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(a) Offshore Vessels (b) Fishing Vessels

Figure 2.3: Density of fishing vessels and offshore vessels along the Norwegian Coastline
Kystverket

From the figures above we see the density of traffic over the last five years from fishing- and

offshore vessels. Norway has been a major actor in global oil production and as we can see

from Figure 2.3a above the traffic related to the oil production stretches from the north sea and

upwards along the coastline. Luckily the number of accidents related to oil production and the

offshore industry is marginal. However, in the case of an accident, the environmental footprint

could potentially be enormous which means that this is an area where it could be desirable to

have operating coast guard vessels with oil-spill recovery capabilities. The ability for towing

could also potentially be desirable because drifting vessels with maneuverability could cause

severe damage. It should be mentioned that a lot of the offshore vessels operating in this area

do have these capabilities and will be able to respond, but it is still a critical area to consider

when evaluating potential deployment locations.

Norway is also a big fishing nation. From Figure 2.3b which represents fishing vessel traffic, we

can see that fishing takes place all along the coast as well as in the Barents Sea. The Barents Sea

is a rather shallow shelf popular for fishing and in search of hydrocarbons (oil and gas). The

Barents Sea is located in the north of Norway and is split between Russia and Norway. The rich
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fisheries and valuable ground have been a cause for boundary dispute between Norway and

Russia for decades. In the boundary conflict, Norway favors a medial line established in the

Geneva convention in 1958, while the Russians favor a meridian sector line, based on a Soviet

decision in 1927 (Wikipedia). This lead to the area being "Gray zone" up until now recently

where the zone was divided between Russia and Norway. However, with this area being one of

the most productive oceans in the world means that this is also an area of concern for the Coast

Guard and an area that needs patrolling to maintain Norwegian jurisdiction and ownership.
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3.1.1 Coast Guard scheduling and location

A typical problem for a Coast Guard is scheduling the fleet of vessels to perform a set of reports

where each report and specific requirements regarding the number of ships needed and du-

ration time. Darby-Dowman et al. (1995) has developed a software tool for scheduling Coast

Guard cutters that address this problem. The model is a set partitioning model where being late

for a report is allowed, but penalized. The objective of the model is to select a schedule that

meets the most of the requirements in a given period. Darby-Dowman et al. (1995) emphasize

the importance of a robust system in case of changes in the real world for the model to hold. The

scheduling model shall support the tactical aspects of the problem and the corresponding op-

erational requirements. Shortcomings of the model is that it is not fully automated and requires

human decision making in processes where schedules overlap. The model cannot distinguish

between operations, meaning that higher priority schedules need to be picked manually. Simi-

larly, scheduling problem has been assessed by Brown et al. (1996), where they sought to: mini-

mize the number of required patrol weeks missed, minimize the transit time to patrol areas and

equitably distribute the patrol weeks among the cutters. As with Darby-Dowman et al. (1995),

Brown et al. (1996) have also implemented penalties in the model to satisfy the requirements

for weekly patrols and maintenance. The scheduling model resulted in only three missed patrol

weeks which is a vast improvement from the manual scheduling done previously.

Cline et al. (1992) introduces a best-scheduling heuristic for scheduling coast guard buoy ten-

ders for solving sizeable real-world routing problems. Their method reduced the real-world

problem to a traveling salesman problem which has multiple known solution methods. The ob-

jective function to be minimized considers not only distance traveled but also arbitrary penalty

factors so long as the penalties can be measured in units convertible into equivalent miles. Their

investigation showed that the new method “the best-scheduling” could be applied to numerous

problems and produce results. As mentioned in Chapter 2, helicopters are becoming a more

and more critical part of the operations of the coast guard. Hahn and Newman (2008) has de-

veloped a mixed integer problem for deployment and maintenance of coast guard helicopters.

The result is a scheduling plan for the weeks between maintenance that can consider multiple

deployment sites.
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Alexandris and Giannikos (2010) has presented a paper based on a maximal covering location

problem to study the effects of change in demand on maximal covering problems. They intro-

duce an integer programming model to study how a change in demand space and coverage gaps

change the results. By also introducing geographic information system they can show that the

new model is more robust and requires fewer facility servers to have the same coverage as with

conventional coverage models and at the same time reduce the coverage gaps. By using GIS

(Geographic information system), they can introduce partial covering such as areas instead of

discrete nodes common in the generic MCLP. In the paper, they state that their modified MCLP

is more realistic and provides a more applicable notion of coverage.

An extension of the MCLP has been purposed by Berman and Krass (2002) where they introduce

a model based on the MCLP with a generalization which they called GMCLP, such that it allows

for partial covering of customers. The degree of coverage is determined by a non-increasing step

function of the distance to the nearest facility. The study shows that in essence, their modified

MCLP becomes an equivalent to the uncapacitated facility location problem. In more recent

years Berman et al. (2010) have introduced a paper where the goal was to get an overview of the

classes of models. The three classes of focus were gradual covering models, cooperative cov-

ering models, and variable radius models. The gradual covering models seek to ease the "all

or nothing" constraint allowing facilities to be placed within a specific range from the demand.

The cooperative models assume that the facilities can contribute to full coverage and that de-

mand at a node is met when coverage is at a certain threshold. Variable radius models where

instead of having a preset number of facilities to place the problem is denoted a budget that

can be looked at as facilities with different range directly transferable to facility costs giving the

problem more flexibility.

Within emergency response, the maximum covering problem has become a popular tool for

determining locations for distributing emergency facilities. Adenso-Díaz and Rodríguez (1997)

have formulated an MCLP problem to determine the location of ambulances in Leon, Spain.

They present a tabu-search heuristic to solve a problem where 25 ambulances shall cover about

500.000 clients. The result showed that with 25 ambulances they were able to cover 99,5% of the

population within a responsive of 25 minutes. It shall be noted that to cover the additional 0.5%
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the required amount of ambulances had to be 36, hence again showing that complete coverage

is not always favorable in cost terms.

In more recent years Blanquero et al. (2015) discusses a max covering location problem by a fi-

nite set of users and facilities. The objective is to maximize the expected demand covered where

locations of facilities a sought along the edges in a network, making this a mixed integer non-

linear program. Due to the non-discrete network the method applied to emergency response

analysis and health care analysis. However, it is shown that the method only is applied to a finite

problem with a relatively small set of candidates. Blanquero et al. (2015) have also developed a

branch and bound strategy for solving the max covering problem.

R.Paul et al. (2016) has also reviewed a maximal condition covering problem. The objective for

this paper is to analyze the existing and optimal locations for responding to large-scale emer-

gencies. In essence, they seek to maximize cover population response with minimal changes to

the existing response plan. The result was a grid showing the response "nodes" and the cover-

ing radius. The analysis showed that the improvement was 98% by only changing 30% of the

original emergency structure.

In some situations, the number of clients at a facility might affect how the model will behave.

To account for this Marianov and ReVelle (1996) has purposed a queuing model with stochas-

tic arrivals at the facility to try a create a more realistic problem. In the model they define a

minimum time for service, based either on the number of clients in the queue or a maximum

weighting time. This resulted in an extension to the MCLP, the probabilistic maximum covering

location-allocation problem (PMCLAP). One issue is that due to the complexity of real-world

problems, researchers often prefer to use heuristics instead. Pereira et al. (2015) took the PM-

CLAP a step further and introduced a large neighborhood search heuristic to determine the

location decisions of the problem. By solving the allocations as subproblems they were able to

locate optimum in 95% of the cases.

In contrast to maximizing the covered population that was a basis in the MCLP, in some cases it

could be preferable to minimize the use of facilities. Hakimi (1964) was one of the first to present

concept of Location set covering problem (LSCP), where he wanted to minimize the number of

police officers that could be distributed onto a highway network with a minimal distance from
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4.1.2 Maximal covering location problem

In contrast to the LSCP above where there are no restrictions in the number of facilities that

can be built to cover all nodes, it is likely that this would not be the case in the real world. In

reality, decision makers could be restricted by the amount facilities that can be built which can

be reviewed as a budget constraint. Also, the LSCP treats all node by identically hence it does

not distinguish between the importance of covering one specific node. The maximal covering

location problem seeks to maximize the number of demand nodes. This problem leads to the

fixating the number of facilities being built, and the demand nodes are given different weights

depending on their level of importance. The goal is to maximize the number of covered nodes.

Church and ReVelle (1973) originally proposed the following formulation.

Sets and Parameters:
I = The sets of demand nodes i

J = The sets of facility sites j

S = The distance beyond which a demand point is considered uncovered

ai = The weighted demand at node i

di j = The shortest distance from node i to facility site j

Ni =
n

j 2 J | di j ∑ Si

o
. The set of facilities eligible to provide coverage to point

i . Si is the maximal service distance and di j is the shortest distance

P = Number of available facilities

Variables:

x j =

8
>><

>>:

1 if a facility is located at site j

0 Otherwise

yi =

8
>><

>>:

1 if a node is covered in the set Ni

0 Otherwise
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P-center problem, the requirements are also to cover all nodes by locating a given number of

facilities by minimizing the coverage distance. Instead of having a predetermined maximum

distance “S” (which have been used in the previous problems), the model determines the min-

imal covering distance endogenously by locating P facilities. This Problem is known as a mini-

max problem because it seeks to minimize the maximum distance between demand nodes and

facilities.

The center covering problem is divided into two main classes, the vertex- and the absolute cen-

ter problems. Whereas the absolute allows facilities to be located anywhere on the network the

vertex is restricted to nodes. This thesis focuses on deterministic models therefor the absolute

model will not be prioritized, and the focus will be on the vertex problem.

Sets and Parameters:
I = The sets of demand nodes i

J = The sets of facility sites j

P = Number of facilities to be located

di j = The shortest distance from node i to facility site j

D = The maximum distance between a demand node and the nearest facility

Variables:

x j =

8
>><

>>:

1 if a facility is located at site j

0 Otherwise

yi j =

8
>><

>>:

1 if a node i is served by facility site j

0 Otherwise
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I = The sets of demand nodes i

J = The sets of facility sites j

hi = demand at node i

P = Number of facilities to be located

di j = The shortest distance from node i to facility site j

Variables:

x j =

8
>><

>>:

1 if a facility is located at site j

0 Otherwise

yi j =

8
>><

>>:

1 if a node i is served by facility site j

0 Otherwise

mi n z =
X

j2J

X

i2I

hi di j yi j (4.16)

s.t .
X

j2J

x j = P, (4.17)

X

j2J

yi j = 1 8i 2 I (4.18)

yi j °x j ∑ 0 8i 2 I , j 2 J (4.19)

yi j = (0,1) 8i 2 I , j 2 J (4.20)

x j = (0,1) 8 j 2 J (4.21)

The objective function is to minimize the total demand-weighted distance between the demand

nodes and the facilities. Constraint (4.17) makes sure that the required number of facility P is

met, and constraint (4.18) makes sure that all demand points is connected to a facility. Con-

straint (4.19) allows for the demand node only to be connected to where there is a facility node

j. Finally, the last two constraints are binary. It shall be noted that the formulation above only

allows for the facilities to be located at a finite selected set of potential sites. These nodes rep-

resent the set of nodes J in the network, and Hakimi (1964) showed that for a given number of

facilities P, it exists an optimal solution on the nodes of the network.
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between l and u. For a given distance d the cost function becomes:

c(d) =

8
>>>>>><

>>>>>>:

0, d ∑ l ,

w(d ° l ), l ∑ d ∑ u,

w(u ° l ), d ∏ u

Assuming that the cost of allocation a facility at node i is equal for all facility sites j we can

formulate the problem below.

Sets and Parameters:
I = The sets of demand nodes i

J = The sets of facility sites j

Ci (d) = cost of placing a facility at node i

P = Number of facilities to be located

l = Inner covering radius

u = Outer covering radius

Variables:

x j =

8
>><

>>:

1 if a facility is located at site j

0 Otherwise

yi j =

8
>><

>>:

1 if a node i is served by facility site j

0 Otherwise
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guard problem which is the reason for inventive the effects a maximum covering can have on a

coast guard deployment problem.

The goal for this thesis is to see how MCLP can be used in deployment of coast guard fleet and

show the trade-off between coverage and cost of multiple fleets with different fleet alternatives.

First of all, we need to establish an initial fleet that can be implemented into the model. In

Section 2.2 an introduction of the Norwegian coast guard fleet where presented. The vessels

have a wide spread of applications and capabilities, and it would be a big challenge to include

this fleet in the model. Hence the initial fleet in this thesis is the fleet presented by Buland

(2017) in his thesis. The fleet consists of 8 vessels with different capabilities. The model will be

limited to sea-going vessels only, meaning that all though some of the vessels have helicopter

capabilities, effectively making the vessel able to respond faster to a mission and cover a greater

area.

The second decision is to determine the type of missions and objectives to analyze. As reviewed

in Section 2.1 there are multiple missions and operations of interest, but to limit the scope we

have narrowed the analyze to 4 types for missions; search and rescue, tugging operations, pa-

trolling and oils spill recovery. One of the reasons for limiting the operations to 4 is that some of

the operations would require similar capabilities from the vessels, hence by reducing the num-

ber of mission types it becomes easier to distinguish between the missions, reducing the pos-

sibility of double counting. Also, making it easier to decide vessel capabilities for each of the

eight vessels. Meaning that a vessel that does not have oil recovery capabilities cannot respond

to an oil recovery mission, and so on. In Lovdata they mention controlling fisheries as one of the

main priorities for the coast guard, and due to this, patrol areas gets denoted a vessel coverage

requirement. Hence, these nodes must be covered to have a feasible solution.

Next is determining the areas and locations for the coast guard problem. Although this problem

could be solved in a common network of nodes, the operational area is restricted to the waters

under the Norwegian jurisdiction, this also helps readers visualize the scope of the problem. It

has been difficult to obtain good data from the Norwegian coast guard on operations that can

aid the job of forecasting the locations of operations that could be of interest. Collecting AIS

data from the coast guard is, of course, the ideal approach, but for obvious reasons challenging.
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This will discusses further in Chapter 8. To get around this, the locations chosen as a result of

identifying marine traffic and political interests for the Norwegian government and coast guard.

This assumption is a result of the availability of realistic data, making it hard to present any

deployment recommendations to the coast guard problem. Below is an illustration showing

the marine traffic over a year period and an illustration showing the chosen mission locations

chosen for this study.

(a) Traffic along the Norwegian coast (Traffic) (b) Mission locations

Figure 5.1: Showing traffic along the Norwegian coastline and the locations for the coast guard
missions

The nodes marked with 1 is the patrol nodes which has patrol requirement of at least one ves-

sel. In Section 2.3 we talked about the political interests and fishery activities. Hence we have

allocated a set of demand nodes to the Barents Sea (Wikipedia) as well as to the left in the map

where there is known commercial fisheries and shipping. The nodes marked with the number 2

represents demand nodes with oil recovery operation. This location is one of the biggest areas

in the world for oil and gas production, hence having a vessel with oil recovery capabilities is
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nodes on shore are filtered away (Greene, 2014).

To evaluate the covering performance of the coverage from the facilities a weighted demand

is denoted each node in the network corresponding to the importance of a particular mission.

The weight applied to these nodes is decided by the author, and it is purely experimental. Based

on the recognized locations in Figure 5.1a a source node gets denoted a weighted value which

serves as a reward if covered by a facility. However, it is recognized that covering neighbor-

ing nodes should also be rewarded because that would imply that being close to a task gives a

shorter response time in the event of an occurring assignment. This can be looked as a take on

a “gradual covering model” addressed by Berman et al. (2010), where the neighboring nodes are

denoted by a diminishing value according to the distance to the source node. In the event of

nearby tasks occurring the nodes will get the accumulated score which would give these nodes

a higher rating. This is a reasonable assumption, as with missions located close by each other

it would imply that the probability of an event happening in this area is higher and desirable to

have a facility located in this area. This effect can be seen from the contour plot below. It shall

be noted that the weighted demand has been scaled up to give a better visual representation

(Figure 5.2b).
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• The problem is assumed to be a static and discrete planning problem. Static planning in

characterized by that the input variables are the same and does not change during the

planning process. By keeping the problem discrete means that locations sites feasible

solutions are restricted to a network of nodes.

• The problem is assumed to be a mixed integer problem which means that no fractional

solutions are permitted. This makes sense since dividing a vessel between two locations

would not be possible. This assumption also results in the "all or nothing" assumption

where for example a person at 4.9 kilometers would be fully covered while a person at 5.1

would not be if the coverage distance where 5 kilometers.

• A demand node that is selected as a mission will be denoted a weighted value, represent-

ing the importance of covering the node. Also, to respond to the gradual covering prob-

lem, neighbouring nodes gets denoted a reduced value depending on a fixed distance. If

demand nodes are located next to each other then the scores will be added together.

• We have assumed that the facilities or vessels have constant predetermined coverage ra-

dius.
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Sets:

I The sets of demand nodes i

J The sets of demand nodes j

V The sets of vessel types v

Di Set of nodes that have vessel demand at node i v

M The sets of mission types m

K Set where k represents the number of vessels

Ni vm Ni vm =
n

j | di j ∑V R \ Amv = 1
o

, a subset of nodes j that is satisfies the con-

dition inside the bracket.

Parameters:

Wi mk The weight donated to a node i for mission type m. k is 1 of the vessel

responding is the first to respond, 2 if second, etc.

Di Vessel demand at node i

Pv Available vessels type of v

Variables:

x j v Integer variable describing the number of vessels denoted to node j

yi mk Integer variable describing if node i is covered by k number of ships

Model:

max z =
X

i2I

X

m2M

X

k2K

Wi mk yi mk (6.1)

s.t .
X

k2K

yi mk °
X

v2V

X

j2Ni vm

x j v ∑ 0 8i 2 I ,m 2 M (6.2)

X

v2V

xi v ∏ Di 8i 2 I (6.3)

X

j2J

x j v ∏ Pv 8v 2V (6.4)

yi mk ∑ 1 8i 2 I ,m 2 M ,ki nK (6.5)

x j v 2Z+ (6.6)

yi mk 2Z+ (6.7)
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time for mission m and V Sv is the maximum speed for vessel v.

The subsets are generated from a Matlab script which can be seen in Appendix A.3.
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7.2 Case 1

In this first case, we shall see how the deployment of the initial vessel fleet consisting of eight

different vessels, one of each. These vessel attributes and capabilities can be seen in Table 7.1

and Table 7.2. The goal with this test is to see if the model performs as expected before experi-

menting with multiple fleets and fleet sizes.

Figure 7.1: Deployment of single fleet with one vessel of each vessel type

The figure above illustrates the deployment of the initial fleet with one of each vessel type. From

the generation of weighted nodes, we know that patrol nodes are awarded the most points so as

expected some of the vessels have been allocated directly at these nodes and it is clear that con-

straint 6.3 is satisfied. Also, we can see that the effect of diminishing return on already covered

nodes discussed in Section 6.8 has affected the deployment, and hence the vessels are some-
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regarding coverage, and one can easily select a point and see the attributes of the fleet. As seen in

Figure 7.3 the increase in weighted coverage grows significantly up to the point of 20 vessels and

up until this point the different fleets are tightly grouped. However, after this point, we see that

the dispersion of the weighted coverage increases. This is due to that the high rewarding nodes

are covered more than once, providing less points for covering by the next vessel. This forces

vessels to spread out and cover less profitable nodes. Another reason for the dispersion that

occurs at around 20 vessels is that that the run-time for each fleet type is restricted to 20 seconds.

There are two reasons for this; the first being that the model will try and solve to optimality for

as long as it takes. Hence the model will not have time to fully locate optimality. Still, as we

can see from Figure 7.2, the optimality gap shows that even though runs are time restricted, the

solutions are close to optimality.

Figure 7.2: Optimality gap gap

The figure above shows that the located solutions are not far from the upper bound, and it shall

be noted that this also means that the solution could potentially be closer to optimality than the

figure illustrates. There are some points that strikes out, and this should be taken into consider-

ation when evaluating fleet design if based on the solution.
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Figure 7.3: Scatter plot of number of vessels and cost of fleet

The scatter plots above shows that there the fleets are pretty gathered together. However, some

points stick out. The red circle represents a point that has a high cost but does not provide

any additional weighted coverage as expected regarding cost. The red point represents fleet

number 135, and it consists of 59 vessels and costs $2733M. First and foremost, considering that

the Norwegian coast guard today has a fleet of 16 vessels, it is highly unlikely that a fleet of 59

vessels will become a reality, but we can learn from the results. As we can see the three most

expensive vessels are vessel 6,7 and 8, and these are also the vessels that are in a high quantity

in the fleet. This indicates that when decision makers shall determine an initial fleet, it could be

wise to restrict the amount of these vessels to keep the costs down.

Table 7.5: Example of fleet

Vessel Type 1 2 3 4 5 6 7 8

Number of vessels 4 11 3 4 11 7 10 9

Vessel price [mUSD] 27 36 34 38 36 77 55 51
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When exploring the different fleet alternatives, locating the Pareto frontier can help to visualize

the change of utility for a given cost. The utility, in this case, is defined as the portion of coverage

a fleet can serve in comparison to the maximum coverage for the complete scenario. Figure

7.4 shows the Pareto frontier for case 2 highlighted as red points. Points below the highlighted

points are known as sub-optimal points, and in general, there should exist a solution on the

path of the Pareto frontier. The highlighted points represents fleet 7, fleet 104 and fleet 142 and

consists of 2, 32 and 57 vessels. If we look closely into the first red dot, we can get an indication

as to why this fleet is providing such a high utility at a considerably lower cost than fleets at

the same cost level. The fleet consists of two vessels, one of vessel 4 and one of vessel 5. As

we can see vessel 4 and 5 both have patrol capabilities and due that the patrol nodes are the

only nodes that are required to cover and the location of these nodes means that the fleet can

meet the coverage constraints. However, only having two vessels provides little flexibility and

such a fleet would be vulnerable to change in the location of potential patrol nodes. Although it

would probably never be a situation where the Norwegian coast guard would acquire more than

20 vessels considering they have 16 today, the MCLP can be used to identify affordable fleet

solutions or fleet solutions that can serve as an initial fleet for study in a further investigation

under the consideration of some utility and cost constraint. In Figure 7.4 we can also see how

one can identify a design space by introducing some cost and utility constraints and can narrow

down the search for a good fleet mix.
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Figure 7.4: Pareto frontier for case 2 indicated by the red dots

Below is a figure showing the deployment of the result that gave the highest objective function.

Off course it would never be an option to acquire 60 coast guard vessels, but its interesting to

see how the the vessels would have been deployed. We can clearly see that the vessels will still

be allocated to the areas that rewards the most points. With the coverage radius of the vessels

being relatively small there are still a lot of pints rewarded for additional vessels to be deployed.
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putting more stress on the model. This became clear when model returned no feasible solu-

tions when time restricted to 20 seconds, so the time was increased to 240 seconds, resulting in

feasible solutions shown in Figure 7.6.

Figure 7.6: Scatter plot of fleet solutions

The results show that the change in subset conditions which led to an increase in coverage dis-

tance means that more demand nodes will be covered from a single vessel and that the coverage

starts converging to a maximum level of coverage at around 7 vessels. In Section 5.2 we men-

tioned that all nodes are denoted a value of 1 or higher if the node is close to a mission site,

and by looking at Figure 7.7 we see that there is room for placing vessels up in the left corner.

However, as these nodes are only rewarded the score of 1 coverage, the added cost of additional

vessels is not justified in additional coverage. From Figure 7.6 we also see that the model strug-

gles to find feasible solutions for more than 14 vessels. Hence there is no incentive for solving

for bigger fleets. These results do also give proof that the weighted diminishing marginal re-

turn presented in Section 5.3 is active, which is also one of the reasons why not more vessels are

allocated the contoured areas where there is more award for covering. Notice from figure 7.7
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that when the vessels have a high coverage radius, which translates to a longer response time

requirement, the vessels do not have to be located at the epicenters of the contours. Instead

they can be located nearby, and still offer full coverage support for the demand nodes.

Figure 7.7: Deployment of fleet with maximum coverage
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having an individual maximum response time for the missions. Comparing the results we see

that although there are far less vessels in the fleet in case 3 the overall coverage is ten times a

great. The reason for this is that each vessel effectively has a higher coverage radius as discussed

in Section 7.4 resulting in more nodes covered giving more points for fewer vessels. We can also

see that the effect of the marginal return on the covered nodes ion Case 2, where the covering

radius is smaller. Which results in a reduction in awarded points faster. While in case 3, the large

covering radius means that there is a higher reward per vessel, and more vessels get to "enjoy"

the reward from mission nodes before the reward diminishes due to coverage by multiple ves-

sels. All this goes to show how big the effect the coverage radius have on the model and that

getting realistic data on this issue could be valuable for future design.

One challenge when using optimization software is that in many occasions locating an optimal

solution can be time-consuming and near impossible, and therefore, the run-time of the model

has been restricted to reduce computational time. In Chapter 7 the computational time was

mentioned in that the run-time per fleet was restricted to 20 seconds for case 1 and 2 and 240

seconds for case 3, and the challenge then becomes how can we determine that we have an

acceptable solution. An acceptable solution and the accuracy op an optimization problem will

vary with the type of problem, and in general, there will a trade-off between having a lower

computational time and accurate solutions. In this the lack of realistic data has resulted in that

the author has created most of the data, and by Figure 7.2 we have shown that although having

a maximum run-time the solutions are quite close to optimal, and Lundgren et al. (2012) has

that near-optimal solutions are acceptable in instances where there is considerable uncertainty

in input data which this thesis has. This has led to that in contrast to case 2 that tested 144

different fleets within a reasonable time; Case 3 has only managed 30 fleets.

A method for evaluating the fleets has been to look at the Pareto frontier showing the trade-off

between cost and utility, and as explained in Section 7.3, by implementing some design restric-

tions such as a maximum cost or minimum utility as seen in in Figure 7.4 a design space can be

established as a source for further fleet development. In Section 7.3 we discussed that the MCLP

could serve as a support to solve the strategic fleet size and mix, and also, the design space area

could be a good starting point when evaluating the operational problem. It is important to re-
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insight into the problem. Also vessel capabilities are in this study limited to patrol, tugging,

SAR(search and rescue) and oil recovery. Also, including helicopter capabilities and ice class

operability could be of interest as this would change how the fleet structure entirely. Further-

more, combining this study with routing is also and interesting study for the future. By including

routing to the model it might be possible to get a more dynamic measure of effectiveness, since

vessels are then able to be located on the paths between the nodes in the network.
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%% Create response time vector

RT = zeros(1,length(Missiontype));

for i = 1:length(Missiontype)

if Missiontype(i) == 1

RT(i) = 24;

elseif Missiontype(i) == 2

RT(i) = 16;

elseif Missiontype(i) == 3

RT(i) = 24;

elseif Missiontype(i) == 4

RT(i) = 12;

end

end

%% Generating weights on the nodes

WP = ones(length(Coord),1); %weighted point matrix

for i = 1:length(Coord)

if MP(i) == 1

for j = 1:length(Coord)

if S.dist(j,i) == 0

WP(j) = WP(j)+6;

elseif S.dist(j,i) <= 25 && S.dist(j,i) > 0

WP(j) = WP(j) + 4;

elseif S.dist(j,i) <= 100 && S.dist(j,i) > 25

WP(j) = WP(j) + 3;

elseif S.dist(j,i) <= 250 && S.dist(j,i) > 100

WP(j) = WP(j) + 1;

end

end

elseif MP(i) == 2

for j = 1:length(Coord)

if S.dist(j,i) == 0

WP(j) = WP(j)+5;

elseif S.dist(j,i) <= 25 && S.dist(j,i) > 0

WP(j) = WP(j) + 3;

elseif S.dist(j,i) <= 100 && S.dist(j,i) > 25

WP(j) = WP(j) + 2;

elseif S.dist(j,i) <= 250 && S.dist(j,i) > 100

WP(j) = WP(j) + 1;

end

end

elseif MP(i) == 3

for j = 1:length(Coord)

if S.dist(j,i) == 0

WP(j) = WP(j)+7;

elseif S.dist(j,i) <= 25 && S.dist(j,i) > 0

WP(j) = WP(j) + 5;

elseif S.dist(j,i) <= 100 && S.dist(j,i) > 25

WP(j) = WP(j) + 2;

elseif S.dist(j,i) <= 250 && S.dist(j,i) > 100

WP(j) = WP(j) + 1;

end

end

elseif MP(i) == 4

for j = 1:length(Coord)

if S.dist(j,i) == 0
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WP(j) = WP(j)+7;

elseif S.dist(j,i) <= 25 && S.dist(j,i) > 0

WP(j) = WP(j) + 5;

elseif S.dist(j,i) <= 100 && S.dist(j,i) > 25

WP(j) = WP(j) + 2;

elseif S.dist(j,i) <= 250 && S.dist(j,i) > 100

WP(j) = WP(j) + 1;

end

end

end

end

%% Determining vessel range in nautical miles

%VR = [190 250 200 180 170 150 220 230];

VR = [50 40 70 90 60 60 45 50];

%% Inputdata to mosel file

%number of vessels

numVessels = length(VS);

%number of nodes

numNodes = length(Coord);

%number of missions

numMissions = 0; %pre-defining numMissions

for i = 1:length(MP)

if MP(i) >= 1

numMissions = numMissions + 1;

end

end
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Coordny(j,2),earthRadius('nm'))*1.1;

end

end

%

toc



APPENDIX A. MATLAB VIII

% for v = 1:length(VS)

% for m = 1:numMissions

% nodesI = [];

% for j = 1:length(Coord)

% if S.dist(i,j)/VS(v) <= RT(m) && A(v,Missiontype(m)) == 1

% nodesI = [nodesI, j];

% end

% end

% fprintf(fid,'(');

% fprintf(fid,'%1.0f %2.0f %2.0f',i,v,m);

% fprintf(fid,') [');

% fprintf(fid,'%2.0f %2.0f %2.0f %2.0f %2.0f %2.0f %2.0f %2.0f %2.0f %2.0f ', nodesI);

% fprintf(fid,'] \n');

% end

% end

% end

% fprintf(fid,'] \n');

%Generates the subset V of vessels v

fprintf(fid,'VI: [ \n');

for i = 1:length(Coord)

vessels = [];

for v = 1:length(VS)

vessels = [vessels, v];

end

fprintf(fid,'(');

fprintf(fid,'%1.0f',i);

fprintf(fid,') [');

fprintf(fid,'%2.0f %2.0f ',vessels);

fprintf(fid,'] \n');

end

fprintf(fid,'] \n');

%Parameters:

fprintf(fid,'!Parameters \n');

%Writes the WCP(i,m,k): "Points rewarded for covering node i"

fprintf(fid,'W: [ \n');

for i = 1:length(Coord)

for k = 1:20%numVessels

for m = 1:numMissions

fprintf(fid,'(');

fprintf(fid,'%1.0f %2.0f %2.0f',i,m,k);

fprintf(fid,') ');

fprintf(fid,'%2.3f ',WP(i)/((2^k)/2));

fprintf(fid,' \n');

end

end

end

fprintf(fid,']\n');

%Number of demanded vessels at node i

%VD = Vessel Demand

fprintf(fid,'VD: [ \n');

for i = 1:length(Coord)

fprintf(fid,'(');

fprintf(fid,'%1.0f',i);

fprintf(fid,') ');

if MP(i) == 1

fprintf(fid,'%2.0f ',1);

fprintf(fid,'\n');
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else

fprintf(fid,'%2.0f ',0);

fprintf(fid,'\n');

end

end

fprintf(fid,']\n');

fclose(fid);
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end

fprintf(fid,']\n');

% Initialize for Xpress Solver.

DEPLOY = 0; %zeros(I,V);

COVERI = 0; %zeros(I,M);

BINARY = 0; %zeros(I,M);

MAXTIME = -20; %Set maximum search time per instance.

[retcode, exitcode] = moselexec('maxcoveragesimple_Case3.mos')

if objval == 0

i = i+1;

else

FinalDeploy(i,:) = sum(DEPLOY);

FinalObVal(i,1) = objval ;

OptGap(i,1) = GAP;

if objval >= MaxObj

MaxObj = objval;

finDeploy = DEPLOY;

end

end

%% Determine coverage

covernodes = zeros(length(Coord),1);

for x = 1:length(Coord)

for y = 1:numMissions

for z = 1:numVessels

if COVERI(x,y,z) >= 1

covernodes(x) = 1;

end

end

end

end

co = Coord(:,1);

aktuellenoder = isfinite(Coord(:,1));

cn = sum(covernodes);

an = sum(aktuellenoder);

snitt = cn/an;

nodecoverage(i) = snitt;

end

%% Locate optimality cap

for i = 1:length(OptGap)

Optimality_gap(i) = abs(FinalObVal(i)-OptGap(i))/FinalObVal(i);

end
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lonlim = [-10 40];

S = gshhs(filename, latlim, lonlim);

%This section makes sure that we wish to plot the coastline.

levels = [S.Level];

unique(levels);

L1 = S(levels == 1);

figure(2)

axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim)

%gridm;

mlabel;

plabel;

grid off

geoshow([L1.Lat], [L1.Lon], 'Color', 'black')

geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15]);

%% Display contours on the map

kontur = transpose(vec2mat(WP,51));

contourm(a,b,kontur)

%geoshow(Coord(:,1), Coord(:,2),'DisplayType','point', 'Marker','.','Color','red','MarkerSize',2)

%geoshow(Dep2(:,1), Dep2(:,2),'DisplayType','point', 'Marker','*','Color','blue','MarkerSize',2)

geoshow(Dep2(:,1), Dep2(:,2),'DisplayType','point','MarkerEdgeColor','red') %display deployment

%% display accident sights

% Isolate the accidents

acc = [];

for i = 1:length(MP)

if MP(i) >= 1

acc(i,:) = Coord(i,:);

end

end

acc( ~any(acc,2), : ) = [];

%% Plot missions on map

%geoshow(Coord(:,1),Coord(:,2),'DisplayType','point','Marker','.','MarkerEdgeColor','red') %Plot coordinates

%geoshow(acc(:,1), acc(:,2),'DisplayType','point', 'MarkerEdgeColor','blue') % plot missions

tightmap

%% Utility plots and optimality gaps

utilityvector = FinalObVal/MaxObj;

figure(1)

subplot(2,1,1) % add first plot in 2 x 1 grid

plot(deploy,utilityvector,'o')

title('Number of vessels')

xlabel('Number of vessels')

ylabel('Utility')

subplot(2,1,2) % add second plot in 2 x 1 grid

plot(CostFleet,utilityvector,'o')

title('Cost')

xlabel('Cost of fleet [mUSD]')
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ylabel('Utility')

figure(3)

plot(deploy,utilityvector,'o')

figure(5)

plot(CostFleet,utilityvector,'o')

title('Fleet Coverage')

xlabel('Cost of fleet [mUSD]')

ylabel('Utility')

% figure(4)

% plot(deploy,Optimality_gap,'o')

% figure(6)

% plot(CostFleet,Optimality_gap,'o')
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declarations

N: dynamic array(NODES,VESSELS,MISSIONS) of set of integer; !Nodes j to which a vessel v at node j can respond to mission m (Inner barrier)

VI: dynamic array(NODES) of set of integer; !Vessel types fit for nodes i.

end-declarations

initializations from DATAFILE

N;

VI;

end-initializations

forall(i in NODES, v in VESSELS, m in MISSIONS) finalize(N(i,v,m));

forall(i in NODES) finalize(VI(i));

!Parameters

declarations

W: array(NODES,MISSIONS,K_vessels) of real;

VD: array(NODES) of real;

P: array(VESSELS) of integer;

end-declarations

initializations from DATAFILE2

P;

end-initializations

initializations from DATAFILE

W;

VD;

end-initializations

!For matlab:

declarations

gap: mpvar;

mipObjVal: mpvar;

bestBound: mpvar;

end-declarations

declarations

simplexiter: integer;

DEPLOY: dynamic array(NODES,VESSELS) of integer;

COVERI: dynamic array(NODES,MISSIONS) of integer;

POINTS: dynamic array(NODES,VESSELS) of integer;

MAXTIME: integer;

end-declarations

initializations from "matlab.mws:"

DEPLOY;

COVERI;

POINTS;

MAXTIME;

end-initializations

!Variables:

declarations

x: dynamic array(NODES,VESSELS) of mpvar;

yI: dynamic array(NODES,MISSIONS,K_vessels) of mpvar;

end-declarations

!Creating variables
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forall (i in NODES,v in VI(i)) do

create (x(i,v));

x(i,v) is_integer;

end-do

forall (i in NODES,m in MISSIONS,k in K_vessels) do

create (yI(i,m,k));

yI(i,m,k) is_integer;

end-do

declarations

Objective:linctr;

Constraint1: array(NODES,MISSIONS) of linctr;

Constraint2: array(NODES) of linctr;

Constraint3: array(VESSELS) of linctr;

Constraint4: array(K_vessels,MISSIONS) of linctr;

Constraint5: array(NODES) of linctr;

Constraint6: array(NODES,MISSIONS,K_vessels) of linctr;

end-declarations

!Maximizes demand covered:

Objective:= sum(i in NODES)sum(m in MISSIONS)sum(k in K_vessels) W(i,m,k)*yI(i,m,k);

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!Ensures covering by vessel that are within range.

forall(i in NODES, m in MISSIONS) do

Constraint1(i,m):=

sum(k in K_vessels) yI(i,m,k) - sum(v in VI(i))sum(j in N(i,v,m)) x(j,v) <= 0;

end-do

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!Ensures sufficient patrol vessels at node i:

forall(i in NODES) do

Constraint2(i):=

sum(v in VI(i)) x(i,v) >= VD(i);

end-do

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!Ensures that the number of vessels assigned cannot exceed the number of vessels in the fleet.

!forall(i in NODES, v in VI(i)) do

forall(v in VESSELS) do

Constraint3(v):=

sum(j in NODES) x(j,v) = P(v);

end-do

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! This constraint ensures that inly one vessel of vessel k can cover one node.

! This leads to the reduction in score for vessel 2

forall(m in MISSIONS,k in K_vessels, i in NODES) do

Constraint6(i,m,k) :=

yI(i,m,k) <= 1;

end-do

declarations

StopS: real;

end-declarations

setparam("XPRS_VERBOSE",true);

setparam("XPRS_MAXTIME",MAXTIME);
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maximise(Objective);

simplexiter:=getparam("XPRS_simplexiter");

writeln(Objective, "%: ", getobjval);

! writes results to matlab

initializations to "matlab.mws:"

simplexiter;

evaluation of getparam("XPRS_BESTBOUND") as "GAP";

evaluation of getobjval as "objval";

evaluation of array(i in NODES,v in VESSELS) x(i,v).sol as "DEPLOY";

evaluation of array(i in NODES,m in MISSIONS,k in K_vessels) yI(i,m,k).sol as "COVERI";

end-initializations

!exit(getprobstat)

end-model
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