.Branch(GH_Path_Plate)[1];
97 counter = 0;
98 nBoltsX = 1;
99 nBoltsZ = 1;

100 utilization = 2;
101 nBoltsIterations = 0;
102 thicknessRingPlate = 0;
103 anglePitch = PlatePropsDataTreeInc1.Branch(GH_Path_Plate)[4];
104

105 while (utilization >= maxUtilization && nBoltsIterations <=
maxIterationsNBolts)

106 {
107 nBoltsIterations++;
108

109 // --------------------------------------------------------
110 // Increase number of bolts if utilization is insufficient:
111 // --------------------------------------------------------
112 switch (counter)
113 {
114 case 0:
115 nBoltsZ++;
116 break;
117 case 1:
118 nBoltsTemp = nBoltsZ;
119 nBoltsZ = nBoltsX;
120 nBoltsX = nBoltsTemp;
121 break;
122 case 2:
123 nBoltsZ++;
124 break;
125 }
126 counter = (counter + 1) % 3;
127

128 // --------------------------------------------------------
129 // Change thickness of plate until utilization is insufficient:
130 // --------------------------------------------------------
131

132 // Set starting thickness of gusset plate to minimum for a thick steel
plate (t >= d) - the step value (For example start value = 5 mm and
step value = 1 mm neccessitates thicknessGussetPlate to be equal to 4
mm!!)

133 thicknessGussetPlate = 10; // [mm]
134

135 while (utilization >= maxUtilization && thicknessGussetPlate <= 30)
136 {
137 // Increase thickness of gusset plate:
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138 thicknessGussetPlate += 2;
139

140 areaGussetPlate = heightTimber * thicknessGussetPlate;
141 W_el_GussetPlate = 1d / 6d * thicknessGussetPlate *

Math.Pow(heightTimber, 2);
142 W_pl_strong = 1d / 4d * thicknessGussetPlate * Math.Pow(heightTimber, 2);
143 I_strong = 1d / 12d * thicknessGussetPlate * Math.Pow(heightTimber, 3);
144 I_weak = 1d / 12d * heightTimber * Math.Pow(thicknessGussetPlate, 3);
145

146 // Set starting value for boltsize
147 boltsize = 10; // Radius [mm]
148

149 while ((utilization >= maxUtilization && boltsize <=
thicknessGussetPlate - 2) && boltsize <= 22)

150 {
151 // --------------------------------------------------------
152 // Change bolt size if utilization is insufficient:
153 // --------------------------------------------------------
154 boltsize += 2;
155

156 d = boltsize;
157 d0 = d + 1;
158 d_w = 3 * d;
159

160 if (d == 12)
161 A_bt = 84;
162 else if (d == 14)
163 A_bt = 115;
164 else if (d == 16)
165 A_bt = 157;
166 else if (d == 18)
167 A_bt = 192;
168 else if (d == 20)
169 A_bt = 245;
170 else if (d == 22)
171 A_bt = 303;
172 else if (d == 24)
173 A_bt = 353;
174 else
175 A_bt = 0;
176

177 eta = heightTimber / d0;
178

179 // --------------------------------------------------
180 // Calculate neccessary spacing acording to EC3/EC9 and EC5 given beam

forces and bolt size
181 // --------------------------------------------------
182

183 // Reset variables from last iteration:
184 a1 = 0;
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185 a2 = 0;
186 a2edit = 0;
187 a3 = 0;
188 a4 = 0;
189 a4edit = 0;
190

191 // EC3 / EC9:
192 e1 = 1.2 * d0;
193 e2 = 1.2 * d0;
194 p1 = 2.2 * d0;
195 p2 = 2.4 * d0;
196

197 // EC5:
198 a2 = 4 * d;
199

200 for (int q = 0; q < nLCs; q++)
201 {
202 GH_Path_BeamForceLC = new GH_Path(m, n, q);
203 forceAngle = (Math.Atan2(BeamForces.Branch(GH_Path_BeamForceLC)[1],

BeamForces.Branch(GH_Path_BeamForceLC)[0]) + 4 * Math.PI) % (2 *
Math.PI);

204

205 a1 = Math.Max(a1, (4 + Math.Abs(Math.Cos(forceAngle))) * d);
206

207 if ((forceAngle >= 0 && forceAngle <= Math.PI / 2) || (forceAngle >=
270 / 180 * Math.PI && forceAngle <= 2 * Math.PI))

208 a3 = Math.Max(a3, Math.Max(7 * d, 80));
209 else if (forceAngle >= Math.PI / 2 && forceAngle < 150 / 180 *

Math.PI)
210 a3 = Math.Max(a3, (1 + 6 * Math.Sin(forceAngle)) * d);
211 else if (forceAngle >= 150 / 180 * Math.PI && forceAngle < 210 / 180

* Math.PI)
212 a3 = Math.Max(a3, 4 * d);
213 else if (forceAngle >= 210 / 180 * Math.PI && forceAngle <= 270 /

180 * Math.PI)
214 a3 = Math.Max(a3, (1 + 6 * Math.Abs(Math.Sin(forceAngle))) * d);
215

216 // Although the idle edge distance can be smaller than for the
strained, it is advantageous calculationwise to keep them equal
to avoid eccentric load on the bolt group!

217 a4 = Math.Max(a4, Math.Max((2 + 2 * Math.Abs(Math.Sin(forceAngle)))
* d, 3 * d));

218 }
219

220 // -----------------------------------------------
221 // Shear resistance per shear plane (assume bolt class 8.8) (EC3-1-8

Table 3.4)
222 // -----------------------------------------------
223 F_vRd_cutOffBolt = (alpha_v * f_ukb * Math.PI * Math.Pow(d0 / 2, 2)) /

gamma_M2_Bolt;
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224

225 // -----------------------------------------------
226 // Check if the number of bolts demands taller beams than available:
227 // -----------------------------------------------
228

229 nBoltsZ_max = (int) Math.Floor((heightTimber - 2 * a4) / a2) + 1;
230

231 if (nBoltsZ <= nBoltsZ_max)
232 {
233 // We have SUFFICIENT beam height for the current configuration!
234

235 // -----------------------------------------------------
236 // Loop over different spacing configurations:
237 //
238 // phi describes how extra space is distributed between a2 and a4.
239 // phi = 1 means distance from edge bolts to the edge is at minimum

of allowed distance!
240 // phi = 0 implies minimum distance between the bolts in z-direction!
241 // -----------------------------------------------------
242

243 extraHeight = heightTimber - (2 * a4 + (nBoltsZ - 1) * a2);
244

245 phi = -0.25;
246 while (utilization >= maxUtilization && phi <= 0.75) // Loop over

different distributions of spacing
247 {
248 phi += 0.25;
249 if (nBoltsZ != 1)
250 {
251 a2edit = a2 + phi * extraHeight / (nBoltsZ - 1);
252 a4edit = a4 + (1 - phi) * extraHeight / 2;
253 }
254 else
255 {
256 a2edit = a2;
257 a4edit = a4 + extraHeight / 2;
258 }
259

260 // --------------------------------------------------------
261 // Calculate the corresponding bolt forces for all LCs:
262 // --------------------------------------------------------
263

264 // Total height and length of bolt group:
265 h_boltGroup = (nBoltsZ - 1) * a2edit;
266 w_boltGroup = (nBoltsX - 1) * a1;
267

268 Ip_sum = 0;
269

270 XCoord = new DataTree<double>();
271 ZCoord = new DataTree<double>();
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272

273 nBolts = nBoltsX * nBoltsZ;
274

275 for (int i = 0; i < nBoltsZ; i++)
276 {
277 for (int j = 0; j < nBoltsX; j++)
278 {
279 // Find x-coordinate
280 if (nBoltsX == 1)
281 x_ = 0;
282 else
283 x_ = w_boltGroup * ((double) j) / ((double) (nBoltsX - 1)) -

w_boltGroup / 2;
284

285 // Find z-coordinate
286 if (nBoltsZ == 1)
287 z_ = 0;
288 else
289 z_ = -h_boltGroup * ((double) (i)) / ((double) (nBoltsZ - 1))

+ h_boltGroup / 2;
290

291 // Store coordinates in a DataTree
292 XCoord.Add(x_, GH_Path_Plate);
293 ZCoord.Add(z_, GH_Path_Plate);
294

295 // Add contribution to Ip
296 Ip_sum = Ip_sum + Math.Pow(x_, 2) + Math.Pow(z_, 2);
297 }
298 }
299 BoltForces_ = new DataTree<double>();
300

301 for (int k = 0; k < nBolts; k++)
302 {
303 // Loop over all load cases:
304 for (int q = 0; q < nLCs; q++)
305 {
306 GH_Path_BoltForceLC = new GH_Path(q, k);
307 GH_Path_BeamForceLC = new GH_Path(m, n, q);
308

309 fxBolt = 1000 * BeamForces.Branch(GH_Path_BeamForceLC)[0] /
nBolts + 1000000 *
BeamForces.Branch(GH_Path_BeamForceLC)[2] *
ZCoord.Branch(GH_Path_Plate)[k] / Ip_sum;

310 fzBolt = 1000 * BeamForces.Branch(GH_Path_BeamForceLC)[1] /
nBolts + 1000000 *
BeamForces.Branch(GH_Path_BeamForceLC)[2] *
XCoord.Branch(GH_Path_Plate)[k] / Ip_sum;

311 fBolt = Math.Sqrt(Math.Pow(fxBolt, 2) + Math.Pow(fzBolt, 2));
312

313 if (fxBolt != 0)
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314 fAngleBolt = (Math.Atan(-fzBolt / fxBolt) * 180 / Math.PI +
360) % (360);

315 else
316 fAngleBolt = Math.PI / 2;
317

318 BoltForces_.Add(fxBolt, GH_Path_BoltForceLC);
319 BoltForces_.Add(fzBolt, GH_Path_BoltForceLC);
320 BoltForces_.Add(fBolt, GH_Path_BoltForceLC);
321 BoltForces_.Add(fAngleBolt, GH_Path_BoltForceLC);
322 }
323 }
324 areaGussetPlate_net = areaGussetPlate - nBoltsZ * d0 *

thicknessGussetPlate;
325 tempUtilization = 0;
326

327 // --------------------------------------
328 // Verify the Timber-Aluminium Connection by calculating with

Johansen’s Approach - part 1 (independant of LCs)
329 // --------------------------------------
330

331 // Bending moment at yield, 8.5.1.1, Equation (8.30)
332 M_yRk = 0.3 * f_ukb * Math.Pow(d, 2.6);
333

334 // 8.5.1.1, Equation (8.33) (For soft wood)
335 // d in [mm]
336 k_90 = 1.35 + 0.015 * d;
337

338 // 8.5.1.1, Equation (8.32)
339 // rho_k in [kg/m^3]
340 f_h0k = 0.082 * (1 - 0.01 * d) * rho_k;
341

342 t_1 = (widthTimber - thicknessGussetPlate) / 2;
343

344 // Calculating rope effect from threaded bolts
345 // (Given by the maximum of the axial capacity of the bolt and the

yield strength of the timber under compression from the washer)
346 F1_axRd = 0.9 * f_ukb * (1 / gamma_M2_Alu) * A_bt;
347 F2_axRd = 3 * f_c90k * (Math.PI / 4) * (Math.Pow(d_w, 2) -

Math.Pow(d0, 2)) * (k_mod / gamma_M_Glulam);//NB: d+1 mm
348 F_axRk = Math.Min(F2_axRd, F1_axRd) * (gamma_M_Glulam / k_mod);
349

350 for (int q = 0; q < nLCs; q++) // Loop over all loadcases
351 {
352 GH_Path_BeamForceLC = new GH_Path(m, n, q);
353 for (int k = 0; k < nBolts; k++) // Loop over all bolts
354 {
355 GH_Path_BoltForceLC = new GH_Path(q, k);
356

357 // Get correct bolt force in simpler variable names
358 fxBolt = BoltForces_.Branch(GH_Path_BoltForceLC)[0];
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359 fzBolt = BoltForces_.Branch(GH_Path_BoltForceLC)[1];
360 fBolt = BoltForces_.Branch(GH_Path_BoltForceLC)[2];
361 fAngleBolt = BoltForces_.Branch(GH_Path_BoltForceLC)[3];
362

363 // --------------------------------------
364 // Verify the Timber-Aluminium Connection by calculating with

Johansen’s Approach - part 2 (dependant of LCs)
365 // --------------------------------------
366

367 // 8.5.1.1, Equation (8.31)
368 // Calculating f_hak for every bolt with corresponding angle

for the bolt force
369 f_hak = f_h0k / (k_90 * Math.Pow(Math.Sin(-fAngleBolt * Math.PI

/ 180), 2) + Math.Pow(Math.Cos(-fAngleBolt * Math.PI /
180), 2));

370

371 // 8.2.3 For a thick steel plate in double shear, see mode f,
g, and h:

372 F_vRk_f = 2 * f_hak * t_1 * d;
373 F_vRk_g = 2 * f_hak * t_1 * d * (Math.Sqrt(2 + (4 * M_yRk /

(f_hak * Math.Pow(t_1, 2) * d))) - 1) + F_axRk / 4;
374 F_vRk_h = 2 * 2.3 * Math.Sqrt(M_yRk * f_hak * d) + F_axRk / 4;
375

376 // 8.2.2 (2) Verify that the Johansen part of the equations is
larger than 25% of the rope effect contribution

377 MinJohansenPart = Math.Min(2 * f_hak * t_1 * d * (Math.Sqrt(2 +
(4 * M_yRk / (f_hak * Math.Pow(t_1, 2) * d))) - 1), 2 *
2.3 * Math.Sqrt(M_yRk * f_hak * d));

378

379 ratioUtil = Math.Max(F_axRk / MinJohansenPart, Math.Abs(fBolt /
(k_mod / gamma_M_Glulam * Math.Min(Math.Min(F_vRk_f,
F_vRk_g), F_vRk_h))));

380

381 if (ratioUtil > tempUtilization)
382 {
383 FailureModeDataTree_.RemovePath(GH_Path_Plate);
384 FailureModeDataTree_.Add("A", GH_Path_Plate);
385 tempUtilization = ratioUtil;
386 }
387

388 // ------------------------------------
389 // Verify Shear Resistance for Bolt:
390 // ------------------------------------
391

392 ratioUtil = Math.Abs(fBolt / (2 * F_vRd_cutOffBolt));
393 if (ratioUtil > tempUtilization)
394 {
395 FailureModeDataTree_.RemovePath(GH_Path_Plate);
396 FailureModeDataTree_.Add("C2", GH_Path_Plate);
397 tempUtilization = ratioUtil;
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398 }
399 tempUtilization = Math.Max(tempUtilization, fBolt / (2 *

F_vRd_cutOffBolt));
400

401 // ---------------------------------
402 // Calculate Bearing Resistance for Bolt
403 // ---------------------------------
404

405 //checking inner/outer bolt
406 if ((k - 1) % nBoltsX == 0)
407 innerBoltX = false;
408 else
409 innerBoltX = true;
410

411 if ((k >= nBolts - nBoltsX) || (k <= nBoltsX))
412 innerBoltZ = false;
413 else
414 innerBoltZ = true;
415

416 // checking x-direction
417 // finding alpha_b (in the direction of load transfer)
418 if (innerBoltX == true)
419 alpha_d = (a1 / (3 * d0)) - (1 / 4);
420 else
421 alpha_d = e1 / 3 * d0;
422 alpha_b = Math.Min(Math.Min(alpha_d, (f_ukb / fu_alu)), 1.0);
423

424 // finding k_1 (perpendicular to the direction of load transfer)
425 if (innerBoltZ == true)
426 k_1 = Math.Min(Math.Min(2.8 * (a4edit / d0) - 1.7, 1.4 *

(a2edit / d0)), 2.5);
427 else
428 k_1 = Math.Min(1.4 * (a2edit / d0), 2.5);
429 f_vRd_x = (k_1 * alpha_b * fu_alu * d * thicknessGussetPlate) /

gamma_M2_Alu;
430

431 if (Math.Abs(fxBolt / f_vRd_x) > tempUtilization)
432 {
433 FailureModeDataTree_.RemovePath(GH_Path_Plate);
434 FailureModeDataTree_.Add("C1X", GH_Path_Plate);
435 tempUtilization = Math.Abs(fxBolt / f_vRd_x);
436 }
437

438 // checking z-direction
439 // finding alpha_b (in the direction of load transfer)
440 if (innerBoltZ == true){
441 alpha_d = (a2edit / (3 * d0)) - 1 / 4;
442 }
443 else{
444 alpha_d = a4edit / 3 * d0;
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445 }
446 alpha_b = Math.Min(Math.Min(alpha_d, (f_ukb / fu_alu)), 1.0);
447

448 // finding k_1 (perpendicular to the direction of load transfer)
449 if (innerBoltX == true){
450 k_1 = Math.Min(Math.Min(2.8 * (e1 / d0) - 1.7, 1.4 * (a1 /

d0)) - 1.7, 2.5);
451 }
452 else{
453 k_1 = Math.Min(1.4 * (a1 / d0) - 1.7, 2.5);
454 }
455 f_vRd_z = (k_1 * alpha_b * fu_alu * d * thicknessGussetPlate) /

gamma_M2_Alu;
456

457 ratioUtil = Math.Abs(fzBolt / f_vRd_z);
458 if (ratioUtil > tempUtilization)
459 {
460 FailureModeDataTree_.RemovePath(GH_Path_Plate);
461 FailureModeDataTree_.Add("C1Z", GH_Path_Plate);
462 tempUtilization = ratioUtil;
463 }
464 }
465

466 // ------------------------------------
467 // Verify the Timber-Aluminium Connection by calculating with

Johansen’s Approach - Looking at the effect of a row of bolts
468 // ------------------------------------
469

470 double F_vRk_single, F_vRd_single, F_vRd_group, F_vEd_group,
F_vEd_group1, F_vEd_group2;

471

472 if (nBoltsX > 1) //
473 {
474 // Calculates effective number of bolts for a single row
475 n_eff = Math.Min(Math.Pow(nBoltsX, 0.9) * Math.Pow(a1 / (13 *

d), 0.25), nBoltsX);
476

477 // Calculate Force from top and bottom row and find the
maximum: F_vEd_group

478 F_vEd_group1 = 0;
479 F_vEd_group2 = 0;
480

481 // Assumes that the maximum bolt group force is either the top
row or the bottom row. Finds the maximum of the two from
all the load cases:

482 for (int k = 0; k < nBoltsX; k++)
483 {
484 GH_Path_BoltForceLC = new GH_Path(q, k);
485 F_vEd_group1 = F_vEd_group1 +

BoltForces_.Branch(GH_Path_BoltForceLC)[0];
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486

487 GH_Path_BoltForceLC = new GH_Path(q, (int) nBoltsX * (int)
nBoltsZ - k - 1);

488 F_vEd_group2 = F_vEd_group2 +
BoltForces_.Branch(GH_Path_BoltForceLC)[0];

489 }
490 F_vEd_group = Math.Max(Math.Abs(F_vEd_group1),

Math.Abs(F_vEd_group2));
491

492 // Calculate capacity from group action EC5 8.2.3(3) Equation
8.11

493 F_vRk_f = f_h0k * t_1 * d;
494 F_vRk_g = f_h0k * t_1 * d * (Math.Sqrt(2 + (4 * M_yRk / (f_h0k

* Math.Pow(t_1, 2) * d))) - 1) + F_axRk / 4;
495 F_vRk_h = 2.3 * Math.Sqrt(M_yRk * f_h0k * d) + F_axRk / 4;
496 F_vRk_single = Math.Min(F_vRk_f, Math.Min(F_vRk_g, F_vRk_h));
497 F_vRd_single = k_mod / gamma_M_Glulam * F_vRk_single;
498 F_vRd_group = n_eff * F_vRd_single;
499

500 // Calculates the ratio between dimensioning force and capacity
for group action

501 ratioUtil = Math.Abs(F_vEd_group / F_vRd_group);
502 if (ratioUtil > tempUtilization)
503 {
504 FailureModeDataTree_.RemovePath(GH_Path_Plate);
505 FailureModeDataTree_.Add("B", GH_Path_Plate);
506 tempUtilization = ratioUtil;
507 }
508 }
509

510 // -----------------------------------------------
511 // Calculate splitting (EC5-1-1, 8.1.4)
512 // -----------------------------------------------
513

514 // Calculate effective height for splitting of timber
515 h_eff = heightTimber - a2edit;
516

517 // dimensioning shear forces
518 N_Ed = BeamForces.Branch(GH_Path_BeamForceLC)[0] * 1000; //

Converts from kN to N
519 V_Ed = BeamForces.Branch(GH_Path_BeamForceLC)[1] * 1000; //

Converts from kN to N
520 M_Ed = BeamForces.Branch(GH_Path_BeamForceLC)[2] * 1000; //

Converts from kN to N
521

522 // EC5 8.1.4 (2) Equation (8.4)
523 R_90d = k_mod / gamma_M_Connection * 14 * widthTimber *

Math.Sqrt(h_eff / (1 - h_eff / heightTimber));
524

525 ratioUtil = Math.Abs(V_Ed / R_90d);
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526 if (ratioUtil > tempUtilization)
527 {
528 FailureModeDataTree_.RemovePath(GH_Path_Plate);
529 FailureModeDataTree_.Add("D", GH_Path_Plate);
530 tempUtilization = ratioUtil;
531 }
532

533 // -----------------------------------------------
534 // Calculate gusset plate (Use EC3-1-1, chapter 6 and EC3-1-8,

chapter 3)
535 // -----------------------------------------------
536

537 // EC3-1-1 6.2.3 Tension
538

539 N_plRd = areaGussetPlate * fy_alu / gamma_M0_Alu;
540 N_uRd = 0.9 * areaGussetPlate_net * fu_alu / gamma_M2_Alu;
541 N_tRd = Math.Min(N_plRd, N_uRd);
542

543 if (N_Ed > 0)
544 {
545 ratioUtil = Math.Abs(N_Ed / N_tRd);
546 if (ratioUtil > tempUtilization)
547 {
548 FailureModeDataTree_.RemovePath(GH_Path_Plate);
549 FailureModeDataTree_.Add("F1", GH_Path_Plate);
550 tempUtilization = ratioUtil;
551 }
552 }
553

554 // EC3-1-1 6.2.4 Compression
555

556 N_cRd = areaGussetPlate * fy_alu / gamma_M0_Alu;
557 if (N_Ed < 0)
558 {
559 ratioUtil = Math.Abs(N_Ed / N_cRd);
560 if (ratioUtil > tempUtilization)
561 {
562 FailureModeDataTree_.RemovePath(GH_Path_Plate);
563 FailureModeDataTree_.Add("F2", GH_Path_Plate);
564 tempUtilization = ratioUtil;
565 }
566 }
567

568 // EC3-1-1 6.2.6 Shear
569

570 V_plRd = areaGussetPlate * (fy_alu / Math.Sqrt(3)) / gamma_M0_Alu;
571 ratioUtil = Math.Abs(V_Ed / V_plRd);
572

573 if (ratioUtil > tempUtilization)
574 {
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575 FailureModeDataTree_.RemovePath(GH_Path_Plate);
576 FailureModeDataTree_.Add("F3", GH_Path_Plate);
577 tempUtilization = ratioUtil;
578 }
579

580 // EC3-1-1 6.2.10 Combination of bending moment, axial forces and
shear

581

582 if (V_Ed > 0.5 * V_plRd)
583 rho = Math.Pow(2 * V_Ed / V_plRd - 1, 2);
584 else
585 rho = 0;
586

587 M_plRd = W_pl_strong * (1 - rho) * fy_alu / gamma_M0_Alu;
588 M_NRd = M_plRd * (1 - Math.Pow(N_Ed / N_plRd, 2)); // NB! NB!

This is for cross section WITHOUT bolt holes. Is there a way
to calculate WITH bolt holes??

589

590 ratioUtil = Math.Abs(M_Ed / M_NRd);
591

592 if (ratioUtil > tempUtilization)
593 {
594 FailureModeDataTree_.RemovePath(GH_Path_Plate);
595 FailureModeDataTree_.Add("F4", GH_Path_Plate);
596 tempUtilization = ratioUtil;
597 }
598

599 // EC3-1-1 6.3.1 Column type buckling
600

601 if (N_Ed < 0)
602 {
603 DistToBeamEdge =

PlatePropsDataTreeInc1.Branch(GH_Path_Plate)[5] *
Math.Cos(anglePitch) - heightTimber / 1000 / 2 *
Math.Sin(anglePitch);

604 L_Cr = 1 * (DistToBeamEdge - ringDiameter / 1000 / 2) * 1000;
605 lambda_1 = Math.PI * Math.Sqrt(E_Alu / fy_alu);
606 N_Cr = Math.Pow(Math.PI, 2) * E_Alu * I_weak / Math.Pow(L_Cr,

2);
607 relativeSlenderness = Math.Sqrt(areaGussetPlate * fy_alu /

N_Cr);
608 Phi = 0.5 * (1 + imperfectionfactor * (relativeSlenderness -

0.00) + Math.Pow(relativeSlenderness, 2));
609 ksi = Math.Min(1 / (Phi + Math.Sqrt(Math.Pow(Phi, 2) -

Math.Pow(relativeSlenderness, 2))), 1);
610 N_bRd = kappa * ksi * areaGussetPlate * fy_alu / gamma_M1_Alu;
611

612 ratioUtil = Math.Abs(N_Ed / N_bRd);
613 if (ratioUtil > tempUtilization)
614 {
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615 FailureModeDataTree_.RemovePath(GH_Path_Plate);
616 FailureModeDataTree_.Add("F5", GH_Path_Plate);
617 tempUtilization = ratioUtil;
618 }
619 }
620

621 // -----------------------------------------------
622 // Calculate shear punching (Use EC3-1-8, 7.4)
623 // -----------------------------------------------
624

625 tempUtilizationPunching = 10;
626 thicknessRing = 0.4 * thicknessGussetPlate - 1;
627 while (tempUtilizationPunching >= maxUtilization && thicknessRing

<= ringDiameter * 1000 / 2 - 1)
628 {
629 tempUtilizationPunching = 0;
630 thicknessRing += 1;
631

632 // Get data from DataTrees
633 N_1_Ed = BeamForces.Branch(GH_Path_BeamForceLC)[0] * 1000; //

From kN to N
634 M_ip_1_Ed = BeamForces.Branch(GH_Path_BeamForceLC)[2] *

1000000; // From kN*m to N*mm
635

636 // Check for ring face failure, EC3 Table 7.4 - case #2
637

638 N_1_Rd = 5 * kp * fy_alu * Math.Pow(thicknessRing, 2) * (1 +
0.25 * eta) / gamma_M5_Alu;

639 M_ip_1_Rd = heightTimber * N_1_Rd;
640

641 tempUtilizationPunching = Math.Max(tempUtilizationPunching,
N_1_Ed / N_1_Rd + Math.Pow(M_ip_1_Ed / M_ip_1_Rd, 2));

642

643 // Check for punching shear failure in the ring
644 tempUtilizationPunching = Math.Max(tempUtilizationPunching,

Math.Abs(((N_1_Ed / areaGussetPlate + M_ip_1_Ed /
W_el_GussetPlate) * thicknessGussetPlate)) / (2 *
thicknessRing * (fy_alu / Math.Sqrt(3)) / gamma_M5_Alu));

645 }
646 ratioUtil = Math.Max(tempUtilizationPunching, tempUtilization);
647 if (ratioUtil > tempUtilization)
648 {
649 FailureModeDataTree_.RemovePath(GH_Path_Plate);
650 FailureModeDataTree_.Add("G", GH_Path_Plate);
651 tempUtilization = ratioUtil;
652 }
653 thicknessRingPlate = thicknessRing;
654

655 // Choose max utilization to verify connection
656 utilization = tempUtilization;
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657

658 }
659 }
660 }
661 }
662 }
663 }
664

665 for (int k = 0; k < nBolts; k++)
666 {
667 GH_Path_Bolt = new GH_Path(m, n, k);
668 BoltPropsDataTree_.Add(XCoord.Branch(GH_Path_Plate)[k], GH_Path_Bolt);
669 BoltPropsDataTree_.Add(ZCoord.Branch(GH_Path_Plate)[k], GH_Path_Bolt);
670 }
671

672 thicknessRingOutput = Math.Max(thicknessRingOutput, thicknessRingPlate);
673

674 PlatePropsDataTreeInc1.Add(nBoltsX, GH_Path_Plate);
675 PlatePropsDataTreeInc1.Add(nBoltsZ, GH_Path_Plate);
676 PlatePropsDataTreeInc1.Add(thicknessGussetPlate, GH_Path_Plate);
677 PlatePropsDataTreeInc1.Add(boltsize, GH_Path_Plate);
678 PlatePropsDataTreeInc1.Add(utilization, GH_Path_Plate);
679 FailureUtilDataTree_.Add(utilization, GH_Path_Plate);
680 PlatePropsDataTreeInc1.Add(a1, GH_Path_Plate);
681 PlatePropsDataTreeInc1.Add(a2edit, GH_Path_Plate);
682 PlatePropsDataTreeInc1.Add(a3, GH_Path_Plate);
683 PlatePropsDataTreeInc1.Add(a4edit, GH_Path_Plate);
684 PlatePropsDataTreeInc1.Add(e1, GH_Path_Plate);
685 PlatePropsDataTreeInc1.Add(e2, GH_Path_Plate);
686 PlatePropsDataTreeInc1.Add(p1, GH_Path_Plate);
687 PlatePropsDataTreeInc1.Add(p2, GH_Path_Plate);
688 }
689 NodeDataTreeInc1.Add(thicknessRingOutput, GH_Path_Node);
690 }
691 PlatePropsDataTreeInc2 = PlatePropsDataTreeInc1;
692 BoltPropsDataTree = BoltPropsDataTree_;
693 NodeDataTreeInc2 = NodeDataTreeInc1;
694 FailureModeDataTree = FailureModeDataTree_;
695 FailureUtilDataTree = FailureUtilDataTree_;
696 }
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B.2 Necessary Length To Timber Edge

Figure B.2: Component for calculating necessary distance to timber

1 private void RunScript(DataTree<double> PlatePropsDataTreeInc0, DataTree<double>
NodeDataTree, double tolerance, ref object PlatePropsDataTreeInc1)

2 {
3 List<double> lengths_ = new List<double>();
4 List<double> lengths_2 = new List<double>();
5 List<double> WidthOfTimber = new List<double>();
6 List<double> AnglesYaw = new List<double>();
7 List<double> AnglesPitch = new List<double>();
8 List<double> heights = new List<double>();
9 List<int> Indicies = new List<int>();

10 GH_Path GH_Path_Plate = new GH_Path();
11 GH_Path GH_Path_Node = new GH_Path();
12 double angle_1 = 0;
13 double angle_2 = 0;
14 double l11, l12, l2, l3, w1, w2, w3, outerRadius, angleRoll, anglePitch, h;
15 int iTemp = 0;
16 int index1 = 0;
17 int index2 = 0;
18 int index3 = 0;
19 int nNodes = 0;
20 int nPlates = 0;
21

22 // Find number of nodes by testing how many data paths that exist:
23 nNodes = 0;
24 GH_Path_Plate = new GH_Path(0, 0);
25 while (PlatePropsDataTreeInc0.PathExists(GH_Path_Plate))
26 GH_Path_Plate = new GH_Path(++nNodes, 0);
27

28 // Loop over all nodes:
29 for (int m = 0; m < nNodes; m++)
30 {
31 GH_Path_Node = new GH_Path(m);
32
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33 // Find number of plates by testing how many data paths that exist:
34 nPlates = 0;
35 GH_Path_Plate = new GH_Path(m, 0);
36 while (PlatePropsDataTreeInc0.PathExists(GH_Path_Plate))
37 GH_Path_Plate = new GH_Path(m, ++nPlates);
38

39 // Collect the outer radius of the ring (in meters)
40 outerRadius = NodeDataTree.Branch(GH_Path_Node)[6] / 2;
41

42 // Reset list of width, height, yaw and pitch for the current plate:
43 WidthOfTimber = new List<double>();
44 AnglesYaw = new List<double>();
45 AnglesPitch = new List<double>();
46 heights = new List<double>();
47

48 // Prepare lists for the current number of plates for the current node:
49 lengths_ = new List<double>();
50 lengths_ = Enumerable.Repeat(0d, nPlates).ToList();
51 lengths_2 = new List<double>();
52 lengths_2 = Enumerable.Repeat(0d, nPlates).ToList();
53

54 // Collect the width of timber for all plates by looping over all plates:
55 for (int n = 0; n < nPlates; n++)
56 {
57 // Define the data path where data will be collected from or stored:
58 GH_Path_Plate = new GH_Path(m, n);
59

60 // Collect width and height of timber:
61 w1 = PlatePropsDataTreeInc0.Branch(GH_Path_Plate)[0] / 1000;
62 h = PlatePropsDataTreeInc0.Branch(GH_Path_Plate)[1] / 1000;
63

64 // Collect roll of the plate:
65 angleRoll = PlatePropsDataTreeInc0.Branch(GH_Path_Plate)[2];
66

67 // Collect yaw and pitch of the plate and assign to a list so that its
position in the list corresponds to the indexing in the data trees:

68 AnglesYaw.Add(PlatePropsDataTreeInc0.Branch(GH_Path_Plate)[3]);
69 AnglesPitch.Add(PlatePropsDataTreeInc0.Branch(GH_Path_Plate)[4]);
70

71 // Calculate effective height and width of a
72 heights.Add(h * Math.Abs(Math.Cos(angleRoll)) + w1 *

Math.Abs(Math.Sin(angleRoll)));
73 WidthOfTimber.Add(w1 * Math.Abs(Math.Cos(angleRoll)) + h *

Math.Abs(Math.Sin(angleRoll)));
74 }
75

76

77 // Sort AnglesYaw to fix if the bars are in the wrong order clockwise using
an insertion sort algorithm.

78 Indicies = new List<int>();
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79 Indicies = Enumerable.Range(0, nPlates).ToList();
80 iTemp = 0;
81

82 for (int n = 0; n < nPlates - 1; n++)
83 {
84 for (int k = n + 1; k < nPlates; k++)
85 {
86 if (AnglesYaw[Indicies[n]] > AnglesYaw[Indicies[k]])
87 {
88 iTemp = Indicies[k];
89 Indicies[k] = Indicies[n];
90 Indicies[n] = iTemp;
91 }
92 }
93 }
94

95 // Find lengths for all plates by looping over all plates:
96 for (int n = 0; n < nPlates; n++)
97 {
98 // Get the indicies from the sorted AnglesYaw. This will be used to fetch

beam data from adjacent beams when checking minimum distance.
99 index1 = Indicies[n];

100 index2 = Indicies[(n - 1 + nPlates) % nPlates];
101 index3 = Indicies[(n + 1) % nPlates];
102

103 // Find half of the width of the chosen beam and bordering beams (plus
tolerance) w1, w2 and w3:

104 w1 = WidthOfTimber[index1] / 2 + tolerance;
105 w2 = WidthOfTimber[index2] / 2 + tolerance;
106 w3 = WidthOfTimber[index3] / 2 + tolerance;
107

108 // Get height and pitch for current beam
109 h = heights[index1];
110 anglePitch = AnglesPitch[index1];
111

112 // Find the angles to adjacent bars (1 = counter clockwise, 2 = clockwise):
113 angle_1 = Math.Abs((Math.Abs(AnglesYaw[index1] - AnglesYaw[index2]) + 4 *

Math.PI) % (2 * Math.PI));
114 angle_1 = Math.Min(angle_1, 2 * Math.PI - angle_1);
115 angle_2 = Math.Abs((Math.Abs(AnglesYaw[index1] - AnglesYaw[index3]) + 4 *

Math.PI) % (2 * Math.PI));
116 angle_2 = Math.Min(angle_2, 2 * Math.PI - angle_2);
117

118 // Find temporary minimum distance to timber edge in plane
119 l11 = (w2 + w1 * Math.Cos(angle_1)) / Math.Sin(angle_1);
120 l2 = (w1 + w2 * Math.Cos(angle_1)) / Math.Sin(angle_1);
121 l12 = (w3 + w1 * Math.Cos(angle_2)) / Math.Sin(angle_2);
122 l3 = (w1 + w3 * Math.Cos(angle_2)) / Math.Sin(angle_2);
123
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124 // If one of the temporary minimum distances is smaller than the radius,
check with second set of equations.

125 if (l11 < outerRadius)
126 l11 = outerRadius;
127 else if (l2 < outerRadius)
128 {
129 l11 = w2 * Math.Sin(angle_1) + outerRadius * Math.Cos(angle_1);
130 if (l11 < outerRadius) // If second set also fails, set the distance to

outer radius.
131 l11 = outerRadius;
132 }
133 if (l12 < outerRadius)
134 l12 = outerRadius;
135 else if (l3 < outerRadius)
136 {
137 l12 = w3 * Math.Sin(angle_2) + outerRadius * Math.Cos(angle_2);
138 if (l12 < outerRadius) // If second set also fails, set the distance to

outer radius.
139 l12 = outerRadius;
140 }
141

142 // Find the corresponding lengths and minmize necessary length:
143 lengths_[index1] = Math.Max(l11, l12);
144

145 // Add the lengthening effect of pitching the plate
146 lengths_2[index1] = (lengths_[index1] + h / 2 *

Math.Abs(Math.Sin(anglePitch))) / Math.Abs(Math.Cos(anglePitch));
147 }
148

149 for (int n = 0; n < nPlates; n++) // Append the length to the Plate
Properties Data Tree

150 {
151 GH_Path_Plate = new GH_Path(m, n);
152 PlatePropsDataTreeInc0.Add(lengths_2[n], GH_Path_Plate);
153 }
154 }
155 PlatePropsDataTreeInc1 = PlatePropsDataTreeInc0;
156 }
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B.3 Minimum Cylinder Diameter

Figure B.3: Component for calculating minimum cylinder diameter.

1 private void RunScript(DataTree<double> PlatePropsDataTree, DataTree<double>
NodeDataTreeInc0, double tolerance, ref object NodeDataTreeInc1)

2 {
3 GH_Path GH_Path_Plate = new GH_Path();
4 GH_Path GH_Path_Node = new GH_Path();
5

6 List<double> neccWidthForPlate = new List<double>();
7 List<double> anglesYaw = new List<double>();
8 List<double> anglesPitch = new List<double>();
9 List<double> heights = new List<double>();

10

11 List<int> Indicies = new List<int>();
12

13 int nNodes, nPlates, iTemp, index1, index2, index3;
14

15 double diameter, anglePitch, angleRoll, heightOfPlate,
thicknessOfPlateConservative, newWidthOfPlate, newHeight, w1, w2, w3,
angle_1, angle_2, psi_1, psi_2, r_1, r_2;

16

17 // Find number of nodes by testing how many data paths that exist:
18 nNodes = 0;
19 GH_Path_Node = new GH_Path(0);
20 while (NodeDataTreeInc0.PathExists(GH_Path_Node))
21 GH_Path_Node = new GH_Path(++nNodes);
22

23 // Loop over all nodes:
24 for (int m = 0; m < nNodes; m++)
25 {
26 GH_Path_Node = new GH_Path(m);
27

28 // Find number of plates by testing how many data paths that exist:
29 nPlates = 0;
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30 GH_Path_Plate = new GH_Path(m, 0);
31 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
32 GH_Path_Plate = new GH_Path(m, ++nPlates);
33

34 // Reset lists for width, yaw, pitch and height:
35 neccWidthForPlate = new List<double>();
36 anglesYaw = new List<double>();
37 anglesPitch = new List<double>();
38 heights = new List<double>();
39

40 for (int n = 0; n < nPlates; n++)
41 {
42 // Define the data path to the current plate
43 GH_Path_Plate = new GH_Path(m, n);
44

45 // Fetch pitch, roll and height of the current plate from the Plate
Properties Data Tree for the relevant gusset plate

46 anglePitch = PlatePropsDataTree.Branch(GH_Path_Plate)[4];
47 angleRoll = PlatePropsDataTree.Branch(GH_Path_Plate)[2];
48 heightOfPlate = PlatePropsDataTree.Branch(GH_Path_Plate)[1] / 1000;
49

50 // Since the thickness of the gusset plate is not calculated yet, make a
conservative estimat for the thickness of the plates of 40 mm.

51 thicknessOfPlateConservative = 40d / 1000d;
52

53 // Calculate the effect of rolling the plate on the height and width of the
gusset plate footprint on the ring:

54 newWidthOfPlate = heightOfPlate * Math.Abs(Math.Sin(angleRoll)) +
thicknessOfPlateConservative * Math.Abs(Math.Cos(angleRoll));

55 newHeight = heightOfPlate * Math.Abs(Math.Cos(angleRoll)) +
thicknessOfPlateConservative * Math.Abs(Math.Sin(angleRoll));

56

57 // Add the yaw, pitch, height and width for the current plate in the updated
lists:

58 anglesYaw.Add(PlatePropsDataTree.Branch(GH_Path_Plate)[3]);
59 anglesPitch.Add(anglePitch);
60 neccWidthForPlate.Add(newWidthOfPlate);
61 heights.Add(newHeight);
62 }
63

64 // Sort anglesYaw to fix if the bars are in the wrong order clockwise.
Looping over all plates using an insertion sort algorithm.

65 Indicies = new List<int>();
66 Indicies = Enumerable.Range(0, nPlates).ToList();
67 iTemp = 0;
68

69 for (int n = 0; n < nPlates - 1; n++)
70 {
71 for (int i = n + 1; i < nPlates; i++)
72 {
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73 if (anglesYaw[Indicies[n]] > anglesYaw[Indicies[i]])
74 {
75 iTemp = Indicies[i];
76 Indicies[i] = Indicies[n];
77 Indicies[n] = iTemp;
78 }
79 }
80 }
81

82 // Reset diameter to an unrealistic low value
83 diameter = 0;
84

85 // Find lengths for all plates by looping over all plates:
86 for (int n = 0; n < nPlates; n++)
87 {
88 // Get the indicies for current and adjacent plates from the sorted anglesYaw
89 index1 = Indicies[n];
90 index2 = Indicies[(n - 1 + nPlates) % nPlates];
91 index3 = Indicies[(n + 1) % nPlates];
92

93 // Find half of the width of the chosen plate and bordering plates + a
tolerance (w1, w2 and w3):

94 w1 = neccWidthForPlate[index1] / 2 + tolerance;
95 w2 = neccWidthForPlate[index2] / 2 + tolerance;
96 w3 = neccWidthForPlate[index3] / 2 + tolerance;
97

98 // Fetch height and pitch for the current plate:
99 heightOfPlate = heights[index1];

100 anglePitch = anglesPitch[index1];
101

102 // Find the angles to adjacent plates (1 = counter clockwise, 2 = clockwise):
103 angle_1 = (Math.Abs(anglesYaw[index1] - anglesYaw[index2]) + 4 * Math.PI) %

(2 * Math.PI);
104 angle_1 = Math.Min(angle_1, 2 * Math.PI - angle_1);
105 angle_2 = (Math.Abs(anglesYaw[index1] - anglesYaw[index3]) + 4 * Math.PI) %

(2 * Math.PI);
106 angle_2 = Math.Min(angle_2, 2 * Math.PI - angle_2);
107

108 // Get ratios between the widths of the plates
109 psi_1 = Math.Min(w1 / w2, w2 / w1);
110 psi_2 = Math.Min(w1 / w3, w3 / w1);
111

112 if (Math.Acos(-psi_1) > angle_1)
113 {
114 r_1 = 1d / Math.Sin(angle_1) * Math.Sqrt(Math.Pow(w1, 2) + Math.Pow(w2, 2)

+ 2 * w1 * w2 * Math.Cos(angle_1));
115 }
116 else
117 {
118 r_1 = Math.Max(w1, w2);
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119 }
120 if (Math.Acos(-psi_2) > angle_2)
121 {
122 r_2 = 1d / Math.Sin(angle_2) * Math.Sqrt(Math.Pow(w1, 2) + Math.Pow(w3, 2)

+ 2 * w1 * w3 * Math.Cos(angle_2));
123 }
124 else
125 {
126 r_2 = Math.Max(w1, w3);
127 }
128

129 // Find the corresponding lengths and minmize necessary length:
130 diameter = Math.Max(diameter, 2 * Math.Max(r_1, r_2));
131 diameter = Math.Max(diameter, heightOfPlate / 4);
132 }
133 NodeDataTreeInc0.Add(diameter, GH_Path_Node);
134 }
135 NodeDataTreeInc1 = NodeDataTreeInc0;
136 }

B.4 Top and Bottom of Cylinder

Figure B.4: Component calculating the top and bottom height of the cylinder.

1 private void RunScript(DataTree<double> PlatePropsDataTreeInc2, DataTree<double>
NodeDataTree, double extra, ref object TopEdgeLocal, ref object
BottomEdgeLocal, ref object NodeDataTreeInc2)

2 {
3 GH_Path GH_Path_Plate = new GH_Path();
4 GH_Path GH_Path_Node = new GH_Path();
5

6 DataTree<double> BottomEdge_ = new DataTree<double>();
7 DataTree<double> TopEdge_ = new DataTree<double>();
8

9 double anglePitch, angleRoll, bottomEdge, topEdge, outerRadius, thicknessPlate,
widthBeam, heightOfBeam, heightOfBeamEff;
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10

11 int nNodes, nPlates;
12

13 nNodes = 0;
14 GH_Path_Plate = new GH_Path(0, 0);
15

16 while (PlatePropsDataTreeInc2.PathExists(GH_Path_Plate))
17 {
18 nNodes++;
19 GH_Path_Plate = new GH_Path(nNodes, 0);
20 }
21

22 for (int m = 0; m < nNodes; m++)
23 {
24 GH_Path_Node = new GH_Path(m);
25

26 nPlates = 0;
27 GH_Path_Plate = new GH_Path(m, 0);
28

29 outerRadius = NodeDataTree.Branch(GH_Path_Node)[6] / 2;
30

31 while (PlatePropsDataTreeInc2.PathExists(GH_Path_Plate))
32 {
33 nPlates++;
34 GH_Path_Plate = new GH_Path(m, nPlates);
35 }
36

37 bottomEdge = 1;
38 topEdge = -1;
39

40 for (int n = 0; n < nPlates; n++)
41 {
42 GH_Path_Plate = new GH_Path(m, n);
43

44 anglePitch = PlatePropsDataTreeInc2.Branch(GH_Path_Plate)[4];
45 angleRoll = PlatePropsDataTreeInc2.Branch(GH_Path_Plate)[2];
46

47 heightOfBeam = PlatePropsDataTreeInc2.Branch(GH_Path_Plate)[1] / 1000;
48 thicknessPlate = PlatePropsDataTreeInc2.Branch(GH_Path_Plate)[8] / 1000;
49 widthBeam = PlatePropsDataTreeInc2.Branch(GH_Path_Plate)[0] / 1000;
50

51 // Calcuate an effective height of the beam as an effect of rolling the
rectangular cross-section:

52 heightOfBeamEff = heightOfBeam * Math.Abs(Math.Cos(angleRoll)) + widthBeam *
Math.Abs(Math.Sin(angleRoll));

53

54 topEdge = Math.Max(topEdge, extra + outerRadius * Math.Tan(anglePitch) +
heightOfBeamEff / 2 / Math.Cos(anglePitch));

55 bottomEdge = Math.Min(bottomEdge, -extra + outerRadius *
Math.Tan(anglePitch) - heightOfBeamEff / 2 / Math.Cos(anglePitch));
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56 }
57 NodeDataTree.Add(topEdge, GH_Path_Node);
58 NodeDataTree.Add(bottomEdge, GH_Path_Node);
59 TopEdge_.Add(topEdge, GH_Path_Node);
60 BottomEdge_.Add(bottomEdge, GH_Path_Node);
61 }
62 BottomEdgeLocal = BottomEdge_;
63 TopEdgeLocal = TopEdge_;
64 NodeDataTreeInc2 = NodeDataTree;
65 }

B.5 Distance to Bolt Group

Figure B.5: Component calcualting the distance to the center of the bolt group.

1 private void RunScript(DataTree<double> PlatePropsDataTree, DataTree<double>
NodeDataTree, ref object PlatePropsDataTreeInc3)

2 {
3 GH_Path GH_Path_Plate = new GH_Path();
4 GH_Path GH_Path_Node = new GH_Path();
5 DataTree<double> LengthOfPlate_ = new DataTree<double>();
6 DataTree<double> DistToCenterOfBoltGroup_ = new DataTree<double>();
7

8 int nNodes = 0;
9 int nPlates = 0;

10

11 double a1, a3, nx, DistanceToTimber, LengthOfBoltGroup, neccDist;
12

13 // Find number of nodes:
14 GH_Path_Plate = new GH_Path(0, 0);
15

16 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
17 {
18 nNodes++;
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19 GH_Path_Plate = new GH_Path(nNodes, 0);
20 }
21

22 // Loop over all nodes:
23 for (int m = 0; m < nNodes; m++)
24 {
25 // Find number of plates:
26 nPlates = 0;
27 GH_Path_Plate = new GH_Path(m, 0);
28 GH_Path_Node = new GH_Path(m);
29

30 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
31 {
32 nPlates++;
33 GH_Path_Plate = new GH_Path(m, nPlates);
34 }
35

36 // Loop over all plates
37 for (int n = 0; n < nPlates; n++)
38 {
39 GH_Path_Plate = new GH_Path(m, n);
40

41 a3 = PlatePropsDataTree.Branch(GH_Path_Plate)[13] / 1000;
42 a1 = PlatePropsDataTree.Branch(GH_Path_Plate)[11] / 1000;
43 DistanceToTimber = PlatePropsDataTree.Branch(GH_Path_Plate)[5];
44 nx = PlatePropsDataTree.Branch(GH_Path_Plate)[6];
45

46 LengthOfBoltGroup = (nx - 1) * a1;
47 neccDist = LengthOfBoltGroup / 2 + a3 + DistanceToTimber;
48

49 PlatePropsDataTree.Add(neccDist, GH_Path_Plate); // From center of the node
50 }
51 }
52

53 PlatePropsDataTreeInc3 = PlatePropsDataTree;
54

55 }
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B.6 Bolt Holes Modelling

Figure B.6: The component generating the geometry for the bolt holes in the gusset
plate.

1 private void RunScript(DataTree<double> PlatePropsDataTree, DataTree<double>
BoltPropsDataTree, ref object Holes)

2 {
3 double tolerance = doc.ModelAbsoluteTolerance;
4 GH_Path GH_Path_Plate = new GH_Path();
5 GH_Path GH_Path_Bolt = new GH_Path();
6 DataTree<Brep> CylinderDataTree = new DataTree<Brep>();
7 Point3d P;
8 Vector3d vecY;
9 Plane pl;

10 Circle circ;
11 Cylinder cyl;
12 Brep cyl2;
13 int nNodes = 0;
14 int nPlates = 0;
15 int nBolts = 0;
16 double x, y, z, d, t, distanceToBoltGroupCenter;
17

18 // Find number of nodes:
19 GH_Path_Plate = new GH_Path(0, 0);
20

21 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
22 {
23 nNodes++;
24 GH_Path_Plate = new GH_Path(nNodes, 0);
25 }
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26

27 // Loop over all nodes:
28 for (int m = 0; m < nNodes; m++)
29 {
30 // Find number of plates:
31 nPlates = 0;
32 GH_Path_Plate = new GH_Path(m, 0);
33

34 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
35 {
36 nPlates++;
37 GH_Path_Plate = new GH_Path(m, nPlates);
38 }
39

40 // Loop over all plates
41 for (int n = 0; n < nPlates; n++)
42 {
43 GH_Path_Plate = new GH_Path(m, n);
44 distanceToBoltGroupCenter = PlatePropsDataTree.Branch(GH_Path_Plate)[19];
45

46 // Find number of bolts:
47 nBolts = Convert.ToInt32(PlatePropsDataTree.Branch(GH_Path_Plate)[6] *

PlatePropsDataTree.Branch(GH_Path_Plate)[7]);
48

49 for (int k = 0; k < nBolts; k++)
50 {
51 GH_Path_Bolt = new GH_Path(m, n, k);
52

53 x = BoltPropsDataTree.Branch(GH_Path_Bolt)[0] / 1000 +
distanceToBoltGroupCenter;

54 z = BoltPropsDataTree.Branch(GH_Path_Bolt)[1] / 1000;
55 y = -PlatePropsDataTree.Branch(GH_Path_Plate)[8] / 2 / 1000;
56 d = (PlatePropsDataTree.Branch(GH_Path_Plate)[9] + 2) / 1000;
57 t = PlatePropsDataTree.Branch(GH_Path_Plate)[8] / 1000;
58

59 P = new Rhino.Geometry.Point3d(x, y, z);
60 vecY = new Rhino.Geometry.Vector3d(0, 1, 0);
61 pl = new Rhino.Geometry.Plane(P, vecY);
62 circ = new Rhino.Geometry.Circle(pl, P, (d + 2d / 1000) / 2);
63 cyl = new Rhino.Geometry.Cylinder(circ, t);
64 cyl2 = Rhino.Geometry.Brep.CreateFromCylinder(cyl, true, true);
65 CylinderDataTree.Add(cyl2, GH_Path_Plate);
66 }
67 }
68 }
69 Holes = CylinderDataTree;
70 }
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B.7 Gusset Plate Modelling

Figure B.7: The component generating the geometry for the gusset plates.

1 private void RunScript(DataTree<double> PlatePropsDataTree, DataTree<double>
NodeDataTree, ref object Plates, ref object AngleToPitch, ref object
AngleToYaw, ref object AngleToRoll)

2 {
3 GH_Path GH_Path_Plate = new GH_Path(0, 0);
4 GH_Path GH_Path_Flat = new GH_Path();
5 GH_Path GH_Path_Node = new GH_Path();
6

7 DataTree<Rhino.Geometry.BoundingBox> Plates_ = new
DataTree<Rhino.Geometry.BoundingBox>();

8

9 DataTree<double> AngleToYaw_ = new DataTree<double>();
10 DataTree<double> AngleToRoll_ = new DataTree<double>();
11 DataTree<double> AngleToPitch_ = new DataTree<double>();
12

13 Rhino.Geometry.BoundingBox box = new Rhino.Geometry.BoundingBox();
14

15 int nNodes = 0, nPlates = 0;
16 double a1, a3, e1, h, t, distLong, lengthBoltGroupX, neccDistToTimber,

angleRoll, angleYaw, anglePitch, outerRadius, nBoltsX, ringThickness;
17

18 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
19 GH_Path_Plate = new GH_Path(++nNodes, 0);
20

21 for (int m = 0; m < nNodes; m++)
22 {
23 nPlates = 0;
24 GH_Path_Node = new GH_Path(m);
25

26 outerRadius = NodeDataTree.Branch(GH_Path_Node)[6] / 2;
27 ringThickness = NodeDataTree.Branch(GH_Path_Node)[7] / 1000;
28

29 GH_Path_Plate = new GH_Path(m, 0);
30 while (PlatePropsDataTree.PathExists(GH_Path_Plate))
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31 GH_Path_Plate = new GH_Path(m, ++nPlates);
32

33 for (int n = 0; n < nPlates; n++)
34 {
35 GH_Path_Plate = new GH_Path(m, n);
36

37 t = PlatePropsDataTree.Branch(GH_Path_Plate)[8] / 1000;
38 h = PlatePropsDataTree.Branch(GH_Path_Plate)[1] / 1000;
39

40 // Add the contribution of angled beams to the contribution of the angled
ring:

41 angleYaw = PlatePropsDataTree.Branch(GH_Path_Plate)[3];
42 anglePitch = PlatePropsDataTree.Branch(GH_Path_Plate)[4];
43 angleRoll = PlatePropsDataTree.Branch(GH_Path_Plate)[2];
44

45 a1 = PlatePropsDataTree.Branch(GH_Path_Plate)[11] / 1000;
46 a3 = PlatePropsDataTree.Branch(GH_Path_Plate)[13] / 1000;
47 e1 = PlatePropsDataTree.Branch(GH_Path_Plate)[15] / 1000;
48 nBoltsX = PlatePropsDataTree.Branch(GH_Path_Plate)[6];
49 lengthBoltGroupX = (nBoltsX - 1) * a1;
50

51 neccDistToTimber = PlatePropsDataTree.Branch(GH_Path_Plate)[5];
52

53 distLong = neccDistToTimber + a3 + lengthBoltGroupX + e1;
54

55 Point3d Pt1 = new Rhino.Geometry.Point3d(0.001, -t / 2, -h / 2);
56 Point3d Pt2 = new Rhino.Geometry.Point3d(distLong, t / 2, h / 2);
57

58 box = new Rhino.Geometry.BoundingBox(Pt1, Pt2);
59

60 Plates_.Add(box, GH_Path_Plate);
61

62 AngleToYaw_.Add(angleYaw, GH_Path_Plate);
63 AngleToPitch_.Add(anglePitch, GH_Path_Plate);
64 AngleToRoll_.Add(angleRoll, GH_Path_Plate);
65 }
66 }
67 Plates = Plates_;
68 AngleToPitch = AngleToPitch_;
69 AngleToYaw = AngleToYaw_;
70 AngleToRoll = AngleToRoll_;
71 }
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B.8 Connectivity Data Tree

Figure B.8: The component generating the connectivity data tree and more.

1 private void RunScript(List<Line> Lines, DataTree<double>
MidPointNormalVectorCoordinates, ref object ConnectivityDataTree, ref object
Nodes, ref object PlatesPerNode, ref object vectorBeamsAxial, ref object
vectorBeamsNormalZ)

2 {
3 GH_Path GH_Path_Plate = new GH_Path();
4 GH_Path GH_Path_Curve = new GH_Path();
5 GH_Path GH_Path_Node = new GH_Path();
6

7 DataTree<int> ConnectToPlate = new DataTree<int>(); // Contains two types of
information: (1) Line id and (2) If it is a startpoint (=1) or not (=0).

8 DataTree<double> Coordinates_ = new DataTree<double>();
9 DataTree<Vector3d> vectorBeams_ = new DataTree<Vector3d>();

10 DataTree<Vector3d> plateVectorTransformZ_ = new DataTree<Vector3d>();
11

12 Point3d StartPoint = new Point3d();
13 Point3d EndPoint = new Point3d();
14

15 List<int> PlatesPerNode_ = new List<int>();
16 List<Point3d> Nodes_ = new List<Point3d>();
17 Point3d intCon;
18

19 int DuplicateIndex = 0;
20

21 List<Point3d> PointsToCheckForMultipleConnections = new List<Point3d>();
22 bool StartPointIsInPointsToCheckForMultipleConnections,

EndPointIsInPointsToCheckForMultipleConnections, alreadyInNodes;
23

24 double tempAngleXY, tempAngleToHorizon, vecX, vecY, vecZ, dist;
25

26 // Loop over all curves to check which nodes are connected to multiple beams:
27 for (int c = 0; c < Lines.Count(); c++)
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28 {
29 StartPoint = Lines[c].From;
30 EndPoint = Lines[c].To;
31

32 StartPointIsInPointsToCheckForMultipleConnections = false;
33 EndPointIsInPointsToCheckForMultipleConnections = false;
34

35 if (StartPoint != EndPoint)
36 {
37 // Check the start point:
38 for (int p = 0; p < PointsToCheckForMultipleConnections.Count(); p++)
39 {
40 intCon = PointsToCheckForMultipleConnections[p];
41 dist = Math.Pow(intCon.X - StartPoint.X, 2) + Math.Pow(intCon.Y -

StartPoint.Y, 2) + Math.Pow(intCon.Z - StartPoint.Z, 2);
42 if (dist < 0.15)
43 {
44 alreadyInNodes = false;
45 for (int j = 0; j < Nodes_.Count(); j++)
46 {
47 intCon = Nodes_[j];
48 dist = Math.Pow(intCon.X - StartPoint.X, 2) + Math.Pow(intCon.Y -

StartPoint.Y, 2) + Math.Pow(intCon.Z - StartPoint.Z, 2);
49 if (dist < 0.15)
50 {
51 alreadyInNodes = true;
52 }
53 }
54 if (alreadyInNodes == false)
55 {
56 Nodes_.Add(StartPoint);
57 PlatesPerNode_.Add(0);
58 StartPointIsInPointsToCheckForMultipleConnections = true;
59 DuplicateIndex = p;
60 }
61 }
62 }
63

64 if (StartPointIsInPointsToCheckForMultipleConnections == false)
65 PointsToCheckForMultipleConnections.Add(StartPoint);
66 else
67 PointsToCheckForMultipleConnections.RemoveAt(DuplicateIndex);
68

69 // Check the end point:
70 for (int p = 0; p < PointsToCheckForMultipleConnections.Count(); p++)
71 {
72 intCon = PointsToCheckForMultipleConnections[p];
73 dist = Math.Pow(intCon.X - EndPoint.X, 2) + Math.Pow(intCon.Y -

EndPoint.Y, 2) + Math.Pow(intCon.Z - EndPoint.Z, 2);
74 if (dist < 0.15)
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75 {
76 alreadyInNodes = false;
77 for (int j = 0; j < Nodes_.Count(); j++)
78 {
79 intCon = Nodes_[j];
80 dist = Math.Pow(intCon.X - EndPoint.X, 2) + Math.Pow(intCon.Y -

EndPoint.Y, 2) + Math.Pow(intCon.Z - EndPoint.Z, 2);
81 if (dist < 0.15)
82 {
83 alreadyInNodes = true;
84 }
85 }
86 if (alreadyInNodes == false)
87 {
88 Nodes_.Add(EndPoint);
89 PlatesPerNode_.Add(0);
90 EndPointIsInPointsToCheckForMultipleConnections = true;
91 DuplicateIndex = p;
92 }
93 }
94 }
95 if (EndPointIsInPointsToCheckForMultipleConnections == false)
96 PointsToCheckForMultipleConnections.Add(EndPoint);
97 else
98 PointsToCheckForMultipleConnections.RemoveAt(DuplicateIndex);
99 }

100 }
101

102 Nodes = Nodes_;
103

104 // Create the ConnectToPlate DataTree which tells us which lines are connected
to which node and in which order they should appear in the DataTree:

105 for (int c = 0; c < Lines.Count(); c++)
106 {
107 GH_Path_Curve = new GH_Path(c);
108

109 StartPoint = Lines[c].From;
110 EndPoint = Lines[c].To;
111

112 tempAngleXY = Math.Atan2(EndPoint.Y - StartPoint.Y, EndPoint.X -
StartPoint.X);

113 tempAngleToHorizon = Math.Atan2(EndPoint.Z - StartPoint.Z,
Math.Sqrt(Math.Pow(EndPoint.X - StartPoint.X, 2) + Math.Pow(EndPoint.Y -
StartPoint.Y, 2)));

114

115 // Calculate the twist based on pyramid geometry and the surface normal on
the mdpoint of the lines:

116 vecX = MidPointNormalVectorCoordinates.Branch(GH_Path_Curve)[0];
117 vecY = MidPointNormalVectorCoordinates.Branch(GH_Path_Curve)[1];
118 vecZ = MidPointNormalVectorCoordinates.Branch(GH_Path_Curve)[2];
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119

120 if (StartPoint != EndPoint)
121 {
122 for (int ic = 0; ic < Nodes_.Count(); ic++)
123 {
124 GH_Path_Node = new GH_Path(ic);
125

126 intCon = Nodes_[ic];
127 dist = Math.Pow(intCon.X - StartPoint.X, 2) + Math.Pow(intCon.Y -

StartPoint.Y, 2) + Math.Pow(intCon.Z - StartPoint.Z, 2);
128

129 if (dist <= 0.15)
130 {
131 GH_Path_Plate = new GH_Path(ic, PlatesPerNode_[ic]++);
132

133 ConnectToPlate.Add(c, GH_Path_Plate);
134 ConnectToPlate.Add(1, GH_Path_Plate);
135

136 plateVectorTransformZ_.Add(new Vector3d(vecX, vecY, vecZ), GH_Path_Node);
137

138 vectorBeams_.Add(new Vector3d(EndPoint.X - StartPoint.X, EndPoint.Y -
StartPoint.Y, EndPoint.Z - StartPoint.Z), GH_Path_Node);

139 }
140

141 dist = Math.Pow(intCon.X - EndPoint.X, 2) + Math.Pow(intCon.Y -
EndPoint.Y, 2) + Math.Pow(intCon.Z - EndPoint.Z, 2);

142 if (dist <= 0.15)
143 {
144 GH_Path_Plate = new GH_Path(ic, PlatesPerNode_[ic]++);
145

146 ConnectToPlate.Add(c, GH_Path_Plate);
147 ConnectToPlate.Add(0, GH_Path_Plate);//
148

149 plateVectorTransformZ_.Add(new Vector3d(vecX, vecY, vecZ), GH_Path_Node);
150

151

152 vectorBeams_.Add(new Vector3d(StartPoint.X - EndPoint.X, StartPoint.Y -
EndPoint.Y, StartPoint.Z - EndPoint.Z), GH_Path_Node);

153 }
154 }
155 }
156 }
157

158 for (int ic = 0; ic < Nodes_.Count(); ic++)
159 {
160 GH_Path_Node = new GH_Path(ic);
161 Coordinates_.Add(Nodes_[ic].X, GH_Path_Node);
162 Coordinates_.Add(Nodes_[ic].Y, GH_Path_Node);
163 Coordinates_.Add(Nodes_[ic].Z, GH_Path_Node);
164 }
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165

166 ConnectivityDataTree = ConnectToPlate;
167 PlatesPerNode = PlatesPerNode_;
168

169 vectorBeamsAxial = vectorBeams_;
170

171 vectorBeamsNormalZ = plateVectorTransformZ_; //
172

173 }
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Appendix C

Deriving Formulas for the

Parametric Model

C.1 Formula for Spacing of Beams

Figure C.1: Two rectangular objects packed as close together as possible without inter-
fering with each other.

161
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Figure C.1 shows that θ can be divided into to angles, creating two right triangles

θ = θ1 +θ2 (C.1)

where θ is restricted by

0 ≤ θ ≤π (C.2)

Using Rottmann [47, p. 40], the following equation is true due to the shared

hypotenus.
sin

(
θ1

)
w1

= sin
(
θ2

)
w2

= sin
(
θ−θ1

)
w2

(C.3)

Using Rottmann [47, p. 42],

sin
(
θ−θ1

)= sin
(
θ
) ·cos

(
θ1

)−cos
(
θ
) · sin

(
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)
which by insertion in C.3 implies
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(
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) ·cos
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(
θ1

)
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)
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(
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(
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Figure C.1 shows that tan
(
θ1

)
also can be written as

tan
(
θ1

)= w1

l1

implying that l1 can be written as

l1 =
w2 +w1 ·cos

(
θ
)

sin
(
θ
) (C.5)

It is easy to see that the formula can be used to calculate l2 as well by changing the

indicies

l2 =
w1 +w2 ·cos

(
θ
)

sin
(
θ
) (C.6)
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C.1.1 Avoiding Spurious Solutions

Since the formulas should work for any angle between 0 and π, it is important to verify

that the resulting distances are valid practical solutions for all angles.

One such problem occurs when the angle becomes obtuse (π/2 < θ <π). Somewhere in

this interval, the equation for the most slender bar will give a distance from the center

less than the minimum R. We will solve this by locking the length of the bar to R if

Equation C.5 or C.6 give spurious results.

Let l2 = R and use Equation C.6 to find

R = w1 +w2 ·cos
(
θ
)

sin
(
θ
)

w1 = R · sin
(
θ
)−w2 ·cos

(
θ
)

Inserted into C.5, this implies further that

l1 =
w2 +

(
R · sin

(
θ
)−w2 ·cos

(
θ
)) ·cos

(
θ
)

sin
(
θ
)
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θ
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θ
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θ
)
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θ
)

l1 =
w2 · sin2
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θ
)+R · sin

(
θ
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(
θ
)

sin
(
θ
)

l1 = w2 · sin
(
θ
)+R ·cos

(
θ
)

(C.7)

or in case l1 = R

l2 = w1 · sin
(
θ
)+R ·cos

(
θ
)

(C.8)

Note that equations C.7 does not depend on w1. In practice, it can be shown that this

criterion is sufficient since θ and w2 completely describe the corner point on bar 2

which bar 1 has to interset with. Changes in w1 does not effect how close bar 1 is to

bar 2 – only changes in l1 has an effect. This is illustrated in Figure C.2 where bar 2 can

be as wide as required, although it interferes with the "cake slice" of bar 1.

The second problem area occurs when both l1 ≤ R and l2 ≤ R according to Equation C.7

or C.8. We can although solve this problem by setting both l1 = R and l2 = R, since the

angle completely secures against overlapping.
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Figure C.2: Two bars spaced around a node. Bar 1 to the bottom right is limited by the
radius of the circle. Bar 2 to the top left is limited by bar 1.

Hence using the set of rules established, the following example was calculated using

w1 = 2.5, w2 = 1.5 and R = 1. The results are gathered in Figure C.3 for the domain

0 ≤ θ ≤ π. It is clear that the rules catches spurious results by forcing l1 and l2 to be

larger or equal to R. It is also shown that the extreme cases of θ = 0 gives ∞ while θ =π
gives R, which is reasonable.
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Figure C.3: The distance calculated from angles between 0 and π radians. Using w1 =
2.5, w2 = 1.5 and R = 1.

C.2 Formula for Calculating Minimum Ring Radius

The formula is based on the same theory as in Chapter C.1, only with some minor

tweaks to the formulas. The ring radius is only depending on the plates and their foot

print on the ring, making the spacing theory from C.1 valid for our situation.

We can therefore still use Equation C.4 to write .

tanθ1 = w1 · sinθ

w2 +w1 ·cosθ

This time, using li as radius will not be sufficient. It is therefore necessary to calculate

the diagonal r of the quadrilateral in Figure C.1

tanθ1 = w1

l1
= w1√

r 2 −w2
1

which inserted in C.4 implies that

1√
r 2 −w2

1

= sinθ

w2 +w1 ·cosθ
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Figure C.4: Example of necessary ring radius when w1 = 1 and w2 = 2 for angles
between 0 and π radians.

r =
√

w2
1 +

(
w2 +w1 ·cosθ

)2

sin2θ

which can be simplified to

r = cscθ
√

w2
1 +w2

2 +2w1w2 cosθ (C.9)

This set of equations works until a certain angle θ where r starts increasing. It is clear

that r has to be locked to the maximum of w1 and w2 when

sin
(
θ−π/2

)= min
(
w1/w2, w2/w1

)=−cosθ

which implies that

r = max
(
w1, w2

)
(C.10)

when

θ ≥ cos−1 (−ψ)
(C.11)

where

ψ= min

(
w1

w2
,

w2

w1

)
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C.3 Formula for Plate Footprint on the Ring

Because of the pitching of the beams relative to the nodal coordinate system, the foot-

print of the plate on the ring is shifted vertically and prolonged. Figure C.5 shows this

effect

zt = d

2
tanφ+ heff

2
secφ (C.12)

and

zb = d

2
tanφ− heff

2
secφ (C.13)

using that

heff = h · |cosω|+ t · |sinω|

where ω is the twist of the beam around the normal beam axis.

Figure C.5: The effect of pitching the plate an angle φ
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Figure C.6: Height of top edge and bottom edge from the plate footprint on the ring
when r = 1 and h = 2.

C.4 Formula for Finding Necessary Length to Timber

Edge before Pitching the Plates

Since all the plates are generated in the global coordinate system before they are pitched

into a correct angle to the node, it is crucial that the effect of the shortened distance to

the timber edge is considered. Figure C.7 shows that

l1,edit ·cos φ− h

2
· sin φ= l1 (C.14)

l1,edit =
l1 +h/2 · sin φ

cos φ
(C.15)

l1,edit = l1 sec φ+ h

2
tan φ (C.16)
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Figure C.7: Pitching the plates forces the plate to be lengthened.
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Appendix D

Material Properties Aluminum

C95500
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P.O. Box 816  •  Mars, PA 16046  •  Phone (724) 538-4000  •  Toll Free (800) 626-7071  •  Fax (724) 538-3956

Product Description:  NIckel Aluminum Bronze 

Solids:   ½" to 9" OD

Tubes:  11⁄8" to 9" OD 

Rectangles:  Up to 15"

Standard Lengths:  144"

Shape/Form:  semi-finished, mill stock or near-net shapes, anode, bar stock, billet/bloom, squares, hex, plate, profile or  
 structural shape, flats/rectangular bar

Compliance:  C95500 is compliant with key legislation including (1) Federal Safe Drinking Water Act 1974 – SDWA,  
 (2) Federal Reduction of Lead in Drinking Water Act 2011 and (3) California AF1953

Typical Uses

Builders Hardware   window hardware

Consumer  musical instruments, piano keys

Electrical  electrical hardware

Fasteners  stuffing box nuts

Industrial  machine parts, glass molds, welding jaws, wear plates, aircraft components, pickling equipment, valve guides/
seats/bodies, piston guides, pump fluid ends, glands, worms, worm gears, hot mill guides, sewage treatment 
applications, valve components, bearings, gears, bushings, landing gear parts, handgun recoil mechanisms

Marine  ship building, covers for marine hardware, marine applications, marine hardware

Ordnance  government fittings

Note: Also available in heat-treated condition.

Similar or Equivalent Specification

 CDA ASTM ASARCON  SAE AMS FEDERAL MILITARY OTHER

 C95500 B505    QQ-C-390, G3 MIL-B-16033, CLASS 4 Aluminum Bronze 9D 
  B505M

Chemical Composition

C95500

C
ast P

rod
u

cts 
| 

C
95500

3STANDARD-STOCKED PRODUCT

Cast • GreenAlloy™

Cu% Fe% Ni%1 Al% Mn%

78.00 
min

3.00-
5.00

3.00-
5.50

10.00-
11.50 3.50

Chemical Composition according to ASTM B505/B505M-14

1Ni value includes Co.
Note: Cu + Sum of Named Elements, 99.5% min. Single values, unless otherwise noted, represent maximums.

C95500



P.O. Box 816  •  Mars, PA 16046  •  Phone (724) 538-4000  •  Toll Free (800) 626-7071  •  Fax (724) 538-3956

Fabrication Properties Thermal Properties 

  Joining Technique Suitability

  Soldering Good
  Brazing Fair
  Oxyacetylene Welding Not Recommended 
  Gas Shielded Arc Welding Good
  Coated Metal Arc Welding Good

Fabrication Properties provided by CDA

Treatment Temp./Time - US Temp./Time - SI

Stress Temperature 600 316
Solution Minimum 1600 872
Solution Maximum 1675 914
Solution Time 1.0
Solution Medium Water
Precipitation Value  
Precipitation Time 
Precipitation Medium 
Annealing Minimum 1150 622
Annealing Maximum 1225 663
Annealing Time 1.0
Hot Treatment Minimum  
Hot Treatment Maximum  

Thermal Properties provided by CDA

Mechanical Properties 

Tensile Strength, min Yield Strength, at .5%  Elongation, in 2 in. or Brinell Hardness Remarks
   extension under load min 50 mm min

   ksi MPa ksi MPa % typical BHN

   95 655 42 290 10 208 (3000 kg)

Mechanical Properties according to ASTM B505/B505M-14

Physical Properties

  US Customary Metric

 Melting Point – Liquidus 1930˚ F 1054˚ C
 Melting Point – Solidus 1900˚ F 1038˚ C
 Density 0.272 lb/in3 at 68˚ F 7.53 gm/cm3 at 20˚ C
 Specific Gravity 7.53 7.53
 Electrical Conductivity 8% IACS at 68˚ F 0.049 MegaSiemens/cm at 20˚ C
 Thermal Conductivity 24.2 Btu · ft/(hr · ft2 · ˚F) at 68˚ F 41.9 W/m at 20˚ C
 Coefficient of Thermal Expansion 9 · 10-6 per ˚F (68˚-572˚ F) 15.5 · 10-6 per ˚C (20˚-300˚ C)
 Specific Heat Capacity 0.10 Btu/lb/˚F at 68˚ F 419 J/kg at 293˚ C
 Modulas of Elasticity in Tension 16000 ksi 110000 MPa
 Magnetic Permeability* 1.32 1.32
 Magnetic Permeability** 1.2 1.2
 Poisson’s Ratio 0.32 0.32

Physical Properties provided by CDA
*As Cast, Field Strength 16 kA/m **TQ 50 Temper, Field Strength 16 kA/m

Machinability

 Copper Alloy UNS No. Machinability Rating Density (lb/cu in at 68˚ F)

 C95500  50 0.272

C
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ct

s 
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C
95

50
0 C95500 continued
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Appendix E

Parametric Model

See attached file:

Parametric_Model_Gridshell_Connections_2018-06.gh

Remark: All code in the orange group is from Huseby and Eliassen [44]. The model is

used with their permssion.
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Appendix F

FEA of Node 83 in Case Study

See attached file

Node_83_AbaqusAnalysis.CAE
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