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Abstract

A large part of the study is concerned with geometrical nonlinearities in structural sys-

tems, primarily 3D frame type structures. Parametrizations of finite rotations are studied, 

and geometric terms associated with transition from pseudo-vector representation to Euler 

angles are presented. The theories of Cosserat rods and the element independent co-rota-

tional formulation, with emphasis on beam elements, are also presented and discussed. 

Furthermore, simplifications to the Cosserat rod theory, used in a co-rotational frame, is 

tested, as well as the use of B-spline basis functions for interpolating displacements and 

rotations. A consistent linearization of the internal forces, for the use in linearized buck-

ling, is presented for this formulation.

A comprehensive finite element computer program has been developed and implemented, 

and numerical results obtained with this analysis tool are presented and discussed for 

some typical timber structures. Stability of glue laminated timber arches is the center of 

attention, but also modelling issues related to a timber footbridge as well as the effect of 

typical material properties, such as orthotropy and low shear modulus, are discussed. 
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Preface

At the start of this work, the tentative thesis title was: “Computer aided analysis and 

design of 3D timber structures”. It was meant to be a natural continuation of the thesis by 

T. Eggen [10], completed just prior to the start of this project. Based on the theory 

described by Eggen, my objective was to develop a prototype computer program, based on 

advanced nonlinear finite element analysis, for practical design of large-scale timber 

structures by ordinary, but well qualified design engineers. 

Current codes of practise treat the field of geometrically nonlinear analysis sparingly, and 

only to the extent of second order effects. Furthermore, (the very few) guidelines are    

generally formulated as principles that are difficult to apply in practise. Personal comput-

ers have had the computational capabilities needed to run sophisticated nonlinear analyses 

for some time now. The fact that this is not reflected in current codes of practice is partly 

due to the slow migration of 3D nonlinear analysis tools into engineering offices in gen-

eral, and timber engineering in particular1. One reason for this may be the quality of the 

user interfaces, another costs in the creation and verification of the computer models.

An integral part of the safe use of complex analysis tools in design is the human-machine 

interaction aspect. How to assure that the model, as intended by the designer, is in fact cor-

rectly represented in the computer is an important issue. This is particularly true for non-

linear 3D analyses of framed structures, as opposed to 2D analyses. The amount of 

information needed increases significantly, and the representation of joints and supports is 

more complex. Current computer graphics is now at a level of speed and sophistication 

that life like images of complex models can be handled with ease. A secondary objective 

of the current work was to give some insight into the use of computer graphics for imme-

diate and safe visual control of the computer model. Also, I wanted to develop methods to 

prevent common ‘pitfalls’ connected with the modeling and analysis of typical timber 

structures. This would reduce the cost of modeling, reduce modeling errors, and basically 

improve robustness. 

1. Cause and effect is clearly open for debate.
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In spite of these considerations, the present work deals primarily with aspects related to 

the theory of geometrically nonlinear analyses. Aspects related to design of timber struc-

tures are treated more sketchy. This apparent derailment is due to the occurrence of some 

unforeseen, but interesting theoretical questions, described in the introduction, which were 

considered too important to neglect. On account of this, and the time constraints placed on 

this study, the design aspect had to yield. For the reader interested in timber design, chap-

ters 7 and 8 contain relevant material. While not a comprehensive study, the results pre-

sented in this part of the thesis may hopefully inspire and guide future developments.

Finally, I would like to mention that a significant amount of work has gone into in the 

development of a graphical user interface (GUI), a key element in model verification of 

intricate structures. A scientific treatment of questions related to GUI’s was on the agenda, 

and I had hoped to take relevant courses to this effect during my one-year stay at             

UC Berkeley. These courses, however, were given exclusively to students enrolled at the 

university. Left with little more than qualified guessing and personal taste, a rigorous 

treatment of the GUI was abandoned.

Lars Wollebæk
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Notation, symbols and abbreviations

Vectors, tensors and matrices are denoted by boldface. When distinction between material 

and spatial objects is not needed, vectors are normally denoted by lower case letters, while 

matrices are upper case. When this distinction is needed, upper case letters are used to 

denote objects in the material (or intermediate) configuration, while lower case letters are 

used for spatial objects. It is assumed that the context will make it clear which convention 

is used. However, boldface letters with a single index is invariably a vectorial quantity.

Unless otherwise stated, summation is taken over repeated indices. Lower case latin letters 

take on the values 1, 2 and 3, while greek letters are summed over the values 2 and 3. 

Upper case latin letters are used for summations exceeding three dimensions.

• Symbols

    -Kronecker-delta 

   -Second order zero tensor 

   -Second order identity tensor 

   -Reduced shear area in the direction of  

   -Reduced shear area (used if )

  Bi -Shape function

  C -Constitutive tensor

 -Spatial basis ( )

 -Material basis

  F -Deformation gradient

  G -Matrix for extraction of rigid body rotations

  H -Tangent vector space of rotations transformation matrix

 -Observer-attached (global) orthogonal reference frame

                             ( )

  N -Number of nodes

  n -Spatial nodal forces/unit direction vector

  N -Material nodal forces

  m -Spatial nodal moments

  M -Material nodal moments/mass matrix

δij δij
1 i, j=
0 i j≠,




=

0 0ij 0=

1 1ij δij=

Aα α 2 3,=

As A2 A3=

ei{ } ei{ } e1 e2 e3, ,{ }=

Ei{ }

Ii{ }

Ii δ1i δ2i δ3i
T

=
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  P -Projection matrix/First Piola-Kirchhoff stress tensor

   -Rigid body displacement

   -Rotation matrix

   -The set of all real numbers

   -The set of all real, positive numbers (not including zero)

  Ti -Material tractions

   -Deformational displacement

   -Total nodal-displacements 

   -Spatial coordinates

   -Material coordinates

• Subscripts

   -Node-number, taking values from 1 to N

   -Deformational measure

   -Quantity associated with rigid body motion

• Superscripts

   -quantity evaluated at element centroid

   -Co-rotational quantity

   -quantity at configuration 

• Operators

dyad ( )

        

dot-product ( )

      

• Diacriticals

   -Quantity with components in local reference frame

   -Short-hand notation for 

   -derivative with respect to length-parameter

   -material time-derivative   

   -Prescribed loads

r

R

R

R+ R⊂

u

v

x

X

I

d

r

c

CR

n n 0≥

⊗

A a b⊗= Aij aibj=⇒
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a a b⋅ aibi= =

°( )˜
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• Abbreviations

-N-node Cosserat element with polynomial interpolation of order N - 1. 

 Numerically integrated with gp Gauss-Legendre integration points

 (if omitted gp = N - 1 ).

 -N-node Cosserat element with B-spline interpolation of polynomial

                            order d. Numerically integrated with gp Gauss-Legendre integration

 points (if omitted gp = d ).

EB  -Euler-Bernoulli beam element

EBT -Euler-Bernoulli beam element with approximated 

                            shear deformations due to Timoshenko

EICR -Element Independent Co-Rotational formulation

LRC -Simplified (reduced) Cosserat element with linear interpolation

RM -Reissner-Mindlin C0 beam element with linear interpolation

TL -Total Lagrangian formulation

UL -Updated Lagrangian formulation

 

COPON
gp

COSP
N
d gp,
xiii
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 Chapter  1  
Introduction

1.1  Analysis and design - current practice

The design of timber structures has traditionally been based on linear analyses of plane 

models. In order to account for nonlinear (2nd order) effects, current European codes of 

practice dictate that the linear response is “corrected” by various (k-) factors. Some of 

these factors account for material properties, while others deal (primarily) with geometri-

cal effects and stability. Concentrating on the geometrical effects, these factors are rela-

tively easy to determine for individual members that are not part of a larger assembly. For 

complex structures, however, they are often difficult and sometimes very difficult to esti-

mate. This is particularly true in situations where significant 3D effects, not captured by 

the plane models, are present. The underlying assumption of this design principle is that 

estimates should be on the conservative side. The fundamental question, however, is 

whether the difficulties experienced in estimating these factors will lead to designs that are 

excessively conservative, or even worse, unsafe.  

1.2  Tomorrow’s solution - capabilities and obstacles

Current commercial software packages have made sophisticated nonlinear analyses of 

structures available within the scientific community and at large or specialized engineer-

ing offices. The level of expertise needed and costs involved, however, are still too high 

for the use of these programs to be commonplace in everyday timber engineering and 

design. It is, however, only a question of time before the use of ‘custom made’ advanced 

nonlinear 3D analysis tools are made available for design purposes. In order for these tools 
 1



to become useful and safe, they need to address the fact that the skill and knowledge of the 

users may be variable. Hence, the program must be able to help and guide the user through 

the design process. Although the tool should ideally spur the novice’s interest for the 

underlying theory, the user threshold must be relatively low: Only the understanding of 

some fundamental concepts and range of applicability should be required. This will inevi-

tably put an great responsibility on the program design and implementation; it will require 

not only a solid theoretical knowledge, but also a thorough understanding of the design 

process as well as good insight into the many subtleties of GUI design. Furthermore, cur-

rent computer graphics can significantly aid the user, but it can also mislead and instill 

false confidence.

Another obstacle in promoting the use of advanced nonlinear computational capabilities in 

the design process is the conservative view taken by most codes, and their lack of specifi-

cations for the use of such methods. One area in particular that is vital for nonlinear analy-

sis concerns geometrical imperfections of the structural system.

1.3  Purpose and scope

In the field of computational mechanics of structures, two principal directions for the 

treatment of geometrically nonlinear behavior exist. The most prevalent and accepted 

direction is the one usually referred to as the Lagrangian methods (Total Lagrangian and 

Updated Lagrangian). Developing elements with these methods generally entails the 

establishment of a nonlinear relationship for the stresses and strains with respect to dis-

placements. Subsequently, simplifying assumptions are often introduced by excluding 

unnecessary terms. The other, less favoured direction is the co-rotational formulations. 

The fundamental difference, compared to the Lagrangian methods, is that the co-rotational 

formulations focus only on the rigid body motion of the element. The assumption is that 

the principal source of nonlinearity is captured by the rigid body motion of the element. 

Even restricting the discussion to beam type elements, a multitude of formulations of both 

types exist. In this thesis, we will focus primarily on the Lagrangian beam element formu-

lation due to Simo et. al. [35, 36 and 37] (Cosserat rod), and the element independent co-

rotational formulation (EICR) of Nour-Omid, Rankin and Brogan [26, 32, 33]. While the 
2 Purpose and scope



first is a beam element formulation, it should be stressed that the latter is a general formu-

lation, independent of element type and geometric discretization (e.g. solid, shell or beam 

elements). Although exemplified by beam elements, this independence of geometry is also 

true for a large part of our discussion regarding this formulation.  While several authors 

have claimed equivalence between Lagrangian and co-rotational beam elements, it will be 

shown in this thesis that this is due to simplifying assumptions and/or chance. In the view 

of the author such comparisons are somewhat artificial, since both formulations are based 

on different, but equally valid principles; thus the comparisons only add to the confusion. 

Furthermore, the mixing of these formulations does not pose a problem provided the rota-

tional parameterization is consistent.

During a literature search on EICR some misconceptions were encountered, primarily due 

to unclear language and unnecessary simplifying assumptions. This thesis attempts to 

bring forth these assumptions and specify where they are needed. In so doing, it is hoped 

that the benefits and potential of this formulation will become more evident. The notation 

and symbolism presented differ to some extent from what is commonly used when 

describing the EICR. This was necessary in order to maintain a uniform use of symbols 

throughout the presentation. Furthermore, the separation of rotations into rigid body and 

deformational motion is done in the reverse order to what is commonly done. Although 

shown to be of no consequence to the formulation, the reader should be aware of this to 

avoid confusion. Also, it is shown that the measure of deformation can be formulated 

independently of the co-rotational description of motion used in the EICR. 

Timber is a very orthotropic material, and this is particularly evident in the relationship 

between the modulus of elasticity parallel to grain and the modulus of shear. If the isotopic 

relationship is used (although an absurd notion), the Poisson’s ratio would be in the order 

of 7. It is therefore of interest to study the influence that shear has on different element for-

mulations. In order to compare the use of simple linear elements used in the EICR formu-

lation with the Lagrangian elements (with internal geometric stiffness), the  beam 

element formulation of Simo et. al. has been chosen. The presentation of this formulation 

closely follow the presentation given in [35, 36 and 37], with two exceptions: The consis-

tent linearization of internal forces, to be used in a linearized buckling stiffness matrix, is 

believed to be novel. Also, the element formulation is tested and verified for interpolation 

in a B-spline basis. This has resulted in a family of highly accurate and stable elements. 

C0
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The study of finite elements in combination with timber engineering design is driven pri-

marily by the need for a more rational approach through the use of already available non-

linear formulations. However, timber structures are normally designed to behave 

reasonably linearly with respect to geometrical effects. For plane problems in particular, 

deformations usually lie well within the range of second order theory. It is therefore perti-

nent to ask why these rather sophisticated element formulations are considered. On the 

other hand, one may just as well ask whether one knows that the structures really behave 

according to second order theory if higher order terms are not considered. This is particu-

larly true for problems relating to the stability of structures: “Buckling is possible even 

with very small strains, so when buckling is a possibility, measures which can properly 

account for large deformations should be used”,  Belytschko [6]. Although current design 

practice dictates that shape imperfections should be accounted for in the nonlinear analy-

ses of structures, thus minimizing the danger of catastrophic collapse, the ability to detect 

singularities in the solution is crucial for several reasons. First and foremost, instabilities, 

both in terms of bifurcation points and limit points, may occur in spite of the design proce-

dure. Secondly, linearized buckling analyses may give good indications as to where a 

solution lies in the nonlinear range1. This concept is illustrated in Figure 1.1. Finally, an 

important application of the method of linearized buckling is the use of the buckling 

modes for semi-automatic generation of shape imperfections. Testing and documenting 

Figure 1.1  Typical load displacement curve and buckling load

1. This use of linearized buckling loads is, however, associated with a large degree of uncertainty and 
should be used with caution.

linearized buckling load

nonlinear load displacement curve

displacement

lo
ad

″ safe″ solution

″ unsafe″ solution

with shape imperfection
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adequate (robust) 3D beam element formulations for the use in timber design is therefore 

believed to be of some importance.

An important part of the analysis of a structure is the correct modeling of its boundary 

conditions and connections. Errors in this area are among the most subtle and difficult to 

assess. To a relative novice in the field of finite rotations, some rather surprising effects 

were observed in connection with the analysis of a problem where a single rotational 

degree of freedom at a node was constrained. When performing a nonlinear analysis of a 

simply supported beam, prevented from twisting at both ends, and subjected to a constant 

bending moment about the strong axis, the predicted buckling load did not correspond 

well to closed form solutions. This is a classical lateral torsional buckling problem with 

well established solutions. Furthermore, nonlinear analyses with initial shape imperfec-

tions, where the beam was first loaded followed by complete unloading, the final state of 

rotation at the ends did not match the prescribed boundary conditions. This led to a 

detailed study of finite rotations and boundary conditions, resulting in recommendations 

for an appropriate rotational representation for this particular boundary condition. A geo-

metric stiffness term associated with the transition from the most prevalent parametriza-

tion of finite rotations to the parameterization used here has been developed. The result of 

using this parametrization in the case described above is demonstrated in Section 6.6.3.

1.4  Organization of thesis

The thesis is divided into two main parts:

“Part I - Theoretical background and finite element technology” deals primarily, as the 

name indicates with (nonlinear) element formulations. This constitutes the bulk of the 

work presented, starting with the fundamentals of finite rotations in Chapter 3. Different 

rotational parametrizations and representations are discussed, as well as boundary condi-

tions and the transition from one rotational parameterization to another. Chapters 4 and 5 

deal with the element formulations of Cosserat rods and EICR, respectively. Numerical 

verification and comparisons are made in Chapter 6.
Introduction 5



“Part II - Numerical studies” contains some numerical studies of buckling of timber 

arches, as well as two examples of the use of a nonlinear 3D analysis tool for the design of 

real, complex timber structures.

A versatile computer program, including a comprehensive graphical presentation of model 

and results, has been developed, more or less from scratch. This effort, which account for 

a large part of the total work, is only indirectly documented in the thesis, through the many 

numerical results and a fair number of illustrations in the form of “screen-shots” from the 

program.
6 Organization of thesis
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 Chapter  2  
Fundamentals of 
numerical analyses of structures

2.1  Static analysis

In the numerical analysis of static problems, be it linear or nonlinear, we are normally 

seeking to find a solution to a discrete version of the equilibrium equation:

(2.1)

where  is the vector of resisting nodal forces,  is a vector of applied nodal forces and  

is the residual.  is used to denote the current state of deformation or configuration. Note 

that this may or may not be a vectorial quantity. In general, this equation may be estab-

lished on the basis of the Principle of virtual work (PVW): 

(2.2)

where  is an integral equation,  is the internally applied stresses (or resultant forces 

and moments).  is a weight function, usually taken to be the tangent vector space of  at 

the current state of deformation. 

As indicated in Equation (2.1), the applied forces may be a function of time. Since no 

dynamic effects are considered in a static analysis, the forces may be arbitrarily parame-

trized. It is common practice to denote time with the pseudo-time variable , thus empha-

sizing the lack of dynamic effects. By defining successive stages, , 

, the final solution is found as the progressive solution of Equation (2.1) 

from  to . In between two successive stages, the load is normally 

linearly interpolated:

r ϕ ; p( ) f ϕ( ) p t( )– 0= =

f p r

ϕ

GStat ϕ η,  ; σ( ) 0=

GStat σ

η ϕ

λ

p λk( ) pk=

k 0 1 …  n, , ,=

p p λ0( )= p p λn( )=
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Part I
 ,    (2.3)

Progressing the solution from one stage to the next is conveniently done in a series of 

incremental steps , where  is an assigned or calculated stepsize. 

Solving for the principal unknowns with a truncated Taylor series, i.e. using the iterative 

Newton-Raphson method, results in the following set of linear equations

(2.4)

The abstract addition operator  is used to indicate that the update from  to  does 

not necessarily follow the linear rules of vector addition. For a linear problem the proce-

dure will converge in a single iteration. If we have a single load increment, the familiar 

equation of linear analysis presents itself:

(2.5)

The procedure described here is the standard Newton-Raphson scheme with load control. 

This procedure has some serious drawbacks, among which can be mentioned the inability 

to follow the solution past a limit point in a stable and reliable manner. To solve this prob-

lem, a number of augmented versions of the basic Newton-Raphson scheme have been 

proposed. Collectively these methods are named “arch-length” methods and involve intro-

ducing the incremental load as a free parameter as well as some form of additional con-

straint. The study of these methods is beyond the scope of this work.

The convergence properties of the Newton-Raphson method are well documented, and for 

well behaved problems quadratic convergence is to be expected. However, as noted above, 

the algorithm is not guaranteed to converge and convergence is not a guarantee for the real 

solution being found. The latter problem is illustrated for a one-dimensional problem in 

Figure 2.1. For the target load , the system has three solutions ,  and  for the 

displacement . Applying the NR algorithm to this problem would produce the answer 

 when starting at zero. This problem is commonly known as “overstepping” the 

solution. The problem is normally minimized by either reducing the stepsize directly or by 

p
λk λ–

λk λk 1––
------------------------pk 1–

λ λk 1––
λk λk 1––
------------------------pk+= λk 1–   λ λk≤ ≤

λ ti( ) λ ti 1–( ) λ∆+= λ∆

r ϕ i 1+  ; p λ( )( ) r ϕ i ϕ∆ i⊕  ; p( ) L r ϕ∆ i ; ϕ i p,( )[ ]≅=

r ϕ i ; p( )
ϕ∂

∂f
ϕ∆ i ϕ∂

∂p
ϕ∆ i–+=

r ϕ i ; p( ) KT ϕ∆ i+ 0= =

⊕ ϕ i ϕ i 1+

f KT ϕ∆ p= =

ptarget v1 v2 v3

v

v v2=
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Theoretical basis and FEM technology
modifying the arch-length constraints. Although the solution may seem simple, this will 

require some prior knowledge of the problem. From an algorithmic point of view, these 

“false” solutions have no characteristics that can be easily flagged.

A slightly less sever problem is the linear convergence rate near critical points such as 

limit and bifurcation points.

2.2  Linearized stability analysis

In the study of stability of structures, in the absence of follower loads, a commonly 

adopted approach is the Linearized buckling procedure. In a more general setting, this 

method is only a special case of Lyapunov (or dynamic) stability, reduced to account for 

symmetric stiffness matrices only. For static equilibrium, stability in the sense of 

Lyapunov is the study of the solution of a perturbed equilibrium position. If the configura-

tion  and velocity  is a known state of equilibrium, we can 

define a perturbed initial configuration  and  that in some sense is 

close to , i.e.  is small in a given norm . The solu-

tion is now considered stable if the nonlinear dynamic problem remains close to the equi-

librium position  for all times  :

Figure 2.1  Load-displacement curve (overstepping)

KT
1

p

ptarget

v1 v2 v3

limit point

ϕeq X t0,( ) V X t0,( ) 0=

ϕ X t0,( ) V X t0,( ) 0=

ϕeq X t0,( ) ϕ X t0,( ) ϕeq X t0,( )– °

ϕeq X t0,( ) t t0>
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Part I
    (2.6)

Solving this highly nonlinear problem is exceedingly difficult, and practically impossible 

for most cases. In the linear stability analysis, we linearize the dynamic equations at a 

given equilibrium position. If we by  denote an increment in the configura-

tion, the acceleration becomes  . Using this in the linearized dynamic 

equations and neglecting damping, we get the general (not necessarily symmetric) eigen-

value problem:

(2.7)

In the preceding,  is the frequency of the oscillation1,  is the mass matrix and  is 

the tangent stiffness matrix. In the solution of Equation (2.7), there are fundamentally 

three different cases to consider. A so-called stable mode occurs when the imaginary part 

of  is negative ( ). In this case the oscillations will decay in time as 

. If , the motion will increase in time and the solution 

is unstable. The special case of   requires the consideration of higher order 

terms. One can show that a linear instable solution implies full nonlinear instability, the 

linear stable solution does not, however, guarantee nonlinear stability2.

As stated in any textbook on linear algebra, the eigenvalues for any problem involving 

symmetric matrices are always real, . For conservative systems, the stiffness 

matrix is symmetric ( ), thus leaving the eigenfrequencies either strictly imagi-

nary ( ) or strictly real ( ). As  , imaginary frequencies 

will necessarily imply instability. Contrary to the general case, the transition from real to 

imaginary frequencies can only occur via  for symmetric matrices. The ques-

tion of stability can now be posed as the problem of finding the points where the frequen-

cies vanish, or equivalently the points of singularity of :

 (2.8)

1. Note that the motion is oscillatory only if 
2. For a detailed account of the stability of functions, see for instance Marsden & Ratiu [24]

ϕ X t,( ) ϕeq X t0,( )– O ϕ X t0,( ) ϕeq X t0,( )–( )= V X t,( ) 0≅

ϕ∆ ϕ̂∆ e i ωt–=

ϕ
··

∆ ω2 ϕ̂∆ e i ωt––=

KT ω2M–( ) ϕ̂∆ 0=

ω M KT

Re ω( ) 0≠

ω Im ω( ) 0<

ϕ∆ ϕ̂∆ e iRe ω( )t– e Im ω( ) t–= Im ω( ) 0>

Im ω( ) 0=

ω2 R∈

KT KT
T=

ω2 0< ω2 0> ω2 0< ⇒ Im ω( ) 0>

ω2 ω 0= =

KT

KT ϕ̂∆ 0= ⇒ KT   
 0=
12 Linearized stability analysis



Theoretical basis and FEM technology
For conservative problems, Equation (2.8) can be shown to be a necessary condition for 

instability. The solution of Equation (2.8) can be found through the evolution of  in 

time. A Taylor series expansion of  up to linear terms in time results in:

(2.9)

Although this looks like a simple general eigenvalue problem, it should be augmented 

with the requirement of  being evaluated at an equilibrium position. To circumvent this 

problem, the resisting forces are assumed to be a linear function of the internal stresses  

only. The internal stresses are then linearized with respect to the increment in applied 

external forces:

,         (2.10)

In static analysis,  is generally replaced with the pseudo-time, or load amplification fac-

tor,  as , where  is a reference load vector defined for the current load 

increment. For the sake of generality, this will not be pursued here. With these restrictions, 

the stability of a structure can thus be found by solving the following general eigenvalue 

problem:

(2.11)

This is a procedure commonly known as linearized buckling and is usually written as:

(2.12)

where

(2.13)

Linearized buckling is frequently performed for structures in its initial, undeformed, con-

figuration (  and ). Equation (2.12) is, however, valid for any state of 

deformation and can be performed at any stage in a nonlinear analysis provided  

. This is particularly useful for problems with initially nonlinear, fol-

lowed by linear behavior.

K

K

KT ϕ p,( ) KT ϕeq p0,( ) t∆ K· T+≅

KT

σ

K· T σ∂

∂KTσ
·= σ

·
p∂

∂σ
p·=

t∆

λ∆ p· λ∆
t∆

-------pref= pref

KT ϕeq p0,( ) t∆
σ∂

∂KT
p∂

∂σ
p·+ 

  x 0=

KT ϕeq p0,( ) λ∆ Kg σ∆ ϕeq p0, ,( )+( )x 0=

σ∆
ϕ∂

∂σ

p∂

∂ϕ
pref=

p0 0= ϕeq ϕundef=

K ϕeq p0,( ) 0≥
Fundamentals of numerical analyses of structures 13



Part I
2.3  Symmetry of tangent operator in structural analyses

Symmetry of the tangent operator is an important property for several reasons. The first 

reason that is usually quoted is the simplifications this implies for solving systems of lin-

ear equations and eigenvalue problems. With this comes a significant decrease in cost of 

CPU-time and memory requirement. However, this is a minor inconvenience when com-

pared to the implications of asymmetry in stability analysis. The methodology of using the 

singularity of the stiffness matrix to predict bifurcation points relies crucially on symmetry 

of the stiffness matrix (i.e. a conservative system). A common description of the element 

formulations that follow in subsequent chapters is that they are symmetrizable due to sym-

metry at an equilibrium state. This must be (and is often) followed by the condition of con-

servative forces and boundary conditions. When this is not the case, dynamic instabilities 

such as flutter are not detectable in the stiffness matrix. Furthermore, symmetrizing the 

stiffness matrix ( ) may cause the prediction of “false” instabili-

ties. This is a far more severe problem than the loss of consistency and subsequent reduced 

convergence rate. Most loads and boundary conditions used in structural analysis of tim-

ber structures are treated and modeled as conservative. Most non-conservative loads are 

easily identifiable. However, there is one non-conservative load that can easily be missed, 

namely the case of a moment about a fixed axis in space. For a short explanation, we start 

by presenting the stiffness matrix associated with load eccentricity, developed by Haugen 

and Felippa in [17]:

(2.14)

here  is the dyadic (outer product), and  is the 3×3 identity tensor.  is the current 

vector of eccentricity at node I and  is the eccentrically placed forces at node I. The 

matrix  can be split into a symmetric and a skew symmetric part:

(2.15)

(2.16)

KT
sym KT KT

T+( ) 2⁄=

kGE,I eI
n nI⊗ nI eI

n⋅( )1–=

⊗ 1 eI
n

nI

kGE,I

sym kGE,I( )
1
2
--- eI

n nI⊗ nI eI
n⊗+( ) nI eI

n⋅( )1–=

skew kGE,I( )
1
2
--- eI

n nI⊗ nI eI
n⊗–( )=
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Theoretical basis and FEM technology
From Equation (2.16) it can be seen that if  (i.e. no eccentricity moments), the 

skew symmetric part vanishes. If we denote the eccentricity moment by , it 

can be shown that:

(2.17)

Since the stiffness matrix is constructed on the basis of a conservative load, the total stiff-

ness matrix after assembly should be symmetric. A skew symmetric term in the element 

formulation must therefore cancel Equation (2.17). The term (2.17) is missing for a 

moment with fixed axis, resulting in a skew symmetry equal to . For a 

detailed account of different descriptions of moments, as well as a different presentation 

of this case, the interested reader is referred to the work of Argyris et al. [1] and Bolotin 

[7]. We will restrict ourselves, and state that any moment, not being the result of a pair of 

conservative forces, will be non-conservative1.

1. Note that moments, coupled with a single rotational degree of freedom (rotation in 2D), is conservative 
and symmetry is maintained.

eI
n nI| |

me nI eI
n×=

skew kGE,I( )
1
2
---

0 m3
e– m2

e

m3
e 0 m1

e–

m2
e– m1

e 0

=

skew kGE,I( )–
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 Chapter  3  
Finite rotations, restraints and 
parametrization

3.1  Introduction to finite rotations

In the following we will be interested in the effect of rotating a vector in space. This can 

be described as a rotation of a rigid body about a fixed point (i.e. spherical motion). By 

tracking the position of a vector attached to this rigid body during the motion we can 

deduce some basic relations.

We define  as the initial position of an arbitrary point in the rigid 

body, referred to a set of Cartesian base vectors  positioned at the center of 

rotation. The position of the same point after rotation is given by , also 

with components expressed in the base vectors . If this motion is a pure rotation, we can 

express the new position as a linear transformation of :

 (3.1)

By observing that the transformation should preserve the length of the vector, the orthogo-

nal property of  becomes apparent.

(3.2)

Likewise, we can define a set of rotated basis-vectors1 , where , and 

the basis-vector matrices:

1. In the following, only orthonormal basis-vectors are considered, so . 

Xp
T Xp

1 Xp
2 Xp

3=

E1 E2 E3, ,

xp
T xp1 xp2 xp3=

Ei

Xp

xp RXp=

R

xTx XTRTRX XTX= =   RTR⇒ 1=

e1 e2 e3, , ei REi=

Ei Ej⋅ δij=
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   and   , (3.3)

where  denotes the dyadic (outer) product, and the vectors  define the basis of the 

ambient space (global axes). By this definition, we have the following relationship:

(3.4)

Since  defines a right handed Cartesian system, so should , and the corresponding 

determinants evaluate to unity: 

(3.5)

As can be seen from relation (3.5),  is a proper orthogonal matrix. The set of all such 

matrices form a group under multiplication, which is denoted SO(n) (Special Orthogonal 

matrices defined in ). In the following, due to their physical interpretation, we will 

be working with the subgroups SO(2) and SO(3), which can be interpreted as rotations in 

the Euclidian spaces of two and three dimensions respectively. 

Composition of rotations now becomes quite simple: Given an initial state of rotation 

defined by , and an increment in rotation , we seek to rotate the initially rotated 

base-vectors  such that , and the total rotation 

is defined as 

As the base-vector matrices are orthogonal matrices, the relation (3.4) allows us to express 

 in terms of the initial and the updated basis.

(3.6)

Thus  merely transforms a vector with components  in the basis  to a 

vector with the same components, but now in the basis .

3.2  Vectorial representation

The orthogonal property of the rotation matrix allows us to express it in terms of its invari-

ants. A multitude of sets of parameters can be defined to describe these invariants, the 

most common of which are the Euler parameters (quaternion representation), pseudovec-

TE
T E1 E2 E3 Ei Ii⊗= = Te

T e1 e2 e3 ei Ii⊗= =

 ⊗ Ii{ }

Te
T RTE

T=

TE Te

1  Te   TERT  TE   RT  R 
  = = = =

R

Rn n×

R0 R∆

Te
T Te'

T R∆Te
T R∆R0TE

T R0 ∆+ TE
T= = =

R0 ∆+ R∆R0=

R

R Te
TTE ei Ei⊗= =

R Xp
1 Xp

2 Xp
3

T
Ei

ei
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Theoretical basis and FEM technology
tor representation and the Rodriguez parameters (tangent-scaled pseudovector representa-

tion). The Euler-representation is a four-parameter representation whereas the 

pseudovector and Rodriguez-representation is a three parameter representation of the rota-

tions. In this text, the pseudovector will be the parametrization of choice. However, as the 

Rodriguez-parameters frequently occur in the literature, a short account of the principal 

results is presented.

3.2.1  Pseudovector

A rotation in space can be defined by a vector containing the (unit) axis of rotation  and 

the magnitude  of the rotation. By this definition the ordered pair  is a unique rep-

resentation of any finite rotation in  if  and , where . This 

is a set of only 3 free parameters, which is the minimum number of parameters needed for 

the definition to be unique. In Figure 3.1b, the motion of the base-vectors is depicted in the 

rotation-plane, defined by the normal . Here it is seen that any rotation in 3D can be 

thought of as a 2D rotation in a specific plane. An important property of the representation 

is that the rotation is defined to be non-negative. On account of this, no information is lost 

in the transition to the so-called pseudovector representation of rotations:

a) 3D view b) Rotation - plane view
Figure 3.1   Updated base-vectors

n

θ n θ,( )

E2

E3 E1

e2

e3

e1

n

θ

θ

θ

E2

E1

E3

e2

e3

e1

n

R3 θ 0 R+,{ }∈ n R3∈ n 1=

n
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    and    (3.7)

The relationship between the pseudovector representation and the rotation matrix  is 

defined by the relation known as Rodriguez formula:

(3.8)

 is a skew symmetric matrix, defined for any vector  as the matrix-representa-

tion of the cross product .

 (3.9)

The inverse of Spin is the operator Axial on the skew symmetric matrix  

( , ). 

As noted by several authors, among which can be mentioned the references [14,10,13,35], 

this relation can be derived from the exponential map of the spin of the pseudovector1. By 

using , an equivalent expression for Equation (3.8) is:

(3.10)

In the following, the short-hand notation  will often be used in conjunction 

with individual vectors for compactness. The diacritical ( ) will not be used in any other 

context, thus minimizing the notational confusion.

It is rather straightforward to show that . 

Thus the matrix representation of rotations is not unique, but rather periodic in  and with 

the symmetry . This result is not surprising as the rotation-matrix 

only contains information about the effect of rotations on vectors, and a vector rotated by 

an angle  will have the same components as a vector rotated by . As such,  

does not define the concept of a rotation, but rather the action of rotation on the compo-

1. See Appendix C for a geometric interpretation of the exponential map

θ θn θ

n1

n2

n3

θ1

θ2

θ3

= = = θ θ θ n θ= = =

R

R θ n,( ) 1 1 cos(θ )–( )Spin2(n) sin(θ )Spin(n)+ +=

Spin(n) w

Spin w( )b w b×=

Spin(n)
0 n3  – n2

n3 0 n1  –
n2  – n1 0

=

W

W Spin(w)= Axial W( ) w=

Spin2(n) n n⊗ 1–=

R θ n,( ) 1cos(θ ) 1 cos(θ )–( )n n⊗ sin(θ )Spin(n)+ +=

°( ) Spin °( )=

)

)

R n θ,( ) R n θ n2π+,( ) R n– 2π θ–,( )= =

θ

n θ,( ) n– 2π θ–,( )=

θ θ n 2π⋅+ R
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nents of a vector (tensor). Special care will therefore have to be taken if this form is used 

as parametrization. Interpolation, for instance, will often be based on some form of heuris-

tic, such as assuming that the rotation is limited to . In this range  is unique, 

and a unique function , that extracts the pseudovector from a given proper orthogo-

nal matrix , exists. In contrast, the pseudo-vector representation is complete, unique and 

singularity-free, regardless of the magnitude of . However, as no method exists for direct 

evaluation of compound pseudovectors, composition rules will either have singularities or 

be non-unique. One method, frequently adopted, is to make use of the composition rule for 

rotation matrices; given two successive pseudovector rotations,  followed by , the 

rotation matrix  of the total rotation can be expressed as:

(3.11)

The pseudovector , is now the pseudovector of the compound rotation. To 

extract the components of  , the method of Spurrier’s algorithm (Appendix D) is gener-

ally the method of choice. In this way, singularities are avoided, although uniqueness is 

lost.

3.2.2  Rodriguez-parameters

In the previous section, the director  was scaled by the magnitude of rotation. This is, 

however, an almost arbitrary choice. Another frequently used scaling is the tangent-scaled 

pseudovector, or Rodriguez-parameters:

(3.12)

In (3.12), the superimposed bar is used to distinguish the Rodriguez-parameters from the 

pseudovector. This representation caters to a direct evaluation of compound rotations: 

Given two successive rotations,  followed by , it can be shown that the total rotation 

 can be expressed as:

 (3.13)

The principal disadvantage of the Rodriguez representation is that it becomes singular for 

rotations near , secondly we get . Neither will 

0   θ  π≤ ≤ R

θ R( )

R

θ

α β

R α β+

R α β+ R β( )R α( ) R ψ( )= =

ψ θ R α β+( )=

ψ

n( )

θ
θ 2⁄( )tan
θ

------------------------------- θ θ 2⁄( ) ntan= =

α β

ψ

ψ
1

1 α β⋅( )–
---------------------------- α β α β×–+[ ]=

π 2n π⋅± ψ n θ,( ) ψ n θ 2n π⋅+,( )=
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usually constitute a problem, as most problems in the field of civil engineering does not 

involve rotations of this magnitude. However, a general purpose procedure should be able 

to handle these situations, if for no other reason, rotations during an incremental-iterative 

solution strategy may far exceed the possibly modest end-result. The benefit of the direct 

evaluation of compound rotations is therefore evaluated not to outweigh the danger of 

possible singularities. For a detailed account of the Rodriguez-parameters, see e.g. Géra-

din and Rixen [14].

3.3  Variation of rotations

A key point of any analysis involving large rotations is the variation of the rotation opera-

tor . Since SO(3) is a differentiable non-linear manifold and not a vector-space, some 

subtle differences appear compared with operating in . Operations such as interpola-

tion, for instance, are not valid on manifolds. To overcome this difficulty, we typically do 

calculations in the tangent space of  (written ), a strategy that works well with 

the finite element formulation. As there exists an isometry between  and , 

interpolation and other vector-operations are valid in this space. As indicated by , 

the tangent space changes continuously with position  and some initial choices will 

have to be made about in which space calculations are performed. First of all one has to be 

clear on which parameter is a free parameter and how it is updated. For completeness, we 

will elaborate in some detail, but the reader is referred to [14, 8, 9] for further details and a 

somewhat different approach. 

In general, the rotation operator can be expressed as:

(3.14)

where each  can be a free parameter on which variation makes sense,  is 

denoted the identity and will thus be treated as a constant. Normally we will only be con-

cerned with rotations with only one free parameter on the form .

Note: This is a so-called spatial form of rotations, where an already rotated state is further 

rotated by . An equally valid form is the material description i.e. , 

R

R3

R TR θ0( )R

TR θ0( )R R3

R θ0( )

θ0

R R θn( )R θn 1–( )…R θ1( )R θ0( )=

θi i, 1…n= θ0

R R θ( )R θ0( )=

θ R R θ0( )R Θ( )=
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where  is a material-vector and . In the following we will 

continue to pursue the spatial description.

Since the variation of the identity is zero, we start by taking the Frêchet-derivative of the 

incremental rotation with a perturbed :

(3.15)

where  is the unit director of .

After extensive algebraic manipulation we arrive at the result (see Appendix B)

(3.16)

where

 (3.17)

If  is the pseudo-vector of the fully rotated state , such that , we get the varia-

tion expressed as the variation of the incremental rotation (instantaneous axis of rotation). 

, (3.18)

The shift in variable from  to  is motivated by the need to distinguish the additive 

increment , , from the multiplicative increment , 

.

Since a perturbed  should produce the same perturbed  as , we get the relation

(3.19)

Following the notation of [16],  is a differential form that relates infinitesimal multipli-

cative rotation-increments to infinitesimal vectorial, additive, increments. It should be 
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noted that  becomes singular when  due to the fact that  at these 

points. Since  for , such a perturbation produce no change in  

and thus .

(3.20)

In some texts the relation (3.19) is referred to as the relation between the infinitesimal 

(additive) rotations and the finite increments (multiplicative). To avoid confusion we 

stress that calculations in  (i.e. ) are just as valid as in . Neither are 

restricted to infinitesimal rotations. While  will yield additive increments,  pro-

duce multiplicative increments. As reported by Cardona and Géradin [8], operating in the 

vector-space of  also makes it possible to derive a symmetric stiffness matrix in a 

consistent manner, even at a non-equilibrium state. This is not the case for operations in 

. The principal objection to  lies in the fact that the space is a function of the 

rotational state. As will be shown later, the co-rotational formulation at the element-level 

will produce different measures of deformational rotation in a single node for neighboring 

elements. Thus,  will be specific for each element and a transformation of the form 

(3.19) must be performed regardless.

3.4  Incremental/iterative solution strategy

In solving a non-linear set of equations, a commonly adopted strategy is to formulate the 

problem as the solution of a vanishing residual after incrementing the independent vari-

ables (such as external loading). By applying the Newton-Raphson algorithm we then seek 

to eliminate this residual by iterating until an accepted solution is found. In the following 

we will study the effect of this strategy when large rotations are part of the unknowns. 

Although not discussed here, it can easily be argued that the same effects will occur when 

a purely incremental algorithm is adopted, as the increments will behave in much the same 

manner as the iterations. The consequences are however quite different as will be noted at 

the end of this section.

To simplify the analysis, the problem can be stated as:

H 1– θ 2nπ= R 1=

θ θδ+ θ= θδ θ⊥ R
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H θ( ) 1 θ
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  n
2

+=

) )

T1R θ0 0= TRR

T1R TRR

T1R

TRR T1R

T1R
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(3.21)

where  is a general (non-linear) vector-function of the rotational state at a single point 

and  is a vector of corresponding independent variables to be considered as constants. 

After employing the Newton-Raphson strategy, we can solve for the incremental (multi-

plicative) rotations until the residual vanishes (or an accepted solution is achieved).

(3.22)

(3.23)

 (3.24)

Where the pseudovector  is the instantaneous rotation and  is the jacobian 

matrix. In Equation (3.23) we have introduced the binary operator  to represent the 

updating procedure (composition). As the pseudovectors are not true vectorial quantities 

they do not add as vectors, rather the update must be performed by pre-multiplication as 

shown in Equation (3.24). The underlying assumption in this strategy is that the update 

brings us from one allowable state of rotation to another. If we denote the set of all permis-

sible states as  and the set of all permissible increments as , the update is a mapping 

 such that

(3.25)

As the identity element must be part of 1, the set  must be fully contained within  

and a common strategy is to set . To assure convergence, for each element in the 

set there must also be an inverse element. Provided the function  is associative, we have 

now defined a group under the operation of . To clarify we can make an example where 

Equation (3.21) is a function of vectorial quantities rather than pseudovectors. 

(3.26)

,       (3.27)

1. The initial state will in general be the identity element. If an alternate state is defined as the initial state, 
the initial state can be defined as the identity element referred to this state.
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If , then it follows naturally that this also applies for  for i = 1,2, ,n. If, on 

the other hand, the components of  and  are defined to be elements in  (0 is 

needed to provide the identity element), the procedure is only guaranteed to find solutions 

for a residual-norm described by a convex function. The set of positive real values, includ-

ing zero, lacks the fundamental group property of containing the inverse element under the 

operation of addition. 

In light of these considerations, we can proceed to investigate whether the procedure is 

computationally sound for solving functions involving finite rotations under the assump-

tion that . If we start by defining

          (3.28)

which is equivalent to restricting all rotations to be defined by a single axis, we can easily 

show that this is SO(2), thus having the discussed group properties under the operation of 

(3.23). Likewise, if we define

 1 (3.29)

that is setting all rotations in space as permissible, we can show equivalence with SO(3). 

In a typical finite element code, these cases will define cases of full rotational freedom in 

two and three dimensions respectively. If, on the other hand, we want to define the permis-

sible states as the intermediate state, we loose the equivalence with SO(n).

We start by defining the set of permissible states as;

(3.30)

which implies restraining the rotation about a one axis, while leaving the others free. In 

the following we will show that this set is not closed under addition as defined in Equa-

tions (3.23) and (3.24). Assume that , that is we want to restrain the rotation so that 

it contains no component in the direction of . The general form of a rotation-matrix 

obtained from  can be written as:

1. This is a slight abuse of notation, and it is important to keep in mind that the arithmetic rules in  does 
not in general apply in . By  we denote the set, not the vector space. 

v∆ i Rn∈ vi …

vi v∆ i 0 R+,{ }

S ω∆ Sθ=

Sθ
j k,( )

 θ = θ1,θ2,θ3( ) θi R∈ θ j = θk = 0,  and i, j, k is a permutation of 1, 2, 3{ }=

Sθ
0

θ= θ1,θ2,θ3( ) θi,θ j,θk R∈  and i, j, k is a permutation of 1, 2, 3{ } R3= =

R3

Sθ R3

Sθ
k

 θ= θ1,θ2,θ3( ) θ i,θ j R∈ θk = 0,  and i, j, k is a permutation of 1, 2, 3{ }=

k 1=

E1

θn Sθ
x

∈
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(3.31)

where the matrix is split into a symmetric and a skew symmetric part for clarity.

Let ,  and  be two successive rotations. 

Since both , the composition of these should result in a matrix of the form 

(3.31) if the set is closed under (3.24). Particularizing for  and  we get:

,          (3.32)

and the composition of  followed by  results in:

 and (3.33)

(3.34)

It is easily verified that this is not the general form for arbitrary  and 1, and composi-

tion will bring us from  to . In formal notation:

(3.35)

This shows that the restriction (3.30) only restricts the incremental motion and not the 

total motion. A physical interpretation of this constraint could be a ball of radius  rolling 

without spinning on a table-top. Consider the effect on a body-attached coordinate-system 

when the ball first rolls  in one direction followed by rolling a distance  in a direc-

tion normal to the first direction. The body-attached coordinate-system will now have 

1. For instance, in (3.31) , whereas  in (3.34).

R θn( )

θ( )cos 0 0
  ny

2 nz
2 θ( )cos+ 1 θ( )cos–( )nynz

sym  nz
2 ny

2 θ( )cos+

0 nz θ( )sin– ny θ( )sin
 0 0

skew  0

+=

α 0 α  0
T= β 0 0  β

T= α β+ π<

α β, Sθ
1∈

α β

R α( )
α( )cos 0 α( )sin

0 1 0
α( )sin– 0 α( )cos

= R β( )
β( )cos β( )sin– 0
β( )sin β( )cos 0

0 0 1
=

α β

Rsym 1
2
---

2 α( )cos β( )cos α( )cos 1–( ) β( )sin β( )cos 1–( ) α( )sin
2 β( )cos α( )sin β( )sin

sym 2 α( )cos
=

Rskew 1
2
---

0 1 α( )cos+( )– β( )sin 1 β( )cos+( ) α( )sin
0 α( )sin β( )sin

skew 0
=

α β

R2 3,
skew 0= R2 3,

skew α( )sin β( )sin=

Sθ
1 R3

f : Sθ
1  x Sθ

1 R3 Sθ
1⊇→

r

πr πr
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experienced spinning  normal to the plane. This fact will in general restrict the practi-

cal use of this form to explicit time-integration schemes or other purely incremental algo-

rithms.

3.5  Alternative parametrization

In order to investigate the possibility of imposing other boundary-conditions than those 

applying to SO(2), it is of interest to formulate alternative rotational parametrizations. 

One such parametrization with an intuitive physical interpretation is the so-called Euler-

angles1. This is a parametrization commonly used in aviation, where the quantities roll, 

pitch and yaw are three successive rotations about three distinct axes. This can be formally 

written as:

(3.36)

where roll = , pitch =  and yaw = .

Usually, our equations are given as functions of the pseudovector and not the Euler-angles. 

In order to transform these, we need a differential form that relates rotational increments 

to increments in the Euler-angles. By equating the two and taking the variation we obtain:

,         (3.37)

(3.38)

(3.39)

Extracting the axial-vector of (3.39) leads to: 

(3.40)

1. The parametrization described here is strictly speaking known as Bryant angles. By setting , 

the true Euler-angles are obtained.

90°

φ2
π
2
--- α2+=

R R φ3E3( )R φ2E2( )R φ1E1( )=

φ1 φ2 φ3

R R θn( ) R3R2R1= = Ri R φiEi( )=

δR ωδ R δφ3 E3 R δφ2R3 E2 R2R1 δφ1R3R2 E1 R1+ += =

) ) ) )

ωδ δφ3 E3 δφ2R3 E2 R3
T δφ1R3R2 E1 R2

TR3
T+ +=

) ) ) )

ωδ δφ3E3 δφ2R3E2 δφ1R3R2E1+ + R3R2E1  R3E2 E3

δφ1

δφ2

δφ3

Φδφ= = =
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where the matrix  is defined by:

(3.41)

When particularizing for :

(3.42)

Since the physical moments are conjugate to the variation of the instantaneous axis of 

rotation in a virtual work sense, we can use this relation to re-express the virtual work of 

the unbalanced forces and moments in terms of the variations of the Euler-angles. This is a 

critical step in constructing a consistent formulation, as the varied parameters should be 

the same as the principal unknowns (see for instance [20]).

, (3.43)

where  are the unbalanced residual forces. The Jacobian of (3.43), 

considering only the rotational terms, becomes:

 (3.44)

The second term evaluates to the stiffness matrix congruently transformed with respect to 

the pseudo-vector representation, and it can be denoted the material part in this context. It 

is important to note that the congruent form does not change positive semi-definiteness in 

the transformed matrix.

(3.45)

Φ

Φ R3R2E1  R3E2 E3 R3R2E1  R3E2 R3E3= =

R3 R2E1 E2 E3=

Ei Ii=

Φ

φ3( )cos φ2( )cos φ3( )sin– 0
φ3( )sin φ2( )cos φ3( )cos 0

φ2( )sin– 0 1

=

δW δv
ωδ

funb⋅ 1  0
0  Φ

δv
φδ

funb⋅ δv
φδ

1  0  
0  ΦT

funb⋅= = =

funb nunb
T munb

T
T

=

KT φ, φ∂
∂ 1  0  

0  ΦT
funb

 
 
  0  0

0  munb φ∂
∂ Φ⋅

1  0  
0  ΦT φ∂

∂funb+= =

KMφ
1  0  
0  ΦT φ∂

∂funb 1  0  
0  ΦT ω∂

∂funb

φ∂
∂ω 1  0  

0  ΦT
K ω( )Φ= = =
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The first term constitute the geometric part in the transition from pseudovectors to Euler-

angles, and written out column by column becomes (subscripts on the unbalanced 

moments are omitted to reduce clutter): 

(3.46)

(3.47)

(3.48)

1 (3.49)

If , then

at the identity we get

1. In the last steps of this derivation, the fact that  and  has been used in (3.47) 

and (3.48). By omitting this assumption, an expression of the form (3.49) can be obtained for any ‘s, 
not necessarily defining a full basis. This will, however, invalidate the following discussion of the proper-
ties of . 

m
φ1∂
∂ Φ⋅

0
0
0

=

m
φ2∂
∂ Φ⋅

R3 E2 R2E1( )
T

0
0

m
R3R2 E2 E1 m⋅

0
0

R3R2E3 m⋅

0
0

–= = =

) )

m
φ3∂
∂ Φ⋅

E3 R3R2E1( )
T

E3 R3E2( )
T

0

m
E3 R3R2E1 m⋅

R3 E3 E2 m⋅

0

R3R2E1 E3 m×( )⋅

R3E1 m⋅

0

–= = =

)
)

)

)

KGφ

0 R3R2E3 m⋅ R3R2E1 E3 m×( )⋅

0 0 R3E1 m⋅

0 0 0

–=

E2 E1 E3–=

)

E3 E2 E1–=

)

Ei

Φ

Ei Ii=

KGφ 1 2,( ) m1 φ3( )cos φ2( )sin– m2 φ3( )sin φ2( )sin– m3 φ2( )cos–=

KGφ 1 3,( ) m1 φ3( )sin φ2( )cos– m2 φ3( )cos φ2( )cos+=

KGφ 2 3,( ) m1 φ3( )cos– m2 φ3( )sin–=
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(3.50)

Upon closer investigation of the matrix , we see that

, (3.51)

thus  is orthogonal for , and the transformation (3.45) does not change the 

eigenvalues of the original stiffness. The determinant of  is 

, and because  the transformation will 

have a softening effect on the stiffness matrix away from the discrete points of orthogonal-

ity. Also, a point worth noting is that . Singularities occur if and only if 

, in these cases the geometric contribution becomes:

(3.52)

This singularity arise naturally as the parametrization itself becomes singular at these 

points e.g. at  where the 3rd and updated 1st axes become co-linear.

(3.53)

where  and the fact that  is used in the last step. If 

 is kept fixed at , both  and  will contribute to the single rotation 

about .

It may sometimes be necessary to have the inverse of relation (3.40). As this is not occur-

ring in the current derivation, only the expression of  is given here. The points of sin-

KGφ
0

0 m3 E1 E3 m×( )⋅

0 0 m1

0 0 0

–
0   m3 m2–
0 0   m1

0 0 0

–= =

Φ

ΦTΦ

R3R2E1( )T

R3E2( )T

E3
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R3R2E1 R3E2 E3

1 0 E1
TR2

TE3

0 1 0
E3

TR2E1 0 1

= =

Φ φ2 n π⋅=

Φ

Φ 1 E1
TR2

TE3( )2–± E1 R2E1⋅= = 0 Φ 2 1≤ ≤

2 rank Φ( ) 3≤ ≤

φ2 π 2⁄ n π⋅±=

KGφ

0 R3E1± m⋅ E3+− E3 m×( )⋅

0 0 R3E1 m⋅

0 0 0

–
0 R3E1± m⋅ 0
0 0 R3E1 m⋅

0 0 0

–= =

φ2 π 2⁄ n π⋅±=

R R φ3E3( )R φ2E2( )R φ1E1( )=
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gularity can easily be observed as the points where the denominators approach zero, that is 

when . 

(3.54)

Comment on notation: In the preceding section capital K is used for the stiffnesses to 

emphasize that the relations are expressed at the system-level. It then becomes obvious 

that the geometric contribution evaluates to zero in an equilibrium configuration.

A peculiarity of the parametrization is that the order of rotation is interchangeable when 

updated axes are used, such that

(3.55)

For our purpose, the principal reason for this parametrization is to constrain one of the 

axes, as this will have a well defined physical significance. As the ‘s are, as of yet, 

undefined, the formulation should produce comparable matrices irrespective of which axis 

is constrained. By setting each  in turn, we obtain:

(3.56)

(3.57)

(3.58)

φ2 π 2⁄ n π⋅±→
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--------------------------E3
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-------------------------E1
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T=
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1 0  R3E1 m⋅
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KGφ
2 0 R3R2E1 E3 m×( )⋅
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– 0 R3 E 3E1– m⋅

0 0
– 0 R3E2 m⋅

0 0
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Similar results can be obtained for the material part of the stiffness matrix. In the further 

study of the matrices, choosing  becomes convenient, as then , and thus 

. Based on this, the transformation does not change the eigenvalues of the mate-

rial part of the stiffness, so no softening occurs, only rotation of the eigenvectors. The geo-

metric stiffness matrix will, however, contribute even at a state of equilibrium. By 

observing that in general, the reaction force , the boundary-condition itself 

might “buckle” provided there exist some form of coupling between the force associated 

with the second dof and a change in the first dof. The following example will demonstrate 

this point.

Consider the mechanical system depicted in Figure 3.2, where the joints A and B are con-

nected to rotational springs. By modelling the rigid beam as an eccentricity, we can easily 

capture the behavior of the system through the rotational degrees of freedom at the base of 

the beam. The initial rotational state is chosen to be ,  and , and 

the fixed axis of rotation is . As noted earlier, this will lead to a singular transformation 

. However, as long as one of the two co-linear axes is fixed, the singularity will not be a 

problem.

The stiffnesses of the springs yield the following stiffness matrix;

, (3.59)

or in the reduced system ( ):

(3.60)

 is already expressed with respect to the variables , so no transformation is needed.

The eccentricity  along with the forces  contribute to the 

eccentricity geometric stiffness , where the variables are referred to the instantaneous 

rotations. 

φ2 0= Φ R3=

Φ 1=

R3E2 m⋅ 0≠

φ1 0= φ2 π 2⁄= φ3 0=

φ1

Φ

KS

∞    0   0
0 k2 0
0 0 k3

=

ˆ

K̂S
k2 0
0 k3

=

K̂S φ

e 0 0 L
T= n 0 F– 0

T=

KGE
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(3.61)

After realizing that , and  the transformation to ‘s results in:

   and   (3.62)

If no other terms were present, the system would now be stable for any force F as the 

determinant of the stiffness matrix is simply . The inclusion of (3.49) will reveal the 

necessary contribution: 

(3.63)

Figure 3.2    Model

KGE n e
0    0  F  –
0  0 0
F  0 0

0 L  – 0
L 0 0
0 0 0

0 0 0
0 0 0
0 FL– 0

= = =

) )

R3 1= R2E1 E3= φ

ΦTKGEΦ E3 E2 E3
T
KGE E3 E2 E3

0 FL– 0
0 0 0
0 FL– 0

= = K̂GE
0 0
FL– 0

=

k2k3

KGφ
1 0 R3E1 m⋅

0 0
– 0 FL

0 0
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Obviously, this term alone is not sufficient to achieve the desired effect, rather the combi-

nation of  and  will provide the necessary coupling: 

(3.64)

It is now a simple matter to evaluate the critical load:

(3.65)

With the corresponding eigenvectors:

(3.66)

A commonly adopted procedure in the estimation of critical points is to use the symme-

trized stiffness. Thus, to compare the previous result to the result obtained when the term 

(3.63) is omitted, we  set:

(3.67)

(3.68)

The predicted buckling load is now doubled, although the eigenvectors are identical to 

those found in (3.66). It should be stressed that this solution is inherently erroneous as the 

non-infinite eigenvalues are introduced by the symmetrization-process. 

In order to verify the developed geometric terms, the discussed problem has been modeled 

using beam elements representing both the joints and the rigid bar. The boundary-condi-

tion is now enforced by linear couplings of selected degrees of freedom, so that the model 

has the ability to correctly describe the motion of the bar. For the example the following 

parameters are chosen:

KGE KGφ

K̂
k2 FL–
FL– k3

k2k3 F2L2–= =

K̂ 0=  Fcr⇒  
k2k3
L

--------------±=

x
k2k3
k2

--------------±

1

=

K̂G
1
2
--- K̂GE K̂GE

T+( )
1
2
--- 0 FL–

FL– 0
= =

K̂ 0=  Fcr⇒  2
k2k3
L

--------------±=
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                                     ,  

                                     

The stiffness-parameters of the rigid bar and joints are somewhat arbitrary, as long as they 

are not too rigid, so as to cause numerical difficulties, or too soft, so that the solution is 

polluted. The point of singularity for the model is determined in two ways; a) linearized 

buckling analysis with symmetrized matrices, and b) non-linear static analysis with a 

bisection algorithm for the unsymmetric matrices. As can be seen from Table 3.1, the 

buckling load corresponds well with the value predicted by the simple 2×2 system in 

(3.63).

To verify both the numerical accuracy and the current implementation, analyses of a sim-

plified model were carried out. This model consist of only a single beam of length  

(modelled without eccentricities), free at the loaded end, and with the described boundary-

condition at the other. As the eigenvalue-analyses were performed with symmetrized 

matrices, the result of enforcing the boundary condition on the pseudo-vector is also pre-

sented.  

For illustration purposes, Figure 3.3 shows the motion of the bar in the post-buckling 

range. The analysis is performed by perturbing the model in the direction of the first buck-

ling mode with an amplitude of 10 mm, followed by a non-linear static analysis. As 

expected, the model seemed stationary until the load reached approximately 95% of the 

critical load, followed by an abrupt motion into the final and stable position depicted in  

Figure 3.3c.

Table 3.1  Buckling of full model

Linearized buckling Bisection

 [kNm] 62,99 62,97

  [%] -0,02 -0,05

Table 3.2  Linearized buckling of simplified model (single beam)

Euler-angles Pseudovector

 [kNm] 62,99 125,95

 [%] -0,02 99,9

L 5,0m= k2 k3 315,0kNm
rad
------------= =

  Fcr
0⇒ 63,0kN±=

  Fcr

Fcr   Fcr
0–( ) Fcr

0⁄

L

  Fcr

Fcr   Fcr
0–( ) Fcr

0⁄
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The previous example illustrates some of the complexities in the modelling of discrete 

rotational boundary-conditions. For many practical problems, the pseudovector-represen-

tation will be adequate in modelling singly restrained rotational degrees of freedom. In 

fact, the results of a linear static analyses is component for component equivalent to the 

results obtained from the Euler-angles, the physical interpretation is quite different 

though. In linearized buckling analyses, the difference is seldom as great as the one pre-

sented here.

Figure 3.3  Post-buckling behavior

a)   F 0= b)  F 95% Fcr= c)   F 110% Fcr=
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 Chapter  4  
Cosserat rods

4.1  Introduction

In the following chapter, the Cosserat rod theory as described by J.C. Simo et al. [35, 36, 

37] will be presented with emphasis on the governing equations of the weak form. Con-

trary to classical structural theories, this is a fully frame indifferent formulation emanating 

from the theory by the French Cosserat brothers in the beginning of the twentieth century. 

The theory uses finite strains, without any assumptions introduced on the magnitude of 

displacements and rotations, and it is therefore often called the geometrically exact 

approach. For a full account, the interested reader should confer with the mentioned 

papers by Simo and coworkers. It should be noted that the ordering of axes and the use of 

some symbols have been changed so as to correspond with notation used in previous and 

following chapters.

4.2  Geometric description and kinematic assumptions

Using common nomenclature in continuum mechanics, the material or reference configu-

ration is taken as the straight line in the direction of the material vector  (material 

beam axis) on the interval .  is thus the generalized (constant) undeformed 

arch-length of the beam, and  is the arch-length parameter. The extent of the beam 

orthogonally to  is defined through the vector , where 

 and  is a position vector inside the cross-section.  

must be a continuous function, defined for all positions  along the beam axis. With refer-

ence to Figure 4.1, the position of  relative to the cross-section is taken to be at the -

E1

S 0 L,[ ]∈ L

S

E1 ξ ξ2E2 ξ3E3+=

ξ2 ξ3,( ) A S( )∈ A S( ) R2⊂ A S( )

S

E1 E1
 39



Part I
weighted centroid of the cross-section, where  is the modulus of elasticity in the direc-

tion of  ( , is not necessarily ). The point  is the shear 

center of the cross-section. For simplicity,  and  are oriented in the directions of the 

principal axes of the cross-section. The reference configuration of the beam, ,  

is thus :

(4.1)

(4.2)

where  is a material point within the beam.

The current configuration of the beam is a time-dependent configuration in the fixed spa-

tial basis . For simplicity, this basis is taken to coincide with the material basis 

for initially straight members. The basic kinematic assumption introduced is that plane 

sections, normal to the beam axis, remain plane but not necessarily normal to the beam 

axis. By this assumption, the spatial position  of the material point  at time t may be 

given by the map : 

Figure 4.1  Material configuration

E3

E2ξ
E2

E3 A S( )

Cs

E1

E1

E1 ξ 0= A S( )∈ Cs ξ2
s ξ3

s,( )=

E2 E3

URef R3⊂

URef X SE1 ξ+   =   S 0 L,[ ]∈ ξ A S( ) E1ξ Ad
A S( )

∫  = 0,∈,
 
 
 

=

U∂ 0 L,{ }=

X

e1 e2 e3, ,{ }

x X

ϕ  :  0 L,[ ] A R+ ××[ ] R3→
40 Geometric description and kinematic 



Theoretical basis and FEM technology
(4.3)

The position of the center line, , is an ordinary vectorial 

function of . To accommodate a general parametrization of the initial geometry,  is 

additively decomposed into the initial map  and the time-dependent map . 

The spatial orientation of the cross-section is defined by the orthogonal matrix 

. Since orthogonal matrices obey a multiplicative 

decomposition rule, the matrix is obtained as the product of the matrix , that defines 

the initial orientation, and the time-varying . By defining an orthonormal, moving basis 

, the rotation matrix can be recast as

(4.4)

The initial parametrization is chosen so that . As shown in Figure 

4.2, the basis  is an orthogonal basis in the current configuration that follows the prin-

cipal axes of the deformed cross-section. Note that in general  only at 

, since the formulation accounts for shear deformation of the beam, as depicted in 

Figure 4.2  Current configuration (of initially straight member)
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ϕ0
t S( ) ϕ0
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ϕ0
0 S( ) ϕ0
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R S t,( ) rij S t,( )ei Ej⊗= SO 3( )∈

R0

Rt

ti S t,( ) REi rji S t,( )ej= =

R S t,( ) rij S t,( )ei Ej⊗ ti S t,( ) Ei⊗= =

,E3 e3

,E2 e2
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E1, e1

ϕ0
0d Sd⁄ R0Ei t1= =
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Cosserat rods 41



Part I
Figure 4.3. For an initially straight and unstressed member, the initial maps simply 

become  and  (see Figure 4.2).

4.3  Internal forces and strain measure

With the definitions of Section 3.2 at our disposal, we start by deriving the deformation 

gradient . Using the notation 

(4.5)

we get:

(4.6)

In Equation (4.6), the symbol  is used to indicate the property of curvature. A detailed 

account of the derivation of  for both initially straight and curved members is given in 

[36]. The complete derivation is quite involved, and it is therefore not included. As is 

common practice in continuum mechanics, upper case letters is used to indicate material 

tensors and vectors, while lower case letters is used for the corresponding spatial objects. 

Figure 4.3  Orientation of  after deformation (planar motion)
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Thus, the material vector of curvature is denoted . The pull-back and push-forward 

operations are performed via the rotation tensor.

(4.7)

(4.8)

(4.9)

In order to derive the conjugate measures of integrated stress and strain we use the equiva-

lence of internal power:

(4.10)

where  is the unsymmetric first Piola-Kirchhoff (nominal) stress tensor:

(4.11)

As usual, a superimposed dot denotes the material time derivative. The rate of change of 

the deformation gradient now becomes:

(4.12)

where  is the angular velocity and .

From the balance of angular momentum  we obtain;
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 (4.13)

Inserting equations (4.11, 4.12 and 4.13) into (4.10), results in:

(4.14)

Here, the objective, co-rotated rate  has been introduced. This is the rate measured by 

an observer attached to the moving basis :

(4.15)

Integrating over the reference area we get the spatial cross-sectional stress resultant vec-

tors  and  (forces and moments), conjugate to the spatial rate of change of deforma-

tion:

(4.16)

(4.17)

, (4.18)

Since  is nonzero when the body is undeformed, it is an improper measure of strain. 

Again, noting that  at t = 0, we introduce the spatial strain measure : 
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(4.19)

Using Equations (4.18) and (4.19) in (4.14) results in the following expression for the 

internal power: 

(4.20)

If we introduce the current arch-length s, we observe that the measure  results in no 

straining when the beam is undeformed:

(4.21)

For the special case of no shear deformation, we have:

 (4.22)

4.4  Admissible variations and beam configuration

From the kinematic assumption (4.3), any configuration of the beam is described by the 

following non-linear differentiable manifold 

(4.23)

where  satisfies the essential boundary conditions. Composition of 

 followed by  now obeys the rule:

(4.24)

If instead, we only use the subset of  that satisfies the homogeneous part of the essential 

boundary conditions, we get the space of perturbed configurations :
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(4.25)

with the corresponding tangent space:

(4.26)

 is the part of the boundary with prescribed displacements, whereas rotations are pre-

scribed on . With a slight abuse of notation, we will in the following say that 

 lie in the tangent space of . Due to the isometry between the skew symmetric 

matrices in  and  ( ), the ordered vectors  also lie in this 

space. It should be noted that this is a vector space, where interpolation is valid. 

The local balance laws now takes on the forms

(4.27)

and

(4.28)

where  is the spatial inertia tensor and  is the mass density in the current configuration. 

Superimposed bars are used to indicate applied forces and moments.

Neglecting the dynamic contributions, we can, in classical fashion, formulate the func-

tional  of the static part of the local balance equations:

(4.29)
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Introducing the following vectors of integrated stresses 

, , (4.30)

and the differential operator

(4.31)

 can be recast in the more compact form

(4.32)

In the incremental iterative solution process of this non-linear functional, we need to 

extract the linear part of (4.32), . Only the principal steps will be pre-

sented here, as the details of the derivation are reported in [36]. In the following,  is 

used to indicate a quantity evaluated at the current state of deformation. The linear part 

can be expressed as:

(4.33)

Use has been made of the directional derivative

(4.34)

where the increment  is assumed to lie in the tangent space at .

By splitting  into two parts, where  and  are the result of linearizing 

the stress-state  and the configuration  separately.  gives rise to the material 

stiffness, whereas  contains the geometric contribution.

(4.35)
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Assuming hyperelastic material properties, in which case , 

 becomes:

(4.36)

In this equation,  is the material elasticity tensor of the cross-section. For linear elastic 

materials the elasticity tensor is constant, and for symmetric cross-sections it simply 

becomes the diagonal matrix . As usual,  

refers to the reduced shear area in the direction of , . For rectangular cross-

sections, the well known relationship  applies (for Poisson’s ratio equal to 

zero). The simple extension to unsymmetric cross-sections reveal the more general form:

(4.37)

Linearization of the change in the configuration results in:

, (4.38)

where

  and  (4.39)

The key features derived in this section are summarized in Table 4.1.
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0 L,[ ]

∫=

Ψ Sd
d 1    0      0   

0 Sd
d 1 1

= A
0    0   n–

0 0 m–

n 0 n ϕ0'⊗ n ϕ0'⋅( )1–

=

)
)

)

48 Admissible variations and beam configuration



Theoretical basis and FEM technology
4.5  Finite element discretization

Having established the governing equations for the linearized weak form, we can proceed 

with the finite element approximation of Equation (4.33). First, the infinite-dimensional 

configuration space is approximated by the finite subspace , where  is 

defined by the approximating basis functions , , subject to the usual com-

pleteness and continuity conditions.

(4.40)

Introducing the displacement weights  and the position weights  (initial configu-

ration), where subscripts refer to the associated function, and superscripts to the spatial 

direction, the position of the beam axis in the current configuration is defined as follows:

(4.41)

, , (4.42)

It should be noted that both the displacement and the position weights are not necessarily 

physical displacements and positions. In the papers by Simo et al. [35,36] the basis func-

Table 4.1  Strain measures and integrated stresses
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tions were tacitly assumed to be interpolating polynomials. This was, however, never 

posed as a restriction on the formulation, and the assumption will not be made in this pre-

sentation.

Due to the manner in which the rotations are parametrized, the definition of the rotation 

field becomes somewhat more involved. Since composition of rotations follow a multipli-

cative rule when incremental rotations are used, we start by dividing the continuous time 

domain into discrete points. If we denote  the total number of rotational increments 

at time , the rotation then becomes:

(4.43)

Introducing the approximating functions in the incremental pseudovectors, and with some 

loss of generality using the same basis functions as for the displacements, we get:

(4.44)

(4.45)

From Equation (4.43) it is apparent that, given rotational increments of polynomial order 

p, the rotation vector of  is not of the same polynomial order1. This entails that the rota-

tional state must be stored separately for each integration point in a numerical integration 

scheme.

In the same manner as for the configuration space, the increments and trial functions are 

approximated by a finite dimensional space :

(4.46)

,        (4.47)

1. For colinear increments this will not be true as the rotations then will be additive, e.g. 2D rotation.
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(4.48)

,        (4.49)

To simplify the derivation, the following intermediate steps are taken:

(4.50)

(4.51)

In Equations (4.50) and (4.51), the discrete version  of the differential operator (4.31) 

has been introduced. This is a 6× 6 matrix defined for each weighting function I as: 

(4.52)

The unbalanced force vector associated with node I is now evaluated as:

(4.53)

The “material” part of the stiffness matrix (4.55), expressed as the matrix connecting node 

 and node  is found from Equation (4.36):

(4.54)
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(4.55)

Following the same procedure as in (4.50), we obtain:

,        (4.56)

(4.57)

Thus the “geometric” stiffness matrix becomes:

(4.58)

(4.59)

As mentioned previously, this formulation require storing some variables at the element 

level. This is due to the fact that the rotations, incremented in this way, cannot be 

expressed by the same interpolation scheme as the increments. This fact is illustrated in  

Figure 4.4, where linear interpolation of incremental rotations has been used over the ele-

ment. In this example, 5 randomized incremental rotations, with a mean value of 

 at the nodes is presented. Clearly, the total rotation cannot be represented by 

linear interpolating functions. As the rotations are stored at the integration points and not 

interpolated, so is the curvature. After each increment, the configuration of the beam must 

be updated by the procedure described in Box 4.1 before evaluation of the internal forces. 

It should be noted that this update procedure differs slightly in the way curvatures are 

updated from the procedure described in [36]. There,  was the incremental spatial curva-

ture at step n, whereas in the current presentation,  is the incremental curvature at step n, 
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referred to the spatial configuration at step n-1. This effect is obtained by simply changing 

the sign of the last term in the expression for . The motivation for this form is that when 

, the material curvature increment, , is calculated directly.

Figure 4.4  Components of rotation-vector along the length of a beam
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π
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Given nodal increments  and :

Update displacement-weights:

•

For each integration point i:

Compute:

•

• ,  

•

•

•

Update rotations and strains
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Box 4.1  Configuration update algorithm
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4.6  Linearized buckling

In the preceding sections, emphasis has been on the kinematical description and the solu-

tion of the non-linear problem. Incorporation of this formulation in a linearized buckling 

analysis may, however, not be self-evident. To the author’s knowledge, this has not previ-

ously been presented for this particular family of elements. The current section is therefore 

dedicated to the development of the necessary equations.

The problem of linearized buckling involves solving the following generalized eigenvalue 

problem

(4.60)

In this equation,  is the change in geometric stiffness as a consequence of the 

change in internal forces and moments, due to a change in applied loads. The term 

 is the incremental internal force due to a change in the applied loads:

(4.61)

As the “material” term  is independent of the internal forces, the geometric stiffness 

matrix becomes . Since the assembly operator 

is a linear operator, the subscript e will be omitted in the following, focusing on the rela-

tions at the element level.

The derivation of the incremental forces is quite similar to the derivation of the stiffness 

matrix. Assuming that a linear increment in the configuration, , has been 

found, the linear increment in forces can readily be obtained as the linear increment of 

Equation (4.62a).

 (4.62)

Keeping with the assumption of hyperelastic materials, the incremental internal material 

forces can be expressed as:
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(4.63)

Premultiplication with , results in the “material” contribution of the incremental spatial 

force

(4.64)

In Equation (4.64) the spatial version  of the elasticity tensor of the cross-sec-

tion is used for compactness.

The “geometric” contribution  follows immediately when realizing that 

:

(4.65)

Summarizing and collecting terms, we get

(4.66)

When written out for the forces and moments separately we have:

(4.67)

(4.68)

If the linearized buckling analysis is performed from an unstressed and undeformed state, 

the incremental forces for an initially straight element reduce to:
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(4.69)

(4.70)

When establishing the geometric stiffness matrix, Equation (4.59) is valid provided  is 

replaced with :

(4.71)

4.7  Element implementations

In the program implementation, different versions of this formulation has been tested. 

Although they are all based on the same principles, the differences between them need 

some explanation.

• Cosserat Polynomial ( )

The  element is a generalized implementation of the elements presented by 

Simo et al. It is based on a general Lagrange polynomial basis, with  weights (nodes) 

and polynomial degree . The integration is taken over  Gauss-Legendre inte-

gration points. Although the current implementation can handle any order polynomial, 

the formulation is in practice limited by; a) the well known instability of high order 

polynomials, and b) the excessive bandwidth that is the consequence of the non-local 

support of the basis.

• Cosserat Spline ( )

The  elements are basically the same elements as the  elements, 

only with a B-spline basis for the approximating functions. In addition to the many 

desirable properties of splines, such as stability and local support, these functions also 

open the door to some interesting possibilities. First of all, it is fairly easy and inexpen-

sive to implement the element in a generic fashion, so that all polynomial elements is 

implemented in a single set of subroutines. Secondly, the richness of splines is greater 
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than the polynomials, as the space of polynomials (and Bézier curves) is only a subset 

of the spline space. Furthermore, splines are piecewise smooth polynomials, so integra-

tion schemes developed for polynomials can easily be adopted for splines. Finally it 

should be noted that splines are often used in computer aided design, thus allowing for 

isoparametric formulation of geometry and displacements. This latter benefit has not 

been investigated in this work. Among the drawbacks are the fact that the nodal 

weights will in general not be physical. Calculation of convergence norms, and the 

determination of reasonable convergence criteria thus become obscured. What compli-

cates this issue, is that as the nodal weights are in general larger than the physical val-

ues. The effect this will have on convergence rates need to be investigated. Fortunately, 

the energy norm is not affected, on account of weights and unbalanced forces being 

work-conjugate. Another solution is to statically condense internal nodes, using only 

displacements or forces at the end-nodes in the convergence criteria. The weights at 

these nodes will always be physical.

Since this implementation contain an infinite number of elements, the elements based 

on the current kinematic description and B-spline basis functions with a uniform knot 

sequence will be denoted , where  is the degree of spline,  is the num-

ber of integration points within each knot sequence, and  is the number of nodes in 

the element. Any element  will thus correspond to a polynomial element of 

degree . Examples of basis functions for two element instances are shown in Fig-

Figure 4.5  Examples of basis functions for -elements
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ure 4.5. The particular element  will be a super-element, consisting of  

-elements (see Figure 4.6). Similar superelements of higher order polynomials 

can be constructed by not restricting the knot sequence to be uniform.

• Linear, reduced Cosserat rod
The principal disadvantage of the formulation, as presented in the previous section, is 

the need for local element variables. Storing both the rotation and curvatures at integra-

tion points is inconvenient for two reasons; a) the memory requirement will increase, 

and b) the element will need a special update procedure when incrementing nodal val-

ues even for linear elastic materials. In addition, for rotations in 2D, the update proce-

dure is unnecessary as the rotations become additive. To circumvent these problems, an 

element with linear interpolation of the total rotational state, , is considered. 

,       (4.72)

By discarding the previous rotations, this element becomes slightly inconsistent as 

interpolation of the total pseudovectors is not the same as interpolating the incremental 

pseudovectors (see e.g.  Cardona and Géradin [8]). This element is a good candidate to 

further illustrate the problem associated with the interpolation of rotations: Imagine an 

element, rotated rigidly  radians in the beam plane , followed by a deforma-

tional rotation, applied as a twist of  at one node as shown in Figure 4.7. The twist 

Figure 4.6  Basis functions for 
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is assumed to vary linearly along the length of the beam in the spatial configuration. 

The total rotations at the nodes now become: , and 

. Using this to calculate the material curvature results in:

(4.73)

Intuitively, this cannot be the correct curvature since the element is only in a state of 

twist, not bending. It should be noted that this would be the resulting curvature for a 

-element, if this configuration was achieved in one step by an applied bound-

ary condition. If, in stead of the total state, only the deformational rotations are interpo-

lated, we get the following relationships:

,      (4.74)

The curvature from this kinematic description is

(4.75)

Figure 4.7  Element motion
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As expected, the rigid body rotation is removed from the curvature, and only the inter-

polated, deformational, pseudovector is needed.

In our example, setting the rigid body rotation to , 

results in the following deformational nodal rotations: . 

Since this is the actual 2D rotation, the interpolation is exact, and the correct curvature 

is obtained:

(4.76)

In Figure 4.8, the resulting components of the pseudovectors of these descriptions are 

plotted. Here,  denotes the rotational pseudovector obtained for the linear interpola-

tion of the total rotation, and  is the pseudovector of the total rotation 

obtained when only the deformations are interpolated.

By this rationale, the actual element is implemented in conjunction with the co-rota-

tional procedure presented in Section 4.1. When used within the co-rotational frame-

work, average rigid body rotations are extracted from the nodal values. If we then 

assume small rotations within the element, the interpolation becomes reasonable. If the 

rotations are within , it is safe to assume that , and a simpli-

fied expression for the curvature may be adopted:

Figure 4.8  Components of the pseudovectors along the length of the beam
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(4.77)

It should be noted that even for reasonably small deformational rotations, the coupling 

term  may contribute, since, for short elements,  may become large.

Similarly, the deformational rotation matrix along the length of the beam can safely be 

evaluated as the third, second or even first order approximation:

(4.78)

While this may seem like a small saving compared to the many operations needed to 

evaluate the stiffness matrix and the unbalanced forces, it should not be regarded as 

such. The calculation of the rotation matrix in a robust and accurate manner for small 

angles is actually a quite costly affair, involving both the evaluation of square roots as 

well as trigonometric functions.

Κ Κ∆ β θ'd
1
2
--- θ 'd θd+≅= =

)

1
2
--- θ 'd θd

)

θ 'd

Rd 1 1
θd

2

6
------------ – 

  θd
1
2
--- θd

2
+ + 1 θd

1
2
--- θd

2
+ + 1 θd+≅ ≅ ≅

) ) ) ) )
62 Element implementations



 Chapter  5  
Element Independent Co-Rotational 
Formulation

The formulation of non-linear problems in structural mechanics is generally classified by 

the form of the governing equations and the stress and strain measures into three main 

groups:

• Total Lagrangian formulation (TL)

• Updated Lagrangian formulation (UL)

• Eulerian formulation (E)

In addition to these, we also have the co-rotational (CR) formulation. This is the most 

recent formulation and has, according to Felippa [13], yet to penetrate commercial soft-

ware. This is not to say that CR does not have long historical roots, stretching back to the 

seminal work by de Veubeke published in 1976 (see Felippa [13] for an extensive histori-

cal review).  The relatively moderate impact of CR may be explained by the many miscon-

ceptions surrounding the formulation. In fitting the formulation to the classical view of 

three principal forms, CR is frequently classified as an Eulerian description of motion. 

However, much work has been reported, in which equivalence with both the Total 

Lagrangian and Updated Lagrangian formulation has been demonstrated. Also, the formu-

lation seems to spur developers to formulate their own version, leaving the core elements 

of the method rather obscured. 

In this chapter, the Element Independent Co-Rotational formulation (EICR) will be dis-

cussed. The formulation presented here follows closely the important contributions by 

Brogan, Nour-Omid and Rankin [26,32,33], and the further elaboration by Haugen [16]. 

As the name indicates this is a formulation that operates independently of the elements, 

thus leaving the internal workings of the element open. Rather than a particular element 
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formulation, it can be interpreted as a front-end filter that is intended to improve the per-

formance of a given element. A key point in the derivation that follows is that the rota-

tional element degrees of freedom are the incremental pseudovectors (instantaneous 

rotations); this means that the rotational increments are not additive, and require a special 

update procedure. If the element is developed using any other rotational parameters, 

which is the case for most linear elements, a shift of variables as described in Section 3.3, 

“Variation of rotations“ should be applied in advance. This will assure that large rotations 

are handled in a consistent manner, and that moments are properly conjugate to the rota-

tional parameters in a virtual work sense. For completeness, and to be in line with the 

afore-mentioned papers, the shift in variables is also presented.

In most texts on EICR, the deformations are assumed to be small. It should, however, be 

noted that nowhere in the derivations are any such assumptions introduced. It is still useful 

to keep in mind that the procedure was developed to improve the performance of simple 

linear elements that are not invariant to rigid body motion. Thus the primary advantage of 

the formulation is that one can easily include the principal sources of nonlinearity in large 

displacement1-small strain problems, using only standard (well proven) linear elements. 

By defining successive fixed (inertial) reference frames, to which deformations are mea-

sured, these elements will be valid even in problems involving large rotations as long as 

the deformations are moderate, or at least in the range that the element was originally 

developed to handle. Although EICR is founded on this idea, one is free to select any basis 

or configuration in which the deformations are actually measured. It is, however, conve-

nient to take advantage of this ‘rigid-body’ free reference frame, in other words: 

If one has chosen a method to extract rigid-body motion for the purpose of establishing 

the matrices in EICR, one also has a natural, but not necessary, choice of reference frame 

in which deformations are measured.

Based on this, the presentation is divided into two parts, one containing the core elements 

of the co-rotational procedure, and the other where the fundamentals of EICR is presented. 

In a later chapter it will be demonstrated that the efficiency of the formulation is governed 

1. It should be noted that the actual displacement need not be large for the formulation to be warranted, e.g. 
in analyses where one wishes to determine possible critical points in the solution.
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only by the element’s capabilities to account for the deformations and the exactitude of the 

extracted rigid-body rotations.

5.1  Co-rotational procedure

5.1.1  Basic kinematic description

In the co-rotational process, we want to separate the motion of the body into two parts; the 

deformational motion and the rigid-body motion. In the following, we will be concerned 

only with a partition of the body, not the entire structure. In order to conform with stan-

dard notation and common practice in the finite-element literature, this part will be called 

an element. In spite of the name, this element can just as well be an assembly of finite ele-

ments, or even some other discretization of the domain. By denoting the mapping of rigid-

body motion by , and the mapping of deformations by , the total map of the 

motion becomes in compact form:

(5.1)

Where  is the symbol of composition of functions, so that . The signifi-

cance of Equation (5.1) is that the map can either be obtained by a rigid-body motion fol-

lowed by a deformation, or as a deformation followed by a rigid-body motion. Contrary to 

what is usual in the CR-literature, we will follow the latter approach in this presentation. It 

will then be shown that the basic results remain the same. These concepts are illustrated in 

Figure 5.1. The superscript CR, used to mark a co-rotated measure, might seem confusing 

when used in the context of the deformational map. The significance becomes clear, how-

ever, when one considers this to be a mapping within the co-rotating system . The first 

challenge is to define the mapping of the rigid-body. We start by defining the configura-

tion  which is simply the initial spatial configuration, and the co-rotated configuration 

 which is a virtual spatial configuration of the initial geometry, based on some form of 

‘best-fit’ criterion of the deformed configuration . Exactly how  is fitted to  

depends primarily on the geometric properties of the element, e.g. a triangular shell ele-

ment is fitted differently from that of a two-node beam. Even for a specific geometry,  

 is not unique and several approaches have been used. Attached to the co-rotated con-
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figuration, is the co-rotated reference-frame, , defined in a similar manner to the 

moving basis, , in the Cosserat rod theory. The significant difference between the mov-

ing basis and the co-rotated base-vectors is that the moving basis is continuously rotated 

and translated within the domain. The co-rotated basis, however, is constant and defined 

for the element as a whole. Leaving the ‘s unspecified, the general form of the rigid 

body map  becomes:

(5.2)

, (5.3)

Here, the transformation-matrices  and  are introduced. They are the direction-

cosine matrices relating the ambient space to the updated and original spatial basis respec-

tively. The rotation matrix  defines the rigid body rotation of the configura-

tion. This is a two-point tensor that is homogeneous within an element, and transforms 

objects in the basis  to objects in the basis . Inserting Equation (5.2) into (5.1) 

yields the following expression for the spatial position  of the material point : 

(5.4)

Here it is clear that only the deformational map, , depend on the material position . 

Deriving the deformational gradient, we see the close relation to the polar decomposition 

theorem:

Figure 5.1  Mappings and configurations
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(5.5)

(5.6)

When the rigid-body rotation is the point-wise total rotation of the body, the deformation 

gradient of the deformational map, , reduces to the right stretch-tensor . A common 

assumption is that the additional rotation  is close to the identity. If the stretches are 

assumed to be close to the identity as well, deformations are small and a small-strain 

assumption can be adopted within the element. The primary observation is, however, that 

the principal source of non-linearity for slender structures such as beams and shells, 

namely rotations, are extracted for small elements: 

(5.7)

We now introduce the generalized Lagrangian strain tensor , defined for positive n. 

Obviously, these strains are unaffected by the rotations.

(5.8)

For the particular choice n = 1/2, we get the Biot-strain (5.9).

(5.9)

Thus, the small strain tensor of the co-rotated element coincides with the Biot-strain when 

. This is obviously subject to the condition that the rotations are correctly 

extracted, rendering  as a symmetric positive definite tensor.

Requiring the volume, , of the element to vanish is an unnecessarily strong require-

ment, and may result in significant round-off errors. Most elements are quite accurate for 

moderate rotations, and usually the rigid-body rotations will rapidly dominate for reason-

ably fine meshes.

For continuum elements such as volume and membrane elements, these results are rather 

straightforward. The situation is somewhat more complicated in the case of structural ele-

ments such as shells and beams. These elements are based on some kinematical assump-
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tions that inevitably introduce simplifications. Most of these simplifications are well 

founded, and the errors they introduce will vanish when the element size decrease, while 

others may not.

5.1.2  Linking the deformations to the global motion

In deriving the relationship between the deformational measures and the system level 

measures, it is convenient to do so only at N discrete points  in the domain. These 

points, called the ‘visible’ nodes, are chosen in such a manner that their displacement and 

rotation uniquely define the deformational state of the element. Based on the average 

nodal position, the origin  of the co-rotational basis is calculated for :

(5.10)

The global displacements at node I are collected in the vector  with components in the 

global spatial frame, see Figure 5.2:

(5.11)

(5.12)

Figure 5.2  Global measures
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 is a vector of co-rotational displacements; it has components in the material frame 

(Although not strictly correct, in the following  will be denoted the material basis in 

order to reduce the number of configurations and bases needed). As usual, the derivations 

of the co-rotational rotations are a little more involved. For each node I in the element we 

define a set of spatial base-vectors , that is the rotated material basis : 

,    (5.13)

where  is the total rotation at node I,  is the deformational rotation and  is 

the rigid body rotation of the element. Since the deformation  is obtained as the 

remaining rotation of the node after the rigid body rotation of the element is extracted, this 

measure is element specific and will in general differ for neighboring elements. Also, we 

can observe that the relation (5.13) does not change if we perform a pull-back from the 

updated basis to the original coordinates:

(5.14)

Neither Equation (5.13) nor (5.14) does, however, produce the required relation between 

the co-rotational and the nodal rotations. As a co-rotational measure should not change 

during rigid-body motion, the co-rotational, deformational rotations must be a material 

increment: 

(5.15)

,    (5.16)

Thus the co-rotated deformational rotations become a two-point tensor that brings a vector 

in the material configuration to the co-rotated spatial configuration:

 , where (5.17)

The general concepts in these relationships and transformations are collected and illus-

trated in Figure 5.3.
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It should be noted that the components of the co-rotational deformations 

, expressed in the original basis, are identical to the components of 

, expressed in the updated basis. This is easily verified since

(5.18)

If the deformational state of the element is given by the rotation pseudovector, it can gen-

erally be extracted from Equation (5.18) by means of algorithms such as Spurrier’s algo-

rithm, presented in Appendix D. In doing so, one should keep in mind the discussion on 

finite rotations in Chapter 2, where it was shown that while extracting the pseudovector 

from rotation-matrices is one-to-one, it is not onto. This means that some form of heuristic 

must be applied, generally by restricting the magnitude of rotations, i.e. letting the defor-

mations be in the range .

, (5.19)

Note that the transformation of co-rotational vectorial measures to local coordinates is 

given by , whereas global measures are transformed as .

Figure 5.3  Chart of maps at node I
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5.1.3  Differential relations

Having obtained the relationships between the co-rotated deformational measures and the 

global motions, we can proceed to find the corresponding relations of the differentials. 

Taking the variation of Equation (5.11), we get:

(5.20)

(5.21)

,    (5.22)

(5.23)

By postulating the existence of a relation of the form

(5.24)

In which the rigid body rotations  are extracted from the elements nodal displace-

ments, we get a differential relation that links differentials in the visible dof’s  to the 

elements co-rotated translational dof’s :

, (5.25)

where

(5.26)
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The matrix  is an element dependent matrix that depends on geometry and developer-

choice, but not on the underlying element-formulation. In the special case of elements 

having the Kronecker delta property, that is

(5.27)

Equation (5.25) can be re-written in the form:

(5.28)

In the following we will continue to use the notation , tacitly assuming that (5.27) 

holds for both displacements and incremental rotations. Using  is then superfluous, 

and will therefore be avoided.

In a manner similar to the displacements, we obtain by taking the variation of (5.15) with 

respect to the spatial increment the following differential relation:

(5.29)

,      (5.30)

(5.31)

(5.32)

(5.33)

 is the vector of incremental rotational (co-rotated) deformations, which are the rota-

tional dof’s at element level, and  contains the system-level dof’s expressed in local 

coordinates. It is important to note that the variation of  is taken in the co-rotating 

frame, whereas  and  are vectors varied in a fixed (inertial) coordinate frame and 

expressed in a basis that instantaneously coincides with the co-rotating frame. Equation 

(5.32) verifies the expression reported by Nour-Omid and Rankin [26]. Rearranging Equa-

tion (5.33) in a manner similar to Equation (5.28) we get:
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(5.34)

Combining Equations (5.28) and (5.34) results in the final differential relationship 

between the co-rotated dof’s and global, visible dof’s:

(5.35)

, (5.36)

The matrix  is a tri-diagonal matrix that collects the element transforma-

tion matrices for each node. In addition, each node is allowed to have different reference 

axes, where rotations and translations are treated separately in order to simplify the han-

dling of different boundary conditions. These transformations are collected in the matrix 

. The diacritical  is used to indicate a property in local nodal-coordi-

nates. As this only amounts to a transformation that is constant in time, this transformation 

will be omitted in the following.
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5.2  Governing equations of EICR

Contrary to common practice in finite element formulations, the explicit form of the gov-

erning equations need not be formulated in the Element Independent Co-Rotational proce-

dure. By definition, matters such as local equilibrium are the concern of the internal 

formulation of the element only. Instead, we assume that the virtual work of the structure 

can be captured using the discrete virtual work of the visible nodes. Hence, our principal 

concern is to investigate requirements and potential limitations imposed on the element by 

the formulation.

5.2.1  Frame invariance of strain energy

The fundament of the original development of EICR is the existence of a scalar strain-

energy functional for an individual element. Due to the fundamental property of frame 

invariance of energy, the functional should be indifferent to rigid body motion:

(5.37)

Where  are deformational maps of displacements and rotations, and  

are mappings of the rigid-body displacements and rotations. The key element here is the 

Box 5.1   Co-rotational procedure

Given , , , return  and , 

• Establish  from 

• Establish  from  (and ) 

• Extract deformational rotations:

, 

• Extract deformational displacements

xI
0 vI RI θ̃dI

CR ũdI
CR I 1…N=

T0 Ii Ei
0⊗= xI

0

Tn Ii Ei
n⊗= xI

n vI xI
0+= RI

R̃dI
CR TnRIT0

T= θ̃dI
CR θ R̃dI

CR( )=

ũdI
CR Tn xI

0 vI xc
n–+( ) X̃I–=

Ue Ue ϕ̃d R̃d,( ) Ue ϕd ϕr+ RdRr,( )= =

ϕ̃d R̃d,( ) ϕr Rr,( )
74 Governing equations of EICR



Theoretical basis and FEM technology
multiplicative decomposition of rotations. This allows us to continue with  as the state 

of identity, and thus either work in the tangent space of   (a function of  only), or in 

the tangent space of . As the physical forces and moments in the intermediate co-rota-

tional basis can be established based on the first variation of Equation (5.37), we obtain:

(5.38)

(5.39)

In these relations we tacitly assumed that the moments are derived as moments conjugate 

to an incremental rotation field, superimposed by a multiplicative update. We are thus 

working in the tangent space at . As noted in the introduction, the element can be for-

mulated in any other way without invalidating the subsequent derivations. All we have to 

do is to map the forces to the correct tangent space, and include the derivative of this map 

in the internal tangent stiffness of the element. 

The next step in the formulation is to separate the deformational nodal parameters from 

the rigid-body motion by the use of projectors. Projectors are idempotent matrices (usually 

given the symbol ) thereby having the beneficial property of separating vectors into two 

disjoint subspaces  and .

(5.40)

 (5.41)

and

,    (5.42)

Thus we have  and . The symbols  and  are not to be 

taken literally, as for arbitrary ,  only in the spe-

cial case of  being an orthogonal (symmetric) projector. 

If we assume that there exist a projector , that separates differentials of motion into 

rigid-body motion and co-rotated deformational motion, we get a relation similar to Equa-

tion (5.35).

Rr

Rr Rd
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Ueδ ṽ( )CRδ f̃e
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f̃e
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ṽ( )CR∂
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P|| P⊥

P|| P Rn n×∈( )  x Rn∈ Px = x { }=

P⊥ P Rn n×∈( )  x Rn∈ 1 P–( )x = x { }=

P|| range P( ) null 1 P–( )= = P⊥ range 1 P–( ) null P( )= =

P⊥ P||∪ Rn= P⊥ P||∩ ∅= ⊥ ||

x Px 1 P–( )x⋅ x PT 1 P–( )x⋅ 0= =

P

P
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(5.43)

(5.44)

By inserting this into the variation of the internal strain energy, we can rewrite the internal 

virtual work in terms of the variations of the visible system level dof’s . As the co-

rotated variations lie in tangent-spaces particular for each individual element, the variation 

of the visible dof’s are needed to connect the dof’s of neighboring elements.

(5.45)

Since , we get the condition  for consistently 

evaluated forces that are conjugate to both the rigid body free, co-rotated variation and the 

variation of the total displacements. It can be shown that this projection brings the nodal 

forces (and moments) of the element into a state of external self-equilibrium. Subse-

quently we will denote a force vector satisfying  with the subscript b ( ), i.e. a 

balanced force vector.  

The last step in establishing the expression of the internal virtual work is to express the 

vectors in a common basis for all elements, i.e. the global basis (or local nodal coordi-

nates):

(5.46)

(5.47)

,    (5.48)

In the previous derivation we were relying on the existence of a stored energy function for 

the element. This would limit the use of the formulation to non-dissipative systems such as 

hyperelastic material behavior. It might be more pertinent to start the derivation by postu-

ṽ( )CRδ P ṽ( )CRδ P ṽδ= =

ṽδ P ṽδ 1 P–( ) ṽδ+ ṽ( )CRδ ṽ( )Rigδ+= =

ṽ
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CR⋅=
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CR⋅ ṽδ PT f̃e

CR⋅= =
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f̃e PT f̃e= f̃b

Ueδ ṽδ PT f̃e
CR⋅=

Tne
T ṽδ Tne

T PT f̃e
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vδ Tne
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CR Pn
TRrefe
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lating that the variation in the strains should vanish during rigid-body motion, an assump-

tion that is well founded as then the strains are a function of either the left or the right 

stretch tensor only. By applying the projector, we then enforce this a priori, without any 

knowledge about the internal formulation of the element. Looking at the projector as a 

method of separating the variations gives a different perspective on the formulation: In the 

same sense that the Galerkin approximation is a projection from an infinite dimensional 

space to a finite dimensional one, EICR is a projection of the problem in finite dimen-

sional space onto two separate finite dimensional subspaces. The imposition of vanishing 

virtual strains during rigid body motion results in zero virtual work of ‘invisible’ nodes. 

This point of view also brings forth an aspect worth noting about elements containing 

internally condensed nodes: 

Internal nodes with non-zero residuals will invalidate the formulation.

Obviously, a system floating in space will only do so in a rigid manner if the system is in 

internal equilibrium. All is not lost, however, as all that is needed is a local equilibrium 

iteration on the condensed nodes. In certain situations this might be cumbersome, and the 

system of internal nodes may even become singular. The question that naturally arises is: 

What is the effect of neglecting the lack of internal equilibrium? As so often is the case in 

discussions about consistently or inconsistently derived tangent operators, the effect is not 

detrimental, and may even aid convergence in some instances. What is also noteworthy, is 

that the tangent stiffness becomes consistent (or at least not less consistent) on the equilib-

rium path.

Finally, the relationship of (5.46) with the co-rotational formulation of Bergan et al. [18] 

should be noted. In their formulation, the forces are not projected onto the subspace of bal-

anced forces, leading to the following expression for the virtual work:

(5.49)

This is equivalent to using the pull-back/push-forward operator . In the formula-

tion by Bergan et al., the tangent operator is obtained as the derivative with respect to the 

co-rotational dof’s in a manner similar to the EICR. As the forces are not projected onto 

the space of balanced forces, the formulation results in an unsymmetrical stiffness-matrix 

Ueδ vδ Tne
T f̃e⋅=

Tne
T T0e
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for elements that are not in self-equilibrium. In contrast, EICR yields symmetry on the 

equilibrium-path1.

5.2.2  Assessing the projector

As will be shown later, the crucial component that makes EICR a method of improving the 

invariant properties of any element, is the action of the projection. It is then essential that 

the matrix  is indeed a projector. Combining and reorganizing Equations (5.25) and 

(5.34), give:

, (5.50)

where

(5.51)

and

,      (5.52)

1. Since symmetry is also determined by loading and boundary-conditions, this claim is not always valid. 
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It is easily verified that  is an orthogonal projector for any element. If the bi-orthonor-

mality relation

(5.53)

is satisfied,  is also guaranteed to be a (oblique) projector.

At the outset we wanted to find a relation such that

(5.54)

Where  is a projector. This leads to the following sufficient and neces-

sary condition:

(5.55)

By observing that  for all elements with a local coordinate system positioned at 

the element’s nodal centroid, condition (5.55) reduces to:

(5.56)

As shown by Haugen [16] this is automatically satisfied as the stronger requirement

(5.57)

necessarily holds for a correctly developed -matrix. The significance of (5.57) can be 

realized by noting that any vector pre-multiplied by  contains rigid body translation 

only, thus  if and only if this translation also leads to a rigid-body rotation.

5.3  Derivation of the tangent stiffness

The consistent element tangent stiffness is found as the variation of the balanced internal 

forces of the element.

(5.58)

PT

G̃S̃ S̃TG̃T 1= =

PR

vδ( )CR 1 PT– PR–( ) vδ P vδ= =

P 1 PT– PR–( )=

PRPT PTPR+ S̃G̃PT PTS̃G̃+ 0= =

PTS̃ 0=

S̃G̃PT 0=

G̃PT 0=

G̃

PT

G̃PT 0≠

k vδ fbδ Tneδ T PT f̃e Tne
T Pδ T f̃e Tne

T PT f̃δ e+ += =

kGR vδ kGP vδ km vδ+ +=
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5.3.1  Variation of the internal force vector (km)

Frequently, the internal force-displacement relation of the element is assumed to be linear 

within EICR. Generally, this assumption is unwarranted, but often useful as it allows us to 

re-use existing elements within the framework. The critical issue is not whether the ele-

ment formulation is linear or not, but rather to what tangent-space the incremental rota-

tions are referred to. Linear elements generally use additive rotations, as if we are 

operating in the tangent-space of the identity. The following derivations are then the same 

as if we are using an element that is formulated accordingly, examples of which are the 

beam elements developed by Cardona and Géradin [8]. If we denote  as the (consis-

tently derived) stiffness matrix of the element, we have in most cases one of the following 

two situations:

Elements formulated at :

(5.59)

Elements formulated at :

The moments are now no longer conjugate to the instantaneous rotations, and a transfor-

mation of the form  is required in order to transform the 

internal virtual work. If the internal force vector of these elements is denoted , we get 

through the equivalence of virtual work, the expression:

, where (5.60)

It is important that the transformation (5.60) is performed before using the internal force-

vector in the stiffness terms in the following sections. Using Equation (5.60) in the varia-

tion of the forces, we get:
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(5.61)

(5.62)

(5.63)

According to Nour-Omid and Rankin [26], the matrix  is given as:

(5.64)

(5.65)

(5.66)

(5.67)

As noted by several authors, the expressions for  and  are ill conditioned for small 

angles, and a truncated power series should be used for  radians.

(5.68)

(5.69)
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5.3.2  Variation of the base-vector matrix (kGR)

In the co-rotational procedure, the geometric contribution to the stiffness matrix obtained 

from the variation of the transformation-matrix  is the most significant. It represents 

the change in moments and forces during an infinitesimal rigid body motion.

(5.70)

From Equation (5.22) we have:

(5.71)

(5.72)

where

,              (5.73)
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5.3.3  Variation of the projector (kGP)

First we start by establishing some fundamental relations. The fact that  is a projector 

reveals some useful and important properties. Using the fact that  we get

(5.74)

Also, by premultiplying (5.74) with  and rearranging we get

(5.75)

These relations will prove essential in the proof that the variation of the projector can be 

split into two parts, where  is independent of the variation of  and with 

, and  depends solely on the variation of  with 

. In Equation (5.50), the only configuration dependent matrix is 

, so the variation of  then evaluates to:

(5.76)

(5.77)

This proves that the first term on the right-hand side of (5.74) is independent of .

(5.78)

However, since , then , which completes the proof. Fur-

thermore, if  can be split into a 3x3 matrix  with full rank and a 3x(6N) constant 

matrix , then (5.78) evaluates to zero. This is easily shown by observing that 

(5.79)
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Thus the variation of any nonsingular matrix can be written as

(5.80)

By applying this to the matrix , we get

 , (5.81)

Since , then 

(5.82)

This relaxes the condition reported in [16] and [13], as the forces does not factor into the 

condition in order to satisfy relation (5.82). If one cannot factorize  in such a way, then 

 evaluates to zero if , i.e. if the element forces are in rotational 

equilibrium.

In order to find the geometric contribution to the tangent stiffness, we need to find the 

variation of the transpose of the projector contracted with the unprojected element forces. 

Using (5.74), (5.77) and (5.78) we obtain:

(5.83)

Here  is the balanced (projected) forces and  is the unbalanced 

forces (null-space of ). The term  will be neglected in the 

following, because it will either be exactly zero, or it will vanish, based on the assumption 

that the (rotationally) unbalanced forces are small. This assumption is justified if the ele-

ment in question is capable of describing the current state of deformation. If, however, the 

unbalanced forces are large, thereby making the contribution from  significant, the 

internal description of the element itself will be questionable. For linear elements, where 

the deformations are measured in a co-rotating “best fit” frame, the unbalanced forces will 

be significant only when the deformations are large.
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PT k̃GPG ṽδ PT G̃δ TS̃TPR
T f̃u–=

kGPG
84 Derivation of the tangent stiffness



Theoretical basis and FEM technology
The term  is the usual term denoted  in [10, 13, 16, 26]. Per-

forming the variation and contraction of forces, we obtain the explicit expression:

(5.84)

(5.85)

Again, by observing that , and thus , we see 

the interesting fact that an infinitesimal deformational motion produces unbalanced forces 

from balanced forces through , whereas  produces balanced forces from unbal-

anced forces.

k̃GPS ṽδ G̃T S̃Tδ f̃b–= k̃GP

k̃GPS ṽδ G̃T S̃Tδ fb– G̃T S̃I
Tδ   0 fbI

I
∑–= =

G̃T Spin ũdI
CRδ( )  0 ñI

T
  m̃I

T
T

I
∑–=

G̃T Spin ñI( )–  0 ũdI
CRδ( )T ω̃d1

CRδ( )T
T

I
∑–=

G̃T Spin ñ1( )
T

0 …Spin ñN( )T 0 vδ( )CR–=

G̃TF̃n
T vδ( )CR– G̃TF̃n

TP ṽδ–= =

F̃n

Spin ñ1( )

0
.
.
.

Spin ñN( )

0

=

P Pδ P Pδ 1 P–( )= k̃GPS 1 PT–( )k̃GPS=

kGPS kGPG
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Box 5.2   EICR-framework

Given : , , ,  ,  and  , determine  and 

• If the element is based on additive rotations, transform and add moment correction 
stiffness:

• Construct projector:

• Project forces and stiffness:

• Add rigid rotation contribution:

 

• Add contribution from projector:

 

• Transform to global coordinates:

f̃e k̃e Tne θ̃dI
CR ũdI

CR G̃ f k

f̃e HT f̃e=

k̃e HTk̃eH M̃+=

S̃I Spin X̃I ũdI
CR+( )=

P 1 PT– S̃G̃–=

f̃ PT f̃e=

k̃ PTk̃eP=

k̃ k̃ F̃nmG̃–=

k̃ k̃ G̃TF̃n
TP–=

k Tne
T k̃Tne=

f Tne
T f̃=
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5.4  Element independence and the projector

The key to element independence actually lie in Equations (5.74) and (5.75). Without this 

property, the procedure described earlier reduces to a general procedure for generating 

non-linear terms associated with rigid body motion.

If the element produces forces that are conjugate to the co-rotated dof’s, then the proce-

dure requires no justification. If, on the other hand, relation (5.54) is not given as a projec-

tion, the element forces must be conjugate to the co-rotated dof’s, and the consistent 

element stiffness matrix must be derived as the derivative with respect to the co-rotated 

dof’s. This can be illustrated as follows:

(5.86)

(5.87)

Where  is not necessarily given as a combination of a projector and an orthogonal 

matrix. The principle of virtual work now dictates that

(5.88)

where  is the variation of the strain energy (internal virtual work). This simply states 

that the forces are correctly evaluated and free of spurious self-straining due to rigid body 

motion. By inserting (5.86) into (5.88) and performing a truncated Taylor-series expansion 

we get:

(5.89)

ṽδ( )
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∂ ṽ( )CR Q  = PTne( )=

Q

Uδ ṽδ( )CR ṽCR∂
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i Q vδ f̃e Cn

i⋅ vδ QT f̃e Cn
i⋅= =

vδ QT f̃e Cn
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 
 
 
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where

(5.90)

In Equation (5.89),  is the configuration at state n and iteration i and , i.e. 

the initial configuration at state n is the configuration at the previously converged solution. 

The term  includes both material terms and internal geometric effects. This equation 

relies crucially on consistently evaluated internal forces and internal stiffness, and albeit 

correct, the procedure is not completely element independent. Now, provided we have 

, we can investigate the effect of (5.89) on a generic element. We can write the 

stiffness matrix of any element as:

, (5.91)

where  is the part not complying with a consistently derived tangent stiffness. Substi-

tuting  for  in (5.89) we obtain:

(5.92)

As  we get:

(5.93)

(5.94)

,          ,          (5.95)

The term  produces balanced forces from deformational motion,  produces 

unbalanced forces from deformational motion, and  produces forces from rigid body 

motion (self straining and geometric effects). Thus as long as the inconsistent term  

vanishes, the correct form is reproduced. It is apparent that both consistent and inconsis-

tent stiffness-terms associated with rigid body motion are purged from the matrix. Further-

more, the consistent and only some inconsistent terms from deformational motion are 

kGH v∂
∂QT

f̃e   =  kGR kGP+( )=
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0 Cn 1–=
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T PTGTF̃n
TPPTne– Tne

T PTk̃incPTne+=
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QTk̃eQ QTPTk̃mPQ Tne
T PTk̃incPTne+=

QTk̃mQ QTPTk̃incPQ+=

k̃inc PTk̃incP 1 PT–( )k̃incP k̃inc 1 P–( )+ +=
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def b, k̃inc

def u, k̃inc
rig+ +=

k̃inc
def b, PTk̃incP= k̃inc
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rig k̃inc 1 P–( )=
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def u,
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rig
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retained. This effectively means that EICR has a slight influence on the internal force-dis-

placement relation of an element. Haugen [16] has likened this to the effect of projecting 

the stiffness matrix onto the deformed configuration, which then corresponds to the elimi-

nation of the term . What is certain is that the consistency of the element stiffness 

does not deteriorate on account of the transformation. Comparing this to the formulation 

by Bergan et al. [18], we can see some fundamental differences. 

(5.96)

(5.97)

The most striking difference is that the term relating to the variation of the projector will 

remain after the transformation of the element stiffness. This is not unreasonable, since 

this term is not included in the resulting geometric terms. In this formulation, the matrix 

 used in  is based on the unprojected forces. When linear elements are used inter-

nally, EICR will have the further advantage of being free of the term .

5.5  Notes on implementation

In the preceding, the EICR was presented in a general form, without explicitly establish-

ing the matrix , which depends, not only on geometric considerations, but the personal 

choices of the developer as well. From the perspective of a computer implementation this 

is also the most versatile and most easily implementable form, primarily because it 

requires little effort to implement a new ‘geometry’; just add the corresponding -matrix. 

With this said, it should be noted that this versatility comes at great costs in CPU-time, 

originating from both unnecessary memory requirements and floating point operations 

(flops). As flops are the most tangible problem1 the following illustrates the potential sav-

ings in tailoring the procedure to a specific geometry. The approximate number of flops 

needed to calculate the necessary matrices are collected in Table 5.1 In the columns under 

the heading ‘Generic’, the only optimization of the ‘naive’ implementation has been that 

1. Memory management may vary, and the memory-requirement will not exceed capacity. 
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of spin-matrix multiplication, taking the number of zeros in the -matrix into account, 

and in the ordering of the multiplications in . By comparing the columns represent-

ing the 2-node element, both the generic implementation and the optimized version, we 

see that the optimized implementation require only approximately 11% of the flops 

needed in the generic code. In addition to the flops in Table 5.1 comes the cost of  

flops to transform the stiffness-matrix into the global basis. 

The table shows that greatest cost actually lies in the application of the projector to the 

stiffness matrix. It should be noted, though, that there may be significant improvement by 

performing the operation with an implicitly formed projector.  

5.6  Final remarks on the EICR and the internal element formulation

In the previous sections, we have presented the formulation arguing that the formulation is 

valid even for states of finite deformation. This is of course subject to the condition that 

the element can handle such deformations, and herein lies the challenge for the aspiring 

developer: How to produce an element that handles finite (or moderate) deformations cor-

rectly, whilst retaining efficiency. Much work has been done in the field of finite deforma-

Table 5.1 Flop-count of operations

Generic
(N nodes)

Generic
(2 nodes)

Specific
(2 nodes)

-matrix 288 0

276 27

6624 792

1116 16a

a. Addition to the stiffness matrix is counted for all non-zero elements

576 168a

Sum 8880 1003

Fn

KGPS

120N2

P 72N2

PT f̃ 72N2 6N–

PTk̃mP 864N3 72N2–

k̃GPS G̃TF̃n
TP–= 288N2 18N–

k̃GR F̃nmG̃–= 144N2
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tion elements and for beam-type elements specifically; the family of elements described 

by Simo et al. [35, 36, 37] and others has an excellent performance in large deformation 

problems. However, using these elements within the EICR framework does not produce 

an improvement in the originally developed element, as they are already invariant to rigid-

body motion. The key concept to keep in mind is that EICR assures that spurious self-

straining modes are purged from the element stiffness matrix. In conjunction with a co-

rotated measure of deformation, the EICR offers a different set of challenges as frame 

invariance is handled by the framework. At present, the bulk of the work done on this for-

mulation has been in the very successful re-use of existing linear elements, significantly 

extending their domain of validity. As they are generally computationally inexpensive, 

they are attractive and well suited candidates in most applications. By the use of very 

refined meshes, these elements can even handle large or moderate deformation problems, 

provided the stress-strain relation remains valid. In fact, as the mesh is refined, the ele-

ment deformations may be smaller than the strains. However, these very refined meshes 

runs the risk of numerical instability, as well as being prohibitively costly in both memory 

requirement and floating point operations. A different approach is illustrated in Table 5.2, 

where the column EICR-tailored is used to describe elements specifically formulated so 

that they would display spurious self-straining when taken out of the EICR framework. 

This would allow for gain in accuracy in the deformational modes, at a small computa-

tional cost compared to the basic linear elements. At present, not much work has been 

done in pursuing and documenting this latter approach, with the notable exception of the 

work by Eggen [10] on a beam-type element. While higher order effects were effectively 

captured with a low number of elements, this came at a relatively high computational cost, 

not realizing the predicted small increase in flops, compared to the linear elements.

The final approach is particularly attractive for small deformation problems where the pri-

mary interest is to either:

• predict critical points by linearized buckling, or 

Table 5.2  Conceptual performance of elements

Geometrically exact EICR-tailored EICR-linear linear
Comp. cost High Medium Medium/Low Low
Accuracy High High Medium Low
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• detect critical points in the solution without path following of post-critical range. 

In most practical problems, the importance of a consistent tangent stiffness is not para-

mount as convergence is nearly always guaranteed, even if internal geometrically nonlin-

ear terms are neglected in the element force vector. By simply adding internal geometric 

terms based on e.g. stability functions, more accurate prediction of critical points is 

obtained. These contributions are generally extremely simple and cost effective. The main 

objection to this approach lies in the fact that these terms will not be reflected in the force 

recovery process, thereby polluting path following and bifurcation analyses.

While it might seem extravagant to use a co-rotational procedure in connection with ele-

ments based on a Total Lagrangian formulation, there are advantages. As reported by Car-

dona and Géradin [8], when developing an element based on interpolation of rotations, 

difficulties arose when rotations at one node exceeded , while the others did not. It 

should be noted that this might occur even for infinitesimal deformational rotations. To 

correct the problem, they recommended a UL-formulation if rotations of this magnitude 

were to be expected. This came, however, with the added cost of storing the previously 

converged state in the iteration process. While not eliminating the problem, applying the 

co-rotational procedure in the update would greatly reduce the probability of such an 

occurrence. 

5.7  Implemented elements and internal nodes

In the implemented code, several beam formulations can be used in conjunction with the 

EICR framework, and a short summary of these is presented. All elements are reduced to 

the system with two visible nodes depicted in Figure 5.4 through simple static condensa-

tion of internal nodes.

• Euler-Bernoulli small strain (EB)
This is the classical small strain formulation based on cubic Hermite interpolation of 

displacements normal to the beam axis. Axial deformation and torsional rotations are 

linearly interpolated. Planes normal to the beam-axis are assumed to be plane and nor-

mal to the deformed axis after deformation. Shear deformations can be included in an 

π
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average sense, resulting in the Timoshenko beam formulation (EBT). Deformations are 

measured in the co-rotating frame.

• Linear, small strain Mindlin-element ( )

Classic  small strain beam element with linear interpolation of displacements and 

rotations. Integration is performed with a one-point integration scheme. Deformations 

are measured in the co-rotating frame.

• Simplified UL-formulation
This is an adaptation of a simple UL beam element described by McGuire et al. [25]. 

The principal difference between this formulation and the EB-beam is the inclusion of 

some geometric terms. Deformations are measured in the co-rotating frame. The imple-

mentation results in an inconsistent stiffness matrix as the geometric terms are not mir-

rored in the force vector. A fully consistent formulation could be obtained at the cost of 

maintaining information of the deformations at the previous converged state.

• Linear, reduced Cosserat rod (LRC)
The details of the Cosserat theory are presented in the previous chapter. This version of 

the element is based on linear interpolation of incremental rotations and displacements, 

and a one-point integration scheme. After each increment, the previous deformations 

are discarded and the incremental deformations are obtained as the deformations mea-

sured in a co-rotating frame.

Figure 5.4  Element degrees of freedom
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• General polynomial Cosserat rod ( )

This formulation is the full Cosserat rod theory, generalized for any N-node element of 

polynomial order  and a gp -point numerical integration scheme. In this ver-

sion, only Gauss-Legendre integration is implemented. Deformations are measured as 

the total deformations. Internal nodes are statically condensed either directly or after a 

state of internal equilibrium is obtained.

• General B-spline Cosserat rod ( )

Same as the general polynomial Cosserat rod, with the Lagrange-polynomial basis 

replaced with a B-spline basis with a uniform knot sequence. The degree d of the spline 

can be at most N-1, where N is the number of nodes. Integration is performed with a gp-

point integration scheme over each knot interval, resulting in  numerical inte-

gration points.

To verify both the implemented code and the contention that EICR does not introduce any 

additional source of error, even for arbitrary deformations, the problem in Figure 5.5 was 

analyzed with high order  elements. These elements are properly invariant to rigid-

body motion and should therefore be unaffected by the transformation. The analyses were 

performed with ten equal load increments with a simple load correction, i.e. the load incre-

ment was recursively halved if the solution did not converge or an indefinite stiffness 

matrix was detected.

Figure 5.5  Model problem 1
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Figure 5.6 shows the deformed state at 0%, 33%, 66% and 100% of the final load-level. 

The beam clearly experiences a high degree of localization of strain at the base, with cou-

pled twisting and bending. In this situation, the linear, uncoupled assumption of the small 

strain beams is unjustified. 

As it is difficult to obtain a quantitative measure of the effect of EICR on the stiffness 

matrix, the following procedure was adopted: The beam was analyzed with a single ele-

ment of the  type. The internal nodes were statically condensed, leaving only the 

dof’s at the two end nodes. The condensation was preceded by a) no internal equilibrium 

considerations, and b) internal equilibrium iterations. During the analysis, the error-esti-

mate  was monitored for every instance of the stiffness matrix, 

where  is the EICR transformed stiffness, and  is the unchanged stiffness. Simi-

larly, the measure  was monitored. The problem was subsequently 

solved using the transformed .

The error-measure e seems almost randomly distributed when the element is not brought 

into a state of internal equilibrium. As internal equilibrium is reached at the end of an iter-

ation-cycle, and destroyed after the first increment, the graphs actually display a kind of 

‘shark-tooth’ pattern.

Figure 5.6  Deformed state
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Due to both numerical noise introduced by the transformation, and the fact that the inter-

nal nodes did not exactly satisfy equilibrium, e did not completely attain the desired value 

of zero in the case b). The critical factor seemed to be the unbalanced internal nodes, and e 

was consistently in the order of the norm of the internal unbalanced force vector. In Figure 

5.8, instance #40 can be seen to deviate significantly. At this point, the beam had problems 

attaining equilibrium, resulting in a procedure similar to case a). The general conclusion 

EICR + 

Figure 5.7  Error measures case a) (not in internal equilibrium) 

EICR + Internal equilibrium - 

Figure 5.8  Error measures case b) (with internal equilibrium iterations)
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that can be drawn, is that the transformation primarily introduce noise in the stiffness 

matrix of the -elements.

To some extent, the results presented here contradicts a statement made by Crisfield [9]. 

He claims, without making any reservations, that internal nodes can simply be statically 

condensed when using this formulation. Although his discussion is limited to linear ele-

ments, the problem of nonzero residuals will also appear for linear elements when bound-

ary conditions are imposed on internal nodes.

COSPN
d n,
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 Chapter   6 
Verification of code

6.1  Introduction

In beam type analyses, most parameters in the cross section elasticity tensor is readily 

available from closed form solutions. This is not, however, generally the case for stiffness 

parameters associated with shear-deformation,  and  specifically. Although sim-

plified expressions (and sometimes closed form solutions) exist for some cross sections, 

these parameters must generally be obtained by numeric analysis if accurate results are 

needed for most geometries. In the following, stiffness parameters are obtained from finite 

element analyses using the cross section analysis tool CrossXTM [2]. For rectangular cross 

sections, the following formula is sometimes used for the St. Venant torsion constant :

(6.1 a and b)

In Figure 6.1a, results obtained by these two approximate formulas are compared with 

finite element results, for different height to width ratios. Figure 6.1b shows how the shear 

Figure 6.1a) Deviation of  for varying      b)  as a function of  (isotropic material)
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area modification factor  ( ) varies with the value of Poisson’s ratio  for a 

rectangular cross section. CrossXTM was developed to handle isotropic materials only, and 

the results obtained by the program can be regarded as “exact” for reasonably fine element 

meshes. In the case of orthotropic materials, CrossXTM will produce stresses that violate 

the boundary conditions (traction free perimeter). To circumvent this problem,  is 

used when modelling glue laminated timber (glulam). With this modification, reasonably 

accurate results are obtained, yielding for instance the well known value of  for 

rectangular cross sections.

In the following, all elements based on linear theory are denoted by abbreviations related 

to the element only. The use of co-rotated deformational measures and EICR transforma-

tion are implicitly implied.

6.2  Elastica

In the original paper of Simo and Vu-Qouc [36], the following example of the elastica 

problem (Figure 6.2) was presented with the data , ,  and 

. For this load, the beam curls around itself twice. This result was achieved in 

only two iterations, using elements with linear interpolation functions and one-point inte-

gration. Figure 6.2 actually misrepresents slightly the results from this analysis. The actual 

final configuration of the beam looks like Figure 6.3a, where the real solution is drawn as 

a thin shell, intersecting the results from the analysis. Looking at Figure 6.3b, one might 

think that the two-point integration scheme is more appropriate since the nodal points 

Figure 6.2  Elastica
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(nearly) coincide with the circle. However, the results obtained here are actually due to 

serendipity. They are highly dependant on the value of , as both axial and shear forces 

are introduced in the two-point integrated element.

This result is by no means surprising, and in full accordance with the equivalence of the 

reduced integrated element and mixed methods in the linear domain. Under normal cir-

cumstances, the fully integrated element will be hopelessly stiff due to the well docu-

mented shear-locking phenomenon of  beam elements. This shear-locking is a direct 

consequence of the elements inability to account for bending in any other way than as 

shear deformation.

The co-rotated elements are not able to reproduce the astonishing convergence rate of the 

finite strain elements. In fact, the rapid convergence of these elements is due to both the 

internal storage of curvatures, and the equality of  and . For values other than 

, more modest convergence rates are observed. In the case of the co-rotated 

elements, the deformational rotations are extracted from a rotation matrix whenever cur-

vatures and deformations are calculated. The predictor step in this analysis will yield 

incremental rotations exceeding 180º if no form of archlenght or displacement control is 

employed. Thus, the extracted deformational rotations will be erroneous in the first itera-

tion. A simple form of displacement control is to monitor the maximum incremental nodal 

rotation, and scale the increment in the full solution if it exceeds a predefined value. Using 

this strategy, the EBT and RM elements converged in 14 iterations when the maximum 

1 point integration 2 point integration
Figure 6.3  Results obtained with 5 Cosserat elements with linear basis
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incremental nodal rotation was restricted to 70º. The LRC element was able to handle 

larger incremental rotations (180º), and converged in 7 iterations.

6.3  45º cantilever bend with transverse point load

.

An example, studied by several authors, is the 45º degree cantilever beam with transverse 

point load (see Figure 6.4). An attempt to replicate the results obtained by Simo and Vu-

Quoc [36], using 8 linear elements, failed when “exact” cross section parameters obtained 

by CrossX were used. It appears that [36] uses  and , and the fol-

lowing comparisons are therefore based on these parameters.

First, the beam is loaded in five steps of equal magnitude (75 N). In Table 6.1 the residual 

norm in the fifth load increment is compared with the results presented by Simo and Vu-

Figure 6.4  45º bend
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Quoc using both a non symmetric and a symmetrized stiffness matrix. The results from the 

current implementation hardly deviates from the results of  Simo and Vu-Quoc. In addi-

tion to using 8 linear Cosserat elements, the problem is analyzed using 8 LRC elements. 

As expected, the LRC element does not perform quite as well as the fully consistent ele-

ment:

It is worth noting that, although only slightly, the symmetrized stiffness matrix actually 

improves the convergence properties of LRC for this particular case. This is probably due 

to chance, and should not be attributed to any intrinsic property of the element. In [36], the 

energy norm was also presented for the symmetrized stiffness matrix. As seen in Table 

6.2, the present analysis corresponds well with the analysis by Simo and Vu-Quoc:

Table 6.1  Residual norm of step 5 (  and )

Non symmetric Symmetric

Iter. Current Simo et. al. LRC Current Simo et. al. LRC
0 0.7500E+02 0.750E+02 0.7500E+02 0.7500E+02 0.750E+02 0.7500E+02
1 0.1465E+06 0.147E+06 0.1464E+06 0.1469E+06 0.147E+06 0.1468E+06
2 0.4264E+03 0.426E+03 0.5101E+03 0.4232E+03 0.423E+03 0.4492E+03
3 0.1736E+04 0.173E+04 0.1696E+04 0.1401E+04 0.140E+04 0.1429E+04
4 0.2991E+01 0.299E+01 0.1733E+03 0.8441E+00 0.844E+00 0.1270E+03
5 0.1766E+00 0.177E+00 0.9425E+01 0.6613E-01 0.661E-01 0.7200E+01
6 0.2217E-07 0.230E-07 0.2380E+00 0.1898E-04 0.190E-04 0.5733E-01

Table 6.2  Energy norm of step 5 using symmetrized matrix (  and )

Iter. Current Simo et. al. LRC
0 0.4100E+03   0.410E+03   0.4100E+03
1 0.2283E+05   0.228E+05   0.2283E+05
2 0.4535E+01   0.453E+01   0.4535E+01
3 0.2580E+01   0.258E+01   0.2583E+01
4 0.9498E-04   0.950E-04   0.5181E-03
5 0.2691E-08   0.269E-08   0.1508E-05
6 0.2746E-13   0.275E-13   0.8784E-10

It Ip= Aα A=

It Ip= Aα A=
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The beam was also analyzed for a load history of 300 N, 450 N, and 600 N. As in the anal-

ysis reported by Simo and Vu-Quoc, convergence was attained in 13, 8 and 6 iterations 

respectively. Table 6.3 presents the final position of the tip for the various load levels. 

In closing, attention should be paid to the difference in torsional rigidity. When comparing 

 and , we get the ratio . Although this is not a significant difference, it 

will noticeably affect the results with respect to convergence. The results obtained when 

using the parameters from CrossX, are presented in Table 6.4.  

For the purpose of comparing the values of Table 6.4 with the values when a refined mesh 

is used, 80  elements resulted in the final tip position (15.56, 46.89, 53.61). As 

expected, the  and LRC elements are quite similar. The results from the EBT ele-

ment, however, are somewhat better than those of the others. The underlying formulation 

of the linear Cosserat rod is not too different from that of the RM element. Accordingly, 

the results are not significantly better than the results from the RM element (not presented 

here). Results that are closer to EBT would be obtained if higher order  elements 

are used. This is a natural consequence of the polynomial order of the interpolation func-

tion of the displacements. Even though this is a large part of the difference in the solutions, 

there are also some more subtle differences that will be discussed in the following section. 

Table 6.3  Tip position (  and )

Current Simo et. al.

Load [N] x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]
300 22.3288      58.8447 40.0756 22.33      58.84 40.08
450 18.6152      52.3159 48.3939 18.62      52.32 48.39
600 15.8018      47.2328 53.3695 15.79      47.23 53.37

Table 6.4  Tip position (  and )

COPO  (Current) LRC EBT

Load [N] x [mm] y [mm] z [mm] x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]
300 22.20      58.60 40.36 22.21 58.61 40.36 22.14 58.57 40.48
450 18.48      52.05 48.59 18.49 52.05 48.59 18.40 52.01 48.73
600 15.68      46.98 53.50 15.69 46.98 53.50 15.59 46.93 53.65

It Ip= Aα A=

It Ip Ip It⁄ 1.19=

It Ip≠ Aα A 1,2⁄=

2
1

COPO2
1

COPO2
1

COPO
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6.4  Combined torsion and bending

The example described in Section 4.7 serves as a good test of the elements and their per-

formance. The combination of torsion and bending serves as the most severe and neces-

sary component in the verification of 3D beam element behavior in static analyses. If the 

deformations are restricted to planar motion only, the discussions in the previous chapters 

are for the most part rendered mute, since rotations are reduced to scalar quantities. For 

this particular case, a minute difference in formulation will produce a relatively large dif-

ference in the tip displacements due to the large deformations at the base of the beam (see 

Figure 5.6). In Table 6.5, the tip displacements from a variety of elements and meshes, are 

presented, where the numbers in parentheses are the number of elements used in the anal-

ysis. The model is loaded in 100 equal load increments.

The results obtained with 200 LRC elements are accurate to 5 digits when compared to a 

reference solution from 200  elements. Surprisingly, the linear elements are accu-

rate to approximately 3 digits when 19 elements are used, but only accurate to 2 digits for 

Table 6.5   Tip displacement

Element  [mm]  [mm]  [mm]  [deg]  [deg]  [deg]

EICR - EBT   (19) -4564.60 1436.66 6945.01 -109.170 38.6652 -91.0047
EICR - EBT (200) -4583.22 1417.97 6968.38 -108.939 38.8310 -90.9413
EICR - EB   (200) -4560.66 1440.44 6931.22 -108.924 38.8857 -90.8928
EICR- RM    (19) -4560.16 1443.18 6938.76 -109.193 38.6572 -91.0291
EICR- RM  (200) -4583.18 1418.03 6968.33 -108.939 38.8310 -90.9415

       (1) -4547.63 1508.22 6911.93 -109.593 38.1792 -91.3541

       (1) -4563.24 1438.58 6945.43 -109.072 38.7488 -90.8543

       (1) -4566.26 1437.25 6949.01 -109.058 38.7631 -90.8610

LRC            (200) -4566.57 1437.35 6949.30 -109.057 38.7632 -90.8635

E2

E3
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the refined mesh. Limited testing has revealed that the critical difference is the pre multi-

plication of   with the moment correction matrix, , thereby softening the element. If 

the first 2 m are modeled with 500 RM elements, while the last 8 m are modeled with 100 

elements, the vertical displacement become 6968.63 mm, while it is reduced to 6952.05 

mm if pre multiplication is omitted. However, excluding this term would adversely affect 

convergence for coarse meshes. Furthermore, the situation is not quite so simple as this 

test may indicate. In the finite strain formulation, stretching of the beam and shear forces 

will influence the moments, while this is only accounted for in the small strain elements 

by the EICR transformation. Without resolving this issue, it is still appropriate to note that 

there is a difference in the obtained results that is not solved by further mesh refinement. 

In Figure 6.5 the relative deviation in displacements are plotted as a function of load for 

some of the elements in Table 6.5  Clearly, the EBT element corresponds quite well with 

the finite strain elements. 

This problem is also a good test for the simplified implementation of the finite strain for-

mulation. When 10 LRC elements are used, the results are almost identical to those of the 

fully implemented version, although somewhat poorer when the deformations are very 

Figure 6.5  Deviation in displacements vs. load
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large. Figure 6.6 shows the deviations when more moderate deformations are considered. 

Although modest compared to the deformations in Figure 6.5, the twist of the beam is 

approximately 20º when the load is 10% of that in the original problem.

Finally, the beam was subjected to four equal load increments from 0 to 10% of the origi-

nal load(100 kN and 70 kNm), using 10  elements only. Convergence (in energy norm) 

was attained in 4, 5, 5, and 6 iterations for the LRC element, while the full element formu-

lation converged in 4, 4, 5 and 5 iterations. The RM element also converged in 4, 4, 5 and 

5 iterations with only slightly poorer results than the LRC as seen in Table 6.6.

Figure 6.6  Deviation in displacements vs. displacements (load  10%)

Table 6.6   Tip displacement

Element  [mm]  [mm]  [mm]  [deg]  [deg]  [deg]

EICR- RM  (10) -5.7241 256.02 122.68 -19.235 0.70735 -3.0300
LRC            (10) -5.7884 258.14 122.87 -19.231 0.70778 -3.0466

      (10) -5.7889 258.13 122.95 -19.231 0.70778 -3.0466

    (200) -5.8283 257.78 123.57 -19.270 0.70866 -3.0439

EBT (200)
LRC (200)
LRC (10)
COSP2

1 1, (10)
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6.5  Flexural buckling

The properties of slender beams and columns with respect to elastic stability has been 

thoroughly studied throughout the past 150 years, primarily based on analytic solutions of 

the differential equation of the beam. Accordingly, closed form solutions of varying 

degree of complexity exist for many simple systems. Just as the complexity of the under-

lying differential equation influences the closed form solution, the formulation of an ele-

ment will determine the effects that are captured in a linearized buckling analysis. Thus, 

the following sections are dedicated to the study of the analytical solution to which the 

element converges, as well as the accuracy of the described elements.

6.5.1  Rate of convergence and accuracy

To investigate and verify the accuracy of the implemented elements, we proceed with a 

simply supported beam with a compressive end-load as depicted in Figure 6.7. The classi-

cal solution to this problem, commonly known as the Euler load, is given by 

,   (6.2)

For this problem, the cross section and material properties are taken to coincide with the 

parameters used by Eggen [10]. In his thesis, a consistent  element with internal geo-

metric stiffness was developed. It is of interest to see how this element compares with val-

Figure 6.7  Euler beam
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ues obtained by simply including internal geometric stiffness based on simplified 

assumptions. These internal geometric stiffness terms are merely based on the interaction 

of bending of the beam and axial forces, subsequently denoted Pδ-effects.

The Euler-Bernoulli element and the element developed by Eggen [10] do not account for 

shear deformation; the other elements do. How shear will influence the “exact” solution 

will be discussed in the next section. For the moment it suffices to categorize the elements 

in shear elements and no shear elements. The reference value for the non shear elements is 

given by Equation (6.2) (411.2335 kN), while an analysis with 200 -elements 

form the basis for the shear elements (408.645 kN).

Observing the convergence of the standard Euler-Bernoulli element in Table 6.7, it is clear 

that the EICR-procedure only contribute with terms equivalent to P∆-effects (rigid body 

geometric stiffness). In flexural buckling, this element will therefore, in general, be con-

sidered too stiff and it will require a significant number of elements to converge. By sim-

ply including internal geometric stiffness terms based on the Pδ-effect, a far better element 

is obtained. Figure 6.8 shows that this element is virtually indistinguishable from the ele-

ment developed by Eggen. It should be noted that this result is applicable in the context of 

flexural buckling analyses only. For nonlinear analyses the added terms may affect con-

vergence rates, and the nonlinear internal behavior of the element will not be reflected in 

the final results.

While the comparisons of the no shear elements are rather straight forward, the situation is 

more complex for the shear elements. When comparing solutions with equal number of 

dofs one should keep in mind that the  elements have to describe two fields (rotations 

and displacements are independent) while the  EBT is based on Hermitian polynomi-

als, thus using all dofs in describing the transverse displacement field. Therefore, one 

Table 6.7  Buckling load of Euler beam-column

Nodes EB 
[kN]

EB+Pδ 
[kN]

Eggen
[kN]

2 - 500.0000 500.0000
3 500.0000 414.3269 414.3270
4 450.0000 411.8838 411.8825
5 432.7768 411.4441 411.4441
6 424.9329 411.3207 411.2470

COPO5

C0

C1
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would expect these elements to be more accurate when shear deformations are of less 

importance. In Figure 6.9 the relative error from a series of analyses is shown using 

meshes ranging from 2 to 8 nodes. For low number of nodes the EBT element with Pδ-

effect included is clearly the most accurate. When 5 and 6 nodes are used, however, the 

high order  elements are as good and even better with respect to accuracy. 

The  elements in Figure 6.9 all employ uniformly reduced integration to avoid 

shear locking. Full integration would significantly stiffen the low order elements. For 

instance, using a  element (8pt. integration) would result in an error of 14.23% 

Figure 6.8  Deviation, no shear elements

Figure 6.9  Deviation, shear elements
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(466.805 kN) while the , presented in the graph, only deviates by 8.61% 

(443.811 kN). This effect is even more noticeable for the  elements; using two 

 elements, thus having the same number of dofs as one  (and polynomial 

order), the error becomes 18.48% (484.1784 kN). This is somewhat surprising since the 

continuity within the  element is higher ( ) than between the two  ele-

ments ( ), and also because the reduced integrated 2×  solution is significantly 

closer to the reference value than that of the  (1.50%).

6.5.2  Effect of shear on the lateral buckling load (cantilever beam-column)

Having verified that the elements behave appropriately for coarse meshes, we can proceed 

to investigate the effect of shear in more detail. For this purpose, we use a selection of axi-

ally end loaded cantilever beams. The equivalent to Equation (6.2), for a beam-column 

restricted to buckle in the 1-2 plane (X-Z plane in Figure 6.10), is:

, (6.3)

Where the three first buckling modes are shown in Figure 6.10. 

Figure 6.10  Lateral buckling of HEB200 ( )
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Equation (6.3) is based on the assumption of no shear deformation. According to Timosh-

enko and Gere [39], Engesser [11] later developed the following solution, incorporating 

the effect of shear:

(6.4)

This solution is takes into account the appearance of shearing forces, normal to the 

deformed beam axis in the buckled state. Timoshenko and Gere [39] extended Equation 

(6.4) by also accounting for the shear deformation of the beam (cross sections which are 

not necessarily normal to the beam axis). In so doing, they obtained the following result:

(6.5)

In the following analyses, 100 elements are used for each element type. This eliminates 

convergence issues, while not causing numerical difficulties. Three types of cross sections 

are used, two of which are assumed to be sensitive to shear (case 1 and 3). In all analyses, 

buckling is restricted to occur in the plane normal to the strong axis.

Case 1: HEB200

The first series of analyses are designed to verify that the shear elements behave appropri-

ately if the beam is infinitely stiff in shear. This is achieved by setting the shear stiffness to 

1000 times the actual value. The results from these analyses are summarized in tables 

5.6.8 and 5.6.9 for beams of length 4 and 2 m respectively.
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The results seem to indicate that the elements behave appropriately. The slight deviation 

from the Euler load in the shear elements is most likely due to the crude method employed 

to exclude shear deformation.

The next set of analyses are performed in order to compare the solutions of Engesser and 

Timoshenko and Gere with the finite element solutions. Three different lengths are used; 

Table 6.8  Buckling loads of 4m HEB200 (excluding effect of shear)

Element
Buckling load #1 
[1000 kN]

Buckling load #2 
[1000 kN]

Buckling load #3 
[1000 kN]

Euler 1.844843 16.60359 46.12108

EB +EICRa

a.  -effect included

1.844843 16.60359 46.12108

EBT + EICR ab

b.

1.844819 16.60162 46.10592

RM+EICRb 1.844895 16.60777 46.15334

LRC 1.844895 16.60777 46.15334

b 1.844818 16.60162 46.10592

Table 6.9  Buckling loads of 2m HEB200 (excluding effect of shear)

Element
Buckling load #1 
[1000 kN]

Buckling load #2 
[1000 kN]

Buckling load #3 
[1000 kN]

Euler 7.379373 66.41435 184.4843

EB +EICRa

a.  -effect included

7.379372 66.41435 184.4843

EBT + EICR ab

b.

7.378984 66.38291 184.2419

RM+EICRb 7.379288 66.40747 184.4312

LRC 7.379288 66.40749 184.4316

b
7.378984 66.38292 184.2422

Pδ

GAeff 1000GA=

COPO4
3

Pδ

GAeff 1000GA=

COPO4
3
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4, 2 and 1 m. It should be mentioned that the beam hypothesis of Navier is maintained, and 

effects such as localized buckling of the web or flanges are not accounted for in this 

description. The results of these analyses are summarized in Tables 5.6.10, 5.6.11 and 

5.6.12.

Table 6.10  Buckling loads 4m HEB200 (including effect of shear)

Element
Buckling load #1 
[1000 kN]

Buckling load #2 
[1000 kN]

Buckling load #3 
[1000 kN]

Engesser 1.82096 14.84619 34.70646

Timoshenko 
and Gere 1.82126 14.99967 36.57987

EBT + EICR
a

a.  -effect included

1.820824 14.81195 34.27144

RM +EICR 1.820959 14.85056 34.73227

LRC 1.821263 15.00417 36.60981

1.821189 14.99910 36.57863

Table 6.11  Buckling loads 2m HEB200 (including effect of shear)

Element
Buckling load #1 
[1000 kN]

Buckling load #2 
[1000 kN]

Buckling load #3 
[1000 kN]

Engesser 7.010700 45.06884 79.66722

Timoshenko 
and Gere 7.027470 49.17256 105.3450

EBT + EICR
a

a.  -effect included

7.006889 44.11650 74.62140

RM +EICR 7.010696 45.07894 79.70137

LRC 7.027465 49.18542 105.4179

7.027190 49.17097 105.3421

Pδ

COPO4
3

Pδ
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3
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In all analyses, the linear elements converged towards the solution of Engesser, while the 

Cosserat rod theory elements all converged towards the solution of Timoshenko and Gere.  

The RM element produces results that are equivalent to the solution of Engesser, while the 

EBT element actually displayed a slightly softer behavior. This observation is also found 

in Figure 6.11, where the lowest curve is that of the EBT element. This figure is a compi-

lation of results from buckling analyses of beam-columns with lengths ranging from 0.5 to 

5 m in increments of 90 mm. The abscissa in the figure is the dimensionless slenderness 

ratio

. (6.6)

The only difference between the geometrically exact finite strain element and the linear 

Reissner-Mindlin element is, in this case, the geometric stiffness matrix. For instance, the 

initial (undeformed) material stiffness of the LRC element is identical to the stiffness 

matrix of the RM element. Thus, the coalescence of the results from the linear Reissner-

Mindlin element and the solution of Engesser is a natural consequence of the lack of inter-

nal geometric stiffness. The geometric stiffness matrix derived in Section 3.6, however, 

contains both internal geometric effects and rigid body terms. These elements are there-

fore able to account for shear deformations more accurately. For the very short beam-col-

umn, however, a peculiar result was observed; the third buckling load is tensile (reported 

in parenthesis in Table 6.12). To rule out error in the derivation of the geometric stiffness, 

Table 6.12  Buckling loads 1m HEB200 (including effect of shear)

Element
Buckling load #1 
[1000 kN]

Buckling load #2 
[1000 kN]

Buckling load #3 
[1000 kN]

Engesser 24.38506 91.77668 117.8273

Timoshenko 
and Gere 25.04516 135.2354 259.1175

EBT + EICR
a

24.23339 84.24643 102.9547

RM +EICR 24.38506 91.78736 117.8907

LRC 25.04515 135.2654
259.2730 
(-165.2604)

25.04426 135.2318
259.1113
(-165.2595)

a.  -effect included
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a nonlinear analysis using these elements was performed. The analysis revealed that the 

predicted singularity is present, and the beam buckles in a purely shear deformation mode. 

The forces at this stage is, however, unrealistically high, resulting in stresses of magnitude 

in the order of the modulus of shear. Attempts of finding a good explanation of this effect 

has not been pursued.

Case 2: Square 100×100

For a square cross sections of isotropic material, the effects of shear are marginal for rea-

sonably slender beams, but the same tendencies as in the previous case are observed: The 

Cosserat rods replicate the solution of Timoshenko and Gere within numerical accuracy, 

while the linear elements are close to the solution of Engesser.

Figure 6.11  Buckling of cantilever column HEB200 L = 500...5000 mm (1st mode)
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Case 3: Glulam beam 

In all previous cases, isotropic material behavior was used and the shear parameter  is a 

good indicator for the effect of shear on the buckling load. For non-isotropic modulus of 

shear, an equivalent  value can be determined. Equating the shear stiffness of a given 

cross section with isotropic material properties with that of a similar cross-section with the 

actual non-isotropic stiffness, we get: 

,           (6.7)

Assuming  is in the range 0 to 0.5,  is bounded by:

(6.8)

Thus it is reasonable to assume that the shear effect on rectangular timber beams is even 

greater than the effect on the HEB200 steel cross section. This assumption is verified by 

Figure 6.12  1st buckling mode of cantilever beam-column 
                                                       with square cross-section (100×100 mm) L = 500...5000 mm
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Figure 6.13, where the relative buckling load is plotted for beams of lengths varying from 

0.6 m to 8 m. 

From a practical point of view, the effect of shear does not seem critical for rectangular 

cross sections. In Figure 6.14, the critical stresses from the buckling analyses are plotted, 

as well as the characteristic allowable stresses in stability problems, , according to   

NS 3470-1, the Norwegian code of practice for timber structures. The allowable stresses 

in NS 3470-1 are based on critical loads obtained without shear effects (Euler load). If val-

ues obtained with the solution of Engesser were used in stead, the allowable stresses, plot-

ted as , would be affected, but not much. For composite timber cross sections, 

however, the effect may be more noticeable.

Figure 6.13  Buckling of cantilever glulam beam-column T30 h×b = 500×100 mm (1st mode)
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6.6  Lateral torsional buckling

6.6.1  Preliminary comments

In order to investigate the effects of orthotropy in a subsequent chapter, plate buckling 

analyses are carried out by FEMplate [4]. FEMplate uses high order thin plate bending 

elements (T18/T21) in combination with the in-plane stresses obtained by a linear solution 

of the membrane problem, using Linear Strain Triangles (LST). The stresses at corner 

nodes are provided as input for the geometric stiffness in the subsequent eigenvalue analy-

sis.

(6.9)

To verify the accuracy of the model, a series of analyses using linear elastic, isotropic 

materials were performed. The results for a simply supported beam, prevented from rota-

tion about its own axis, and subjected to a constant bending moment about the strong axis 

(My) are presented here. Assuming  (no preceding deformation about strong axis), 

the classical solution to the differential equation of the beam is (Timoshenko [39])1:

Figure 6.14  Critical stress

1.  All closed form solutions reported here apply to warping free conditions only

KM λKG–( )x 0=

Iy Iz«
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(6.10)

Hence, the critical moment depends strongly on the torsional stiffness of the beam. In a 

plate analysis, the stress/strain assumption in pure torsion is as shown in Figure 6.16a, 

yielding when integrated the moment of twist. This coincide with the assumption made in 

thin walled theory for cross sections [2]. It therefore seems reasonable to expect that Equa-

tion (6.10), with thin walled parameters, should yield the same result as a plate buckling 

analysis. A more accurate stress distribution, shown in Figure 6.16b, is obtained by 

CrossX [4] through a numerical solution of the warping function [2] as it occurs in St. 

Venant-theory (subsequently denoted “massive theory”). The resulting torsional stiffness 

obtained in these two cases will deviate as the width to height ratio increases. Based on 

Figure 6.15  Simply supported beam subjected to constant bending moment

Figure 6.16   Stress distribution in torsionally loaded beam 
       a) as described by thin plate theory         b) as obtained by solving the warping function
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Equation (6.10) it seems reasonable to expect that scaling the plate buckling results by a 

modification factor

(6.11)

should yield comparative results. Superscripts t and m indicate parameters found by thin 

walled and massive theory, respectively. Alternatively, for the purpose of comparing val-

ues only, the torsional rigidity of the beam model should be based on thin walled theory. 

This is a more general approach that does not rely on the simple form of Equation (6.10). 

The values obtained, however, will not be accurate if the effect of the torsional stiffness is 

significant.

6.6.2  Convergence and accuracy

Similarly to the case of flexural buckling, Eggen [10] performed lateral torsional buckling 

analyses in order to illustrate the performance of his element. Using this example, we can 

illustrate the difference between his element and the result of simply including the geo-

metric terms of the element described by McGuire [25]. This is analogous to the inclusion 

of Pδ effects in the case of flexural buckling. The problem at hand is the lateral torsional 

buckling of a simply supported beam of height = 1 m, width = 200 mm and length = 10 m. 

The material properties are E = 6250 MPa and  G = 390 MPa, and the loading is as shown 

in Figure 6.15.

Figure 6.17 tells a similar story to Figures 6.8 and 6.9, with the exception of the similari-

ties in the elements of Eggen and McGuire. In this case, the element developed by Eggen 

is clearly the more accurate. Another difference is the improvement in performance of the 

 element relative to the  elements. Because the angle of twist is interpolated by 

functions of the same order as the displacements, the accuracy of these elements is of the 

same order for torsional buckling as for flexural buckling. The  elements has linear 

interpolants for the angle of twist, and the accuracy is degraded. 

fm
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6.6.3  Effect of boundary conditions

If bending deformation, about the strong axis, preceding buckling is accounted for, a fre-

quently quoted value for the critical moment is (Trahair [40]):

(6.12)

When the beam was assumed to be undeformed up to the point of buckling, the boundary 

conditions did not pose a problem. When deformations are accounted for, however, the 

way boundary conditions are imposed is critical. When using the Euler angle parametriza-

tion, two fundamentally different ways of applying the load exists for this particular prob-

lem. The first alternative is to apply the load in such a way that all rotation axes remain 

orthogonal (e.g. let the beam axis follow , and apply the moment as a moment in the 

direction of  ( )). Alternatively, one can let two axes approach each other during 

deformation (e.g. let the beam axis follow  and apply the moment as a moment in the 

direction of  ( )). Similarly, the static boundary condition can either be imposed on a 

moving or a fixed axis. The numerical tests indicate that the solutions can be grouped into 

two categories depending on the value of some variable a and b, given by the following 

rule: a is assigned a positive value when the axis remain orthogonal, b is positive for fixed 

axis boundary conditions, a and/or b is negative otherwise. Investigation of the expres-

Figure 6.17  Relative error compared to Equation (6.10)
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sions in the stiffness matrix verifies that the product of a and b can be used to categorize 

the problem into the following two alternative descriptions:

• Alternative 1:

If , the active part of the geometric stiffness is locally transformed according to 

Equation (3.45).

• Alternative 2:

If , the transformation in Equation (3.45) leave the active rows and columns of 

the stiffness matrix unchanged.

In Figure 6.18, the lateral torsional buckling moment versus width to height ratio is plotted 

for the different boundary conditions, scaled to the value given by Equation (6.11). The 

model used in these analyses is a 10.0 m long structural steel beam, with rectangular cross 

section of height 1.0 m and varying width. The beam solutions are based on 100 elements, 

while the FEMplate analysis is based on approximately 1300 shell elements. Each marker 

in the figure represents a value obtained from an analysis. To preserve clarity, the values 

obtained for linearized buckling analysis with beam elements are not included as they are 

Figure 6.18  Lateral torsional buckling moment for simply supported beam
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virtually coincident with the results obtained with the modified FEMplate model for all 

elements (using very fine meshes). Naturally, the linearized buckling analyses are not able 

to account for initial deformation, and the results are therefore comparable with Equation 

(6.11). 

The nonlinear solutions split into two different solution according to the previously men-

tioned categories:

• Alternative 1 closely follows the solution of Equation (6.12) with a relative difference 

in the order of %. In Figure 6.18, the result obtained for the Euler-Bernoulli ele-

ment are not included as they are practically indistinguishable from the results obtained 

with . The line  is the value of the moment that bend the beam into a 

semicircle. When the critical moment exceed this value, the beam does not buckle, but 

rather the model becomes statically under determinate. This can bee seen by the ‘kink’ 

in the solution when using the boundary conditions of Alternative 1. To verify the cor-

rectness of the implementation, the Frobenius norm of both the symmetric and skew 

symmetric matrices at the point of singularity was monitored at b/h = 0.4. For the 

Euler-Bernoulli element the norm of the symmetric matrix was

, while the skew symmetric norm was 

.

For the  element the norms were of similar magnitude.

• Alternative 2 leads to a far softer behavior, with a difference compared to Alternative 1 

of approximately 15% for b/h = 0.3. It should be noted that this is exactly the same 

solution that would be obtained if the rotations were parametrized with the pseudovec-

tor representation. Surprisingly, these results are quite similar to the linearized buckling 

analyses. In the range where lateral torsional buckling is of practical interest, the linear-

ized buckling analyses yield only marginally stiffer values.
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6.7  Conclusions and recommendations for further work

The results presented for the Cosserat rod formulation in combination with the B-spline 

interpolants are quite encouraging. Highly accurate and with fast convergence rates, these 

elements have capabilities far beyond the requirements of typical civil engineering struc-

tures. For an individual element, the use of B-splines represents a kind of “pseudo-discret-

ization”, resulting in a Cn two-field theory. It has been demonstrated that this may be less 

prone to shear locking than a C0 formulation with equal number of dof’s, while avoiding 

unnatural “kinks” in the displaced shape, when full integration of the strain energy is used. 

However, one of the most interesting aspects of this formulation, namely the use of an iso-

parametric formulation to model complex shapes and varying cross sectional parameters, 

has not been pursued here. For problems where this is a necessary capability, it is believed 

that this formulation may become competitive with respect to both accuracy and effi-

ciency, when compared to the use of many simple elements. Tests for efficiency have not 

been performed, partly due to the fact that these elements have not been “optimally” 

implemented with respect to efficiency. However, it is assumed that these elements are 

somewhat more costly, compared to the EICR with linear elements, for two reasons: They 

are based on a two-field theory, while the C1 theory uses displacements only and this is in 

fact quite accurate. The additional accuracy is therefore “redundant”, only adding to the 

cost of the element. Also, the need for numerical integration of some rather costly expres-

sions will adversely contribute to the CPU cost. In order to get an accurate account, com-

parisons with other C0 elements (e.g. RM with EICR) should be performed. The most 

significant drawback of the formulation, however, is the need for temporary storage of 

rotations and curvatures at the integration points. Although it has been shown that this 

may be replaced by a co-rotational measure of deformation, this comes with the added 

costs of extracting the deformational measures and possible decrease in the rate of conver-

gence. 

The capabilities of the EICR formulation with only internally linear elements are impres-

sive. The principal advantage of the formulation is the “once off” implementation of the 

EICR framework. When this is done, a finite element program is easily extended to handle 

nonlinearity using only linear and well proven elements. Furthermore, elements based on 

small or moderate deformations, but nonlinear material models, can be used in geometri-
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cally nonlinear analyses without modification. When the method is “customized” for a 

particular element geometry, the efficiency is also quite good. However, further improve-

ment is possible by assuming that only very small deformations are present. A significant 

part of the computational cost of this formulation lies in the projection of the element stiff-

ness matrix. In many practical situations, with small deformations at the element level, lin-

ear elements are sufficiently accurate. A significant decrease in CPU-costs can therefore 

be obtained by omitting this operation. This “optimized” version is even competitive com-

pared to the simple UL element of McGuire et al. [25], while avoiding the need for storing 

the previously converged state. If high levels of accuracy are needed, though, internal non-

linearity must be accounted for if not very fine meshes are used. For most structural prob-

lems, where displacements and strains are small, this is particularly true in the prediction 

and detection of instabilities. Consistently developed elements, akin to that developed by 

Eggen in [10], are clearly the most stable and robust in this regard. A less computationally 

expensive option, though, is to use simple geometric terms such as those of the element of 

McGuire et al. in the stiffness matrix only. Although not shown here (except for the case 

of the LRC element), this will have a negative effect on convergence properties in a non-

linear analysis. However, if this effect is significant, one may have to reconsider the mesh 

size used, since internally linear elements may not be applicable for this mesh.

Cross sections in timber structures are often quite high, compared to the length, and the 

low modulus of shear makes even rectangular cross sections prone to shear deformations. 

However, the results show that shear is not of great importance in the evaluation of appli-

cability of elements for most practical cases1. In spite of this, the C1 element developed by 

Eggen should be extended to account for shear deformation. This is primarily due to the 

computational costs already involved in establishing the stiffness matrix and force vector 

of this element. The extension, by for instance a Timoshenko type shear assumption, is 

believed to only marginally increase the computational costs, while giving the element a 

higher degree of accuracy.

From a programming point of view, the EICR also have some additional positive aspects.  

The method is well suited for object oriented programming. If the general formulation is 

1. Composite timber cross sections, however, are in use, and shear deformation may be important for even 
slender beams of this type.
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implemented, the only specialization needed to include more element geometries is the 

implementation of a G-matrix1. Optimization for a particular geometry can be imple-

mented at a later stage. Another useful property is that EICR can be used in combination 

with new, frame invariant elements as a “debugging device”. 

In this chapter, a number of elements have been compared in both nonlinear and linearized 

buckling analyses. In the case of nonlinear analyses, all elements are reasonably accurate. 

The poorest performance is that of the low order C0 elements (in particular those with lin-

ear interpolation). A similar conclusion can be drawn from the linearized buckling analy-

ses. However, this can in both cases be remedied by a modest increase in the number of 

elements. The best overall results are obtained with the high order Cosserat elements 

(polynomial order of 3 and higher). The computational costs are, however, significantly 

higher for these elements, compared to the 2-node elements. This is primarily due to the 

increase in the bandwidth of the stiffness matrix.  The principal advantage of the Cosserat 

elements are that they are well balanced with respect to the most prevalent instability phe-

nomenon in beam type analyses: flexural- and lateral torsional buckling. Of the other ele-

ments, the consistent element due to Eggen is the better choice with respect to accuracy 

compared to the simple EBT element with inconsistent geometric terms. In our view, the 

latter represents a minimum of what is required for the prediction of singularities. Since 

buckling may be local, using the EBT in conjunction with EICR only (no internal geomet-

ric terms), may require a very fine mesh for complex models. Provided individual mem-

bers in the model are discretized by a sufficient number of elements, this element may still 

be used. In the examples that follow, which are concerned with problems having curved 

members, where many elements are needed to represent the initial geometry, this is the 

procedure adopted.

Finally, the use of rotational parametrizations in connection with boundary conditions 

should be commented. The results of Section 6.6 present strong arguments for the use of 

Euler angles when a single rotational degree of freedom at a node is constrained, and argu-

ments in Chapter 3 to the same effect are even stronger. Any incremental-iterative finite 

1. Note that elements with different configurations of “visible” nodes (nodes with dofs that affect continuity 
across elements) have different “geometrical properties” and must be handled independently.
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element program should therefore treat boundary conditions of this type as Euler angles or 

another suitable parametrization. 
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 Chapter  7  
Buckling of timber arches

Lateral buckling of beams is a problem that is well understood, and closed form solutions 

to numerous loading conditions exist.  This is, however, not the case for buckling of 

arches, where analytical solutions focus primarily on arches in uniform compression. Not 

only is closed form solutions unavailable, but current codes of practice offer little help in 

assisting engineers in the treatment of stability of arches. The following section aims to 

shed some light on the subject of buckling of timber arches through numerical analyses. 

The results presented in this section are indicative (in a qualitative sense) of arch behavior. 

In order to draw conclusions for practical design, more results, for different geometries, 

loading and boundary conditions need to be considered. The results presented are there-

fore not immediately applicable to design, but hopefully able to spur the development of 

design guidelines, and design software. 

Compared to other structural materials, timber structures are special in two respects: The 

material is highly orthotropic, and it is difficult to provide moment resisting joints and 

supports. In order to study orthotropy, the shell model discussed in Section 6.6 is used, 

while linear springs are used to simulate semi-rigid supports. 

In all cases that follow, the loading condition is a negative vertical load, , uniformly dis-

tributed per arch length (e.g. self weight). Note also that the bending stiffness  is asso-

ciated with out-of-plane bending (which is not necessarily the weak axis). The in-plane 

stiffness is denoted .
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7.1  General behavior

We consider a typical glulam1 arch with a span of 40 m and a fairly deep rectangular cross 

section with b× h = 200× 1200 mm as shown in Figure 7.1.  The first analyses apply to a 2-

hinge arch with no other out-of-plane support than that provided by the end supports.  At 

these points the arch is free to rotate about an axis normal to the plane of the arch, but it 

cannot rotate about any axes in its own plane and displacements are prevented in all three 

directions.  The only loading is the self weight of the beam. Material properties are 

assumed to be:  E0 = 14500 N/mm2 (parallel to grain), E90 = 960 N/mm2 (perpendicular to 

grain), G = 830 N/mm2 and  (ρ = 450 kg/m3).  A series of plate buckling 

analyses, similar to those reported in Section 6.6, are carried out for different radius of 

curvature, parametrized by the ratio  f / L, ranging from 0 (straight beam) to 0.5 (semicir-

cle). A mesh as shown in Figure 7.1, with a total of 1344 triangular shell elements are 

used; each rectangle represents the position of two triangular elements.

For a straight beam, the lateral torsional buckling load, reported by Timoshenko and Gere 

[39],  is given by: 

(7.1)

where  is a scaling factor dependent on loading and boundary conditions. For uniformly 

distributed load applied at the center line and for simply supported end conditions with lat-

eral constraints, the value  corresponds well with the finite element solution. In 

Figure 7.1   Shell element configuration of glulam arch

1. Short for glue laminated timber.
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Figure 7.2, the buckling loads for both the shell and beam element analyses are plotted for 

various values of f / L. The results are scaled by the reference load . This is 

the buckling load of the straight beam obtained with the shell elements, or equivalently 

from Equation 7.1 when thin-walled cross section parameters are used. It should be noted 

that the load is distributed along the arch length, and the total load will thus increase with 

f. 

Figure 7.2 illustrates a few key features of the problem. Firstly, the load carrying capacity 

diminishes rapidly for the low f / L ratios ( ). In this range, the arch 

behave like a beam in compression due to the large axial forces induced by the shallow 

arch effect. In this range, the buckling analyses are somewhat suspect due to the underly-

ing assumption of linear behavior. As is commonly known, shallow three-hinge arches 

normally display instabilities as a limit point connected with the snap-through phenome-

non, not as a bifurcation point. Past this limit point, the arch regain stability due to what is 

sometimes referred to as a ‘hammock-effect’. While the two hinge arch does not, in gen-

eral, display a limit point, the stiffening effect due to the reversal of axial forces is present 

(see Section 6.6). If the arch is made into a ‘negative’ arch before buckling takes place, the 

predicted value may grossly underestimate the lateral buckling load. After this initial tran-

sitional phase, two noteworthy things start to happen: a) the axial forces become less dom-

Figure 7.2  Lateral buckling load for a glulam arch with b×h = 200×1200 and L = 40m
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inant, and b) the distribution of both axial forces and bending moments change. Up until 

, the drop in the axial force explains the change in the system. At this point, 

the arch is in a state of near uniform compression. The moment distribution is almost iden-

tical to that of a simply supported beam with uniformly distributed load. This leads to an 

increase in compressive stresses at the outer edge along the entire arch. With the decrease 

in compressive forces, the buckling mode becomes a combination of lateral torsional 

buckling and flexural buckling of the mid section. For , the principal effect is 

due to b) above. In Figure 7.3 the moment distribution for  is depicted. Note 

that the moment is drawn on the side having tensile stresses. When  increase, the 

points where  move towards the middle, and the compressive axial forces become 

more localized at the ends. Subsequently, the buckling mode becomes combined lateral 

torsional and flexural buckling.

7.2  Material properties

In the previous section, material properties akin to those of structural timber were used. 

Clearly these material properties are far from isotropic. In fact timber is one of the most 

severely orthotropic materials known to man1. Because of the one-dimensional discretiza-

tion used in the beam element analyses, this property is only captured through the modulus 

of shear. By using shell elements, the additional effect of the cross grain modulus of elas-

ticity (E90) can be monitored. To this purpose, the analyses of Section 7.1 is replicated 

using three different values for E90. The results, presented in Figure 7.4, clearly indicate 

Figure 7.3  Moment distribution of a two-hinge circular arch (f / L = 0.2), subjected to self weight

1. Strictly speaking, the material assumption used in the shell analysis is actually that of plane isotropy. The 
assumption of plane isotropy holds especially well for glulam members but is also applicable to structural 
timber. On account of this and common practice, no distinction will be made between plane isotropy and 
orthotropy.
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that the effect is marginal at best. If we consider the “optimal” h/L ratio (= 0.2), the buck-

ling load is about 6 times the weight of the beam, for the assumed material properties.  

What is the effect of orthotropic material properties on the buckling load?  If we set E90= 

E0 the buckling load coefficient becomes 6.038, and if we set E90 = E0/14500 = 1 N/mm2, 

we find a buckling load coefficient of 6.006. The slight deviation between the results in 

Figure 7.2, obtained using beam elements and shell elements, respectively, must therefore 

be explained by other phenomenon. 

Another free parameter not present in isotropic materials is the modulus of shear. A sec-

ond series of analyses were performed, using three different values for G. Two of these are 

strictly orthotropic (G = 850 MPa and G = 100 MPa) while one (G = 7250 MPa) can be 

interpreted as isotropic with ν = 0. The shell elements used do not account for transverse 

shear (out-of-plane), and the results are assumed to be too stiff. This assumption is verified 

by the graph in Figure 7.5, where the results are compared to those obtained with beam 

elements. To exaggerate the problem, a fairly thick cross section is used (b× h = 600× 1200 

mm). 

For “normal” timber values of G (850 MPa), the results are quite similar for beam and 

shell analyses. The difference is slightly less than that observed for the straight beam. For 

the extreme value of G = 100 MPa, the difference become significant and actually exceeds 

the difference observed for the straight beam. The explanation for this is twofold; firstly, 

the effect of transverse shear is no longer negligible, and secondly, the torsional rigidity 

becomes more important. While the beam elements used are able to describe the effect of 

Figure 7.4  Effect of E90 on lateral buckling load, determined by shell elements
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transverse shear, the shell elements are not. However, using beam elements that does not 

account for transverse shear, produce buckling loads that is only a few percent higher. This 

indicates that the relationship between the buckling load and the torsional rigidity, GIt, is 

not of the same form as for the lateral torsional buckling of beams. The dependence on GIt 

also seems to vary with the ratio f / L. When the torsional rigidity decreases, the arch tends 

to twist, and the buckled shape starts to resemble that of  f / L = 0.5 in Figure 7.2. This is 

shown in Figure 7.6, where the buckling modes for G = 830 MPa and G = 100 MPa are 

depicted for . When examining Figure 7.5, this also explains the shift in the 

‘optimal’ ratio of . For G = 830 MPa, this ratio was approximately 0.2, while it is 

approximately 0.13 for G = 100 MPa. 

In structural timber, the value of E0 / G is approximately 16 for all strength classes. From a 

practical point of view, the ratio E0 / G can therefore be considered to be constant. Conse-

quently, the graph in Figure 7.5, depicting the buckling load for G = 830 MPa is indicative 

of the behavior of this particular geometric configuration. It should be noted that E0 / G = 

17.5 in this case, and the presented ratio qcr/qv0 will therefore be a lower limit when using 

timber commonly produced in Norway.

Figure 7.5  Effect of G on lateral buckling load (scaled to qv0 for G = 830 MPa) 
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For a complete picture of the effect of G, a solid model or a shell formulation that incorpo-

rates transverse shear should be used. Shear deformation of the cross section in its own 

plane is, however, assumed to be of less importance and is therefore not investigated. The 

presented results are therefore assumed to be adequate for the description of the problem. 

The principal result is that the beam elements are able to represent the material orthotropy, 

since the effect of E0 is insignificant. Furthermore, the beam elements display softer (and 

more appropriate) behavior than the shell elements, particularly for high b / h ratios1.

7.3  Effect of geometry

7.3.1  Width to height ratio

In the previous section, it was seen that the modulus of shear, G, has a noticeable effect on 

the buckling load. The principal reason for this is the change in the ratio GIt / EIz. Another 

way of changing GIt / EIz, that has practical importance, is to vary the width to height 

ratio. In Figure 7.7, results are presented for the arch configuration of Section 7.1, except 

that widths are now ranging from 12 to 1800 mm (height to width = 1/100 to 1½). In this 

plot, each series is scaled to qv0 (for a straight beam) evaluated for each individual width. 

This plot is actually quite similar to Figure 7.5, and the “optimal” ratio of f / L decreases 

Figure 7.6  Shear modulus effect on buckling mode for f / L = 0.15 

1. This is not surprising as the shell formulation relies on a thin-plate assumption.

a) G 830 MPa= b) G 100 MPa=
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slightly for decreasing values of GIt / EIz. Also, the relative value of qcr versus qv0 

increases for decreasing values of GIt / EIz. The principal difference, however, is the 

decrease in actual buckling load in Figure 7.5. The buckling loads of Figure 7.7 increase, 

both relative to the lateral torsional buckling load of the straight beam and in absolute 

value, for decreasing ratios of GIt / EIz. The latter can be observed in Figure 7.8, where the 

scaling factor  is plotted against widths (b) ranging from 12 to 1200 mm. It should 

be emphasized that these values are strictly theoretical for the larger values of b / h.      

Figure 7.7  Lateral buckling load relative to lateral torsional buckling load for varying width of 
arch cross section (beam elements)

Figure 7.8  Lateral torsional buckling load for straight beam
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The results in Figure 7.7 (and Figure 7.8) indicate that timber arches may have a signifi-

cant potential for resisting lateral buckling, particularly for the massive cross sections 

which are typical for bridge arches. This can be demonstrated through the buckling of an 

arch of square cross section (h×b = 800×800 mm). The arch spans L = 40 m with a radius 

of 30 m (f = 0.191L). Loading and the boundary conditions are those of Section 7.1. If we 

consider both a 2- and a 3-hinge design, the three lowest buckling modes are presented in 

Table 7.1. For lateral buckling, the three-hinge design does not significantly alter the 

buckling load. For comparison, the second lateral buckling mode for the 3-hinge design 

(which is the fourth eigenmode) has a buckling load of 545.3 kN/m. This is only about 3% 

higher than the corresponding second lateral buckling load for the 2-hinge design.             

The two lowest lateral buckling modes are shown in Figure 7.9 for the 2-hinge design. 

Table 7.1 Buckling loads for a timber arch with f / L = 0.191 and h×b = 800×800 mm

Mode 1 [kN/m] Mode 2 [kN/m] Mode 3 [kN/m]
2-hinge design 234.1 (lateral) 323.1 (in-plane) 531.7 (lateral)
3-hinge design 236.3 (lateral) 266.3 (in-plane) 319.1 (in-plane)

Figure 7.9  Lateral buckling modes for 2-hinge timber arch
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The relationship between the lowest lateral buckling load versus the lowest in-plane buck-

ling load for the 2-hinge design is investigated further in Figure 7.10. Here, the lateral 

buckling load is scaled by the lowest in-plane buckling load for different height to width 

ratios. The model characteristics used in this series of analyses are h = 1.0 m, E0 = 10062.5 

N/mm2 and G = 632.5 N/mm2. Loading and boundary conditions are still the same as in 

Section 7.1. The analyses are repeated for f / L-ratios ranging from 0.1 to 0.4. In all graphs, 

the thick line in the middle represents f / L = 0.2. In Figure 7.11, similar results for the 3-

hinge design are presented. The difference in the plots are due to the combined effect of 

higher lateral buckling load and (primarily) lower in-plane buckling load for the 3-hinge 

compared to the 2-hinge design as shown in Figure 7.12.

  

                       

Figure 7.10  Lateral buckling load, relative to in-plane buckling (2-hinge)
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B

Obviously, a cross section with low width to height ratio will be significantly softer in lat-

eral buckling than in in-plane buckling, primarily due to the difference in bending stiff-

ness. It should be noted that for the assumed boundary conditions the out-of-plane 

buckling load equals the in-plane buckling load for a cross section with b in the range h to 

1.35h, for all arch configurations. As seen in the figures, the span of the arch has some 

affect the ratio . This is further investigated in the next section.

   

Figure 7.11  Lateral buckling load, relative to in-plane buckling (3-hinge)

Figure 7.12  Buckling loads for 2-hinge design relative to 3-hinge design (L = 40 m)
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7.3.2  Effect of span length

Analyses in the previous section indicate that the lateral buckling load does not depend on 

length in the same manner as the in-plane buckling load. We see similar pictures in Figure 

7.13, in which the lateral buckling loads of Figure 7.10 are scaled by the lateral buckling 

loads of a straight beam (qv0) with the same b and h. It should be noted that Figure 7.13 

shows similar curves as Figure 7.7 (but for a more narrow range of f / L), and we see that 

Figure 7.7 is somewhat dependent on L (notably at the low end of the range). 

Figure 7.13 clearly indicate that qcr / qvo for arches with high GIt / EIz ratios are less sensi-

tive to span length than those with low GIt / EIz ratios. For lateral torsional buckling of 

beams with uniformly distributed load, the critical load is a simple expression that is pro-

portional with the cube of the length. A similar relation is given by Timoshenko and Gere 

[39] for an arch in uniform compression (simply supported laterally): 

(7.2)

where  is the opening angle of the arch (L = 2R ). For buckling of arches with 

more general loading, the relation is not of this type, at least not for small values of L / h. 

Figure 7.14 is a compilation of 500 buckling analyses for varying lengths and 5 different 

Figure 7.13  Lateral buckling load for varying f/L ratios
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cross sections. In all cases, the ratio  f / L = 0.15 and the material properties are 

E0 = 10062.5 MPa and G = 632.5 MPa. 

In the practical range, the ratio  has a moderate effect on the buckling load for the 

cross sections considered. Not surprisingly, the buckling of slender arches is primarily 

governed by the out of plane bending stiffness , while the torsional rigidity is the more 

limiting factor for massive arches. For comparison, the arch in Section 7.3 with b = 250 

mm and f / L = 0.152, the ratio  is 32.73 and L / h is 33.33, which fits neatly 

in between the results for b×h = 100×500 and b×h = 200×500. This suggests that buck-

ling of arches may be safely approximated by the use of 2D models if a reduction factor 

for  similar to Equation (7.2), depending on both f / L and , is introduced. 

However, as shown in Table 7.2 this is not the case for massive arches, where the curved 

part of Figure 7.14 will extend well into the practical range. 

In all cases presented here, the ratio  is strictly a function of the cross section 

width. If the cross section is not of rectangular shape and for mechanically joined cross 

sections with only partial bonding, significantly lower values of  are to be 

expected.

Figure 7.14  Lateral buckling load for f/L = 0.15

Table 7.2 The ratio qcrL3 / EIz for different arches with f / L = 0.15

b×h [mm] L/h = 20 L/h = 33.33 L/h = 66.67 L/h = 100
  250×1200 32.59 32.73 32.79 32.80
1800×1200 22.30 25.55 27.25 27.59
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7.4  Effect of boundary conditions

In the previous analyses, the arch was assumed to be fully restrained with respect to out-

of-plane rotations. For timber structures, this is difficult to achieve. On this note, the fol-

lowing section is dedicated to the study of boundary conditions.  

The first case study is a fairly massive arch of dimensions L = 40 m, b×h = 700×1000 and 

f / L = 0.15. The arch is analyzed for three different boundary conditions for the rotational 

dof’s in the arch plane (θx and θz): 

a) Both dof’s are supported by linear rotational springs

b) θx is fixed and θz  is supported by a linear rotational spring

c) θz is fixed and θx  is supported by a linear rotational spring.

In Figure 7.15 the buckling load, scaled to the buckling load obtained with both θx and θz 

fixed, is plotted versus the spring stiffnesses kθ. The graph on the right is the same as the 

first part of the one on the left (the scale of kθ is reduced by a factor of 10).

As expected, all curves approach asymptotically the buckling value obtained for fixed θx 

and θz at the ends (qcr,fixed).  If θz is free (unconstrained) and θx is supported by a rota-

tional spring, a similar asymptotic convergence is observed. The converged value is the 

same as the starting value of 0.202·qcr,fixed obtained for case b. In order to relate the value 

Figure 7.15  qcr vs. spring stiffness (global supports) ( )
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of the spring stiffness to a physical quantity of the arch, it may be mentioned that the bend-

ing stiffness about weak axis is EIz/1m = 2.88×105 kN·m/rad.

The results of Figure 7.15 apply to boundary conditions enforced in global axes. In many 

applications it is more appropriate to use boundary conditions in a radial-tangential coor-

dinate frame (t, y, r). For the configuration considered ( ), the tangent to the 

curve at the end points intersect the horizontal line at an angle of ±33.40º. The graphs in 

Figure 7.16 shows the results using springs oriented along these axes. In addition to the 

three sets of boundary conditions described previously, the arch is also analyzed when two 

of the rotational dof’s are completely free.  

The most notable feature of Figure 7.16 is the effect of restraining θr. With θr = 0 and θt 

completely free, the buckling load is in fact 93.6% of qcr,fixed. A similar plate buckling 

analysis with FEMplate (using 6400 triangular elements) yielded 98.4% of qcr,fixed, a dif-

ference of approximately 5%. Again, this deviation is explained by the difference in tor-

sional rigidity in the two models and not by effects due to orthotropy. This claim is 

substantiated by the effect of restraining the arch from twisting at the end points. The crit-

ical load obtained with the beam model was 11.4% of qcr,fixed when θr is free and θt is 

fixed. In comparison, the result obtained with FEMplate was 14.0% of qcr,fixed, a relative 

difference of approximately 20%.

Figure 7.16  qcr/qcr,fixed vs. spring stiffness (local supports)

f L⁄ 0.15=

kθ [kN·m/rad]                                            kθ [kN·m/rad]

q cr
/q

cr
, f

ix
ed
Buckling of timber arches 145



Part II
For arches with slender cross sections (small b / h ratios), restraining the radial rotation at 

the ends will not be sufficient, and other methods of stiffening the structure is required. In 

the following, a short study of the effects of supporting the arch with lateral springs (emu-

lating transverse bracing) is presented. For this purpose, an arch of length 40 m and b×h = 

200×1200 mm is chosen, the radius of the arch is R = 30 m leading to a near optimal ratio 

of  f/L = 0,191. The material properties are E0 = 14500 N/mm2, E90 = 960 N/mm2, G = 

830 N/mm2 and ν = 0.37, and the load density is γ = 4.4 kN/m3. We first use a single lat-

eral spring, positioned at mid span at three different heights; at the upper edge, at mid 

height and at the lower edge. The results from these analyses are summarized in Figure 

7.17 for varying spring stiffness. All configurations result in a bilinear curve for the buck-

ling factor. The buckling loads increase linearly until the arch is forced into mode 2, which 

has a buckling load coefficient of 13.77. This compares to the buckling load coefficient of 

5.91 for mode 1. Beyond this point, the spring acts as a rigid support and no further 

increase in buckling load is observed. This is attained for spring stiffnesses of 25.35, 28.35 

and 33.45 kN/mm, respectively. When the spring is positioned at the bottom fibers, the 

stiffness required to force the arch into the second buckling mode is about 30% higher 

than for a spring placed at the top fibers. For an indication of the physical interpretation of 

the spring stiffness, consider a 5 m long transversal bracing member with a cross section 

Figure 7.17  Buckling load coefficient with lateral spring at mid span
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of 98×98 mm. This member has an axial stiffness of about 23kN/mm 

(for E0 = 12000 N/mm2).

The simple bilinear relationship of Figure 7.17 is not to be expected for other spring con-

figurations. To illustrate this point, two different configurations of three linear lateral 

springs, positioned at the cross section centroid, are investigated. In the first case, the 

springs are placed at the inflection points of the 4th buckling mode, while in the second 

case, the springs are placed at the quarter points along the length of the arch. The rationale 

behind this positioning is illustrated in Figure 7.18. Since the inflection points of mode 3 

are so closely spaced, the effect of reinforcing them with springs, would only marginally 

differ from using a single spring at mid span.  The results from these analyses are shown in 

Figure 7.19, and clearly a more complex picture is now drawn. Although both configura-

tions results in an increase in the buckling load, very stiff springs are required to produce 

the buckling modes corresponding to laterally fixed conditions.

In summing up, we see that even moderately stiff lateral bracing will increase the buckling 

load considerably, regardless of where the bracing is applied over the cross section depth. 

Figure 7.18  Various buckling modes for slender arch

Mode 2                            Mode 3                               Mode 4

Rigid ¼-points
Buckling of timber arches 147



Part II
For the loading considered here, the bracing is clearly more effective when applied at the 

top fibers, but for practical purposes there is not much in it. The results (Figure 7.19) also 

suggest that the bracing is more effective if concentrated at the upper part of the arch, 

rather than distributed evenly along the arch.

7.5  Concluding remarks

The analyses of this chapter are limited with respect to both geometry and particularly 

loading, and conclusive statements cannot therefore be made. However, the results suggest 

the following tentative statements:

1)The computational model of timber arches need not consider the highly orthotropic 

nature of structural timber. The modulus of shear (G) is, however, an important param-

eter.

2)The ‘optimal’ height to span ratio (f / L) for 2- and 3-hinge arches, with respect to side-

ways stability, seems to be about 0.2.

Figure 7.19  Buckling load coefficient for various lateral spring configurations
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3)Massive arches (with cross sections of nearly square shape) have a surprisingly good 

sideway stability, providing rotation about axes in the plane of the arch can be pre-

vented at the supports.

Denoting the tangential and radial axes in the plane of the arch at the end supports with 

t and r, respectively, it is particularly important to control the rotation about the r axis.

4) For slender arches (with cross sections having low b / h ratio), transverse bracing will 

improve sideway stability dramatically. Even a moderately stiff, single bracing at the 

top of the arch will have a significant effect, regardless of where it is applied over the 

depth. If bracing is applied at several points along the arch, a concentration at the upper 

part of the arch improves their effectiveness.
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 Chapter  8  
Design of real-world structures

At the outset of this study, the ambition was to provide some useful insight into the use of 

advanced, state-of-the-art, nonlinear 3D analysis as a basis for practical design of 

advanced timber structures. For reasons explained in the introduction, this ambition had to 

yield to other issues. Nevertheless, we include two case studies which indicate some of the 

challenges in practical design. Both examples are concerned with timber bridges.

8.1  Key features of a typical code based design

In order to set the scene, we first present a very brief description of a typical code based 

design in the ultimate limit state. Our example is the latest version of Eurocode 5 [12], 

which qualify as a “state-of-the-art” code of practice in this area. The description is not 

intended to be “in-depth”, but rather to introduce some key features as well as indicate 

some problem areas. 

The code suggests a design procedure in which the structural response to the ultimate load 

is determined by a linear (1st order) analysis. In order to account for nonlinear (2nd order) 

effects, the linear response is “corrected” by various (k-) factors. As an example, consider 

design of a beam-column (combined bending and compression) by Eurocode 5 [12]. This 

is acheived by the satisfaction of the following two requirements (stated in Section 6.3.2 

of the code):

(7.3)

(7.4)

σc,0,d
kc,y fc,0,d
---------------------

σm,y,d
 fm,y,d
-------------- km

σm,z,d
 fm,z,d
-------------+ + 1≤

σc,0,d
kc,z fc,0,d
-------------------- km

σm,y,d
 fm,y,d
-------------- σm,z,d

 fm,z,d
-------------+ + 1≤
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 denotes computed (1st order) stresses and f denotes corresponding material strength. 

Indices c and m denote compression and bending, respectively, 0 indicates the grain direc-

tion and d designate design stresses/strengths (as opposed to characteristic quantities). The 

km factor is of little consern for this current discussion (it has to do with the statistical dis-

tribution of material defects). The factors of interest for our discussion are kc,y and kc,z, 

both of which depend in some rather obscure way on slenderness ratios (which in turn 

depend on buckling lengths), geometrical imperfections (shape errors), and to some 

(minor) extent on material properties. kc,y and kc,z account for all nonlinear effects. For 

simple structural members they can be determined in a fairly straightforward manner, but 

for more complex structures they represents a real hazzle that most design engineers 

would like to get rid of.

Another example is beams subjected to either bending or combined bending and compres-

sion. Here Eurocode 5 (in Section 6.3.3) states that two requirements need to be met, one 

of which applies to beams subjected to bending (about the strong axis) only:

(7.5)

and the other to a beam subjected to both bending (about the strong axis) and axial com-

pression:

(8.1)

In these two requirements, kcrit is a factor which takes into account the reduced bending 

strength (fm,d) due to lateral buckling. Although the code does provide some guidelines for 

its determination, kcrit is a difficult quantity at the best of times, and very often it is quite 

unlikely that independent efforts would end up with the same values for a given (slightly 

complex) case. As a result one is often forced to make conservative assumptions. It should 

also be mentioned that all four requirements quoted do imbed some fairly crude (stress 

based) failure criteria.

In the above design requirements all nonlinear effects are disregarded in the static analysis 

of the structural assembly, and then accounted for, in an approximate manner, in the 

strength verification of the individual members. While Eurocode 5 does not encourage 

nonlinear analysis (or 2nd order analysis which is the term used by the code) as basis for 

σ

σm,d kcrit fm,d≤

σm,d
kcrit fm,d
-------------------

 
 

2 σc,d
kc,x fc,0,d
---------------------+ 1≤
152 Key features of a typical code based design



Numerical studies
design, it does not exclude it. However, if used it must include the effects of “induced 

deflection” (geometrical imperfections or shape errors). In order to take fully advantage of 

the potential capabilities of current nonlinear finite element analysis tools, procedures 

must be developed to automatically or semi-automatically include these effects, and thus 

making the rather cumbersome k-factors superfluous. For simple struts and beams, this is 

easily solved by superimposing for instance the lowest buckling mode as the initial shape 

imperfection, scaled to within a specified tolerance. The gometrically modified problem is 

then solved by nonlinear static analysis. In the case of plane frames and arches, guidelines 

are given in Section 5.4.4 of the code along with an example of assumed initial deviations 

in geometry for two simple cases reproduced in Figure 8.1. Since the most difficult (and 

often critical) issues related to structural instabilities are associated with out-of-plane 

buckling (e.g. lateral torsional buckling), 3D models are essential. Hence, Figure 8.1 

needs to be extended to three dimensions. Currently, the following four options are readily 

available for implementation.

1. Direct modeling of imperfections for individual members (and/or full assembly).

2. Imperfections based on deformed shape, obtained by applying a perturbation load.

3. Imperfections based on one or more buckling modes.

4. Combination of 1, 2 and 3.

All of these methods rely on some user input and sound engineering judgement to assure 

reasonable estimates. The finite element program developed in connection with this work 

accomodates the first three methods. Due to the time constraints, testing has not been 

extensive and cannot support strong conclusions. However, the case study in the next sec-

tion is hopefully able to illustrate some of the issues that need to be addressed in more 

detail.
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Figure 8.1 Reprint of Figure 5.3 of Eurocode 5 EN 1995-1-1:2004 (E)
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8.2  Mechanically joined network arch bridge

The design of timber structures has traditionally been based on plane models, which is 

also reflected in many of the guidelines in the current European codes of practice. These 

plane models require that the load carrying capacity of a structure can be adequately repre-

sented in isolated planes. This will inevitably introduce assumptions which, based on 

engineering judgement,and in view of the uncertainties should result in conservative esti-

mates with respect to capacity. In many cases the degree of conservativeness is difficult to 

judge. Although 3D models will eliminate many of these assumptions, other modelling 

challenges arise. Particularly for beam type analyses, some of these challenges, which are 

by no means trivial, require good graphical representation for visual control. Some of the 

modeling challenges that arise when using a versatile 3D analysis tool in the design of 

timber structures are illustrated by the two case studies presented in this and the following 

section.

Figure 8.2 shows a plane view of a network arch bridge for which a feasibility study has 

been carried out. Analyses performed by Bell et. al. with plane models in [5], indicated 

that if the overall stability of the system can be demonstrated, the design may be a viable 

one. The bridge adopts the deck solution used at the newly built timber bridge at Tynset 

[3] (which has two truss arches and vertical hangers). A 7 m wide stress laminated timber 

deck with asphalt constitute the two road traffic lanes. The bridge also has a 3 m wide 

pedestrian/bicycle lane. The deck rests on steel cross beams which are here spaced at an 

equal distance of 5 m (slightly shorter than at Tynset). Each cross beam is supported by 

two inclined steel hangers at each end. The two parallel arches are modified 2-hinge 

arches, each made up of four 220×800 mm glulam arches mechanically joined at five 

Figure 8.2 Network arch bridge (plane view)

pedestrian/bicycle lane
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points, A, B, C, D and E, in such a way that the two inner arches are joined at A, C and E, 

while the two outer arches are joined at B and D. The longest part of an arch is thus about 

30 m, and its total height is under 3 m. Production and transportation should therefore not 

present any problems. Between the individual arches are placed 8 mm steel plates, on to 

which the hangers are fastened. The steel plates are fastened to the glulam arches by a sys-

tem of bolts and shear plates (see Figure 8.4)..Figure 8.3 shows a 3D model of the entire 

bridge. It contains about 3500 beam elements and 60 bar elements, and a total of about 

20000 degrees of freedom. With reference to Figure 8.2 each arch in Figure 8.3 is mod-

elled as four individual arches next to each other. All 4 “sub-arches” (lamellas) are forced 

to have the same displacements (including rotations) at every point where a hanger is fas-

tened to the arch. Between these points, however, they are completely unconnected. At 

points A, B, C, D and E the two joined sub-arches are connected by “hinges” that cannot 

transmit moments about any axes. The hanger force is assumed to be equally distributed 

between the 4 sub-arches. The hangers can only take tension. Hence, a hanger that for a 

given load condition, will be in compression, is removed from the model. Each cross beam 

is modelled with its appropriate stiffness, and the deck is modelled by four longitudinal 

(timber) beams, rigidly connected to the cross beams. Two of the longitudinal beams, each 

with a fictitious cross section of 1000×250 mm, are placed in connection with the fasten-

ing of the hangers to the cross beams, and the other two beams, with cross section 

2000×250 mm, are placed such as to be in the correct position for traffic loading in each 

lane, assuming the loads to be as far over to the most loaded arch as possible. Each of the 

4 longitudinal beams is rigidly connected to all cross beams. The deck model is clearly an 

approximate one, but it is believed to represent the deck stiffness with adequate accuracy, 

particularly with respect to the load distribution. Details of the load distribution and mate-

rial properties are presented in Appendix I.

The horizontal thrust from the arches are taken by the end supports, at which the only 

degree of freedom that is not fully constrained is the rotation about an axis normal to the 

arch plane, which is unconstrained. This is perhaps optimistic, particularly for the two in-

plane rotations. Two load conditions are considered: The dead or self load of the entire 

system, and the self load in combination with traffic load, both distributed and concen-

trated, at the middle of the bridge (see Figure 8.5). The same traffic load is placed in both 

lanes. 
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Figure 8.3 Network arch bridge (3D model)
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In the plane model, the joints at A, B, C, D and E were modeled as hinges, reinforced with 

rotational springs. The arch (one side) is modeled as a single arch with a rectangular, mas-

sive 880×800 mm cross section. 

Nonlinear static analyses are carried out for both models and results for bending moments 

and axial forces are compared in Figures 8.6 and 8.7, for the most loaded arch. The rota-

tional spring stiffnesses for the 2D model is set to kθ = 50000 kNm/rad at all hinges. Keep-

ing in mind that the results in the 3D case apply to individual lamellas, whereas the 2D 

results apply to the total cross section (all four lamellas combined), the results are quite 

similar. The difference is, however, large enough to indicate that the 3D model capture 

effects not present in the 2D model. This may be due to the difference in the modeling of 

the hinges, but possible redistribution of load from the least loaded bridge arch cannot be 

excluded as a source of the deviation.  

Figure 8.4 Joint with hangers (joint B in Figure 8.2)

Figure 8.5 Applied traffic- and deck dead loads
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Figure 8.6 Arch-plane bending moment (My) distribution for self weight and traffic load for 2D 
and 3D model (not drawn to scale)

Figure 8.7 Axial force distribution for self weight and traffic load for 2D and 3D model 
(not drawn to scale)
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Linearized buckling analyses are carried out for two load combinations. For self load only, 

a buckling coefficient of 19.24 is found for the lowest in-plane buckling mode (No. 14) 

shown in Figure 8.8 for the 3D model. This corresponds quite well with the buckling fac-

tor of 20.10 found for the plane model in [5]. The lowest (lateral) buckling mode of the 3D 

model has a buckling factor of 7.831. For combined dead load and traffic load we find a 

buckling factor (corresponding to the total loading) of 4.282 for the buckling mode shown 

in Figure 8.9. This is somewhat higher than the 3.21 predicted by the 2D model with 

spring reinforced hinges at the joints (kθ = 50000 kNm/rad). Since the 3D model exhibits a 

mode of buckling with both in-plane and out-of-plane components, it would be reasonable 

to expect a lower buckling load than that predicted by the 2D model, which is forced to in-

plane buckling only. We will return to this discrepancy shortly, but first we mention that if 

we perform a linearized buckling analysis in which the geometric stiffness due to self load 

is included in the material stiffness and the geometric stiffness matrix in the eigenproblem 

only accounts for the stiffness resulting from the axial forces caused by traffic alone, we 

find (for the 3D model) that we need to multiply the traffic load by 8.15 in order for the 

system to buckle. 

1. This prediction compares well with a nonlinear analysis, yielding a buckling load factor of 7.67.
2. The buckling load factor predicted by a nonlinear analysis is 3.95. The difference is primarily because 

additional hangers in compression are detected in the nonlinear analysis, compared to what is predicted in 
the linearized buckling analysis.

Figure 8.8 In-plane buckling mode of network arch, dead load only (2D model 18.66)
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We modify the model in Figure 8.3 by replacing the mechanically joined arches by two 

identical, fictitious glulam arches made of a massive 880×800 mm cross section, that is 

two continuous and perfect 2-hinge arches. For this model the lowest buckling coefficient 

for the bridge, subjected to self load only, is 20.16, and when subjected to combined self 

load and traffic the coefficient is 4.92. These numbers compare to 7.83 and 4.28, respec-

tively, for the case of joined arches. Figure 8.10 compares the lowest buckling modes for 

Figure 8.9 In-plane buckling mode of network arch, dead load and traffic (2D model: 2.49)

Figure 8.10 Lowest buckling mode for mechanically joined and massive arches, dead load only

Buckling load factor: 20.16Buckling load factor: 7.83
161



Part II
the two different arch designs, when the bridge is subjected to self load only. It seems clear 

that much of the difference in buckling load is due to the inability of the mechanically 

joined arches to transmit shear between the sub-arches except at discrete points. The rela-

tively moderate difference between the two models, for self load plus traffic (4.28 com-

pared to 4.92), seems to indicate that the 2D model in [5] may have a conservative 

estimate of the stiffness (kθ) assumed for the rotational springs that reinforce the joint 

hinges. On the other hand it may be optimistic to assume that the four “sub-arches”, in 

Figure 8.3, are completely and rigidly joined at each point of hanger fastening. Some 

movement in these joints is inevitable, the question is how much this will influence the 

results. This problem should be looked into more closely, by relaxing some of the con-

straints in the present model for joined arches. However, the analyses presented in this 

section seem to indicate that the suggested network arch design for an 80 m span bridge 

has sufficient stability properties. However, other problems need to be looked into more 

carefully before the design can be given a clean bill of health.

Finally, the use of buckling modes as a basis for shape imperfection is investigated briefly. 

A slightly different design, proposed by Gjessing [15], is now used. The principal differ-

ences, compared to the previously described network arch bridge, are the dimensions and 

the angle of the inclined hangers. A plane view of the bridge and loading in the arch-plane 

is shown in Figure 8.11. In addition to these vertical loads, both arches are subjected to an 

evenly distributed horizontal wind load of  0.63 kN/m.  

Figure 8.11 In-plane loads

F
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The lowest buckling mode for this configuration, with the associated buckling load factor 

of 3.19, is depicted in Figure 8.12. The shape of this buckling mode differs significantly 

from what a traditional (and simplified) plane model will predict, see Figure 8.13. The rea-

son for this is twofold: Firstly, in the 3D case the vertical hangers contribute lateral stiff-

ness from the tensile axial forces. Secondly, all effects of bending about the strong lamella 

axes and torsional rigidity are absent in the 2D model. 

Eurocode 5 suggests a sinusoidal shape imperfection, superimposed on the undeformed 

configuration, as the basis for a nonlinear static analysis. Even though a similar effect is 

obtained by the displacements due to the wind load, the effect of an additional shape 

imperfection is investigated. The forces and moments at point F in Figures 8.11 and 8.12 

Figure 8.12 Lowest buckling mode for loading of Figure 8.11 plus wind load
(buckling load factor 3.19)

Figure 8.13 Typical buckling mode for 2D model

F
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are monitored for each of the four lamellas 1 to 4, where 1 is the outer and 4 is the inner 

lamella. In the case of no shape imperfection, the largest bending moment Mz (about a 

radial axis) occur at this point. In this study, four different ‘horizontal’ shape imperfec-

tions are used:

• Sinusoidal shape imperfection, with amplitudes of 100 and 50 mm, respectively, at mid 
span

• Shape imperfection based on buckling mode 1, with an amplitude of 50 and 25 mm, 
respectively

The local character of the buckling mode is why a smaller amplitude is used, since toler-

ance limits are stricter for shorter spans. In addition to these, a skew symmetric sinusoidal 

shape imperfection with an amplitude of 50 mm was also considered. This resulted, how-

ever, in lower forces and moments than what was obtained with no shape imperfection. 

The results from this analysis are therefore not included. The results from the other analy-

ses are presented in Tables 6.3 to 6.9.       

Table 8.1   Axial force (N)

Assumed imperfection lamella 1 lamella 2 lamella 3 lamella 4
None -1158.43 -1163.70 -1195.55 -1257.01
Sin (100) -1162.00 -1166.45 -1197.57 -1258.32
Sin (50) -1160.22 -1165.07 -1196.56 -1257.66
Mode 1 (50) -1218.73 -1181.43 -1172.90 -1192.36
Mode 1 (25) -1188.48 -1173.04 -1185.22 -1226.17

Table 8.2  Radial shear force (Vy)

Assumed imperfection lamella 1 lamella 2 lamella 3 lamella 4
None 6.6413 6.0466 5.9875 6.4592
Sin (100) 6.9856 6.3578 6.2958 6.7946
Sin (50) 6.8136 6.2023 6.1417 6.6269
Mode 1 (50) 12.6609 10.8821 10.9824 12.9715
Mode 1 (25) 9.9794 8.6096 8.4614 9.5246

Table 8.3  Horizontal shear force (Vz)

Assumed imperfection lamella 1 lamella 2 lamella 3 lamella 4
None -46.732 -46.095 -46.543 -48.118
Sin (100) -47.129 -46.351 -46.668 -48.111
Sin (50) -46.929 -46.222 -46.604
Mode 1 (50) -55.862 -48.175 -41.873 -36.352
Mode 1 (25) -51.613 -47.523 -44.675 -42.797
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The most noticeable result from these analyses, is the increase in bending moment Mz due 

to a shape imperfection based on the first buckling mode. Even the smaller amplitude of 

25 mm still produce bending moment more than twice that of the 100 mm sinusoidal 

shape imperfection. The question remains as to wether this is a reasonable amplitude. 

However, comparing the results to a plane model, with a shape imperfection based on Fig-

ure 8.13 with an amplitude of 25 mm results in a bending moment Mz more than 150% 

that of Mode 1 (25). This is primarily due to the stabilizing effects of the vertical hangers, 

reducing the need for the arches to transmit vertical moments.

While not in any way conclusive, these results indicate the importance of geometrical 

imperfections in nonlinear analyses. In order to be a viable tool for design engineers, non-

linear static analyses must include these imperfections, and the tools need to do so in a 

semi-automatic, but user controlled manner. The lowest buckling modes present them-

selves as obvious candidates for the definition of the shape of the imperfections. They are 

Table 8.4  Torsional moment (Mx)

Assumed imperfection lamella 1 lamella 2 lamella 3 lamella 4
None 0.2392 0.2274 -0.2262 -0.2355
Sin (100) 0.2410 0.2291 -0.2274 -0.2360
Sin (50) 0.2401 0.2282 -0.2268 -0.2358
Mode 1 (50) 1.1767 0.9767 -0.7895 -0.6019
Mode 1 (25) 0.6657 0.6015 -0.5485 -0.5029

Table 8.5  Horizontal moment (My)

Assumed imperfection lamella 1 lamella 2 lamella 3 lamella 4
None 103.53 100.63 -100.14 -102.03
Sin (100) 103.96 100.79 -100.05 -101.67
Sin (50) 103.74 100.71 -100.10 -101.85
Mode 1 (50) 123.53 106.64 -92.83 -80.79
Mode 1 (25) 113.48 103.74 -96.75 -91.83

Table 8.6  Radial moment (Mz)

Assumed imperfection lamella 1 lamella 2 lamella 3 lamella 4
None 18.592 17.287 17.260 18.507
Sin (100) 19.595 18.218 18.189 19.505
Sin (50) 19.093 17.753 17.724 19.006
Mode 1 (50) 65.774 60.976 60.999 65.844
Mode 1 (25) 42.515 39.377 39.308 42.301
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also easily implemented. However, the user should also have other options at his or her 

disposal, such as (sinusoidal) imperfections for individual compression members, and 

probably also deformations due to prescribed loads. It should also be mentioned that for 

more complex structures, linearized buckling analyses, as such, may provide useful infor-

mation for the determination of the code defined correction (or k-) factors. However, the 

ultimate goal must be to make these factors superfluous,through nonlinear 3D analysis of 

the structural system, including viable geometrical imperfections.

The network arch bridge example also highlights a major problem with timber structures, 

which is independent of 2D/3D and linear/nonlinear, namely the modelling of the joints/

supports, which invariably are semi-rigid.
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8.3  Lardal pedestrian bridge

The next case concerns the dynamic behavior of a footbridge, erected in Lardal, Norway 

in 2001 (see Figure 8.14). Being a “small-scale” and low budget project, the study of the 

dynamic behavior of the bridge prior to construction was limited. In preliminary analyses 

of the eigenfrequencies, using a level of detailing appropriate to the scale of the project, 

the lowest eigenfrequency, corresponding to an in-plane mode, was found to be quite close 

to 1.3 Hz. In a resent study, in connection with the resonance problems of the Millennium 

Bridge in London, a threshold value of 1.3 Hz was recommended. Lower values for the 

eigenfrequencies were considered unsafe, while 1.3 Hz and higher were considered safe. 

However, soon after completion of the Lardal bridge, unacceptable dynamic response due 

to pedestrian loads, similar to the Millennium Bridge, was observed.

In a Ph.D. project, carried out in parallel with this one, a detailed study of both the dynam-

ics of pedestrian loads and structural response, as well as full scale measurements on the 

bridge, has been performed by Rönnquist [34]. In connection with the measurements, a 

more detailed model than the pre-construction model was established and analyzed, using 

the commercial software package ANSYSTM. Although more plausible results than the 

preliminary ones were obtained, a significant deviation was still observed between calcu-

lated and measured results. This was particularly evident in that the eigenmodes did not 

match the measured modes when ordered with respect to increasing eigenfrequencies. 

Furthermore, the measurements revealed serious horizontal vibrations imposed by pedes-

trians crossing the bridge. In this mode, the bridge deck moved laterally, with the trusses 

and cables trailing in an “inverted pendulum” motion. This was not detected at all in the 

Figure 8.14 Lardal pedestrian bridge
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ANSYSTM model, where the first horizontal mode was an ordinary pendulum (“hammock 

type”) motion of the bridge cross section. Even though the calculated eigenfrequency was 

well below the threshold value of 1.3 Hz, this calculated behavior would have been far 

less severe than what was actually observed. 

This problem presented itself as a challenging test bed for the program developed as part 

of the present work. An even more detailed model was therefore created, including both 

railing and eccentric positioning of the mass of the bridge deck. Figure 8.15 shows a 3D 

and a plane view of the model to indicate geometry and level of detailing. The principal 

structural components of the bridge are the primary span and the two abutments (second-

ary spans). The abutments are anchored to the river banks on either side of the river, while 

the main span is supported by the cantilever part of the abutments. Vertical loads are car-

ried by massive glulam bridge beams, hinged at mid span and supported by a system of 

steel cables and timber trusses. A separate horizontal steel truss, positioned between, and 

bolted to, the main glulam beams is designed to take the horizontal loads. For a more 

detailed account of both geometry and member dimensions, as well as material properties 

and detailing, the interested reader is referred to [34].

Figure 8.15 Computer model of Lardal Bridge

65870 mm 26310 mm26310 mm
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The bridge is quite slender, with slightly curved beams (radius of vurvature is approxi-

mately 400 m for a 66 m long beam). In a preliminary study, Rönnquist found that the 

dynamic behavior of the bridge was very sensitive to vertical displacements (primarily 

due to mass distribution). It was therefore critical to maintain correct vertical distribution 

of the mass, while also accounting for geometric effects due to initial deformation and 

forces. The adopted procedure was therefore to first apply a “negative” gravitational field 

(directed upwards) and performing a static analysis based on the self weight of the bridge. 

A new undeformed configuration of the bridge is subsequently obtained from this, 

deformed configuration. The static analysis is then repeated, but now in a “natural” gravi-

tational field. The natural frequencies are obtained by solving the classical (free vibration) 

symmetric eigenproblem, evaluated at this final state of deformation:

, (8.2)

where  is the circular frequency and  the corresponding free vibration mode. M is the 

consistent (or “lumped”) mass matrix and  is the consistent tangent 

stiffness matrix. The use of the consistent tangent stiffness matrix assures that geometric 

effects are properly included. The natural frequency (in Hz), fi, is obtained as:

(8.3)

The natural frequencies from both the full scale measurements and the FEM-model are 

presented as the first two rows of Table 8.7. Although the numeric values of the natural 

frequencies are similar, the associated eigenmodes do not match. This is particularly obvi-

ous for the first two modes. The two lowest measured natural frequencies are associated 

with a horizontal and a torsional eigenmode, respectively, while the results from the FEM 

analysis are associated with a torsional and a horizontal eigenmode, respectively. The 

overall shapes of the calculated modes, however, are similar to the measured modes (also 

for the inverted pendulum motion). In order to obtain better agreement between measured 

and calculated values, some of the cross sectional parameters in the model were modified. 

Since it was assumed that the glulam beams were not rigidly connected to the horizontal 

wind truss, it was decided to weaken the diagonals in the truss by reducing their modulus 

of elasticity. A similar argument led to the reduction in stiffness for the secondary spans, 

KT ωi
2M–( )xi 0= i 1 …n,=

ωi xi

KT Km KG+( )=

fi
ωi
2π
------=
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since the brackets “hinging” the primary span to the secondary will allow some move-

ment. The results from this analysis is presented in Table 8.7 as FEMb.

  

Even if the results from the modified model show very good agreement with the measured 

values, it should be kept in mind that they have been obtained through a trial and error pro-

cess. However, the excellent agreement for even the 6th natural frequency, seems to indi-

cate that the critical problem areas, with respect to modelling, have been identified. 

Interestingly, the modifications did not noticeably change the shape of the vibration modes 

(only their associated frequencies). The first three modes are depicted in figures 8.16 to 

8.18. Finally, the primary displacement (or rotation) components in the bridge deck, 

obtained by the final modified analysis, are plotted in Figure 8.19 along with the (average) 

recorded values and equivalent sinusoidal mode shapes.

The main message from this example is the importance of the modelling process. In most 

practical cases correct answers (in the form of prototype measurements) are not available, 

and for complex structures it may therefore be appropriate to vary critical properties in 

order to map their influence on the final result.

 

Table 8.7  Computed and measured natural frequencies fi [Hz]a

a. h = horizontal, t = torsional and v = vertical

f1 f2 f3 f4 f5 f6

Measured 0.83 (1st h) 1.12 (1st t) 1.45 (1st v) 2.10 (2nd h) 2.45 (2nd t) 2.85 (2nd v)
FEM 1.06 (1st t) 1.12 (1st h) 1.52 (1st v) 2.51 (2nd t) 3.11 (2nd h) 3.27 (2nd v)

FEMb

b. Modified cross section parameters

0.87 (1st h) 1.12 (1st t) 1.45 (1st v) 2.06 (2nd h) 2.63 (2nd t) 2.82 (2nd v)
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Figure 8.16 Lardal Bridge, eigenmode 1 (horizontal)

Figure 8.17 Lardal Bridge, eigenmode 2 (torsional)
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Figure 8.18 Lardal Bridge, eigenmode 3 (vertical)

Figure 8.19 Full scale measurements, FEM-analysis and equivalent sinusoidal mode 
representation of principal displacements of the 3 first eigenmodes

vy

θx

vz
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8.4  Concluding remarks and suggestions for further work

The network arch bridge case presented indicates the potential of a flexible 3D analysis 

and design tool with graphical user interaction. However, as seen in the case of the Lardal 

pedestrian bridge, 3D modelling of real structures is not always a straightforward process. 

It will probably take some time before the powerful, state-of-the-art computational 

engines are developed into robust, easy to use and understand and, to some extent, fool-

proof tools, for the ordinary practising engineer. Although the nonlinear behavior of tim-

ber members are at present adequately described by the use of nonlinear beam type 

elements, some problem areas still remain: How to model and analyze the semi-rigid con-

nections, shape imperfections and the need for improved fracture models. In addition, the 

time-dependant behavior of wood (rheology) due to loading and transportation of mois-

ture content should also be addressed. Connections and rheology can readily be modeled 

and analyzed with available software packages, using volume and contact elements and 

nonlinear material models. In a practical design context, however, this is still far too costly 

and cumbersome. Of the mentioned challenges, the most pressing are:

• Guidelines for shape imperfections for use in 3D nonlinear analyses

• Improved, discrete models for timber connections and supports

To facilitate safe and accurate design, the design software should offer flexible and com-

prehensive options for modelling shape imperfections. Furthermore, extensive libraries 

with accurate models of predefined joints and connections coupled with good visual user 

feedback are needed. This is primarily due to the semi-rigid properties present for all fas-

teners used in connection with timber. Also, since timber structures often base the trans-

mission of axial forces on contact forces, discrete “contact-joints” would be useful.

In conclusion it seems fair to state that while some aspects of the stability of glulam arches 

have been demonstrated, a more comprehensive and systematic series of analyses is nec-

essary in order to provide solid information and guidelines for practical design work. The 

aim is to include (code based) capacity controls of all members, coupled with full fledged 

nonlinear static analyses that account properly for the stiffness of the entire (3D) structural 

system, including all bracing and geometric imperfection, and thus eliminate the use of 

some rather cumbersome correction (k-) factors. 
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 Appendix A
Some basic properties 
of the spin matrix

The skew symmetric 3×3 spin matrix (so(3)) of a vector is defined by: 

(A.1)

This can be deduced by the fact that pre-multiplication of the matrix has the same effect as 

the cross-product of its axial vector (Axial(Spin(a)) = a) and an arbitrary vector (b): 

(A.2)

Elements of so(3) satisfy the Lie bracket :

 (A.3)

(A.4)

(A.5)

By using the fact that 

(A.6)

and

(A.7)

the Lie bracket can be re expressed as: 

a Spin a( )

0 a3– a2

a3 0 a1–
a2– a1 0

so 3( )∈= =

)

a b× a b b a–= =
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° °,[ ]

a b,[ ] a b b a– so 3( )∈=

) ) ) ) ) )

a a,[ ] a a a a– 0= =
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a c+ b,[ ] a b b a– c b b c–+ a b,[ ] c b,[ ]+= =
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a b b a⊗ a b⋅( )1–=
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Spin a b( ) b a⊗ a b⊗–=

)

 181



Appendices
(A.8)

It is sometimes useful to obtain the symmetric and skew symmetric parts of . By 

using equations (A.6) and (A.7) it is easily shown that:

(A.9)

(A.10)

Transformation of the spin matrix follow basic transformation laws of matrices. This can 

be observed since

(A.11)

and

(A.12)

we get

 (A.13)

Furthermore, if the rotation, R, is a rotation about an axis parallel to a, then:

 ,  , (A.14)

Equation (A.6) can also be used to show that:

(A.15)

a b,[ ] a b b a– a b⊗ b a⊗– Spin b a( )= = =

) ) ) ) ) ) )

a b

) )

Sym a b( )
1
2
--- b a⊗ a b⊗+( ) a b⋅( )1–=

) )

Skew a b( )
1
2
--- a b,[ ]

1
2
--- b a⊗ a b⊗–( )

1
2
---Spin a b( )= = =

) ) ) ) )

Ra( ) Rb( )× R a b×( )=

Spin Ra( )b Ra( ) b× Ra( ) RRTb( )×= =

R a RTb( )×( ) R a RTb= =

)

Spin Ra( ) RSpin a( )RT=    RRT∀ 1=

RSpin a( ) Spin a( )R=    RRT∀ 1= R 1= Ra a=

b a b a b⋅( ) b–=

) ) ) )
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 Appendix B
Derivation of H-matrix

This appendix deals with the derivation of the matrix, H, that relates additive differentials 

of the rotation at one rotational state to another. Derivation of this matrix is usually done 

by the use of the Rodriguez-parameters, primarily due to the simple form of the evaluation 

of compound rotations. In the following, no such shift in parametrization will be done.

We start by defining the current state of rotation:

,      ,    (B.1)

where  is the total rotation in the current state,  is an initial rotation and  is the addi-

tional rotation. If the additional rotation is perturbed by the vector , where  is a 

scalar, we get the perturbed rotational state:

,        (B.2)

The Frêchet derivative along  now evaluates to:

(B.3)

where

(B.4)

Before proceeding, the following useful relations are noted:

,      (B.5)

(B.6)

R θt( ) R θ( )R θ0( )= θ θ n= θ0 θ0 n0=

θt θ0 θ

ε θδ ε 0>

R θt
ε( ) R θε( )R θ0( )= θε θ ε θδ+ θε nε= =

θδ

DR θt( ) θδ⋅ DR θ( )R θ0( ) θδ⋅ DR θ( ) θδ⋅( )R θ0( )= =

DR θ( ) θδ⋅
ε∂

∂ 1cos( θε )
1 cos( θε )–( )

θε 2
-------------------------------------θε θε⊗

θε( )sin
θε

----------------------- θε+ +
ε 0=

=

)

Dθ θδ⋅ θδ= D θ θδ⋅ θ θδ⋅
θ

---------------- n θδ⋅= =

Dn θδ⋅ D θ
θ

------- θδ⋅ θδ
θ

------- n θδ⋅
θ

----------------n– 1 n n⊗–( )
θδ
θ

-------= = =
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Separating Equation (B.4) into the three terms A, B and C results in:

(B.7)

(B.8)

(B.9)

Collecting terms, we get:

(B.10)

A D 1cos( θ )[ ] θδ⋅ θ( )sin n θδ⋅ 1         –= =

B D 1 cos( θ )–( )n n⊗[ ] θδ⋅=
θ( )sin n θδ⋅ n n⊗=

1 cos( θ )–( )
θ

---------------------------------- θδ n⊗ n θδ⊗ 2n θδ⋅ n n⊗–+[ ]+

C D θ( )sin n[ ] θδ⋅=

cos( θ ) n θδ⋅ n θ( )sin
θ

-------------------- θδ n θδ⋅ n–[ ]+=

cos( θ ) n θδ⋅ n θ( )sin
θ

-------------------- θδ n n⊗ n n⊗ θδ+[ ]+=

)

) ) )

) ) )

DR θ( ) θδ⋅ A B C+ +=
θ( )sin n θδ⋅ 1– θ( )sin n θδ⋅ n n⊗+=

1 cos( θ )–( )
θ

---------------------------------- θδ n⊗ n θδ⊗ 2 n θδ⋅ n n⊗–+[ ]+

cos( θ ) n θδ⋅ n θ( )sin
θ

-------------------- θδ n n⊗ n n⊗ θδ+[ ]++

θ( )sin n θδ⋅ n
2

cos( θ ) n θδ⋅ n+=
1 cos( θ )–( )

θ
---------------------------------- θδ n⊗ n θδ⊗ 2 n θδ⋅ n n⊗–+[ ]+

θ( )sin
θ

-------------------- θδ n n⊗ n n⊗ θδ+[ ]+

) ) )

) )

) )
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Post-multiplication of  results in:

(B.11)

By using the fact that

(B.12)

and

(B.13)

we get

RT

DR θ( ) θδ⋅ RT θ( )sin cos( θ ) n θδ⋅ n
2

θ( )sin2 n θδ⋅ n+=

θ( )cos2 n θδ⋅ n θ( )cos θ( )sin n θδ⋅ n
2

–+
1 θ( )cos–( ) θ( )cos

θ
--------------------------------------------------------- θδ n⊗ n θδ⊗ 2 n θδ⋅ n n⊗–+[ ]+

1 θ( )cos–( )2

θ
-------------------------------------- θδ n⊗ n θδ⋅ n n⊗–[ ]+

1 θ( )cos–( ) θ( )sin
θ

-------------------------------------------------------- n n θδ⊗[ ]+

θ( )sin cos( θ )
θ

------------------------------------------ θδ n n⊗ n n⊗ θδ+[ ]+

1 θ( )cos–( ) θ( )sin
θ

-------------------------------------------------------- θδ n n⊗[ ]+

θ( )sin2

θ
---------------------- n n⊗ θδ n[ ]–

n θδ⋅ n θ( )sin
θ

-------------------- n n θδ⊗ θδ n n⊗+[ ]+=

θ( )cos 1–( )
θ

----------------------------------- n θδ⊗ θδ n⊗–[ ]+

) )

) )

)

) )

)

) )

) ) )

n θδ⊗ θδ n⊗–[ ] Spin θδ n( ) Spin n θδ( )–= =

) )

n n θδ⊗ θδ n n⊗+[ ] θδ n( ) n⊗ n θδ n( )⊗–[ ] Spin n θδ n( )= =

Spin n
2

θδ( )– Spin θδ n n⊗ θδ–( )= =

) ) ) ) ) )

)
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(B.14)

where

(B.15)

It should be noted that  is singular for , .

For , the total rotation is described by , and the multiplicative differential 

is obtained,  ( ):

(B.16)

otherwise 

(B.17)

Since equations (B.16) and (B.17) should produce the same perturbed , we get:

(B.18)

For nonsingular , we have:

(B.19)

DR θ( ) θδ⋅ RT n θδ⋅ n 1 θ( )cos–( )
θ

-----------------------------------Spin n θδ( )+=

θ( )sin
θ

--------------------Spin θδ n n⊗ θδ–( )+

Spin n n⊗ θδ( )
1 θ( )cos–( )

θ
-----------------------------------Spin n θδ( )+=

θ( )sin
θ

--------------------Spin θδ n n⊗ θδ–( )+

Spin H 1– θδ( )=
) )

)

H 1– n n⊗
1 θ( )cos–( )

θ
----------------------------------- n θ( )sin

θ
-------------------- 1 n n⊗–( )+ +=

1 2 θ 2⁄( )sin2

θ
------------------------------------ n 1 θ( )sin

θ
--------------------– 

  n
2

+ +=

)

) )
H 1– θ 2nπ= n 1 2 …, ,=

θ 0= θ0 θt=

θδ ωδ= H 1– 1=

Rδ DR θ 0=( )R θt( ) ωδ⋅ Spin H 1– ωδ( )R ωδ R= = =

)

Rδ DR θ( ) θδ⋅ Spin H 1– θδ( )R==

Rδ

Spin H 1– θδ( ) ωδ= ⇔

)

H 1– θδ ωδ=

H 1–

θδ H ωδ=
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 Appendix  C  
Geometric interpretation of the 
exponential map of rotations

“On a Lie group, exp is a map from the Lie algebra to its Lie group. If you think of the Lie 

algebra as the tangent space to the identity of the Lie group, exp(v) is defined to be h(1), 

where h is the unique Lie group homeomorphism from the real numbers to the Lie group 

such that its velocity at time 0 is v.“1

In this particular case, the Lie algebra is the set of all skew symmetric matrices, 

 with the commutator (Lie bracket) , and 

the Lie group is the rotation group SO(3). The purpose of this appendix is not to delve into 

the intricacies of group-theory and abstract algebra, but rather to give an intuitive interpre-

tation of the exponential map and how it relates the spins to the rotations. To do so, we 

1. Eric W. Weisstein. "Exponential Map." From MathWorld--A Wolfram Web Resource. http://math-
world.wolfram.com/ExponentialMap.html.

Figure C.1  Rotation of vector 

so 3( ) R3x3⊂ α β,[ ] α β β α– so 3( )∈=

) ) ) ) ) )

θ x0

R θ( )x0

x0
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start by looking at the action of rotating a vector in space. As a rotation only affect the 

components of the vector projected onto the rotation plane, the motion will be illustrated 

in this plane.

Figure C.1 depicts two approximations of the rotation of the vector  from its state of 

identity to the final position  and , respectively. These approximations are obtained 

by adding the cross product with the pseudovector incrementally, written in matrix form 

as:

(C.1)

(C.2)

Equation (C.2) is a second order approximation to the rotated vector, whereas (C.1) is only 

a first order approximation. Intuitively, as we proceed in smaller increments, the vector 

should trace the circular line. By defining the general form of this approximation, we get

(C.3)

Taking the limit as n  approaches infinity, we get the exponential map:

Figure C.1  Successive approximations

x0

x1 x2

                                                                      

θ x0×
θ
2
--- x0×

 θ
2
--- x'2×

θ θx0

x1

x0

x'2
x2

x1 1 Spin θ( )+[ ]x0=

x2 1 1
2
---Spin θ( )+ 1 1

2
---Spin θ( )+ x0=

xn 1 1
n
---Spin θ( )+

n
x0=
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(C.4)

Where the definition  is used in the last transition.

To obtain a closed-form solution of , we introduce the series-expansion of the 

exponential function:

(C.5)

As it can be shown by simply performing the matrix multiplications, that 

(C.6)

holds for arbitrary vectors  and . Applying this to Equation (C.5), and using 

, for odd numbered k we get:

 (C.7)

For even numbered terms, we have: 

 (C.8)

Organizing and collecting terms, we obtain the Rodriguez formula for rotations:

(C.9)

x xnn ∞→
lim 1 1

n
---Spin θ( )+

n

n ∞→
lim x0 exp θ( ) x0 R θ( )x0= = = =

)

exp θ( ) 1 1
n
---Spin θ( )+

n

n ∞→
lim=

)

exp θ( )

)

exp θ( ) 1 1
k!
---- θ

k

k 1=

∞

∑+=
) )

a b a a b⋅( ) a–=

) ) ) )
a b

θ θ n=

1
k!
---- θ

k θ 2–( )
k 1–

2
-----------

k!
--------------------------- θ

1–( )
k 1–

2
-----------

θ
k 1–

k!
------------------------------------- θ

1–( )
k 1–

2
-----------

θ
k

k!
------------------------------ n= = =

) ) ) )

1
k!
---- θ

k θ 2–( )
k 2–

2
-----------

k!
--------------------------- θ

2 1–( )
k
2
--- 1–

θ
k

k!
------------------------------- n

2
= =

) ) )

R θ( ) exp θ( ) 1 1–( )
k 1–

2
-----------

θ
k

k!
------------------------------ n

k 1 3 5 …, , ,=
∑

1–( )
k
2
--- 1–

θ
k

k!
------------------------------- n

2

k 2 4 6 …, , ,=
∑+ += =

1 1–( )
k

θ
2k 1+

2k 1+( )!
--------------------------------- n

k 0=

∞

∑
1–( )

k
θ

2k

2k( )!
-------------------------- n

2

k 1=

∞

∑–+=

1 θsin n 1 θcos–( ) n
2

+ +=

) ) )

) )

) )
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 Appendix D
Extraction of rotational pseudovector and 
establishing the rotation matrix

The most reliable method of extracting the rotational pseudovector from the rotation 

matrix is to go via the quaternion representation. A quaternion represents a hypercomplex 

number ,  where 

 (D.1)

(D.2)

(D.3)

(D.4)

For the extraction of the quaternions from a given rotation matrix R, Spurriers algorithm 

[38], presented on the next page, is fast and reportedly the most reliable, particularly for 

small rotations. When using this algorithm, it should be noted that the resulting rotations 

are in the range from 0 to 2  ( ). Thus, for rotations exceeding , a “corrected 

value of  should be used. 

The rotation matrix, based on the quaternions, is established as follows:

(D.5)

q q0 iq1 jq2 kq3+ + + q0 q+= =

q0 θ 2⁄( )cos=

q 2 q1
2 q2

2 q3
2+ + θ 2⁄( )sin2= =

n q
q

--------=

q 2 q0
2+ 1=

π 1–  q0 1≤ ≤ π

θ* θ 2π–=

R 2

   q1
2 q0

2+ 1
2
---–    q1q2 q0q3–    q1q3 q0q2   +

   q1q2 q0q3+ q2
2 q0

2+ 1
2
---– q2q3 q0q1   –

   q1q3 q0q2– q2q3 q0q1+ q3
2 q0

2+ 1
2
---   –

=
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Spurrier’s algorithm:

   

   if (   ) then

        

         for  and cyclic, even permutations of 

   else

        let i be such that 

        

        

        

        

   end

   

        

   

M max trace R( ) R11 R22 R33, , ,( )=

M trace R( )=

q0
1
2
--- 1 trace R( )+=

qi
1
4
--- Rkj Rjk–( ) q0⁄= i 1 2 3, ,= i j k, ,

Rii M=

qi
1
2
---Rii

1 trace R( )–( )
4

-------------------------------------+ 
 =

q0
1
4
--- Rkj Rjk–( ) qi⁄=

qj
1
4
--- Rji Rij–( ) qi⁄=

qk
1
4
--- Rki Rik–( ) qi⁄=

p q0
2 q1

2 q2
2 q3

2+ + +=

q0 q0 p⁄=

q q p⁄=
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 Appendix E
Variation of a co-rotating frame for an 
element with 2 nodes

In the following the derivation of the matrix  that links the variation in the visible 

degrees of freedom, , to the variation of the rigid body rotations  for a 2-node ele-

ment will be presented. A similar derivation has been presented by several authors, among 

which Haugen [16] and Eggen [10] can be mentioned for a clear and concise presentation. 

In the derivation that follows, the definition of the base vectors will follow the same geo-

metric considerations as in [10, 16]. The principal reason for including this appendix is to 

conform with the notation in the previous chapters. In [10] and [16] the derivation was 

based on geometric considerations, in the following a purely mathematical approach will 

be presented, starting with the general form of variations of an orthogonal co-rotating 

basis. As this mathematical approach may preclude intuitive understanding, the interested 

reader should confer with the referred work to get a more physical interpretation. 

E.1  General relations

From previous derivations in Chapter 4, we have:

(E.1)

Where each  and  must be uniquely defined. Leaving the actual definition of these 

base vectors to the next section, we proceed by taking the variation of the transpose of 

(E.1):

G

ṽδ ω̃rδ

Tr Ei
0 Ei

n⊗ Rr
T= =

Ei
n Ei

0
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(E.2)

As we are seeking a relation expressed in coordinates of , (E.2) is transformed to 

obtain the local form:

(E.3)

In the following, superscripts indicating configuration will be omitted for the base vectors, 

assuming updated axes  are used. Because we know that  is a skew symmetric 

matrix, we can extract the axial vector by means of the alternator , defined in (E.5).

(E.4)

where the alternator is defined as

(E.5)

and also, by definition

,     (E.6)

For each component  of  we get:

(E.7)

(E.8)

(E.9)

The basis , is by definition an orthonormal right-handed system, yielding the follow-

ing useful expressions:

Trδ T Ei
nδ Ei

0⊗ ω rδ Tr
T= =

       ω rδ Trδ TTr Ei
nδ Ei

n⊗= =⇒

)

)

Ei
n

ω̃ rδ Tn ω rδ Tn
T Tn Tr

Tδ T0 Ii Ei
n⊗( ) Ej

nδ Ij⊗( )= = =

) )

Ei
n{ } ω̃ rδ

)

eijk

ω̃r
iδ

1
2
---eijkδjlEl

m En
mδ δkn–=

eijk

0 repeated indices,

1 even permutations of i j k, ,( ),

1– odd permutations of i j k, ,( ),





=

Axial W( )[ ]i
1
2
---eijkWjk–= Spin w( )[ ]ik eijkwj=

ω̃r
iδ ω̃rδ

ω̃r
1δ

1
2
---e123E2

m E3
mδ– 1

2
---e132E3

m E2
mδ– 1

2
--- E3 E2δ⋅ E2 E3δ⋅–( )= =

ω̃r
2δ

1
2
---e231E3

m E1
mδ– 1

2
---e213E1

m E3
mδ– 1

2
--- E1 E3δ⋅ E3 E1δ⋅–( )= =

ω̃r
3δ

1
2
---e312E1

m E2
mδ– 1

2
---e321E2

m E1
mδ– 1

2
--- E2 E1δ⋅ E1 E2δ⋅–( )= =

Ei{ }
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,     ,     (E.10)

(E.11)

,     (E.12)

(E.13)

,     (E.14)

Organizing and combining terms in Equations (E.7) through (E.14), result in:

(E.15)

Equation (E.15) is now a general form of the variation of the instantaneous axis of rigid 

body rotation, expressed by the variation of the co-rotating basis. 

E.2  Axes, definitions and variations (2-node beam)

The position of the two nodes of the element are given by the vectors , where 

the ‘s are vectors collecting the total displacements at the node. The two points cannot 

uniquely define a complete basis in 3D. We therefore introduce the following auxiliary 

vector: 

(E.16)

where  is the initial base vector , and  is the current rotation at node . Defining 

 to be parallel to the straight line from node 1 to node 2, the following becomes a natu-

ral choice of basis:

,     ,     (E.17)

Note that  yields the following relation:

E1 E2 E3×= E2 E3 E1×= E3 E1 E2×=

E2δ E 3 E1δ E 1 E3δ–=

) )

E1 E2δ⋅ E2 E1δ⋅–= E3 E2δ⋅ E2 E3δ⋅–=

E3δ E 1 E2δ E 2 E1δ–=

) )

E1 E3δ⋅ E3 E1δ⋅–= E2 E3δ⋅ E3 E2δ⋅–=

ω̃rδ

E3 E2δ⋅

E3 E1δ⋅–
E2 E1δ⋅

=

xI xI
0 vI+=

vI

dm R1E3
0 R2E3

0+ d1 d2+= =

E3
0 E3 RI I

E1

E1
x2 x1–
x2 x1–

---------------------
x12
x12

------------= = E2
dm E1×

dm E1×
-------------------------= E3 E1 E2×=

dm E2⊥
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(E.18)

Here we have taken advantage of the fact that . Next we get the variation of  

and :

(E.19)

(E.20)

(E.21)

We now need the contracted vectors ,  and . The first two 

are rather straightforward:

,      (E.22)

The derivation of the last expression, however, is a more lengthy affair:

(E.23)

The expression (E.23) is divided into two parts, which are evaluated separately for conve-

nience:

dm E1× Tn
Td̃m Tn

TI1× d̃m I1× d̃m
3 d̃m

3= = = =

d̃m
3 0≥ E1

E2

E1δ
1

x12
------------ 1 E1 E1⊗–( ) vδ 2 vδ 1–( )=

E2δ
1

d̃m
3

------ 1 E2 E2⊗–( ) d mE1( )δ=

1
d̃m

3
------ 1 E2 E2⊗–( ) d m E1δ E 1 dδ m–[ ]=

)
) )

dmδ R1 i3
0δ R1δ i3

0 R2 i3
0δ R2δ i3

0+ + + Spin ω1δ( )d1 Spin ω2δ( )d2+= =

Ei Ii⊗( )Spin ω̃1δ( )d̃1 Ei Ii⊗( )Spin ω̃2δ( )d̃2+=

E2 E1δ⋅ E3 E1δ⋅ E3 E2δ⋅

E2 E1δ⋅
ṽδ 2

2 ṽδ 1
2–( )

x12
---------------------------= E3 E1δ⋅

ṽδ 2
3 ṽδ 1

3–( )

x12
---------------------------=

E3 E2δ⋅
1

d̃m
3

------E3 1 E2 E2⊗–( ) d m E1δ E 1 dδ m–[ ]⋅=

 1
d̃m

3
------E3 d m E1δ E 1 dδ m–[ ]⋅=

 1
d̃m

3
------ E3 d m E1δ⋅ E2 dδ m⋅( )–[ ]=

) )

) )

)
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(E.24)

(E.25)

Collecting and organizing terms, we obtain the required relation:

1–
d̃m

3
------ E2 dδ m⋅( )

1–
d̃m

3
------I2 Spin ω̃1δ( )d̃1 Spin ω̃2δ( )d̃2+[ ]⋅=

 1
d̃m

3
------I2 Spin d̃1( ) ω̃1δ Spin d̃2( ) ω̃2δ+[ ]⋅=

 1–
d̃m

3
------ Spin d̃1( )I2 ω̃1δ⋅ Spin d̃2( )I2 ω̃2δ⋅+[ ]=

 1
d̃m

3
------

d̃1
3

0

d̃1
1–

ω̃1δ⋅
d̃2

3

0

d̃2
1–

ω̃2δ⋅+=

1
d̃m

3
------ E3 d m E1δ⋅[ ]

1
d̃m

3 x12

------------------- E3 d m 1 E1 E1⊗–( ) vδ 2 vδ 1–( )⋅[ ]=

 1

d̃m
3 x12

------------------- E3 d m d mE1 E1⊗–( ) vδ 2 vδ 1–( )⋅[ ]=

 1

d̃m
3 x12

-------------------E3 d m vδ 2 vδ 1–( )⋅=

1
x12

------------ E3 E2 E1⊗( ) vδ 2 vδ 1–( )⋅–

 1

d̃m
3 x12

-------------------I3 d̃m ṽδ 2 ṽδ 1–( )⋅=

 1

d̃m
3 x12

------------------- d̃m
2–  d̃m

1  0 ṽδ 2 ṽδ 1–( )=

 1

d̃m
3 x12

------------------- 0  d̃m
1
 0 ṽδ 2 ṽδ 1–( )=

) )
) )

)
)
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(E.26)

Where the matrices  and  are given by:

(E.27)

(E.28)

ω̃rδ

E3 E2δ⋅

E3 E1δ⋅–
E2 E1δ⋅

=

1
x12

------------
   

d̃m
1

d̃m
3

------ ṽδ 2
2 ṽδ 1

2–( )   

ṽδ 2
3 ṽδ 1

3–( )–

ṽδ 2
2 ṽδ 1

2–( )

1
d̃m

3
------

d̃1
3 ω̃1

1δ d̃1
1 ω̃1

3δ–
0
0

1
d̃m

3
------

d̃2
3 ω̃2

1δ d̃2
1 ω̃2

3δ–
0
0

+ +=

G1 G2

ṽδ 1

ω̃1δ

ṽδ 2

ω̃2δ

G ṽδ= =

G1 G2

G1

0    1–
x12

------------
d̃m

1

d̃m
3

------   0    
d̃1

3

d̃m
3

------   0    
d̃1

1–

d̃m
3

---------

0 0 1
x12

------------ 0 0 0

0 1–
x12

------------ 0 0 0 0

=

G2

0    1
x12

------------
d̃m

1

d̃m
3

------   0    
d̃2

3

d̃m
3

------   0    
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1–

d̃m
3

---------

0 0 1–
x12

------------ 0 0 0

0 1
x12

------------ 0 0 0 0

=
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 Appendix F
Explicit expressions of EICR-matrices 
for a 2-node element

F.1  Projector

(F.1)P

1
2
---      0        0         0          0          0          1

2
---–             0          0          0          0     0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0
d̃m

1

Lnd̃m
3

-------------- 0 1
d̃1

3

d̃m
3

-------– 0
d̃1

1

d̃m
3

------- 0
d̃m

1

Lnd̃m
3

--------------– 0
d̃2

3

d̃m
3

-------– 0
d̃2

1

d̃m
3

-------

0 0 1
Ln
------– 0 1 0 0 0 1

Ln
------ 0 0 0

0 1
Ln
------ 0 0 0 1 0 1

Ln
------– 0 0 0 0

1
2
---– 0 0 0 0 0 1

2
--- 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0
d̃m

1

Lnd̃m
3

-------------- 0
d̃1

3

d̃m
3

-------– 0
d̃1

1

d̃m
3

------- 0
d̃m

1

Lnd̃m
3

--------------– 0 1
d̃2

3

d̃m
3

-------– 0
d̃2

1

d̃m
3

-------

0 0 1
Ln
------– 0 0 0 0 0 1

Ln
------ 0 1 0

0 1
Ln
------ 0 0 0 0 0 1

Ln
------ 0 0 0 1

=
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F.2   Projected forces

(F.2)

(F.3)

f̃b PT f̃e

1
2
--- ñ1

1 ñ2
1–( )

d̃m
1 m̃1

1 m̃2x+( ) d̃m
3 m̃1

3 m̃2
3+( )+

Lnd̃m
3

--------------------------------------------------------------------------

m̃1
2 m̃2

2+
Ln

---------------------–

m̃1
1 d̃1

3

d̃m
3

------ m̃1
1 m̃2

1+( )–

m̃1
2

d̃m
3 m̂1z d̃1

1 m̃1
1 m̃2

1+( )+
d̃m

3
------------------------------------------------------

-----------------------------------
1
2
--- ñ1

1 ñ2
1–( )–

d̃m
1 m̃1

1 m̃2
1+( ) d̃m

3 m̃1
3 m̃2

3+( )+
Lnd̃m

3
------------------------------------------------------------------------–

m̃1
2 m̃2

2+
Ln

---------------------

m̃2
1 d̃2

3

d̃m
3

------ m̃1
1 m̃2

1+( )–

m̃2
2

d̃m
3 m̃2

3 d̃2
1 m̃1

1 m̃2
1+( )+

d̃m
3

-----------------------------------------------------

  ñ1  
m̃1

ñ2

m̃2

= = =

ñ1 ñ2–=
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F.3  Geometric stiffness

Projection geometric stiffness

(F.4)

Rotational geometric stiffness

The rotational geometric stiffness is divided into three parts for convenience:

 (F.5)

KGP
1

Ln
------

  0    0    0    0    0    0    0    0    0    0    0    0  

ñ1
2 0 0 0 0 0 ñ1

2– 0 0 0 0 0

ñ1
3 0 0 0 0 0 ñ1

3– 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

ñ2
2 0 0 0 0 0 ñ2

2– 0 0 0 0 0

ñ2
3 0 0 0 0 0 ñ2

3– 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

=

KGR1  1
Ln
------

  0    ñ1
2   ñ1

3   0    0    0    0  ñ1
2–  ñ1

3–    0    0    0  

0 ñ1
1– 0 0 0 0 0   ñ1

1 0 0 0 0

0 0 ñ1
1– 0 0 0 0 0   ñ1

1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0   ñ2
2  ñ2

3 0 0 0 0 ñ2
2– ñ2

3– 0 0 0

0 ñ2
1– 0 0 0 0 0   ñ2

1 0 0 0 0

0 0 ñ2
1– 0 0 0 0 0   ñ2

1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

=
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By defining the auxiliary vector:

(F.6)

the second part of the rotational geometric stiffness is defined as:

(F.7)

The third part is defined as:

(F.8)

g 0 ñ1
3

– ñ1
2 0 m̃1

3– m̃1
2 0 ñ2

3
– ñ2

2 0 m̃2
3– m̃2

2
T

=

KGR2
d̃1

3

d̃m
3

------ 0 0 0 g 0 0 0 0 0 0 0 0=

d̃2
3

d̃m
3

------ 0 0 0 0 0 0 0 0 0 g 0 0+

d̃m
1

d̃m
3 Ln

------------ 0 g 0 0 0 0 0 0 0 0 0 0–

d̃m
1

d̃m
3 Ln

------------ 0 0 0 0 0 0 0 g 0 0 0 0+

d̃1
1

d̃m
3

------ 0 0 0 0 0 g 0 0 0 0 0 0–

d̃2
1

d̃m
3

------ 0 0 0 0 0 0 0 0 0 0 0 g–

KGR3  1
Ln
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0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 m̃1
2 m̃1

3 0 0 0 0 m̃1
2– m̃1

3– 0 0 0

0 m̃1
1– 0 0 0 0 0 m̃1

1 0 0 0 0

0 0 m̃1
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1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 m̃2
2 m̃2

3 0 0 0 0 m̃2
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0 m̃2
1– 0 0 0 0 0 m̃2

1 0 0 0 0

0 0 m̃2
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1 0 0 0

=
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It should be noted that the projection geometric stiffness and the first part of the rotational 

geometric stiffness form a symmetric matrix: 

(F.9)KGR1 KP+  1
Ln
------

  0    ñ1
2   ñ1

3   0    0    0    0  ñ1
2–  ñ1

3–    0    0    0  

ñ1
2 ñ1

1– 0 0 0 0 ñ1
2–   ñ1

1 0 0 0 0

ñ1
3 0 ñ1

1– 0 0 0 ñ1
3– 0   ñ1

1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 ñ1
2– ñ1

3– 0 0 0 0   ñ1
2 ñ1

3 0 0 0

ñ1
2–    ñ1

1 0 0 0 0   ñ1
2 ñ1

1– 0 0 0 0

ñ1
3– 0   ñ1

1 0 0 0  ñ1
3 0 ñ1

1– 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

=
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 Appendix G
Contracted matrices for 
Cosserat elements 

Material stiffness

(G.1)

‘ (G.2)

Geometric stiffness

(G.3)

SIJ Ξ̂hIΠ̂ĈΠ̂TΞ̂hJ
T Sd

0 L,[ ]

∫=

Ξ̂hIΠ̂ĈΠ̂TΞ̂hJ
T SIJ

11 SIJ
12

SIJ
21 SIJ

22
=

SIJ
11 B'Iĉ11B'J=

SIJ
12 B'Iĉ12B'J B'Iĉ11 ϕ0'

ˆ
 BJ+=

SIJ
21 B'Iĉ21B'J BI ϕ0'

ˆ
ĉ11 B'J–=

SIJ
22 B'Iĉ22B'J BI ϕ0'

ˆ
ĉ12B'J– B'Iĉ21 ϕ0'

ˆ
 BJ BI ϕ0'

ˆ
ĉ11 ϕ0'

ˆ
 BJ–+=

)
)

) ) ) )

T
IJ

Ψ
hI

ÂΨ
hJ
T Sd

0 L,[ ]

∫=

Ψ
hI

ÂΨ
hJ
T 0    BI' n BJ–    

BI n BJ'    BIn ϕ0'⊗ BJ BI n ϕ0'⋅( )1BJ– BI' m BJ–
=

)

) )
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 Appendix H
Spline functions

H.1  Definitions

Let  be a set of control points (weights) for a spline curve  of degree d, with 

nondecreasing knots .  is then defined by:

,    (H.1)

where  is given by the recurrence relation:

(H.2)

for , and , while . Alternatively, 

Equation (H.2) can be written as

(H.3)

The functions  are given by

(H.4)

The spline can also be written in the B-spline basis  as in Equation H.5

ci( )i 1=
n f

τ i( )i 1=
n d 1+ + f

f τ( ) pi d, τ( )Bi 0, τ( )

i d 1+=

n

∑= τ τ d 1+ τ n 1+,[ ]∈

pi d, τ( )

pi d r– 1+, τ( )
τ i r+ τ–
τ i r+ ti–
--------------------pi 1– d r–, τ( )

τ τ i–
τ i r+ τ i–
----------------------pi d r–, τ( )+=

i d r– 1+ … n, ,= r d d 1– … 1, , ,= pi 0, τ( ) ci=

pi d, τ( )
τ i 1+ τ–
τ i 1+ τ i–
----------------------pi 1– d 1–, τ( )

τ τ i–
τ i 1+ τ i–
----------------------pi d 1–, τ( )+=

Bi 0,{ }i d 1+=
n

Bi 0, τ( )
1, τ i  τ τ i 1+<≤

0, otherwise



=

Bi d,
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(H.5)

with the recursive definition of the basis functions :

(H.6)

In the previous equations, some of the relations might yield division by zero. This is 

resolved by the fact that if , then . By carrying out the recurrences, 

we find that when division by zero is encountered, we will always get , which will be 

defined to be zero. Although the evaluation of the recurrence relation (H.6) may seem 

cumbersome, it is actually quite computationally cheap to evaluate the nonzero terms. 

This is illustrated in Figure H.1 (reprint of figure in [22]), where all nonzero basis func-

tions  are calculated.  

Note that the spline is independent of the end knots  and , which are intro-

duced to avoid exeption handling at the ends. Still, it is customary to demand that  

and , so the knot vector is a strictly non decreasing sequence.

Figure H.1  Evaluation of nonzero B-spline basis functions

f τ( ) ciBi d, τ( )

i 1=

n

∑=

Bi d,

Bi d, τ( )
τ τ i–

τ i d+ τ i–
----------------------Bi d 1–, τ( )

τ i 1 d+ + τ–
τ i 1 d+ + τ i 1+–
-------------------------------------Bi 1+ d 1–, τ( )+=

τ i 1+ τ i– 0= Bi 0, 0≡

0 0⁄

Bi 3,

τ 1 τ n d 1+ +

τ 1 τ 2≤

τ n d+ τ n d 1+ +≤
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H.2  Properties of splines and B-splines

• The B-spline  depends only on the knots .

• On each interval ,  is a polynomial of degree d.

•  is -continous at a point z, where m is the number of times z occur  among 
.

• The control polynomial of a spline function, is defined as the points with coordinates 

,  where 

• If  is outside the interval  then , so for 

The name “spline” comes from the “draftman’s spline”, a flexible rod used by ship build-

ers to trace the contour of the hull of the ship by pinning it at predetermined points. The 

reason for using this name for the function comes from the following property of the cubic 

spline-function. We star by defining the space, , that is the set of all functions with 

continous derivatives up to second order that interpolate f at given data points (in the range 

from a to b).

(H.7)

If we restrict the derivatives to coincide with the derivatives of f at the ends, we have:

 (H.8)

Assume that h is a cubic spline interpolation with Hermite end conditions. It can then be 

shown that (see [22]):

Bj d, τ k( )k j=
j d 1+ +

τ τ j τ j 1+, )[∈ f τ( ) ciBi d, τ( )∑=

f τ( ) Cd m–

τ j … τ j d 1+ +, ,

τ j
* cj,( ) j 1 … n, ,= τ j

* τ j 1+
… τ j d++ +
d

----------------------------------------=

τ τ j τ j d 1+ +, )[ Bj d, 0= τ τ µ τ µ 1+, )[∈

f τ( ) ciBi d, τ( )

i µ d–=

µ

∑=

E f( )

E f( )  g C2 a b,[ ]∈ g xi( ) = f xi( ) for i = 1,...,m{ }=

EH f( )  g EH  f ( ) ∈ g′ a( ) = f ′ a( ) g′ b( ) = f ′ b( ),{ }=
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 (H.9)

with equality if and only if g = h. This means that the cubic spline interpolation with Her-

mite end conditions minimizes the linearized bending energy in the given problem.

h″ x( )( )2 xd
a

b

∫ g″ x( )( )2 xd
a

b

∫    for all g in EH f( )≤
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 Appendix I
Additional geometric and
material properties for network arch

The material properties for the glulam arches of Section 8.2 are:

E0 = 12000 N/mm2 , G = 700 N/mm2 and ρ = 500 kg/m3

                        

d 12 mm=

Steel hangers (d = 12 mm)

E = 210000 N/mm2 , ν = 0.3 and ρ = 7850 kg/m3

Steel cross beams

E = 210000 N/mm2 , ν = 0.3 and ρ = 7850 kg/m3

h = 900 mm, b = 300 mm, s = 18.5 mm and t = 35 mm

h

b

t

s

2500 mm 3000 mm 6200 mm

Longitudinal deck beams

E  = 9000 N/mm2 , G = 560 N/mm2 and ρ = 2440 kg/m3 

A-beams: b×h = 1000×250 mm, B-beams: b×h = 2000×250 mm

A AB B
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For self weight, a load amplification factor of 1.2 is used. For traffic loads, a load amplifi-

cation factor of 1.3 is already included.    

Figure I.1  Along span positioning of loads

Figure I.2  Lateral positioning of loads

32800 mm 14400 mm 2 11.7 kN/m× 1 7.8 kN/m×+

36000 mm
2500 mm 2 275 kN/m×6000 mm

Concentrated loads

Distributed loads

11.7 kN/m
7.8 kN/m

2500 3000 6200 mm

3 275 kN×

2500 3000 6200 mm
Distributed loads Concentrated loads
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