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Sammendrag

I dagens samfunn er det stort fokus p̊a å skape et grønnere og mer bærekraftig miljø. Dette har ført
til strengere krav til energiøkonomisk skipsdesign. For å imøtekomme disse kravene trengs det mer
kunnskap om hvordan et skip responderer p̊a ulike realistiske sjøkondisjoner. Presise beregninger p̊a
kondisjoner har vært tilskrevet modeltesting, og viskøse CFD simuleringer. Da tid er en begrenset
ressurs innen ingeniør-virksomhet, og b̊ade modelltester og viskøs CFD er tidkrevende prosesser,
vil det ha stor verdi å finne frem til mer presise og tids-effektive metoder.

Denne oppgaven utforsker muligheten for å benytte ikke-viskøse CFD simuleringer til seakeeping-
analyser. Ettersom bølgemotstand og skipsbevegelser er ansett for å være trykk-dominerte fenomener,
s̊a er hypotesen at en ikke-viskøs - og viskøs simulering burde gi relativt like resultater p̊a slike
analyser. B̊ade ikke-viskøse og viskøse simuleringer er gjort for stille-vann kondisjoner og bølger i
ren motsjø og skr̊asjø.

Modellen brukt i analysene er skipsmodellen KVLCC2, i en skala p̊a 1:58, og den kommersielle
softwaren STAR-CCM+ er blitt brukt til å gjennomføre simuleringene. Eksperimentelle resultater
er hentet fra CFD Workshop’en i Gøteborg fra 2010, for stille-vanns og motsjøkondisjonene. Et-
tersom det ikke fantes tilgjengelig publisert eksperimentell data p̊a skr̊asjø analyser, var det viktig
at resultatene fra de to andre kondisjonene samstemte med de eksperimentelle verdiene. Hvis det
var tilfelle, s̊a ville det numeriske oppsettet være validert, og resultatene fra skr̊asjø-simuleringene
ville følgelig være mer troverdige.

En numerisk slepetank har blitt satt opp, og en flat-VOF og en 5te ordens tilnærming av Stokes
bølgen er blitt brukt til å modellere fri overflate for henholdsvis stille-vann og bølgekjøringene.
Overset mesh-teknikken er blitt brukt i bølgekjøringene, for å ta hensyn til de store bevegelsene
som finner sted. Modellen var satt til å kunne bevege seg i hiv og stamp i stille-vann og motsjø
kjøringene. I skr̊asjø kondisjonen var ogs̊a modellen fri til å bevege seg i rull.

For stille-vanns kondisjonen klarte ikke den ikke-viskøse solveren å beregne trykk-motstanden med
god presisjon, p̊a grunn av dens avhengighet til viskøse krefter. Da den bare klarte å estimere
omlag 35% av trykkraften, blir den ikke-viskøse solveren ansett for å ikke være anvendbar til slike
beregninger. Grunnen til et s̊a lavt samsvar mellom beregninger ligger i det lave Froude-tallet
for modellen, Fn=0.142. Ved høyere Froude-tall er det forventet at den ikke-viskøse og viskøse
simuleringen gir mer samsvarende resultater.

De endelige resultatene for bølge-kondisjonene i denne oppgaven viser at den ikke-viskøse ko-
den klarer å beregne tillegsmotstanden og bevegelsene i bølger med en tilfredsstillende presisjon.
Ved inkluderingen av stille-vanns friksjonskraften, oppn̊ar den ikke-viskøse simuleringen et to-
talmotstandsavvik p̊a 2.988% relativt til eksperimentelle resultater for mot-sjø kondisjonen. I
tillegg presterte den bedre p̊a translasjons- og rotasjonsberegninger enn en del av de andre resul-
tatene gjengitt i CFD workshopen, [Larsson, Stern, and Visonneu 2010]. I skr̊asjø-kondisjonen
fikk den et 4.4%, 0.06%, 5.29% og 11.9%-avvik p̊a den 0te harmoniske amplituden relativt til
den viskøse simuleringer for henholdsvis den trykkmotstanden, hiv-, rull- og stamp-bevegelsen.
Begge bølgesimulerings-resultater lider av en fri-overflate modellering som gjengir en bølge som er
asymmetrisk om fri-overflate ved stillevann. Til tross for dette er de gode nok til å indikere at de
resulterende kreftene og bevegelsene er trykk-dominerte.

Ut fra resulatene ble det dokumentert at friksjonsmotstanden substantielt varierte med den innkommne
bølgevinkelen, og at det ikke var noe tidsbesparinger for den ikke-viskøse koden i skr̊asjø. Uten
bedre estimater for friksjonsmotstanden til flere sjøkondisjoner, og en betraktelig økning i tidsef-
fektivitet, er den ikke-viskøse koden, basert p̊a de oppn̊adde resultatene, ansett for å være uegnet
til slike analyser.
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Summary

With the global community’s increased focus on a green and more sustainable environment, stricter
demands are being invoked on ship design. Consequently, knowledge on how the vessel responds
in a realistic sea-condition is needed, in order to hydrodynamically optimize the hull. Accurate
calculations on this topic has been the domain of model tests and viscous CFD simulations. How-
ever, since time is of the essence with regards to engineering analysis, and both model-testing and
viscous CFD simulations still are time-consuming analyses, there is a need for more efficient ways
of accurate calculation.

This thesis investigates the applicability of inviscid CFD simulations to seakeeping analysis. As ship
resistance and motions in waves is widely regarded as a pressure-dominated system, the hypothesis
is that the inviscid simulation should not differ by too much, compared to viscous CFD results.
If the two simulations concur with regards to the results, the inviscid simulation should be the
preferred method, as it is computationally faster. Both an inviscid and RANS-simulation are done
for calm-water, head-wave and oblique-wave condition.

The vessel used in the analyses is the ship model KVLCC2, at a 1:58 scale, and the commercial
software STAR-CCM+ is used for the CFD-simulations. From the CFD workshop in Gothenburg
2010 experimental results for the calm-water and head-wave simulations were obtained. As there
did not exist any published experimental results on the oblique wave-condition, it was crucial
that the calm-water and head-wave simulations agreed with the experimental data. This way, the
numerical set-up could be verified and the oblique-condition results would have more credibility.

A numerical wave tank was set up, and a flat VOF-wave and a 5th order approximation to the
Stokes wave was used to model the calm-water and wave-simulations, respectively. The overset
mesh technique has been implemented for the wave-analyses, in order to cope with the large
motions that occur. The model was allowed to move in heave and pitch for the calm-water and
head-wave simulations. In oblique wave conditions, the vessel was also allowed to move in roll.

For the calm water condition, the inviscid simulation was unable to compute the pressure resistance,
due to the fact that the pressure resistance was dominated by viscous forces. Only able to calculate
approximately 35% of the pressure force, the inviscid solver is deemed not applicable for this
condition. This is due to the low Froude number of the vessel, Fn=0.142, and it is expected that
for larger Froude numbers, the difference between the viscous and inviscid simulation will become
smaller.

The results obtained for the wave-conditions in this thesis indicates that the inviscid solver was
able to compute the resistance and motions in waves to a satisfactory level of accuracy. With the
inclusion of the calm water frictional resistance a 2.988% deviancy from experimental results was
obtained for the total resistance in the head-wave condition. It also achieved a level of accuracy for
the motions that outperformed some of the results published in the 2010 CFD workshop, [Larsson,
Stern, and Visonneu 2010]. For oblique waves it managed to obtain a 4.4%, 0.06%, 5.29% and
11.9% deviancy for the pressure resistance, heave-, roll- and pitch-motion, respectively for the 0th
harmonic amplitude of the time-series. These results, along with the head-wave simulation, suffered
from an asymmetric representation of the surface-elevation, around the mean-free-surface at for
calm waters. Still, they do indicate that the forces and motions occurring are pressure-dominated.

It was found that the frictional resistance varied substantially with wave-heading angle, and that
there was no computational gain with an inviscid solver for oblique conditions. Without a better
estimate for the frictional resistance than the calm water resistance, and improved computational
efficiency, the inviscid solver is deemed as not applicable, on the basis of the results obtained in
this thesis.
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Chapter 1

Introduction

1.1 Motivation

Since the dawn of man the sea been crucial for the survival of humanity. By offering an abundance
of food and serving as a way of transportation when a relocation was necessary, it has always
been an environment which we needed to master. To ensure a safe voyage or fishing trip, boats
would have to be built as sturdy and stable as possible, and this required knowledge. Over the
millenniums the evolution of the boat-building technique has enabled us to build larger and faster
ships that could carry more load and traverse the waters more safely. Even though the ships of
today do not resemble their more primitive ancestors, they are still built upon the same physical
reasoning. However, in order to continue the technological advance of the ship-building industry,
new ways of engineering are necessary.

Certain ship types, such as bulk-ships, have become subjected to a trend where the the ability to
carry a larger load is more important than fuel-efficiency. As fuel-cost has historically been lower
than crew and management cost, i.e fixed costs, with regards to the operation of cargo-vessels,
ship design did not focus on the fuel-efficiency of the vessel, [Lindstad et al. 2013]. This resulted
in full-bodied, almost prismatic, ships being built with the intention to carry as much as possible
at the lowest expense. Nowadays, according to [Lindstad et al. 2013], fuel costs relate to 50% of
the total costs, so the conventional hull shapes are not as economical as they were. In addition,
the maritime society has become much more aware of the need to contribute to the reduction
of environmental deteriorating gas-emissions. The Energy Efficiency Design Index was recently
implemented, demanding a minimum energy efficiency for new vessels, [IMO 2017]. This minimum
requirement will only become more and more strict, and a lot of the current ship-designs will not
be operable in their current state. With this incentive, the need for more innovative and complex
hulls may arise, and thus requiring more complex methods of calculation.

As potential flow (PF) theory has served the engineering community well over the years, and will
continue to do so in the future, it neglects and simplifies certain physical aspects that may be
important in some cases. While it does capture the general picture of the physical phenomenon it
is describing, the information it omits is necessary to know before more advanced designs can be
made.

Computational Fluid Dynamics (CFD) is not in itself a new field of engineering, as it has existed for
a large portion of the latter stages of the 20th century. However, it has during the recent years, with
the growing computational resources, gained more traction in the engineering community. Serving
as a mean to further dive into the physical aspects of fluid dynamics, it achieves to represent
the physical image with a much more detailed resolution. There exists different types of CFD -
methods, namely Reynold’s Averaged Navier-Stokes (RANS), Large-Eddy Simulations (LES) and
Direct Numerical Solver (DNS), and all give a more descriptive physical picture than potential flow
theory. Thus, with a better understanding of the physics occurring, ship design can be optimized
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2 CHAPTER 1. INTRODUCTION

and improved for better sea-faring, less fuel-consumption and moreover a safer voyage for the
passengers aboard.

The prevailing arguments against CFD have been that it is time-consuming and that it requires
an educated and experienced individual to achieve accurate results, as the simulations require a
substantial amount of tailoring to each individual problem. As computers nowadays become more
and more powerful, the former argument is on the path of becoming obsolete, and with commercial
softwares, such as Star-CCM+ (STAR) boasting an easy-to-use interface, the latter argument also
seems to carry less and less weight as time progresses. However this is not to say that one would
not need any pre-existing knowledge with CFD before using the softwares, but rather that the
road to CFD-illumination would be significantly shorter.

Although CFD seems to be the prevailing method for an accurate description of fluid related
problems, apart from the euphoric scenario where the Navier-Stokes equation is analytically solved,
it is important to distinguish between problems that need a complex CFD-solver, and those that
do not. Potential methods, such as panel-methods, are great for pressure-dominated systems, and
they will always be much faster than any CFD-solver. As mentioned, DNS is the most accurate
solver, with LES following and RANS methods being the least accurate of the three. While RANS
needs considerably less computational resources than the other two aforementioned methods, it
is still very time-consuming compared to potential-theory programs. An interesting compromise
between CFD and portential flow theory, could be inviscid CFD.

Ship resistance and general seakeeping are most commonly perceived as pressure-dominated phe-
nomenons. Thus a viscous CFD solver may require too much time compared to the potential gain
in accuracy. Inviscid CFD neglects only the viscous terms in the Navier-Stokes equation, while
potential theory assumes an irrotational, inviscid and incompressible flow-system. In addition, the
inviscid simulations have the advantage that they can estimate higher order velocity and pressure
terms, which the potential methods neglect. Therefore, inviscid CFD is a more accurate physical
solver than potential theory, and may prove to be the ideal compromise between potential-theory
analysis, and viscous CFD simulations.

1.2 Scope of Thesis

The purpose of this master thesis is to investigate the difference between inviscid CFD and viscous
CFD, using the commercial software STAR-CCM+. The elements subjected to comparison are
the pressure resistance, and motions of the KVLCC2 model ship, as presented in [Larsson, Stern,
and Visonneau 2014].

The report will contain a literature study on the topic of added resistance in waves, and a theoretical
explanation of the fluid dynamics involved in CFD. This will include a chapter on how the different
tools in STAR works, and why they have been used for the simulations in this thesis.

The model is in a scale of 1:58, and calm water simulations will initially be performed and compared
with similar experimental results from the Gothenburg workshop. The point of this is to verify
that the numerical and physical, as well as the gridding of the domain are accurately calibrated
and are able to capture the physics.

After this, the model will be subjected to incoming waves in head sea both to further test the
accuracy of inviscid simulations. An important part of seakeeping tests in waves is the modelling
of the incoming waves, and therefore this area of the simulations will be given some additional
attention in the report.

The last condition will have the vessel subjected to oblique waves. The results from this will
be followed by a discussion around the usefullness of inviscid CFD, with remarks on the result’s
validity for other ship types and a conclusion will be made regarding the applicability of the inviscid
solver. Lastly, a section with suggestions for further work will be included.



Chapter 2

Ship Resistance

Ship resistance can be divided into many components, but they all have the same thing in common;
they all express energy removed from the system. In this report it is the hull resistance that will
be calculated and compared to experimental results, so all other resistance components will not be
further discussed in this report.

The resistance a hull experiences as it propagates through the water can be divided into three
components, [Molland et al. 2011a]:

1. Frictional Resistance

Comes from the shear tangential forces acting on the hull surface

2. Pressure Resistance

Arises from the forces acting normally on the hull surface

3. Total Viscous Resistance

Pressure loss in the aft of the ship, the wake, results in a viscous drag force

The pressure force can be further divided into a viscous pressure component, and a wave compo-
nent. This wave component comes from the waves the ship generates by its own when it traverses
the water. Figure 2.1 gives a visual representation of the basic resistance components of a hull.

The following method of calculating the wave and viscous resistance, can be found in [Molland et
al. 2011b], and is presented to give the reader an understanding of how the resistance components
can be calculated. Consider a model held in a stream of velocity U, with no waves, and a control
volume given as in figure 2.2. The wave-elevation generated by the hull can be calculated, and
thus the energy removed from the system - wave resistance, can be estimated. The wave resistance
can be estimated by equation 2.1, and the total viscous resistance by equation 2.2.

RW =
1

2
ρwg

∫ b/2

−b/2
ζ2
Bdy +

1

2
ρw

∫ b/2

−b/2

∫ ζB

−h
(v2
I + w2

I − u2
I)dzdy (2.1)

RV =

∫∫
wake

[∆p+
1

2
ρw(u′2 − u2)]dzdy (2.2)

Where:

RW : Wave Resistance

RV : Viscous Resistance

ρ: Density of fluid

g: Gravitational acceleration
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ζB : Free surface elevation at position B in the control volume

uI , vI , wI : Velocity components of the wave orbit motion in the x-, y- and z-direction, re-
spectively

∆p: Loss of pressure in the boundary layer

u’: Velocity in x-direction, if there was no pressure loss in the boundary layer

u: Actual velocity in x-direction

As can be seen from equation 2.1 and 2.2, information regarding the pressure- and velocity distri-
bution is needed to calculate the forces. In the following section, the application of fluid mechanics,
and CFD will be introduced to show how this can be done. Although, as long as there is structure
above the free-surface, there will be a resistance component due to air. In the CFD-simulation
this component will be present in the pressure and viscous shear terms, as the solver computes the
resistance based on a eulerian multiphase mixture.

Figure 2.1: Resistance components for a hull in calm-water conditions

Figure 2.2: Control volume of model held in a stream of velocity U



Chapter 3

Added Resistance In Waves - A
literature study

Throughout the years, ship design has heavily relied on hull optimization with regards to calm
water resistance. Model testing and potential theory programs as well as empirical programs are
all heavily used tools in the ship building community, and with good reason as they all predict the
calm water resistance (with decreasing order of accuracy). While the information regarding the
wave pattern the ship itself creates is useful, and calm water testing should be done, it is not these
conditions operating ships most likely will encounter at sea. As waves will, in most conditions, be
present it is also important to know about the added resistance in waves, and how the hull itself
can be optimized with regards to this.

This section revolves around the basic theory surrounding added resistance in waves, and will give
a literature review of the state-of-the art methods for predicting it. A discussion will ensue, in
order to establish the most promising methods of calculating the added resistance.

3.1 Added Resistance - A Physical Understanding

As a ship traverses through the water, the system will be affected by two different wave-systems.
The first is the wave pattern the ship makes as it pushes itself through the water, as discussed
in section 2. The second is the incident wave that hits the ship, causing a radiated wave system
to occur from induced ship motions and diffracted waves which are reflected from the ship itself.
Both of these are mostly pressure related forces. While the calm water waves generated by the ship
are a steady wave pattern, yielding a constant resistance, the incident waves will oscillate between
decelerating and accelerating the system as the wave propagates along the ship. This, naturally,
means that the incident wave imposes an oscillating force on the system, a force which varies
greatly with wave-conditions, ship-geometry, and vessel heading. According to Arribas, [Arribas
2007], the added resistance can be divided into three components:

1. The diffracted waves when the wave hits the ship, and the radiated waves generated by the
ship motions, called drifting force

2. Diffraction effect from the interaction between the diffracted and radiated waves

3. Viscous effects from damping of motions.

Intuitively one can surmise that the added resistance is mainly dependent on the following param-
eters:

• Wave amplitude

• Ship speed

5
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• Wave length

• Wave heading

• Ship form

The dependence on wave length is naturally closely related to its relative size to the ship length.
The aforementioned radiated and diffracted wave system each has their own area of significance
with respect to the wavelength/vessel-length ratio, λ

LPP
. This can be viewed in figure 3.1.

Figure 3.1: Added resistance dependency on wave length, adapted figure from [Boom et al. 2008]

From figure 3.1 it is natural to deduce that it is the drifting force which makes up the major part of
the added resistance. According to [Arribas 2007], the added resistance is for all practical purposes
a pressure related phenomenon. Due to this experimental test can be Froude scaled to accurately
model the added resistance.

Experimental results have shown that the added resistance in waves is proportional to the square of
the amplitudes of the incident wave, [Gerritsma and Beukelman 1971]. Due to this, it is extremely
important to model the wave amplitudes correctly when doing seakeeping simulations with waves
present.

As mentioned earlier, the viscous term of the added resistance is very small compared to the
pressure related terms, and is as such often neglected. However this argument is often made on the
basis of head sea conditions, which Arribas and many others, argue is the most severe condition.
However, time may have proven this assumption wrong, as CFD-simulations have shown that
oblique waves conditions of 10◦ − 20◦ yielded the highest added resistance, [Volker and Couser
2014]. Since oblique sea introduces other motions on the vessel such as yaw, roll, sway, the added
resistance becomes a much more complex term to calculate. As such, other wave conditions than
head waves may have a larger contribution from the viscous terms which goes unbeknownst in
potential theory.

3.2 Added Resistance - Calculation Approaches

Over the years, several different approaches to estimate the added resistance in waves have been
submitted. Including CFD the other ways of estimating the aforementioned resistance is through
the use of experimental methods, empirical methods, or through potential flow theory.
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3.2.1 Experimental Methods

Model tests have been the pinnacle of accurate resistance calculations for as long as its existence.
As far as ship-resistance calculations go, they tend to be accurate, as the resistance field is pressure
dominated. This means Froude scaling can be applied, without giving too much thought to the
difference in the Reynold’s number between the model and the full scale. However, while this is true
for calm water and head waves, where it is the pitch and heave motions which are of importance,
it may not be the case for oblique conditions. During oblique conditions viscous damping plays
a larger roll on motions, and thus resistance, and the importance of a correctly scaled Reynold’s
number increases. However, on model scale they are very accurate, as they measure the actual
physics occurring, and is as such the most accurate way of doing a seakeeping analysis.

3.2.2 Empirical Methods

Empirical methods have the advantage that they are easily implemented, and thus can be quite
useful at an early stage in the design phase. They are mostly formulas based on regression math-
ematics applied to data gathered from experimental results. Due to this the methods have a
tendency to lack a general applicability, and one should take care not to violate the conditions
when using them.

Different formulas has been proposed over the years, and one of the earlier is the equation proposed
by Kreitner [Kreitner 1939], equation 3.1 as given by [Volker and Couser 2014]:

Raw = 0.64gH2
sB

2CBρ
1

Lwl
(
2

3
+

1

3
cosβ) (3.1)

Where:

• Hs - Significant wave height

• B - Ship beam

• CB - Block coefficient

• Lwl - Length at waterline

• β - Wave encounter angle

This formula was compared to CFD calculations by Volker and Couser, and showed deviations
between 20-110%, [Volker and Couser 2014]. Later the method STAWAVE1 was proposed by
STA-JIP, [Boom et al. 2008]. This formula is taking the area if which the incident wave hits when
encountering the ship by the use of a parameter called bow length. This means the length from the
tip of the bow to the position where the beam of the ship is at 95% of the full beam. The method
is preliminary designed for short wavelengths, i.e, where the wave pattern is mostly caused by
reflected waves and induced motions can be neglected. As a consequence of using the bow length
as a parameter, the wave encounter angle was also limited to ±45◦ off the bow,[ITTC 2014a].

Another estimation proposed by STA-JIP is STAWAVE2, [Boom et al. 2008]. This method is
developed for added resistance calculations in both long and short waves. While Boom et al.
concluded with the fact that both STAWAVE1 and STAWAVE2 showed great improvements com-
pared to existing methods, at that time, they are still limited by their relatively narrow area of
applicability. For STAWAVE2 the following limitations are, [ITTC 2014a]:

1. 75m < LPP < 350m

2. 4 < LPP

B < 9

3. 2.2 < B
T < 5.5

4. 0.1 < Fn < 0.3
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5. 0.5 < CB < 0.9

6. Wave heading angle, ±45◦ off the bow

A newer addition to the empirical calculation-methods is the semi-empirical method proposed by
[S. Liu et al. 2016]. While claiming a mean absolute percentage error of 16, 3% the equation is
only valid in head sea waves, [S. Liu et al. 2016]. It is important to mention that the purpose of
the equation is to be used in early stages where only the main parameters of the ships is known,
and only with limited computational tools at hand.

3.2.3 Numerical Methods

Potential flow theory and CFD are the two groups that makes up the numerical methods for
computing the added resistance in waves. According to Newman the slender-body theory originated
from the field of aerodynamics, with the pioneering work of Korvin Kroukovski to adapt this to
ship motions, [Newman 1977]. Thus application of potential flow theory has existed since the mid
50s and the different methods of calculations are many. It is still present in the engineering society,
albeit in a more advanced form, and is probably the most used theory in softwares specialized in
marine hydrodynamics.

While the topic of turbulent, and viscous flow is not new to the scientific society, as witnessed
by the ever perplexing Navier-Stokes equation, CFD was introduced when computers became a
much used tool for engineering purposes. As computers became more powerful, their applicability
to fluid flow problems grew. CFD-softwares using RANS and URANS solvers are becoming more
and more able to handle fluid flow problems with high Reynolds numbers, [Steen 2014]. While its
more complex siblings, LES and DNS, still has a long way to go before they can be applied in the
industrial world, they are still the most accurate ways to model a viscous, turbulent flow.

Far Field

Maruo developed a formula to calculate the added resistance in waves, based on the velocity
potential of the incident wave and the potentials stemming from the reflected and radiated waves
caused by the body, [Maruo 1957]. With the basis in momentum conservation in an area enclosed
by the surface S, Maruo assumed the energy flux through the body to be zero [O. M. Faltinsen
1990]. This formula was, according to [O. M. Faltinsen 1990], later generalized by Longuet Higgins
to include finite water depths. [Gerritsma and Beukelman 1971] states that Joosen expanded
Maruo’s expression to included a larger domain of wave frequencies.

Gerritsma and Beukelman developed their own method of approximating added resistance in waves,
by calculating the radiated energy from the body, using strip theory around the body.

Direct Pressure Integration

Direct pressure integration, or near field method, is meant for waves with small wavelengths, as
it is calculated from the reflected wave system. It is approximated by looking at the problem as
incident waves hitting a vertical wall, [O. M. Faltinsen 1990]. The equation by O. M. Faltinsen
to calculate the drift-forces on a floating body, was later revised by [O. Faltinsen et al. 1980] to
account for forward motion for all wave headings.

Strip Theory

Strip theory is a much used method for computing hydrodynamical forces and motions. It rests
on the assumption that the body is slender, i.e, much longer than it is wide, and as such there is
more flow variations in the cross-sectional plane than in the longitudinal. The wetted body is then
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divided in to a finite number of 2D cross-sections where the forces and motions are computed, and
then a summation of all the cross-sectional ensues to get the forces on the body as a whole, see
figure 3.2, [O. M. Faltinsen 1990].

Figure 3.2: Strip theory approach dividing the ship into cross-sectional strips, [O. M. Faltinsen
1990]

A very much used variation of the strip theory method is the STF strip method proposed by
[Salvesen et al. 1971]. According to Volker most of today’s variations of strip methods are based
upon this method, [Volker 2012]. A method revolving around high vessel speeds has been developed,
and is appropriately called high-speed strip theory (HSST), [Volker 2012]. It is appropriate for
Fn > 0.4, and it calculates the ship motions by the use of linear potential theory.

Subramanian and Beck developed a time-domain body-exact strip theory to predict the maneu-
vering of a vessel in calm and regular waves, [Subramanian and Beck 2015]. They claim to be able
to capture the essence of the physical aspects of the phenomeon.

Panel Methods

Whereas the strip theory transforms 2D strips into 3D solutions, panel methods discretize the
model in 3D using panels. A method of this is the Green’s function method, where the Green’s
function represents the velocity potential due to a pulsating source at a singular point under the
free surface. The method distributes panels on the mean wetted surface of the body. The Laplace
equation, radiation condition and the free-surface condition are automatically fulfilled for the
velocity potential on each panel, [Volker 2012]. Hong et al. claims to capture the trend of the Fn-
dependent variations of added resistance in advancing waves, [Hong et al. 2016]. A 3D translating
and pulsating (3DTP) source panel method has been used to solve the radiation/difraction problem.
Wu et al. supports the use of Green’s function for computing the second-order forces on a floating
structure, claiming it to provide an efficient and sufficiently accurate option for this use, [Wu et al.
2017].

Another much used panel method, is the Rankine panel method (RPM). While both the free-
surface in the near-field and the hull itself has to be discretized by panels it is, according to [Volker
2012], the best potential method to approximate the seakeeping problem. A type of discretized
Rankine grid can be viewed in figure 3.3.

This method has been subjected to much research, as for instance by [Shao and O. Faltinsen 2010]
when they proposed a body-fixed coordinate system for weakly-nonlinear problems to avoid the
derivatives in the body-boundary-conditions. In addition, work done by [Sclavounos and Borgen
2004] on a high-speed vessel with hydrofoils, improved the RPM by including flow separation in
the transom stern. Flow separation at the transom stern was according to Volker and Couser an
area of inherent weakness for both the Green’s function method, and RPM, [Volker and Couser
2014].
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Figure 3.3: Discretized Rankine grid, [Sclavounos and Borgen 2004]

RANS Methods

Practical problem-solving with CFD regarding fluid flow became possible when computers became
powerful enough to solve the different problems within a reasonable time-limit. A very popular
CFD method is the RANS (Reynolds-Averaged-Navier-Stokes) which time-averages the turbulence
over an area using semi-empirical turbulence models. A more detailed description of the theory
behind the RANS method will follow in the next section. A lot of research and comparison with
experimental results has been done with this method, for several different CFD solvers. As such
its capabilities are well documented. Seakeeping isn’t highly dependent on turbulent fluctuations,
so the RANS method models all the relevant physics of the problem, [Volker and Couser 2014].
As CFD computes the velocity and pressure of every cell in the domain, it is easy to obtain the
integrated pressure forces on the body. It is not, however as easy to model the free surface.

As mentioned, there is a lot of research revolving RANS methods, and one of the biggest contrib-
utors to this are the ”Workshops on CFD in Ship Hydrodynamics”, going back to as far as 1980
[Larsson, Stern, and Visonneau 2014]. The proceedings of the 2010 workshop are publicized, but
the newer proceedings from the workshop in Tokyo, 2015, has yet to become available.

A lot of different cases were tried out during the 2010 workshop, and the accuracy between CFD
results compared to EFD results varied from case to case, [Stern et al. 2014]. The seakeeping
results compared the 0th and 1th harmonic amplitude, and the highest error for the 1th amplitude
was 34% and 18% for the 0th amplitude of the resistance, [Stern et al. 2014].

Another seakeeping analysis was performed by Claus D. Simonsen et al., were the KCS model
was subjected to both calm waters and regular head waves. Here, an Unsteady RANS (URANS)
method was used, and for the error for the resistance’s 0th amplitude varied between 2.3%−13.5%,
[Claus D. Simonsen et al. 2013]. As can be seen, while the aforementioned results for seakeeping
analysis are better than what both empirical and potential methods can achieve, their variation in
accuracy is quite high.

Islam et al. compared a RANS CFD simulations with potential flow simulations, and concluded
that RANS outperformed the potential code in regards to added resistance, [Islam et al. 2017].
However, motions in regular head waves were computed at a similar level of accuracy. This is most
likely due to the fact that heave and pitch motion are mainly caused by radiated waves, and not
viscous forces, [Volker and Couser 2014]. Thus, viscous modelling would for all practical purposes
be redundant in regards to modelling heave and pitch motions.
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3.3 Discussion

If the question is which type of method yields the most accurate results, the answer is the exper-
imental method. As the CFD methods can have problems with short waves and with Fn = 0,
among others, their general applicability is reduced, [Stern et al. 2014]. However, that is not to
say they cannot achieve accurate results in these conditions, but rather that it may be difficult,
and that the accuracy of a RANS solver is hard to generalize as it highly depends on the case at
hand.

The accuracy of an empirical added-resistance equation is very dependent on the case. As stated
above, its accuracy can differ from ”passable as an initial estimate” to ”complete nonsense”. They
can serve a useful purpose in giving a quick, initial estimate, but are not applicable when accuracy
is demanded.

The literature regarding potential methods gave an image of a type of method that accurately
captures the seakeeping characteristics. However, often the results were published with only a
graphical comparison, and then a statement concluding that the potential method yields ”fairly
accurate” or ”acceptable” results. This is a rather ominous sign, as a difference between the EFD
and PF should be given as a relative error in percentage for it to be accurately evaluated. It is
easy enough to make two lines look similar in a graph, simply by manipulating the graphs. Thus,
it is hard to exactly specify the level of accuracy of a PF method, but as Islam et al. states, PF is
not as accurate as RANS with regards to added resistance.

While both PF method and RANS method have their own advantages, and disadvantages, it could
be possible to combine them. The combination of a system where the far field domain is solved by
a PF solver and an inner domain solved by a CFD method is a concept that has been looked into.
Malenica et al. looked into how such a coupling would interfere with the local fluid flow solution
around the body. While they stated that this was possible, and had its advantages, it was not
a method without problems. Some were related to the deduction of the velocity potential from
the RANS solution, separation of the potential and non-potential parts of the RANS solution,
consistency of the linearization and the accurate evaluation of the potential flow, [Malenica et al.
2017].

Another way to compromise between potential flow theory and RANS is to build a solver around
the Euler equations. Here the non-viscous Navier-Stokes equation is solved on a CFD grid. The
advantage of this is that there is no need to solve the boundary layer flow, and no turbulence
models are required. In other words, there is a large potential gain in time-saving compared to
RANS simulations. [Yang et al. 2015] used a Cartesian grid based Euler solver to compute the
added resistance in head waves, and concluded that the solver managed to capture the physics
with good accuracy. A comparison of the Euler method with strip theory and the RPM was done
on a number of different ship models, and the added resistance in head waves were reported to be
of similar accuracy, [Seo et al. 2013]. Again, without a numerical difference given for the different
methods, it is hard to evaluate what ”similar accuracy” means. While both pitch and heave can
be modelled by potential methods with great success, the added resistance is another subject. As
[Volker and Couser 2014] states, it is in oblique sea that much more complex physics arise, and
simplified methods such as potential theory won’t cut it.

From this literature study it has become apparent that, apart from experimental methods, RANS
or similar viscous CFD methods are the most accurate ways to capture the seakeeping problem,
although, it is very time demanding. In time this disadvantage will fade away as computers will
undoubtedly increase in computational capacity. However, if it is possible to save time by using
simplified methods, that still captures the physics of the flow problem, this should be done. As
there is a lot of proof that the Euler solver is good enough in head waves, this thesis will check if
the same can be said for oblique waves.
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Chapter 4

Computational Fluid Dynamics -
CFD

CFD is based upon the fundamental equations of fluid dynamics. According to [Ransau 2003a],
they give a mathematical description of Newtonian flows, often referred to as the Navier-Stokes
(NS) equation. This equation is based on the following three principles:

• Mass is conserved

• Momentum is conserved

• Energy is conserved

When these principles are applied to a fluid flow problem, it gives rise to the aforementioned
Navier-Stokes equation, as given in [Pletcher et al. 2013a]:

ρ
DV

Dt
= ρf−∇p+

∂

∂xj
[µ(

∂ui
∂xj

+
∂uj
∂xi

)− 2

3
δijµ

∂uk
∂xk

] (4.1)

Where:

DV
Dt - Acceleration of fluid

f - Body-acceleration, in many cases gravity, g

∇p - Differentiated pressure

µ - Dynamic viscosity of fluid

∂ui

∂xj
- Partial derivation of velocity in i-direction with respect to j-dimension

δij - Kronecker delta function

Equation 4.1 describes an incrompressible, Newtonian fluid flow problem. As this report will focus
on ship resistance, the two fluid flows modelled is water and air. Water is by all practical means
incompressible, and as given in [Pletcher et al. 2013b], air can be assumed to be incompressible,
for fluid velocities below 100 m/s, or M < 0.3, where M is the Mach-number.

Equation 4.1 describes the entire fluid flow problem in the three dimensions. Although it is only
one, albeit complex, equation it has perplexed researchers and scholars since its creation. As of
yet there exists no direct, analytical solution, however there has been successful adaptations, with
numerical methods, and physical reasoned simplifications. In this report a RANS solver was used
to obtain the results. While a DNS solver, or even a LES solver could be used with potentially
greater success, the computational time would become too large to be practical for the scope of
this report.

13
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The Euler equation that is solved in the inviscid simulation of this thesis, is identical to equation
4.1, apart from the viscous term, i.e last term on the right-and side of the equation. As the pressure
and velocity is calculated in the same way for Euler and NS, apart from the viscous term, the Euler
method is not given any more heed in this section.

4.1 RANS - Renyolds Averaged Navier-Stokes

One of the simplifications to solve the Navier-Stokes equation, is to assume a time averaging of the
equation, which has become known as Reynolds Averaged Navier-Stokes, or the Reynolds equation.
Here, the quantities are split into mean components and fluctuating components:

u = ū+ û; v = v̄ + v̂; w = w̄ + ŵ; ρ = ρ̄+ ρ̂ p = p̄+ p̂ (4.2)

Where:

var: Mean value of variables

v̂ar: Fluctuating part of variables

By definition, the mean of a fluctuating component is zero, but the mean of the product of two
fluctuating components is, in general, not zero. Thus, by introducing these mean and fluctuating
components in equation 4.1 and averaging the whole equation, we get for an incrompressible fluid,
as given in [Pletcher et al. 2013c]:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj
(τij − ρûiûj) (4.3)

Where

τij : Viscous stress tensor, given as:

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

) (4.4)

This introduces a new component to the Navier-Stokes equation, namely, the Reynold stress
tensor,ûiûj .

From this point of view it is hard to see why this helps modelling the NS equation. This stress tensor
only introduces new unknowns to the equation, thus requiring additional equations to ”close” the
system of equations. However, these new unknowns have more transparent solutions, simplifying
the NS equation. This is done by turbulence modelling.

4.2 Turbulence Modelling

The Bousinesq equation, relating the turbulent shear stress to the rate of mean strain through
eddy viscosity, can be shown as for the general Reynolds stress tensor as, [Pletcher et al. 2013d]:

−ρûiûj = 2µTSij −
2

3
δij(µT

∂uk
∂xk

+ ρk) (4.5)

Where:

µT : Turbulent viscosity

Sij : Rate of mean strain tensor

k: Kinetic energy of turbulence
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Further the turbulent viscosity, µT , can be expressed as:

µT = ρνT l (4.6)

Where:

νT : Characteristic velocity scale of turbulence

l: Characteristic length scale of turbulence

In order to establish an accurate model the turbulent viscosity, appropriate measures needs to be
taken to model νT and l. There exists two different categories of turbulence models whose purpose
is to close the Reynolds equations, [Pletcher et al. 2013d]:

• Category 1:
Models using the Boussinesq assumption, also known as turbulent viscosity models

• Category 2:
Models enabling closure of the Reynolds equation without the use of the Boussinesq assump-
tion

There also exists a category 3, where the models are not entirely based on the Reynolds equations,
such as the LES-methods. In this report, the turbulence model of choice is the k-ε model, which
is a category 1 turbulence model, which will be discussed further. Consequently, category 2 and 3
models will not be subjected to further discussion. The choice of turbulence model and the reason
behind it, will be further discussed in the section covering the numerical set-up.

4.3 Boundary Layer Theory

The concept of a boundary layer was first deduced by Ludwig Prandtl, [Pletcher et al. 2013e].
He argued, from experimental studies that for high Reynolds numbers, there existed a thin film
of fluid very close to the surface of an object, where viscous effects were at least as important as
inertia effects. This region’s thickness, δ, was assumed to be of a length much smaller than the
streamwise length of the object itself, δ

L << 1. According to [Cengel and Cimbala 2010a], the
boundary layer is defined as the thickness of the region measured from the surface of the object, to
the point where the velocity component of the parallel flow reaches 99% of the fluid speed outside
the boundary layer.

Consider a smooth, circular surface submerged in infinite fluid, in a 2D flow, with a uniform flow,
U, going in the x-direction, as depicted in figure 4.1. The shear stress in the fluid can be, according
to [Pettersen 2007], expressed as:

τ = ρν
du

dy
= µ

du

dy
(4.7)

Where:

ν: Kinematic viscosity

As can be seen from figure 4.1, the flow close to the surface will change drastically as it follows the
surface of the body. When the flow initially hits the surface, at the stagnation point, the velocity
will go towards zero, as it cannot penetrate the surface. This implies an increase in pressure,
following the Bernoulli equation for a steady, incrompressible flow, equation 4.8. The flow will
gain velocity and lose pressure as it follows the surface, and it will go through different stages, as
depicted in figure 4.1:

• Stage A
The build up of a boundary layer, as it is zero at the surface, due to the no-slip condition,
and reaches eventually the speed of the surrounding flow.
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• Stage B
The boundary layer is fully developed, with its max velocity

• Stage C
The fluid close to the surface loses velocity as it is affected by the nearby no-slip area.

• Stage D
Separation point. As given by equation 4.7, the term du

dy becomes negative due to the shear
forces in the fluid. This results into a reversed fluid flow, causing the creation of vorticity, as
given by equation 4.9, which leads to vortex shedding.

Figure 4.1: Depiction of the boundary layer around a circular 2D cylinder in uniform flow

The Bernoulli equation for a steady, incompressible flow as given by [Cengel and Cimbala 2010b]:

p+ ρ
U2

2
+ ρgz = constant (4.8)

The vorticity in a 2D flow, in the x-y plane, can according to [Cengel and Cimbala 2010c], be
expressed as:

~ζ = (
∂v

∂x
− ∂u

∂y
)~k (4.9)

The vorticity in a flow is directly linked to the vortex shedding behind the object, and is therefore
an important parameter when it comes to pressure estimations. Having a too coarse mesh in the
boundary layer, will then inaccurately model the boundary layer, leading to faulty vorticity. This
will in turn yield an inaccurate wake which will produce a wrong estimate for the resistance and
motions.

4.3.1 Turbulent Velocity Profile

Taking into account that half of the simulations in this report revolves around a turbulent flow, it
is important to know how to model the turbulent velocity profile close to the surface. According
to [Cengel and Cimbala 2010d], the turbulent velocity profile can be divided into four regions:

• Viscous Sublayer
A very thin layer, that is closest to the surface. Here the velocity profile is almost linear and
the flow is streamlined.

• Buffer Layer
Turbulent effects are becoming increasingly significant, but the viscous dominates.

• Overlap Layer/Inertial Sublayer
Larger influence of the turbulent effects, but they are still not dominant



4.3. BOUNDARY LAYER THEORY 17

• Outer Layer/Turbulent Layer
The turbulent effects here dominates over the viscous effects

To achieve a good representation of boundary layer, and thus the turbulent velocity profile, the
challenge is to find a way to model this correctly. According to [White 2006], the velocity profile
in the viscous sublayer, and the velocity profile in the outer layer can be expressed by equation
4.10 and 4.11, respectively:

u

ṽ
= f(

yṽ

ν
) (4.10)

Ue − u
ṽ

= g(
y

δ
, ξ) (4.11)

Where:

ṽ = ( τρ )
1
2 is called the wall friction velocity

Ue: Max velocity in the outer layer

ξ: Local pressure gradient

In order to find a suitable description of the buffer layer, the expressions for the viscous and outer
layer are equated, resulting in the following expression, called law of the wall:

f(
δṽ

ν

y

δ
) =

Ue
ṽ
− g(

y

δ
) (4.12)

For equation 4.12 to be true, the functions f and g has to be logarithmic functions, [White 2006].
Defining the non-dimensionalized distance and velocity as:

y+ =
yṽ

ν
; u+ =

Ue − u
ṽ

(4.13)

We see that the law of the wall equation simplifies to:

y+ = u+ (4.14)

According to [White 2006] the velocity profile is modelled accurately when the y+ values lies in
the following region; 35 ≤ y+ ≤ 350 . However for smaller values of y+, thus in the buffer and
viscous layer, the law-of-the-wall estimates the profile inaccurately as it assumes a logarithmic
profile, while it is closer to linear. However, this brings an eventual solution a lot closer to what is
physical, and the law-of-the-wall is being implemented in the CFD-industry through so-called wall
functions, as it is applicable to almost all wall-bounded turbulent boundary layers, [Cengel and
Cimbala 2010e]. The regions of the velocity profile can be seen in figure 4.2. An estimate of y+

can be obtained, by using the following equations, given by [O. M. Faltinsen 2005], and equation
4.10 and 4.13:

CF =
0.066

(log(Rn)− 2.03)2
(4.15)

CF =
τ

0.5ρU2
(4.16)

Where:

CF : Friction coefficient

Rn: Reynolds number
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Figure 4.2: Turbulent velocity layer, as given by [Tennekes and Lumley 1972]

To get an estimate of the boundary layer thickness, equation 4.17 as proposed by [O. M. Faltinsen
2005] can be used:

δ =
0.16x

(Rnx)
1
7

(4.17)

Where:

x: Position of calculation along the streamwise length on the surface of the object

4.4 Errors Associated With CFD

CFD has many applications, and can be used to solve a large variety of different cases. Regardless
of how different the CFD problem at hand is, be it combustion of gases in a piston, or the motions
a spar-buoy experiences when subjected to irregular waves, they all need to go through the same
”recipe”. These steps of solving an engineering problem with CFD could be, according to [Ransau
2003b], arranged as depicted in figure 4.3.

Figure 4.3: Steps of gaining a solution with CFD

In other words, the physical problem in the real world will be, after thoroughly understood, trans-
formed into the mathematical world. By simple reasoning, one could perceive the problems in
mapping every random parameter occurring in the real world mathematically. Even if the real
world transformation was a success, it still needs to be subjected to a computer algorithm solving
the mathematical world. Thus there are two transformations in order to solve what is happening
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in the real world, and naturally there will be errors related to this. Figure 4.4 shows the general
mapping of a physical problem, and the errors associated with each step.

Figure 4.4: Errors associated with CFD

Where:

M.E: Modelling Error

D.E: Discretization Error

R.E: Round-off Error

T.E: Truncation Error
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Modelling Error

Modelling the real world with mathematical expressions implies using formulas that describes the
physical phenomena accurately. Although there exists complex mathematics that can describe
most physical phenomena occurring in the world, there will always exists a level of randomness
with each unique case, which these formulas are not able to capture. The modelling error will then
become the sum of the short-comings of the mathematical formulas, and the errors associated with
random, non-quantifiable, parameters.

Discretization Error

Regarding the transformation from the analytic world, to the numerical one, the discretization error
will stem from the simplifications that numerics introduces. As many of the formulas introduced by
the mathematical modelling cannot, as of yet, be solved analytically, they are solved numerically.
Due to this, the error associated with dividing the area of calculation into discrete sums of which
you solve the equations, will be present.

Round-off Error

This error is associated with the precision of each calculation. While rounding up a number from
1.0089 to 1.009 in a series of 20 calculations might not make much of a difference, but when the
number of iterations become significantly larger, each round-off will contribute, and eventually a
significant error might be present.

Truncation Error

In order to solve the mathematical problem, a CFD code will divide the control volume into discrete
points of which it solves the equations. As with a partial derivative, the code calculates this by
means of finite differences. The difference between the partial differential equation, PDE, and the
finite difference equation, FDE, representation is called the truncation error, T.E, [Pletcher et al.
2013f]. The finite difference is dependent on how fine the gridding, ∆x,∆y,∆z, and the timestep,
∆t is. And, according to [Pletcher et al. 2013f], T.E −→ 0 as ∆t,∆x,∆y,∆z −→ 0.

Consistency

According to [Pletcher et al. 2013f], a finite difference scheme is said to be consistent, if the T.E
goes to zero as the mesh is refined. A scheme is said to be consistent if it yields the same result
when the simulation is run multiple times.

Stability

For a code to be stable, it is required that the errors from the code do not increase from one
timestep to the next. A well-known condition for stability is the Courant-Friedrichs-Lewy number,
defined by [Pletcher et al. 2013f] as:

CFL =
u∆t

∆x
,
v∆t

∆y
,

w∆t

∆z
≤ 1 (4.18)

Equation 4.18 says that in order to have stability, the flow cannot travel further than one cell-
length during one time-step. However, according to [CD-Adapco 2018], using an implicit unsteady
scheme, the CFL-number can rise high above 1 and still yield accurate results. This may be a
subject up for debate, regarding its universal validity, rather than more case-dependent, as [Böhm
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and Graf 2014] concluded that for free-surface simulations, a CFL ≥ 0.5 could yield numerical
inaccuracies.

Convergence

According to [Pletcher et al. 2013f], a stable scheme is also convergent as given by the Lax’s equiva-
lence theorem: ”Given a properly posed initial value problem and a finite difference approximation
to it that satisfies the consistency condition, stability is the necessary and sufficient condition for
convergence”.



22 CHAPTER 4. COMPUTATIONAL FLUID DYNAMICS - CFD



Chapter 5

Model Description

A central part of this thesis is the comparison between viscous and inviscid CFD not only in head
sea waves, but also in oblique sea. As there is far less literature regarding seakeeping in oblique
sea, it was important to ensure that the numerical set-up is validated in head sea. This way, with
validated head-sea waves, the argument that the oblique sea simulations are also valid would carry
much more weight. As there exists a lot of experimental and numerical results on the KVLCC2
vessel, it was chosen as the subject for simulation.

The KVLCC2, or Kriso Very Large Crude Carrier 2, was according to [Larsson, Stern, and Vison-
neau 2014] designed at the Korea Research Institute for Ships and Ocean Engineering in 1997. Its
sole purpose is to be used as a test case for CFD simulations, and therefore there has been done a
lot of experimental tests on it. A visual of the vessel can be viewed in figure 5.1 and full scale and
model scale data is shown in table 5.1.

As can be seen in figure 5.1 the non-purple part of the figure is an additional part not originally
included in the CAD-file from [Larsson, Stern, and Visonneau 2014]. The reason for this is that
in certain instances it is impossible to avoid water on deck with the original CAD file. This was
deemed much more harmful to the results than what an increased area above the free-surface
would be, [Guo et al. 2012]. Therefore the lines from the CAD file has been linearly extrapolated
to increase the height above the free-board. The CAD file was extracted from the work of [Rørvik
2016], which is the same file as the one from [Stern et al. 2014], except that it also includes the
extrapolated part.

Table 5.1: Main characteristics of the KVLCC2

Symbol Unit Ship Model
Scale [-] 1 58
LPP [m] 320 5.5172
B [m] 58 1
T [m] 20.8 0.3586
D [m] 30 0.5172
CW [-] 0.9077 0.9077
CB [-] 0.8098 0.8098
Displacement [m3] 312,622 1,6023

23
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Figure 5.1: Geometrical representation of the KVLCC2 hull



Chapter 6

Computational Method

As of today there exists a lot of different softwares that solve physical problems with CFD. Among
these there are the well known ANSYS FLUENT, OpenFOAM, and of course the program used
in this report; STAR-CCM+ (STAR). With these programs there also are a lot of solvers, each
designed to accurately solve a certain type of problem. The same can be said for boundary
conditions, and a lot of other parameters involved in generating an accurate and stable simulation.
While the previous section might illuminate the theory behind CFD, it does not show it in practise.
This section will go through the main steps behind the set-up for the simulations. There are some
differences between the set-ups for the different seakeeping conditions, so in this section all the
models used in the simulations will be introduced. Then in the result section the choice of model
for each simulation will be discussed.

To do a CFD simulation in STAR the following steps needs to be addressed:

• Geometry import

• Region and boundary condition specification

• Generate a suitable mesh

• Proper physical model has to be chosen, with initial conditions

• Establishing a correct solver

• Defining stopping criteria

• Creating monitors and plots to retrieve significant information

• Visualizing the obtained results

6.1 STAR-CCM+

STAR is a Computer Aided Engineering (CAE) program for solving multidisciplinary problems,
developed by CD-Adapco. It has a lot of integrated platforms, making it possible to go from
conceptual design in its CAD platform to full visualization of the simulation in the same interface.

It is based on the finite volume method, with a lot of different options for solving physical problems.
STAR includes a lot of options when it comes to CFD analysis, a lot more than is covered in this
section, and is in the right hands a very powerful engineering tool.

25
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6.2 Defining Regions And Boundary Conditions

While calm water, head waves and oblique waves requires different set-up, they share some common
denominators. A towing tank was modelled for the background region for all the simulations.
However, the tank does not have the same dimensions for the different conditions, and for the
wave-simulations an overset mesh has been implemented. The reasons for these changes will be
further discussed in the result section.

Figure 6.1 shows a visual representation of the regional discretization. For the calm water simula-
tion, the overset interface is not present.

Figure 6.1: Regional discretization

6.2.1 Boundary Conditions

Different types of boundary conditions is demanded for the different simulations present in this
thesis, and the different choices will be clarified in their own sections revolving around the specific
simulations. While the names of the boundary conditions and their main function might be similar
to other software’s boundary conditions it would be naive to think they are identical. Therefore
the rest of the section will be an overview of the aforementioned boundary conditions as they are
described in [CD-Adapco 2018].

Velocity Inlet

This is a Dirichlet boundary condition, in other words, it allows the user to specify the value in
which the inflow is supposed to take. According to [CD-Adapco 2018], the pressure is extrapolated
from the adjacent cells using reconstruction gradients. As the simulations either involve a calm
water towing experiment, or a ship with forward motions having incoming waves from different
headings, this is a natural boundary to use at the inlet face.

In addition, the boundary calculates the flux of the fluid flow, enabling a positive flux to be an
outlet and a negative flux as an inlet. This way, it is a useful boundary to use at other boundaries,
apart from the outlet. It is also advised by [CD-Adapco 2018] to use the inlet boundary condition
whenever possible when a VOF-wave model is enabled.
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Pressure Outlet

For subsonic flows, which this is, the outlet pressure is specified directly. This, too, being a
Dirichlet boundary condition, the outlet pressure is specified to be the hydrostatic pressure of the
initial wave-condition. Since the VOF wave is a multiphase wave, including both air and water,
it accurately determines the outlet pressure, if the VOF solution is able to accurately model the
two different phases. In addition, to inhibit wave reflection either VOF Wave Damping Boundary
option or the Wave Forcing option can be used at this boundary.

Wall Boundary Condition

The wall boundary condition models an impermeable wall which fluid flow is either confined in, or
kept from penetrating. It prevents any flux through the boundary, and only allows flow to move
tangentially with the surface of the boundary. Wall-boundaries can either have a slip-wall or a
non-slip wall condition, where the slip-wall lets the fluid that is in the slip-region move with the
velocity of the wall boundary without any shear-stress occurring. Conversely the no-slip condition
will enable the shear-stresses. Naturally this boundary condition is specified for the ship model
with the no-slip condition, as flow through the hull is not physical, and the shear stress at the
surface is needed for resistance calculations.

Symmetry Plane

Sometimes, while inhibiting a flux through a surface is desirable, but not parallel at the surface, a
symmetry plane condition may be applied instead of a wall condition. Here the flow is mirrored
around the boundary, effectively inhibiting any flow from leaving the domain. This is equivalently
of having the mesh mirrored around that symmetry plane. Therefore, in simulations having a
symmetry plane this is a prerequisite as it halves the computational domain.

Overset Mesh

When an overset mesh method is implemented the inner domain, as shown in figure 6.1, needs
its own boundary conditions, to successfully communicate with the outer domain. The overset
mesh boundary condition is chosen at all the faces which is in the inner domain. An exception
is the boundary that lies in the outer domain’s symmetry plane. Here, the symmetry boundary
condition is applied. This is due to that an overset mesh analysis demands that any faces between
the background domain and the overset domain that are parallel, share the same type of boundary
condition. This will be further explained in its own section.

6.3 Physics Continuum

Using STAR there exists several different physics that can be modelled. These falls into the
following categories, as given by [CD-Adapco 2018]:

• Fluid Mechanics (Multiphase Flow options)

• Materials

• Heat Transfer

• Motion

• Reacting Flows

• Electrochemistry
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• Plasma

• Electromagnetism

• Aeronautics

• Computational Rheology

Considering that the simulations are seakeeping analysis, the physic models chosen for the simu-
lation involves both motions and fluid mechanics. The models chosen for the viscous and inviscid
simulations can be seen in table 6.1 and 6.2, respectively.

Table 6.1: Chosen physics models, viscous simulation

Field of Physics Model
Space Three-Dimensional
Time Implicit Unsteady

Fluid Mechanics

Eulerian Multiphase
RANS
VOF

Segregated Flow
Realizible k-ε Two-Layer

Two-layer Y+ Wall Treatment

Other Models
Gravity

VOF Waves

Table 6.2: Chosen physics models, inviscid simulation

Field of Physics Model
Space Three-Dimensional
Time Implicit Unsteady

Fluid Mechanics

Eulerian Multiphase
Inviscid

VOF
Segregated Flow

Other Models
Gravity

VOF Waves

Modelling Time

For time-modelling there are two main choices one can choose between: explicit or implicit methods.
Explicit methods has the advantage that they compute the values for each time-step by using the
values from the previous time-step. Therefore no additional system of equations is needed to
obtain the values at the present time-step. This makes the explicit method fast, but it also falls
prey to strict stability requirements, like the CFL-requirement mentioned previously. Therefore
with simulations with transient phases, where flow velocities become temporarily large, the explicit
method will fail.

The other time-modelling choice is the implicit method. Here the values are computed for the new
time-step by using values at the same time-step. This requires a system of equations to obtain the
values, due to the increased number of unknowns. This makes the implicit method slower than the
explicit, but it is also unconditionally stable. Therefore it can violate the CFL-condition without
crashing. This in turn allows for a coarser time-step and thus a more time-efficient simulation.
There are limitations for the time-step for implicit schemes involving free-surface simulations, and
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wave-simulations, and the choice of time-implicit scheme will be shown and argued for in each of
the separate simulation-sections.

The two different time-discretization schemes used for the simulations in this thesis, are the first-
order and second-order implicit time discretization. The difference is that the second order time
scheme approximates the transient term on the new time-step with the values at that time step,
along with the two previous time-steps. The first order scheme only uses the new time-step along
with the previous time-step. For rigid body motion, the second order time-scheme also uses a
second order grid flux equation as opposed to the first order grid flux equation found for the first-
order time scheme. This makes the second-order time scheme more accurate when there are a lot of
changes in the flow with respect to time, but it also makes it more sensitive to the CFL condition.

Spatial Discretization

The convection of the variables is very important to model accurately. In STAR there are several
convection schemes connected to the Segregated Flow solver; 1st and 2nd order upwind schemes and
3rd order MUSCL, [CD-Adapco 2018]. STAR suggests a 2nd order upwind scheme for convection,
as it will give as good or better, albeit slower, than the 1st order method. Therefore the 2nd order
method is chosen for all convection schemes in the simulations.

Volume Of Fluid - VOF

According to [CD-Adapco 2018], the VOF-method works very well for a multiphase case were the
area of mixture is small relative to the domain, and it is all concentrated in the same area. This
is why it is very suitable for modelling the free surface.

As given by [Ransau 2003c], the method introduces a function that takes the value 1 if the cell is
only occupied by the fluid and zero if no fluid is present. The value of the function will therefore
find itself between 0 ≤ φ ≤ 1, and a high resolution mapping of the mixture area will then give
the free-surface.

In a free-surface simulation, the water and air particles will be separated in the cell by a sharp
interface. Standard higher-order schemes such as second-order upwind and central differencing
would fail in capturing this sharp interface, [CD-Adapco 2018]. Therefore, the VOF method in
STAR makes use of the High-Resolution Interface Capturing (HRIC) method to model the free-
surface more accurately. According to [Rhee et al. 2005], the HRIC method is a blend between
downwind and upwind method such that a cell does not get overflown or underflown by the com-
puted fluxes from the volume fraction. The blending of the two discretizations is determined by the
local Courant number, the relative position of the free-surface to the cell were the flux is computed
and the local volume fraction distribution, [Rhee et al. 2005].

VOF Waves

The VOF Wave model has been chosen to model the velocity of the ship, and naturally the incoming
waves. According to [CD-Adapco 2018] also the air of the domain is modelled with this, ensuring
an accurate estimation of the air resistance the model will face. There exists several different
options for wave modelling in STAR, but the ones present in this thesis are the following:

1. VOF Flat Wave

2. 1st Order Wave

3. 5th Order Wave

The flat wave initializes the flow at the free-surface with a velocity, but without any other motion
than in the specified direction (x, y or z). As such, it is perfect for modelling the velocity of a
vessel during calm water.
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The 1st order wave is modelled after the first order approximation of the Stokes theory of waves.
It models the free-surface elevation, as given in equation 6.1 by [Pettersen 2007].

ζ = ζA cos (kx− ωt) (6.1)

Where:

• ζA - wave-amplitude

• k - wave-number

• ω - wave frequency

The 5th order wave is modelled after the fifth order approximation of the Stokes theory of waves.
Naturally, by including more terms, it resembles the wave more realistically, than what the first
order approximation does. STAR models the 5th order approximation by equation 6.2, as given
by [Fenton 1985].

kη(x) = kd+ εW cos (kx) + ε2WB22 cos (2kx)+

ε3WB31(cos (kx)− cos (3kx))+

ε4W (B42 cos (2kx) +B44 cos (4kx))+

ε5W (−(B53 +B55) cos (kx)+

B53 cos (3kx) +B55 cos (5kx)) + 0(ε6W )

(6.2)

Where:

• εW - dimensionless wave amplitude, i.e wave steepness, ε = kH
2

• Bij - dimensionless constants

The boundary conditions at the outlet boundary has for all the different simulations in this thesis
been set to the hydrostatic pressure of the initial wave system. However, when the flow is disturbed
by the body, the flow approaching the outlet is not the same as the one at the inlet. In order to
force the flow behind or far to the sides of the vessel towards the initial condition, wave forcing
and damping has been implemented.

The damping option, uses the method derived by [Choi and Yoon 2009] and introduces a vertical
resistance to vertical motions at a specified length in front of the boundary face, as shown in
equation 6.3. This reduces the wave elevation and effectively damping them out before they reach
the boundary surface. This helps inhibit wave reflection at the boundaries.

The wave forcing is achieved by adding a source term to the transport (momentum) equation. This
method has its origins in the Euler Overlay Method by [Kim et al. 2012], and the source term is
added by the use of equation 6.5.

SdZ = ρ(f1 + f2|w|)
eκ − 1

e1 − 1
(6.3)

Where:

κ = (
x− xsd
xed − xsd

)nd (6.4)

• xsd - starting point for wave damping (propagation in x-direction)

• xed - end point of wave damping (boundary)

• f1, f2, nd - parameters of the damping model
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qφ = −γρ(φ− φ∗) (6.5)

Where:

• γ - forcing coefficient

• φ - the current solution of the transport equation

• ρ∗ - value which the solution is forced towards

Flow Solver and Turbulence Modelling

The Segregated Flow solver was enabled, due to the fact that [CD-Adapco 2018] recommended it
for incompressible subsonic flows, which this is.

The two-layer realizible k− ε scheme was chosen with wall functions. [CD-Adapco 2018] state that
this type of turbulence modelling will give better results than a standard k − ε scheme as it can
be used to successfully model the viscous sub-layer. The wall functions are included to give the
model more flexibility. The turbulence model k− ω SST could probably also have been used with
success, and it has been used in other simulations, as by [Claud D. Simonsen et al. 2013]. However,
the k− ω SST has its forte in modelling the viscous sublayer, [Klein et al. 2014]. As the results in
this simulation is more dependent on pressure forces than viscous forces, this is not assumed to be
of much importance, and the two-layer realizible k− ε with y+ wall treatment is deemed sufficient.

The correct boundary layer thickness with respect to y+ values was calculated by the use of the
method shown in section 4. The boundary layer thickness was set at a size to obtain an y+ value
around 50, which is recommended by [CD-Adapco 2018].

DFBI - Dynamic Fluid Body Interaction

The Dynamic Fluid Body Interaction - DFBI option in STAR is made to calculate the translations,
rotations, pressure- and shear forces the fluid imposes on the body, [CD-Adapco 2018]. By using
this option, it is possible to allow, and monitor, the motions and forces that is exerted on the
vessel.

6.4 Overset Mesh

Overset mesh, or chimera grid, technique is a method developed to increase the computational
accuracy when simulating motions. According to [Hadzic 2006] when dealing with severe motions
a standard structured, or unstructured grid, will be exposed to too large deformations and thus
in need to regenerate the whole mesh. As with free-surface simulations this could lead to the free-
surface to ”fall out” of the refined mesh-area and into the more coarse regions. This in turn will
lead to inaccurate results. With the overset mesh present, only local regeneration of cells needs to
be implemented, and not on a global scale. In other words, there exists valid reasons to implement
an overset mesh when it comes to simulations involving motions. This section will give a brief
introduction into how it works, and thus why it has been implemented in some of the simulations
in this thesis. This section is heavily based on the dissertation from [Hadzic 2006], as the overset
mesh tool in STAR is based on it, and for a more detailed explanation of the overset mesh the
reader is encouraged to read the dissertation.

[Hadzic 2006] presents a method which is designed to:

• achieve a strong coupling of all grids for an efficient iterative solution up to the round-off
level of residuals

• provide smooth solutions in overlapping regions
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Figure 6.2: Background and overset mesh topology

• achieve global mass conservation across all grids

• be applicable to arbitrary polyhedral grids

• allow an arbitrary motion of bodies relative to each other

The overset mesh technique relies on dividing the mesh domain into a stationary background
domain, and a sub-domain, as seen in figure 6.2. The method developed by Hadzic is grounded in
two principal elements:

• decomposition of computational domain into sub-domains, and generation of a suitable grid
in each sub-domain

• development of an coupling method for an accurate, efficient and unique solution of the
governing equations on the overlapping grids.

An advantage with this set-up is that different grids can be developed for the background and the
sub-domains, meaning separate grid controls and thus a more transparent mesh-control system.

The overset grid, or inner grid, is directly embedded in the background grid, meaning that the body
which is of computational interest lies over the background grid. The background cells that are
overlapped by the inner grid and the body, are thus outside of the computational domain, and needs
to be removed from the ensuing simulations. Therefore, they can be physically removed which in
turn will lead to fewer cells and less demanding computational resources. However, with a moving
body the background cells that the body overlaps will change throughout the simulation and cells
can therefore not be permanently removed as they might become part of the computational domain
later in the simulation. Therefore, instead of removing the cells, they are as Hadzic calls them,
inactive (hole) cells. To determine whether a cell is to be inactive or not, an artificial boundary
between the body and the background mesh has to be created. Figure 6.3 shows the overlapping
area between the inner grid and the background grid, the nodes in the centers of cells lying along
the artificial boundary is marked with a ”◦”. The nodes denoted as interpolation cells are cells
obtaining the necessary computational information through interpolation by nearby ”donor cells”
in the other grid. In order to obtain a smooth inter-grid communication two steps are needed, as
according to [Hadzic 2006]:

1. Hole cutting, to assess which cells are outside of the computational domain

2. Identification of interpolation stencils which are used to construct the interpolation formulas
for grid coupling
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Figure 6.3: Overlapping grid interface, [Hadzic 2006]

Hole Cutting

The hole cutting procedure is very important as it determines which cells are to be excluded from
the simulation, and which are kept as active. To ensure grid-interaction an overlapping area is kept
which will contain the interpolation cells and donor cells. Figure 6.4 shows how this in practice
is carried out. The curve, S, separates the cells in the background, the ones inside the curve will
be inactive, and the ones outside is a part of the computational domain and active. However,
as mentioned, an overlapping region to ensure grid-interaction is needed, so the area between the
overset grid and the curve S will be denoted as the overlap region. Within this region the cells are
kept, to exchange information between the two grid-domains.

Figure 6.4: Discretization of the grid during hole cutting
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Interpolation Stencils

As mentioned, the interpolation cell receives information from the donor cells that lies in the grid
that overlaps it, so a good coupling between these two types of cells is required. According to
Hadzic, the simplest method of interpolation scheme requires that only one cell whose centroid
lies closest to the centroid of the interpolation cell should be identified. This is a so-called host
cell, and if there is to be any other contributing donor cells they have to lie in the immediate
”neighbourhood” of the host cell.

When all the donors are determined the value transferred to the interpolation cell is, according to
[Hadzic 2006], determined through the use of equation 6.6.

φPi
=

ND∑
k=1

αwk
φDk

(6.6)

Where:

• φPi
- Interpolated function value at node Pi

• φDk
- Function value at point Dk

• αwk
- Interpolation weights

Solution Procedure

With the inter-grid communication working at a satisfactory level, it is now a matter of accurate
solving the governing equations. The solution needs to take the precence of holes in the grid into
account, and provide grid couplings in overlapping areas. The treatment of inactive cells, grid
coupling, and mass conservation through boundaries will not be given in detail here, but can be
viewed in [Hadzic 2006]. Figure 6.5 shows the solution procedure of the overset grid technique.
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Figure 6.5: Overlap solution procedure, [Hadzic 2006]
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Chapter 7

Results

As there are three different conditions tested in this thesis, the most transparent way of presenting
them is to make a separate section for each of the simulation-types with their own go-through
of the simulations and discussion. These sections will include the general set-up of the specific
simulation, the obtained results and finally a discussion of the aforementioned results. This way
it will be easier for the reader to follow the steps that were taken for each of the simulation-types.
It is important to mention that the denotion η3 and η5 refers to the heave and pitch translation,
also denoted as sinkage and trim, respectively. This is not to confuse the reader, but done to
avoid repetitiveness in the paragraphs. In addition, to separate between the results from the two
simulation types for each condition, the phrases ”inviscid” and ”viscous” are used to denote the
results obtained in the inviscid and viscous simulation, respectively.

The set-up sub-section will include the specific domain and numerical set-up used for that par-
ticular simulation. As none of the simulations initially yielded satisfactory results, the changes
implemented to the simulation and the subsequent difference in the result will be included here.

The result section will present the final results obtained, and a few, very short comments are made
here. The ensuing discussion of the validity and overall quality of the results will be saved for the
subsequent discussion sub-section.

In order to argue that the oblique simulation yields accurate results, a validation is necessary. As
there do not exist any experimental oblique seakeeping tests with this model, at least none were
found by the author, the only validation of the seakeeping set-up is with experimental results from
head waves. The variables from the model tests are given in the 0th and 1th amplitudes of the
time-dependent signal. This means the time-series that are measured during the simulations have
to be Fourier transformed into the frequency domain.

The comparison between the experimental and numerical results are done by error estimating with
the use of equation 7.1

E%D = 100
(D − S)

D
(7.1)

Where:

• D - Experimental result

• S - CFD result

As the calm water simulation approaches a quasi-steady result, statistical values, such as mean and
standard deviations of variables will be presented to evaluate the convergence of the simulation.

37
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Fourier Transformation of Results

The source of comparison is the 2010 Gothenburg Workshop in CFD, which contains experimental
and numerical results on the model used in this thesis. While the Fourier transform is a well
known, and much used, theory it will be given in brief here. This method is taken directly from
[Stern et al. 2014].

The frequency of encounter for the ship, in Hz, is expressed as in equation 7.2:

fe = fw +
U

λ
(7.2)

Where:

• fw - initial wave frequency

The mean. phase and amplitude of the time history of the parameter P (X,x, z,Θ, ξ) are determined
by using a Fourier series as follows:

P (t) =
P0

2
+

N∑
n=1

Pn cos(2πfet+ ∆γn) (7.3)

∆γn = γn − γ1 (7.4)

an =
2

T

∫ T

0

P (t) cos(2πfet)dt (7.5)

bn =
2

T

∫ T

0

P (t) sin(2πfet)dt (7.6)

Pn =
√
a2
n + b2n (7.7)

γn = arctan(− bn
an

) (7.8)

Here, Pn is the n-th harmonic amplitude and yn is the corresponding phase. Only the 0th and
1st harmonic amplitude will be computed and compared to the Gothenburg CFD results. The 0th
and 1st harmonic amplitude corresponds to the mean and linear term of the unsteady time-history
of the variable, respectively.

7.1 Calm Water Simulations

Calm water results are an important corner-stone for the validity of the rest of the simulations.
While solver-options and physics-models may differ from calm-water - to wave-simulations, the
over-all set-up is very much alike. It is therefore important to acquire good results at this stage,
since if the calm water simulations are not accurate, one cannot expect to have any success with
the regular-wave simulations.

Wave probes, which were used to measure the surface elevation along a line, had to be implemented
in the domain at the same places as those that were used in the experiments. According to [Larsson,
Stern, and Visonneau 2013], the following wave cuts were used: y

LPP
= 0.0964, 0.1581, 0.2993.
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Set-up

With the calm-water simulation it is important to assess where there is a lot of changes to the
fluid flow. As the velocity of the vessel is modelled by a flat-VOF-wave approaches with a velocity
corresponding to Fn = 0.142, there is very little change in the fluid flow, especially far out in
the domain. With this in mind, the need for a fine mesh only arises in areas where there occurs
disturbances to the fluid flow. For the grid generation, it was important to identify areas of physical
importance for the resistance, and motion calculations. As it is the waves generated by the vessel
that represents the pressure-related resistance of the vessel, it is important to have a grid that
captures this flow field accurately. In addition, for viscous solvers, the vortex shed behind the
vessel is also important, so a finer grid is required here. With a shrewdly made mesh, cells can
be as fine as they need, and grow to a set base-size to decrease the cell count, and increase the
computational time. The final list of areas of interest is as follows:

• Free-surface

• Wave pattern generated by the vessel (transverse and divergent)

• Wake of the vessel

• Boundary layer and mesh close to the vessel

While coarsening the mesh away from the vessel is important, it was found that altering the
vertical height of the cells in the free-surface in front, and around the vessel, gave an unstable
and inaccurate free-surface. In addition, the horizontal mesh size was kept at a fixed size, only to
be refined in the areas around the vessel, as this was also found to have a positive effect on the
end-result. Therefore, the free-surface mesh was set to have a uniform size in the vertical direction,
only to be coarsened far behind the vessel, and the horizontal size was kept at the same base-level
throughout the domain except for the refinements around the vessel. With all the refinements
of the mesh, the final cell-count became approximately 4.2M and 3.7M cells for the viscous and
inviscid simulation, respectively. This difference is naturally due to the fact that there is no need
for a boundary-layer mesh for the inviscid simulation.

As [Larsson, Stern, and Visonneau 2013] mentions, the Froude number is quite low, and thus
the fundamental wavelength is also very low, λf = 2πFn2, so a large number of cells across the
wavelength are needed to capture the free-surface accurately. This requirement is also present for
the wave height. From [CD-Adapco 2018] a vertical realization of between 10-20 cells is necessary
to capture the wave elevation. ITTC also recommended not using anything less than 40 cells over
the wavelength, [ITTC 2014b]. However they also stated that this could be an unnecessary demand
for low Fn simulations. This requirement is not followed in the far-field of the domain, due to the
fact that there is nothing happening with the flow with respect to time, in this area. This is also
due to the fact that increasing the cell size on the longitudinal directions far away from the vessel
helps the wave dampening of the system and thus aids in the avoidance of wave reflections at the
boundaries.

For RANS simulations a boundary layer mesh is needed to calculate the flow in the viscous sublayer.
The size of the inner cells is dependent on the y+ - value, which in turn is dependent on the fluid
flow. A y+ - value corresponding to 50 was estimated through use of the equations listed in chapter
4, as this value was found to yield the best results, both by [Azcueta 2001], and [CD-Adapco 2018].

To capture the Kelvin (divergent) wave system, volume controls were used and put in a triangular
shape to mimic the Kelvin angle of 19.5◦ with respect to the center-line. The wave system mesh
was refined in four layers, in order to have a smooth transition from coarse to fine mesh. This is
due to the fact that an abrupt, large increase in mesh size can lead to reflection of the flow and
cause instabilities. Therefore, the mesh was set to grow slowly throughout the domain in order
to inhibit this. The final mesh-generation can be seen in figure 7.1 and 7.2. These figures do not
represent the final simulation, but they are coarsened figures for the purpose of visualization.
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Figure 7.1: Free-surface mesh in the horizontal plane, calm water simulations

Figure 7.2: Mesh-generation overview in mid-ship xz-plane, calm water simulations
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As the calm water simulations are to reach a quasi-steady state at some point, the time-discretization
was set at 1st order. Due to the fact that the computed values are to reach a fixed value, the inner
iterations for each time-step was set at 10. This is a conservative number, as a lower value would
probably still yield accurate results. The inner iterations of the 6DOF-solver, which computes the
forces and motions on the body, was set at 5, as according to recommendations from [CD-Adapco
2018].

At the boundaries, wave damping was enabled to force the solution towards the flat-wave condition.
The wave-damping model is enforced at a boundary by specifying a damping length which defines
the length from the boundary at which the damping starts. damping-length needs approximately
two wave-lengths to completely dampen the wave. Therefore a relatively large lateral domain
had to be used in order for the damping to work as it should. The finalized domain had the
following dimensions, where all the measurements are taken from the coordinate-system origin to
the respective boundary:

Table 7.1: Main dimensions of the computational domain, calm water

Dimension Value
LA 3.2LPP
LF 2.9LPP
S 2.9LPP
T 1.3LPP
B 2.6LPP

Where:

• LA - origin to the outlet boundary

• LF - origin to the inlet boundary

• S - origin to the side boundary

• T - origin to the top boundary

• B - origin to the bottom boundary
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Results

The comparison between EFD and the RANS and Euler simulation, can be seen in table 7.2, and
the viscous and inviscid pressure resistance can be seen in table 7.3.

The surface elevation plots can be seen in figures 7.3-7.5, and it is noticeable how similar they
are, indicating that the waves generated by the body are pressure related forces, as indicated by
wave-theory.

Table 7.2: EFD and CFD comparison of variables for RANS and Euler simulation, calm-water

Simulation Variable Value E%D

EFD
CT [-] 4.11E-3 -
η3 [mm] -4.37 -
η5 [deg] 0.132 -

RANS
CT [-] 4.05E-3 1.46
η3 [mm] -5.67 -29.75
η5 [deg] 0.127 3.79

EULER
CT [-] 0.292E-3 92.89
η3 [mm] -5.68 -29.98
η5 [deg] 0.126 4.55

Table 7.3: Viscous and inviscid pressure resistance

RP,V iscous [N] RP,Inviscid [N]
3.726 1.294
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(a) RANS

(b) Euler

Figure 7.3: Surface elevation plot at y
LPP

= 0.0964
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(a) RANS

(b) Euler

Figure 7.4: Surface elevation plot at y
LPP

= 0.1581
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(a) RANS

(b) Euler

Figure 7.5: Surface elevation plot at y
LPP

= 0.2993
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Discussion

The viscous simulation agrees well with the experimental result on the resistance coefficient. Nat-
urally, the inviscid simulation is way off on this value, but this is expected as it does not include
its main contributor, the frictional resistance. However, the Euler simulation does calculate the
motions of the vessel just as accurate as the RANS simulation, suggesting that these parameters
are, as expected, pressure dominated forces. The sinkage of the vessel is inaccurately calculated,
as it nearly deviates 30% from the experimental values. While this is a substantial relative error,
the values computed are very small, so a small difference in value leads to a large relative error.
The discretizational error could be the culprit, and with a refined mesh and adjusted time-step
it is expected to drop. It would have been an advantage to check this, but due to computational
time, and the fact that the simulations do capture the physical image occurring, it is deemed of
less importance than completing the other simulations.

The viscous part of the pressure resistance is very substantial to the total pressure resistance. This
can easily be seen from table 7.3, where the inviscid pressure calculation is off by 65%, relative
to the RANS calculation. The deviancy makes up approximately 13% of the total resistance, so
even if one were to suplement the Euler simulation with a good frictional resistance estimation, the
total resistance would still be inaccurate. However, it is expected that the inviscid simulations will
become more accurate with an increased Froude number. With a Fn = 0.142 the inviscid pressure
resistance is evidently very low. When the velocity of the vessel puts the Froude number above
0.2 the waves generated by the vessel will become much larger than they are now, and thus yield
a much lower relative error for the inviscid simulation. The relative difference between the viscous
and inviscid pressure resistance is also expected to be far less for the regular waves simulations.

Both the viscous and inviscid simulations model the free-sureface elevation with an acceptable
accuracy. However, the plots seems the decrease in accuracy the further away the wave-cuts
are from the vessel. The magnitude of the oscillations are far smaller for the wave-cut that is the
furthest away from the vessel, compared to the one that is closest, and the small values of oscillation
can be partly blamed for this. Of course, the oscillations from the model tests might be subjected
to errors themselves, as such violent oscillations with such small values can be hard to measure
accurately. The inviscid simulation seems to have trouble with modeling the surface-elevation in
the wake, compared to the viscous model. This is seen from figures 7.3, 7.4 and 7.5 at x

Lpp = −2.
This could be due to the viscous dissipation that is not present in the Euler simulations. As the
rest of the results agreed fairly well with the experimental values, and the flow-field was captured
with reasonable accuracy, any further analysis with regards to enhance the surface-elevation plots
were not conducted. The smallest mesh-size in the free-surface was approximately 3mm, and it
is expected that with a finer mesh in the free-surface and a coherently smaller time-step, the
free-surface is expected to be modelled with a greater success.

While a 1st order time-discretization scheme has been used, which is unconditionally stable, a
time-step analysis could be beneficial to the final result. A simulation including a free-surface
deserves extra attention with regards to the CFL number, as there are a lot of changes near the
interphase between the air and water. Böhm and Graf suggested a CFL number below 0.5 and
indicated that above this could yield numerical instabilities. While this could be true with a
free-surface where a lot of changes occur over time, such as a wave-simulation, there is not that
much happening during a calm-water simulation test. This is evident by the accurate computed
results, but a smaller time-step could prove beneficial for the standard deviation of the resistance.
As seen in Appendix A, the standard deviation is around 1% of the total value, so while this is
deemed as quasi-steady, a smaller time-step could reduce it. However, it is likely that it would
yield a free-surface realization, as with a small enough cell-size and a coherently small time-step,
the changes in the fluid flow with time could be captured. From figures 7.4 and 7.5 the values
for the abrupt, and large oscillations seems to be ”smeared” to a more steady value. A too high
CFL number could lead to important fluid flow information passing through a cell without being
taken into account. For these surface elevation plots, which seems more time-dependent than the
resistance and motion calculations, a second-order time scheme might be more appropriate.

As the mesh count of around 4M cells is finer than a lot of comparative papers published on the
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same topic, there is reason to believe that the cell-count can be reduced without compromising the
results. A domain-analysis could have been done, in order to see if the computational domain can
be reduced. In addition, if a time-step analysis has been computed, a mesh-refinement analysis can
be done to see how coarse the mesh can be, and still obtain accurate results. These analyses would
give a more time-efficient, and as such a more sophisticated simulation, but as the next simulations
are regular wave-simulation it was not done, as the result would not be directly transferable. The
waves would impose a stricter demand to the time-discretization and if the time-scheme would be
changed to 2nd order, a completely new time-step analysis would have to be done. In addition,
wave-modelling has its own requirements when it comes to free-surface meshing, so the results
obtained at the calm-water mesh analysis would be useless in this aspect. They would have
been done, if there was time to spare, but due to the large computational time for the oblique
simulations, there was simply not enough time to do this. As this is the initial simulation, made
only to support the argument that the regular wave simulations are accurate and stable, further
analysis of domain-, grid- and time-dependency has not been conducted. As the main part of this
thesis is to evaluate oblique sea conditions with viscous and inviscid simulations, these tests are
deemed more important to do at the regular wave simulations, as these have more in common with
the oblique condition. And as such, these results were deemed as sufficiently good, making further
analyses in the calm water condition superfluous.

There is no doubt that more accurate results can be achieved with regards to the results obtained
here. However, as the standard deviations of the variables, listed in Appendix A, are low for both
simulations it would seem that the physical and numerical set-up is stable enough to capture the
physics of the problem. It is therefore deemed good enough to use this set-up as the basis for the
regular wave condition.

7.2 Head Wave Simulations

As the wave-resistance is proportional to the squared of the incoming wave-amplitude, it is impor-
tant to model the waves accurately. In chapter 6 a number of different methods for wave-modelling
was introduced, and in order to establish what could be the best set-up, a lot of simulations were
conducted at this stage, with respect to wave modelling. Another reason for doing a lot of simula-
tions at this stage is because there are no available sources or experiments on oblique seakeeping
with the KVLCC2, so the regular waves had to be validated in its stead.

Set-up

The wave-characteristics can be viewed in table 7.4. The wave is the exact same as the one that
was used by NTNU in the experimental studies on the same model, [Stern et al. 2014].

Table 7.4: Regular wave characteristics

Parameter Value
λ/L 0.9171
H/λ 1/34
Fn 0.142

As the wave-system imposes a larger change in the free-surface over time, a 2nd order time-
discretization was initially chosen. The relation between the wave propagation, and the chosen
time-step is crucial for the modelling of the wave-propagation over time. According to [Jin et
al. 2017] the time-step should be chosen based on equation 7.9. This corresponds well with the
recommendation from [CD-Adapco 2018], albeit with a safety factor of 2. The time-step was then
set accordingly to equation 7.9.:

∆t =
TP

4.8N
(7.9)
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Where:

• TP - wave period

• N - number of cells per wavelength

The velocity of the vessel could either be modelled by moving the vessel and grid with the fixed
ship velocity, or by having an incoming current and wind equivalent to the ship velocity in addition
to the incoming waves. The latter was chosen, due to the fact that most literature found used this
kind of a set-up and the experience of the author with STAR did not encourage any more stray
from the trodden path than necessary. In addition, a moving grid would increase the computational
time, and for these types of simulations the potential gain in accuracy is arguably not enough to
justify it. A Stokes 1st order wave was initially chosen to model the wave train, for computational
efficiency.

For each solver there are under-relaxation factors that aids the convergence of the solution. For
simulations reaching steady-state solutions these can be set higher than for transient solutions,
and for the calm water simulations they were set at 0.7, 0.4, 0.8 and 0.8 for the velocity, pressure,
volume fraction and turbulence model respectively. The pressure and volume fraction parameter
were kept at the same value, but the velocity and turbulence parameter were changed to 0.8 and
0.6, respectively, due to the recommendation by [CD-Adapco 2018].

The mesh size was set to have 80 cells over a wavelength, and 20 cells in the waveheight, as was
suggested by [Jin et al. 2017]. In addition the overset mesh technique was used in order to model
the motions of the vessel more accurately. This inner domain was made just large enough to
encapsulate the vessel, with an extra space of 50cm in every direction. This was due to the fact
that if a large overset mesh domain was made, the pitch angle of the model would yield large
translations to the outer cells in the overset mesh, and thus could crash the simulation due to a
lack of interpolation cells.

The cells in the free-surface were set to grow in the horizontal plane as they moved further away
from the vessel. A wave damping boundary condition was enabled at the boundaries. This resulted
in a poorly realized free-surface, as seen from figure 7.6. Notice the contour bar at the bottom
of the figure, showing that even the largest values were far away from the actual wave amplitude
(±7.5cm).

Figure 7.6: Poorly realized free-surface with wave damping model, head-wave simulation

Due to this, the wave damping boundary condition was changed to a wave forcing boundary, and
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implemented at the outlet, side and inlet of the domain. This would keep a steady free-surface
throughout the domain, as well as inhibit wave reflections of the bow to hit the inlet, and disturb
the solution. As the wave forcing length is supposed to be around the length of the vessel, the
domain to the sides were shrunk to decrease the computational time. The result of the free-surface
realization can be seen in figure 7.7 and the resulting domain can be seen in table 7.5.

Figure 7.7: Free-surface realization with poor constructed mesh and wave-forcing model, head-wave
simulation

Table 7.5: Main dimensions of the computational domain, regular waves

Dimension Unit Value
LA LPP 3.4
LF LPP 2.25
S LPP 1.74
T LPP 0.5
B LPP 1.74

As can be seen from figure 7.7 the incoming wave amplitudes now matched better with the target
value, but disturbances in the free-surface occurs straight after the waves hits the vessel. This is
due to the cells in the free-surface getting expanded far out in the domain. As the solution now
is being forced towards a wave-amplitude of 7.5cm throughout the domain, the mesh needs to be
just as fine at the sides and in the aft as at the inlet. In addition, it was found that the values
of the wave amplitude got distorted near where the mesh changed size. Therefore, the mesh was
set to have a uniform vertical and horizontal size throughout the domain, and the areas of mesh-
transitions were moved farther away from where the wave actually was. This greatly increased the
cell count for the simulation, but as can be seen in figure 7.8, it greatly improved the free-surface
realization.

Initial Results

The contour plots above are great for an initial evaluation of the free-surface, but they do not give
an exact image of the resulting wave-elevation. Therefore, point-probes were set at three different
lines in the free-surface, 0.05m, 2m and 6m in y-direction measured from the origin. Along these
lines, three points were set at, 11m, 7.5m and 0m in x-direction measured from the origin, and
these points measured the surface elevation.

The wave-elevations from the initial simulations can be seen in figure 7.9, 7.10 and 7.11 representing
the wave-probes from the line lying in the xz-plane with y = 2m with x-position equal to 11m and
7.5m, respectively. The two red lines indicate what level the model is specified to reach.
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Figure 7.8: Steady free-surface realization with wave forcing model, head-wave simulation

Figure 7.9: Wave probe at y=2m, x=11m, 2nd order time discretization, CFL > 1
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Figure 7.10: Wave probe at y=2m, x=7.5m, 2nd order time discretization, CFL > 1

Figure 7.11: Wave probe at y=2m, x=0m, 2nd order time discretization, CFL > 1
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As can be seen from the figures above, the wave is not being accurately modelled. According to
[CD-Adapco 2018], the 2nd order time-discretization is more CFL-dependent than the 1st order
time-scheme. Therefore, the instabilities seen above could stem from a too large CFL number in
the free-surface which was higher than 1 in cells very close to the hull. As decreasing the time-step
would increase the computational time, and time was of the essence at this stage, an attempt to
try the 1st order scheme was made. This attempt was folly, as the 1st order time-discretization
scheme dampens the wave elevation through the domain, as can be seen by figure 7.12, 7.13 and
7.14, showing wave probes at x = 11m, 7.5m and 0m from the origin, respectively.

Figure 7.12: Wave probe at y=6m, x=11m, 1st order time discretization, CFL > 1
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Figure 7.13: Wave probe at y=6m, x=7.5m, 1st order time discretization, CFL > 1

Figure 7.14: Wave probe at y=6m, x=0m, 1st order time discretization, CFL > 1
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To cope with these problems, several issues had to be addressed. One problem is with the HRIC
scheme, when the flow-velocity direction is parallel to the interface, the downwind scheme can
distort the free-surface, [CD-Adapco 2018]. The smoothness of the free-surface and its ability to
follow grid lines, is upheld by the angle factor, CΘ, and for wave simulations that go on for longer
than 20λ, it is recommended to increase this factor from 0.05 to 0.15-0.2 [CD-Adapco 2018].

A second problem is with the free-surface interface. The two multiphases interacting here will have
solution discontinuities across the interface. This causes parasitic currents caused by discretization
errors where the material properties of the two phases are discontinuous. This will undoubtedly
distort the free-surface and therefore yield an uneven representation of the incoming waves. To
cope with this problem, [CD-Adapco 2018] recommends using an ”Interface Momentum Dissipation
Model”, with an artificial viscosity between 0.1-0.2. It ads an extra momentum dissipation in the
proximity of the free-surface to dissipate the parasitic currents.

A problem throughout the simulations done for the regular waves, has been a high turbulence
viscosity ratio value. This value expresses the ratio between the turbulent viscosity ratio and the
laminar viscosity ratio, and a very high turbulent viscosity deteriorates the solution. To cope with
this, the turbulent kinetic energy, k, and the turbulent dissipation rate, ε, is being forced to 1e-
5J/kg and 1e-4m2/s3 respectively at the inlet, outlet and sides as according to recommendations
from [CD-Adapco 2018].

It was found that the Stokes first order wave approximation was not able to keep an even wave
amplitude throughout the simulation-time, so the 5th order Stokes approximation was instead
implemented. Although, the first order wave is not the only culprit. As mentioned above, the
1st order time discretization scheme proved inefficient to model waves. The 2nd order scheme was
therefore reinstated as the time-scheme, and the time-step was set accordingly to achieve CFL < 1
in the smallest cells.

The last problem, and one of the bigger, was to check the mesh in the free-surface. One would
be inclined to believe that as long as the time-step is small enough, the finer the mesh in the
free-surface the better, in regards to accuracy. However, while a finer mesh is better than a coarse
one, it is important that it is refined in all directions, and not only in z-direction. While this had
already been done, by enforcing 80 cells along the wavelength and 20 cells over the wave-height,
the aspect-ratio between the two refinements was not taken into account. An important element
of free-surface gridding, is the aspect-ratio between the cells. According to [CD-Adapco 2018], this
value is also dependent on the wave steepness, and should for steep waves (Hλ > 1

25 ) not be larger
than 2, and for moderate steep waves an aspect-ratio of 4 should be kept. As the wave-simulations
in this thesis uses a moderate steep wave, the number of cells over a wave height was reduced to
12, in order to get an aspect ratio of 4. Thus, the following changes was done, and the final result
can be viewed in figures 7.15, 7.16 and 7.17.

• 2nd order time-discretization scheme enabled with focus on CFL-condition

• Grid refinement to keep an aspect ration of 4 in the free-surface

• 5th order Stokes wave approximation used to model the waves

• Changing the angle factor in the HRIC scheme from 0.05 to 0.15

• Enabling an ”Interface Momentum Dissipation Model” with an artificial viscosity of 0.1

• k and ε set to spesific values at inlet, outlet and side boundaries
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Figure 7.15: Wave probe at y=6m, x=11m, 2nd order time discretization, CFL = 0.54

Figure 7.16: Wave probe at y=6m, x=7.5m, 2nd order time discretization, CFL = 0.54
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Figure 7.17: Wave probe at y=6m, x=0m, 2nd order time discretization, CFL = 0.54
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Results

The estimations for the 0th and 1st amplitudes for the resistance, sinkage and trim can be viewed in
table 7.6, along with the EFD and CFD results from the CFD workshop in Gothenburg. The time-
series comparison of the pressure resistance, for the viscous and inviscid simulation, can be seen in
figure 7.18. In addition, figure 7.19 shows a comparison of the maximum amplitudes. The inviscid
simulation over estimates the values, but it also overestimates the negative amplitude. Extensive
care has been taken to ensure that the time-series used in the Fourier-transform included only
complete time-series, i.e stopped at the same position as where it started. It was found that this
was extremely important, as the end result varied greatly with the chosen cut-off time-step. In
Appendix B the rest of the results from the head-wave simulations can be viewed.

Table 7.6: Comparison between obtained results and EFD and CFD results from 2010 CFD work-
shop, from [Larsson, Stern, and Visonneu 2010]

Organization
(Code)

RT η3 η5

0th Amp
(N)

1st Amp
(N)

0th Amp
(mm)

1st Amp
(mm)

0th Amp
(deg)

1st Amp
(deg)

EFD (NTNU) D 59.359 603.078 -6.516 12.631 -0.137 1.357
ECN/CNRS
(ISISCFD)

S 63.960 210.000 -5.910 13.230 -0.138 1.467
E%D -7.751 65.179 9.300 -4.742 -0.511 -8.106

ECN
(ICARE)

S 65.500 230.500 -6.100 14.350 -0.145 1.504
E%D -10.35 61.78 6.38 -13.61 -5.92 -10.83

GL&UDE
(Comet)

S - - -6.100 12.482 -0.91 1.323
E%D - - 6.38 1.18 -39.52 2.51

GL&UDE
(OpenFOAM)

S - - -3.427 13.079 -0.118 1.358
E%D - - 47.41 -3.55 13.81 -0.07

Kyushu University
(RIAM-CMEN)

S 59.694 206.351 -8.499 9.929 -0.186 1.324
E%D -0.56 65.78 -30.43 21.39 -35.87 2.43

Viscous Simulation
S 59.445 127.365 -6.380 9.083 -0.147 0.903

E%D -0.145 78.880 2.087 28.089 -7.299 33.456

Inviscid Simulation
S 43.365 113.486 -6.700 9.100 -0.149 0.945

E%D 26.944 77.865 -2.820 27.955 -8.759 30.361

The resulting wave-plots can be seen in figures 7.20, 7.22 and 7.24. Only the latter part where the
waves have reached a quasi-steady result has been included. From figure 7.24 it is noticeable that
the surface-elevation becomes marginally more stable at 80s, so the part were the results have been
calculated are from the interval 80-100s. It is apparent that the viscous simulation over-estimates
the wave-crest and underestimates the wave-trough, by 2.5mm and 6mm at the most, respectively.
The inviscid simulation agrees with the viscous simulation in regards to the crest, but is actually
closer to the theoretical trough.
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Figure 7.18: Pressure resistance comparison, head waves

Figure 7.19: Max amplitude pressure resistance comparison, head waves
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Figure 7.20: Result for wave probe at y=6m, x=11m

Figure 7.21: Maximum amplitude comparison for the surface elevation at y=6m, x=11m
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Figure 7.22: Result for wave probe at y=6m, x=7.5m

Figure 7.23: Maximum amplitude comparison for the surface elevation at y=6m, x=7.5m
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Figure 7.24: Result for wave probe at y=6m, x=0m

Figure 7.25: Maximum amplitude comparison for the surface elevation at y=6m, x=0m
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Discussion

From table 7.6 one would be inclined to believe that the inviscid simulation is not a fitting method
to compute the resistance of the vessel subjected to regular waves in head sea. An error estimate
of nearly 27% is, of course, a glaring miscalculation of the resistance. However, as seen from
figure 7.18, the inviscid agrees very well with the viscous simulation with regards to the pressure
resistance. In fact, as the mean shear resistance is 15N, see figure B.2 in Appendix B, the inclusion
of this value to the inviscid result would yield an E%D= 1.675. Therefore, while the inviscid
simulation is not able to calculate an accurate estimate on its own, the calm water shear resistance
could be added to render the inviscid simulation more accurate. The calm water shear resistance
is equal to 14.22N, yielding an E%D=2.988 for the inviscid simulation. This indicates that added
resistance simulations in head waves, can be accurately calculated by the inviscid simulation, if an
accurate estimate for the shear resistance is present to supplement the inviscid calculations. As
the E%D for the inviscid pressure resistance with respect to the viscous pressure resistance is only
2.42%, it is fair to assess that the added resistance in head-waves is a pressure-dominated system.

The main object of this thesis is to evaluate the applicability of a inviscid CFD solver to added
resistance simulations. The goal is therefore to assess how much loss in pressure resistance the
inviscid solver obtains from not including viscous forces. From figure 7.18 and 7.19 it would
seem that this loss is non-existant. One would expect the viscous simulation to have the largest
pressure values, so this would indicate erroneous results. From figure 7.18 it can be seen that
the inviscid simulation agrees very well with the positive amplitudes of the viscous simulation, but
estimates a slightly lower value for the negative amplitude. The relative difference is approximately
1.6% and 9.5% for the positive and negative amplitude, respectively. By looking at the wave
elevation maximum amplitude plots, figures 7.21, 7.23 and 7.25, it is clearly visible that the inviscid
simulation over-predicts the surface elevation compared to the viscous simulation. However, and
even more importantly, it under-predicts the minimum amplitudes of the surface elevation by a
larger margin than the over-estimate of the crest. This is why the amplitudes of the inviscid
pressure resistance are larger than for the viscous, but its mean value is smaller. With an equal
surface-elevation, the inviscid mean resistance would probably increase. The exact increase of
the value is hard to say, but the value would probably become be closer to the viscous pressure
resistance than what it is now. The problem needs to be solved by obtaining a more stable wave-
model. However, as the pressure resistance is very much alike, a correct wave-model would not
alter the result by much. To conclude that the inviscid simulation is not able to compute the
pressure resistance correctly, would therefore be wrong.

The resistance of the RANS simulation agree very well with the 0th amplitude for resistance in
comparison with the experimental results. As the amplitude-values from the wave-plots has an error
of 3%-8% compared to theoretical values for the max amplitude and min amplitude respectively,
the estimation could probably lessen with an increased accuracy of the wave-amplitude modelling.
The 0th amplitude of the resistance is a very good estimate of the mean resistance, compared
to the results of the participants of the 2010 Workshop, [Stern et al. 2014], but with a better
realized free-surface the error will increase. However, the result should not rend the simulations
nonphysical, as the wave amplitude only misses by 3%− 8% at the most, so the resistance should
still be in the vicinity of the experimental result. It is also important to mention that the EFD
result does not come from a perfect realized, regular wave with an amplitude of 7.5cm. They
measured Hs= 13.8cm while having applied a nominal Hs= 15cm, [Larsson, Stern, and Visonneu
2010]. More knowledge about the values of min and max amplitudes is not published, and it is
hard to make any further conclusion with regards to the accuracy of the wave modelling done in
this thesis.

While the wave height seems to be around the theoretical value (3%-8% deviancy as mentioned)
the wave seems to be unevenly distributed around the mean free-surface. A suspicion was that
either the mean water-level was specified wrong in the wave-model option-tree, or the water density
property in the wave-model was different than the one in the physics-continuum, and thus shifting
the water-level. Both of these theories were checked, and both were set at the correct value.
Exactly why the wave is unevenly distributed could be due to the parasitic currents, or it could be
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due to a too coarse mesh. To see if the boundary conditions could infringe on the obtained free-
surface, these were altered at the top, sides and bottom. Different conditions for each boundary
were checked, but none gave a symmetric free-surface around the actual mean-free-surface. Doing
a mesh-analysis could be beneficial, as the free-surface mesh is set at one of the more coarse,
allowable settings. This should have been performed here, but a decrease in mesh-size would
mean a smaller timestep, and there was not enough time to do this, as the result obtained here
is acceptable. Another aspect that should be checked is the parameters for the Angle factor, in
the HRIC scheme, the artificial viscosity to the momentum dissipation model, and the turbulence
values. These values might have to be slightly adjusted in order to find the perfect set-up for this
specific case.

The 1st order amplitude of the resistance deviates by a significant amount compared to the exper-
imental results. As the 1st order amplitude of the Fourier transform refers to the linear term of
the unsteady time history, it could be much more sensitive to small differences in set-up. For the
experimental results, induced vibrations from the towing cart, and how the model is restricted to
move in certain degrees of freedom, could have a large impact on the 1st order amplitude. The
other participants from the workshop also achieved large underestimates of this value, so where
the supposedly correct value of the amplitude should be, is hard to say. However, it is clear that
the deviancy from experimental results does not indicate that the numerical set-up is wrong.

Results for the motions seem to point in the direction that the 6DOF solver, which calculates the
motions on the vessel, solves the system with a satisfactory accuracy. However, as with the calm-
water simulations, the 0th amplitude (mean) for the motions deviates more from the experimental
results, than what the resistance estimate does. This is especially the case for the pitch-motion
with the largest deviancy. The small values that are computed are partially to blame, as a small
deviancy from the experimental results yields a large relative error in %. The motions do however
agree more with the experimental values than what the calm water simulation does. This could be
due to the overset mesh which handles motions better than what a standard mesh set-up does. It is
peculiar that the 1st amplitude values for both of the motion variables are considerably poorer than
what the participants of the workshop managed to obtain. However it is hard to read too much
from this, as none of the participants achieved consistently small E%D values for all of the motion-
variables. In fact, the results obtained in this thesis have the third lowest mean error for motions,
for both 0th and 1st amplitude-values, and has the lowest mean error when only 0th amplitude
value is used. It also has the most consistent result, indicating a better stability. Another good
indication of stability is the good agreement between the viscous and inviscid simulation with
regards to the motions. The computed values are almost identical. If the simulations were set up
correctly this was expected, as the heave and pitch motions are pressure-dominated, so the viscous
solver should not alter the final result too much. This has been the case for this simulation, and
contributes to the validation of the results.

As with the argument made in the previous paragraph, the 1st order harmonic amplitude values do
not by themselves indicate a non-physical numerical simulation. Due to the accuracy of the mean
estimates of the variables, the motions are considered accurately modelled. However, how the
system reacts when more complex motions are present is hard to say. Therefore, steps should be
taken to decrease this potential error for the oblique simulations. These simulations will experience
more complex motions than the present simulations, and the motions should be more carefully
modelled. In the solver there is an option to increase the number of inner 6-DOF iterations. This
option controls the number of iteration the motion solver is allowed to do before continuing on
to the next outer iteration. Increasing this number could lead to more accurate results for the
motions. Of course a finer mesh with a coherently fine time-step could also be beneficial for the
motion-calculations, but to check this a mesh-convergence study would have to be done. This
simulation was conducted with a already very fine mesh in order to assure valid results on the first
run due to time-limitations. The results are already very good, so a mesh convergence study would
probably point towards decreasing the mesh count for a more efficient simulation.

As the velocity of the vessel is modelled by a current and wind in the VOF-wave model, inaccuracies
could stem from this type of modelling. If the water particles in the current and the wave front
interact, causing the flow to achieve an intermediate velocity between the two, a doppler-effect on
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the wave-front might occur and can interfere with the results. This was checked by computing
the theoretical period of encounter for the wave, by the use of equation 7.10, obtained through
using equations from [Pettersen 2007], and comparing it to the time series of the resistance. The
resistance amplitudes should oscillate with the period of encounter. Equation 7.10 is valid for
deep waters, in other words when h > λ

2 [Pettersen 2007], which this is. Several wave-tops were
used from different areas in the time-domain that has been used to compute the final results, and
the encounter period of the waves was 1.308s. The theoretical value was computed to be 1.311s,
so upon this it is reasonable to conclude that the doppler-effect from this type of ship-velocity
modelling is negligible.

Te =
2π√

kg + kU
(7.10)

Throughout the head-waves study, it became apparent that the CFL-condition should not be
violated when the simulations involved waves. The simulations shown in this section had a time-
step equal to 0.004s, yielding a CFL number of 0.54 for the smallest cell. As mentioned earlier,
CFL > 0.5 could yield numerical inaccuracies, [Böhm and Graf 2014], so a time-step test was
conducted with a time-step of 0.003s, which would yield a CFL number of 0.4. The results did not
give a better modelled free-surface, and as such the time-step of 0.004 was deemed fine enough. The
problem with the inaccuracy of the wave-amplitude modelling is probably connected to the mesh-
size. As with the calm-water simulations, the cell-size needs to reflect the magnitude of accuracy
it is supposed to measure. In this case, the error is around 3-4mm, and with a cell-size of 1.25cm,
this level of error should not come as a surprise. The wave-height is measured accurately, but the
min and max levels are not. However, the error this introduces to the final result compared to the
significant increase in cells, points towards the conclusion that an increase in cell-count should not
be performed.

The cell-count in these simulations are far higher than a lot of other published works on regular wave
seakeeping analyses that has achieved satisfying results. While the free-surface has been modelled
as accordingly to ITTC guidance, and other publicized works, there could be an argument made
that it is possible to decrease the total number of cells without compromising the results. This
could either be achieved by a domain analysis or a grid-convergence study. Had there been enough
time, this would have been done, as it would surely have helped in the time-efficiency of the up-
coming oblique-wave simulations. However, as time has been a scarce resource throughout the
work on this thesis, there was simply not time to perform these tests. Therefore the current set-up
is deemed as stable and accurate, albeit with an asymmetric surface-elevation, and is therefore
used for the oblique-sea simulations.

7.3 Oblique Wave Simulations

While the wave-set-up from the regular waves could be implemented easily into the oblique simula-
tions, there were some important changes that had to be made. The biggest one was to decide how
to model the flow. As the head-waves has the benefit from having the waves and current going in
the same direction, the boundaries can more easily be specified, and the numerical set-up is more
intuitive.

The wave-angle chosen is 20◦, due to the fact that one of the few sources found indicates that
there is a higher added resistance in waves for this heading than for head-waves. Therefore, if the
obtained results were to show this trend, the results would be more validated.

Set-up

The first problem was to decide how to model the vessel velocity. As mesh-generation and domain
set-up are dependent on the modelling of the propagation of the vessel, this was the first thing to
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look at. At first, a set-up where the outer domain was rotated 20◦ relative to the vessel orientation,
while keeping the overset (inner) domain oriented with the vessel. This distorted the overlap mesh-
region between the two meshes, making it hard to believe that accurate cell-communication could
be achieved. The waves are demanded by the VOF model to be sent from one inlet and directly
towards a pressure outlet boundary oriented perpendicularly to the wave-propagation direction.
Therefore the outer domain and the inner domain were oriented the same way, while the vessel
was oriented 20◦.

The velocity of the vessel was modelled by having a current, and wind propagating in the opposite
direction of the vessel orientation, while the vessel was restricted to move in any direction, apart
from heave, pitch and roll. This was seen as both the easiest way to model the problem, and the
most consistent compared to the set-up for the regular waves. Some information will be lost with
this set-up, such as the coupled motions with the other degrees of freedom, but for the purpose of
this thesis, it is deemed as a good enough approximation. Due to having an oblique current relative
to the domain orientation, inlet conditions had to be used at the sides of the domain. Naturally
this also applied to the side that was denoted as the ”symmetry plane” in the regular waves. Due
to an obliquely oriented ship, there would be no symmetry-plane and therefore flow calculations
had to done over the entire domain.

The free-surface grid-realization was the same as the one used for the regular waves. While this is
good enough to represent the waves, and the resulting wake of the ship, the overset mesh interface
has to be given some attention. Due to the obliquely oriented ship, there exists a roll motion
induced on the vessel, and as the overset mesh topology moves with the body, different, and
maybe even larger, motions occur for this condition. This resulted in a crash of the simulation,
due to fact that the inner domain moved too far. This shifted the inactive cells to where there
should be active ones and yielding too few interpolation cells for the donor cells to communicate
with. When the mesh is very fine at one point, but becomes significantly larger not too far away
this can occur. To remedy this, the three volume controls for the mesh in the free-surface were
increased in their vertical direction. This naturally resulted in an increase in the cell count, but
now the overset mesh interface was able to move and still have a valid interface. Another reason
why this has happened to the oblique simulations, and not the regular wave-simulations is that
the overset mesh interface is smaller for the regular wave-simulation. Since the vessel and overset
mesh are, for the regular waves, oriented the same way a much smaller domain can be used to
encapsulate the entire body. When the vessel has a different orientation than the overset mesh,
there are large parts of the prism-box used to make the overset mesh that winds up being far
away from the center of gravity of the vessel. The resulting mesh interface for the free-surface can
be viewed in figure 7.26, and the overset mesh interface with the vessel inside can be viewed in
figure 7.27, where the overset mesh is colored in pink. The inner domain could probably have been
reduced and thus given a more stable overset mesh communication, but due to the slow growth of
the mesh cells, this was not done. A slow growth rate for the cells ensures that no abrupt change in
cell-size occurs, which could have been fatal for these types of simulations, for a number of reasons,
such as flow reflection, lack of interpolation cell in the overlap interface, and general smearing of
the free-surface. The slow cell growth rate is necessary to have for these simulations, and it was
found that the current inner domain aligned well with neighbouring cells.
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Figure 7.26: Increase of free-surface mesh interphase in the inner domain, oblique wave simulation

Figure 7.27: Size of the inner domain with the obliquely oriented vesse, oblique wave simulation

Results

The results from the viscous and inviscid oblique simulations can be viewed in table 7.7. Naturally,
only the pressure resistance is compared, and the relative error is the deviancy of the inviscid result,
compared to the viscous result. In figure 7.28 the inviscid and total pressure resistance is shown.
As with the head-wave simulation, the inviscid simulation seems to over-estimate the amplitudes
of the resistance.

In figures 7.30-7.33 the frequency spectra of the monitored parameters can be seen. These shows
one of the main advantages the inviscid CFD simulations have over the potential theory simulations,
namely, able to compute higher-order terms. The rest of the plots and results from the simulations
can be seen in Appendix C.
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Table 7.7: Oblique simulation results

0th Amplitude 1st Amplitude
RP,V iscous [N] 57.822 100.163
RP,Inviscid [N] 60.370 111.746

E%D -4.400 -11.564
η3,V iscous [m] 0.1659 0.030
η3,Inviscid [m] 0.166 0.032

E%D -0.060 -6.667
η4,V iscous [deg] 0.378 0.080
η4,Inviscid [deg] 0.358 0.089

E%D 5.290 -11.250
η5,V iscous [deg] 0.252 2.339
η5,Inviscid [deg] 0.282 2.420

E%D -11.904 -3.463

Figure 7.28: Pressure resistance comparison, oblique wave simulation
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Figure 7.29: Maximum amplitude comparison of pressure resistance, oblique wave simulation

Figure 7.30: Power density spectrum of the pressure resistance
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Figure 7.31: Power density spectrum of the sinkage

Figure 7.32: Power density spectrum of the roll motion
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Figure 7.33: Power density spectrum of the trim
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Discussion

Due to the lack of experimental results for the oblique wave conditions, it is important to assess
whether or not these results are realistic. The overall agreement between the two simulations
indicates a stable numerical scheme. In addition, the total resistance has a value of 67.64N, which
is 8.14N higher than the head-wave condition. This corresponds well with the remarks from Volker
and Couser, who states that incoming waves at 10◦-20◦ yields the highest resistance, [Volker and
Couser 2014]. Otherwise, in figures C.12-C.16 the wave-elevation plots can be seen for the two
simulations. The waves are stable in front of the vessel, but from figure C.17 it is noticeable that
the inviscid simulation is not able to model a stable free-surface. This was also present for the head-
wave simulation, but as the simulation was allowed to continue to 100s, this error was diminished.
This could indicate that the inviscid solver needs a longer time to achieve a stable free-surface
which diminishes its computational efficiency compared to the viscous simulation. Having the
oblique simulation running up to 100s was not possible for this simulation, due to time-limitations,
but from the head-wave results it is visible that this time-increase does not alter the results with
any substantial amount. In figure C.18 the contour plot for the free-surface is included, and this
yields no reason to doubt the results, as there are no inaccuracies, or errors with the free-surface.

What is interesting, is that the max amplitudes for the total resistance is lower than the head-
wave simulation. Since the max amplitude is lower and the min amplitude is higher, the average
resistance becomes higher. As the reference literature found for this thesis does not go into detail
with regards to the oscillation of the resistance, it is hard to conclude anything. However, one
would be inclined to believe that with the vessel oriented 20◦ to the incoming waves, the frontal
area of the vessel that the wave hits should be bigger than in head-waves. A larger frontal area
should imply a larger pressure, and thus a larger resistance amplitude. This effect might be reduced
since the vessel is rather full-bodied. A more slender vessel might experience this, as the bow would
cut the wave, rather than push through it as this tanker does. In addition, with the vessel obliquely
oriented, its length in the wave-direction is 5.18m. This results in the wavelength having a relative
size of 0.9768, instead of the original scale of 0.9171. At such wavelengths, the resistance is very
dependent on the relative length of the wave compared to the vessel, as seen by figure 3.1. The
higher amplitudes in head-waves could be explained by the fact that the relative wave length is
closer to the resonance peak than what it is in the oblique condition. The period of encounter is
also altered, since the ship now traverses with an angle relative to the wave-heading, resulting in a
lower ship-velocity in the wave-parallel direction. As seen from 3.1, this could have a large impact
on the resistance.

From figure C.1 one can see that the resistance has an ”extra” positive amplitude of the resistance
oscillating with almost half of the encounter frequency. This is due to the orientation of the vessel,
since the highest peaks are when the wave hits the bow of the vessel, and these oscillates with the
encounter frequency. The smaller amplitudes occur when the wave hits the aft part of the body
which has not been hit by the wave. Consequently, the energy of the PSD-spectra for the pressure
resistance is shifted to almost 1.5Hz, which is twice the value of the incoming wave frequency.
Naturally, this means that the resonance area is shifted for oblique-conditions compared to head-
wave conditions. With this extra positive amplitude, the negative resistance amplitude is reduced,
and consequently the mean resistance is increased.

As with the head-wave simulation, the waves modelled are asymmetric around the mean-free-
surface. This can be seen in figures C.12-C.17 in Appendix C. Another similarity is that the inviscid
simulation estimates a higher pressure resistance than the viscous solver. As with the head-wave
condition, the inviscid solver has higher wave-crests, and lower wave-troughs, leading to higher
absolute values for the pressure-resistance amplitudes. Since the inviscid simulation struggles with
the resistance amplitudes where the wave hits the bow of the vessel, it becomes more credible
that these over-estimations are related to the erroneous wave-modelling. While the inviscid and
viscous simulation has an identical surface-elevation for wave-probe x=11m, they deviate, albeit
marginally, at probe x=7.5. This is a better agreement than what the head-wave simulations are
able to get. However, as the wave-modelling worsens over the length of the vessel, resulting in what
is measured at wave-probe x=0m, the only conclusion is that the oblique simulation has the same
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error as the head-wave simulation. Since this error is consistent for both of the wave-conditions
it is still possible to compare them to one-another. However, a thorough parameter-analysis with
the respect to the wave-modelling should be conducted.

C. Liu et al. presented a paper focusing on mean wave forces and motions on the DTC vessel,
computed by a CFD solver, in oblique wave conditions. They reported increased values for trim
and sinkage as the wave-angle got larger (0◦ being head-waves), [C. Liu et al. 2018]. This trend
is also visible from comparing table 7.6 and 7.7. As this trend is captured by the simulations,
it indicates that these results are correct. The DTC ship is of similar size as the KVLCC2, but
it is longer and more slender. This will influence the results, naturally, but the trends witnessed
by these results, are comparable. However, without any sources that are directly comparative
to the simulations done here, it is impossible to be completely certain that these results are in
fact correct. While there are many elements that points towards such a conclusion, none can
validate the simulations completely. However, the results are deemed good enough to use them
for the evaluation of the applicability of the inviscid CFD solver. While experimental results are
needed to be conclusive, these results can be used as a starting point for further analysis. The
experimental results for the DTC vessel stem from the OMAE conference in 2016, [Sprenger et al.
2016]. Experimental seakeeping tests for the KVLCC2 is also present in this conference paper.
The author was not able to require the raw data, but when these results are made available it will
be much easier to validate oblique added resistance simulations.

The inviscid simulation holds up very well compared to the viscous simulation, albeit with a
surprisingly large relative deviancy for the trim. If one is to assume that the viscous simulation
has the same level of precision as the head-wave simulation had with its experimental counter-part,
the inviscid simulation achieves a high level of accuracy, on par with the 2010 Workshop results.
This is only speculation, since there are no experimental results to compare with, but as reasoned
above, there are no serious indications of non-physical results.

While the agreement on the pressure resistance is well and good, it is also very important that the
frictional resistance resembles the calm water frictional resistance. Adding the calm water frictional
resistance to the inviscid pressure resistance, yields a total resistance of 74.59N. Compared to the
total resistance from the viscous simulation, this is an overestimate of 10.27%. The frictional
resistance in the oblique condition is approximately 70% of the calm water frictional resistance.
This is a severe drop in equality, compared to the value from the head-wave simulation. It is
expected that the frictional resistance would change with respect to change in wave heading.
However, if the trend continues, using the calm water frictional resistance as an estimate would
not be good enough. If the inviscid simulations are to be used with success, the frictional resistance
needs to be better accounted for than what the calm-water estimate achieves.

The computed values for the heave motion are very consistent, between the viscous and inviscid
simulation. This was expected, as the heave motion of a vessel is pre-dominantly a pressure-related
phenomenon. It is also a very linear term, which is why potential theory methods have such a
success with computing them. However, as with all the motions computed, it over- and under-
estimates the max and min amplitudes respectively. This is connected to the deviation of the 1st
order harmonic amplitude of the Fourier transform. As the min and max amplitude deviates with
the same magnitude, the mean estimate becomes equal to that of the viscous simulation. However
it was expected that the agreement between the two estimates would be less, due to the difference
in the free-surface modelling. It would appear that the heave-motions is not as sensitive as the
resistance and the other motions to the wave-amplitude. This could be connected to the linearity
of the motion, as the other parameters have much higher values for the higher order harmonic
amplitudes.

There is a surprising amount of agreement between the two simulations with regards to the roll
motion. The overall difference is 5.29%, for the 0th amplitude, suggesting that the roll motion, for
this angle, is a pressure dominated motion. From figure 7.32 it is visible that the inviscid simulation
accurately computes the phases of the different harmonic amplitudes. With an incoming angle in
the area of 45◦ − 90◦, the dependency of the roll motion to viscous forces should be much higher,
and it is reasonable to assume that the inviscid simulation would have more trouble modelling this
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motion under such conditions. Still, the inviscid simulation is able to model the roll motion with
a good accuracy, and it would be very interesting to see how large the interval of wave-heading
angles is for accurate, inviscid, computation of the roll motion. In addition, the non-linearity of
the motion is clearly visible from figure 7.32, so both of the solvers would most likely outperform
any PF-solver in regards to roll-motion calculations. It is worth mentioning that from figure C.6,
the values of the roll motion seems to have converged around 55s. The small oscillations are
expected due to non-linear effects, but with the values so recently converged it is possible that
the roll-motion is not finished converging. Either running the simulation for a longer period, or
increasing the number of inner iterations of the 6DOF-solver might have proven beneficiary for the
roll-calculation.

It is surprising that the level of inaccuracy of the trim is as high as it is. From figure 7.33 the
higher-order dependency of the pitch motion is very visible. It would seem that there is a higher
level of dependency on viscous forces than what was first assumed. However, it is important to
notice the small values that are being computed, and therefore while the actual difference in values
is only 0.03◦, the difference almost becomes 12%. Therefore, as was argued in the case of the
calm-water and partially head-wave condition, the result is deemed as within the acceptable limit
of accuracy.

Under realistic conditions this sea-condition would induce a more complex motion on the vessel
than what is modelled here. Sway and yaw motions would be present, and these would yield coupled
motions with the already present motions. This could increase the viscous presence in the physical
phenomenon occurring, making the inviscid solver less applicable. To model the realistic motions,
a maneuvering function would have to be present, or even better, a rudder would have to be
modelled with a steering-function, and the steering force would be directly computed by the lift on
the rudder. To model to a propulsive force on the vessel, and have the domain move with it would
be even more realistic. However, this would significantly increase the computational time, and the
gain in realism compared to this increase would not be justifiable with the types of simulations
done here. The coupling of motions would give different values for the computed amplitudes, but
as the purpose of these simulations is to model the forces and motions in regular waves, and thus
achieving quasi-steady, comparable results, this type of realism is deemed non-important.

From figure C.18 the asymmetric wake is clearly visible. As are the wave-forcing models imple-
mented at the boundaries. It is important that the wave-forcing is implemented far enough from
the ship, so that it does not interfere with the wake-flow, as the obtained result is dependent on
it. This should have been checked by commencing a domain-analysis, but due to time-limitations
it was not.

The over-all agreement between the two simulations points towards the conclusion that the added
resistance in waves is a pressure-dominated phenomenon. This is also true for the motions occur-
ring, as witnessed by the roll-motion. However, the frictional resistance does oscillate with the
encounter frequency, so the added resistance in waves is also affected by viscous forces. This effect
is large enough to render the calm-water frictional resistance estimate as insufficient for oblique
conditions. While more simulations and experimental results are needed to obtain anything con-
clusive, the results here has given a good indication in regards to the applicability of the inviscid
solver. A better free-surface modelling, and parametric analyses in regards to the simulation length,
mesh cell-count, 6DOF iterations could all help in giving the obtained results more validity and
could have given a more efficient simulation. Due to time-limitations this was not possible, as the
initial simulations had to be used to make the overset-mesh function properly.
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Chapter 8

Discussion

As the inviscid simulation does not compute the viscous forces, its applicability needs to be assessed
on the basis of including an accurate estimate of the frictional force. This estimate would also need
to be a valid substitute for the actual frictional resistance in oblique conditions. In addition, the
inviscid simulations would have to offer a substantial decrease in computational time compared to
viscous simulations, because if this is not the case then there is no point in going for a less accurate
solver. Also, there is the element of how well it manages to estimate the seakeeping parameters of
interest. This chapter will try to shed some light on these topics, and will try to make the case
whether or not the inviscid solver is a good option.

With regards to the frictional resistance, it is evident from the oblique wave simulation that the
frictional resistance varies substantially from the calm-water condition. With the oblique frictional
resistance being approximately 30% lower than the calm water friction, it is not valid to use the
calm water frictional resistance as an estimate. Even by decomposing the frictional force with the
cosine of the wave angle, the difference is still at 20%. How large the difference would be with
different wave-angles, is difficult to say, but it is naive to assume that they would be closer to
the calm water estimate. Other, more accurate, estimates for the frictional resistance need to be
applied, and they need to be semi-accurate for multiple sea-conditions. The results obtained in
this thesis points towards the conclusion that the calm water frictional resistance can be used as
an estimate in head-waves, but not for oblique conditions.

To obtain a comparative database on the computational time, the viscous and inviscid simulations
were completed with the same number of cores. The number of cores varied with each condition
that was tested, but at each condition the number was the same for the inviscid and viscous
simulations. A time efficiency factor was computed, showing the factor of how much faster the
inviscid simulation was than the viscous. The result can be seen in figure 8.1. It is clearly visible
how much more faster the inviscid simulation is for the calm water condition. This is most likely
due to the fact that the viscous simulation must solve the two-equation turbulence model, and the
boundary layer mesh makes up a larger part of the total cell-count than what it does for the other
two conditions. However, the drop in efficiency is substantial when waves and the overset mesh
are included. While the inviscid head wave simulation reduces computational time by 30%, it is
far from the efficiency obtained for the calm water condition. At every iteration the overset mesh
needs to interpolate values between the inner and outer domain, and this probably reduces the
inviscid efficiency. For every additional model and time-demanding process that the inviscid and
viscous simulation have in common, the smaller the overall gain in efficiency from the turbulence
exclusion becomes. The wave simulations have more complex motions to solve than the calm water
simulation. For the calm water simulation, the 6DOF solver is pre-emptively requested to iterate
towards a state of equilibrium. For the wave simulation, this is not possible as the simulation
does not approach a steady-state, and therefore the model is set to free-motion. It is surprising
that the oblique condition experiences a larger time-efficiency for the inviscid simulation than the
head-wave simulation. The only difference is that the oblique condition has more complex motions
and a bigger overset mesh area where it has to interpolate values. One would therefore expect it
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to be either as efficient or more inefficient than the head-wave condition. However, some problems
occurred with the computer used during this thesis, which have affected this analysis. Occasionally,
some of the parallel processors would keep working after a simulation was completed. This bled
into the next simulation as the communication between the processors were diminished and thus
yielding a longer computational time. This was observed during this analysis, actually making
the computational time for the same analysis twice as big. The author was not aware of this
error at the time of the head-wave simulations, so it is possible that the efficiency of the inviscid
simulation would be larger than what is shown in figure 8.1. However, this was checked for the
oblique condition, and with the error present, the inviscid and viscous simulations were equal in
computational time. Without the error, the inviscid simulation was more efficient than the viscous
solver, by a factor of 1.5. So even with the computer running at its highest potential, for both cases,
the efficiency will not reach the levels of the calm-water condition. The trend of computational
efficiency is alarming, and in order to regard the inviscid solver applicable for seakeeping-analyses,
it should have a higher computational efficiency for wave-simulations than what it has.

Figure 8.1: Time efficiency of the inviscid simulation compared to the viscous simulation

It was evident that, while pressure resistance was influenced by viscous forces, the measured
seakeeping parameters were pressure dominated. The results were similar, but due to the in-
coherency of the wave modelling, an exact conclusion on the subject is difficult to make. If
the surface-elevation were equal for the inviscid and viscous simulation it is highly likely that the
inviscid simulation would yield a lower pressure resistance, than the viscous but not by a significant
amount. The waves were similar enough to make the argument that the added resistance in waves
is a pressure dominated system. Even the roll motion was accurately modelled by the inviscid
solver. Its ability to precisely compute this motion will probably lessen as the wave angle becomes
larger. This needs to be checked, but the results obtained here indicate that the inviscid solver is
able to calculate the forces and motions the vessel experiences both in head waves, and oblique
waves.

With no experimental results for the oblique condition, it is impossible to conclude anything with
respect to the validity of the oblique simulations. However, the results seem to be realistic, based
on the results from the head-wave simulations, and the results can therefore be seen as a good
starting point for further research. While the gain in computational efficiency is small for inviscid
wave-simulations, their accuracy seems fairly good, as they achieve the same level of accuracy
as some viscous solvers do. Due to time-limitations there was simply not enough time to try
to optimize the computational time and the over-all performance of the simulations. A better
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numerical set-up which would yield a greater efficiency for the inviscid solver is probably possible
to achieve. However it is unrealistic to think that the computational efficiency can be doubled for
the wave-conditions, and that is probably the level of efficiency it needs to be deemed as applicable.

For the inviscid solver to be useful, it needs to be able to produce accurate results for a large
variety of vessels. It is probable that a smaller vessel with larger relative motions could prove a
difficult case, as viscous damping could play a larger role. The larger motions themselves would
not necessarily pose a problem to the solver, as the overset mesh technique seemed very capable to
monitor large motions. The KVLCC2 is a very large ship, so the frictional resistance is a large part
of the total resistance, at least in calm waters. A smaller ship, with less influence of the frictional
resistance, could give better results in the oblique-wave conditions, as it wouldn’t be as dependent
on a good frictional resistance-estimate. Of course any viscous flow-generating appendages, such
as bilge keels, would render the inviscid solver more inaccurate, but apart from that it seems
able to capture the seakeeping environment. The over-all pressure-dominance of these analyses
are evident, and the inviscid solver would probably be able to handle most vessels with the same
level of accuracy, as obtained in this thesis. Of course without a good estimate for the frictional
resistance, it seems to be in-applicable for the large tankers. As most other ships are smaller than a
VLCC, it would seem that the inviscid solver could be very useful for many ship-types. This needs
to be checked, and different wave-headings need to be analyzed to see their viscous dependence.
On the basis of what was obtained in this thesis, there is no indication that the inviscid solver
would not be able to handle different vessel-types.

In chapter 3 it was described how dependent the added resistance in waves is on the characteristics
of the incoming wave. The chosen wave-model in this thesis represents a long wave, with a relative
length that puts the vessel in the resonance-motion area of figure 3.1. This could have introduced
challenges to the inviscid solver by the large motions occurring, as viscous damping could have
been a large contributor to the resulting motions. However, this was not the case, at least not
for the two wave-conditions present in this thesis, so it would seem that long waves do not pose
a problem for the inviscid solver. Short-waves, however, could infringe upon the accuracy of the
inviscid solver. This is because the forces occurring are mainly caused by diffraction of the incoming
wave, by the ship, and not induced motions from the radiated wave. These wave-conditions could
be dependent on viscous forces, and this should be further analyzed. It has been reported that
the added-resistance accuracy for both PF and viscous CFD, in short waves, are dependent on
the steepness of the wave, [Sigmund and El Moctar 2018]. As discussed in the result chapter, the
steepness of the wave is a very important factor when it comes to the mesh-generation of the free-
surface. [Söding and Shigunov 2015] reported that added-resistance in waves were not accurately
calculated by RANS-, Euler- or PF-methods, for short waves, λ < LPP

2 . Since both the viscous
and the inviscid solver proved to be inaccurate, the problem could reside in a poorly free-surface
mesh. If this is the case, the mesh-set-up shown in this thesis could prove to solve this problem as
it takes the characteristics of the wave into account. There is sufficient reason to believe that, with
a better gridding of the free-surface, the viscous solver would improve for short-wave simulations.
Whether or not the inviscid solver would obtain an improved accuracy, should be checked.
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Chapter 9

Conclusion

The goal of this thesis was to assess the applicability of the inviscid solver to wave simulations, both
in head waves and oblique waves. Acceptable concurrence was found between the experimental
results and the inviscid simulation in head waves, with the calm water frictional resistance used
as an estimate for the shear force. The result from the oblique simulation indicates that the
inviscid solver was able to compute the pressure resistance and motions to a satisfactory level
of accuracy. However, as the frictional resistance differed substantially between the calm water
resistance and the oblique resistance, the inviscid solver would still be inaccurate. In addition, for
the two wave-conditions, the gain in computational efficiency was severely diminished compared
to the calm-water condition. Thus, without an accurate estimate for the frictional resistance for
any wave-heading angle and a profound increase in computational efficiency, the inviscid solver is
not applicable for oblique seakeeping analysis. Further research is needed to confirm these results,
but this thesis is regarded as a good starting point for further analysis.
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Chapter 10

Suggestion for Further Work

While the work done in this thesis gave good indications of the applicability of the inviscid CFD
solver, there is still a lot of work to do, before drawing any conclusion with regards to its usefulness.
This is also closely connected to the wave-modelling as this is an area a lot of solvers are struggling
with.

First of all, testing for one oblique condition is not enough, and a more extensive research with
wave-orientation should be conducted. For instance, it would be interesting to see what the results
would be when the waves hits the vessel at an angle close to 90◦, as this is a condition which is
supposedly more viscous-dominated. Of course, a ship would, if possible, avoid such a heading,
but the tests could give useful information as an extreme-condition test. In addition, following
waves are very much of interest, as this is a condition with which not a lot of numerical research
has been conducted.

The oblique simulations were very time-consuming, and could benefit from being made more ef-
ficient. Doing domain tests for different oblique conditions to find out how large the domain has
to be, and how far away the wave forcing needs to be is interesting. Here, only one condition
was tested, and it is hard to say whether the domain could have been shrunk, or if it had to
be increased. Setting up a practice for how large the domain and the wave forcing needs to be
with respect to how the vessel is oriented, would help with the future efficiency of such seakeeping
analyses.

A recurring problem for the wave-simulations done in this thesis, has been the wave-modelling.
While the free-surface became much more stable after a lot of changes was implemented to the
wave modelling and solver, the result is still asymmetric. Finding out why this is the case and
then establishing a good way to model an arbitrary wave, with the grid-discretization and solver
set-up that follows, would be very beneficiary for further research.

[Söding and Shigunov 2015] concluded that the added resistance in waves were not accurately
computed by RANS-, Euler- or potential methods for λ < L

2 . Sigmund and El Moctar also
concluded that for small wavelengths added resistance is very dependent on wave-steepness, so
this could be the reasons for inaccuracies at small wavelengths, [Sigmund and El Moctar 2018].
While [Söding and Shigunov 2015] does not share in the paper which grid-discretization he uses for
the different tests, this thesis arrived at the conclusion of the importance of the cohesion between
the grid in the free-surface and the wave modelled. What would be interesting to see, is if the grid
set-up found in this thesis also could generate an accurate free-surface for short waves. That is,
after the asymmetric problem of the wave modelling has been solved. [Sigmund and El Moctar
2018] used the same grid for all the different wavelengths they tested, and this is, based on the
results in this thesis, unwise. Therefore, it could be that the problems with small wave-lengths
has been due to an incorrectly gridding of the free-surface. In regards to potential methods, their
inability to compute accurate results for added resistance in short waves is most likely to be rooted
in the non-linearities that are more dominant for diffraction cases, than for radiation cases. The
grid-fix would therefore not help the potential methods in increasing their accuracy as they are by
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their definition inept to capture those physical subtleties. However, the grid-fix could increase the
applicability of both RANS and Euler methods, and should be further researched.

The KVLCC2 tanker is a rather conventional tanker and the results obtained in this thesis could
have been very different if another vessel, much more connected to the viscous domain, had been
used. The current model has small relative motions, and larger relative motions could introduce
larger viscous damping, and new challenges for the inviscid solver. A smaller ship with larger
relative motions could prove a challenging case, or a ship with challenging appendages, such as a
bilge keel. Which ship-designs the Euler solver is applicable for, and for which it is not, is necessary
to assess. If its use stops at high CB-valued, conservative ships, it might not be an engineering
tool for the future.

In this thesis, the velocity was modelled by restraining the body’s ability to move in certain DoFs
while a current of water and air, equivalent of Fn = 0.142, approached the vessel. While this
method has it advantages in its simplicity in set-up, it neglects certain aspects of realism, at least
in an oblique wave-condition. With wave approaching the vessel at anything but directly head-
waves, or following waves, there will be a lot of coupled motions, such as roll, yaw and sway. If
the vessel was allowed to move in yaw and sway, it would lose its direction, and the current would
suddenly not monitor the velocity anymore. To cope with this, either the domain would have
to move with the vessel’s motions, or the vessel would have to be equipped with a maneuvering
function, modelling a rudder. What would then happen to the Euler solver, compared to the
RANS-solver? And would the rudder force have to be modelled from computing the lift on the
rudder itself, or could it be controlled by a function responding to the motions of the vessel, tuned
to always get the vessel back to its original course? Of course this would mean that the vessel would
have to move, and not the current, but this could also be modelled by a constant force equivalent
to the calm water resistance, or a force-function responding to the oscillating wave force, or even
more realistically, modelling the propeller geometry and computing its lift-force. Testing how the
different simplifications work, and whether or not the Euler-solver can be used in those situations,
would be very useful.
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Böhm, Christoph and Kai Graf (2014). “Advancements in free surface RANSE simulations for
sailing yacht applications”. In: Ocean Engineering 90.Supplement C. Innovation in High Perfor-
mance Sailing Yachts - INNOVSAIL, pp. 11–20. issn: 0029-8018. doi: https://doi.org/10.
1016/j.oceaneng.2014.06.038. url: http://www.sciencedirect.com/science/article/
pii/S0029801814002510.

Boom, H.V.D, I. van der Hout, and M. Flikkema (2008). “Speed-Power Performance of Ships
during Trials and in Service”. In: SNAME. url: http://www.marin.nl/upload/5175b16b-
86b1-4a24-bde0-3ab094ff7a13_SNAME_2008.doc__Speed-Power_Performance.pdf.

Cengel, Yunus A. and John M. Cimbala (2010a). Fluid Mechanics Fundamentals and Applications,
2nd Edition. 1221 Avenue of the Americas, New York, NY 10020: McGraw-Hill. Chap. 10.6,
p. 556. isbn: 978-007-128421-9.

– (2010b). Fluid Mechanics Fundamentals and Applications, 2nd Edition. 1221 Avenue of the
Americas, New York, NY 10020: McGraw-Hill. Chap. 5, p. 202. isbn: 978-007-128421-9.

– (2010c). Fluid Mechanics Fundamentals and Applications, 2nd Edition. 1221 Avenue of the
Americas, New York, NY 10020: McGraw-Hill. Chap. 4.5, p. 155. isbn: 978-007-128421-9.

– (2010d). Fluid Mechanics Fundamentals and Applications, 2nd Edition. 1221 Avenue of the
Americas, New York, NY 10020: McGraw-Hill. Chap. 8, pp. 364–365. isbn: 978-007-128421-9.

– (2010e). Fluid Mechanics Fundamentals and Applications, 2nd Edition. 1221 Avenue of the
Americas, New York, NY 10020: McGraw-Hill. Chap. 10, pp. 576–577. isbn: 978-007-128421-
9.

Choi, Junwoo and Sung Bum Yoon (2009). “Numerical simulations using momentum source wave-
maker applied to RANS equation model”. In: Coastal Engineering 56.10, pp. 1043–1060. issn:
0378-3839. doi: https://doi.org/10.1016/j.coastaleng.2009.06.009. url: http:

//www.sciencedirect.com/science/article/pii/S0378383909000970.
Faltinsen, O. M. (1990). Sea Loads on Ships and Offshore Structures. The Pitt building, Trump-

ington Street, Camebridge CB2 1RP, United Kingdom: Camebridge University Press. Chap. 2,
pp. 39–40. isbn: 9780521178730.

– (2005). Hydrodynamics of High-Speed Marine Vehicles. 32 Avenue of the Americas, New York,
NY 10013-2473, USA: Camebridge University Press. Chap. 2, pp. 22–25. isbn: 0521458706.

Faltinsen, O.M, K Minsaas, N Liapis, and S Skjørdal (1980). Prediction of resistance and propulsion
of a ship in a seaway. In Proc. Thirteenth Symp. on Naval Hydrodynamics. Tokyo: Symposium
on Naval Hydrodynamics.

Fenton, John D (1985). “A Fifth-Order Stokes Theory for Steady Waves”. eng. In: Journal of
Waterway, Port, Coastal, and Ocean Engineering 111.2, pp. 216–234. issn: 0733-950X.

Gerritsma, J and W Beukelman (1971). Analysis of the resistance increase in waves of a fast cargo
ship. eng. Delft.

83



84 BIBLIOGRAPHY

Guo, B.J., S. Steen, and G.B. Deng (2012). “Seakeeping prediction of KVLCC2 in head waves with
RANS”. In: Applied Ocean Research 35, pp. 56–67. issn: 0141-1187. doi: https://doi.org/
10.1016/j.apor.2011.12.003. url: http://www.sciencedirect.com/science/article/
pii/S0141118711001040.

Hadzic, Hidajet (2006). “Development and Application of Finite Volume Method for the Computa-
tion of Flows Around Moving Bodies on Unstructured, Overlapping Grids; Entwicklung und An-
wendung einer Finiten Volumen Methode fuer die Berechnung der Stroemung um einen bewegten
Koerper mit unstrukturierenden, ueberlappenden Gittern; Entwicklung und Anwendung einer
Finiten Volumen Methode fuer die Berechnung der Stroemung um einen bewegten Koerper mit
unstrukturierenden, ueberlappenden Gittern”. en. Advisor: Perić, Milovan; http://tubdok.tub.tuhh.de/handle/11420/233.
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Oñate, Julio Garćıa-Espinosa, Trond Kvamsdal, and P̊al Bergan. Dordrecht: Springer Nether-
lands, pp. 237–259. isbn: 978-94-007-6143-8. doi: 10.1007/978-94-007-6143- 8_14. url:
https://doi.org/10.1007/978-94-007-6143-8_14.

– (2014). Numerical Ship Hydrodynamics. eng. Dordrecht: Springer Netherlands. isbn: 9400771886.
Larsson, Lars, Frederick Stern, and Michel Visonneu (2010). “Proceedings, Volume 2”. In: Gothen-

burg 2010 A Workshop on Numerical Ship Hydrodynamics. Ed. by Lars Larsson, Frederick Stern,
and Michel Visonneau. Gothenburg, Sweden: CHALMERS UNIVERSITY OF TECHNOLOGY.
url: http://extras.springer.com/2014/978-94-007-7188-8.



BIBLIOGRAPHY 85

Lindstad, Haakon, Egil Jullumstrø, and Inge Sandaas (2013). “Reductions in cost and greenhouse
gas emissions with new bulk ship designs enabled by the Panama Canal expansion”. In: Energy
Policy 59, pp. 341–349. issn: 0301-4215. doi: https://doi.org/10.1016/j.enpol.2013.03.
046. url: http://www.sciencedirect.com/science/article/pii/S0301421513002243.

Liu, Cong, Jianhua Wang, and Decheng Wan (2018). “CFD Computation of Wave Forces and
Motions of DTC Ship in Oblique Waves”. In: International Journal of Offshore and Polar En-
gineering 28.2, pp. 154–163. issn: 10535381.

Liu, Shukui, Baoguo Shang, Apostolos Papanikolaou, and Victor Bolbot (2016). “Improved formula
for estimating added resistance of ships in engineering applications”. In: Journal of Marine
Science and Application 15.4, pp. 442–451. issn: 1993-5048. doi: 10.1007/s11804-016-1377-
3. url: https://doi.org/10.1007/s11804-016-1377-3.

Malenica, S., Y.M. Choi, Ch. Monroy, S. Seng, X.B. Chen, and V. Vukcevic (2017). Some aspects
of coupling the RANS based CFD with the potential flow models for seakeeping applications. eng.
China. url: http://www.iwwwfb.org/Abstracts/iwwwfb32/iwwwfb32_35.pdf.

Maruo, H (1957). The excess resistance of a ship in rough seas. eng. url: https://content.
iospress . com / download / international - shipbuilding - progress / isp4 - 35 - 01 ? id =

international-shipbuilding-progress%2Fisp4-35-01.
Molland, Anthony F., Stephen T. Turnock, and Dominic A. Hudson (2011a). Ship Resistance and

Propulsion - Practical Estimation of Ship Propulsive Power. 32 Avenue of the Americas, New
York, NY 10013-2473, USA: Cambridge University Press. Chap. 3, p. 12.

– (2011b). Ship Resistance and Propulsion - Practical Estimation of Ship Propulsive Power. 32
Avenue of the Americas, New York, NY 10013-2473, USA: Cambridge University Press. Chap. 3,
pp. 17–20.

Newman, John Nicholas (1977). Marine hydrodynamics. eng.
Pettersen, Bjørnar (2007). TMR4247 Marin teknikk 3 - Hydrodynamikk. 7005 Trondheim: Kom-

pendieforlaget, Akademika. Chap. 1, p. 2.
Pletcher, Richard H., John C. Tannehill, and Dale A. Andersen (2013a). Computational Fluid

Mechanics and Heat Transfer - Third Edition. 6000 Broken Sound Parkway NW, Suite 300,
Boca Raton: CRC Press Taylor Francis Group. Chap. 5, p. 251. isbn: 9781591690375.

– (2013b). Computational Fluid Mechanics and Heat Transfer - Third Edition. 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton: CRC Press Taylor Francis Group. Chap. 5, p. 249. isbn:
9781591690375.

– (2013c). Computational Fluid Mechanics and Heat Transfer - Third Edition. 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton: CRC Press Taylor Francis Group. Chap. 5, p. 276. isbn:
9781591690375.

– (2013d). Computational Fluid Mechanics and Heat Transfer - Third Edition. 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton: CRC Press Taylor Francis Group. Chap. 5.4, pp. 294–312.
isbn: 9781591690375.

– (2013e). Computational Fluid Mechanics and Heat Transfer - Third Edition. 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton: CRC Press Taylor Francis Group. Chap. 5.4, pp. 294–312.
isbn: 9781591690375.

– (2013f). Computational Fluid Mechanics and Heat Transfer - Third Edition. 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton: CRC Press Taylor Francis Group. Chap. 3, pp. 43–56.
isbn: 9781591690375.

Ransau, Samuel R. (2003a). Numerical Methods for Flows with Evolving Interfaces. 7005 Trond-
heim: NTNU, Faculty of Science and Engineering, Department of Marine Technology. Chap. 1.

– (2003b). Numerical Methods for Flows with Evolving Interfaces. 7005 Trondheim: NTNU, Faculty
of Science and Engineering, Department of Marine Technology. Chap. 0.

– (2003c). Numerical Methods for Flows with Evolving Interfaces. 7005 Trondheim: NTNU, Faculty
of Science and Engineering, Department of Marine Technology. Chap. 1.

Rhee, Shin Hyung, Boris P. Makarov, H. Krishinan, and Vladimir Ivanov (2005). “Assessment
of the volume of fluid method for free-surface wave flow”. In: Journal of Marine Science and
Technology 10.4, pp. 173–180. issn: 1437-8213. doi: 10.1007/s00773- 005- 0205- 2. url:
https://doi.org/10.1007/s00773-005-0205-2.

Rørvik, Jørgen (2016). “Application of Inviscid Flow CFD for prediction of Motions and Added
Resistance of Ships”. In:



86 BIBLIOGRAPHY

Salvesen, N, E.O Tuck, and E.O Faltinsen (1971). Ship motions and sea loads. eng. Oslo.
Sclavounos, Paul D. and Henning Borgen (2004). “Seakeeping analysis of a high-speed monohull

with a motion-control bow hydrofoil”. In: Journal of Ship Research 48.2, pp. 77–117. issn:
00224502.

Seo, Min-Guk, Dong-Min Park, Kyung-Kyu Yang, and Yonghwan Kim (2013). “Comparative study
on computation of ship added resistance in waves”. In: Ocean Engineering 73, pp. 1–15. issn:
0029-8018. doi: https://doi.org/10.1016/j.oceaneng.2013.07.008. url: http://www.
sciencedirect.com/science/article/pii/S0029801813002965.

Shao, Y.L and O.M Faltinsen (2010). Numerical Study on the Second-Order Radiation/Diffraction
of Floating Bodies with/without Forward Speed. China: IWWWFB. url: http://www.iwwwfb.
org/Abstracts/iwwwfb25/iwwwfb25_39.pdf.

Sigmund, Sebastian and Ould El Moctar (2018). “Numerical and experimental investigation of
added resistance of different ship types in short and long waves”. eng. In: 147, pp. 51–67. issn:
0029-8018.

Simonsen, Claud D., Janne F. Otzen, and Soizic Joncquez (2013). “EFD and CFD for KCS heaving
and pitching in regular head waves”. In: Journal of Marine Science and Technology 18, p. 443.

Simonsen, Claus D., Janne F. Otzen, Soizic Joncquez, and Frederick Stern (2013). “EFD and
CFD for KCS heaving and pitching in regular head waves”. In: Journal of Marine Science
and Technology 18.4, pp. 435–459. issn: 1437-8213. doi: 10.1007/s00773-013-0219-0. url:
https://doi.org/10.1007/s00773-013-0219-0.
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Appendix A

Calm Water Simulation

A.1 Viscous Simulation

Figure A.1: Viscous total resistance coefficient comparison, calm-water

I



II APPENDIX A. CALM WATER SIMULATION

Figure A.2: Viscous sinkage comparison, calm-water

Figure A.3: Viscous trim comparison, calm-water



A.1. VISCOUS SIMULATION III

Figure A.4: Viscous mean and standard deviation, total resistance, calm water

Figure A.5: Viscous mean and standard deviation, motions, calm water



IV APPENDIX A. CALM WATER SIMULATION

Figure A.6: Total pressure resistance, calm water

Figure A.7: Shear resistance, calm water



A.1. VISCOUS SIMULATION V

Figure A.8: Viscous and inviscid pressure resistance, calm water



VI APPENDIX A. CALM WATER SIMULATION

A.2 Inviscid Simulation

Figure A.9: Inviscid total resistance coefficient comparison, calm-water

Figure A.10: Inviscid sinkage comparison, calm-water



A.2. INVISCID SIMULATION VII

Figure A.11: Inviscid trim comparison, calm-water

Figure A.12: Inviscid mean and standard deviation, total resistance, calm water



VIII APPENDIX A. CALM WATER SIMULATION

Figure A.13: Inviscid mean and standard deviation, motions, calm water

Figure A.14: Inviscid pressure resistance, calm water



Appendix B

Head Wave Simulation

B.0.1 Viscous Simulation

Figure B.1: Time-series of the pressure resistance

IX



X APPENDIX B. HEAD WAVE SIMULATION

Figure B.2: Time-series of the shear resistance

Figure B.3: Concentrated time series, pitch motion



XI

Figure B.4: Pitch motion comparison, head waves

Figure B.5: Pitch motion maximum amplitude comparison, head waves



XII APPENDIX B. HEAD WAVE SIMULATION

Figure B.6: Concentrated time series, heave motion

Figure B.7: Heave motion comparison, head waves



XIII

Figure B.8: Heave motion maximum amplitude comparison, head waves

Figure B.9: Power spectral density plot, resistance



XIV APPENDIX B. HEAD WAVE SIMULATION

Figure B.10: Power spectral density plot, pitch

Figure B.11: Power spectral density plot, heave



XV

B.0.2 Inviscid Simulation

Figure B.12: Time-series of the pressure resistance

Figure B.13: Concentrated time series, pitch motion



XVI APPENDIX B. HEAD WAVE SIMULATION

Figure B.14: Concentrated time series, heave motion

Figure B.15: Power spectral density plot, resistance



XVII

Figure B.16: Power spectral density plot, pitch

Figure B.17: Power spectral density plot, heave
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Appendix C

Oblique Wave Simulation

C.1 Viscous Simulation

Figure C.1: Viscous pressure resistance, oblique wave
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XX APPENDIX C. OBLIQUE WAVE SIMULATION

Figure C.2: Time-plot of viscous shear resistance, oblique wave

Figure C.3: Viscous Heave motion, oblique wave



C.1. VISCOUS SIMULATION XXI

Figure C.4: Heave motion comparison, oblique wave

Figure C.5: Heave motion comparison, oblique wave



XXII APPENDIX C. OBLIQUE WAVE SIMULATION

Figure C.6: Viscous roll motion, oblique wave

Figure C.7: Roll motion comparison, oblique wave



C.1. VISCOUS SIMULATION XXIII

Figure C.8: Roll motion maximum amplitude comparison, oblique wave

Figure C.9: Viscous pitch motion, oblique wave



XXIV APPENDIX C. OBLIQUE WAVE SIMULATION

Figure C.10: Pitch motion comparison, oblique wave

Figure C.11: Pitch motion maximum amplitude comparison, oblique wave



C.1. VISCOUS SIMULATION XXV

Figure C.12: Wave-probe at y=6m, x=11m, oblique wave

Figure C.13: Wave max amplitude comparison at y=6m, x=11m, oblique wave



XXVI APPENDIX C. OBLIQUE WAVE SIMULATION

Figure C.14: Wave-probe at y=6m, x=7.5m, oblique wave

Figure C.15: Wave max amplitude comparison at y=6m, x=7.5m, oblique wave



C.1. VISCOUS SIMULATION XXVII

Figure C.16: Wave-probe at y=6m, x=0m, oblique wave

Figure C.17: Wave max amplitude comparison at y=6m, x=0m, oblique wave



XXVIII APPENDIX C. OBLIQUE WAVE SIMULATION

Figure C.18: Contour plot of the surface elevation, oblique wave



C.2. INVISCID SIMULATION XXIX

C.2 Inviscid Simulation

Figure C.19: Inviscid pressure resistance, oblique wave

Figure C.20: Inviscid heave motion, oblique wave



XXX APPENDIX C. OBLIQUE WAVE SIMULATION

Figure C.21: Inviscid roll motion, oblique wave

Figure C.22: Inviscid pitch motion, oblique wave


