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Abstract 

Finite elements simulations of fluid diffusion for composite structures are becoming 

more common in marine and offshore applications. Input parameters for such 

simulations are the orthotropic diffusion constants for the materials. Diffusivity in fiber 

direction is faster than diffusivity in transverse direction; it is therefore important to 

determine all these constants to predict long-term fluid diffusion in composite 

structures. Current standards for the determination of the diffusion constants prescribe 

a sample geometry that enforces 1-D diffusion, but thin samples are not easy to 

fabricate, especially from thick laminates. Edges with metallic coatings are also 

prescribed, which can influence the calculation of the moisture saturation content and 

may detach during the experiments. Furthermore, axial symmetrical structures are often 

used offshore, requiring 3-D diffusion analysis in cylindrical coordinates. The aim of 

this paper is to provide a 3-D theory and methods for obtaining diffusion constants for 

plates, rods and pipes. 

 

Keywords: Polymer-matrix composites (PMCs); Environmental degradation; Analytical modelling; 
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List of symbols 

α 

 

Solution of the zero-th order Bessel function 

c Moisture concentration 

c0 Moisture initial concentration 

D11, D22, D33 Orthotropic diffusion constants in cartesian coordinates 

D║, D┴ Parallel to fiber and transverse to fibers diffusion constants 

DR, DZ Composite orthotropic diffusion constants in cylindrical coordinates 

h, l, w Laminate thickness, length and width 

J0, Y0 Bessel functions of first and second order 

L, R, Re, Ri Length of rod and pipe, rod radius, pipe external and internal radius 

M(t), Meq Moisture content and moisture saturation content 

r, z, ϕ Cylindrical coordinate system 

t Time 

x, y, z Cartesian coordinate system 

 

1. Introduction 

The prediction of long-term performance of composite structures exposed to humid 

environments requires knowledge of the fluid concentration profiles inside the component. 

Such concentration profiles can be obtained by means of finite element (FE) analysis, which 

require knowledge of the orthotropic diffusion constants and moisture saturation content of 

the material. Obtaining the fluid diffusion orthotropic constants is often a bottleneck. 

Composite materials have orthotropic diffusion constants, as shown by many studies [1-8]. 

Typically, diffusion in the fiber direction can be 3-15 times higher than in transverse 

direction, and this can accelerate fluid saturation greatly [4-6, 9]. 

The gravimetric testing method proposed in ASTM Standard D5229 [10] is very useful for 

obtaining the transverse diffusivity of a composite, but obtaining the other two orthotropic 
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diffusion constants using this method remains challenging. Furthermore, the applicability of 

the standard is limited to thin plates. Rods and pipes are not dealt with using this method. 

Using ASTM Standard D5229 it is possible to obtain the diffusivity of a composite material 

in an arbitrary direction, by preparing a thin sample (the thickness to width ratio suggested is 

1/100) and coating with a stainless-steel foil the edges of the sample. 

Preparing such thin samples can be non-trivial, especially for the diffusion in the fiber 

direction, because samples are often obtained from laminates having reduces initial thickness. 

For example, from a 30 mm thick laminate, in order to study diffusion in the fiber direction it 

is necessary to slice the laminate orthogonally to the fiber, to a final thickness of 0.3 mm. 

Such a sample would weigh only half gram and measuring a 0.1% mass increase in such case 

would require a very sensitive, hence expensive, scale. 

Another complication involved with this method is the use of stainless-steel foil for covering 

the edges. Firstly, in order to bond the foil to the edges an adhesive is necessary, and this 

adhesive would absorb water in most cases, influencing the weight gain measurements. 

Furthermore, the bonding between a metallic foil and a thin composite edge surface is not 

very strong, and the stainless-steel foil could peel off or fall off from the sample, severely 

disturbing the data. 

In order to overcome these issues, some authors have proposed measuring diffusivity of 

composites without coating the samples edges but taking into account the 3-dimensional fluid 

diffusion equations [6, 8, 11-13]. 

Composite structures used in offshore industry have often non-flat shapes, like pultruded 

composite rods [14] and filament wound pipes [15, 16]. For such structures the test method 

suggested in the standard [10] cannot be used to obtain radial and axial diffusion constants. In 

this work exact and approximate analytical solutions are introduced for orthotropic diffusion 
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in pipes. Together with a novel test method, based on testing long radial diffusion dominated 

and short axial diffusion dominated samples, it is possible to identify axial and radial 

diffusion constants. The results are compared to known solutions for plates and rods made 

from the same material and also tested in this work, to assess the accuracy of the method. 

These geometries: plates, rods and pipes, are representative of structural applications of 

composites offshore: 

- Repair patches [17, 18], 

- Tension-leg-platform (TLP) tethers [14], 

- Offshore risers [15, 16]. 

In this article sample configurations and equations for obtaining orthotropic diffusion 

constants are proposed. The approach is based on testing sample having geometries that 

promote either mono-dimensional or multi-dimensional diffusion, in Cartesian or cylindrical 

coordinates. A regression of the experimental results with the analytical or FE models 

reported here enables identification of the orthotropic diffusion constants. Experiments were 

carried out to demonstrate how the procedures work and to show typical analysis of the 

results. 

 

2. Materials and methods 

The glass fibers used were HiPer-TexTM unidirectional fabric from 3B. The epoxy was 

supplied by Hexion and consisted in RIMR135TM resin and RIMH137TM hardener with a 

mass mixing ratio of 100:30. A thick laminate was prepared by vacuum assisted resin 

infusion of 32 plies. Curing was performed at room temperature for 24 hours and post-curing 

was performed at 80°C for 16 hours, according to the manufacturer’s recommendations [19]. 

Three bars were cut from the laminate along the fiber direction. From one of the bars four 
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plates have been cut orthogonally to the fiber direction and four plates have been cut along 

the fiber direction, using a water-cooled diamond saw. The samples were later milled and 

ground to the dimensions: 24 x 24 x 1.5 mm. 

Another bar obtained from the same laminate was used in order to prepare 6 mm diameter 

rods, using a turning machine. Four “long” rods and four “short” rods were manufactured, 

having length 30 and 6 mm respectively. 

From another bar, obtained from the same laminate, pipes having internal diameter 20 mm 

and external diameter 24 mm were manufactured, using a turning machine. Four “long” pipes 

and four “short” pipes were turned, having length 24 and 2 mm respectively. 

Composite pipes and rods are often obtained using different manufacturing processes, 

typically filament winding and pultrusion. In this work it was decided to obtain all the 

samples from the same laminate, in order to consistently compare the diffusion constants 

obtained from the different samples configurations. The fiber volume fraction for all samples 

was measured according to the burn off test [20] resulting in 54.4 %. Samples dimensions are 

summarized in Table 1 and sample pictures are shown in Fig.1. 

 

Table 1. Sample geometry for each configuration 

Geometry Samples for radial/transverse diffusivity Samples for axial diffusivity 

Rods R= 3, L= 30 R= 3, L= 6 

Pipes Re= 12, Ri= 10, L= 24 Re= 12, Ri= 10, L= 2 

Plates l= 24, w= 24, h= 1.5 

L: rod/pipe/plate length, R: rod radius, Re: pipe external radius, Ri: pipe internal radius, w: plate width, h: plate thickness 
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Fig. 1. Sample configurations tested 

 

Before conditioning the samples were dried in oven for 72 hr at 40°C, in order to remove 

moisture diffusing in the material during the manufacturing process. 

The fluid diffusion test was performed according to the standard [10], in distilled water at 

60°C ± 1 ˚C. This temperature was chosen in order to opportunely accelerate fluid diffusion 

while still remaining below the glass temperature of the material: 87.1°C, measured using 

dynamic mechanical analysis (DMA). The samples were removed regularly from the water 

bath four at a time, their surface dried with a cloth and their mass recorded immediately using 

a Mettler Toledo AG 204 DeltaRange scale, having sensitivity 0.1 mg. 

 

Fig. 2. Sample configurations for plates, rods and pipes. It can be noticed that for rods and pipes the axial 

direction coincides with the laminate fiber direction 

 

3. Analytical model 

The analytical model reported here is based on the following assumptions: 

- fickian diffusion; 

- transversely isotropic material. 

It is important to remark that the solutions reported here are valid for arbitrary dimension. It 

is not necessary to assume infinitely thin plates or infinitely long rods or pipes. 

3.1 Composite plates 

Fick’s 2nd law for orthotropic materials in cartesian coordinates is: 
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𝜕𝑐

𝜕𝑡
= ∇  ∙  (D ∇ 𝑐)  =  𝐷11

𝜕2𝑐

𝜕𝑥2 + 𝐷22
𝜕2𝑐

𝜕𝑦2 + 𝐷33
𝜕2𝑐

𝜕𝑧2   (1) 

where c(x,t) is fluid concentration, t is time, x,y,z are the coordinates in cartesian space, D is 

the positive definite symmetric matrix of diffusion coefficients Dij, and D11, D22 and D33 are 

the diffusion constants in directions 1, 2 and 3 respectively. 

It is assumed here that direction 1 is the fiber axial direction, direction 2 is transverse in plane 

direction and direction 3 is transverse out of plane direction, as shown in Fig. 2. 

For a plate having length l, width w and thickness h, the boundary conditions representing 

immersion in a fluid of an initially dry sample are: 

for t = 0 

𝑐 (𝑥, 𝑦, 𝑧) = 0     (2) 

for t > 0 

𝑐 (+ 
𝑙

2
) = 𝑐 (− 

𝑙

2
) = 𝑐0    (3) 

𝑐 (+ 
𝑤

2
) = 𝑐 (− 

𝑤

2
) = 𝑐0    (4) 

𝑐 (+ 
ℎ

2
) = 𝑐 (− 

ℎ

2
) = 𝑐0    (5) 

the solution of this problem is provided by Crank [21]. For the transverse plate configuration, 

Fig. 3 (a), the solution is: 

𝑀(𝑡) = 𝑀𝑒𝑞  [1 − (
8

𝜋2)
3

∑ ∑ ∑
1

(2𝑖−1)2 𝑒−(2𝑖−1)2(
𝜋

𝑙
)

2
𝐷11𝑡 ∙

1

(2𝑗−1)2 𝑒−(2𝑗−1)2(
𝜋

𝑤
)

2
𝐷22𝑡 ∙∞

𝑘=1
∞
𝑗=1

∞
𝑖=1

1

(2𝑘−1)2 𝑒−(2𝑘−1)2(
𝜋

ℎ
)

2
𝐷33𝑡]         (6) 
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Fig. 3. (a) Transverse plate geometry, (b) Axial plate geometry 

 

For a transversely isotropic material, having D22 = D33 = D┴ and D11 = Dǁ, Eq. (6) becomes: 

𝑀(𝑡) = 𝑀𝑒𝑞  [1 − (
8

𝜋2)
3

∑ ∑ ∑
1

(2𝑖−1)2 𝑒−(2𝑖−1)2(
𝜋

𝑙
)

2
𝐷ǁ𝑡 ∙

1

(2𝑗−1)2 𝑒−(2𝑗−1)2(
𝜋

𝑤
)

2
𝐷┴𝑡 ∙∞

𝑘=1
∞
𝑗=1

∞
𝑖=1

1

(2𝑘−1)2
𝑒−(2𝑘−1)2(

𝜋

ℎ
)

2
𝐷┴𝑡]         (7) 

For the axial plate configuration, Fig. 3 (b), under the hypothesis of orthotropic material: 

𝑀(𝑡) = 𝑀𝑒𝑞  [1 − (
8

𝜋2
)

3
∑ ∑ ∑

1

(2𝑖−1)2
𝑒−(2𝑖−1)2(

𝜋

𝑙
)

2
𝐷33𝑡 ∙

1

(2𝑗−1)2
𝑒−(2𝑗−1)2(

𝜋

𝑤
)

2
𝐷22𝑡 ∙∞

𝑘=1
∞
𝑗=1

∞
𝑖=1

1

(2𝑘−1)2 𝑒−(2𝑘−1)2(
𝜋

ℎ
)

2
𝐷11𝑡]         (8) 

For a transversely isotropic material, having D22 = D33 = D┴ and D11 = Dǁ, Eq. (8) becomes: 

𝑀(𝑡) = 𝑀𝑒𝑞  [1 − (
8

𝜋2)
3

∑ ∑ ∑
1

(2𝑖−1)2 𝑒−(2𝑖−1)2(
𝜋

𝑙
)

2
𝐷┴𝑡 ∙

1

(2𝑗−1)2 𝑒−(2𝑗−1)2(
𝜋

𝑤
)

2
𝐷┴𝑡 ∙∞

𝑘=1
∞
𝑗=1

∞
𝑖=1

1

(2𝑘−1)2 𝑒−(2𝑘−1)2(
𝜋

ℎ
)

2
𝐷ǁ𝑡]                 (9) 

 

3.2 Composite rods 

Fick’s 2nd law for orthotropic materials in radial coordinates is [21, 22]: 

∂c

∂𝑡
= DZ

∂2c

∂𝑧2 + DR
1

𝑟

∂

∂𝑟
(𝑟

∂c

∂𝑟
)   (10) 

 

where c(x,t) is fluid concentration, t is time, r the radial coordinate, z the axial coordinate, DR 

the radial diffusion constant and DZ the axial diffusion constant. Eq. (10) assumes axial 

symmetry and finite length. 
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For a cylinder having radius R and length 2L, as in Fig.4, the boundary conditions 

representing immersion in a fluid of an initially dry sample are: 

for t = 0 

c ( 𝑟, 𝑧)  = 0      (11) 

for t > 0 

c ( R, 𝑧)     = c0     (12) 

c ( 𝑟, ± L) = c0     (13) 

 

Fig. 4. Coordinate system and dimensions for a composite rod 

 

the solution of this problem is reported in [9, 22] and is: 

 

M(𝑡) = Meq {1 −  
32

π
∑ ∑

1

(αm)2
∞
n=0 exp (

−αm
2 DR 𝑡

𝑅2 ) ∙
1

(2n+1)2 exp [−
(2n+1)2π2

4L2  DZ𝑡]∞
m=1 }    (14) 

 

where L is the half length of the cylinder, DR the radial diffusion constant, DZ the axial 

diffusion constant and αm the roots of Bessel function of order zero: J0 (αm) = 0. 

 

3.3 Composite pipes 

For an orthotropic pipe, the radial and axial diffusion constants can be obtained from the 

weight gain measurements of long and short pipes, as shown in Figs. 1-2. 

Fluid diffusion in an orthotropic pipe is described by the same equation introduced for fluid 

diffusion in a rod, Eq. (10): 

 

∂c

∂𝑡
= DZ

∂2c

∂𝑧2
+ DR

1

𝑟

∂

∂𝑟
(𝑟

∂c

∂𝑟
)   (15) 
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where c(x,t) is fluid concentration, t is time, r the radial coordinate, z the axial coordinate, DR 

the radial diffusion constant and DZ the axial diffusion constant. 

For a hollow cylinder, having the geometry shown in Fig. 5, the boundary conditions 

simulating immersion of an initially dry sample are: 

for t = 0 

c ( 𝑟, 𝑧)  = 0      (16) 

for t > 0 

c ( R𝑖, 𝑧)     = c0     (17) 

c ( R𝑒 , 𝑧)     = c0    (18)  

c ( 𝑟, ± L)   = c0    (19) 

 

Fig. 5. Coordinate system and dimensions for a composite pipe 

 

The solution of this problem can be obtained with simple derivation from [9, 21]: 

 

𝑀(𝑡)  =  𝑀∞ [1 −
32

𝜋2 (R𝑒
2−R𝑖

2)
∑ ∑

𝐽0(R𝑖α𝑛)−𝐽0(R𝑒α𝑛)

α𝑛
2[𝐽0(R𝑖α𝑛)+𝐽0(R𝑒α𝑛)]

𝑒𝑥𝑝(−𝐷𝑅α𝑛
2 𝑡) ∙∞

𝑚=0
∞
𝑛 = 1

1

(2𝑛+1)2 𝑒𝑥𝑝 (−
(2𝑚+1)2𝜋2

4𝐿2 𝐷𝑍𝑡)]       (20) 

 

where αn are roots of the equation: 

𝐽0(𝑅𝑖 𝛼𝑛) 𝑌0(𝑅𝑒 𝛼𝑛)  − 𝐽0(𝑅𝑒 𝛼𝑛) 𝑌0(𝑅𝑖 𝛼𝑛)  =  0  (21) 

where J0 and Y0 are the Bessel functions of first and second kind. 
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The solution proposed in Eq. (20) is valid for arbitrary thick pipes. For thick-walled pipes, the 

samples can take very long time to saturate. In this case an alternative possibility is slicing 

plates from the pipes, as shown in Fig. 6. From the plates the directional diffusivities can be 

obtained using the plate diffusion solutions reported in the previous paragraph, using Eq. (7) 

for radial diffusivity and Eq. (9) for axial diffusivity. 

 

Fig. 6. Schematic drawing on obtaining axial and radial diffusion plates from a thick-walled pipe 

 

3.4 Approximated 2-D plate solution for orthotropic pipes 

An axial symmetric thin-walled pipe can be modelled as an equivalent infinitely wide plate, 

having the same length of the pipe, 2 L, and thickness equal to the pipe wall thickness, Re – 

Ri, as shown in Fig. 7. 

 

Fig. 7. Approximation of thin-walled pipe to equivalent infinitely wide plate 

 

In this case, the solution reported in Eq. (20) can be replaced by the two-dimensional solution 

of fluid diffusion in an infinitely wide rectangular plate having the same length as the pipe 

and thickness equal to the pipe wall thickness: 

𝑀(𝑡) = 𝑀𝑒𝑞  [1 − (
8

𝜋2)
2

∑ ∑
1

(2𝑖−1)2 𝑒
−(2𝑖−1)2[

𝜋

(𝑅𝑒−𝑅𝑖)
]

2

𝐷𝑅𝑡
∙

1

(2𝑗−1)2 𝑒−(2𝑗−1)2(
𝜋

2 𝐿
)

2
𝐷𝑍𝑡∞

𝑗=1
∞
𝑖=1 ] 

(22) 

It is interesting to obtain an equivalent plate solution, for two reasons. The first one is that 

plate solutions are easier to implement as they don’t invoke the zeros of the Bessel function, 
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while the second one is that several models have been published dealing with the influence of 

matrix transverse cracks on diffusivity in composite plates [23, 24]. These models can be 

easily implemented for composite pipes having transverse matrix cracks, using the 

approximated plate solution as a starting point. 

The accuracy of the approximated solution is shown, as a function of the wall thickness of the 

pipe in the Appendix. For the material studied here, the approximated solution showed has a 

good accuracy even for thick-walled pipes. 

 

4. Numerical model 

The previous paragraph has shown the exact analytical solutions for fluid diffusion in plates, 

rods and pipes, and the approximated solution for pipes. The fluid diffusion of these 

geometries can be analysed also by means of finite element (FE), as shown in this paragraph. 

For complex geometries analytical solutions become hard to integrate and FE modelling 

remains a strong alternative. For this reason, the numerical modelling methodology is shown 

here. 

The finite element analysis was performed in AbaqusTM, using a diffusion step analysis. A 

1/8 symmetric 3D model was used for the plates and axial symmetric 2D model for the rods 

and pipes, Fig.8. 

 

Fig. 8. FE models used for the plate, rod and pipe. The surfaces exposed to fluid diffusion are indicated by the 

arrows 
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The elements used were DC3D8 for the plates (8-node linear heat transfer brick) and DCAX4 

for the rods and pipes (4-node linear axisymmetric heat transfer quadrilateral). Element size 

for the plates was 0.25 mm and 0.1 in the thickness direction. Element size for the rods and 

pipes was 0.1 mm overall. These element sizes were chosen after a mesh sensitivity analysis. 

5. Results  

The weight gain curves are shown in Fig. 9 (a-c) for composite plates, rods and pipes. 

 

Fig. 9. Experimental weight gain curves of: (a) plates, (b) rods and (c) pipes. 

 

Moisture saturation content for each configuration was obtained as an average of four parallel 

measurements. Mean values and standard deviations are reported in Fig. 10. 

 

Fig. 10. Moisture saturation content for each configuration 

 

The average value obtained was 0.775%, with a minimum of 0.72% and a maximum of 

0.86% (16% deviation between maximum and minimum, 2% standard deviation). The 

moisture saturation content is a material property and should ideally be the same for all 

configurations. The reason for this difference is attributed to the different manufacturing 

processes, which lead to different surface roughness and porosity. 

A regression analysis was performed on all sample geometries (plates, rods and pipes) based 

on the analytical solutions, Eqs. (9,14,20), in order to obtain the diffusivities for each 

configuration. The diffusivities were obtained by performing nonlinear Generalized Reduced 

Gradient (GRG) algorithm, while minimizing the residual sum of squares. The algorithm was 
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used iteratively within each geometry (plates, rods and pipes) in order to obtain DR (or D┴) 

and DZ (or Dǁ). Diffusivities obtained via regression analysis are shown in Fig. 11. 

 

Fig. 11. Diffusivities for each geometry (plates, rods, pipes) 

 

Diffusivities obtained for all three geometries are in good agreement with each other. Results 

indicate that diffusivities obtained for plate geometry provide less scatter than rods and even 

more so than pipes. 

The diffusion constants obtained from the regression analysis have been then used as input 

material properties for the FE analysis. The weight gain curves obtained by theoretical and 

FE analysis were plotted along with experimental results in Fig. 9 (a-c). 

The values of diffusivities obtained from the regression analysis are reported in Table 2. 

Table 2. Diffusion constants obtained from the regression analysis 

Configuration Transverse/Radial diffusivity (mm2/h) Axial diffusivity (mm2/h) 

Plates 0.0043 ± 0.0004 0.0105 ± 0.0004 

Rods 0.0041 ± 0.0005 0.0099 ± 0.0012 

Pipes 0.0038 ± 0.0008 0.0133 ± 0.0030 

AVERAGE 0.0041 0.0113 

 

From what has been shown, it is possible to obtain the transverse/radial diffusivity and axial 

diffusivity for each configuration. The average values of transverse/radial and axial 

diffusivities obtained are: 0.0041 mm2/h and 0.0113 mm2/h. Using the diffusion constants 
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obtained from the regression for each geometry, the analytical and FE predictions were 

compared to the experimental results, Fig.12. 

 

Fig.12 Weight gain curves of: (a) plates, (b) rods and (c) pipes. Theoretical and FE predictions have been 

obtained using the same material constants obtained from the regression analysis, in Table 2. 

 

It is possible to observe that the average diffusion constants obtained with the methodology 

reported here allow a quite accurate prediction of the diffusion behaviour of different 

composite structures: plates, rods and pipes. Since all these samples have been obtained from 

the same laminate and the diffusivity is a material constant, it is important to verify that the 

weight gain for all geometries can be predicted starting from the same diffusivities. The 

accuracy of the analytical solutions is further confirmed by the agreement with the FE results. 

In Fig. 13, the exact solution, for fluid diffusion in an orthotropic pipe Eq. (20), is compared 

to the approximated solution, Eq. (22). It is possible to notice that the agreement is very good. 

 

Fig.13 Comparison of analytical exact solution (pipes) and approximated solution (plates). 

 

6. Discussions 

An experimental methodology, proposed here, enables identifying the orthotropic diffusion 

constants and saturation level in the most common composite structures used in offshore and 

marine applications. This is possible adopting short and long rods and pipes. The method 

proposed here had the advantage of simplicity in manufacturing adequate specimens for each 
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geometry studied, and the downside that a regression analysis needs to be performed to 

identify the diffusion constants from the experimental results. 

The values of the diffusion constants obtained are quite consistent for all geometries, as 

shown in Fig. 11. The analytical solutions have been also verified by means of FE analysis, 

yielding good agreement, Figs. 9,12. 

It can be noticed that transverse/radial diffusivity values from all geometries are very close. 

Axial diffusivity values are quite close for plates and rods, while pipes yield an 

overestimation of the axial diffusivity. This effect is attributed to the shape of the samples, 

having an internal surface that may be hard to reach and dry perfectly. Furthermore, the short 

pipes need to be handled and dried very carefully, due to the absence of any hoop 

reinforcement. This difference may limit the effectiveness of drying prior to weighting the 

samples, hence overestimating the axial diffusivity. 

For composite pipes, the approximated analytical solution in Eq. (22), yields very close 

results to the exact solution, Eq. (20). The comparison of exact and approximated solution 

can be seen in Fig. 13. The possibility of describing fluid diffusion in a pipe using 2-D plate 

equations has an important application. The influence of matrix cracks in cross ply laminates 

has been studied extensively for composite laminates [24, 25]. Analytical solutions obtained 

for these cases can be extended directly for the prediction of fluid diffusion in a pipe having 

matrix cracks. 

 

Conclusions 

The most frequently utilized composite structures in offshore and marine applications are 

plates, rods (cylinders) and pipes. Due to the exposure to fluid these structures are subjected 

to fickian diffusion, which influences the mechanical performance of the material. Prediction 



 

17 
 

of the concentration profiles inside these structures after long exposure times is hard because 

the knowledge of orthotropic diffusion constants is required for a correct prediction. In this 

work a novel test method is proposed in order to identify radial/transverse and axial diffusion 

constants. The diffusion constants are identified comparing the solutions of fluid diffusion 

equations in cartesian and cylindrical coordinates to the experimental weight gain results. 

This method is known for composite plates but has never been extended to composite pipes 

before. In order to verify the validity of this method plates, rods and pipes were obtained 

from the same laminate, in order to directly compare the diffusion constants obtained from 

each geometry. The results showed good agreement for all the geometries tested, leading to 

the conclusion that the method proposed here enables accurate measurement of fluid 

diffusion constants in composite pipes. The accuracy of the analytical solution for each case 

(plates, rods and pipes) has been further confirmed by a comparison with FE results. 

Finally, an approximated solution has been proposed for the prediction of fluid diffusion 

behaviour in composite pipes, based on the analogy between a pipe and an infinitely wide 

plate. The approximated solution was compared to the exact one and yielded a very accurate 

prediction. This is an interesting fact, because the possibility of predicting the fluid diffusion 

behaviour of a pipe using a plate solution allows direct use of the equations for the prediction 

of diffusion in cracked laminates developed for orthotropic plates. 
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Appendix 

In this appendix are reported the results of a parametric study comparing the exact solution of 

the mass increase with time, Eq. (20), and the approximated solution, (Eq. 22), for fluid 

diffusion in an orthotropic pipe. 

The material constants used for this parametric analysis are the same ones measured in this 

study:  

- Meq = 0.775% 

- DR = 0.0041 mm2/h 

- DZ = 0.0113 mm2/h 

The dimensions chosen are also based on the geometry analysed in this work: the external 

radius was 12 mm, the length of the pipe was 20 mm. The values of internal radius analysed 

were 4 mm, 6 mm, 8 mm and 10 mm, equivalent to a wall thickness to external radius ratio 

t/re: 0.667, 0.5, 0.33 and 0.167. 

For most engineering applications, a t/re ratio smaller that 0.33 is adopted, which results in a 

deviation between the slope predicted by the exact solution and by the analytical solution 

below 1 %, Fig. A.1. Since both theoretical models employ the same diffusivity constants, 
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the slopes of the mass increase curves are compared. Examples of mass increase curves are 

shown in Figs. 9, 12, 13. 

For a very thick-walled pipe, having a wall thickness equal to half of the external radius (t/re 

= 0.5), the deviation is 6.1 %, which is still a quite reasonable estimate. Finally, for an 

extremely thick-walled pipe, having a wall thickness equal to 2/3 of the external radius (t/re = 

0.667), the deviation is 15.7 %, which suggests that the limit of validity of the approximated 

solution has been reached. 

 

Fig.A.1 Parametric comparison of analytical exact solution (pipes) and approximated solution (plates) 

 

It can be concluded that for the set of material properties studied here, which is representative 

of a fiber reinforced composite, the approximated solution for the analysis of fluid diffusion 

in pipes is quite accurate in a wide range of pipe wall thickness values. In particular the 

deviation between the weight gain slope predicted is below 1 % for a wall thickness up to 1/3 

of the external radius of the pipe. 

 



 

21 
 

 

Fig. 1. Sample configurations tested  
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Fig. 2. Sample configurations for plates, rods and pipes. It can be noticed that for rods and pipes the axial 

direction coincides with the laminate fiber direction 

Fig. 3. (a) Transverse plate geometry, (b) Axial plate geometry 
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Fig. 4. Coordinate system and dimensions for a composite rod 

 

Fig. 5. Coordinate system and dimensions for a composite pipe 
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Fig. 6. Schematic drawing on obtaining axial and radial diffusion plates from a thick-walled pipe 

 

Fig. 7. Approximation of thin-walled pipe to equivalent infinitely wide plate 
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Fig. 8. FE models used for the plate, rod and pipe. The surfaces exposed to fluid diffusion are indicated by the 

arrows 
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Fig. 9. Experimental weight gain curves of: (a) plates, (b) rods and (c) pipes. 
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Fig. 10. Moisture saturation content for each configuration 

 

Fig. 11. Diffusivities for each geometry (plates, rods, pipes) 
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Fig.12 Weight gain curves of: (a) plates, (b) rods and (c) pipes. Theoretical and FE predictions have been 

obtained using the same material constants obtained from the regression analysis, in Table 2. 
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Fig.13. Comparison of analytical exact solution (pipes) and approximated solution (plates). 

 

Fig.A.1. Parametric comparison of analytical exact solution (pipes) and approximated solution (plates). 
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