
A Three-Dimensional Finite Element
Poisson Solver for Monte Carlo Particle
Simulators

Siri Narvestad Fatnes

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, IMF
Co-supervisor: Trond Brudevoll, FFI

Department of Mathematical Sciences

Submission date: July 2018

Norwegian University of Science and Technology

In memory of my beloved mother,
who always offered support and encouragement

ii

Sammendrag
En tredimensjonal ligningsløser for Poissons ligning, basert på en endelig element-metode,

er implementert i Fortran for beregning av det elektriske feltet i en eksisterende Monte Carlo-
simulator for partikkeltransport i transistorer. Feltberegningen er avhengig av partiklenes po-
sisjon i det gitte tidssteget, og robuste og effektive algoritmer for punktlokasjon i ustrukturerte
to- og tredimensjonale gitter er implementert. Disse benyttes i forbindelse med partikkelinjek-
sjon ved Ohmske kontakter, og for å regne ut partiklenes bidrag til systemets lastvektor. Det
lineære ligningssystemet som oppstår ved å diskretisere Poissons ligning med endelige ele-
menter løses med en metode basert på konjugerte gradienter, forbehandlet med en ufullstendig
LU-faktorisering med null innfylling. Denne ligningsløseren har overlegen konvergenstid sam-
menlignet med to andre ligningsløsere testet på det samme systemet. Egne klasser for lagring
av glisne matriser er implementert og sømløst integrert med de lineære løserne. Arbeidet har
resultert i en ny programstruktur kalt MCFEM. Programvaren blir testet ved å utføre korte simu-
leringer av en avalanche fotodiode (APD) med negativ forspenning på ulike gittertettheter. Både
lineære og kvadratiske basisfunksjoner blir benyttet.

Abstract
A finite element Poisson solver for the calculation of the three-dimensional electric field

in self-consistent particle simulations has been implemented in Fortran and integrated into an
existing Monte Carlo simulator for particle transport. Robust and efficient algorithms for point
location in unstructured two and three-dimensional grids is implemented, used in a new injec-
tion routine adapted to unstructured meshes and for assembling the load vector of the finite
element system. The linear system arising from the finite element approximation of the Pois-
son equation is solved using the conjugate gradient method preconditioned with an incomplete
LU-factorization, which outperforms two other tested solvers. Special storage schemes are im-
plemented to construct and store the matrices of the linear system and are seamlessly combined
with the linear system solvers. The work has resulted in a new program structure called Monte
Carlo software with finite element Poisson solver (MCFEM), which has been tested by per-
forming short bias simulations of avalanche photodiodes on different grid refinements with the
use of both linear and quadratic polynomial basis functions.

iii

iv

Preface
This Master’s Thesis is submitted to the Norwegian University of Science and Technology

(NTNU), and completes my Master’s Degree in Industrial Mathematics at the Department of
Mathematical Sciences (IMF). The thesis is written in cooperation with the Norwegian Defence
Research Establishment (FFI), under the supervision of Trond Brudevoll and Asta Storebø.
The work has been carried out during the spring semester 2018, and has official subject title
TMA4900 Industrial Mathematics, Master’s Thesis.

My supervisors Trond and Asta at FFI deserves sincere acknowledgment, always welcoming
me to Kjeller and answering my long emails. I hope they will see value in my contribution.
Professor Helge Holden has been my supervisor at IMF, and I am grateful for the help and
encouragement he has provided during the last year.

Siri Narvestad Fatnes,
July 2nd, 2018

v

vi

Table of Contents

Sammendrag . iii

Abstract . iii

Preface . v

Table of Contents . vii

List of Abbreviations . ix

List of Symbols . ix

List of Figures . xiii

1 Introduction 1
1.1 Monte Carlo Simulation . 1

1.2 Electric Field Updates . 2

1.3 Approach . 3

2 Approximation for the Electric Field 5
2.1 The Electric Field . 5

2.2 Scaling . 7

2.3 Weak Formulation . 8

2.4 The Finite Element Approximation . 10

2.4.1 Barycentric Coordinates . 14

2.4.2 Polynomial Basis Functions . 15

2.5 Assembly Procedures . 17

2.6 Existence and Uniqueness . 21

2.6.1 Distributions and Fundamental Solutions 22

2.6.2 Green Functions . 23

2.6.3 Uniqueness . 24

3 Solving the Linear System 25
3.1 Sparse Matrix Storage Schemes . 26

3.2 Preconditioned Conjugate Gradient Method 28

3.3 Numerical Evaluation . 30

4 Point Location Algorithms 31
4.1 The Point Location Problem . 31

4.2 Implemented Solution to the Point Location Problem 32

4.2.1 Point Location in Two Dimensional Triangulations 32

4.2.2 Point Location in Three Dimensional Triangulations 35

4.2.3 Comparison with Other Methods . 37

vii

5 Boundary Conditions for Carrier Dynamics 41
5.1 Neutral Region . 41
5.2 Injection of Particles . 42

6 Program Flow 45
6.1 Monte Carlo Program Structure . 45
6.2 Device Geometry . 47
6.3 Pre-Loop Assembly Procedures . 47
6.4 In-Loop Electric Field Calculations . 47

7 Simulations 51
7.1 Case Study: Particle in a Box . 51
7.2 An Avalanche Photodiode Model . 53
7.3 Scaling within the Program . 55
7.4 Bias Simulations . 56

7.4.1 Particle Behavior . 57
7.4.2 Effect of Grid Refinement . 58
7.4.3 Effect of Element Order . 64

7.5 Workload for the Program . 65

8 Further Work 69

9 Conclusion 71

References 73

Appendices 79

A Generating Triangulations with GMSH 81
A.1 Meshing Using the GMSH Software . 81
A.2 Triangulation Class . 83

B Overview of Source Code 85

viii

List of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
APD avalanche photodiode
BiCG-Stab bi-conjugate gradient stabilized method
CBF Chordá’s, Blasco’s and Fueyo’s algorithm
CG conjugate gradient method
CPU central processing unit
CRS compressed row storage
DOK dictonary of keys
FEM finite element method
FFI the Norwegian Defence Research Establishment
FP face-to-point algorithm
FTI face-trajectory-intersection test
GS Guiba’s and Stolfi’s algorithm
GUI graphical user interface
HgCdTe mercury cadmium telluride
ILU0 incomplete LU-factorization with zero fill-in
MC Monte Carlo
MCFEM Monte Carlo software with finite element Poisson solver
MCS Monte Carlo software
OC Ohmic contact
PCG preconditioned conjugate gradient method
PDE partial differential equation
PLA point location algorithm
PTI particle-to-the-inside test
PTL particle-to-the-left test
TTL trajectory-to-the-left test

List of Symbols

A Stiffness matrix of discretized Poisson equation
ABC The stiffness matrix A altered with an identity block for imposing Dirichlet conditions
Ai j Entry of matrix A at ith row and jth column
ALU The LU decomposition of the matrix A, ALU = L + U

ix

cCRS Array containing the column position of non-zero values in a sparse matrix. One of
three arrays for saving matrices in the CRS-format

E Electric vector field
E Constant scale for the electric field
E∗ Unscaled electric field with physical unit Volt per meter
F(·) The linear functional of the weak formulation of the Poisson equation
FK Mapping from an element K to the reference element K̂
F −1

K Mapping from the reference element K̂ to an element K
Fi Face of element opposite to node xi

H1 (Ω) First order Sobolev space on the domain Ω

H1
Γ

(Ω) Subspace of H1 (Ω), v ∈ H1
Γ

(Ω) =⇒ v ∈ H1 (Ω) and v = 0 on Γ

K Arbitrary element of the triangulation Th

K̂ Reference element
Kinit Initial search element for point location
Kp Element containing the point xp

{K j}
M
j=1 Set of elements in a triangulation Th

|K| Volume of an element K
L Constant scale for length
L Lower triangular matrix
L2 (Ω) The space of Lebesgue square integrable functions on the bounded domain Ω

M Number of elements K in the triangulation Th

Nd Degrees of freedom = Number of nodes = Number of basis functions on each element
Nh Dimension of approximation space, degrees of freedom, total number of basis functions
Ni Node on the reference element
NK

i Global node number of local node xi ∈ K
Ninsert Number of particles that need to be inserted for neutrality at the Ohmic contact
Np Total number of particles
Nq Number of quadrature points
Nz Number of non-zero elements in a sparse matrix
Q Constant scale for charge
Q A quadrature rule consisting of a set of weights and points, {wi, xq

i }
Nq

i=1

rCRS Array containing the indices into V of the first non-zero entry in each row. One of three
arrays for saving matrices in the CRS-format

� The space of real numbers
�d The space of real numbers in d-dimensional space
Rg Lifting function for the inhomogenous Dirichlet boundary condition
S Search trajectory from initial point xinit to xp in point location
Th Triangulation
U Constant scale for potential

x

U Upper triangular matrix
vCRS Array containing the non-zero values of a sparse matrix in sequential order. One of three

arrays for saving matrices in the CRS-format
V Test function space, short notation for H1

∂ΩD
(Ω)

Vh Finite dimensional space approximating V
a(·, ·) The bilinear form of the weak formulation of the Poisson equation
ai Local vector from initial search point to local edge node for computation of the TTL

decision parameter αi

d Number of spatial dimensions
f Right-hand side of Poisson equation
f Arbitrary scalar function
f Load vector for the discretized Poisson equation, f = [f1, . . . , fNh]

T

f BC Complete right-hand side vector for the discretized Poisson equation altered with zeros
in Dirichlet node entries

g Function imposed on Dirichlet boundary
gi Coefficient for the linear combination of basis functions expanding the approximation

to the lifting function Rg

n Outwardpointing normal vector of a surface
p Index of Particle; Particle
q Dimensionless charge
qp Charge of particle p
q∗ Charge with unit Coulomb
u Electric potential; Scaled, dimensionless potential
uh Approximation of the solution u to the Poisson equation
ui Coefficient for the linear combination of basis functions expanding the approximation

to the inhomogenous Dirichlet problem, uh

ůi Coefficient for the linear combination of basis functions expanding the approximation
to the homogeneous Dirichlet problem, ůh

ů Potential for homogeneous boundary conditions
ůh Approximation of potential for homogeneous boundary conditions
ů Vector containing the coefficients ůi of the approximation ůh

u∗ Unscaled electric potential with physical unit Volt
u The vector of coefficients ui for the appriximation uh

v Test function in V
vh Test function in approximation space Vh

v j Coefficient for the linear combination of basis functions expanding the test function vh

wi Quadrature weights
x Spacial variable in Cartesian coordinates, x = (x, y, z)
xi Node in triangulation Th

xi

xinit Initial search point for point location, defined as the center of Kinit

{xi}
Nh
i=1 Set of nodes in a triangulation Th

xp Position of charged particle (free or fixed) with index p
xq

i Quadrature point
x∗ Spacial variable with unit meter
∆y The depth of the neutral region adjacent to an Ohmic contact
Γ Subset of a boundary ∂Ω to a domain Ω

Ω A bounded domain in Euclidian space
∂Ω The boundary of Ω

∂ΩD The boundary of Ω with imposed Dirichlet conditions; Ohmic contact surface
∂ΩN The boundary of Ω with imposed Neumann conditions; Free surface
α Dimensionless scaling parameter for the Poisson equation
αi TTL decision parameter
β Dimensionless scaling parameter for the electric field equation
βe PTL decision parameter
δ The Dirac distribution (the measure giving unit mass to its argument)
δi j The Kronecker-δ
ε Material dependent permittivity, ε = εrεr

ε0 Permittivity of vacuum
εr Material dependent relative permittivity
γF PTI decision parameter
λ̂i Barycentric coordinates on the 3D simplex, i ∈ {0, 1, 2, 3}
ωe FTI decision parameter
ϕ̂i Basis function on the reference element K̂
ϕi Basis function corresponding to a global node xi ∈ Th

ϕK
i Basis function corresponding to a local node xi ∈ K for K ∈ Th

{ϕi}
Nh
i=1 Set of basis functions for approximation space Vh

ρ Total charge density
ρda Charge density contribution from doping atoms (background charge)
ρfc Charge density contribution from free carriers
ξ Coordinates ξ = (ξ, η.ζ) in a reference coordinate system, i.e. on the reference element

K̂
ξq

i Quadrature points on the reference element
∇2 The Laplacian operator, ∇2 f = ∇ · (∇ f)

xii

List of Figures

2.1 Triangulation of square box . 12
2.2 Reference elements . 14

3.1 Sparsity patterns of stiffness matrices . 25

4.1 2D point location algorithm . 33
4.2 Trajectory-to-the-left test . 34
4.3 3D point location algorithm . 36
4.4 Comparison of point location algorithms in 2D 39

5.1 Decomposed neutral contact domain . 42
5.2 Projection of particle positions to contact surface 43

6.1 Flowchart of Monte Carlo program . 46
6.2 Device geometry flowchart . 48
6.3 Pre-loop assembly flowchart . 49
6.4 In-loop electric field calculation flowchart . 50

7.1 Potential around unit charge . 52
7.2 Error plots for particle in box . 53
7.3 Error comparison for particle placement . 54
7.4 Avalanche photodiode . 55
7.5 Particle positions . 57
7.6 Simulation: coarse grid . 60
7.7 Simulation: fine grid . 61
7.8 Simulation: refined grid over the pn-junction 62
7.9 Simulation: no isolation layer . 63
7.10 Contour plot of potential for linear and quadratic elements 64
7.11 Call-tree with work load . 66

A.1 CPU-time for neighbor construction . 84

xiii

xiv

1 | Introduction

Monte Carlo (MC) particle-based simulations for transport in semiconductor devices has long
been a state-of-the-art tool for modeling transistors. As device dimensions decrease, more so-
phisticated methods for considering quantum effects and particle behavior under influence of
high frequencies are included in the simulation programs. Self-consistent simulations require
accurate approximations to the electric field taking into account time- and space-dependent vari-
ables for each simulated particle. In this thesis, a finite element method (FEM) is implemented
and integrated into an existing Monte Carlo software (MCS) for approximating the electric field
through the solution of the Poisson equation. The MCS under consideration is developed for
research purposes at the Norwegian Defence Research Establishment (FFI), in cooperation with
NTNU.

Availability of open source or commercial MCS for device research is limited, and FFI
has been developing a Full Band MC simulator in order to gain insight into device physics for
development and production, with the necessary framework for a program with long lifetime
and extensive possibilities for modifications to comply with present and future requirements.
The FFI-program, also referred to as the FFI-MCS, or simply the MCS, has during this work
been expanded with robust and exportable blocks containing numerical schemes for equation
solving, linear algebra routines and unstructured domain discretization handling.

A short background on Monte Carlo simulation is given in the next section, before some
aspects of the electric field update in self-consistent particle simulations are introduced in Sec-
tion 1.2. Section 1.3 will give a brief overview of the approach and content of this thesis.

1.1 Monte Carlo Simulation
From a mathematical point of view, MC methods are tools to obtain solutions of many dif-

ferent mathematical problems through random number generation. Possible applications range
from computational statistics and finance to simulation modeling in industrial engineering and
physical processes [44]. The first application of MC methods to the simulation of semiconduc-
tor materials was presented in 1966 and has since become a popular and sophisticated tool for
the simulation of semiconductor devices [37, 49, 68]. Particle behavior in solid state physics is
of statistical nature, and good models can be achieved with the use of MC-methods.

To a certain degree of accuracy, the motion of carriers can be explained by transport equa-
tions. An example is particles in electric and magnetic fields that are described through the

1

Chapter 1. Introduction

Boltzmann transport equation coupled with the Maxwell field equations [68]. An analytic so-
lution to this type of systems are in most cases unachievable, except in extremely simplified,
and thus uninteresting, situations. Numerical solutions can be found by a variety of approaches,
ranging from fluid models to models based on large ensembles of particles. The semiclassi-
cal ensemble MC method for particle transport is a powerful method directly simulating the
statistical behavior of the particles. Modeling is often done by applying principles from clas-
sical mechanics for carrier displacement, adding randomly generated scattering processes and
including some type of quantum corrections. Collecting statistics from such simulations can
produce more insight into physical characteristics than any analytic solution to the governing
transport equation [38].

Crystal dynamics, band structures, electronic states and stochastic scattering of particles are
important building blocks for any MC simulation tool for solid state physics. A semiclassical
theory is used to simulate the carrier dynamics, with particles being described by their current
position and wave vector. Calculation of the duration of free flights, scattering events, and new
particle states are done by drawing random numbers from an applicable stochastic distribution.
When simulating specific device geometries, contrary to bulk simulations, the particle trajec-
tories are space-dependent, and the forces acting on the particles from electric and magnetic
fields will thus be dependent on the particle positions. Ensembles of particles need to be simu-
lated, and self-consistent updates of the fields are necessary to achieve accurate results. Books
by Hess [34], Jacoboni and Lugli [37], Moglestue [49], and Vasileska et al. [68] all provide
thorough introductions to the field of device simulation of semiconductors using self-consistent
ensemble Monte Carlo methods.

1.2 Electric Field Updates

The main problem of interest in this thesis is the calculation of the electric field in a simu-
lated semiconductor device. If there is no magnetic fields present, the electric field alone deter-
mines the force acting on the particles during their free flights. If a quasi-static electric field is
assumed, the field can be described by the gradient of the electric potential, approximated by
solving the Poisson equation with numerical methods. The most common approach in device
simulation is to apply a finite difference scheme, and use particle-mesh coupling schemes, such
as cloud-in-cell or nearest-grid-point, to calculate the contribution from the discrete charges
to the charge density in the grid nodes [46]. This has also been the previous approach in the
FFI-MCS. However, the geometry of transistors has changed dramatically since they were first
introduced in the 1950’s, and today it is not uncommon with increasingly small devices, mea-
suring only a few nanometres. This introduces new requirements to the numerical solvers used
within device simulation, especially with respect to adaptiveness for complicated geometries
and considerations of three-dimensional (3D) effects. In such applications, the finite difference
method meets its limitations, introducing a need for investigating other methods in relation to

2

1.3 Approach

device simulation.

Popular methods for numerically solving partial differential equations (PDEs) on compli-
cated domains are variations of finite element methods (FEMs), of which the main idea is to
divide the computational domain into smaller elements and locally compute solutions on each
element. The local solutions are then combined to resemble a global approximation on the union
of all elements. The elements are often polygons, such as tetrahedra, prisms or hexahedra, and
no structuredness is imposed, improving the methods adaptability to advanced domains. The
method is well described in most books on numerical methods for differential equations, see
e.g. Quarteroni [52, 53]. FEM was introduced in the 1950’s to deal with problems of structural
mechanics and was first applied to field problems in the 1960’s [58]. A general introduction
to FEM for electromagnetics can be found in The Finite Element Method in Electromagnetics
by Jin [40]. Snowden [65] devotes a chapter of his book Introduction to Semiconductor Device
Modelling to the discussion of FEM as a numerical equation solver for field equations in device
simulation. Recent research in the field of FEM coupled to MCS includes a parallel, three-
dimensional finite element ensemble Monte Carlo device simulation tool including quantum
corrections, presented by a research group at Swansea University [2, 3, 20, 47].

1.3 Approach

In this thesis, a 3D FEM for use in particle-based simulations is developed and successfully
integrated into the FFI-MCS, resulting in a new program version, hereafter called the Monte
Carlo software with finite element Poisson solver (MCFEM). This work was started by Åsen
[5], which implemented a two-dimensional (2D) solution for a planar pn-junction. One of
the major difficulties when applying unstructured grids in particle simulations is to provide an
efficient point location algorithm (PLA), which task is to provide current element positions of
particles. The implementation of a 3D-PLA was started in a thesis-preparing specialization
project [23] and has now become a robust part of the source code for the MCFEM. The particle
tracking problem is a widely considered problem with the use of unstructured grids in fluid
dynamics and belongs to the field of Computational Geometry [18].

The new numerical methods are coupled with the old scattering and carrier dynamics rou-
tines to form the MCFEM, and tested on bias simulations of an avalanche photodiode (APD)
based on a mercury cadmium telluride (HgCdTe). HgCdTe is a common material used for
making infrared detectors, and HgCdTe APDs have application in night vision, eye-safe laser
systems, and other thermal imaging applications [63, 64], which are important in defense and
security. For the Full Band MCS developed at FFI, any material can be simulated by loading
corresponding band structures, produced by WIEN2k, into the program [25, 62]. Research on
MC-simulations of large-scale devices are sparse, but with the interesting applications of APDs
in combination with their performance on speed, sensitivity, and quantum efficiency, simulation
of large devices is desirable for development and characterization. Thus, an APD is the model

3

Chapter 1. Introduction

of choice for testing MCFEM. FFI presented their first Full Band MC Simulation of an APD
on the SPIE Defense + Security conference in Anaheim, California in 2017 [66]. This research
can hopefully continue with the use of the implemented MCFEM.

This thesis is started with the presentation of the finite element method for the Poisson
equation in Chapter 2, ranging from the weak formulation to the arising linear system, with
an additional note on existence and uniqueness for the specific problem under consideration.
The solution of the sparse linear system arising from the discretization is briefly discussed
in Chapter 3, with focus on the preconditioned conjugate gradient method (PCG). The point
location problem and the implemented point location algorithms are presented in Chapter 4.
Chapter 5 introduces a new method for adapting boundary conditions for carrier dynamics to
unstructured grids. The full program flow of MCFEM is summarized in Chapter 6. Simulation
results are presented in Chapter 7, which includes a discussion on run-times and workload for
the program. Recommended paths for further improvements are suggested in Chapter 8, before
the thesis is rounded off with a small conclusion.

4

2 | Approximation for the Electric Field

The main improvement to the FFI-MCS during this work is the integration of a 3D Poisson
solver for electric field updates. It is a new solver replacing the previous 2D solvers, extending
the software’s capability to simulate devices with advanced and non-planar geometries. The
work with applying FEM to the MCS was initialized by Åsen [5]. A solver of Galerkin type
implemented on 2D unstructured triangulations with the use of linear basis functions was in-
troduced. An updated solver fully integrated into the MCS software now provides the solution
in 3D, with the additional option of using quadratic basis functions. Working with this new
solver, an emphasis has been laid on providing a solver which is mainly independent of the
existing software, simplifying future development. The use of independent modules makes it
possible to export the methods for use in other types of software requiring FEM for numerical
approximation. Only a few routines are needed as an interface between the MCS and the new
solver.

In this chapter, a summary of the finite element theory necessary to obtain the numerical
schemes will be provided. The theory will be concentrated around the 3D case where it is not
general. A short presentation of the Poisson equation with boundary conditions arising from
device simulation is given in Section 2.1. A dimensionless equivalent obtained through scaling
is presented in Section 2.2 for numerical precision. The weak formulation of the problem
is presented in Section 2.3. Choices for the discretized solution space and an outline of the
derivation of the numerical schemes is given in Section 2.4. The specific assembly routines are
presented in Section 2.5. For completeness, a treatment of existence and uniqueness for the
Poisson equation with discrete contributions to the charge density can be found in Section 2.6.
The presentation of the finite element theory in this section is mainly influenced by Quarteroni’s
book Numerical Models for Differential Problems [53].

2.1 The Electric Field

In particle simulations, a quasi-static electric field can be assumed by freezing the particle
positions between small time intervals. A derivation of the Poisson equation for the electric field
from the full set of Maxwell equations is given in Appendix B in Computational Electronics;
Semiclassical and Quantum Device Modeling and Simulation [68]. In this thesis, we focus on

5

Chapter 2. Approximation for the Electric Field

the case where the electric field E can be described by the gradient of the electric potential u as

E = −∇u, (2.1)

where the electric potential solves the Poisson equation. For a known charge distribution ρ, the
Poisson equation can be expressed as

− ∇2u(x) =
ρ(x)
εrε0

, (2.2)

where εr is the material dependent relative permitivity, and ε0 the permittivity of vacuum.
The Laplacian is denoted by ∇2. The spacial variable x is given in Cartesian coordinates,
x = (x, y, z). Although a simplification, the relative permittivity εr is assumed constant. For
a better physical approximation, the material permittivity ε = εrε0 should be considered as a
function of the electric field. However, this leads to a non-linear Poisson equation, complicating
things considerably. The linear approximation will meet the current requirements for physical
resemblance. For self-consistent simulations, the charge density ρ must be determined by the
position of the free carriers at each time step, in addition to the constant background charge
due to doping atoms. As known from elementary electromagnetism, the charge density can be
expressed by the δ-distribution,

ρ(x) = ρfc(x) + ρda(x) =

Np∑
p=1

qpδ(x − xp). (2.3)

Here, ρfc is the charge density contribution from the free carriers, and ρda is the contribution
from the background charge (the doping atoms). Further, Np is the total number of free carriers
and doping contributors and qp is the charge of particle or doping contributor p positioned in
xp.

When simulating semiconductor devices, the potential will be restricted to a domain Ω,
and Equation (2.2) will be equipped with additional boundary constraints. The most common
choice is to model the contact boundaries with Dirichlet conditions, and the free surfaces with
a zero Neumann condition [37]. This will correspond to an applied, known potential at the
contacts, and no electric field perpendicular to the other artificial surface areas of the device.
The mathematical formulation is

u = g(x) on ∂ΩD,

∂u
∂n

= 0 on ∂ΩN,
(2.4)

where n denotes the outward pointing normal vector on the boundary, and ∂/∂n denotes the nor-
mal derivative on the boundary. The metallic contact boundary with imposed Dirichlet condition
is denoted by ∂ΩD and the free surface with imposed Neumann condition by ∂ΩN. Ideally, the

6

2.2 Scaling

boundary conditions on the free surface will not influence in considerable amount what happens
in the regions of interest near and between the contacts [49]. The imposed boundary conditions
are an approximation of physical models, and the choice of these conditions can be justified as
described by Hockney and Eastwood [35]. In addition to the Dirichlet and Neumann boundary
conditions for the Poisson equation, the particles will also be subjected to boundary conditions
for carrier dynamics. These boundary conditions are treated in Chapter 5.

Before moving on to the numerical approximation of the potential u, it is natural to provide
a scaled, dimensionless equivalent of Equation (2.2) and the boundary conditions in Equa-
tion (2.4), for simplification and greater numerical accuracy. Such a scaling can be done by a
simple change of variables, as seen in the following section.

2.2 Scaling
Using the physical dimensions of the problem can lead to numerical errors due to machine

precision problems. In addition, keeping variables of an order of magnitude ∼ 1 is preferable for
well-conditioned systems. Dimensionless systems are the most common in numerical analysis
and computations.

To clarify the necessity of the scaling, consider the following small example. When applying
FEM to a semiconductor device on a micrometer scale, the device will be divided into smaller
elements K, whose volume |K| is an important factor in the linear system arising from the
numerical approximation. An element will typically have a volume in the order of magnitude

O(|K|) = (10−6 m) · (10−6 m) · (10−6 m) = 10−18 m3,

or less, which is below normal machine precision of 10−16. This can lead to a loss of numerical
precision.

To avoid this, a change of variables is applied to obtain a dimensionless equation equivalent
to the one presented in Equation (2.2). To perform the scaling, we denote the potential with
physical unit Volt by u∗, the scaled, dimensionless potential by u, and a constant potential scale
by U. Applying the same convention to the spacial variable x∗ with unit meter and the charge
q∗ with unit Coulomb, we can write

u∗ = Uu, [u∗] = [U] = V,

x∗ = Lx = (Lx, Ly, Lz), [x∗] = [L] = m,

q∗ = Qq, [q∗] = [Q] = C,

(2.5)

where L and Q are constant length and charge scales. This leads to the dimensionless Poisson
equation

− ∇2u = α

Np∑
p=1

qpδ(x − xp), α =
Q

LUε0εr
, (2.6)

7

Chapter 2. Approximation for the Electric Field

obtained by applying the chain rule to the original equation, differentiating the physical vari-
ables with respect to their scaled equivalents. In addition, the fact that the 3D unit of the
δ-distribution is the cubed inverse of its argument’s unit is used. The Laplacian ∇2 in Equa-
tion (2.6) now denotes operation with respect to the scaled variables (x, y, z). The parameter α
is dimensionless and can be set to one by an appropriate choice of scales, and qp simply denotes
the sign of the charge for a given particle, i.e., qp = −1 for negative charge and qp = 1 for posi-
tive charge. Np is still the total number of free carriers, donors and acceptors. A corresponding
scaling of the boundary conditons is

u∗(x∗) = g∗(x∗) =⇒ u(x) =
1
U

g∗(x) = : g(x) (2.7)

We thus obtain the dimensionless scaled problem
−∇2u =

Np∑
p=1

qpδ(x − xp) in Ω,

u = g(x) on ∂ΩD,

∂u
∂n

= 0 on ∂ΩN.

(2.8)

The electric field equation given in Equation (2.1) can be scaled in the same manner, letting

E∗ = EE = (EEx, EEy, EEz), [E∗] = [E] = V m−1. (2.9)

The corresponding electric field equation becomes

E = −β∇u, β =
U
LE

, (2.10)

where β is dimensionless and one can choose the scale E such that β ∼ 1. The dimension-
less system is equivalent to the physical one by the Buckingham’s π theorem [30, 32]. These
dimensionless systems are the ones considered for the following formulation of the numerical
approximations, and all variables in this thesis are considered dimensionless if not specified
otherwise.

2.3 Weak Formulation
Weak and variational formulations of PDEs are a core part of analyzing solutions and de-

veloping numerical solution schemes for many types of equations [10, 22, 60]. To derive a
finite element approximation to Equation (2.8), we must first establish the weak formulation.
This formulation is built partially on Sobolev space theory, and it is thus necessary to introduce
two of the most important Sobolev spaces. We include only the most essential, and for a more
thorough introduction to Sobolev space theory, the reader is referred to Adams and Fournier

8

2.3 Weak Formulation

[1].

Let Ω ⊂ �d be a a bounded domain in d-dimensional Euclidian space. We denote by L2 (Ω)
the space of Lebesgue square integrable functions on Ω,

L2(Ω) =

{
f : Ω 7→ � s.t.

∫
Ω

(f (x))2dΩ < ∞

}
.

In our case, the most important Sobolev space is denoted by H1 (Ω) and is the space consisting
of functions belonging to L2 (Ω) which also have their distributional derivatives of first order
in L2 (Ω). In addition, the subspace H1

Γ
(Ω) ⊂ H1 (Ω) is needed, where an additional constraint

imposes function values to zero at a part Γ of the boundary ∂Ω. We define them as

H1 (Ω) =

{
f ∈ L2(Ω) s.t.

∂ f
∂xi
∈ L2(Ω), i = 1, . . . , d

}
H1

Γ (Ω) =
{
f ∈ H1(Ω) s.t. f = 0 on Γ ⊆ ∂Ω

}
.

We are seeking a solution to the Poisson equation with boundary conditions as formulated
in Equation (2.8), and will in the following denote by f (x) the distribution on the right-hand
side of this equation,

f (x) :=
Np∑
p=1

qpδ(x − xp). (2.11)

By multiplying with a smooth test function v(x), integrating over the domain Ω and using
Greens formula [53], we obtain a first order integral problem of the form∫

Ω

(∇u · ∇v) dΩ −

∫
∂ΩD

(
∂u
∂n

v
)

dγ −
∫
∂ΩN

(
∂u
∂n

v
)

dγ =

∫
Ω

(f v) dΩ. (2.12)

Since the function f (x) is a distribution, the right-hand side integral should be understood as
the act of f on the test function v. The third term on the left-hand side is zero by the imposed
Neumann condition. To obtain the weak formulation, we impose v ∈ H1

∂ΩD
, such that the second

term on the left-hand side of Equation (2.12) also evaluates to zero. We require a symmetric
weak formulation, meaning that both the test function v and the sought solution u are members
of the same space. For a formulation where u ∈ H1

∂ΩD
, Equation (2.8) can be reformulated to

a homogeneous Dirichlet problem by imposing a lifting of the boundary data. This lifting is a
supposed known function Rg ∈ H1(Ω), with Rg|∂ΩD = g and ∂nRg|∂ΩN = 0. Here, the notation
∂n denotes the derivative in the direction of the outward normal n. An explicit, analytic expres-
sion for the lifting function will not be necessary, as we will see when deriving the discretized
problem in Section 2.4.

9

Chapter 2. Approximation for the Electric Field

If we let ů = u − Rg, it can be observed that ů|∂ΩD = u|∂ΩD − Rg|∂ΩD = 0, and ů satisfies

−∇2ů = f (x) + ∇2Rg in Ω,

ů = 0 on ∂ΩD,

∂ů
∂n

= 0 on ∂ΩN.

(2.13)

Equation (2.13) can be reformulated to the first order integral problem∫
Ω

(∇ů · ∇v) dΩ =

∫
Ω

(f (x)v(x)) dΩ −

∫
Ω

(
∇Rg · ∇v

)
dΩ (2.14)

Denoting by V the Sobolev space H1
∂ΩD

, we can define the form a(·, ·)

a : V × V 7→ �, a(u, v) =

∫
Ω

(∇u · ∇v) dΩ,

and the functional F(·)

F : V 7→ �, F(v) =

∫
Ω

(f (x)v(x)) dΩ −

∫
Ω

(
∇Rg · ∇v

)
dΩ.

The weak formulation of problem (2.13) can be expressed as

find ů in V : a(ů, v) = F(v) ∀ v ∈ V . (2.15)

The existence and uniqueness of solutions to weak formulations, such as the one presented
above, can be proven be applying the Lax-Milgram theorem if the form a(·, ·) is bilinear, con-
tinuous and coercive, and the functional F(·) is linear and continuous [53]. However, due to
the δ-distribution, the functional F(·) is not continuous, and Lax-Milgram cannot be directly
applied. In this case, proving existence and uniqueness requires more care, and we postpone a
further discussion until Section 2.6. An approximation to the weak formulation (2.15) can be
found by searching in a smaller space approximating V . This is the approach in the following
section.

2.4 The Finite Element Approximation

We will search for an approximate solution uh in a finite dimensional subspace Vh ⊂ V ,
where Vh can be represented by a finite set of basis functions,

Vh = span{ϕi}
Nh
i=1, Nh < ∞. (2.16)

10

2.4 The Finite Element Approximation

The Galerkin problem is an approximation to the weak formulation in Equation (2.15), and can
be expressed as

find uh ∈ Vh : a(uh, vh) = F(vh) ∀ vh ∈ Vh. (2.17)

Any function vh ∈ Vh can be written as a linear combination of the basis functions,

vh(x) =

Nh∑
j=1

v jϕ j(x), v j ∈ �.

Inserting such approximations for ů and v in equation (2.14), we obtain

Nh∑
i=1

Nh∑
j=1

ůiv j

∫
Ω

∇ϕi∇ϕ jdΩ =

Nh∑
j=1

v j

(∫
Ω

f (x)ϕ j(x)dΩ −

∫
Ω

∇Rg · ∇ϕ jdΩ

)
. (2.18)

Equation (2.18) is a linear system, of which appaerance will depend on the choice of the ap-
proximation space Vh. In this work, the space of choice is the one leading to a Galerkin finite
element method. It is built by partitioning the domain Ω into smaller elements and defining a
polynomial basis with local support on each such element. The partition of Ω is called a trian-
gulation and is denoted by Th. This triangulation is defined by a set of nodes {xi}

Nh
i=1 and a set of

elements, {K j}
M
j=1. The number of nodes, Nh, coincides with the dimension of the approximation

space Vh, i.e, the number of basis functions. The total number of elements in the grid is denoted
by M. In our case, the elements of Th will be restricted to non-overlapping tetrahedra, but other
choices of elements are also possible. The set of vertices of the tetrahedra is a subset of the total
set of nodes in the triangulation. The union of all elements will constitute the domain Ω,

Ω =
⋃
K∈Th

K. (2.19)

As an illustation, Figure 2.1 shows two typical decompostion of a square box in 3D, constructed
with the meshing software GMSH [24].

The set of basis functions {ϕi}
Nh
i=1 is constructed by polynomials satisfying, for any node

x j ∈ {xi}
Nh
i=1,

ϕi(x j) = δi j,

supp{ϕi} = {K ∈ Th : K 3 xi} ,
(2.20)

where δi j denotes the Kronecker-δ,

δi j =

1 for i = j,

0 for i , j.
(2.21)

This choice leads the coefficients ui of the approximate solution uh to be the approximated
function value in node xi.

11

Chapter 2. Approximation for the Electric Field

(a) (b)

Figure 2.1: A triangulation of a square box with (a) elements with 4 nodes per element at tetrahedra
vertices and (b) elements with 10 nodes per element at vertices and edges.

Before Equation (2.18) can be rewritten to a linear system, the term arising from the use
of the lifting function Rg must be specified. The function can be approximated as a linear
combination of basis functions,

Rg ≈

Nh∑
i=1

giϕi(x), (2.22)

with the coefficients gi ∈ � defined as

gi =

g(xi), xi ∈ ∂ΩD

0, else.
(2.23)

The stiffness matrix of the finite element linear system is defined as the matrix A with entries
Ai j defined by the stiffness integral,

Ai j = a(ϕ j, ϕi) =

∫
Ω

∇ϕi · ∇ϕ jdΩ, (2.24)

and the load vector as the the vector f = [f1, ..., fNh]
T with components

fi =

∫
Ω

f (x)ϕi(x)dΩ =

∫
Ω

 Np∑
p=1

qpδ(x − xp)ϕi(x)

 dΩ

=

Np∑
p=1

qpϕi(xp).

(2.25)

Collecting the coefficients of the linear combination of basis functions for the test function vh,

12

2.4 The Finite Element Approximation

the approximation to the homogeneous problem ůh and the lifting function Rg, in vectors

v = [v1, ..., vNh]
T ,

ů = [ů1, ..., ůNh]
T ,

g = [g1, ..., gNh]
T ,

(2.26)

Equation (2.18) can be written as

vT Aů = vT (f − Ag) ∀v ∈ �Nh

=⇒ Aů = f − Ag.
(2.27)

To impose the homogeneous Dirichlet condition on ů, the rows and columns in the left
hand side matrix A corresponding to Dirichlet boundary nodes are replaced with zeros on the
off-diagonal and ones on the diagonal, resulting in a new matrix ABC containing an identity
block. Further, the entries of the complete vector f − Ag on the right hand side corresponding
to Dirichlet nodes is set to zero, defining a new vector f BC with entries

fBC,i =

0 if {i : xi ∈ ∂ΩD}

fi − (Ag)i else.
(2.28)

The modified linear system can now be written

ABCů = f BC. (2.29)

When solving this system, ů will have entires ůi = 0 for xi ∈ ∂ΩD. The vector

u = ů + g (2.30)

will then be the collection of coefficients for the approximation uh expressed in terms of the
basis functions, approximately solving Equation (2.8). The system altered for the Dirichlet
boundary has a unique solution since the matrix ABC is symmetric positive definite [53]. The
stiffness matrix A is sparse due to the local support property of the basis functions, and the
system in Equation (2.29) can be solved by a suitable iterative method, as discussed in Section 3.
But before Equation (2.29) can be solved, the stiffness integral must be computed in order to
assemble the stiffness matrix, which require that we define the basis functions.

Basis functions with local support make it sufficient to define the functions on a reference
element and use a suitable mapping for evaluation on a general element in the triangulation.
The reference element is chosen as the unitary simplex shown in Figure 2.2. It will be denoted
by K̂. The coordinates in the reference system is denoted by ξ = (ξ, η, ζ), and the nodes on the
reference element with Ni. The number of nodes on the reference element depends on the order
of the element and is denoted by Nd.

13

Chapter 2. Approximation for the Electric Field

1

1

1

ξ

η

ζ

N3

N2

N0

N1

(a)

1

1

1

ξ

η

ζ

N3

N2

N0

N1
N4

N6

N5

N7
N9

N8

(b)

Figure 2.2: The unitary simplex as the 3D reference element. Figure (a) shows the linear element with
4 nodes and Figure (b) the quadratic element with 10 nodes.

Before continuing to define the basis functions, an introduction to an alternative coordinate
system is presented. This is the barycentric coordinate system, first introduced by August
Ferdinand Möbius in 1827 [67]. This system proves useful when defining polynomial basis
functions and mappings between the reference element and a general element.

2.4.1 Barycentric Coordinates

As Quarteroni [53], we define the barycentric coordinates on the reference element in 3D as

λ̂0 = 1 − ξ − η − ζ,

λ̂1 = ξ,

λ̂2 = η,

λ̂3 = ζ.

(2.31)

The coordinates are constructed such that the value of λ̂i is one in vertex Ni on the reference
element, and zero in the other vertices, N j, j , i, i, j ∈ {0, . . . , 3}, given the node numbering as
in Figure 2.2.

The barycentric coordinates of an arbitrary point x ∈ Ω with respect to an arbitrary element
K ∈ Th, with vertices xi, i = 0, . . . , 3 can be calculated as

λi(x) = 1 −
(x − xi) · ni

(x j − xi) · ni
, 0 ≤ i ≤ 3 (2.32)

The vector ni denotes the outward pointing normal of the face Fi opposite to node xi, and x j , xi

is any of the other vertices belonging to K. The following properties hold for the barycentric

14

2.4 The Finite Element Approximation

coordinates with respect to an element K,

3∑
i=0

λi(x) = 1,

λi(x j) = δi j, i, j ∈ {0, . . . , 3},

λi(x) = 0, ∀x ∈ Fi, i ∈ {0, . . . , 3},

λi(x) ≥ 0, ∀x ∈ K, i ∈ {0, . . . , 3}.

(2.33)

Given a set of barycentric coordinates λ = [λ0, ..., λ3]T on K, the mapping from the barycentric
coordinates and back to the cartesian coordinate system is simply

x =

3∑
i=0

λixi. (2.34)

The barycentric coordinates can be defined similarly in the 2D-case. We are now ready to define
the set of basis functions which will be used for the numerical approximation.

2.4.2 Polynomial Basis Functions

Let us denote by �r the space of polynomials up to order r defined in �3. The polynomial
spaces which will be considered are the linear space �1,

�1 = {p(x) = a + bx + cy + dz; a, b, c, d ∈ �},

and the quadratic space �2,

�2 = {p(x) = a + bx + cy,+dz + exy + f xz + gyz + hx2 + iy2 + jz2; a, .., j ∈ �}.

The number of coefficients is the associated degree of freedom, or dimensionality, for each
polynomial space. The dimensionality tells how many values of the polynomial that needs
to be known in order to uniquely define a polynomial in the given space. The space �1 has
dimensionality four, and �2 has dimensionality ten. In other words, it is the number of nodes
needed on each element to define the basis functions. As on the reference element, the number
of nodes is denoted by Nd.

Linear basis functions on each element are a common choice, and is also used by Alde-
gunde and Kalna [3] and Aldegunde et al. [4] in their work with FEM for MC simulations of
semiconductors. Here, the discussion is extended to also include quadratic polynomials. The
primary reason for this is the physical interpretation of the approximate solution. For the linear
elements, the potential will be non-smooth on the element boundaries, and the resulting electric
field will be constant in each element and discontinuous on interior element boundaries. Dis-
continuities in the electric field are equivalent to surface charges. In the simulations, allowing

15

Chapter 2. Approximation for the Electric Field

for surface charges in the device volume is unphysical and contributes to noise. Upgrading to
quadratic elements will lead to a smooth potential also at element boundaries, and the resulting
electric field will be continuous. In addition, quadratic elements are found to yield better re-
sults for other applications when also taking into account computational resources [21, 36, 61].
Comparisons of simulations with linear and quadratic basis functions can be found in Chapter 7,
where the performance of both choices is presented.

When we in the following present the local basis functions, the notation ϕi represents a
basis function corresponding to a node xi, satisfying Equation (2.20), with i ∈ {1, . . . ,Nh},
while ϕK

i is the global basis function corresponding to a local node xi ∈ K for K ∈ Th, with
i ∈ {0, . . . ,Nd − 1}. The basis functions on the reference element is denoted with a hat, ϕ̂i, with
i ∈ {0, . . . ,Nd−1}. The linear set of basis functions coincides with the barycentric coordinates,

ϕ̂i = λ̂i, i = 0, ...,Nd − 1, (2.35)

where we recall that Nd = 4. In order to provide an unambiguous representation of the quadratic
basis functions, the functions are stated explicitly for each node on the reference element in
correspondence with the node numbering given in Figure 2.2. They can be expressed in terms
of the barycentric coordinates as

ϕ̂0 = λ̂0(2λ̂0 − 1),

ϕ̂1 = λ̂1(2λ̂1 − 1),

ϕ̂2 = λ̂2(2λ̂2 − 1),

ϕ̂3 = λ̂3(2λ̂3 − 1),

ϕ̂4 = 4λ̂0λ̂1,

ϕ̂5 = 4λ̂1λ̂2,

ϕ̂6 = 4λ̂0λ̂2,

ϕ̂7 = 4λ̂0λ̂3,

ϕ̂8 = 4λ̂2λ̂3,

ϕ̂9 = 4λ̂1λ̂3.

(2.36)

To calculate the stiffness matrix A and the load vector f using the reference basis functions,
an invertible mapping FK from a general element K to the reference element K̂ is necessary. For
linear elements, the natural choice is an affine, linear map. For the quadratic elements, there is a
choice between the use of the same affine, linear map or a quadratic map. An affine map results
in affine elements, a quadratic map in iso-parametric elements. A clear advantage with the
affine map is a constant Jacobian on each element, simplifying many of the computations. Iso-
parametric elements are often preferred where highly irregular domains with curved boundary
are discretized using elements with curved edges. Such domains are not considered in this
work, and from a computational resources aspect, the most convenient is to use an affine map. In
Chapter 7, it will be apparent that an extension to iso-parametric mappings should be considered
in the future.

We define the affine mapping FK by its inverse, F −1
K : K̂ 7→ K, utilizing the barycentric

coordinates. Let ξ = (ξ, η, ζ) be an arbitrary point in the reference element K̂. This point can be

16

2.5 Assembly Procedures

mapped to a point x in an element with vertices xi, i = 0, ..., 3 as

x = F −1
K (ξ) =

3∑
i=0

λ̂i(ξ)xi, (2.37)

where λ̂i(ξ) is given in Equation (2.31). Then the basis function associated to the local node i
on an arbitrary element K can be written as

ϕK
i (x) = ϕ̂i (FK(x)) = ϕ̂i(ξ), i = {0, · · · ,Nd − 1}. (2.38)

The gradient can be calculated as

∇ϕK
i (x) = ∇ϕ̂i (FK(x)) = JT

K∇ξϕ̂i(ξ), i = {0, · · · ,Nd − 1}, (2.39)

where ∇ξ denotes the gradient with respect to the reference coordinates ξ and JK is the Jacobian
of the mapping FK ,

JK = J(FK (x)). (2.40)

The Jacobian of a general multivariate function h : �n 7→ �mis defined here as

J(h) =


∂h1
∂x1

∂h1
∂x2

· · ·
∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · ·
∂h2
∂xn

...
...

. . .
...

∂hm
∂x1

∂hm
∂x2

· · ·
∂hm
∂xn

 . (2.41)

For practical reasons, JK is computed using the inverse mapping,

JK =
(
J

(
F −1(ξ)

))−1
. (2.42)

With these definitions and tools, we can proceed to the assembly procedures for the stiffness
matrix and the load vector.

2.5 Assembly Procedures

To compute the coefficients of the approximate solution uh, the elements of the stiffness
matrix A and the load vector f must be calculated. Let NK

i denote the global node number of
the local node xi on element K, where i = 0, · · · , 3 in the linear case and i = 0, · · · , 9 in the

17

Chapter 2. Approximation for the Electric Field

quadratic case. Then

ANK
i NK

j
=

∫
Ω

∇ϕNK
i
· ∇ϕNK

j
dΩ =

∑
K

∫
K
∇ϕK

i · ∇ϕ
K
j dΩ

=
∑

K

∫
K̂

[(
JT

K∇ϕ̂i

)
·
(
JT

K∇ϕ̂ j

)
det

(
J−1

K

)]
dΩ̂,

(2.43)

where JK is the Jacobian defined in Equation (2.42), JT
K its transpose and J−1

K its inverse. The
last integral in Equation (2.43) is an integral over a tetrahedral region, which in general can
be approximated by appropriate quadrature rules for such regions, as discussed by Yu [69] and
Zhang et al. [70], among others. A quadrature rule Q consists of a set of paired weights and
points {wi, xq

i }
Nq

i=1, and is used for numerical approximation of a general integral as

∫
D

f (x)dD ≈ |D|
Nq∑
i=1

wi f (xq
i), (2.44)

where Nq is the total number of quadrature weight and point pairs, and |D| is the volume of the
domain D that we are integrating over. In cases where D is some type of tensor product domain,
multidimensional quadrature rules can be constructed by tensor products of one-dimensional
(1D) quadrature rules. When integrating over tetrahedral regions, maps from tensor product do-
mains to the tetrahedral region introduce unnecessary numerical errors, and special, symmetric
rules for tetrahedral regions have advantages [69]. A quadrature rule of order N is defined to be
exact for any polynomial of degree less than or equal to N.

For linear basis functions, the integrand of the stiffness integral in Equation (2.43) is a
constant, and any quadrature rule will be exact. In the quadratic case, the stiffness integrand
will be a second order polynomial, and so a quadrature rule of order two will yield an exact
evaluation of the integral. Yu [69] presents a table with Gaussian quadrature formulas up to
order six on the reference element, but it will suffice to use the second order rule with four
quadrature points, which is reproduced in Table 2.1. The quadrature points on the reference
element is denoted by ξq

i = (ξq
i , η

q
i , ζ

q
i). Gaussian quadrature rules are usually represented in

barycentric coordinates 1, and so the reference coordinates are easily extracted from these rules.

Table 2.1: The second order quadrature rule with four points presented by Yu [69]. Note that the rule is
symmetric and is simply a permutation of the barycentric coordinates. Higher floating point accuaracy
can be found in the reference.

i wi ξ
q
i η

q
i ζ

q
i

1 0.25 0.13819 0.13819 0.13819
2 0.25 0.58541 0.13819 0.13819
3 0.25 0.13819 0.58541 0.13819
4 0.25 0.13819 0.13819 0.58541

1In the quadrature literature often referred to as volume coordinates or natural coordinates

18

2.5 Assembly Procedures

Algorithm 2.1 Assembly Procedure for Stiffness Matrix
Input: Triangulation Th,

Set of basis functions {ϕ̂i}
Nd−1
i=0 ,

Quadrature rule Q = {wl, ξ
q
l }

Nq

l=1

Output: Stiffness matrix A

for all Elements K ∈ Th do
J−1

K = J
(
F −1

K

)
JT

K =
(
J−1

K

)−T

for i = 0 to Nd − 1 do
for j = i to Nd − 1 do

AK
i j = 1

6 det
(
J−1

K

)∑Nq

l=1 wl

(
JT

K∇ϕ̂i(ξ
q
l)
)
·
(
JT

K∇ϕ̂ j(ξ
q
i)
)

NK
i = global node number of local node xi on K

NK
j = global node number of local node x j on K

ANK
i NK

j
= ANK

i NK
j

+ AK
i j {Add local contribution to global matrix}

if NK
i , NK

j then
ANK

j NK
i

= ANK
j NK

i
+ AK

i j {Set symmetric contribution }
end if

end for
end for

end for

The volume of the reference element K̂ is 1⁄6, and the contribution to the global stiffness
matrix A from a single element K is

AK
i j =

1
6

det
(
J−1

K

) nq∑
q=1

wq

(
JT

K∇ϕ̂i(ξq)
)
·
(
JT

K∇ϕ̂ j(ξq)
)
. (2.45)

The global matrix can be computed as

ANK
i NK

j
=

∑
K∈Th

AK
i j. (2.46)

The resulting algorithm used to assemble the stiffness matrix is presented in Algorithm 2.1.

For the load vector f the entries are defined in Equation (2.25), and the reference mapping
gives

fi =

Np∑
p=1

qpϕi(xp) =

Np∑
p=1

qpϕ̂i(FKp(xp)), (2.47)

where Kp is the particular element containing particle p. This element is the element location
of the particle, and can be found by using a point location algorithm (PLA), as will be discussed
in Chapter 4. Each particle will only be contained in one element, and thus only contribute to

19

Chapter 2. Approximation for the Electric Field

the entries of the load vector corresponding to nodes in that element. The assembly procedure
for the load vector loops over the particles, and adds the contribution from the particle to the
respective entries as shown in Algorithm 2.2.

Algorithm 2.2 Assembly Procedure for Load Vector
Input: Triangulation Th,

Set of basis functions {ϕ̂i}
Nd−1
i=0 ,

Particle positions {xp} and their element locations {Kp}

Output: Load vector f

for all Particles p in simulation do
ξp = FKp(xp)
for i = 0 to Nd − 1 do

NKp

i = global node number of local node i on Kp

fNK
i

= fNK
i

+ qpϕ̂i(ξp)

end for
end for

The solution vector u defined in Equation (2.30) represents the approximation of the poten-
tial in each node on the domain. To obtain the electric field for each particle, an approximation
of the gradient of the potential must be computed in each particle position. The simplest and
most intuitive calculation of the electric field for a particle in a position xp is done by exploiting
the basis functions,

Eh(xp) = −∇uh(xp) = −

Nh∑
i=1

ui∇ϕi(xp) = −

Nd∑
i=1

uNK
i

JT
K∇ξϕ̂i

(
FKp(xp)

)
, (2.48)

where Eh denotes the approximation to the electric field E. This interpolation scheme for the
electric field is a scheme arising naturally from the use of local support basis functions. If
the linear basis functions are utilized, the electric field is constant on each element, which is a
rough approximation if one considers a coarse grid and a single particle placed in a volume with
constant permittivity. This particle would feel what is known as self-forces. The electric field
arising from the particle would act with a force on that particle, which is unphysical. However,
as discussed by Aldegunde and Kalna [3], the effect of self-forces are minimal under high volt-
age simulations with many particles, which is the considered type of simulation in this thesis.
Thus, time-saving measures have in this case been weighted higher than reducing these artificial
self-forces, resulting in the use of the simple scheme in Equation (2.48). For a presentation and
comparison of different interpolation schemes, the reader is referred to Aldegunde et al. [4].

Before moving on to the solution of the linear system in Chapter 3 and the point location
problem in Chapter 4, we will take a closer look of the well-posedness of the problem defined
in Equation (2.8).

20

2.6 Existence and Uniqueness

2.6 Existence and Uniqueness

The existence and uniqueness of the solution to the weak formulation in Equation (2.15) is,
as previously stated, only ensured if the functional F(v) is linear and continuous. The right-hand
side, arising from letting the δ-distribution act on the smooth test functions, is not continuous,
and the Lax-Milgram existence theorem cannot be applied. It is however mathematically in-
teresting to provide an alternative proof for the existence and uniqueness of the solution to our
problem. We will return to the original problem as stated in Equation (2.8), and for simplicity
assume qp = 1 for all particles. We will analyze the equation in the setting of distributions and
Green function theory, providing the minimal set of definitions and theorems necessary to prove
the existence of a unique solution.

A possible workaround can also be to substitute the δ-distribution with a smooth, bounded
Gaussian distribution, and consider this approximate problem. Since a(·, ·) is, in fact, bilinear,
continuous and coercive, and the Gaussian approximation would belong to L2(Ω), Lax-Milgram
could be applied, and the weak formulation would be well posed. This approach is not further
pursued here.

Numerical experiments discussed in Section 7 show that the approximate solution obtained
by discretizing the weak formulation given in Equation (2.15) behaves nicely in a certain dis-
tance from a single discrete charge. A formal analysis of the stability and convergence behavior
is unfortunately outside the scope of this thesis. For a more thorough theoretical viewpoint
on the equivalence between different problem formulations, including the weak formulation,
when encountered with a distributional right-hand side for the Poisson equation, the reader is
referred to Babuška and Nistor [6]. Further, a convergent numerical scheme based on the weak
formulation of the nonlinear Poisson-Boltzmann equation with the contribution from a single
δ-distribution can be found in the work by Chen et al. [13].

For convenience, we restate the problem which will be under consideration in this section;

−∇2u =

N∑
i=1

δ(x − xi) in Ω,

u = g(x) on ∂ΩD,

∂u
∂n

= 0 on ∂ΩN.

(2.49)

The distribution denoted by δ(x − xi) is the Dirac measure giving unit mass to the point xi ∈ Ω.
We start our analysis with a short recap of distributional theory and fundamental solutions,
before Green functions applicable to bounded domains is introduced. This theory will prove
existence of the solution, and its uniqueness is then considered in a short concluding paragraph.

21

Chapter 2. Approximation for the Electric Field

2.6.1 Distributions and Fundamental Solutions

Distributions are generalized functions defined through their action on smooth test functions
with compact support. A formal definition can be found, e.g, in Functional Analysis by Rudin
[55], or other textbooks on functional analysis or distribution theory. We will settle without a
formal definition, but keep in mind the following properties.

Properties (Distribution). A distribution is infinitely differentiable (in the distributional sense),
and has partial derivatives which are again distributions. Every continuous function is a dis-
tribution. A differentiable function has a distributional derivative that coincides with the usual
derivative defined in calculus.

We denote by D′(�3) the space of distributions on �3. The idea of using distributions to
describe physical phenomena has been used by physicists for a long time, and fundamental solu-
tions in the Green functions sense was introduced in 1828 [27]. However, the Dirac distribution
was not introduced by Dirac until the 1920’s, and the theory of distributions was formalized as
late as in the middle of the 20th century, often accredited to L. Schwartz [9]. This theory can
be taken advantage of when searching for analytic solutions to PDEs. For linear differential
operators on infinite domains, the theory gives rise to the use of fundamental solutions.

Definition 1 (Fundamental Solution). A distribution Φ is a fundamental solution to the linear
differential operator L with constant coefficients if it satisfies

LΦ = −δ(x),

where δ denotes the Dirac distribution.

The following standard result from functional analysis ensures that such a fundamental so-
lution can always be found if the differential operator is sufficiently nice.

Theorem 1 (Malgrange-Ehrenpreis, Existence of Fundamental Solutions). There always exists
a fundamental solution to the linear differential operator L with constant coefficients.

Proof. See Rudin [55]. �

As a consequence, we can state the following corollary.

Corollary 1. The distributional solution to

−∇2u =
∑

i

δ(x − xi)

exists and is a linear combination of fundamental solutions.

Proof. By translation of the Dirac measure and linearity of the Laplacian ∇2, letting Φi be the
solution to −∇2Φi = δ(x − xi), the superposition principle gives u =

∑
Φi. �

Remark 1. The solutions implied by Corollary 1 are, in general, not regular functions but
distributions.

22

2.6 Existence and Uniqueness

2.6.2 Green Functions

The question now arising is if these fundamental solutions can be applied on the bounded do-
main Ω and additionally satisfy the set of mixed boundary conditions defined in Equation (2.49).
The answer is yes, and to see this, let us consider the existence of a Green function in Ω [22,
59]. The Green function on Ω with mixed boundary conditions can be defined, for fixed x, as
the solution to

−∇2
yG(x, y) = δ(x − y) in Ω,

G(x,σ) = 0, σ ∈ ∂ΩD,

∂

∂n
G(x,σ) = 0 σ ∈ ∂ΩN,

(2.50)

see e.g., Partial Differential Equations by Evans [22] or Partial Differential Equations in Action
by Salsa [59]. The Green function for the boundary value problem (2.50) can be constructed by
subtracting a corrector distribution φ from the fundamental solution,

G(x, y) = Φ(x − y) − φ(x, y), (2.51)

where φ must solve the boundary value problem given by

−∇2
yφ = 0 in Ω,

φ(x,σ) = Φ(x − σ) σ ∈ ∂ΩD,

∂φ

∂n
=

∂

∂n
Φ(x − σ) σ ∈ ∂ΩN,

(2.52)

for fixed x. A sufficient condition for the existence of a solution to Equation (2.52) is that the
domain Ω is a Lipschitz domain [59]. From this and Theorem 1, the distribution G exists as
defined in Equation (2.51) for our problem, which domain defined by the APD is a cuboid (see
Section 7.2), and thus a Lipschitz domain [54]. A suitable sum of Green functions,

G(y) :=
∑

i

G(xi, y), (2.53)

solves
−∇2

yG(y) =
∑

i

δ(xi − y) in Ω

G(σ) = 0, σ ∈ ∂ΩD,

∂

∂n
G(σ) = 0 σ ∈ ∂ΩN,

(2.54)

by constructing a corrector distribution φ with the boundary conditions corresponding to the
sum of fundamental solutions and their normal derivatives on the Dirichlet and Neumann bound-
ary respectively.

Further, let ũ solve the homogeneous Laplace equation with the Dirichlet and Neumann

23

Chapter 2. Approximation for the Electric Field

conditions from Equation (2.49),

∇2ũ = 0 in Ω,

ũ = g(x) on ∂ΩD,

∂ũ
∂n

= 0 on ∂ΩN.

(2.55)

The solution ũ exists under the same conditions as for Equation (2.52). Defining the sum of the
Green function from Equation (2.53) and ũ, the function

u(x) := G(x) + ũ(x) (2.56)

solves Equation (2.49) and exists under the Lipschitz assumption on Ω. We thus conclude
positively the existence analysis of the solution to our problem. The next short section will give
the final uniqueness result.

2.6.3 Uniqueness

A suitable max-min principle [22, 53, 59] cannot directly be applied to the solution u, since
G, in general, is a distribution, and u cannot be assumed to lie in C2(Ω). However, the following
theorem [19] will provide us with the sufficient foundation for proving uniqueness.

Theorem 2 (Weyl’s Lemma). Every distributional solution u ∈ D′(Ω) to the homogeneous
Laplace equation −∇2u = 0 is a classical solution, i.e., the solution is twice continuously
differentiable.

Assuming u1 and u2 both satisfy Equation (2.49), with u1 , u2, the proof of uniqueness
is a simple proof by contradiction as u1 − u2 solves the homogeneous problem, and hence, by
Theorem 2, a max-min principle can be applied to u1 − u2 and yields u1 − u2 ≡ 0. �

24

3 | Solving the Linear System

The finite element discretization of Poisson equation elaborated in the previous section resulted
in a sparse linear system, represented in Equation (2.29). When applying finite element dis-
cretizations to MC particle simulations, the number of necessary nodes is often very large,
leading to a large linear system of equations. The sparsity pattern for two stiffness matrices
calculated for grids with different resolution and element order is shown in Figure 3.1. Many
different methods, both direct [17] and iterative [56], can be applied to provide us with a solution
to the linear system. Iterative methods based on Krylov subspace methods with preconditioners
arising from direct methods are typically used to produce a solver which has favorable behavior
with respect to speed, accuracy and stability [7, 8].

Taking advantage of the sparsity of the system is important, and to this aim, types for holding
sparse matrix information are implemented in the MCFEM. The chosen formats are dictonary
of keys (DOK) for assembly and compressed row storage (CRS) for calculations. A short

(a) (b)

Figure 3.1: Sparsity patterns for two different stiffness matrices arising from the use of unstructured
grids. The two matrices represent a grid with 33, 080 nodes and linear elements (a), and a grid with
39, 475 nodes and quadratic elements (b). The non-zero elements are illustrated with blue dots. The total
number of non-zero elements is (a) Nz = 455, 164 and (b) Nz = 944, 393.

25

Chapter 3. Solving the Linear System

overview of these is presented in Section 3.1. A preconditioned conjugate gradient method
(PCG) is applied to the system and briefly described in Section 3.2. Some numerical results
for applying different methods in the first time-step of the MCFEM is presented in Section 3.3.
In the code, the use of types and operator overwriting makes it easy to extend the number of
storage formats or change solver in the future. The modules for sparse linear algebra operations
are independent of the rest of the code and can be exported for use in other types of programs
requiring sparse linear algebra structures. For a wider range of sparse linear algebra operations,
it is also possible to integrate a general library such as SPARSEKIT [57].

3.1 Sparse Matrix Storage Schemes

The motivation for implementing special storage schemes for sparse matrices is the reduc-
tion of memory usage and computation time for matrix-vector multiplications. The matrix-
vector multiplication is the most important operation in Krylov subspace applications. The idea
of sparse storage schemes is to only store the non-zero elements of the matrix. The DOK-format
is the format of choice to assemble the matrices, due to its simplicity and intuitive storage of
matrix values coupled to their matrix position with a row-column pair key. When a new non-
zero entry is added to the matrix, its row and column pair is appended to the list of keys, and its
value is appended to the array of values. A non-zero value can easily be replaced by looking up
the key and change the corresponding value.

The CRS-format is even less memory-demanding and provide fast access to rows for the
computation of matrix-vector products. For the matrices with sparsity pattern visualized in
Figure 3.1, the CRS-format needs only 0.09% and 0.12%, respectively for Figure 3.1(a) and
Figure 3.1(b), of the memory used when saving the matrices in a full format. The format
consists of three arrays and any sparse matrix can be saved without loss of information in this
format. For an m × n matrix B with a total of Nz non-zero elements, an array vCRS will contain
the non-zero values of the matrix, where each row is stored sequentially. An array cCRS contains
the column indices for each corresponding value in vCRS. The last array, rCRS, is of length m + 1,
and its ith element contains the storage index of the first non-zero value in the ith row of the
original matrix, with which one can index into vCRS. In other words, the index of the first non-
zero element at row i is stored in rCRS at index i. The last value in rCRS is (Nz + 1) and can be
interpreted as the index of a first fictional value in the non-existing (m + 1)th row of the matrix
B. The non-zero elements of the ith row of B can thus easily be accessed as by the indices
ranging from the ith value of rCRS to the (i + 1)th value of rCRS subtracted by 1. The details are
somewhat technical, and the following example hopefully clarifies the idea.

26

3.1 Sparse Matrix Storage Schemes

Example 1. Given a 4 × 5 matrix

B =


b11 b12 0 0 b15

0 b22 b23 0 0
b31 0 0 b34 b35

0 0 b43 0 0

 ,
the three vectors holding the sparse information will look like

vCRS = [b11, b12, b15, b22, b23, b31, b34, b35, b43],

cCRS = [1, 2, 5, 2, 3, 1, 4, 5, 3],

rCRS = [1, 4, 6, 9, 10].

To access row number three, compute the range of indices for indexing into vCRS as

I3 = range(rCRS,3, (rCRS,4 − 1)),

giving I3 = [6, 7, 8]. Then

vCRS,I3 = [vCRS,6, vCRS,7, vCRS,8] = [b31, b34, b35].

The values of vCRS,I3 are exactly the three non-zero values in row number three. If we are to
compute the matrix-vector product of B with a vector a = [a1, a2, a3, a4], we must take advantege
of the values in the vector with column-information, cCRS. For each row r we index into a with
an index vector of column values, Jr = cCRS,Ir , such that

Ba =


vCRS,I1 · aJ1

vCRS,I2 · aJ2

vCRS,I3 · aJ3

vCRS,I4 · aJ4

 =


[b11, b12, b15] · [a1, a2, a5]

[b22, b23] · [a2, a3]
[b31, b34, b35] · [a1, a4, a5]

b11a3

 .

The computation of matrix-vector products is fast with the matrix stored in CRS-format, be-
cause each row is stored sequantially in memory and is reachable with simple indexing. In addi-
tion, all floating point operations that would include multiplication with zero in the full format
is avoided. The reason the CRS-format is not used for assembly is that adding matrix elements
is cumbersome and requires position shifting of the three storage vectors. When the stiffness
matrix is assembled into a DOK-format, it can easily be converted to a CRS-format when the
assembly is finished and the number of non-zero elements and their positions is known. The
temporary DOK-matrix can be deleted from the memory when the conversion is finished.

27

Chapter 3. Solving the Linear System

3.2 Preconditioned Conjugate Gradient Method

The method used to solve the linear system in Equation (2.29) is a PCG with an incomplete
LU-factorization with zero fill-in (ILU0) as the chosen preconditioner. The presentation of the
algorithm follows the discussion of Saad [56]. The complete set of available system solvers
in the MCS is a simple conjugate gradient method (CG), the PCG and a bi-conjugate gradient
stabilized method (BiCG-Stab). The PCG was introduced in the program by Åsen [5], and the
BiCG-Stab by Harang [31]. The BiCG-Stab is a generalization of the CG-method for applica-
tions with non-symmetric matrices. The main work on these solvers during this thesis has been
to increase the readability of the code by implementing types for holding the sparse matrices
and overwrite operators in order to keep the intuitive, abstract mathematical notation within the
code. The solvers are now easily exportable to other types of software if needed.

The need for preconditioners when applying CG to large systems is due to slow technical
convergence, especially when applied to electronic device simulation [56]. This will also be
apparent from the small experiment applied in the next section, Section 3.3. The CG-method
can be applied to symmetric positive definite matrices, such as our modified stiffness matrix
ABC. To precondition an arbitrary matrix A with ILU0 is a preferable choice because the sum of
the lower triangular matrix L and the upper triangular matrix U, denoted here by L + U = ALU ,
has the same sparsity pattern as the original matrix A. This is the property obtained with the
zero fill-in procedure. The two matrices can thus be stored in a copy of the original matrix, and
only the values in vCRS in a CRS-format must be altered, while cCRS and rCRS can stay the same.
An additional array of diagonal pointers is stored to easily be able to separate the lower and
upper triangular parts. The matrix ALU is computed by partial Gaussian elimination, as shown
in Algorithm 3.1. This matrix should not be confused with the matrix-matrix-product of the two
parts of the decomposition, denoted by LU.

Algorithm 3.1 Computation of ILU0 [56]
Input: matrix to be preconditioned, A
Output: matrix preconditioner, ALU

ALU = A
for i = 1, ..., n do

for k = 1, ..., i-1, and (i, k) s.t. Aik , 0 do
ALU

ik = ALU
ik

ALU kk

for j = k+1, ..., n, and (i, j) s.t. Ai j , 0 do
ALU

i j = ALU
i j − ALU

ikALU
k j

end for
end for

end for

28

3.2 Preconditioned Conjugate Gradient Method

The favorable property of a lower-upper triangular matrix product is that the equation

LUx = b (3.1)

can easily be solved by the simple scheme

solve Ly = b, then solve Ux = y,

where the first part is done by a simple forward substituion since L is lower triangular and the
second part by a back substitution since U is upper triangular. Hence, the matrix (LU) is easily
invertible. The preconditioner is applied to a system Ax = b as

(LU)−1Ax = (LU)−1b, (3.2)

which is a system equivalent to the original one, but easier to solve. For a full discussion on
the use of preconditioners, the derivation of the PCG, and convergence properties, the reader is
referred to Iterative Methods for Sparse Linear Systems by Saad [56]. Here we simply restate
the utilized procedure in Algorithm 3.2.

Algorithm 3.2 Precondtioned Conjugate Gradient for solving Ax = b [56]
Input: matrix A,

incomplete matrix factorization ALU , holding L and U
vector b
initial guess x0

tolerance τ
Output: solution x

r0 = b − Ax0

Solve LU z0 = r0 by forward and back substitution
p = z0

i = 0
while ‖ri‖2 ≥ τ do

α =
ri · zi

p · Ap
xi+1 = xi + αAp
ri+1 = ri − αAp
Solve LU zi+1 = ri+1 by forward and back substitution

β =
ri+1 · zi+1

ri · zi

p = zi+1 + βp
i = i + 1

end while

29

Chapter 3. Solving the Linear System

3.3 Numerical Evaluation
To test the performance of the implemented PCG, the method was applied to the linear

system arising from solving the Poisson equation on the triangulation of an APD, where the
interior volume is neutral and Dirichlet conditions are applied to part of the boundary. This
corresponds to the first time step of the bias simulations discussed in Chapter 7. Three different
triangulations where used, with different degrees of freedom. The PCG was compared to the
CG without preconditioning, and the BiCG-Stab. The result of this comparison is presented in
Table 3.1. The table shows the necessary number of iterations and CPU-time for each solver.
The tolerance used is an absolute error of τ = 10−10. From these numbers, it is clear that that
the PCG performs best in all three cases, both with respect to time and number of iterations.
The best gain in performance compared to the two other methods is achieved for the largest
system. As expected, each iteration step requires more time for the PCG than for the other two
methods, but the accumulated run-time is lower due to the much faster convergence rate of PCG.
The BiCG-Stab is important if equations resulting in non-symmetric discretization matrices is
integrated into the MC-model, or the solvers are exported for use in other settings. However,
as seen by its slow convergence, it should be subject to convergence improvements before it
becomes the method of choice. The use of CG without preconditioning is unnecessary and
should be avoided.

Table 3.1: Performance of three different methods for solving three different Poisson systems of the
type given in Equation (2.29). Nh specifies the number of nodes in the triangulation used to construct the
stiffness matrices, such that each matrix is of size Nh × Nh. For each matrix, the column with header I
holds the number of iterations, and the column with header t denotes the CPU-time in seconds. The PCG
clearly outperforms the two other methods.

Nh 12.689 39.475 75.165
I t[s] I t[s] I t[s]

PCG 89 0.14 138 0.79 161 1.98
BiCGStab 627 0.71 1492 6.34 5058 54.52

CG 722 0.31 1404 2.14 1919 7.05

30

4 | Point Location Algorithms

The computation of the load vector for the finite element discretization of the Poisson system
requires the knowledge of the element location of electrons and holes, as mentioned in Sec-
tion 2.5. In any structured grid, explicit formulas can be used to compute the current element
location of a particle. In computer simulations with an unstructured decomposition of the do-
main, the search for this location is not trivial. The point location or particle tracking problem
is defined within computational geometry [18]. Its solution is especially interesting in com-
puter simulation of fluid mechanics, biomedicine and in our case for particle simulation in solid
state physics, when applying unstructured grids. The implemented point location algorithms
(PLAs) are applicable to both 2D and 3D triangulations, with only minor changes between the
two cases. The 2D-routine is used to handle injection of particles at the Ohmic contacts (OCs),
and the 3D-routine is used for assembling the load vector and interpolate the electric field in
each particle position. In this chapter, we will present the implemented PLA in the two different
cases. The injection routine is developed in Chapter 5.

Several PLAs have been suggested during the last decades [14, 15, 33, 39, 41, 48, 71].
To the best of our knowledge, the most recent contribution is presented by Capodaglio and
Aulisa [12], handling unstructured, hybrid meshes with non-planar element faces in parallel
finite element applications. Common to these methods is that they are all introduced in the
setting of multiphase flow, where particle paths are determined by the velocity field calculated
independently of the particle positions. For semiconductor simulation, this framework is altered
and we define the problem and discuss some aspects of this particular case in Section 4.1. A
solution to the point location problem, based mainly on the work by Chordá et al. [15], is
presented in Section 4.2.

4.1 The Point Location Problem

We assume a particle p is in a position given by its Cartesian coordinates, xp ∈ Ω, and that
Th is a triangulation of Ω. The point location problem consists of finding the element in the
triangulation which contains the particle, i.e.

find Kp ∈ Th s.t. Kp 3 xp.

31

Chapter 4. Point Location Algorithms

The general approach is to search through the elements of Th from an initial element guess
Kinit, and test for inclusion of xp. We will consider triangulations which consists exclusively of
tetrahedral volume elements or triangles in a plane. The use of the affine map given in Equa-
tion (2.37) ensures planar faces (triangles) for tetrahedra or straight faces (edges) for triangles.
This can be taken advantage of to simplify the PLAs. The procedures presented by Chordá
et al. [15] applies to these cases. If an extension to iso-parametric mappings for the quadratic
elements is made, the use of face decompositions as described by Capodaglio and Aulisa [12]
and Kuang et al. [45] would be necessary. This approach is not considered during this work.

As opposed to fluid applications where particles will follow the calculated velocity fields,
the carriers in a MC simulation are subject to random particle scattering, which at any time
can change the particle’s flight direction. At the time of solving Poisson equation, the particles
are considered to be frozen in their current position. Each particle’s coordinates are passed
to the PLA, with the initial element guess equal to its location in the previous step. Between
Poisson steps, particles will on average move at most a few elements from their old position, so
efficiency on short search distances are the most important. However, for the initialization of
element locations for each particle, the algorithm must be able to handle long searches through
the entire triangulation. Correct particle positions are important for the approximation of the
self-consistent forces in the MC-simulation.

4.2 Implemented Solution to the Point Location Problem
The considered algorithms for point location is based on a search from an initial element

guess, denoted by Kinit, where the search path is constructed by traversing elements in the tri-
angulation that lies on the path from this initial element to the point searched for. The path is
determined by geometrical calculations. In both 2D and 3D triangulations, a search direction S
is defined from the center of the initial element guess Kinit to the particle position xp,

S = xp − xinit, (4.1)

where xinit denotes the center of Kinit. Elements on the search path are traversed by always
moving to the neighboring element sharing the face that intersects S closest to the particle.
When the algorithm has entered the element Kp containing the particle, it terminates. If the
domain Ω is convex and the point does not lie outside the domain, the geometrical computations
will ensure the convergence of the method [15]. A sketch showing the algorithm’s path through
a 2D grid is shown in Figure 4.1. We consider planes and volumes separately and start with the
2D-case.

4.2.1 Point Location in Two Dimensional Triangulations

In 2D, the coordinates of a point is x = (x, y) and the element faces are edges. If an edge
is intersected by S can be decided by applying a test called the trajectory-to-the-left test (TTL),

32

4.2 Implemented Solution to the Point Location Problem

Figure 4.1: A sketch showing how the PLA traverses elements in a triangulation, to locate the point xp.
It is initiated from the element Kinit and the initial search point xinit is calculated as Kinit’s center. The
search direction S is computed from Equation (4.1). The algorithm traverses elements on the path to xp,
always walking to the neighboring element sharing the edge intersecting the search trajectory S. The
algorithm terminates when reaching KP 3 xp, marked in red.

explained in the following. Assume, without loss of generality, that the algorithm has entered an
element Kcurrent on the path from Kinit to Kp, as visualized in Figure 4.2. This element has three
directed edges, e0, e1 and e2, all of which are oriented counterclockwise around the triangle.
Each edge is defined by a local start node x0 and a local end node x1. Defining two new vectors

a0 = x0 − xinit,

a1 = x1 − xinit,
(4.2)

and computing the third component of the cross product ai × S,

(ai × S)3 := αi = (xi − xinit)(yp − yinit) − (xp − xinit)(yi − yinit), (4.3)

can help us determine edge intersection. The following can be interpreted from the sign of αi:

αi < 0 ⇐⇒ ai lies to the left of S =⇒ TTL returns true

αi = 0 ⇐⇒ S goes through xi =⇒ TTL returns true

αi > 0 ⇐⇒ ai lies to the right of S =⇒ TTL returns false

If sign(α0) , sign(α1), the search trajectory S must intersect the given edge, as shown in
Figure 4.2(b). This is equivalent to the TTL being true for one vector ai and false for the
other. The case when S passes through one of the nodes is treated as an intersection. If an

33

Chapter 4. Point Location Algorithms

xP

xinit

x0

α0 > 0

Kcurrent

α1 > 0
a1

a0

e1
e2

e0S

x1

(a)

xP

xinit

x0
α0 > 0

Kcurrent

α1 < 0

a1

a0

e1
e2

e0S

x1

(b)

Figure 4.2: Edge e0 (a) and edge e1 (b) is tested for intersection with the search trajectory S. The vectors
a0 and a1 is computed locally for each edge. For edge e0, both lies to the right, and sign(α0 · α1) > 0.
For edge e1, a0 lies to the right, and a1 to the left, so sign(α0 · α1) < 0. The test concludes that e1 is
intersected by S, and continues to the PTL. The PTL will confirm that e1 is the exit face of Kcurrent.

edge is intersected, it must either be the entry face or the exit face of the current element. The
intersected edge where the search trajectory points into the element is the entry face, the edge
where it points out is the exit face. The algorithm must find which of the intersected edges is the
exit face, and go to the element adjacent to this face. This introduces the need for an additional
test, the particle-to-the-left test (PTL). The PTL is used to determine if xp lies to the left of the
intersected edge. If so, the edge must be the entry edge, and if not, it must be the exit face. The
PTL is computed as the third component of the cross product between the edge vector e and a
vector from x0 to xp,

βe = (x1 − x0)(yP − y0) − (xP − x0)(y1 − y0). (4.4)

The interpretion of βe is

βe < 0 ⇐⇒ xp lies to the left of e =⇒ PTL returns true

βe = 0 ⇐⇒ xp lies on e =⇒ PTL returns true

βe > 0 ⇐⇒ xp lies to the right of e =⇒ PTL returns false

When the point lies to the right of the current edge, the algorithm continues to the neighbor
element adjacent to that edge. This will be the edge closest to xp. If xp is found to lie to the left,
or on e, the next edge in the triangle is chosen and tested for intersection. As can be observed
in Figure 4.2, any element intersected by the search trajectory will have one and only one edge
which both intersects S and has the particle postion to its right, unless the triangle contains xp.
Thus, if βe is positive (the PTL is true) for both edges having α0 · α1 ≤ 0, the particle must
be contained in the current element, and the algorithm has converged. The procedure can be
implemented as in Algorithm 4.1. The next step is the extension of the algorithm to the 3D-case.

34

4.2 Implemented Solution to the Point Location Problem

Algorithm 4.1 The 2D Point Location Algorithm
Input: Coordinates xp of particle,

triangulation Th,
initial search element Kinit

Output: Element Kp 3 xp

xinit = center of Kinit

S = xp − xinit

Kp = −1
Kcurrent = Kinit

while Kp == −1 do
exit face = −1
for all Faces e of Kcurrent do

Compute α0 and α1 from Equation (4.3)
if α0 · α1 ≤ 0 then

Compute βe from Equation (4.4)
if βe < 0 then

exit face = e
end if

end if
end for
if exit face == −1 then

Kp = Kcurrent

else
Kcurrent = neighbor(Kcurrent, exit face)

end if
end while

4.2.2 Point Location in Three Dimensional Triangulations

Element faces are now triangles and denoted by Fi. As in the 2D-case, a test for intersection
of the trajectory with faces of the current element is necessary to determine the path of the
algorithm. Further, a test to determine which side of a face the particles lies is used to separate
the entry face from the exit face. These two tests are called the face-trajectory-intersection test
(FTI) and the particle-to-the-inside test (PTI).

Each face consists of three directed edges, oriented counterclockwise with respect to the
face normal pointing out of the element. As in the 2D-case, each edge has a start node x0 and
an end node x1, and we associate the following vectors to each edge of the face:

a0 = x0 − xinit,

a1 = x1 − xinit,

b = a0 × a1.

(4.5)

35

Chapter 4. Point Location Algorithms

See Figure 4.3 for a visualization of these vectors for each edge of a face of a tetrahedron. If
the scalar product between b and S,

ωe = b · S, (4.6)

has the same sign for all three edges, the search trajectory intersects the face, and FTI returns
true [15]. For a face intersected by S, the PTI is then used to determine if the particle lies to
the inside or outside of the element, with respect to the given face. An entry face will have the
particle to the inside, meaning the particle lies on the same side of the face as the element, but
not necessarily within the element. For an exit face, the particle will lie on the outside, i.e., on
the opposite side of the face with respect to the element. To determine the value of the PTI, a

(a) Associated vectors to edge e0 (b) Associated vectors to edge e1

(c) Associated vectors to edge e2 (d) Vectors for PTI

Figure 4.3: The steps of the 3D PLA for one face of a tetrahedron, here the bottom face. For each edge
of the face (a-c), the vectors defined in Equation (4.5) is calculated. In each case shown here, ωe < 0,
and the search trajectory must intersect the face. The PTI (d) returns true, so the lower face can not be
the exit face for the search trajectory. The algorithm continues its search for an exit face by considering
the same calculations applied to the next face of the tetrahedron. For the other face intersected by the
search trajectory, PTI will return false, and the exit face is found.

36

4.2 Implemented Solution to the Point Location Problem

new vector from any node xF of the face F to the point searched for is computed as

cF = xp − xF . (4.7)

The outward pointing normal vector of the face is computed as

nF = e0 × e1, (4.8)

and we can define
γF = nF · cF , (4.9)

with the following interpretation:

γF < 0 ⇐⇒ xP lies to the inside of F =⇒ PTI returns true,

γF = 0 ⇐⇒ xP lies in the plane defined by F =⇒ PTI returns true,

γF > 0 ⇐⇒ xP lies to the outside of F. =⇒ PTI returns false.

Figure 4.3(d) shows an example of the first case. The algorithm will then continue its search for
intersections with S on the other faces F of the element. If γF > 0, the next search element is
set to the element adjacent to this face. If γF < 0 for both intersected faces, the point must lie
inside the element and the algorithm has converged. The procedure is listed in Algorithm 4.2.

Remark 2. The node ordering is important for correct results of the PLAs. If GMSH [24]
is used for the grid construction, the correct node ordering is achieved by ensuring that all
elements are associated with a physical group. See also Appendix A.

4.2.3 Comparison with Other Methods

In the preparing work for this thesis [23], different approaches to the solution of the point
location problem were discussed, and a new algorithm was suggested. In the 2D-Poisson solver
implemented by Åsen [5], an edge traversing algorithm presented by Guibas and Stolfi [29],
and refined by Brown and Faigle [11] was used. This 2D-algorithm is difficult to extend to
the 3D-case. To compare the implemented method, called the Chordá’s, Blasco’s and Fueyo’s
algorithm (CBF), with other methods, we do a comparison on a 2D-triangulation. The CBF is
tested against the face-to-point algorithm (FP) discussed in [23] and the run-times of the Guiba’s
and Stolfi’s algorithm (GS) presented in [5]. The three different algorithms were tested in the
same grid, and their CPU-time is compared in Figure 4.4. Since the old GS is not applicable
to the 3D-case, the CBF is the best choice for an extension to 3D among the three compared
algorithms. The FP previously suggested is abandoned due to lack of robustness and slower
convergence than for the CBF. The CBF shows almost equal performance as the GS over short
distances, which is the most important case in the MCFEM. One of the reasons the FP needs
additional run-time is that it does not require ordered node numbers, leading to additional time

37

Chapter 4. Point Location Algorithms

Algorithm 4.2 The 3D Point Location Algorithm
Input: Coordinates xP of particle,

triangulation Th,
initial search element Kinit

Output: Element Kp 3 xp

xinit = center of Kinit

S = xp − xinit

Kp = −1
Kcurrent = Kinit

while Kp == −1 do
exit face = −1
for all Faces F of Kcurrent do

for all Edges e of face F do
Compute ωe from Equation (4.6)

end for
if ωe has same sign for all e then

Compute γF = nF · cF

if γF > 0 then
exit face = F

end if
end if

end for
if exit face = −1 then

Kp = Kcurrent

else
Kcurrent = neighbor(Kcurrent, exit face)

end if
end while

for computing orientation of faces. This is unnecessary work when applying physical groups in
GMSH, which provides correct node ordering.

38

4.2 Implemented Solution to the Point Location Problem

Figure 4.4: Run times of three different algorithms for point location, plotted against the search distance
from an initial point to the point searched for. The times for the Guiba’s and Stolfi’s algorithm (GS) is
taken from the thesis by Åsen [5], and slight variation might occur due to an unknown operative system
for these calculations. The two other algorithms were tested in the same grid as used in Åsen’s thesis, on
a machine with Intel Core i7-4770 processor, 4 CPUs, clock frequency 3.40 GHz, running Ubuntu 16.04
LTS. The runtimes represent the time to locate 100,000 particles. The Chordá’s, Blasco’s and Fueyo’s
algorithm (CBF) is the algorithm used in MCFEM.

39

Chapter 4. Point Location Algorithms

40

5 | Boundary Conditions for Carrier Dynamics

When the free carriers move towards the boundary of the domain, they will be subject to parti-
cle boundary conditions. The conditions applied to the particles is of great importance and will
influence how well the simulations mimic physical behavior [26]. The most common particle
boundary conditions are the ones described by Hockney and Eastwood [35], with some varia-
tions on the use of velocity distribution for injected particles at contact surfaces [68]. For the
free surfaces, Hockney and Eastwood proposes an elastic reflective boundary condition, imple-
mented by a change of sign for the velocity component normal to the boundary. This causes a
new flight direction for particles colliding with non-contact boundaries. For the Ohmic contacts
(OCs), particles must be absorbed and injected according to physical models. Absorption is
implemented by letting any particle reaching the contact surface be absorbed by the contact,
and thus deleted from the simulation. Both reflection and absorption is simple and does not
require any further considerations. However, there exist different models for particle injection
at OCs, and this is the most challenging part of the boundary conditions for carrier dynamics.
In the following, a method adapted to device simulation in unstructured grids is proposed.

5.1 Neutral Region
As described by González and Pardo [26], an OC remains in thermal equilibrium, also

in situations where a potential is applied or other physical phenomena cause currents to flow
through the contact. To achieve this behavior in a simulation, a region adjacent to the contact
is kept in neutral equilibrium by inserting possibly missing charges at each time step. For
simulation in structured grids, the imposed neutral region is in most cases the cells adjacent to
the contact. For simulations in unstructured grids, the neutral region must be generalized to this
type of application.

Aldegunde et al. [2] defines the neutral region as the set of elements with at least one node
on the contact surface, and the number of particles to be inserted is calculated as the deficit of
charge in this region. Then, particles are inserted at the surface of the contact according to a
random distribution weighted by the charge density of the surface triangles in an equilibrium
state.

To expand the horizon for unstructured grid contact modeling a new model is tested in the
MCFEM. It differs from the method suggested by Aldegunde et al. [2] as

• The depth of the region is defined independently of mesh size

41

Chapter 5. Boundary Conditions for Carrier Dynamics

• No need to locate the volume elements which has nodes on the contact surface
• Injection of particles is done with respect to the current distribution of particles

In this new method, the neutral region is a region with depth ∆y adjacent to the contact. Global
neutrality in this region is imposed by inserting particles according to charge deficit at each time
step of the simulation. The total number of particles that needs to be injected, denoted by Ninsert,
is calculated as

Ninsert = ηAcontact∆y − Nt. (5.1)

Here, Acontact is the surface area of the contact, such that Acontact∆y is the volume of the neutral
region, η is the target carrier density of the region adjacent to the contact, and Nt is the actual
number of carriers in the neutral region at any given time t. When new particles are created,
they must be given a position in the simulation domain. In the method suggested, this position
is based on local charge deficit, as described in the following.

5.2 Injection of Particles
The first OC-scheme introduced in the MC Software was implemented by Kirkemo [43],

based on the description given by Fischetti and Laux in the collection Monte Carlo Device
Simulation : Full Band and Beyond [34]. This framework is still maintained for the new OC-
scheme, where inserted particles are created with the same carrier dynamics as in the old OC-
scheme. The part that is altered is the injection point of the created particle.

If Ninsert calculated from Equation (5.1) is positive, new particles are created. In order to
decide where these particles should be inserted, the contact mesh on the surface is extrapolated
in the y-direction to form a set of prisms that together constitute the neutral region. This is
visualized in Figure 5.1. The positions of the new particles are decided by applying a neutrality
condition to each of these prisms.

To compute the number of particles in each prism, the positions of the particles currently

∆y

Figure 5.1: A surface triangulation of a contact region, with an imposed neutral region of thickness ∆y.
The triangulation is projected to form regular prisms in the y-direction, so the neutrality in each small
prism can be accounted for.

42

5.2 Injection of Particles

contained in the neutral region is projected to the contact surface, and the 2D-PLA from Sec-
tion 4.2 is used to find the triangle containing this projected particle. The projection is visual-
ized in Figure 5.2. With this procedure, the number of particles in each prism can be counted.
Each prism is then assigned a surplus or a deficit of carriers, according to the current number
of particles within it. Prisms with a surplus of charge obtain no treatment. Actively ejecting
particles from surplus cells can lead to instabilities, and surplus of charge must diffuse by the
internal forces acting on the particles in the device, and lead the particles to find their way out
through the contact without adding external, artificial forces to this procedure. If there was only
local monitoring of charge deficit or surplus in each cell, one might risk to overinject charge,
since prisms with charge surplus would not contribute to the calculation of charge neutrality.
That is why the global estimate of charge in Equation (5.1) is implemented. If there is a need
for global injection, the local prisms with charge deficit are chosen as candidates for inserting
new particles. The inserted particle is positioned on the surface triangle of a randomly selected
prism candidate with charge deficit, such that it enters the device during the next time step. The
injection procedure is shown in Algorithm 5.1.

It is known that the boundary conditions applied to the OCs will influence the obtained char-
acteristics of the device. Since the current through the device is directly calculated by counting
particles that leaves or enters through the contact, this characteristic is especially vulnerable
to non-physical injection models. Due to time limitations, the impact of using Algorithm 5.1
has not been tested against other methods for injection. Comparison with physical experiments
would also be important in order to test its correctness.

Figure 5.2: The position of particles are projected to the contact surface, and a 2D-PLA is used to
decide a particles affiliation to the triangulation. The filled, blue dots resembles the particle positions in
the volume, and the open circles show their projection to the contact triangulation. Any type of particle
is projected in the same manner.

43

Chapter 5. Boundary Conditions for Carrier Dynamics

Algorithm 5.1 Injection of Particles at Contacts
Input: Contact specifications with 2D triangulation Th,

depth of neutrality region ∆y
target carrier density η,
Particle positions {xp}

Output: Appended new particle positions to {xp}

Count number of particles,Nt, in the contact neutrality region
Calculate Ninsert from Equation (5.1)
for all K ∈ Th do

Calculate charge in extrapolated prism: surplus or deficit
end for
while Ninsert > 0 do

Choose random triangle K ∈ Th

if Charge deficit in extrapolated prism from K then
Insert particle with postion in triangle center
Give particle velocity direction into device
Ninsert = Ninsert − 1

end if
end while

44

6 | Program Flow

The material presented in the previous chapters are all important building blocks for adapting
the existing FFI-MCS to simulations on unstructured domain decompositions. The aim of this
chapter is to give an overview of how these blocks are integrated into the MCS, resulting in the
new program Monte Carlo software with finite element Poisson solver (MCFEM). The overall
program flow of MCFEM is presented in Section 6.1. The part of the initialization concerning
device geometry and triangulation is treated in Section 6.2 and the subflow performing the
assembly is presented in Section 6.3. Finally, the program flow for the electric field calculations
in each loop iteration is treated in Section 6.4.

In addition to the description given here, interactive documentation of the code has been
generated using a program called FORD (FORtran Documenter)1, which automatically gener-
ates HTML-documentation based on the source code and comments therein. This interactive
documentation is obtained together with the source code. Due to the extensive number of mod-
ules and subroutines of the full program, the full program flow is not included here but can be
found in the HTML-documentation. Appendix B provides an additional list of modules in the
program, mainly intended for future developers of MCFEM.

6.1 Monte Carlo Program Structure
The focus of this thesis has been to integrate the new 3D FEM Poisson solver into the

old MCS. The part of the code concerning the solid-state physics calculations have only seen
minor readability updates, and a reader interested in this part of the code should consult the
theses written by Kirkemo [43], Norum [50], and Olsen [51]. Figure 6.1 shows the outline of
a MC-simulation performed with the MCFEM. The program starts by initializing the material
parameters and tabulating scattering rates with respect to different energy levels for particles
in their respective energy bands. The initialization also contains the geometry specifications
and some calculations for the finite element routines. The particles are initialized according to
the specified impurity charge densities in the device. After the initialization, the simulations
enters the time loop and iterates as specified by the user of the program. In a Poisson solving
time step, the electric field is updated before free flights are performed. Particles leaving the
domain through the contacts during their free flights is deleted, and the injection of particles is
performed according to the method described in Section 5. The remaining and newly created

1Available at GitHub: https://github.com/cmacmackin/ford

45

https://github.com/cmacmackin/ford

Chapter 6. Program Flow

particles are scattered by the scattering calculations, and new flight directions are given to each
scattered particle. Statistics on parameters of interest are gathered at user-defined loop intervals.

Initialization

Material parameters

Calculate scat-
tering rate tables

Device Geometry

Particle positions
and wave vectors

Triangulation

Assemble stiffness matrix

Enter time loop:
t = 0

t = t + ∆t

Update electric field
for each particle

Free flight of particles

Ejection and injection of particles
through Ohmic contacts

Scattering events and
new flight directions

Collect statistics

t ≥ tmax

End simulation

yes

no

Figure 6.1: A simplified flowchart of the Monte Carlo simulation program, showing the most important
segments of the program flow. The initialization routines for material parameters and device geometry
are performed before entering the time loop. In the time loop, the particles are subjected to free flights
and scattering events, with self-consistent updates of the electric field by the solution of the Poisson
equation.

46

6.2 Device Geometry

6.2 Device Geometry
The device geometry is constructed using GMSH [24]. A geometry file is the basis for

creating the domain discretization with the built-in algorithms of GMSH. The software is a
fast and powerful meshing tool, and the constructed triangulations can easily be used by the
MCFEM with some simple read-in-tools. The constructed triangulation is taken as an input file
to the device geometry initialization in the program, and a read-in-routine constructed to read
the specific *.msh output-format from GMSH reads the information and saves it into a trian-
gulation object. In addition to nodes and elements, the triangulation object holds information
on boundary nodes for imposing Dirichlet conditions and neighboring elements for use in the
point location algorithms (PLAs). The boundary information is saved during read-in, and the
neighbors are found post-read-in based on the connectivity matrix. The program flow of the
triangulation initialization is shown in Figure 6.2. Additional information on the use of GMSH
and the construction of the triangulation can be found in Appendix A.

6.3 Pre-Loop Assembly Procedures
The linear system must be assembled according to the discussion in Section 2.5. Some of

the assembly procedures can be done before the loop because they are state-independent. The
stiffness matrix A, the matrix ABC modified for boundary nodes, the lifting vector g, the lifting
term Ag, and the ILU0 preconditioner ALU can be computed before entering the time loop.
These variables are some of the parts needed to construct the linear system which is solved at
every Poisson step. The triangulation is needed as input to some of the routines in this subflow.
The flowchart for the assemblies is shown in Figure 6.3.

6.4 In-Loop Electric Field Calculations
With the pre-loop preparations explained in the previous sections, the only state-dependent

part of the linear system is the load vector contribution from the free carriers. When the load
vector is calculated, the system can be passed to the PCG-routine together with the ILU0 pre-
conditioner. When Equation (2.29) is solved for the potential, and the Dirichlet contributions
on the boundary are added, the potential is passed to the routine calculating the electric field
in each carrier position, according to Equation (2.48). The subflow for calculating the electric
field at each Poisson solving time step is shown in Figure 6.4.

47

Chapter 6. Program Flow

Device Geometry

device.msh

Save all nodes

Read
element type

Save to Element list
(Connectivity matrix)

Extract Nodes and add
to correct boundary list

Save to triangulation

Use common nodes
to construct neighbor

list for the triangulation

Triangulation ready for input to other routines

input

Surface elementVolume element

Figure 6.2: The flowchart representing the subflow of the MCFEM which task is to construct the trian-
gulation. A mesh file, device.msh, constructed with GMSH [24], is read by the construction routine,
and the necessary information about nodes, elements and boundaries are saved. The list of neighbors is
constructed when the read-in is finished.

48

6.4 In-Loop Electric Field Calculations

Pre-Loop Assembly Procedure

triangulation

Initialize FEM basis
(The functions ϕi)

Assemble stiffness matrix A
according to Algortihm 2.1

Construct ABC from A by replacing
boundary nodes part with identity vectors

Construct ILU0 precondi-
tioner for the matrix ABC

Assign correct Dirichlet conditions to g

Compute lifting term Ag

Call PLA (Algorithm 4.2)
for initialized particles

Compute f da, the background
contribution to the load vector

Use Algortihm 2.2 with opposite
signs than for the free charges

Ready to enter time loop with A, g, Ag, ABC, f da
and the ILU0 preconditioner

input

input

Figure 6.3: The subflow for assembling the vectors and matrices of the linear system which are state-
independent. The triangulation is necessary to construct the stiffness matrix. The 3D-PLA is utilized for
initializing element positions for particles. With this information, the contribution from the background
charge to the load vector can be computed.

49

Chapter 6. Program Flow

In-Loop calculation of electric field

triangulation Call PLA (Algorithm 4.2) to update
element postions of particles

Compute f e, the
electron contribution
to the load vector.
Use Algortihm 2.2

Compute f h, the
hole contribution

to the load vector.
Use Algortihm 2.2

Compute f = f e + f h + f da − Ag

Set fi = 0 for i correspond-
ing to Dirichlet boundary nodes

Solve ABCu0 = f BC with the ILU0-PCG
(Algorithm 3.2)

Add non-zero Dirichlet contributions
u = u0 + g

Calculate the electric field at
particle postions accord-

ing to Equation (2.48)

Continue MC-simulation with the new electric field

input

Figure 6.4: A flowchart demonstrating the program flow for the Poisson solving part of the MCS. The
load-vector contribution from electrons and holes must be calculated before the complete linear system
can be passed to the iterative linear system solver. The background vector f da was computed during the
initialization. The Dirichlet contribution is added to the approximation of the homogeneous problem,
and the approximate electric field is calculated from the potential. The simulations continue with the
updated field.

50

7 | Simulations

With the finite element method successfully integrated as a Poisson solver in the FFI-MCS,
some results are presented in this chapter to investigate the capabilities of the method, and to
point out current weaknesses. Firstly, a simple case study of calculating the potential around a
particle in a box is treated in Section 7.1, where numerical evidence of a correct implementation
and convergence is given, supporting some of the existence and uniqueness considerations pre-
sented in Section 2.6. The APD-model used for bias simulations is presented in Section 7.2 and
a short note on scaling within the program is given in Section 7.3. In Section 7.4, results from
four different bias simulations are presented and discussed. The performance and workload of
the different parts of the program are briefly discussed in Section 7.5, which includes a call-tree
with CPU-percentages and number of calls for some of the routines.

7.1 Case Study: Particle in a Box
To evaluate the performance of the method suggested in Chapter 2, a simple case study of

a particle in a box has been performed. The finite element approximation to the dimensionless
potential around a unit charge in the center of a [0, 1]3 cube is computed. It is compared to the
analytic potential (the fundamental solution)

u(x) =
1

4π|x − xp|
, (7.1)

with xp = (0.5, 0.5, 0.5). For the approximation, a Dirichlet condition on the boundary of the
cube was imposed by calculating the analytic potential in each boundary node. The potential is
approximated in Fortran with the implemented FEM code, and the result is read into MATLAB
for visualization and error estimation. In order to estimate the error of the approximation,
it is linearly interpolated on a structured grid with (101 × 101 × 101) nodes. The analytic
solution is directly computed on the nodes in the structured grid. The center node of the grid
and its 6 adjacent nodes are not taken into account in this comparison, as the analytic function
is discontinuous in the particle position. Three of the approximations computed on grids with
different grid coarseness and quadratic elements are shown in a 1D plot in Figure 7.1.

The error |u − uh| is approximated by using the average L2-norm as

|u − uh| ≈ |u − ũh| =

√
(ui jk − ũh,i jk)2, (7.2)

51

Chapter 7. Simulations

Figure 7.1: The figure shows the analytic one dimensional potential in the (y = 0.5, z = 0.5)-plane,
together with three approximations computed on a grid with 1311, 7263 and 45.865 nodes respectively.

where ui jk is the analytic potential computed in the node xi, y j, zk of the structured grid, and
ũh,i jk is the approximation interpolated from the scattered nodes in the triangulation onto the
structured grid, and evaluated in node xi, y j, zk. The bar denotes the average over all nodes. The
interpolation from the triangulation to the structured grid is done with the built in MATLAB-
function scatteredInterpolant. Some loss of accuracy must be expected in this interpola-
tion procedure. Figure 7.2 visulaizes the calculated error. Comparing the error of the linear and
quadratic approximation on the same triangulation, i.e., the same discretization with an equal
number of elements, the quadratic approximation has on average slightly better approximation,
but the rate of convergence is not improved from the linear approximation. This is shown in
Figure 7.2(a). From Figure 7.2(b), it is clear that a comparison of the number of nodes favors
the linear approximation in the sense that the error is smaller than the error obtained by the
same amount of nodes in the quadratic case. The size of the system of equations to be solved is
dependent on the number of nodes, and the time used to compute its solution will thus also be
node number dependent.

The error also shows irregular behavior with respect to grid refinement. A possible reason
for this behavior is the influence of the particle position within an element, i.e., the distance
between element vertices and the particle. To test this hypothesis, a second experiment was
performed, with particle positions given at different points on an edge of an element and within
the element volume. The test was performed in a grid with 6810 elements, for both linear and
quadratic elements. The average error was calculated by disregarding values in the structured
grid with analytic potential greater than 5, i.e., nodes within a distance of |x− xp| = 0.0159 from
the particle. The error estimates are shown in Figure 7.3. The results verify the hypothesis,
where the placement of the particle is seen to influence the error. However, it is not proportional

52

7.2 An Avalanche Photodiode Model

(a) (b)

Figure 7.2: The computed average L2-error for different grids, for both linear and quadratic elements.
The error is ploted against the number of elements (a), and against the number of nodes (b). The quadratic
approximation is on average an improvement to the linear if applied on the same triangulation, but when
comparing a coarser grid with quadratic elements to a finer grid with linear elements but approximately
the same total number on nodes, the linear approximation produces a smaller error.

to the distance from the vertex, and particles close to vertices seems to introduce larger errors
than particles closer to the center. The relatively small error for large distances in the quadratic
case might be caused by the proximity of the additional edge-nodes. The similar behavior for
the linear case can be caused by how the particle is weighted to each node, such that a more
symmetric weighting increases the accuracy of the approximation. This type of fluctuations will
have an impact in all grid refinements, and since particle positions are allowed in the continuum
of Ω, this can only be controlled by how the particles are interpolated to the nodes, i.e., if the
basis functions are used for particle mesh coupling or another method is imposed.

The general lack of better convergence for the quadratic approximation might occur due to
the use of an affine mapping. A possible solution can be to apply an iso-parametric mapping.
However, this will lead to the need of higher order quadrature rules to compute the stiffness
matrix elements, as the Jacobian will no longer be constant on an element. Further, it introduces
the possibility for curved element faces, requiring more advanced particle location methods.
Such an extension is unfortunately outside the scope of this thesis.

Even though some irregularity in the error estimates can be observed, the tests confirm that
the finite element approximation of the single particle potential converges to the fundamental
solution of the equation. These results are adequate, allowing us to extend the testing to the
Monte Carlo particle simulations, which are the main area of interest.

7.2 An Avalanche Photodiode Model

To test how the finite element Poisson solver combines with 3D device simulations, bias
simulations of a HgCdTe APD is performed. The APD-model chosen for the simulations is

53

Chapter 7. Simulations

Figure 7.3: A comparison of error with respect to the particle position within an element. The error is
plotted against the distance from the closest vertex. Whether the particle is placed in the volume or on
an edge does not have a noteworthy impact on the error, but it is apparent that the distance from a grid
node does have an influence. In the quadratic case, the approximation shows smaller errors when the
particle is close to mid-edge-points. For the linear case, the approximation is best for in-vertex particle
placement.

used in research performed by FFI and is presented in the Full Band simulations described by
Storebø et al. [66]. A planar view of the simulated device is shown in Figure 7.4. Both the field
calculations and the carrier dynamics are performed in 3D.

Research in device simulation is often focused on nanoscale devices and the non-equilibrium
transport phenomena that are dominant in such devices. However, it is interesting to investigate
the application of MC-simulations on bigger microscale devices with other applications. Sim-
ulating larger devices lead to other numerical challenges than those present for smaller ones.
Since the number of particles is proportional to the volume of the device, a larger device natu-
rally requires simulation of more particles, and thus more computational resources. In addition,
the self-consistency provided by the Poisson solver applied to a larger device will only scale
down to the resolution of the discretization mesh, and requires the simulation of superparti-
cles, as real particles will not necessarily be detected by the Poisson solver. However, when
simulating weak infrared signals, it is necessary to simulate the behavior of the real particles.
To overcome this, the suggested solution is a split up of the simulation in two parts, where a
bias simulation is performed with the use of superparticles and a Poisson solver, to obtain a
steady state solution of the electric field under the applied bias. The small signal analysis is
then performed with the applied frozen field obtained from the bias simulation [66]. Testing the
MCFEM on APD bias simulations will uncover some of the possibilities that lie in the applica-
tion of MC-simulations coupled with self-consistent finite element computations of the electric
field.

54

7.3 Scaling within the Program

isolation

n

p Absorption region

Multiplication region

n +p + p +

W-depletion

Lx

+
A

+

Ly

Figure 7.4: Planar sketch of the APD that will be the simulation domain. The third dimension extends
into the paper plane. The gray isolation layer is included in the simulations in order to later be able to
apply an alloy gradient within the device, without violating the Neumann-condition on the boundary.
The red line is the interface between the p- and n-doped regions.

7.3 Scaling within the Program

When deriving the numerical scheme for the Poisson equation, a scaling was performed to
obtain the dimensionless problem given in Equation (2.8). In the base code for the FFI-MCS,
each variable is fitted with a unit adapted to a suitable convention for the calculation it is a
part of. This is done to easily be able to verify the value of each variable from a physical
perspective by comparing it to a known value in similar applications. In addition, the units are
chosen to avoid under- and overflow. The MC-kinetics are implemented to work on unscaled
particle positions, denoted here by x∗p, which in the modeled APD are in the order of magnitude
∼ 10−6 m. However, this is not consistent with the scaled mesh necessary for good condition
numbers and numerical float precision in the finite element discretization and assembly process.
Thus, for each Poisson-solving step, the scaled particle positions are calculated as

xp =
x∗p
L

= 106 m−1 · x∗p, (7.3)

where we have used the lenght scale L introduced in Section 2.2. The scaled positions must be
updated before the call to the 3D-PLA, for consistency with the dimensionless grid. Further,
the parameter α defined in Equation (2.6) is given a value according to

α =
qsup

ε0εr
, (7.4)

55

Chapter 7. Simulations

resulting in a potential u∗(x) ∈ [A, B], where A denotes the minimum applied Dirichlet condition
and B the maximum, such that the solution is obtained without the need of scaling the boundary
conditions. The potential u∗ is then directly calculated in its physical unit Volt. The components
of the electric field are calculated individually for each particle and can be directly used in the
MC-kinetics, which continue to use the unscaled particle positions with the physical unit meter.

7.4 Bias Simulations

Bias simulations of the APD described in Section 7.2 will in a full simulation process be ap-
plied to obtain a steady state potential, which can be used in the following small signal analysis.
The bias simulation is a simulation of a transient state, and a steady state will, ideally, appear
after simulation of 70 ps to 80 ps physical time, corresponding to 80.000 to 160.000 simulation
steps, depending on the time step used in the simulations. A special concern is the memory con-
sumption under these simulations. Longtime steady simulations have not been achieved during
this work, among other things due to limited computational power, memory and time. There is
in addition still the need for debugging and finishing touches within the new MCFEM, before
all the desired functionality can be obtained.

The results included and discussed here are shorter simulations, ranging up to ∼ 10 ps,
where it is possible to observe the initial particle behavior and the calculated potential. The
simulations have been carried out on four different triangulations. Common parameters for the
simulations are given in Table 7.1, and each simulation uses initial particle distribution as shown
in Figure 7.5. The initial distribution of particles is uniform according to the specified doping
density in each area, and the doping background is set to the initial position of free particles
and given the opposite charge. The Poisson solver is called every second time-step in all the
presented simulations.

The contacts are placed on top of the device and extend over the whole z-surface, as visual-
ized by color in Figure 7.6(a). A reverse bias of −7 V is applied by imposing a constant Dirichlet
boundary of −7 on the p-contacts, and a constant Dirichlet boundary of 0 on the n-contact.

Table 7.1: Common parameters for the four presented simulation runs of MCFEM.

Parameter Value Explanation
Lx 30 µm Device length in x-direction, without isolation
Ly 10 µm Device length in y-direction, without isolation
∆y 0.1 µm Depth of neutral area below contact
ηn+ 2.5 · 1017 cm−3 Doping density in n+ region
ηn− 5.0 · 1014 cm−3 Doping density in n− region
ηp+ 2.5 · 1017 cm−3 Doping density in p+ region
ηp 2.0 · 1016 cm−3 Doping density in p region
Up −7 V Applied voltage on hole-injecting OCs
Un 0 V Applied voltage on electron-injecting OC

56

7.4 Bias Simulations

(a) Initial particle positions in a 3D view.

(b) Initial particle positions in a 2D view.

Figure 7.5: Initial particle positions from both a 3D (a) and a 2D (b) perspective. The uniform dis-
tribution of initial positions according to doping density is common to all simulations presented here.
Blue points represent electrons and red points represent holes. Only 20 % of the simulated particles are
shown. Higher doping concentrations in the p+ and n+ regions can be observed on top of the device. In
the 3D-view, the axis are turned such that the top of the device is facing outwards and to the right.

In Figure 7.6, 7.7, 7.8 and 7.9, a set of particle positions and a potential from the four
different simulations are visualized. Each figure includes the triangulations utilized to obtain the
visualized results. The first three devices are isolated and performed with quadratic elements,
while the fourth simulation is performed without isolation layer and linear elements. Varying
parameters for the simulation are shown in Table 7.2, where the different cases are referenced
according to the figure where they are presented.

7.4.1 Particle Behavior

The MCFEM is a particle simulator, and a statistic of interest gathered from the program is
the movement of the particles. In an APD under a large reverse bias, the majority of the free
electrons will be absorbed by the OC in the n+-doped region, and a depletion zone with few free

57

Chapter 7. Simulations

Table 7.2: Varying parameters between the different simulations. Each run is referenced by the number
of the figure where the result is presented.

Figure (Simulation)
Parameter 7.6 7.7 7.8 7.9 Explanation
Lz 10 µm 10 µm 10 µm 8 µm Device length in z-direction
Liso 1 µm 1 µm 1 µm 0 µm Isolation layer thickness
N init

e 500,000 250,000 1,000,000 250,000 Initial number of superelectrons
N init

h 1,098,425 549,212 2,196,850 709,725 Initial number of superholes
Nreal
Nsup

∼ 50 ∼ 100 ∼ 25 ∼ 65 Real particles per superparticle
∆t 2 fs 1 fs 1 fs 1 fs Time step between iterations
t 3 ps 5 ps 4 ps 6 ps Represented time in visualization
Nh 75,165 449,289 245,710 97,746 Number of nodes in triangulation

carriers will be formed on the n-side of the pn-junction. To verify that this behavior also occurs
in the simulations performed with MCFEM, the particle positions are written to file at user-
defined timesteps. For each simulation, the particle positions are visualized in Figure 7.6(b),
7.7(b), 7.8(b) and 7.9(b). Since the particle behavior in the simulated APD is on average planar,
the formed depletion zone is visualized in the 2D-view. The general particle behavior is consis-
tent throughout the performed simulations, independent of element order and grid refinement.
The initial particle behavior corresponds to what is expected, where a depletion zone is formed
in the n-doped area of the device.

7.4.2 Effect of Grid Refinement

Another result of interest is the calculated potential in the different cases. These are visu-
alized in Figure 7.6(c), 7.7(c), 7.8(c) and 7.9(c) for each of the simulations. How the solution
reacts to a different number of superparticles and grid refinement is especially interesting, but
too few simulations have been carried out in order to draw conclusions on these areas. Ideally,
an even larger number of superparticles should be simulated, but memory restrictions made this
unfeasible.

When the depletion zone has been formed in the device, a clear potential drop along the
pn-junction is expected. The visualizations of the potential are the average potential in the z-
direction, and all potentials, except for the one in Figure 7.7(c), show lack of potential drop for
the junction in the middle of the device volume. In addition, a potential close to the maximum
0 V is calculated in the p-doped region far from the contacts, which is unexpected.

The potential drop at the pn-junction is evident on the refined grid in Figure 7.7, but the re-
finement also introduces significant noise in the p-doped region, which propagates to the bound-
aries along the isolation layer and also to the imposed Dirichlet conditions. The simulation on
this refined grid was performed with very few superparticles, which could also contribute to the
arising noise. This hypothesis will, however, need further investigation. What is obvious, is
that the combination of an extremely large number of nodes with few particles is introducing

58

7.4 Bias Simulations

strange responses.
Further, it is clear that the simulated isolation layer between the device volume and the

imposed Neumann condition is not working as intended when simulating on the refined grid.
The potential drop in the isolation layer, which is clearly unphysical, causes holes to move
towards the boundary, giving a surplus of positive charge along the isolation layer, amplifying
the change of charge density from an element in the doped region to a neighboring element in
the isolation layer. Applying the Neumann boundary directly to the doped region can remedy
this effect since there then will be no electric field perpendicular to the region with particles.
To apply the Neumann condition directly on the free surfaces of the doped regions are justified
by Hockney and Eastwood [35]. This was tested for the simulation shown in Figure 7.9. This
simulation was performed with linear elements, and the potential drop could not be observed.
Running a simulation on a similar grid with quadratic elements might yield interesting results.
However, it should be kept in mind that the isolation layer is necessary when applying an alloy
gradient, and it should not cause the unstable behavior that can be observed in Figure 7.7(c),
as it is neutral. The adjacent elements in the region with free carriers should also be close to
neutral, so the expected behavior is close to zero change in the potential across this interface.

Examining further how the number of superparticle correlates with grid refinement and
searching for the optimal global grid taking into account local grid refinement should be ad-
dressed in the further development of MCFEM. The noise on the refined grid might be reduced
by replacing the discrete background charge with a continuous function within each doped re-
gion. Explicit smoothing of the potential can also be considered if other noise-minimizing
measures are fruitless. To the best of our knowledge, there has been little research on the com-
bination of FEM in 3D applied to MC-simulations of large-scale devices, and it is clear that
more research is necessary to find the capabilities and limitations for such a combination.

59

Chapter 7. Simulations

(a)

(b)

(c)

Figure 7.6: In (a), the grid of the simulation is shown. It consists of 51,207 quadratic elements and
75,165 nodes. The blue surface represents the n-contact, and the red surfaces the p-contacts. The particle
positions after 3.0 ps is shown in (b), with holes represented by red dots and electrons by blue. The
initial number of electrons and holes in this simulation was 500,000 and 1,098,425 respectively. The
corresponding average potential in z-direction is shown in (c). The potential in smooth and the noise is
minimal on this coarse grid. However, the potential drop expected at the pn-junction does not appear.

60

7.4 Bias Simulations

(a)

(b)

(c)

Figure 7.7: In (a), the grid for simulation is shown. It consists of 321,303 quadratic elements with a
total of 449,289 nodes. The particle positions after 5.0 ps is shown in (b), and the corresponding potential
in (c). The initial number of electrons and holes was 250,000 and 549,212 respectively. The potential
drop is clear over the pn-junction, but the refinement introduces noise in the p-doped region. This can
be due to the combination of few superparticles and small elements. The additional potential drop in the
isolation layer is also unphysical, and causes holes to be attracted to the free surfaces.

61

Chapter 7. Simulations

(a)

(b)

(c)

Figure 7.8: In (a), the grid for simulation is shown. It consists of 177,074 quadratic elements with a
total of 245,710 nodes, and is refined along the pn-junction. The particle positions after 4.0 ps is shown
in (b), and the corresponding potential in (c). The initial number of electrons and holes was 1,000,000
and 2,196,850 respectively. As for the simulation in Figure 7.6, no potential drop is observed along the
pn-junction in the volume of the device. The relatively large number of superparticles in this simulation
does not seem to affect the potential in an observable way.

62

7.4 Bias Simulations

(a)

(b)

(c)

Figure 7.9: In (a), the grid for simulation is shown. It differs from the other grids as the isolation
layer is removed, in addition to a slightly shorter extension in the z-direction and a smaller n-contact. It
consists of 554,726 linear elements with a total of 97,746 nodes. The particle positions after 6.0 ps is
shown in (b), and the corresponding potential in (c). The initial number of electrons was 250,000 and the
number of holes was 709,725, which differs from the number in Figure 7.7 due to the change of specified
dimensions. The removal of the isolation layer does not influence the simulation in this case.

63

Chapter 7. Simulations

7.4.3 Effect of Element Order

In addition to the four simulations already discussed, a small comparison of linear and
quadratic elements is provided here. The performance of linear and quadratic elements was
previously discussed for the single particle case study in Section 7.1. Similar results were found
when comparing the effect of applying different element orders in MCFEM. Figure 7.10 shows
contour plots of the potential for a simple comparison of the use of linear and quadratic elements
on a grid with an equal number of elements at the same timestep, where the same initial positions
of particles have been used. Only a minor improvement in smoothness can be observed from
the linear to the quadratic approximation, strengthening the assumptions previously presented.

(a)

(b)

Figure 7.10: Comparison of approximated potential with linear and quadratic elements, on a coarse
grid, at t = 7.5 ps. Only a slight reducement of smoothness can be observed, confirming the previous
discussion for the particle in box case study. The particle behaviour under the different approximations
are very similar to what is shown previously.

64

7.5 Workload for the Program

7.5 Workload for the Program
For optimizing measures, it is useful to be aware of the bottlenecks and the most time-

consuming parts of the program, such that effort for optimization can be concentrated at the
parts with the most to gain. The profiling tool gprof is used to extract run-times and a complete
call-tree for a typical, but relatively short, simulation. The parameters with the most impact
on the simulation time are listed in Table 7.3, and Figure 7.11 shows part of the call-tree for
this simulation. The included nodes are those consuming more than 2.5% of the total CPU-
time. The PLA-nodes are also included because it is interesting to see that these are below
this threshold and thus not the bottlenecks they were assumed to be. This is in contrast to the
2D-FEM solver implemented by Åsen, where the PLA was in fact the main bottleneck [5].

Table 7.3: Parameters for the profiling run presented in Figure 7.11

Parameter Value
Timestep, ∆t 2 fs
Poisson Solution Every 2nd timestep
Simulation steps 1000
Initial number of electrons 500,000
Initial number of holes 1,098,425
Element order Quadratic
Number of nodes 75,165
Non-zero entries in ABC, Nz(ABC) 1,944,787

As expected are routines with many calls, such as free flights and hole scattering represented
in the tree. More interesting is the fact that the insertion of particles at the OCs consumes above
11% of the total CPU-time, which is unexpected when considering the relatively small task of
this routine. Thus, this part of the program is an obvious candidate for improvement.

The linear system solver is the bottleneck when solving Poisson equation and consumes
15.1% of total CPU-time. It is expected that the complete process of calculating the self-
consistent electric field by solving the 3D Poisson equation in ensemble MC-simulations will
require up to 90% of the total CPU-time for the simulations, leaving about 10% to the MC-
kinetics [42]. From the information presented in Figure 7.11, the approximate CPU-time for
the sum of routines directly connected to the Poisson solver and the calculation of the elec-
tric field can be calculated to below 30%. Some additional contribution might be added from
the self-time in the main program. This indicates that the implemented FEM is an efficient
choice of Poisson solver in this particular case. It might also be expected that simulation of
bipolar materials with both electrons and holes uses more processor time in the MC-kinetics
than a simulation of unipolar materials. Even so, the Poisson solver is a major bottleneck in
the self-consistent simulations, and looking for more efficient solvers, e.g. by considering par-
allel iterative system solvers such as multigrid methods or performing a decomposition of the
domain to perform the solution on each subdomain in parallel , are possible measures to further
reduce the time spent on the electric field calculations [53, 56].

65

Chapter 7. Simulations

Main Program
100%

(54.1%)

PCG
15.1%
(0.4%)

Insert Particles
11.7%
(3.8%)

Electric Field from Potential
7.9%

(3.4%)

Free flight
3.1%

Assemble load
3.0%

(0.3 %)

Hole scattering
2.6%

3D PLA
1.5%

Solve LU z
10.7%
(6.0%)

Assign to CRS
4.06%

Particle In Neutral Area
7.3%

2D PLA
0.6%

Cartesian to Barycentric
5.29%

Get CRS single value
4.7%

∼
5 ·

102 ×

∼ 3 · 1
03 ×

∼ 1 · 1
03 ×

∼ 1 · 109×

∼ 1 · 103
×

∼ 1 · 10 9
×

∼ 6 · 10 8
×

∼ 7 · 1
04 ×

∼ 7 · 104
×

∼
1
· 10 9
×

∼ 2 · 103×

∼ 8 · 107×

∼ 6 · 10 8
×

∼ 6 · 1
08 ×

Figure 7.11: A call-tree for evaluating bottlenecks of the program. Each node contains a percentage
representing the proportion of total run time spent in the routine and its children. The percentage shown
in parenthesis in each node is the self-time for each routine. Above each branch is an approximate number
of times a given routine has been called from its parent. From the tree, the three main bottlenecks are
found to be, most likely, the particle position scaling in the main program, the PCG and the insertion of
particles at the OCs.

66

7.5 Workload for the Program

The small function performing the barycentric to cartesian mapping consumes a total of
5.29% of total CPU-time, but it must be taken into consideration that it is called above 1010

times during the simulation. It is doubtful that much improvement is possible, but bearing in
mind how values are stored in memory might lead to some improvements.

Further, it can be observed that the self-time spent in the main program is above 50%, and
without a line to line profiling, it is difficult to point out the exact bottlenecks. One definite
candidate is the scaling performed to solve Poisson equation. This occurs because the particle
positions in the base code are not originally scaled, so for each Poisson solving time step, each
particle position is scaled to its corresponding dimensionless value before the solver, and then
scaled back after the solution is found. A consistent scaling for the particle positions within the
entire program is thus an important measure for reducing CPU-times.

In addition to gprof, there are several other possible profiling tools freely available. As an
example, Valgrind is used to evaluate and minimize memory leakage in MCFEM. If the time
and memory consumption of MCFEM can be reduced, it will be easier to use the software for
research in the future.

67

Chapter 7. Simulations

68

8 | Further Work

As the program during this work has seen its first full 3D Poisson solver, work remains before
the implementation can be seen as robust, accurate and efficient, and a notable amount of testing
remains before it can be ensured that the program fulfills all its purposes. Nevertheless, this
section contains further paths for improvement of the MCFEM, where the propositions arise
from observations made under testing of the program or are general ideas from the studied
literature.

Large CPU-time and memory requirements for the program are currently a major issue,
and effort should be made to decrease this by further optimizing the source code. It is natu-
ral to improve CPU-times by distributing the workload on several cores by appropriate use of
OpenMP [16] and MPI [28], which are parallelization tools that include Fortran-interfaces. The
Poisson solver is the primary candidate for parallelization. Performing domain decompositions
and implementing parallel iterative solvers, such as a suitable multigrid method, should be con-
sidered [53, 56]. A domain decomposition would require handling of interfaces for particle
movement across the different subdomains, introducing a need to adapt the PLAs, e.g. as sug-
gested by Capodaglio and Aulisa [12]. Parallelization of MC-kinetics will require more work
since certain scattering mechanisms, such as carrier-carrier scattering, depend on exchange of
information between particles. This requires good and correct synchronization for efficient and
scalable parallelization.

One of the current bottlenecks, which also requires memory, is the inconsistency introduced
with the need for scaling of the particle positions in the Poisson equation, while the rest of
the MCS uses the unscaled particle positions. This adds an extensive amount of floating point
operations to the program, which could be avoided with a consistent scaling throughout the
program. Such an improvement should be of high priority.

When the program has seen improvements in memory and CPU-time usage, the stability is-
sues for longer simulations need to be addressed. Both analytic and technical insight should be
sought to increase the knowledge on the combination of FEM with MC-simulations of large de-
vices. Some of the stability issues might arise from the suggested injection routine for particles
at OCs, so this must be subject to thorough testing.

If smaller devices under low applied voltage are to be simulated in the future, there will
be a need for an improved electric field interpolation, which aims to minimize self-forces. A
first improvement would be to interpolate the electric field taken into account node contribution

69

Chapter 8. Further Work

from neighboring elements by applying a modified scheme for the electric field,

Eh(xp) = −
∑
K3xi

ωK,i

∑
j∈K

u j∇φ j(xp)

 . (8.1)

Different weights, ωK,i, dependent on the current node xi, can be applied to each neighboring
element K, before summing the contribution from each basis functions for the nodes in that
element. Another measure is to apply a reference potential in the nodes of the grid. The re-
duction of self forces in MC-simulations of particle transport is deliberately discussed in the
work by Aldegunde et al. [2], Aldegunde and Kalna [3], and Aldegunde et al. [4], and was also
mentioned by Åsen [5] in his work with the FFI-MCS.

The comparison of linear and quadratic elements in Section 7.1 and Section 7.4.3 shows only
minor improvements with the use of quadratic elements, and even advantages with applying
finer grids with linear elements rather than quadratic elements on coarser grids. Refinement
of the grid must also be weighted against increased noise for particle simulations. With these
observations, it is natural to suggest the extension to isoparametric mappings when applying
quadratic elements, to see if this can improve convergence properties. The use of isoparametric
mappings on the elements is another alteration requiring adaption of the PLAs [12]. In addition
should the search for and use of optimal meshes be considered for higher accuracy and improved
efficiency.

With a broader perspective on the complete MCS, applying quantum corrections through a
solution of the Schrödinger equation and including wave propagation would certainly extend
the capabilities of the program. Using FEM for these tasks will require more analysis, research,
and implementation of new functionality, but much of the basic needs are contained within the
new MCFEM.

To summarize, the following list includes keywords for improvements.

• Stability
• Lower memory-requirements
• Domain decomposition
• Parallelization
• Consistent scaling of particle positions
• Improved electric field interpolation
• Isoparametric elements for quadratic basis functions
• Optimal mesh generation
• Including wave propagation and quantum corrections

70

9 | Conclusion

A finite element Poisson solver for the calculation of the three-dimensional (3D) electric field
in self-consistent particle simulations has been implemented in Fortran and integrated into an
existing Monte Carlo simulator for particle transport developed at the Norwegian Defence Re-
search Establishment (FFI). This resulted in a new program structure called Monte Carlo soft-
ware with finite element Poisson solver (MCFEM). This new program has been tested by per-
forming bias simulations of an avalanche photodiode on different grid refinements with the use
of both linear and quadratic polynomial basis functions, with mixed results. Further improve-
ments to the program are necessary in order to obtain long-time stable simulations, but the
solver shows promising results for further development. The solver consumes below 30% of
the total CPU-time for the program, which is only one third of what is expected for 3D Poisson
solvers in Monte Carlo transport software.

Use of unstructured grids in particle simulations require a robust and efficient algorithm
for point location. This was implemented for both two- and three-dimensional cases, with
the support of an additional implemented triangulation class. This class was constructed to
hold information about unstructured grids, including neighboring elements which are used to
traverse through the triangulation in the search for particles.

The two-dimensional (2D)-point location algorithm was implemented to handle injection
of carriers at Ohmic contacts (OCs). An injection routine based on neutrality in local prisms
extrapolated from the surface mesh of the contact was suggested. This approach for handling
boundary conditions at the OCs will need further investigation in order to evaluate how well it
resembles physical characteristics of devices.

The linear system arising from the finite element approximation of the Poisson equation was
solved using a Conjugate Gradient method preconditioned with an incomplete LU factorization.
Special storage schemes were implemented to construct and store the matrices of the linear sys-
tem and were seamlessly combined with the preconditioned conjugate gradient method (PCG).
The performance of the PCG was compared to the performance of a simple conjugate gradient
scheme without preconditioning, and a bi-conjugate gradient stabilized method (BiCG-Stab)
method, where the performance of the PCG clearly outperforms that of the two other methods.

71

Chapter 9. Conclusion

72

References

[1] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. 2nd ed. Pure and Applied Mathemat-
ics. Amsterdam: Academic Press, Elsevier Ltd., 2003.

[2] M. Aldegunde, A. J. García-Loureiro, and K. Kalna. “3D Finite Element Monte Carlo
Simulations of Multigate Nanoscale Transistors”. In: IEEE Transactions on Electron De-
vices 60.5 (May 2013), pages 1561–1567.

[3] M. Aldegunde and K. Kalna. “Energy Conserving, Self-Force Free Monte Carlo Simula-
tions of Semiconductor Devices on Unstructured Meshes”. In: Computer Physics Com-
munications 189 (Apr. 2015), pages 31–36.

[4] M. Aldegunde, N. Seoane, A. J. García-Loureiro, and K. Kalna. “Reduction of the Self-
Forces in Monte Carlo Simulations of Semiconductor Devices on Unstructured Meshes”.
In: Computer Physics Communications 181.1 (2010), pages 24–34.

[5] D. Åsen. “Self-Force Reduced Finite Element Poisson Solvers for Monte Carlo Particle
Transport Simulators”. Master’s Thesis. NTNU, 2016.

[6] I. Babuška and V. Nistor. “Boundary Value Problems in Spaces of Distributions on
Smooth and Polygonal Domains”. In: Journal of Computational and Applied Mathe-
matics 218.1 (Aug. 15, 2008), pages 137–148.

[7] Z.-Z. Bai. “Motivations and Realizations of Krylov Subspace Methods for Large Sparse
Linear Systems”. In: Journal of Computational and Applied Mathematics 283 (Aug. 1,
2015), pages 71–78.

[8] L. Beilina, E. Karchevskii, and M. Karchevskii. Numerical Linear Algebra: Theory and
Applications. Springer International Publishing: Imprint: Springer, 2017.

[9] H. Bohr. “L. Schwartz”. In: S. M. Atiyah and D. Iagolnitzer. World Scientific Series in
20th Century Mathematics. 2nd edition. Volume 9. World Scientific, Nov. 2003, pages 19–
45.

[10] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer
Science & Business Media, Nov. 2, 2010.

[11] P. J. Brown and C. T. Faigle. A Robust Efficient Algorithm for Point Location in Triangu-
lations. University of Cambridge, Computer Laboratory, 1997.

[12] G. Capodaglio and E. Aulisa. “A Particle Tracking Algorithm for Parallel Finite Element
Applications”. In: Computers & Fluids 159 (Dec. 15, 2017), pages 338–355.

73

REFERENCES

[13] L. Chen, M. J. Holst, and J. Xu. “The Finite Element Approximation of the Nonlin-
ear Poisson–Boltzmann Equation”. In: SIAM Journal on Numerical Analysis 45.6 (Jan.
2007), pages 2298–2320.

[14] X.-Q. Chen and J. Pereira. “A New Particle-Locating Method Accounting for Source
Distribution and Particle-Field Interpolation for Hybrid Modeling of Strongly Coupled
Two-Phase Flows in Arbitrary Coordinates”. In: Numerical Heat Transfer, Part B: Fun-
damentals 35.1 (1999), pages 41–63.

[15] R. Chordá, J. A. Blasco, and N. Fueyo. “An Efficient Particle-Locating Algorithm for
Application in Arbitrary 2D and 3D Grids”. In: International Journal of Multiphase Flow
28.9 (2002), pages 1565–1580.

[16] L. Dagum and R. Menon. “OpenMP: An Industry Standard API for Shared-Memory Pro-
gramming”. In: IEEE Computational Science and Engineering 5.1 (Jan. 1998), pages 46–
55.

[17] T. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. Soci-
ety for Industrial and Applied Mathematics, 2006.

[18] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. “Point Location”. In: Com-
putational Geometry. Springer, Berlin, Heidelberg, 2008, pages 121–146.

[19] M. R. Ebert and M. Reissig. Methods for Partial Differential Equations. Cham: Springer
International Publishing, 2018.

[20] M. A. Elmessary, D. Nagy, M. Aldegunde, J. Lindberg, W. G. Dettmer, D. Períc, A. J.
García-Loureiro, and K. Kalna. “Anisotropic Quantum Corrections for 3-D Finite-Element
Monte Carlo Simulations of Nanoscale Multigate Transistors”. In: IEEE Transactions on
Electron Devices 63.3 (Mar. 2016), pages 933–939.

[21] A. F. Emery and W. W. Carson. “An Evaluation of the Use of the Finite-Element Method
in the Computation of Temperature”. In: Journal of Heat Transfer 93.2 (May 1, 1971),
pages 136–145.

[22] L. C. Evans. Partial Differential Equations. 2nd ed. Volume 19. Graduate studies in math-
ematics. Providence, R.I: American Mathematical Society, 2010.

[23] S. Fatnes. Monte Carlo Particle Simulation in Unstructured Three-Dimensional Grids.
Project thesis. 2017.

[24] C. Geuzaine and J.-F. Remacle. “Gmsh: A 3-D Finite Element Mesh Generator with
Built-in Pre- and Post-Processing Facilities”. In: International Journal for Numerical
Methods in Engineering 79.11 (2009), pages 1309–1331.

[25] D. Goldar. “Calculation of Wavefunction Overlaps in First Principles Electronic Struc-
ture Codes”. Master’s Thesis. NTNU, 2017.

74

REFERENCES

[26] T. González and D. Pardo. “Physical Models of Ohmic Contact for Monte Carlo Device
Simulation”. In: Solid-State Electronics 39.4 (Apr. 1, 1996), pages 555–562.

[27] G. Green. An Essay on the Application of Mathematical Analysis to the Theories of Elec-
tricity and Magnetism. author, 1828.

[28] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message-Passing Interface. Cambridge, United States: MIT Press, 2015.

[29] L. Guibas and J. Stolfi. “Primitives for the Manipulation of General Subdivisions and the
Computation of Voronoi”. In: ACM Trans. Graph. 4.2 (Apr. 1985), pages 74–123.

[30] H. Hanche-Olsen. Buckingham’s Pi-Theorem, Lecture Note in TMA4195 Mathematical
Modelling. 2004.

[31] J. J. Harang. “Implementation of Maxwell Equation Solver in Full-Band Monte Carlo
Transport Simulators”. Project Thesis. NTNU, 2015.

[32] G. W. Hart. Multidimensional Analysis: Algebras and Systems for Science and Engineer-
ing. Springer New York, 1995.

[33] A. Haselbacher, F. M. Najjar, and J. P. Ferry. “An Efficient and Robust Particle-Localization
Algorithm for Unstructured Grids”. In: Journal of Computational Physics 225.2 (Aug. 10,
2007), pages 2198–2213.

[34] K. Hess. Monte Carlo Device Simulation : Full Band and Beyond. The Springer Interna-
tional Series in Engineering and Computer Science, VLSI, Computer Architecture and
Digital Signal Processing. Springer US, 1991.

[35] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Bristol: In-
stitute of Physics Publishing, 1988.

[36] V. Hoppe. “High Order Polynomial Elements with Isoparametric Mapping”. In: Interna-
tional Journal for Numerical Methods in Engineering 15.12 (Dec. 1, 1980), pages 1747–
1769.

[37] C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation.
Computational Microelectronics. Springer Vienna, 1989.

[38] C. Jacoboni and L. Reggiani. “The Monte Carlo Method for the Solution of Charge Trans-
port in Semiconductors with Applications to Covalent Materials”. In: Rev. Mod. Phys.
55.3 (June 1983), pages 645–705.

[39] H. Jin, C. He, S. Chen, C. Wang, and J. Fan. “A Method of Tracing Particles in Irregular
Unstructured Grid System”. In: The Journal of Computational Multiphase Flows 5.3
(2013), pages 231–237.

[40] J.-M. Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons, Feb. 18,
2015.

75

REFERENCES

[41] G. S. Ketefian, E. S. Gross, and G. S. Stelling. “Accurate and Consistent Particle Tracking
on Unstructured Grids”. In: International Journal for Numerical Methods in Fluids 80.11
(Apr. 20, 2016), pages 648–665.

[42] H. R. Khan and D. Vasileska. “3d Monte Carlo Simulation of FinFET Using FMM Al-
gorithm”. In: Abstracts 10th International Workshop on Computational Electronics. 10th
International Workshop on Computational Electronics. Oct. 2004, pages 192–193.

[43] C. N. Kirkemo. “Monte Carlo Simulation of PN-Junctions”. Master’s Thesis. University
of Oslo, 2011.

[44] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev. “Why the Monte Carlo Method Is
so Important Today”. In: Wiley Interdisciplinary Reviews: Computational Statistics 6.6
(June 20, 2014), pages 386–392.

[45] S. B. Kuang, A. B. Yu, and Z. S. Zou. “A New Point-Locating Algorithm under Three-
Dimensional Hybrid Meshes”. In: International Journal of Multiphase Flow 34.11 (Nov. 1,
2008), pages 1023–1030.

[46] S. E. Laux. “On Particle-Mesh Coupling in Monte Carlo Semiconductor Device Sim-
ulation”. In: Simulation of Semiconductor Devices and Processes: Vol. 6. Edited by H.
Ryssel and P. Pichler. Vienna: Springer Vienna, 1995, pages 404–407.

[47] J. Lindberg, M. Aldegunde, D. Nagy, W. G. Dettmer, K. Kalna, A. J. García-Loureiro,
and D. Perić. “Quantum Corrections Based on the 2-D Schr #x00F6;Dinger Equation
for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs”. In: IEEE
Transactions on Electron Devices 61.2 (Feb. 2014), pages 423–429.

[48] G. B. Macpherson, N. Nordin, and H. G. Weller. “Particle Tracking in Unstructured,
Arbitrary Polyhedral Meshes for Use in CFD and Molecular Dynamics”. In: Communi-
cations in Numerical Methods in Engineering 25.3 (2009), pages 263–273.

[49] C. Moglestue. Monte Carlo Simulation of Semiconductor Devices. London: Chapman &
Hall, 1993.

[50] O. C. Norum. “Monte Carlo Simulation of Semiconductors - Program Structure and
Physical Phenomena”. Master’s Thesis. NTNU, 2009.

[51] Ø. Olsen. “Construction of a Transport Kernel for an Ensemble Monte Carlo Simulator”.
Master’s Thesis. NTNU, 2009.

[52] A. Quarteroni. Numerical Approximation of Partial Differential Equations. In collabo-
ration with A. Valli. Volume 23. Springer series in computational mathematics. Berlin:
Springer, 1994.

[53] A. Quarteroni. Numerical Models for Differential Problems. Second Ed. Volume 2. MS&A.
Springer-Verlag Italia, 2009.

76

REFERENCES

[54] K. Rektorys. Variational Methods in Mathematics, Science and Engineering. Springer
Netherlands, 1977.

[55] W. Rudin. Functional Analysis. McGraw-Hill Series in Higher Mathematics. New York:
McGraw-Hill, 1973.

[56] Y. Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied Mathe-
matics. Society for Industrial and Applied Mathematics, 2003.

[57] Y. Saad. SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations. May 21, 1990.

[58] M. Salazar-Palma, L.-E. García-Castillo, and T. K. Sarkar. “The Finite Element Method
in Electromagnetics”. In: European Congress on Computational Methods in Applied Sci-
ences and Engineering. Sept. 2000.

[59] S. Salsa. Partial Differential Equations in Action: From Modelling to Theory. Second
edition. Unitext volume 86. Springer International Publishing Switzerland, 2015.

[60] S. Salsa, F. Vegni, A. Zaretti, and P. Zunino. A Primer on PDEs: Models, Methods, Simu-
lations. Volume UNITEXT – La Matematica per il 3+2. 65 volumes. UNITEXT. Milano:
Springer-Verlag Italia, 2013.

[61] J. S. Savage and A. F. Peterson. “Higher-Order Vector Finite Elements for Tetrahedral
Cells”. In: IEEE Transactions on Microwave Theory and Techniques 44.6 (June 1996),
pages 874–879.

[62] K. Schwarz and P. Blaha. “Solid State Calculations Using WIEN2k”. In: Computational
Materials Science 28.2 (2003), pages 259–273.

[63] A. Singh and R. Pal. “Infrared Avalanche Photodiode Detectors”. In: Defence Science
Journal 67.2 (Mar. 14, 2017), pages 159–168.

[64] A. Singh, V. Srivastav, and R. Pal. “HgCdTe Avalanche Photodiodes: A Review”. In:
Optics & Laser Technology 43.7 (Oct. 1, 2011), pages 1358–1370.

[65] C. M. Snowden. Introduction to Semiconductor Device Modelling. World Scientific Pub-
lishing Co. Pte. Ltd., 1986.

[66] A. K. Storebø, D. Goldar, and T. Brudevoll. “Simulation of Infrared Avalanche Photodi-
odes from First Principles”. In: Proceedings of SPIE, Vol. 10177 (2017).

[67] A. A. Ungar. Barycentric Calculus In Euclidean And Hyperbolic Geometry: A Compar-
ative Introduction. Singapore: World Scientific, 2010.

[68] D. Vasileska, S. M. Goodnick, and G. Klimeck. Computational Electronics; Semiclassi-
cal and Quantum Device Modeling and Simulation. 1st edition. Boca Raton: CRC Press,
Taylor & Francis Group, 2010.

[69] J. Yu. “Symmetric Gaussian Quadrature Formulae for Tetrahedronal Regions”. In: Com-
puter Methods in Applied Mechanics and Engineering 43.3 (May 1, 1984), pages 349–
353.

77

REFERENCES

[70] L. Zhang, H. Liu, and T. Cui. “A Set of Symmetric Quadrature Rules on Triangles and
Tetrahedra”. In: Journal of Computational Mathematics 27.1 (Jan. 2009), pages 89–96.

[71] Q. Zhou and M. A. Leschziner. “An Improved Particle-Locating Algorithm for Eulerian-
Lagrangian Computations of Two-Phase Flows in General Coordinates”. In: Interna-
tional Journal of Multiphase Flow 25.5 (Aug. 1, 1999), pages 813–825.

78

Appendices

79

A | Generating Triangulations with GMSH

In this Appendix, a short overview of simple mesh generation procedures for use with the
meshing software GMSH [24] is given. A simple cube example is used to illustrate the minimal
amount of commands that should be known when using GMSH. It should be noted that GMSH
is much more powerful and provides a much wider range of possibilities for meshing than what
is presented here. The structure of the output from GMSH is described, and some details on the
triangulation class are provided.

A.1 Meshing Using the GMSH Software
The meshing software GMSH [24] can be used both with a graphical user interface (GUI)

and directly from the terminal using the scripting language of GMSH to provide geometries to
mesh. Using the scripting language provides more control over the geometry, and simplifies the
process of altering already existing grids. The geometry can be defined in a text file with exten-
sion .geo, providing entities such as points, lines, surfaces and volumes. A simple geometry
that can be used to make a volume mesh of a cube is

// Characteristic step length

c1 = 0.025;

// Lengths of the domain

lx = 1;

ly = 1;

lz = 1;

// Define the points which outlines the plate

Point(1) = {0, 0, 0, c1};

Point(2) = {lx,0, 0, c1};

Point(3) = {lx,ly,0, c1};

Point(4) = {0, ly,0, c1};

// Define boundary lines

Line(20) = {1,2};

Line(21) = {2,3};

Line(22) = {3,4};

Line(23) = {4,1};

// Mesh plane region

81

Appendix A. Generating Triangulations with GMSH

Line Loop(32) = {20,21,22,23};

Plane Surface(33) = {32};

// Extrude in z-direction and set physical tag

box[] = Extrude{0,0,lz}{Surface{33};};

Physical Volume(1) = {box[1]};

//Add tag to Dirichlet surface

Physical Surface(6) = {33, box[0],box[2],box[3],box[4],box[5]};

Lines starting with // are comment lines ignored by GMSH. As in any programming language,
values can be assigned to variables, as is done here on the domain length specifications and the
characteristic step length. Points are defined by setting 3D coordinates in the curly brackets,
and an additional characteristic length is given to the point. This characteristic length is used to
define the mesh size when the geometry is meshed. Different characteristic lengths can be given
to each point. The index passed in the parenthesis of the Point-command is the name of the
point, used for reference when constructing lines. Lines are defined between two points, and
can be used to form line loops. Closed line loops can be used to define surfaces. To construct
volumes, the easiest is to use the Extrude-command, extruding surfaces in the given coordinate
direction given in its first curly bracket argument. The extruded object can be saved in an array
type variable, here represented by box[]. This array then contains the opposite surface of that
extruded in its zero-position, the volume on index 1 and the remaining surfaces in the following
indices.

Adding physical tags is convenient in order to separate different parts of the mesh, for ex-
ample, a Dirichlet surface. If physical tags are used, only the physical elements of the geometry
are meshed, so it is important to add physical tags to all important parts of the geometry. Saving
this in a file called e.g. cube.geo, with the GMSH software installed, the mesh is generated by
the bash command
gmsh cube.geo -3

The output is a file cube.msh, containing information about node coordinates and elements.
The option -3 specifies that the generated mesh should be a volume mesh in 3D. Replacing -3
with -2 will create a surface mesh only. Further options are

-order <2> Element order. 2 gives quadratic elements, 3 cubic.
-o <output>.msh Specify directory and name of output file.

An example of a quadratic mesh file-output from GMSH is given below.

$MeshFormat

2.2 0 8

$EndMeshFormat

$Nodes

1311

1 0 0 0

82

A.2 Triangulation Class

2 1 0 0

...

1310 0.08354166666670734 0.8367957170919162 0.9227289554953506

1311 0.06585188802083881 0.7638464417297364 0.9227289554953506

$EndNodes

$Elements

1060

1 9 2 6 33 125 10 11 142 15 143

2 9 2 6 33 141 9 10 144 14 145

...

1059 11 2 1 1 2 90 363 256 94 366 365 265 1173 273

1060 11 2 1 1 66 65 663 460 70 710 709 494 1175 493

$EndElements

The three numbers in the mesh format section are GMSH descriptors describing the version
number, file type and data size, and are unrelevant for our purpose. The nodes section contains
the complete list of nodes for the triangulation, with the first number indicating the node number
and the three next its coordinates. The first number in the element section is the total number of
listed elements. Further it lists the complete set of elements, as

<Number> <Type> <Number of tags> <Physical tag>

<elementary geometrical entity>...<node-number-list>

In most cases, the number of tags are two, beeing only the two listed. The element types used
in the MCFEM are

2 Linear triangles with three nodes
4 Linear tetrahedron with four nodes
9 Quadratic triangles with six nodes
11 Quadratic tetrahedron with ten nodes

As seen in the example mesh file given above, both surface triangles (type 9) and volume tetra-
hedra (type 11) are listed, with their respective list of nodes. When the mesh is imported to
the triangulation class in Fortran, this information is used for construction, as described in the
next section.

A.2 Triangulation Class
To simplify access to the elements and nodes during the simulation, a triangulation class

was implemented during the specialization project [23]. The class now contains five member
variables and six member-lists, in addition to member-functions for initialization, mesh read-
ing and neighbor construction. The class interface is shown in Appendix B, under the module

83

Appendix A. Generating Triangulations with GMSH

mod_triangulation. The list of nodes is constructed be directly reading in the nodes list from
the mesh file produced by GMSH. For the volume triangulation, only the elements correspond-
ing to tetrahedra are saved in the triangulation’s element list. Correspondingly, if the surface
mesh (for the contacts) is constructed, only the triangles are saved in the element list. Thus,
the number of elements in the triangulation will not correspond to the total number of elements
given in the mesh file. Further, constructing the volume mesh, the physical tags on the surface
elements are used to construct list of Dirichlet and Neumann nodes. If a surface element has
a tag corresponding to one of the Dirichlet surfaces, each node in this element, which is not
already saved to the list, is added to the list of corresponding Dirichlet nodes. It is possible to
construct as many distinct Dirichlet surfaces as one desires, but the list of Neumann nodes is
currently restricted to a single list, for simplicity.

After constructing the element list, the list of neighbors must be constructed. The mesh file
does not contain information abour neighboring elements, and so a simple linear search algo-
rithm is used to find common faces for elements. For the volume mesh, a face F of an element
K is defined by three of the vertices of K, and the element sharing this face with K is defined as
the Fth neighbour of K, F = 1, .., d. The neighbor-list is important for simple implementation
of the point location algorithms (PLAs), see Section 4. The list requires computational time and
memory, but is constructed only once during the simulations, and is used for all the particles
in the grid at each time step of the simulation, saving computational time during simulations of
long time intervals.

The CPU-times for computing the neighbor list is plotted in Figure A.1 for different number
of elements in a 3D box with side lengths 1. The testing was done on an Intel Core i7-4770
processor with 4 CPUs, clock frequency 3.40 GHz, running Ubuntu 16.04 LTS. The CPU-times
was recorded using the intrinsic function CPU_TIME in Fortran, and the program was compiled
with the GNU Fortran compiler, version 5.4.1 with optimization flags -O3.

104 105 106
Number of elements

10-1

100

101

102

103

104

R
ec

or
de

d
C

PU
-t

im
e

[s
]

Figure A.1: CPU-times for the generation of the neighbor structure in the triangulation class. The plot
is logarithmic, and shows linear performance with respect to the number of elements in the grid. The
CPU-time recorded for generating the neighbor structure in a 3D grid with 483 051 elements was 28.5
minutes.

84

B | Overview of Source Code

The new finite element version of the Monte Carlo software package, MCFEM, is a restructured
version of the previous code. On request, this appendix is provided as a minimal reference for
future developers. It contains an overview of the modules that are currently included in the
source code. Some of the old functionality is left in an archive and not included in MCFEM as
of today. However, it should be an easy task to include this functionality by structuring it in a
new module if found necessary. The reason it was left out was to ease compatibility with the
new structure and minimize the number of pitfalls. Some revision, especially with respect to
line length, has been done in all modules, to make it compile with gfortran. In the following, a
short introduction to the compilation process is presented, before a complete list of source code
files is given.

A Makefile (for use with GNU Make) has been added for simpler compilation and linking,
and also contains a cleaning procedure for removing old build files. This eases the compatibility
between different systems. The source code is tested on both ubuntu 16.04 LTS and MacOSX.
The current compiler specified in the Makefile is gfortran, but this can easily be changed to
e.g. ifort, as long as the compilation flags are changed accordingly. Necessary changes are
explicitly stated with comments in the Makefile. There are currently three available options for
compiling:

• make Compiles with debug flags. To be used under development.
• make DEBUG=0 Compiles with optimization flags for optimal run time (-03)
• make DEBUG=2 Compiles with profiling flag -pg. The code will run slower, but

produce an extra output file, gmon.out, which can be passed to the profiling tool gprof.

The dependence between modules is specified in the Makefile-included file mksource.mk,
found in the source directory for the code, src. Thus, any change to a file which other files
depend on, will rebuild the dependent files, but other files will not be rebuilt. For a full rebuild
of all modules, write

• make clean

followed by a compilation option from the ones listed above. Running a clean and a rebuild
once in a while is recommended to ensure that all changes are compatible among all modules.

All module names have been prefixed with mod_1, for a clear distinction between modules
and other functionality (types, subroutines, functions, variables, etc.). Types are prefixed with

1No rules without exception, the module randomgen is missing this prefix

85

Appendix B. Overview of Source Code

t_. Abstract classes and derived types are not introduced, as this is stated as unwanted in the
programming guide for the MCS. Each module is contained in its own source file with the same
name as the module and the extension .f90. The main program is called MCFEM, and is con-
tained in the source file MCFEM.f90. The following is a complete list of source code files for the
program, where modules that have been added or seen extensive revision during the work with
this thesis is listed in boldface. It should be noted that for each module, the list and descrip-
tion of its content are not complete, and any developer should consult the interactive HTML
documentation generated by FORD, which is found in the program folder2. The list contains
types with variables and procedure names, and important subroutines and functions with short
explanations of their purpose, and always with the full list of input parameters. Modules with
old content are included in the list, but not revised in the same manner as new functionality. The
reader is referred to the old program manual for a more thorough explanation of these.

• MCFEM.f90 Contains the main driver for the program, PROGRAM MCFEM. Before entering
the time loop, the program calls all initialization routines for tabulating scattering rates,
reads the geometry from file and constructs the triangulation, and loads or assembles the
stiffness matrix for the Poisson solution. It then enters the time loop, where the electric
field is calculated at specified time intervals, free flights of all particles are done and
scattering routines are called. Then neutrality is assured in the contact regions, and the
loop continues until the user-specified number of iterations are terminated. The most
important simulation variables which are declared and initiated in the main program are

TYPE(t_APD_device) :: APD Device specification, with a member function
to initialize particles in correct positions

TYPE(t_contact) :: cntRP Contact specifications, right P-contact
TYPE(t_contact) :: cntLP Contact specifications, left P-contact
TYPE(t_contact) :: cntN Contact specifications, center N-contact
TYPE(t_base) :: base Basis functions and quadrature rules for FEM
TYPE(t_triangulation) :: tri Triangulation of the domain
TYPE(t_spCRS) :: stiff The stiffness matrix for FEM calculations
TYPE(t_spCRS) :: stiffBC The stiffness matrix altered with an identity

block for Dirichlet nodes
TYPE(t_spCRS) :: LU The LU decomposition of the stiffness matrix
CHARACTER(255) :: stiff_file Path to stiffness matrix file
CHARACTER(255) :: stiffBC_file Path to stiffness BC matrix file
INTEGER :: diagptr(:) A list of diagonal entries to seperate
INTEGER :: e_elem(:), h_elem(:) the lower triangular matrix L from the upper

triangular U
INTEGER :: illegalParticle(:) An array of the same length as the number of

2Access to the program is given by FFI

86

electrons, everywhere zero except at positions
corresponding to particles that should be re-
moved because they have left through the con-
tacts.

INTEGER :: hillegalParticle(:) Same for holes
INTEGER :: timestep Loop counter for the time loop simulation
REAL :: eload(:) Contribution from electrons to load vector
REAL :: hload(:) Contributions from holes to load vector
REAL :: background_load(:) The contribution from the background charge

to the load vector
REAL :: load(:) Complete load vector (sum of the previous)
REAL :: loadBC(:) Load vector with zeros in Dirichlet nodes
REAL :: g(:) The lifting vector for the Dirichlet boubdart
REAL :: Ag(:) The matrix-vector product of the stiffness ma-

trix and the lifting vector
REAL :: pot(:) Potential, the solution vector of the Poisson

linear system, unit: Volt
REAL :: pot0(:) Initial guess for PCG, the potential without

added boundary conditions.
REAL :: epos(:,:) Scaled electron postions (dimensionless),

epos(p,:) is the three coordinates of elec-
tron p

REAL :: hpos(:,:) Scaled hole positions (dimensionless)
REAL :: kvec(:,:) Wave vectors on matrix form for electrons
REAL :: hkvec(:,:) Wave vectors on matrix form for holes
REAL :: E(:,:) Electric field, E(p,:) gives the three compo-

nents of the electric field for the pth electron
REAL :: hE(:,:) Electric field for holes

• mod_base.f90 Provides basis functions, their derivatives and quadrature rules for the 3D
reference tetrahedra, with the following public content:

– TYPE :: t_base, with variables

INTEGER:: num_func number of basis functions
INTEGER:: num_quad number of quadrature nodes
REAL:: x_quad(:,:) list of quadrature points
REAL:: w_quad(:) list of quadrature weights
REAL:: phi(:,:) Basis functions evaluated at quadrature points
REAL:: dphi(:,:,:) Gradient of basis functions evaluated at

quadrature points

87

Appendix B. Overview of Source Code

– SUBROUTINE :: new_3d_base(base, degree) initializes a new object base
with the given degree. Current possible degerees is 1 (linear) or 2 (quadratic)

– FUNCTION eval_3d_phi(nf,xi) RESULT(phi) Evaluates the basis functions.
The integer nf specifies number of functions, either 4 (linear) og 10 (quadratic), and
xi is the evaluation points on the reference tetrahedra.

– FUNCTION eval_3d_dphi(nf,xi) RESULT(dphi) Evaluates the gradient of the
basis functions, works as above.

• mod_carrierBCs.f90 Contains the procedure for deleting particles leaving through
contacts

– SUBROUTINE DeleteParticl(ptype, illegalPart, nump, EjectNumb)
based on the routine by Vasileska et al. [68].

INTEGER:: ptype Type of particle, -1 for electrons, 1 for holes
INTEGER:: illegalPart(:) Logical vector of zeros and ones describing

particles to be deleted
INTEGER:: nump Number of active particles,

esize if ptype = −1, hsize if ptype = 1
INTEGER:: EjectNumb Number of ejected particles

• mod_carrierDyns.f90 contains the flight routine

– SUBROUTINE flight(dev, kx, ky, kz, x, y, z, band, F,
timestep, poisson, Eject)

CLASS(t_APD_device):: dev the device (e.g. the APD from the main pro-
gram)

REAL :: kx,ky,kz,x,y,z wave vector and position of particle
REAL :: timestep basic timestep
REAL :: F(3) The force (the electric field) acting on the

particle
CHARACTER(LEN=*):: band The band for electrons and the valley for holes.
INTEGER:: poisson Logical variable, 1 if poisson solver is on, 0

otherwise
INTEGER :: Eject A return variable, set to 1 if the particle needs

to be deleted from the simulation.

• mod_collectstats.f90Module with functionality for collecting statistics from the run
and saving to files. Contains the following public subroutines:

– SUBROUTINE openStatFiles Opens all the files that the statistics should be writ-
ten to

88

– SUBROUTINE closeStatFiles Closes the same files when the run is finsihed

– SUBROUTINE write12(step, extractor) Writes particle positions and wave
vectors to file 12 times during the simulation

– SUBROUTINE writeelectronenergyWrites average electron enegries to file

• mod_contact.f90 Procedures for handling insertion of particles at the contact. See also
Section 5.

– TYPE :: t_contact, with variables and procedures

CLASS(t_triangulation) :: surf Surface triangulation of contact area
CHAR(LEN=1) :: ctype Contact type (P or N)
REAL :: impdens Impurity (doping) density of area

adjacent to contact
REAL :: area Total surface area of contact
REAL :: xstart, dx Variables defining neutral area of contact
REAL :: ystart, dy

REAL :: zstart, dz

PROCEDURE :: init_contact Initialization of contact variables from in-
put file

SUBROUTINE init_contact(contact, cname)

CLASS(t_contact) :: contact The contact variable that is to be initialized
CHARACTER(LEN=*) :: cname The name of the contact as provided in the

input file.

PROCEDURE :: inNeutral Test if particles are in neutral area

PROCEDURE :: insertParticles Compute necessary number of new par-
ticles and insert new particles at con-
tact surface

• mod_device.f90 Some device specification and initialization of particles in the given
device. Goal is that more device types can be added without needing to change other
parts of the code.

– TYPE :: t_APD_device, with device specifications(not listed) and procedures:

PROCEDURE :: init_APD Specification of APD variables (length,
width, impurity, etc.)

PROCEDURE :: init_particles Initialize particles according to the dif-
ferent doping densities in each region,
corresponing to an overall neutral de-
vices

89

Appendix B. Overview of Source Code

PROCEDURE :: passedContact Calculates if a particle has passed a con-
tact of the device

• mod_energyflow.f90 Contains phononvariables and the following routine:

– SUBROUTINE writeanderaseWrites and resets phonon variables

• mod_FEMassembly.f90 Contains procedures to assemble the stiffness matrix and the
load vector for the linear system arising from the FEM discretization. The public routines
are

– FUNCTION assemble_stiff(tri, base) RESULT (A) Assembles the stiffness
matrix for the given triangulation tri with basis functions and quadrature rule from
base. The result A is in the CRS format (see mod_sparsemat.f90).

– FUNCTION stiffBC_fromstiff(A, tri) RESULT(A_BC) Sets the Diriblet part
of A to identity, resulting in a new matrix A_BC ("A with boundary conditions")

– FUNCTION assemble_load(tri,base,ppos,nump,c, p_elem) RESULT(f)
Assembles the load vector for the given triangulation tri with basis functions and
quadrature rule from base, with the particle positions given in the 3 × Np vector,
with c a constant depending on the permittivity and the particle charge, and p_elem
the list of element positions for each particle.

– FUNCTION loadBC_fromload(tri, f) RESULT(f_BC) Sets 0 Diriclet contribu-
tion to entries of f corresponing to Dirichlet nodes, resulting in a new vector f_BC
("f with boundary conditions")

• mod_FEMroutines.f90 Additional FEM-routines;

– SUBROUTINE init_device_geometry(tri) A simple routine reading the file
name specification and element order from the initialization file and calls the routine
initialicing the triangulation (see mod_triangulation.f90).

– FUNCTION Efield_fromPot(pot,pos,nump, tri, base, p_elem)
RESULT (E)

Calculates the Electric field in each particle position, according to Equation (2.48).
pot is the potential in each node as calculated by solving the linear system arising
from the FEM-discretization, pos are the particle positions, nump the number of
active particles, tri, base, p_elem as for the stiffness assemble routine.

• mod_globalparams.f90 Holds global parameters such as physical constants and some
user-specified parameters such as the number of simulation steps and basic timestep. A
routine,

– SUBROUTINE init_globalparams reads basic user specified parameters from the
initialization file.

90

• mod_ImpactIonizationScattering.f90Contains routines for performing impact ion-
ization scattering of particles.

– SUBROUTINE ImpactIonizationGen(x0,y0,z0,totE)
– FUNCTION DistEnergyLoss(x,E)
– FUNCTION EnergyLoss(idum, E)

• mod_initialize.f90 Initialization routines for flight duration (called flightlength in
the program) and wave vectors, in addition to a routine initializing from file written in
possible previous run. Other initialization routines, unused in MCFEM, is also contained
in this module (not listed here, but available in the HTML documentation).

– SUBROUTINE readinitialfromfile()
– SUBROUTINE initializeflightlength()
– SUBROUTINE initializekvector

• mod_isovaryingstring.f903 Contains functionality for variable string lenght, used
only in mod_readintools.f90

• mod_linalg.f90 Linear Algebra procedures:

– FUNCTION cross(a, b) Cross product of vectors a and b (Assumed each vector
has three entries)

– FUNCTION dot(a,b) Dot product of vectors a and b (any length)

– FUNCTION matmatT_3x3(inmat) RESULT(outmat) Matrix-matrix product of
the input matrix inmat with itself transposed (only for 3 × 3 matrices).

– FUNCTION detmat_3x3(mat) RESULT(det) Determinant of 3 × 3 matrix

– FUNCTION inv_3x3(mat) RESULT(inv) Inverse of 3 × 3 matrix

– FUNCTION matvecmult(mat, vec) RESULT(resvec)Matrix-vector multiplica-
tion, for non-sparse matrices, any size. This routine is an interface operator over-
writing * for matrix vector input. Throws error if dimensions of matrix and vectors
do not agree.

• mod_matpar.f90Material parameters.

• mod_measurements.f90 Calculation of group velocities for particles

– FUNCTION holevgi(dir, kx, ky, kz, band)

– FUNCTION electronvgi(ki, k, valley)
3GNU Public Licsence File

91

Appendix B. Overview of Source Code

• mod_nonpcc.f90 Old module missing decent documentation. It is referenced in some
case selects in the scattering modules, and therefore included, but non of its routines are
explicitly called during the execution of MCFEM.

• mod_pauli.f90 Parameters and routines for use of the Pauli principle. Requieres ex-
tensive amount of computational resources and is turned off during the execution of
MCFEM, but is, as the nonpcc-module referenced elsewhere in the code and thus in-
cluded.

• mod_phononstatistics.f90 Contains routines for handling phonons (not listed, see
HTML documentation for complete list).

• mod_PL2D_CBF.f90 Point location routine and help functions for 2D-point location in
triangulations.

– SUBROUTINE point_location_2D(loc,triangulation, point,
init_search_elem) As described in Algortihm 4.1 in Section 4.2.

– FUNCTION center_of_elem(triangulation, elem) RESULT(center)
Calculates center of the triangular element elem in triangulation.

– FUNCTION trajectory_to_the_left(init_point,traj, node) RESULT(L)
Calculates the TTL, i.e. the value of αi from Equation (4.3).

– FUNCTION particle_to_the_left(node1,node2, point) RESULT(P2L)
Calculates the PTL, i.e. the value of βi from Equation (4.4).

• mod_PL3D_CBF.f90 Point location routine and help functions for 3D-point location in
triangulations.

– SUBROUTINE point_location_3D(loc,triangulation, point,
init_search_elem) As described in Algortihm 4.2 in Section 4.2.

– FUNCTION center_of_elem(triangulation, elem) RESULT(center) Cal-
culates center of the tetrahedral element elem in triangulation.

– FUNCTION trajectory_towards_inside(init_point,traj, node1, node2)
RESULT(TTI) Calculates the FTI, i.e. the value of ω from Equation (4.6). The traj
variable is the trajectory denoted by S in Section 4

– FUNCTION particle_inside(node1,node2,node3, point) RESULT(P2I)
Calculates the PTI, for a face given by the three nodes, i.e. the value of γF from
Equation (4.9).

• mod_precond.f90Routines for handling preconditioners for sparse linear system solvers.
Currently only the ILU0 is implemented, but it should provide a descent interface for in-
troducing new preconditioners.

92

– SUBROUTINE ILU0(A, LU, diagptr) Computes the LU decomposition of A
and a diagptr pointing to the diagonal entries in the LU matrix, which stores L
in its lower triangular part and U in its upper triangular part. Note: this is not the
product LU but merely the two matrices saved in one to save space.

– FUNCTION solveLUz(LU, diagptr, b) RESULT(z) Solves first Ly = b and
then Uz = y and returns z.

• mod_precpar.f90 Contains the precision parameter for reals, wp (working precision).

• mod_readintools.f903 Routines for reading from initialization file, such as GETSTR,
GETINT, etc.

• mod_refmaps.f90 Mapings between reference tetrahedron and elements and Jacobians
of these.

– FUNCTION cartesian_to_barycentric(triangulation, elem, point)
RESULT(lambda)

– FUNCTION barycentric_to_cartesian(triangulation, elem, lambda)
RESULT(point))

– FUNCTION J_ref_to_elem(triangulation, elem)
RESULT(J))

– FUNCTION J_elem_to_ref(triangulation, elem)
RESULT(J)

• mod_scatter.f90 Scatter routines

– SUBROUTINE scatter(j,o,SumRates,energydelta, ScCounter,
hScCounter) Scatter routine for electrons

– SUBROUTINE hscatter(j,o,hSumRates,energydelta, hScCounter,
ScCounter) Scatter routine for holes

– FUNCTION thetaintrabandpolaroptical(hk,hkf,betasqrd)
– FUNCTION thetainterbandpolaroptical(hk,hkf,betasqrd)
– FUNCTION holeenergy(hk,band)

• mod_scatteringangle.f90 Contains routine for final scattering angle after scattering.

• FUNCTION thetapolaroptical(E,Ef,alpha,betasqr,meff)

• mod_scatteringrates.f90 All taburation of scattering rates is performed in this mod-
ule, with a long list of public variables and calculation routines. See HTML documenta-
tion and source code.

• mod_sparselinalg.f90 Routines for linear algebra with sparse matrices.

93

Appendix B. Overview of Source Code

– FUNCTION matvecmult(A,v) RESULT (Av)Matrix vector multiplication when
A is on the sparse format CRS (see mod_sparsemat.f90). Overwrites the multi-
plication operator * for input of this type.

– FUNCTION solveBiCGStab(A, b, x0, tol) RESULT(x)

A BiCG-Stab algorithm

– FUNCTION solvePCG(A,b,x0,LU,diagptr, tol) RESULT(x)

Preconditoned Conjugate gradient with LU preconditioner

– FUNCTION solveCG(A,b,x0, tol) RESULT(x) Conjugate Gradient algorithm

• mod_sparsemat.f90 Sparse matrix types

– TYPE t_spDOK Dictionary of Keys matrix type

INTEGER :: maxnnz The maximum value of nonzero elements
INTEGER :: nnz Actual number of nonzero elements
INTEGER :: nrows Number of rows in the dense format
INTEGER :: ncols Number of cols in the dense format
INTEGER :: keys(:,:) Pair of (row, col) for nonzero matrix element
REAL :: vals(:) The nonzero values of the matrix
PROCEDURE :: spalloc => spalloc_DOK Sparse allocation
PROCEDURE :: set => set_DOK Set value
PROCEDURE :: get => get_DOK Get value

– TYPE t_spCRS Compressed Row Storage matrix type

INTEGER :: nrows Number of rows in the dense format
INTEGER :: ncols Number of cols in the dense format
INTEGER :: cols(:) Column index for the corresponding value

in vals
INTEGER :: rowstart(:) Start index for each row in vals
REAL :: vals(:) The nonzero values of the matrix
PROCEDURE :: fromDOK => fromDOK_CRS Convert from DOK to CRS
PROCEDURE :: get => get_CRS Get value
PROCEDURE :: replace => replace_CRS Replace value
PROCEDURE :: toFile => toFile_CRS Write CRS matrix to file
PROCEDURE :: fromFile => fromFile_CRS Read CRS matrix from file

– SUBROUTINE CRS_assign(A, B) Overwrites assignment operator (= for CRS
matrices)

• mod_triangulation.f90 The triangulation module. Important for every aspect of the
FEM part of the code. Contains the triangulation type and its procedures.

– TYPE :: t_triangulation

94

INTEGER :: d Dimension (2 or 3)
INTEGER :: num_nodes Number of nodes
INTEGER :: num_elems Number of elements
REAL :: nodes(:,:) List of nodes (range; (1:Nh,1:3))
INTEGER :: elems(:,:) List of elements
INTEGER :: neighbours(:,:) List of neighbors
INTEGER :: DirBound(:,:) (:,i) the ith list of DirNodes
INTEGER :: NeuBound(:) The list of Neumann nodes
INTEGER :: numDir(:) ! (i) Number of DirNodes for ith

list
INTEGER :: numNeu Total number of neumann nodes
PROCEDURE :: init_triangulation Initializer for the triangulation. Use

this to initialize the triangulation
for a given dimension and a *.msh
file. The triangulation must be al-
located before this initializer is called.

PROCEDURE :: read_from_msh_2D Reads the *.msh file to make the
surface triangulation for the con-
tacts

PROCEDURE :: read_from_msh_3D Reads the *.msh file to make the
volume triangulation

PROCEDURE :: read_from_msh_3D_quad As above, for quadratic element
PROCEDURE :: find_neighbours_2D Make the neighbours list from the

information saved in the elems vec-
tor in the 2D case

PROCEDURE :: find_neighbours_3D Make the neighbours list form the
information saved in the elems vec-
tor in the 3D case

PROCEDURE :: read_boundary_quad Find boundary nodes given quadratic
elements

PROCEDURE :: read_boundary_lin Find boundary nodes given linear
elements

• randomgen.f90 Contains the pseudorandom number generator:

– FUNCTION rangen(idum)

95

	Sammendrag
	Abstract
	Preface
	Table of Contents
	List of Abbreviations
	List of Symbols
	List of Figures
	Introduction
	Monte Carlo Simulation
	Electric Field Updates
	Approach

	Approximation for the Electric Field
	The Electric Field
	Scaling
	Weak Formulation
	The Finite Element Approximation
	Barycentric Coordinates
	Polynomial Basis Functions

	Assembly Procedures
	Existence and Uniqueness
	Distributions and Fundamental Solutions
	Green Functions
	Uniqueness

	Solving the Linear System
	Sparse Matrix Storage Schemes
	Preconditioned Conjugate Gradient Method
	Numerical Evaluation

	Point Location Algorithms
	The Point Location Problem
	Implemented Solution to the Point Location Problem
	Point Location in Two Dimensional Triangulations
	Point Location in Three Dimensional Triangulations
	Comparison with Other Methods

	Boundary Conditions for Carrier Dynamics
	Neutral Region
	Injection of Particles

	Program Flow
	Monte Carlo Program Structure
	Device Geometry
	Pre-Loop Assembly Procedures
	In-Loop Electric Field Calculations

	Simulations
	Case Study: Particle in a Box
	An Avalanche Photodiode Model
	Scaling within the Program
	Bias Simulations
	Particle Behavior
	Effect of Grid Refinement
	Effect of Element Order

	Workload for the Program

	Further Work
	Conclusion
	References
	Appendices
	Generating Triangulations with GMSH
	Meshing Using the GMSH Software
	Triangulation Class

	Overview of Source Code

