
Efficient Streaming and Compression of
Hyperspectral Images

Johan Austlid Fjeldtvedt

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IES
Co-supervisor: Milica Orlandic, IES

Department of Electronic Systems

Submission date: July 2018

Norwegian University of Science and Technology

i

PROJECT ASSIGNMENT

Candidate name: Johan Fjeldtvedt

Assignment title: Testing of Communication between Various Peripherals on ZED-
BOARD

Assignment text:

This topic is part of the large project Hyperspectral Imaging in Small Satellites. Hyper-
spectral imaging relies on sophisticated acquisition and on data processing of hundreds
or thousands of image bands. Remote sensing data interpretation can be performed on
board resulting in significant reduction of communication bandwidth. The trend in re-
mote sensing missions has been increasing towards using hardware devices of small
size, low cost, high computational power and high flexibility. This project is intended to
explore various communication channels and IP creation on ZedBoard for establishing
efficient System on Chip supporting fast hyperspectral imagining algorithm modules.

ZedBoard features ZYNQ device and a number of peripheral interfaces such as GPIOs,
Audio Codecs, Video outputs, Ethernet, USB ports, SD slots, flash and DDR3 memory,
etc. Zynq comprises a processing system (PS) around a dual core ARM Cortex A9
processor and programmable logic (PL) equivalent to FPGA. It also features integrated
memory and a variety of high-speed communication interfaces.

- Establish complete dataflow for OTFP pre-processing

- Implement CCSDS123 – BSQ and BI processing order, Test communication with the
rest of the system

Requirements:

C/C++, VHDL, tool Vivado

Assignment proposer / Co-supervisor: Milica Orlandic, IES

Supervisor: Kjetil Svarstad, IES

ii

Abstract

As a part of the SmallSat project at NTNU, a satellite payload capable of capturing
and processing of hyperspectral images is being developed. Several processing steps are
performed on-board in the satellite, as well as compression of the resulting data to reduce
storage needs and to improve utilization of the limited throughput of the radio link to the
ground station. As the spatial, spectral and temporal dimensions of hyperspectral images
have increased, the need for performing these processing steps in hardware has emerged.
FPGA based solutions are attractive due to their reprogrammability and reduced cost
compared to dedicated ASICs. In this thesis, two problems related to hyperspectral
image processing in FPGA are explored.

The first problem is related to achieving high throughput when data is streamed into and
out of hardware processing cores that require streaming in different orders. To achieve
high performance, memory accesses must be performed as efficiently as possible for all
memory access patterns. Investigating this problem in the feasibility study prior to this
thesis work has led to the conclusion that the available direct memory access (DMA) so-
lutions are not suitable. During that work, a new special-purpose DMA core for stream-
ing of hyperspectral images, the Cube DMA, was developed. Further developments of
this core are presented in this thesis, including improvements in how transfers are per-
formed, implementation of stream to memory channel and addition of stream control
signals. The results show an increased throughput of 128% for block-wise transfers
compared to existing DMA solutions, while FPGA resource utilization is lower.

The other problem that has been explored is compression of image data in the satellite.
CCSDS123 is a compression algorithm designed for hyperspectral images. An efficient
and parallelized hardware implementation of this algorithm has been designed, imple-
mented and thoroughly verified. The results show that its performance is better than any
state of the art implementations in terms of achievable data throughput, while showing
modest power usage and resource utilization.

iii

iv

Sammendrag

Som en del av SmallSat-prosjektet ved NTNU utvikles det en nyttelast for satelitter
som er i stand til takning og prosessering av hyperspektrale bilder. Flere prosesser-
ingssteg utføres om bord i satelitten, samt komprimering av resulterende data for å re-
dusere behovene for lagringsplass og for å utnytte den begrensede radioforbindelsen til
bakkestasjonen bedre. Etter hvert som de romlige, spektrale og temporale dimensjonene
i hyperspektrale bilder har økt, har det blitt nødvendig å utføre disse prosesseringsste-
gene i maskinvare. FPGA-baserte løsninger er attraktive på grunn av reprogrammer-
barheten og de reduserte kostnadene sammenlignet med dedikerte ASIC-er.

I denne oppgaven har to problemer knyttet til hyperspektral bildeprosessering i FPGA
blitt utforsket. Det første er relatert til å oppnå høy hastighet ved strømming av data
inn og ut av prosesseringskjerner i maskinvare som trenger at data strømmes i forskjel-
lige rekkefølger. For å oppnå høy ytelse må minneaksesser skje så effektivt som mulig
for alle minneaksessmønstere. Undersøkelser av dette problemet har ledet til den kon-
klusjonen at eksisterende løsninger for direkte minneaksess (DMA) er uegnede. I det
forgående prosjektarbeidet ble en ny DMA-kjerne, Cube DMA utviklet spesifikt for
strømming av hyperspektrale bilder. Videreutvikling av denne kjernen er presentert i
denne oppgaven, som inkluderer forbedringer av hvordan overføringer utføres, imple-
mentasjon av en kanal for overføring fra strøm til minne, og strømkontrollsignaler. Re-
sultatene viser betydelige forbedringer i ytelse sammenlignet med eksisterende DMA-
løsninger, og ressursbruken er mindre.

Det andre problemet som har blitt utforsket er komprimering av bildedata i satelitten.
CCSDS123 er en kompresjonsalgoritme som er designet for hyperspektrale bilder. En
effektiv og parallelisert FPGA-implementasjon av denne algoritmen har blitt designet,
implementert og grundig verifisert. Resultatene viser at ytelsen er bedre enn de nyeste
av implementasjoner når det kommer til oppnåelig gjennomstrømning (throughput), og
viser samtidig beskjeden effekt- og arealforbruk.

v

vi

Preface

This master’s thesis is the final part of my Master of Science degree in Electronics,
and concludes eight great years at the Norwegian University of Science and Technology
(NTNU).

I would first of all like to thank my co-supervisor Milica Orlandić for her support, en-
couragement and discussions, and for her tireless work with writing and editing the
journal papers that we have published based on this work. It’s been a great experience
and I have learned a lot from it. Many thanks to Espen Moen for testing the Cube DMA
core as a part of his own master’s thesis work. Lastly, thanks to my family and friends
for their support through the years.

Johan Fjeldtvedt,

Oslo, July 2018

vii

viii

Contents

1 Introduction 1
1.1 The NTNU SmallSat project . 1
1.2 Hyperspectral imaging . 3

1.2.1 Component orderings . 4
1.3 SmallSat HSI payload . 5

1.3.1 HSI camera . 6
1.3.2 Zynq 7000-series All Programmable System on Chip 8
1.3.3 Integration of hardware and software 10

1.4 Main contributions . 11
1.5 Structure of this thesis . 12

2 Cube DMA: A DMA core for hyperspectral images 15
2.1 Introduction . 15

2.1.1 Summary of feasibility study findings 16
2.2 AXI bus standards . 20

2.2.1 The AXI bus standards . 20
2.3 Overview of the Cube DMA core . 23

2.3.1 MM2S channel . 24
2.3.2 S2MM . 26

2.4 Ports, generics and register layout . 26
2.4.1 Interface ports . 26
2.4.2 Generic parameters . 27
2.4.3 Register configuration . 28

2.5 Overview of MM2S channel implementation 31
2.5.1 DataMover . 31
2.5.2 Unpacker . 32
2.5.3 Controller . 34

2.6 The TinyMover core . 37
2.7 Integrating DMAs with software . 38

2.7.1 Interrupts on Zynq-7000 . 38
2.7.2 Caches . 40

3 Cube DMA implementation 43

ix

x Contents

3.1 New address generation logic . 43
3.2 Control stream implementation . 45
3.3 S2MM channel implementation . 47

3.3.1 Controller . 47
3.3.2 Component packer . 47

3.4 Test setup for comparing Xilinx AXI DMA and Cube DMA 50

4 Cube DMA results 53
4.1 Performance comparison . 53
4.2 Resource utilization . 55
4.3 Timing . 60

5 CCSDS123 theory and background 61
5.1 Overview . 61
5.2 Definitions . 62
5.3 Prediction . 63

5.3.1 Local sum and local difference vector 63
5.3.2 Weights . 66
5.3.3 Prediction calculation . 67
5.3.4 Residual mapping . 67
5.3.5 Weight update . 68

5.4 Encoding . 69
5.4.1 Golomb-Power-Of-2 coding 69
5.4.2 Adaptation to image statistics 69
5.4.3 Encoding of a sample . 70

5.5 Summary of parameters . 71

6 Hardware implementation of CCSDS123 compressor 73
6.1 Memory and performance trade-offs 73

6.1.1 Streaming efficiency . 74
6.1.2 Local space requirements . 74
6.1.3 Pipelining and parallelization 76

6.2 Previous work . 76
6.3 Existing software implementations . 78
6.4 Serial implementation . 78

6.4.1 Control signal generation . 80
6.4.2 Sample delay . 80
6.4.3 Local sum and difference calculations 81
6.4.4 Central difference store . 82
6.4.5 Weight store . 82
6.4.6 Dot product . 83
6.4.7 Predictor . 84
6.4.8 Weight update . 86
6.4.9 Residual mapping . 86
6.4.10 Encoding . 88

Contents xi

6.4.11 Bit packing . 88
6.4.12 AXI Stream interfacing . 90

6.5 Parallel implementation . 91
6.5.1 Streaming of samples in parallel 91
6.5.2 Overview of architecture . 93
6.5.3 Definitions and terms . 93
6.5.4 Sample delay . 95
6.5.5 Local differences . 96
6.5.6 Weight and accumulator storage 97
6.5.7 Packing of variable length words 100
6.5.8 Improved packer . 104

7 CCSDS123 implementation results 109
7.1 Compression analysis . 109
7.2 Implementation results . 110

7.2.1 Resource utilization . 111
7.2.2 Timing . 123
7.2.3 Power estimation . 124

7.3 Comparison with existing work . 126

8 Verification and testing 129
8.1 Simulation . 129

8.1.1 Cube DMA . 129
8.1.2 CCSDS123 . 130

8.2 Testing on hardware . 133
8.2.1 Interfacing with Zynq 7000 SoC 134
8.2.2 Xilinx ChipScope debugging 135
8.2.3 Stream monitors . 135
8.2.4 Typical hardware testing flow 137

9 Conclusion 139
9.1 Cube DMA . 139
9.2 CCSDS123 . 140
9.3 Future work . 141

9.3.1 Cube DMA . 141
9.3.2 CCSDS123 . 142

A Using the automatic verification scripts 145
A.1 Installing Emporda . 145
A.2 Using the automatic verification scripts 146

A.2.1 Creating a simulation snapshot 146
A.2.2 Generating a cube . 146
A.2.3 Creating configuration file and running 147
A.2.4 Running manually or in Vivado GUI 148

A.3 Performing randomized testing . 148

xii Contents

A.3.1 Handling of failed tests . 149
A.4 Investigating errors . 150

B Using simulation results to improve power estimates 153

List of Figures

1.1 The main components of the proposed multi-agent marine observation
system [1] . 2

1.2 Phytoplankton bloom at the coast of Norway, observed from space [1] . 3
1.3 Hyperspectral image cube . 4
1.4 Different sample orderings in hyperspectral images, illustrated with an

example image of size 4×4×4 . 5
1.5 The HSI payload processing and control architecture [1] 7
1.6 Hyperspectral image acquisition process using push broom scanning . . 7
1.7 Overview of the Zynq-7000 architecture [2] 9
1.8 Typical setup for on the fly processing 10
1.9 Typical architecture of a hardware/software system in the Zynq-7000 . . 11

2.1 Block-wise streaming of a HSI cube in BIP order. The arrows indicate
the order in which the components are streamed from a block, and the
numbers indicate the order in which each block is streamed. 17

2.2 Block wise streaming of a HSI cube in BSQ order. The arrows indicate
the order in which the components are streamed from a block, and the
block numbers indicate the order in which each block is streamed. The
numbers on each plane indicate the order in which each band is streamed. 17

2.3 Scatter-gather transfer using block descriptors 18
2.4 Horizontal size, stride and vertical size when using the Video DMA or

the AXI DMA in 2D mode . 19
2.5 AXI channel architecture for reads [3] 21
2.6 AXI channel architecture for writes [3] 22
2.7 Overview of Cube DMA core . 24
2.8 Order of processing in the Cube DMA for a block-wise transfer with

blocks of size 4×4 and Nc = 4 planes, starting at an initial offset. . . . 25
2.9 Example of a HSI cube whith spatial dimensions 10x10 and block size

4x4 . 26
2.10 Relation between configuration register fields and HSI cube 31

xiii

xiv List of Figures

2.11 Example of packed stream coming from memory and the resulting un-
packed stream when Wc = 12 and Nc = 4. Left: the stream of packed
64-bit words from memory. Right: the unpacked stream with Nc com-
ponents in parallel. 32

2.12 Overview of the MM2S unpacker module 32
2.13 The stream from the shifter, given the input shown to the left in Figure

2.11 . 33
2.14 The stream from the restructurer, given the input stream from the shifter

shown in Figure 2.13 . 34
2.15 Overview of the controller module . 35
2.16 State transition diagram for the state machine 37
2.17 Overview of the TinyMover core . 38
2.18 The Zynq-7000 Generic Interrupt Controller (GIC) [2] 40
2.19 Memory hierarchy in Zynq-7000 . 42

3.1 Control bits . 46
3.2 Example of packing when Wc = 12 and Nc = 4. Left: stream from ac-

celerator with Nc components in parallel. Right: the packed stream of
64-bit words. 48

3.3 The component packer . 48
3.4 Component joiner behavior for one set of cycles when Wc = 10 and W = 64 50
3.5 Descriptor setup for doing block transfers with AXI DMA 52

4.1 MM2S channel LUT usage for different bits per component Wc, as a
function of the number of components in parallel Nc. 57

4.2 MM2S channel register usage for different bits per component Wc, as a
function of the number of components in parallel Nc 57

4.3 S2MM channel packer LUT usage for different bits per component Wc
as a function of the number of components in parallel Nc 59

4.4 S2MM channel packer register usage for different bits per component as
a function of the number of components in parallel 59

5.1 CCSDS123 compressor overview [4] 62
5.2 Neighboring samples in same band . 64
5.3 Neighbors used in local sum calculations in neighbor-oriented and column-

oriented modes [4] . 65
5.4 Prediction neighborhood in spatial and spectral dimensions [4] 65

6.1 Overview of the CCSDS123 BIP implementation. Bold arrows show the
main data path. Each box represents a VHDL module 79

6.2 Scheduling of pipeline operations. The dashed bars indicate clock cy-
cles. Packing into 64 bit output words takes a variable number of clock
cycles depending on the size of encoded words. 79

6.3 Sample delay FIFOs. Each box represents a FIFO with a depth of exactly
the number shown on each box. 80

List of Figures xv

6.4 Local sum, local difference and central difference calculations 81
6.5 Local difference store . 82
6.6 The state of the weight store when current input sample is sNz−3(t) . . . 83
6.7 Timing diagram of pipeline operations from reading a weight vector un-

til writing back the updated weight vector 84
6.8 Dot product when Cz = 4 . 85
6.9 Dot product when Cz = 3. The dashed multiplication and sum are re-

moved by the synthesis tool during elaboration. 85
6.10 Predictor implementation . 85
6.11 Weight update implementation . 87
6.12 Residual mapping implementation . 87
6.13 Overview of sample adaptive encoder. The dashed lines indicate the

divide between different pipeline stages 89
6.14 Illustration of the packing of variable length code words into fixed-size

packets . 90
6.15 The top level diagram for the CCSDS123 IP module 91
6.16 Sample placement in lanes when Nz = 8 and Np = 4 92
6.17 Sample placement in lanes when Nz = 9 and Np = 4 92
6.18 Overview of the parallel CCSDS123 implementation when number of

pipelines is 4 . 94
6.19 Overview of pipeline architecture . 94
6.20 Sample delay in parallel CCSDS123 implementation. The actual routing

might be different than shown, depending on the value of Nz and the
number of pixels ∆t. 95

6.21 Example of sample delay to obtain W neighbor samples when Np = 4
and Nz = 9 . 96

6.22 Example of sample delay to obtain W neighbor samples when Np = 4
and Nz = 11 . 96

6.23 Routing of central differences between pipelines when Np = 4 and P = 5 98
6.24 Implementation of the shared store module 99
6.25 State of the shared store when used as weight store, when Nz = 61 and

Np = 4. The figure to the left shows the initial state after reset, while the
right figure shows the state when the last samples of pixel 0 and the first
samples of pixel 1 are arriving . 99

6.26 Implementation of the shared store module 100
6.27 Implementation of variable length word packer 103
6.28 Implementation of combiner chain used in packing 104
6.29 Operation of the variable length word packer 105
6.30 Implementation of improved variable length word packer 107
6.31 Memory utilization when using separate block set FIFOs 108
6.32 Memory utilization when using one block set FIFO 108

7.1 Compression performance for CCSDS123 and JPEG 2000 110
7.2 LUT usage in total and in dot product, predictor and weight update, for

different values of P . 114

xvi List of Figures

7.3 Register usage in total and in dot product, predictor and weight update,
for different values of P . 114

7.4 LUT usage for different values of sample width D 115
7.5 LUT usage in dot product, predictor and weight update, for different

values of sample width D . 116
7.6 Block RAM usage for different values of sample width D 116
7.7 Resource utilization on Zynq Z-7035 117
7.8 Resource utilization on Zynq Z-7020 119
7.9 Ratio of number of LUTs and registers used by pipeline logic by the

total number of LUTs . 120
7.10 Total LUT usage for weight store, accumulator store and sample delay

for parallel implementation . 121
7.11 Total register usage in weight store, accumulator store and sample delay

for parallel implementation . 121
7.12 LUT usage for different block sizes when processing different number

of words per combiner chain, when Np = 4 122
7.13 LUT usage for different block sizes and different maximum variable

word lengths Umax + D when Np = 4 122
7.14 Worst negative slack (WNS) for different number of pipelines 124
7.15 Power estimates for different Np. Stores refer to the sum of the power

used in the weight, accumulator, sample and local difference stores. . . 125
7.16 Dynamic power as percentage of total power usage 126

8.1 Test bench used for Cube DMA testing 130
8.2 Overview of automatic verification of design 131
8.3 ZedBoard development board used for hardware testing [5] 134
8.4 Overview of Zynq 7000 system for testing Cube DMA and CCSDS123

implementation . 135
8.5 The stream monitor module . 136

A.1 Searching for waveform value in Vivado simulator 151

List of Tables

1.1 Mapping from cube to one-dimensional coordinates for different orderings 5

2.1 Comparison of capabilities of considered DMA solutions 20
2.2 Input and output ports in Cube DMA 27
2.3 Generic parameters for Cube DMA . 27
2.4 Helper values that must be computed in software and given to the core

through the register interface . 28
2.5 Register layout for the MM2S channel of the Cube DMA 29
2.6 Register layout for the S2MM channel of the Cube DMA 30

3.1 Overview of component joiner cycles 49
3.2 Overview of component joiner cycles 50

4.1 Parameters used for performance comparison 54
4.2 Comparison of performance for AXI DMA and Cube DMA for different

transfer types on a HSI cube of size 500×2000×100, block size 8×8. 54
4.3 Area usage of modules and IPs used in Cube DMA whose area is inde-

pendent of generic parameters . 55
4.4 MM2S channel controller and unpacker area utilization at varying com-

ponent widths and number of components in parallel 56
4.5 S2MM channel packer area utilization at varying component widths Wc

and number of components in parallel Nc 58

5.1 Selectable parameters for the CCSDS123 compressor 71

6.1 Number of samples from the current sample to the previous samples. . . 74
6.2 Number of samples from the current sample to sample from the same

pixel in the previous band . 75
6.3 Memory usage comparison between sample orderings 75
6.4 Previous CCSDS123 implementations 76

7.1 Default CCSDS123 parameters used when analyzing utilization, power
and performance . 111

7.2 LUT and register usage for different number of previous bands P 113

xvii

xviii List of Tables

7.3 LUT and DSP usage for different sample widths D 115
7.4 Register usage for different sample widths D 115
7.5 LUT and register usage for different choices of weight resolution 115
7.6 LUT and register utilization in pipelines, sample delay, accumulator

store, weight store and packer for different Np 118
7.7 Register utilization in pipelines, sample delay, accumulator store, weight

store and packer for different Np . 118
7.8 BRAM and DSP usage for different Np 119
7.9 Resource utilization needed to compress images from different sensors,

with Np = 4 . 123
7.10 Power usage for different Np . 125
7.11 Summary of previous CCSDS123 implementations and the proposed

implementation . 127
7.12 Performance comparison of CCSDS123 implementations 127

8.1 Register layout for the stream monitor module 136

Abbreviations

ACP Accelerator Coherency Port
AVIRIS Airborne Visible / Infrared Imaging Spectrometer
AXI Advanced Extensible Interface
BIL Band Interleaved by Line
BIP Band Interleaved by Pixel
BRAM Block Random Access Memory
BSQ Band Sequential
CCD Charge-coupled Device
CCSDS Consultative Committee for Space Data Systems
CPU Central Processor Unit
DDR Double Data Rate
DMA Direct Memory Access
DSP Digital Signal Processor
FIFO First In First Out
FIQ Fast Interrupt Request
FPGA Field Programmble Gate Array
GIC Generic Interrupt Controller
GPU Graphics Processor Unit
GUI Graphical User Interface
HICO Hyperspectral Imager for the Coastal Ocean
HSI Hyperspectral Image / Imaging
ILA Integrated Logic Analyzer
IP Intellectual Property
IRQ Interrupt Request
JSON JavaScript Object Notation
JTAG Joint Test Action Group
LUT Lookup Table

xix

xx Abbreviations

MM2S Memory Map to Stream
MODIS Moderate Resolution Imaging Spectroradiometer
OTFP On-the-fly Processing
PL Programmable Logic
PS Processing System
RAM Random Access Memory
S2MM Stream to Memory Map
SCU Snoop Control Unit
SDK Software Development Kit
SoC System on Chip
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
WNS Worst Negative Slack
XSDB Xilinx System Debugger

1

Introduction

1.1 The NTNU SmallSat project

The oceans, covering 70% of the Earth surface area, are important parts of the global
environment, with their function as sinks for green-house gases and the environment
for marine life and resources. Facing the challenge of climate change, study of the
oceans from a fine scale (micro-biology) to a large scale (hurricanes, ice melt, harmful
algal blooms, fronts) is important. Traditionally, ship-based measurements have been the
norm, but these have several draw-backs, including the need for extensive engineering
and science infrastructure, subjecting people to harsh seafaring conditions and providing
only point measurements for phenomena that are spread across large areas [1].

An alternative approach is envisioned in the Autonomous Ocean Sampling Network
(AOSN), where a network of autonomous underwater vehicles (AUVs), autonomous
surface vehicles (ASVs) and unmanned aerial vehicles (UAVs) is capable of coordinated
missions that are executed together with conventional vehicles, buoys and fixed sensor
networks [6]. The benefits are significant reductions in cost and increased safety, more
information as well as more continuous information.

The NTNU SmallSat project’s focus is the development of a small satellite (SmallSat)
which is to be part of a proposed AOSN called a multi-agent marine observation system,
which is illustrated in Figure 1.1. The system is a cyber-physical system where the dif-
ferent components are tightly knit together by communication technology and intelligent
information processing [1]. The role of the SmallSat that is developed in the project is
to provide hyperspectral imaging (HSI) capabilities to this system.

One example where satellite hyperspectral imaging is of utility is in detecting algae
blooms. This is of interest beacuse some blooms generate neurotoxins that have signif-

1

2 Chapter 1. Introduction

icant impacts on coastal marine and human populations [1]. Due to the spatial vastness
of such algae blooms, satellite imaging is particularly suited for tracking such activity in
the ocean. A satellite image of an algae bloom is shown in Figure 1.2.

Figure 1.1: The main components of the proposed multi-agent marine observation sys-
tem [1]

1.2. Hyperspectral imaging 3

Figure 1.2: Phytoplankton bloom at the coast of Norway, observed from space [1]

1.2 Hyperspectral imaging

Hyperspectral imaging refers to digital imaging where the spectrum of the incoming
light at each pixel is sampled at many different wavelengths across a wide range of the
spectrum, typically more than hundred samples taken across wavelengths from the near-
infrared to beyond visible light. Each pixel thus has an approximation of the spectrum of
light reflected from the corresponding location in the scene that is imaged. This extensive
spectral information makes it possible to detect objects and materials with much greater
precision than with conventional color imaging.

A hyperspectral image is often called a hyperspectral image cube (HSI cube) due to
its three-dimensional structure with two spatial dimensions and one spectral dimension.
The cube consists of samples, also called components, with a spatial coordinate (x,y)
and a spectral coordinate z. The set of components at a fixed spatial coordinate is a pixel
in the image. This is illustrated in Figure 1.3 for a cube with spatial dimensions 8× 8
and a spectral dimension of 4.

The HSI cube can also be viewed as a series of two-dimensional images, one for each
of the sampled spectral wavelengths. These are called planes. Figure 1.3 highlights one
plane in the HSI cube.

4 Chapter 1. Introduction

Figure 1.3: Hyperspectral image cube

1.2.1 Component orderings

A HSI cube is a three dimensional structure, so streaming it or storing it in memory
requires the components to be ordered serially by defining a mapping from the three
dimensional coordinates to a unique one dimensional index. The most common ways of
ordering the components are Band Interleaved by Pixel (BIP), Band Interleaved by Line
(BIL) and Band Sequential (BSQ). Figure 1.4 illustrates these orderings for an image of
size 4×4×4.

In BSQ ordering, the components are ordered such that all the components in the first
band, from the upper-left pixel to the lower-right pixel are followed by all the compo-
nents in the second band from the upper-left pixel to the lower-right pixel, and so on.

In BIL ordering, the components are also ordered separately for each band, but only for
each line. The first component of each pixel in the first line are followed by the second
component of each pixel in the first line, and so on. This pattern is repeated for the rest
of the lines in the cube.

In BIP ordering, all the components of a pixel are contiguous, meaning that all the com-
ponents of the uppler-left pixel are followed by all the components of the pixel to the
right, and so on, all the way to the lower-right pixel.

Table 1.1 shows how cube coordinates are mapped to one dimensional indices for these
three orderings.

1.3. SmallSat HSI payload 5

Figure 1.4: Different sample orderings in hyperspectral images, illustrated with an ex-
ample image of size 4×4×4

Name Mapping
Band Interleaved by Pixel (BIP) i = yNxNz + xNz + z
Band Interleaved by Line (BIL) i = yNxNz + zNx + x
Band Sequential (BSQ) i = zNxNy + yNx + x

Table 1.1: Mapping from cube to one-dimensional coordinates for different orderings

1.3 SmallSat HSI payload

One of the current areas of focus in the NTNU SmallSat project is the development of
a hyperspectral imaging payload that is capable of capturing and processing of hyper-
spectral images. The camera payload has so far been specified, and prototypes are being
developed. The idea is that hyperspectral images are not only acquired in the satellite,
but also processed in several steps before data is sent to the ground station.

6 Chapter 1. Introduction

Figure 1.5 shows the proposed processing architecture, and how it is controlled from the
ground station. After raw image acquisition, the geometric and radiometric image pro-
cessing steps transform each pixel into geographic locations on the ocean surface, and
each of the samples into absolute reflectance values that are calibrated using measure-
ments of the atmosphere, solar radiation and so on. The spectral and spatio-temporal
steps remove undesirable optical features such as water reflections or shadows due to
clouds, and enhances spatial resolution by applying deconvolution techniques to con-
secutive frames [1].

At some point, data needs to be sent to the ground. Due to bandwidth limitations in radio
links as well as the desire for shortest possible download time, it is important that image
data is compressed, while also retaining the most important information.

The HSI payload consists of an HSI push broom camera connected to a Xilinx Zynq-
7000 APSoC which performes the processing. The HSI payload itself is in turn con-
nected through a Cubesat bus to the rest of the satellite.

1.3.1 HSI camera

The camera used in the HSI payload uses a technique called push broom scanning to
record the image. An overview of push broom scanning is shown in Figure 1.6. The
satellite is capturing the image line by line as it moves across the area of interest, as
seen to the left of the figure. Using optics, the incoming strip of light is separated
spectrally across a 2-dimensional CCD image sensor array. The image captured by the
sensor array has one spatial dimension, indicating the different locations (pixels) in the
imaged scene, and one spectral dimension which indicates light intensities sampled at
the different wavelengths. Each such captured line of pixels is called a frame, and can
be viewed as a 2-dimensional image with a spatial dimension and a spectral dimension.

When the capturing of one line has completed and the satellite has moved further on, a
new line of the scene can be captured. Relating this to Figure 1.3, the resulting HSI cube
is built up from top to bottom. Captured frames are read out from the sensor using Low
Voltage Differential Signalling (LVDS).

1.3. SmallSat HSI payload 7

Figure 1.5: The HSI payload processing and control architecture [1]

Figure 1.6: Hyperspectral image acquisition process using push broom scanning

8 Chapter 1. Introduction

The captured raw image is commonly referred to as a level 0 (L0) image. Various cor-
rections are applied to this image to account for systematic errors in the sensor system,
to provide a level 1 (L1) image. From this L1 image, further corrections for atmospheric
conditions can be performed to produce a level 2 (L2) image [7]. The distinctions be-
tween these levels are not important for this thesis, but will be used when discussing
compression performance in Chapter 7.

1.3.2 Zynq 7000-series All Programmable System on Chip

The Xilinx Zynq 7000 is a family of APSoC (All Programmable System on Chip) from
Xilinx that combine ARM processor cores with FPGA technology. This makes them
attractive for use in systems where tight integration between hardware and software is
important. In the HSI payload, the image sensor is connected through LVDS directly to
the FPGA, so that the captured frames can be processed and stored in memory.

An overview of the Zynq 7000 architecture is shown in Figure 1.7. The two main parts
of the system are the Processing System (PS), consisting of the CPU cores, on-chip
memory and peripherals, and the Programmable Logic (PL) which is the FPGA. The
architecture is quite intricate, but for the scope of this thesis, the following parts are the
important parts:

• Programmable Logic (PL): The FPGA
• Application Processor Unit (APU): Consists of the ARM Cortex A9 CPU cores,

cache and on-chip memory as well as timers, interrupt control, etc.
• Memory Interface: Connects to external DDR memory
• Central Interconnect: Provides flexible connections between the APU, PL, I/O

peripherals and memory
• PL to Memory Interconnect: Provides the PL with high-speed connections to the

on-chip and external memories

Various kinds of buses connect the different components in the system via the Central
Interconnect and the PL to Memory Interconnect. In this thesis, the focus will be on
communication between the processors in the APU, the external DDR memory and the
PL. These are all connected using the AXI bus standard, which will be detailed in the
next chapter.

The CPUs connect to the rest of the system through AXI buses connected to the Central
Interconnect, and also directly to the DDR memory interface. Via the Central Intercon-
nect, the CPUs can access the PL using the general purpose (GP) ports, as shown in
Figure 1.7. The GP ports are 32 bit wide, and are typically used for accessing control
registers of soft cores that are instantiated in the PL.

From the view of the PL, the rest of the system is available through the Central Intercon-
nect via two GP ports, and the on-chip and external DDR memory are available through
four high-performance (HP) ports. The high performance ports are 64-bit wide and are
optimized for high data bandwidths.

1.3. SmallSat HSI payload 9

Figure 1.7: Overview of the Zynq-7000 architecture [2]

10 Chapter 1. Introduction

1.3.3 Integration of hardware and software

One strength of FPGAs is the ability to interface directly with external devices and pro-
cess data on the fly as it arrives. This avoids the need for storing data in memory before
starting to process it, which is often the case with other processing platforms (for in-
stance GPUs). In the SmallSat HSI payload, data from the image sensor is streamed
directly into the FPGA, which can then perform several processing steps before data is
stored in DDR memory.

Figure 1.8 shows the typical setup for this kind of on the fly processing. Data arrives
from the source, in this case the HSI camera sensor, and is processed directly in the
FPGA before being sent to the DDR memory using a direct memory access (DMA)
core. The DMA core takes care of issuing write transactions to the memory. The high
performance (HP) ports are used to provide maximal data bandwidth performance. The
CPU has access to configuration registers in the DMA core and in the hardware process-
ing core through connections to the Central Interconnect via one of the general purpose
(GP) ports in the PL.

Figure 1.8: Typical setup for on the fly processing

Another common use of FPGAs is to offload parts (or all) of software algorithms to
custom processing logic in the FPGA that can take advantage of massive data parallelism
or perform certain operations quicker than the CPU while consuming less power. This
is typically done by storing the data to be processed in DDR memory and then using a
DMA core to transfer data from the memory and into the hardware processing core, and
collecting the results and storing them back in memory, similarly to in the previous case.
This is illustrated in Figure 1.9.

1.4. Main contributions 11

Figure 1.9: Typical architecture of a hardware/software system in the Zynq-7000

An important and limiting factor in the effectiveness of such hardware accelerations is
the obtainable data throughput to and from the memory. This depends on primarily on
the bus widths and clock frequencies used, but also on the effectiveness of the DMA
cores that are used.

1.4 Main contributions

The project assignment printed at the beginning of this thesis document lists two points:

• Establish complete dataflow for OTFP pre-processing
• Implement CCSDS123 – BSQ and BI processing order, test communication with

the rest of the system

The following paragraphs will explain how these two points are addressed.

A Direct Memory Access (DMA) core, the Cube DMA, has been created specifically for
streaming hyperspectral images into and out of hardware processing cores. The Cube
DMA is meant to take the place of the DMA block that is seen in Figures 1.9 and 1.8.
Its main role is to provide hardware processing cores with HSI cube data streamed in
different orderings depending on the needs of the particular core. Some processing cores
might require BSQ ordering of data that is stored in BIP order, while others might need
the cube data ordered in a blocks-wise fashion. The Cube DMA can be configured to
accommodate different combinations of BIP or BSQ ordering and sequential or block-
wise ordering. The OFTP pre-processing mentioned in the first point of the project

12 Chapter 1. Introduction

assignment is one of several processing algorithms that are of interest to perform in
FPGA hardware in the satellite. The Cube DMA is flexible enough to support this core
as well as other processing cores. As such, the first point in the project assignment has
been expanded upon in this thesis.

CCSDS123 is a lossless compression algorithm for hyperspectral images that takes ad-
vantage of the 3D structure of HSI cubes. An efficient FPGA implementation of this
algorithm has been developed for compressing image data in BIP order. The core has
been thoroughly verified. The CCSDS123 implementation can also be viewed as an
application for the Cube DMA core, as it is one of many possible hardware processing
cores that can be used in the way depicted in Figure 1.9 (compressing image data already
in memory) and Figure 1.8 (compressing image data straight from image sensor). The
second point of the project assignment also mentions BSQ processing order. As it will
be detailed in Chapter 6, the choice of sample ordering has no effect on compression
performance, and in addition, the hyperspectral camera that is being developed for the
SmallSat project is using BIP ordering. The scope of this point of the assignment has
therefore been narrowed to only focusing on implementing CCSDS123 for BIP ordering.

The title of the thesis has been changed from the assignment title that is shown at the
first page of this thesis document. During the work on this thesis, efficient streaming and
compression has stood out as the two main themes throughout, and while the streaming
part of the work deals with communication between peripherals, it has little to do with
the ZedBoard development board in particular. The title ”Efficient Streaming of Hyper-
spectral Images” has therefore been chosen instead.

Two journal papers have been submitted based on this work:

• J. Fjeldtvedt, M. Orlandić, ”CubeDMA - Optimizing Three-Dimensional DMA
transfers for Hyperspectral Imaging Applications”, Microprocessors and Microsys-
tems Journal, Second round of review, 2018

• J. Fjeldtvedt, M. Orlandić, T. A. Johansen, ”An Efficient Real-Time FPGA Imple-
mentation of the CCSDS-123 Compression Standard for Hyperspectral Images”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing, Second round of review, 2018

A third paper detailing the parallelization of the CCSDS123 implementation is planned
for submission during 2018.

1.5 Structure of this thesis

The work done in this thesis has been focused on two separate problems, and hence the
thesis will be split in two parts. Three chapters are dedicated to the Cube DMA core:

• Chapter 2 will present the findings of the feasibility study that was conducted
prior to this thesis, and present the Cube DMA implementation that was performed

1.5. Structure of this thesis 13

then. It will also introduce some background details about interrupts and caches
in the Zynq-7000 SoC, as well as the AXI bus standards.

• Chapter 3 details the continued work on the Cube DMA done for this thesis.
• Chapter 4 presents results for the Cube DMA and compares performance to an-

other DMA core from Xilinx.

The next three chapters cover the CCSDS123 compression standard:

• Chapter 5 presents a detailed go-through of the CCSDS123 compression standard
and introduces other background information that is necessary to understand the
implementation.

• Chapter 6 discusses various trade-offs to consider when implementing the algo-
rithm, presents and discusses previous implementations, and covers in detail the
hardware implementation of the CCSDS123 algorithm.

• Chapter 7 presents results for the CCSDS123 implementation and compares it to
previous implementations.

Verification performed of the hardware implementations of the Cube DMA and the
CCSDS123 algorithm is detailed in Chapter 8. Some conclusions and notes on future
work will be presented in Chapter 9.

14 Chapter 1. Introduction

2

Cube DMA: A DMA core for
hyperspectral images

This chapter will introduce the Cube DMA, which was partly implemented in the semester
project leading up to this master’s thesis. First the feasibility study that was conducted
will be summarized, motivating for the need for the Cube DMA. This is followed by
some background information regarding the AXI bus standards that are used, and then
an overview of the Cube DMA core, showing its architecture, port interfaces and gener-
ics, and register interface for configuration. Following this, a more in-depth overview of
the implementation of the MM2S channel will be shown. Lastly, some necessary infor-
mation about interrupts and cache coherency in the Zynq-7000 system will be presented.

2.1 Introduction

Hyperspectral images are processed in different ways by different processing algorithms.
Some might process one plane or band in the cube at a time (BSQ ordering), while others
might divide the image into blocks, or do a combination of the two. This means that cube
data must be streamed in different orders depending on the application. A common way
to achieve this is to arrange the image data in memory in such a way that when streamed
sequentially, the data is ordered in the desired way. This is problematic in a typical
satellite system, because the ordering of the components is already fixed when captured
by the camera sensor.

In addition, several different hardware processing algorithms operating with different
component orderings might be doing processing on the same data in memory. Changing

15

16 Chapter 2. Cube DMA: A DMA core for hyperspectral images

the data layout at run-time is a costly operation both in terms of time and the space
needed for temporary storage during such a conversion.

Another approach is to let the component ordering in memory stay the same, and instead
change the access pattern when reading from memory. For instance, if the image is
stored in BIP format in memory, streaming in BSQ order can be achieved by reading only
the first component in the first pixel, skipping the rest of the components and reading the
first component in the second pixel, and so on. This was explored in my feasibility study
prior to this master’s thesis work [8].

2.1.1 Summary of feasibility study findings

At the outset of the feasibility study, the following specifications for the DMA core were
set:

1. Capability of streaming a HSI cube (stored in BIP format) in BIP and BSQ order

2. Capability of streaming a HSI cube block-wise

3. Support for components of sizes that are not byte multiples, e.g. 10 or 12 bits

The two first requirements have to do with the issues described in the introduction,
namely that different HSI algorithms might require components to be streamed in BIP
or BSQ order, and also sequentially or in blocks. A DMA core for use in hyperspectral
imaging should therefore support all of these streaming orders. The capability of doing
block-wise transfers is important for several compression algorithms, such as JPEG and
JPEG2000, where the image is divided into blocks and processed block-wise. Figure
2.1 shows in more detail what is meant by a block-wise transfer: The components are
streamed starting at the top left pixel of the block and ending at the lower right pixel in
the block, as the arrow in the figure illustrates. The blocks themselves are processed in
the same order, starting at the upper left block and ending at the lower right block. Figure
2.2 shows block-wise transfer in BSQ order, where each plane is streamed separately.

2.1. Introduction 17

Figure 2.1: Block-wise streaming of a HSI cube in BIP order. The arrows indicate the
order in which the components are streamed from a block, and the numbers indicate the
order in which each block is streamed.

Figure 2.2: Block wise streaming of a HSI cube in BSQ order. The arrows indicate
the order in which the components are streamed from a block, and the block numbers
indicate the order in which each block is streamed. The numbers on each plane indicate
the order in which each band is streamed.

The third requirement has to do with typical component sizes used in image sensors.
While the native sizes in a typical memory system are byte multiples, the image sensor

18 Chapter 2. Cube DMA: A DMA core for hyperspectral images

selected for the SmallSat project at this time is capable of sampling the image with 10
or 12 bits per component. To optimize memory utilization and streaming bandwidths,
these should be stored in memory with the same number of bits and not padded to use
e.g. 16 bits.

In the study, three existing DMA IP cores from Xilinx were considered: The Xilinx AXI
DMA, the Xilinx Video DMA and the Xilinx DataMover. For all three cores, there is no
built-in support for handling data elements that have widths that are not byte multiples.
As such, the third requirement requires some extra logic to be developed no matter which
core is used. The following sections will go through the different cores with focus on
the two first requirements.

2.1.1.1 AXI DMA

The AXI DMA [9] is the go-to general purpose DMA solution from Xilinx. It is capable
of scatter-gather transfers where stream data is collected from non-consecutive segments
in memory, and it uses so-called block descriptors to describe such transfers. A block
descriptor contains the start address and length of a transfer, and several descriptors can
be chained together to describe longer transfers, as Figure 2.3 illustrates. The main
drawback of the AXI DMA is that each time there is a gap in the memory access pattern,
such as when starting on the next row in a block (and skipping the rest of the data in
the row), a new block descriptor must be used. This means that for block-wise transfers
with many blocks, there can be an unacceptable number of descriptors needed. That
problem can be solved by using fewer block descriptors and instead re-use the same
block descriptors. This does however require the CPU to intervene several times during
the transfer to set up the block descriptors with new data. BSQ ordered access patterns
are not possible for the same reason, since that would require one block descriptor for
every component in the image.

Figure 2.3: Scatter-gather transfer using block descriptors

The AXI DMA can be instantiated in a so-called 2D mode where block-wise transfers

2.1. Introduction 19

can be performed without needing to specify a new descriptor for each row in the block.
Instead of just giving the transfer length, a stride is also given, which indicates how many
bytes to skip before starting a new transfer of the same length. A vertical size parameter
is used to indicate how many such transfers to repeat. This is illustrated in Figure 2.4.
As an example, doing a transfer of an 8×8×128 block from a 512×2000×128 cube
would be done by setting the length to 8 ·128 (the number of components in one row of
the block), the stride to 512 · 128 (the number of components in one row of the whole
cube) and the vertical size to 8 (the number of rows in the block).

Figure 2.4: Horizontal size, stride and vertical size when using the Video DMA or the
AXI DMA in 2D mode

This would be nearly ideal for HSI processing if it was not for two issues: 1) The de-
scriptor fields used for the stride is only 16 bits, limiting the cube width and depth that
can be used (the product must be less than 65536) and 2) When instantiated in 2D mode,
the start address of any transfer is required to be divisible by 8 bytes, which rules out
any bit non-byte aligned component widths and any cubes that have dimensions that are
not divisible by 8 bytes.

2.1.1.2 Video DMA

The Video DMA [10] is a more specialized core that is meant for streaming video. In-
stead of using block descriptors, the Video DMA has a set of 32 fixed frame buffer
pointers. The DMA cycles through the frame buffers and streams them either sequen-
tially or block-wise from memory. Block-wise streaming is done in the exact same way
as for the AXI DMA in 2D mode, and it also suffer from the same register width limita-
tions, meaning that it can only be used for sufficiently small HSI cubes. The fixed buffer
nature of the Video DMA also makes it hard to do an automated block-wise transfer,
as it would require the CPU to manually start new transfers after each block has been
completed.

The capabilities of the different DMA solutions are summarized in Table 2.1.

20 Chapter 2. Cube DMA: A DMA core for hyperspectral images

2.1.1.3 DataMover

The DataMover [11] is a simpler DMA core than the AXI DMA or Video DMA. It
accepts command words that contain a start address and the number of bytes to transfer,
and it will execute the command and return back a status word when the transfer has
been completed. It is lower level than the AXI DMA and Video DMA in the sense
that it can only execute the given commands, and not automatically start new transfers
like the AXI DMA and Video DMA do. Because configuring the DataMover is done
through command words, some additional logic is required to make it controllable from
software, for example through a memory mapped register interface. The strength of the
DataMover, however, is that it allows very fine grained control of transfers and as such
it can be used to do any of the specified transfers if it is used together with logic that is
issuing the right commands.

2.1.1.4 Conclusions from the study

The conclusion of the feasibility study was that neither the AXI DMA or the Video DMA
cores from Xilinx can be used for HSI processing in all the ways that were specified. It
was therefore looked into how to create a special purpose DMA core for hyperspectral
images using the DataMover to perform the actual transfers. This led to the implemen-
tation of a special purpose DMA IP, the Cube DMA, that meets all the specifications.

Core BIP BSQ Block-wise (BIP or BSQ)
AXI DMA Yes No Yes (BIP)
AXI DMA 2D Depends No Depends (BIP)
Video DMA Depends No Depends
DataMover With ext. logic With ext. logic With ext. logic

Table 2.1: Comparison of capabilities of considered DMA solutions

2.2 AXI bus standards

This section will go through the AXI bus standards, which are used in the Zynq-7000
SoC platform and in all the Xilinx DMA cores, and which is necessary for understanding
some of the implementation details of the Cube DMA and TinyMover cores that have
been developed in this work.

2.2.1 The AXI bus standards

Advanced eXstensible Interface (AXI) is a set of open bus standards developed by ARM
as a part of their Advanced Microcontroller Bus Architecture (AMBA) standard. Two

2.2. AXI bus standards 21

revisions, AXI3 and AXI4 have up until now been specified. The AXI specifications
define three kinds of bus interfaces: AXI (sometimes referred to as full AXI), AXI-
Lite and AXI-Stream. These are tailored to different use cases, but have some general
principles in common.

An AXI bus connects two components together, where one is a master and the other
is a slave. The master initiates all communication, while the slave responds to requests
made by the master. There is always exactly one master and one slave on an AXI bus. To
build larger systems where several masters share access to several slaves, interconnects
provide the logic to route requests from a master to any of the connected slaves. The
AXI protocols are used in many of the internal buses in the Zynq-7000, as indicated in
Figure 1.7 where the green, blue and red colored buses use AXI. The arrows point in the
direction from master to slave.

AXI and AXI-Lite consist of five channels (the prefixes used in signal names shown in
parentheses):

• Write Address channel (AW)
• Write Data channel (W)
• Write Response channel (B)
• Read Address channel (AR)
• Read Data channel (R)

The channels are separate and independent from one another. Figures 2.5 and 2.6 illus-
trate the direction of data flow in these channels.

2.2.1.1 Handshake mechanism

All of the channels use a common handshake mechanism to transfer data from the source
to the destination. This is controlled by two signals, xvalid and xready (where x is the
prefix for the channel). The xvalid signal is asserted by the interface which is sending
data to indicate that valid data is present on the data lines. The xready signal is asserted
by the recipient when it is ready to get the data. Either signal can be asserted first, but

Figure 2.5: AXI channel architecture for reads [3]

22 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.6: AXI channel architecture for writes [3]

in the clock cycle when both are asserted simultaneously, the transfer is said to have
occured. The cycle when this happens is called a beat. The beat is the fundamental unit
of data transfers.

2.2.1.2 Requests and transactions

The master initiates any communication by sending requests over the Write Address
and Read Address channels, using the described handshaking mechanism. The request
contains information about how many bytes to read or write, and the address to read from
or write to. A request initiates a read or write transaction between the master and the
slave. In case of reads, the slave will send the requested data on the Read Data channel,
and in the case of writes, the master will send the data on the Write Data channel. The
transaction ends when the associated data transfer is finished, which is indicated by the
data channel’s xlast signal being asserted. A slave might accept several requests on the
address channel before servicing the first request. This allows highly efficient operation,
since the master doesn’t have to wait for one transaction to complete before issuing the
next.

In addition to any data transfers, the slave also sends a response to all requests from
the master using a xresp signal in the Read Data and Write Response channels. This
response tells the master of any errors that might have occured; for instance that an
invalid address was contained in the request.

2.3. Overview of the Cube DMA core 23

2.2.1.3 Burst transfers

An important performance feature in the full AXI protocol (not AXI-Lite) is the support
for burst transfers. Instead of initating a new transaction for every unit of data to be
transferred, the master may give the slave a burst size (axsize) and burst length (axlen)
in addition to the address. The burst size indicates how many bytes will be transferred
in one beat, and the burst length tells the slave how many beats to expect in the case of
writes, or how many beats to transfer to the master in the case of reads.

2.2.1.4 AXI-Stream

AXI-Stream is a slimmed-down protocol for transfers where data is just moved from
one point to another, without any concept of addresses. It is modelled after the read and
write channels in the AXI protocol. Like for AXI buses, handshaking signals (tvalid
and tready) are used when transferring data, and tlast is used to indicate the end of a
transfer.

2.3 Overview of the Cube DMA core

An overview of the Cube DMA is shown in Figure 2.7. The Cube DMA consists of two
independent channels: The Memory Map to Stream channel (abbreviated to MM2S)
which reads data from memory and streams it into an accelerator, and the Stream to
Memory Map channel (S2MM) which receives a data stream from the accelerator and
stores the incoming data in memory. A common register interface is used to configure
both channels.

Both channels are capable of handling component sizes that are not byte multiples. In
the MM2S channel, packed data from the memory is unpacked into separate components
that are streamed to the accelerator, and in the S2MM channel, components from the
accelerator are packed into 64-bit words before being stored in memory.

A specialized core for doing BSQ transfers more efficiently than the Xilinx DataMover
was also developed, called the TinyMover. This will be detailed in section 2.6.

24 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.7: Overview of Cube DMA core

2.3.1 MM2S channel

The MM2S channel in the Cube DMA can perform BIP ordered or BSQ ordered trans-
fers, which is selectable at run-time through register configuration. In BSQ ordered
mode, components from several planes can be streamed in parallel, meaning that in ev-
ery beat of the transfer, components from the same pixel but in different planes are output
in parallel. In BIP mode, several components from the same pixel can also be transferred
in parallel. The number of planes (in case of BSQ) or pixel components (in case of BIP)
to transfer in parallel is selected using generic parameters when instantiating the DMA
core.

In both BSQ mode and BIP mode the Cube DMA can order the pixels sequentially or
block-wise. A sequential transfer will start at the first pixel (upper left) and proceed
through the cube row by row until the last pixel (lower right). In a block-wise transfer,
the cube is divided into blocks with given sizes in the x and y directions. The pixels
in each block are transferred in an upper left to lower right fashion, and the blocks
themselves are also read in this order, starting with the upper left block and finishing
with the lower right block. Figure 2.8 illustrates this, with the arrows showing the order
of the components in the stream, and the numbers indicating the order that each block is
streamed in.

2.3. Overview of the Cube DMA core 25

Figure 2.8: Order of processing in the Cube DMA for a block-wise transfer with blocks
of size 4×4 and Nc = 4 planes, starting at an initial offset.

The block dimensions are required to be powers of 2. This simplifies the hardware, and it
satisfies most block- or tile-based processing algorithms. There are no such restrictions
for the HSI cube size. The cube width or height might therefore not necessarily be
divisible by the block width or block height. As Figure 2.9 shows, this means that the
last block in each block row might have a width less than the other block widths, or
the last row of blocks might contain blocks that have a height that is less than the other
blocks’.

A control stream is output in parallel with the data stream from the DMA. This stream
contains a set of control bits for each component in the stream, which indicate whether
the component is in the last pixel of a block, in a block that is in the last row of blocks,
and so on. These control bits can be used by the accelerator to detect when it is handling
components that belong to blocks that are smaller than the given block size.

26 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.9: Example of a HSI cube whith spatial dimensions 10x10 and block size 4x4

2.3.2 S2MM

The S2MM channel writes incoming stream data sequentially to memory. It supports
data words of different sizes, and will collect up data into 64 bit packets that are stored
in memory. The S2MM channel will continuously store data until the incoming stream’s
TLAST signal is asserted. The amount of bytes that were received can subsequently be
read out from the register interface. This approach has been chosen so that the DMA
can easily be used in cases where the accelerator’s result size is unknown, such as for
compression cores where the compressed size is unknown in advance.

2.4 Ports, generics and register layout

2.4.1 Interface ports

Table 2.2 shows the different I/O ports of the Cube DMA module. The control stream,
mm2s_ctrl and the IRQ outputs, mm2s_irq and s2mm_irq are optional.

2.4. Ports, generics and register layout 27

Name Direction Interface type Description
s_axi_ctrl_status_* In/out AXI-Lite Register interface for

configuration and
status readout

m_axi_mem In/out AXI DMA memory
read/write interface

m_axis_mm2s_* Out AXI-Stream MM2S stream (to
accelerator)

mm2s_ctrl Out Bit vector Control bits for each
component in the
stream

s_axis_mm2s_* In AXI-Stream S2MM stream (from
accelerator)

mm2s_irq Out Bit MM2S IRQ flag
s2mm_irq Out Bit S2MM IRQ flag

Table 2.2: Input and output ports in Cube DMA

2.4.2 Generic parameters

Table 2.3 shows the generic parameters that can be chosen when the Cube DMA is
instantiated. In the following explanations, the parameters for component width and
number of components in parallel will be referred to as Wc and Nc, respectively.

Name Symbol Description Values
MM2S_COMP_WIDTH Wc The width of each

component in bits
Even number larger
than 8

MM2S_NUM_COMP Nc The number of
components to output
in each beat (BIP) or
number of planes to
transfer in parallel
(BSQ)

Greater or equal to 1

MM2S_AXIS_WIDTH - The width of the AXI
Stream

Large enough to hold
select number of
components with
selected width

TINYMOVER - Whether to include
TinyMover core or not

True/false

S2MM_COMP_WIDTH Wc Similar to MM2S
S2MM_NUM_COMP Nc Similar to MM2S
S2MM_AXIS_WIDTH - Similar to MM2S

Table 2.3: Generic parameters for Cube DMA

28 Chapter 2. Cube DMA: A DMA core for hyperspectral images

2.4.3 Register configuration

Programming the Cube DMA is done through a register interface. There are two sets
of registers, one for the MM2S channel, shown in Table 2.5, and one for the S2MM
channel, shown in Table 2.6.

For the MM2S channel, the dimensions (width, height and depth) of the HSI cube, as
well as the block dimensions are given. Block dimensions are restricted to be powers of
2. In addition, a few extra helper values must be given to the Cube DMA through the
register interface. These are explained in Table 2.4. The extra values are used during
address calculations in the Cube DMA, and are computed in software before starting a
transfer. This reduces the amount of logic needed in hardware to do these computations.

Field Description Expression

Number of plane transfers How many iterations needed to
process a complete cube

⌈
d
Nc

⌉
Row size The size of one row of the

cube in number of components
w ·d

Last block row size The size of one row in the last
block in a row of blocks

(w mod wb) ·d

Table 2.4: Helper values that must be computed in software and given to the core through
the register interface

2.4. Ports, generics and register layout 29

Field Description Unit Bits
Control register (0x00)
Start Core starts transfer when this bit

transitions from 0 to 1
0

Block-wise mode Cube is read in blocks of specified
size

2

Plane-wise mode Cube is read planewise, with a given
number of planes in parallel

3

Error IRQ enable Trigger IRQ when error condition
arises

4

Completion IRQ enable Trigger IRQ when transfer is
complete

5

Number of plane transfers How many plane transfers to perform 15 - 8
Start offset Plane offset to start transferring from c 23 - 16

Status register (0x04)
Transfer done Indicates whether the transfer is

completed
0

Error mask Indicates which errors occured 3 - 1
Error IRQ flag Set when IRQ was triggered due to

error. Cleared when 1 is written to
this bit.

4

Completion IRQ flag Set when IRQ was triggered due to
completion. Cleared when 1 is
written to this bit.

5

Base address register (0x08)
Base address The address of the first component in

the first pixel of the HSI cube
b 31 - 0

Cube dimension register (0x0C)
Width The width of the HSI cube p 11 - 0
Height The height of the HSI cube p 23 - 12
Depth The depth of the HSI cube c 31 - 24

Block dimension register (0x10)
Block width log2 of the width of each block p 3 - 0
Block height log2 of the height of each block p 7 - 4
Last block row size Number of components in each row

of the last block in a row
c 31 - 12

Row size register (0x14)
Row size Number of components in one row of

the cube
c 19 - 0

Table 2.5: Register layout for the MM2S channel of the Cube DMA

30 Chapter 2. Cube DMA: A DMA core for hyperspectral images

For the S2MM channel, only the address of where to put incoming data needs to be
given.

Field Description Unit Bits
Control register (0x20)
Start Core starts transfer when this bit

transitions from 0 to 1
0

Error IRQ enable Trigger IRQ when error condition
arises

4

Completion IRQ enable Trigger IRQ when transfer is com-
plete

5

Status register (0x24)
Transfer done Indicates whether the transfer is

completed
0

Error mask Indicates which errors occured 3 - 1
Error IRQ flag Set when IRQ was triggered due to

error. Cleared when 1 is written to
this bit.

4

Completion IRQ flag Set when IRQ was triggered due to
completion. Cleared when 1 is writ-
ten to this bit.

5

Base address register (0x28)
Base address The address of where to store the in-

coming stream data
b 31 - 0

Received length register (0x2C)
Received length The number of bytes received from

start of transfer until TLAST was
asserted

b 31 - 0

Table 2.6: Register layout for the S2MM channel of the Cube DMA

2.5. Overview of MM2S channel implementation 31

Figure 2.10: Relation between configuration register fields and HSI cube

2.5 Overview of MM2S channel implementation

This section will go briefly through the implementation of the MM2S channel which
was done in the project work leading up to this thesis [8].

A complete cube transfer consists of a series of sub-transfers. In the case of BIP non-
blocked transfers, the transfer consists of h sub-transfers, each transferring one row in the
cube. In the case of block-wise transfers, each sub-transfer covers one row in the block.
For BSQ transfers, there is one sub-transfer performed for each set of Nc components.

As shown in Figure 2.7, the MM2S channel consists of the Xilinx DataMover or the
TinyMover which perform the sub-transfers, the unpacker which takes care of unpacking
the packed components from memory into a selected number Nc of components to feed
in parallel to the accelerator, and the controller which sends sub-transfer commands to
the DataMover or TinyMover and configuration words to the unpacker.

2.5.1 DataMover

The DataMover IP from Xilinx can perform transfers with a length of up to 223 bytes,
and will issue the appropriate AXI read requests to perform the transfer. The DataMover
is controlled through a command word interface, where command words contain the start
address, the number of bytes to read and flags that control some aspects of the transfer,
such as whether tlast should be asserted on the stream coming out from the DataMover
when the transfer has been completed.

32 Chapter 2. Cube DMA: A DMA core for hyperspectral images

2.5.2 Unpacker

The unpacker converts the incoming packed stream from memory to a stream where the
user selected number of components, Nc, are output in parallel, as illustrated in Figure
2.11. An overview of the unpacker architecture is shown in Figure 2.12. The unpacking
is performed in three steps: shifting, restructuring and buffering.

Figure 2.11: Example of packed stream coming from memory and the resulting un-
packed stream when Wc = 12 and Nc = 4. Left: the stream of packed 64-bit words from
memory. Right: the unpacked stream with Nc components in parallel.

Figure 2.12: Overview of the MM2S unpacker module

2.5.2.1 Shifter

Shifting is necessary to perform when Wc modW 6= 0, because in that case the LSB of a
component might not be aligned with the LSB of a byte as is shown in Figure 2.13. For
instance, if Wc = 12, a component might have its LSB at a byte boundary, but it might
also have an offset of 4. Similarly, for Wc = 10, a component might have an offset of 0,
2, 4 or 6 from the nearest byte boundary.

2.5. Overview of MM2S channel implementation 33

Figure 2.13: The stream from the shifter, given the input shown to the left in Figure 2.11

2.5.2.2 Restructurer

After shifting has been performed, the data in the incoming 64-bit stream contains a
number of whole components, but might also contain partial components. The least
significant bits might be the remaining bits from a partial component in the previous 64-
bit word, while the most significant bits might be the least significant bits of a component
that is completed by bits from the next 64-bit word. This can be observed in Figure 2.13:
Component 5 has its least significant bits in the most significant bits of the first word,
and its most significant bits in the least significant bits of the second word. Similarly,
component 10 has its least significant bits in the most significant bits of the second word,
and the remaining bits in the least significant bits of the third word.

The restructurer performs the necessary operations to collect up whole (unsplit) com-
ponents before forwarding them to the next stage. For the example case, this means
that when receiving the first word, the whole components 0 through 4 can be forwarded,
while the least significant bits of component 5 are saved until the next word arrives and
they can be joined with the remaining bits of component 5 and be forwarded together
with components 6 through 10. The resulting stream is shown in Figure 2.14.

34 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.14: The stream from the restructurer, given the input stream from the shifter
shown in Figure 2.13

2.5.2.3 Buffer

The buffer collects up the whole components arriving from the restructurer until there
are Nc components ready to be output in parallel to the accelerator. The output stream
from the buffer is what is shown to the right in Figure 2.11.

2.5.2.4 Configuration FIFO

Each time data from a new sub-transfer starts arriving from the memory, the bit-offset
of the first component might be different, and the number of components in the packet
might change. The necessary information that is needed by the unpacker to handle a
sub-transfer correctly is called a configuration. The configuration word consists of the
number of bits to shift the incoming word from memory in the shifter module, the num-
ber of components in the last words from memory, which is needed by the restructuring
module, and some flags that are used during the unpacking process.

Each time a new packet arrives (first beat where tlast is 0 after being 1) from the Data-
Mover or TinyMover, the next configuration word is read from the configuration FIFO.

2.5.3 Controller

The controller module controls operations during DMA transfers. It keeps track of
transfer progress, calculates start addresses and transfer lengths for each sub-transfer,
and feeds the necessary commands to the DataMover (or TinyMover) and configuration
words to the unpacker.

An overview of the controller is shown in Figure 2.15. A slightly different controller is
used when the TinyMover core is used instead of the Xilinx DataMover.

2.5. Overview of MM2S channel implementation 35

Figure 2.15: Overview of the controller module

2.5.3.1 Address generation

Based on the configuration set in the configuration registers, the address generation mod-
ule takes care of calculating the necessary information needed to issue a command to the
DataMover and configure the unpacker for that particular transfer.

The address generator keeps track of the current position in the cube by using a set of
counters representing the x and y coordinates of the current block as well as the x and y
coordinates of the current pixel within that block in case of BSQ transfers. This part of
the address generation logic was rewritten for the master’s thesis, and is therefore shown
in more detail in the next chapter.

Based on the current position in the cube, the address generator calculates the following:

• The start address for the next sub-transfer
• The number of bytes in the next sub-transfer
• The bit-offset from the LSB in the first byte to the LSB of the first component

36 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Each time a command is handshaked with the DataMover or TinyMover, the address
generator increments its counters and moves on to the next position in the cube, and
calculates the necessary information for the next sub-transfer.

2.5.3.2 IRQ generation

The IRQ generator generates an interrupt request signal (IRQ) to the CPUs when either
an error occurs, or when a transfer completes. The software can decide which events
should trigger an IRQ by setting a 2-bit IRQ mask, where bit 0 is the error event bit and
bit 1 is the completion bit. When an IRQ event has occured, and the corresponding bit
is set in the IRQ mask, the IRQ output signal will be asserted. The software can find
out which event triggered the IRQ by reading the status register. The software must then
acknowledge the IRQ by writing to the same bit positions in the status register.

2.5.3.3 State machine

Sequencing of operations in the controller is controlled by a state machine. The state
transition diagram is shown in Figure 2.16.

The state machine goes from the idle state to the running state when the start bit in the
control register is set from software. When commands for all the sub-transfers needed
to transfer the whole cube have been accepted by the DataMover or TinyMover, the
state machine moves into a state where it is waiting for all status words from the Data-
Mover or TinyMove to come back. A completion tally counter keeps track of how many
commands have been issued versus how many have been completed. When all issued
commands have been completed, the state machine can move back to the idle state. The
other states shown in Figure 2.16 deal with error conditions that might arise during the
transfer, for instance that a read is attempted from an invalid memory address.

2.6. The TinyMover core 37

Figure 2.16: State transition diagram for the state machine

2.6 The TinyMover core

During testing of the Cube DMA, it was found that BSQ transfers were being slower
than expected. This turned out to be due to a limitation in the DataMover where a new
read request cannot be issued more frequently than every 7th clock cycle. For BSQ
transfers where one read request is issued for each set of Nc components in the cube, this
puts a severe limit on the achievable throughput.

A replacement for the DataMover, the TinyMover, was therefore implemented, special-
ized for tiny transfers where the number of bytes to fetch fits within one burst transfer
on the AXI bus. An overview of the TinyMover is shown in Figure 2.17.

38 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.17: Overview of the TinyMover core

The TinyMover consists of a read request path, which is shown going right to left at the
top of Figure 2.17, and a read data path which is shown going left to right at the bottom
of the figure. The read request path translates the incoming command word containing
the start address and number of bytes to read, into an AXI read request. Information
needed when the data associated with the transaction that this request initiates comes
back from memory, is pushed to a FIFO. The read data path performs the necessary
steps to produce a contiguous AXI Stream containing the read data. It also takes care of
byte level shifting that is needed when read requests are made to memory addresses that
are not aligned with 32-bit boundaries.

2.7 Integrating DMAs with software

This section will lay out some necessary concepts and information about the Zynq-7000
SoC with regards to integrating DMAs with software running on the ARM processor
cores.

2.7.1 Interrupts on Zynq-7000

The software has two ways to find out when a DMA transfer has completed: It can
either repeatedly poll the DMA, typically by reading a status register and checking bits
that indicate completion, or set itself up to be interrupted when a DMA transfer has
completed.

2.7. Integrating DMAs with software 39

Using interrupts has several advantages over polling. Whereas polling requires the CPU
to periodically check the state of the DMA, interrupts allow the CPU to save power by
going into a sleep mode or to do other useful work while the transfer is on-going.

2.7.1.1 The Generic Interrupt Controller

Each CPU in the Zynq-7000 only has two interrupt inputs, the FIQ (fast interrupt re-
quest) and IRQ (interrupt request). FIQs have higher priorities than IRQs, meaning that
if both occur at the same time, the CPU will first handle the FIQ.

The Zynq-7000 has several different interrupt sources, such as different software gener-
ated interrupts, I/O peripherals and timers, and 16 interrupt signals that can be connected
to custom logic in the PL. Selecting which interrupt sources to forward to the FIQ or IRQ
inputs on the CPUs is done by the Generic Interrupt Controller (GIC), which is illustrated
in Figure 2.18.

The GIC allows the software to control which interrupt sources to enable (not ignore),
and how different interrupt sources will be prioritized when they signal interrupts at the
same time. Software can also control how interrupts are distributed to each of the two
CPU cores in the system. When an interrupt causes one of the CPUs to be interrupted
with a FIQ or IRQ, the software can check the GIC status registers to figure out which
of the many interrupt sources caused the FIQ or IRQ in question.

2.7.1.2 Interrupt handling

In ARM processor terminology, FIQs and IRQs are part of the broader exception con-
cept. Exceptions are events that cause the CPU to do a context switch: It stops running
its current instruction stream, saves the state of all registers, and looks up in a exception
vector table to find the address of an exception handler routine that it will start execut-
ing. The routine will handle whatever event caused the exception, and then the CPU will
restore the previous state and continue executing as it was before the exception occured.

FIQ and IRQ are two of the possible exception events. When these occur, an exception
handler must be run that will handle them. At that point, there is no information about
which one of the interrupt sources caused the IRQ. The exception handler must check
status registers in the GIC to find out.

Xilinx provides a driver for using the GIC in software. This driver also includes an ex-
ception handler that can be registered in the exception vector table. The driver allows the
user to add custom interrupt handlers for different interrupt sources. When the exception
occurs, the exception handler will then check with the GIC and call the correct interrupt
handler.

40 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.18: The Zynq-7000 Generic Interrupt Controller (GIC) [2]

2.7.2 Caches

As in most modern processing systems, the Zynq-7000, uses a memory hierarchy to hide
the read- and write latencies of large DDR memories. The hierarchy is shown in Figure
2.19. Two levels of cache memory, Level 1 (L1) and Level 2 (L2) is used between the
CPUs and the DDR memory, but to simplify the following text, these will be grouped
together and referred to as ”the cache”.

2.7.2.1 Caching and cache lines

The two main principles behind caches are that memory locations close to the currrent
location are likely to be used next (spatial locality), and if a memory location is accessed
now, it is likely to be accessed again later in the program (temporal locality). It is
therefore beneficial to copy data from the memory locations close to the location that
the CPU is currently accessing into the cache, so that when the CPU needs to access one
of these locations, it can find the data in the cache instead of doing slower read/write
operations on the main memory.

The Zynq-7000 caches are divided into lines of 32 bytes. These lines correspond to 32
byte continuous blocks in the main memory. Whenever the CPU accesses one particular
memory location that is not cached, the whole 32 byte memory block that the location
belongs to is copied into an available cache line. It remains in the cache line until it gets

2.7. Integrating DMAs with software 41

replaced by a newer cache line, or until it is explicitly removed by the software.

2.7.2.2 Coherency

When memory is shared between several units, such as between the CPUs and the DMA
in the Zynq-7000, the problem of cache coherency is introduced. The data in the DDR
memory isn’t necessarily the same as in the caches. For example, if the CPU reads from
a particular address, the surrounding data is put in a cache line. In the mean time, the
DMA might write new data into the DDR memory. The next time the CPU reads from
the same address, it will get the cached data instead of the new data written by the DMA.
The cached data has become stale.

Another scenario that can happen is that the CPU writes to an address that is cached.
The change will only occur in the cache, and not be visible in the DDR memory until the
cache line is evicted from the cache and written back to the memory. If the DMA reads
from the same region of memory during this period, it will get the old data and not the
new data that was written by the CPU. The data in the memory region has become stale.

The Zynq-7000 has a Snoop Control Unit (SCU) designed to keep the caches and mem-
ory coherent with an external hardware accelerator. To use this feature, it requires that
the external hardware, in our case the DMA, is connected to a special Accelerator Co-
herency Port (ACP) such that all memory requests are routed through the SCU. This
has several tradeoffs; for instance, accesses where data is present in the cache will be
quicker, but on the other hand the accelerator will compete with the CPUs to access data.
In the Zynq-7000 manual, Xilinx conclude that using the SCU and ACP is optimal for
medium-grain accelerators that operate on fairly small data sets. [2].

When the DMA is connected directly to the DDR memory through one of the High
Performance ports, cache coherency must be managed manually. To sum up the previous
discussion, the two issues that must be taken care of are:

• Memory becomes stale: The CPU writes data to a location in memory which is to
be streamed by the DMA, but the new data is only written to the cache and not to
the actual DDR memory.

• Cache becomes stale: The DMA has written an incoming stream to memory, but
when reading from this location the CPU instead reads an out-dated cache line.

2.7.2.3 Flusing and invalidating

Cache coherency is achieved manually by doing two operations from software: flushing
and invalidating. These are available as library functions in the Xilinx SDK,
Xil_CacheFlushRange and Xil_CacheInvalidateRange. Behind the scenes,
these functions talk to the cache controllers inside the Zynq-7000. Both functions take
two arguments: A pointer to the start of the memory region in question and its length.

42 Chapter 2. Cube DMA: A DMA core for hyperspectral images

Figure 2.19: Memory hierarchy in Zynq-7000

In the case of flushing, any cache line that contains data from within the given region is
written out to memory. This means that new values written by the software is actually
visible in the DDR memory, and the DMA will read the correct data from memory.

In the case of invalidating, any cache line that contains data from within the given region
is marked as invalid. This means that the next time the CPU reads from any address in
the region, it is forced to read data from the DDR memory and not outdated values from
the cache.

3

Cube DMA implementation

This chapter will present the continued work on the Cube DMA that was performed for
this thesis. It will also explain briefly how benchmarking was performed for the Xilinx
AXI DMA and the Cube DMA.

The following list shows the changes and new features that have been implemented for
the Cube DMA:

• Address generation and register layout has been simplified under the assumption
that block dimensions are powers of 2

• Added capability of doing BSQ transfer of complete cube without any user inter-
vention

• Added output of control stream in parallel with output data
• Completed implementation of S2MM channel

During the next sections these points will be detailed.

3.1 New address generation logic

A serious problem in the address generation logic implemented in the project was that
it did not handle the case where the cube width and height dimensions are not whole
multiples of the block dimensions. This would lead to the transfers of the last blocks in
each row of blocks being too large, and the number of transfers in the last row of blocks
to be too large.

To fix this, it was decided to restrict the block dimensions to be powers of 2. This is
a reasonable restriction, as any block- or tile based algorithms that have been looked

43

44 Chapter 3. Cube DMA implementation

at for hyperspectral image processing use block dimensions that are powers of 2. Con-
straining the block dimensions like this allows several computations to be made much
easier: Multiplying and dividing by the block dimensions becomes a matter of shift-
ing, and finding residuals (modulo operations) becomes a matter of picking out the least
significant bits.

This also turned out to improve the ease of use of the core. With the old address gen-
eration logic, quite a few helper values had to be computed in software and supplied by
the user through configuration registers. These are now for the most part computed by
the core itself, leaving only the values that were listed in 2.4 to be supplied externally.
These values could have been computed in hardware as well, but as they are only calcu-
lated once before the start of a cube transfer, it is better to save the additional logic and
perform the computations in software.

Code listing 3.1 shows in pseudo-code how the new address generation logic works.
if !mode_block:

num_blocks_y = 1
num_blocks_x = 1
current_block_height = height
current_block_width = width
length = row_size

else:
num_blocks_y = height / 2**block_height
num_blocks_x = width / 2**block_width

if !mode_plane:
num_plane_transfers = 1
current_block_width = 1
length = depth

for num_plane_transfers-1 to 0:
block_address = offset
row_address = offset
block_row_address = offset
component_address = offset

for block_y in num_blocks_y-1 to 0:
for block_x in num_blocks_x-1 to 0:
for y in current_block_height-1 to 0:

for x in current_block_width-1 to 0:
if mode_block:
if block_x = 0:
current_block_width = width mod 2**block_width
length = last_block_row_size

else:
current_block_width = 2**block_width
length = 2**block_width * depth

if block_y = 0:
current_block_height = height mod 2**block_height

else:
current_block_height = 2**block_height

issue command(component_address, length)

3.2. Control stream implementation 45

if x = 0 and y = 0:
if block_x != 0:
block_address = block_address + (width mod 2**block_width)

else:
block_row_address = block_row_address

+ 2**block_height * row_size
block_address = block_row_address

if x != 0:
component_address = component_address + depth

else:
if y != 0:

row_address = row_address + width
else:
row_address = block_address

component_address = row_address

wait for tick from state machine
offset = offset + comp_per_cycle

Listing 3.1: Pseudo-code of address generation

3.2 Control stream implementation

The buffer module in the unpacker will collect up Nc components before these are for-
warded to the accelerator, even if the buffer already contains components from another
sub-transfer. This means that the components that are output on the MM2S stream might
originate from different pixels or different blocks in the HSI cube. For the accelerator
that is processing the streamed data, it might be necessary to know whether the compo-
nents are from different blocks, and also whether or not the incoming components come
from a truncated block in the last column of blocks or from a truncated block in the last
row of blocks, such that appropriate padding etc. can be performed.

To help identify components correctly, a set of control signals per component are put out
in parallel with the data stream. These indicate:

1. Whether the component is part of the last pixel in a block

2. Whether the component is part of a block in the last column of blocks

3. Whether the component is part of a block that is in the last row of blocks

Figure 3.1 illustrates how these control signals relate to the HSI cube with an example
where Nc = 4. The three first components in the stream are from the last pixel in a block,
and also from a block that is in the last column of blocks, and hence the corresponding
control bits are 1. The fourth component is from the first pixel in the next block, and
is not in the last column of blocks, so the corresponding bits are 0. However, it is in a
block that is in the last row of blocks, and the corresponding control bit for this is 1.

46 Chapter 3. Cube DMA implementation

Figure 3.1: Control bits

To implement this feature, the calculation of these signals was added to the address
generation logic. Since there are already counters keeping track of the current pixel and
block coordinates, this is mostly a matter of comparing these counter values to the total
number of blocks and total number of pixels, respectively.

The unpacker configuration FIFO was extended with room for the three new bits. The
bits are put in the unpacker configuration FIFO together with the other information that
describes the particular sub-transfer. This is done so that when the corresponding sub-
transfer data arrives from the DataMover or TinyMover, the associated control bits are
read from the FIFO.

The control bits are appended to each component before it is stored in the buffer. At
the buffer output, the control signals are split from the component again and put out
on a separate control bus. This makes sure that the right control signals are output
simultaneously with the components they belong to.

3.3. S2MM channel implementation 47

3.3 S2MM channel implementation

3.3.1 Controller

The S2MM controller functionality shares much of the same logic with the MM2S con-
troller. It is therefore implemented in the same VHDL module, using a generic param-
eter to indicate whether the controller is to be used for S2MM or MM2S, and enabling
or disabling features using VHDL if generate statements. The difference between
the two is mainly how commands are issued to the DataMover.

The S2MM channel continually writes stream data to the memory until the incoming
stream asserts tlast. To achieve this behavior, a feature of the DataMover called inde-
terminate byte transfer is enabled. When instantiated in this mode, the DataMover will
accept packets that are larger than the given size in the command. It will report back a
status word with an End Of Packet bit (EOP) that indicates whether tlast was asserted
during the sub-transfer described by the command or not, and the actual number of bytes
that were read.

This allows transfers of any length by issuing commands for new sub-transfers every
time the DataMover reports a status that does not have the EOP bit set, because that
means that the DataMover has performed the largest possible sub-transfer, and there is
still more stream data to come.

Listing 3.2 shows how commands are issued to the DataMover in the S2MM Controller.

MAX_LENGTH = 0x3FFFFF
bytes_total = 0
start_address = base_address
loop:

issue command (start_address, MAX_LENGTH)
wait for status
if status.eop:

bytes_total = bytes_total + status.bytes_received
exit

else:
start_address = start_address + MAX_LENGTH
bytes_total = bytes_total + MAX_LENGTH

Listing 3.2: Pseudocode for S2MM command issuing

3.3.2 Component packer

Similarly as with the MM2S output stream, the incoming S2MM stream can contain any
number of components Nc in parallel, and the component width Wc does not have to be
a multiple of 8 bits. Since the AXI bus that connects the DMA to memory is 64 bits
wide, this means that the incoming components must be packed into 64 bit words before

48 Chapter 3. Cube DMA implementation

being written to memory. The component packer performs the opposite operation of the
component unpacker that was detailed in Section 2.5.2. Figure 3.2 shows an incoming
stream from an accelerator, and the resulting packed 64-bit words that are written to
memory.

Figure 3.2: Example of packing when Wc = 12 and Nc = 4. Left: stream from accelerator
with Nc components in parallel. Right: the packed stream of 64-bit words.

The component packer architecture is shown in Figure 3.3

3.3.2.1 Buffer

The S2MM stream data is first put in a component buffer similar to the one used at the
last stage in the MM2S unpacker. The buffer collects components until there are enough
components to output to the next stage. The component joiner in the next stage notifies
the buffer about how many components it expects. When the number of components in
the buffer is larger or equal to the requested number, the buffer will forward the selected
number of components to the component joiner.

Figure 3.3: The component packer

3.3. S2MM channel implementation 49

3.3.2.2 Component joiner

The component joiner does the opposite operation of the component restructurer shown
in Section 2.5.2.2. It requests a number of components from the buffer that is great
enough to cover 64 bits of data, and any bits that are left over are saved and joined with
the next set of components from the buffer, as shown in Figure 3.4.

How many bits are needed to request from the buffer to cover 64 bits of data and how
many are left over changes each cycle, but there is a consistent pattern that allows this
to be efficiently done in hardware. The pattern repeats every N cycles, where N can be
determined by how many input words of width Nc ·Wc are needed to cover a multiple
of the memory width which is 64 bits. This can be found by finding the least common
multiple between 64 and Nc ·Wc (the least number of bits that divides both stream widths)
and dividing it by the memory stream width, which can also be expressed in terms of the
greatest common divisor:

N =
lcm(64,Nc ·Wc)

64
=

64
gcd(64,Nc ·Wc)

.

For each cycle, the number of components to request from the buffer must be large
enough such that the number of bits from the buffer plus the number of leftover bits
from the previous cycle is larger than or equal to 64. Table 3.1 shows the expressions
that determine how many components to request from the buffer, how many bits to join
from the leftovers of the previous cycle, and how many bits are left over after the current
cycle. These are used in the VHDL implementation to select the arrangement of the
output bits and the next value of the leftover register for the different cycles.

Table 3.2 shows an example of these computations when the component width is 10 bits,
and Figure 3.4 shows the behavior of the component joiner during one full cycle.

Parameter Expression

Number of components to request
⌊
(i+1) ·64

Wc

⌋
−
⌊

i ·64
Wc

⌋
Leftover bits from previous cycle ((i+1) mod N) ·64 mod Wc

Leftover bits after current cycle i ·64 mod Wc

Table 3.1: Overview of component joiner cycles

50 Chapter 3. Cube DMA implementation

Cycle Number to request Leftover from prev. Leftover bits
0 b5 ·64/10c−b4 ·64/10c= 7 0 ·64 mod 10 = 0 4 ·64 mod 10 = 6
1 b4 ·64/10c−b3 ·64/10c= 6 4 ·64 mod 10 = 6 3 ·64 mod 10 = 2
2 b3 ·64/10c−b2 ·64/10c= 7 3 ·64 mod 10 = 2 2 ·64 mod 10 = 8
3 b2 ·64/10c−b1 ·64/10c= 6 2 ·64 mod 10 = 8 1 ·64 mod 10 = 4
4 b1 ·64/10c−b0 ·64/10c= 6 1 ·64 mod 10 = 4 0 ·64 mod 10 = 0

Table 3.2: Overview of component joiner cycles

Figure 3.4: Component joiner behavior for one set of cycles when Wc = 10 and W = 64

3.4 Test setup for comparing Xilinx AXI DMA and Cube
DMA

A typical DMA setup in the Zynq-7000 was shown in Figure 1.9. This setup has been
used when comparing the Cube DMA and the AXI DMA, with a simple FIFO used in
place of an actual hardware processing core. The FIFO simply forwards the incoming
MM2S stream from the DMA back to the S2MM input of the DMA.

Testing of the Cube DMA can easily be performed without involving any software, as
detailed in 8, but testing the Xilinx AXI DMA involves a lot more work because block
descriptor chains need to be set up to describe the transfer. Testing of both the AXI DMA

3.4. Test setup for comparing Xilinx AXI DMA and Cube DMA 51

and the Cube DMA has therefore been performed using a software program running on
one of the ARM cores on the Zynq-7000.

Similarly to the Cube DMA, the AXI DMA is also configured through registers. The
registers are accessible through an AXI-Lite interface, which is connected to the Central
Interconnect in the Processing System. This makes the registers appear as memory loca-
tions from the CPUs point of view, and transactions with these registers can be initiated
through read and write operations by the CPU.

The most important registers are the control and status registers, and two registers that
are pointing to the first and last block descriptor in the current chain, respectively. How-
ever, Xilinx provides ready-made libraries (drivers) with C code for using many of their
peripherals and IP cores, including the AXI DMA. This driver code takes care of many
of the register-level details of configuring the core.

A software program must generally perform the following steps to perform a DMA
transfer:

1. Set up the Generic Interrupt Controller (GIC)

2. Register an interrupt handler function for DMA interrupts

3. Register a GIC exception handler

4. Enable exceptions

5. Place data to be used in memory

6. Flush all data in the cache belonging somewhere inside the input data region in
memory

7. (For AXI DMA: Set up initial block descriptor chain)

8. Set up DMA registers and start transfer

9. Wait for interrupt(s) to occur

10. (For AXI DMA: Set up new chain of block descriptors and repeat step 9 until
transfer is done)

11. Invalidate cache data belonging to regions in memory where the DMA stores the
received data

Configuring the GIC, the ARM exception system and dealing with caches, is done
through driver code provided by Xilinx. The GIC driver provides an exception han-
dler that will itself call the user-provided interrupt handlers for specific GIC interrupts
such as the DMA interrupt. When only testing performance and not caring about data
validity, the cache related steps can be excluded from the program. However, in general
they are important to include to avoid the issues that were described in 2.7.2.

For the Xilinx AXI DMA, the test program is a bit more involved. The AXI DMA
performs transfers as described by a chain of block descriptors. Each time a transfer
needs to be started at a new location, a new block descriptor must be used. For sequential

52 Chapter 3. Cube DMA implementation

BIP transfers, only one block descriptor is needed, provided that the cube is small enough
for its total data size to be representable in the number of bits that the length field in the
descriptor has. For larger cubes, the transfer is simply described using a chain of two
(or more) descriptors, where the first have the maximum length, and the last has the
remaining length.

For block-wise transfers, each row in each block needs to be described by a separate
block descriptor, as shown in Figure 3.5. It is clear that this might require enormous
block descriptor chains; for instance, if a cube with spatial dimensions 512×2000× is
used with blocks of size 8×8, then a total of (512/8) ·(2000/8) ·8 = 128000 descriptors
would be needed. This is larger than what the AXI DMA can handle, and it is therefore
necessary to set up only a certain amount of block descriptors, start the transfer, set up
the next block descriptors in the chain, continue the transfer, and so on.

Figure 3.5: Descriptor setup for doing block transfers with AXI DMA

The test code used for the AXI DMA sets up an initial chain of block descriptors and
starts of a transfer. When that transfer has completed and an interrupt is triggered, a
new chain of block descriptors is set up for the next portion of the transfer and a new
transfer is started. This is repeated until the whole cube has been traversed. The test
code for the Cube DMA is similar, but it will perform the whole cube transfer without
any intervening from software. When the interrupt occurs, the transfer has been finished.

In both cases, an internal timer in the Application Processor Unit of the Zynq-7000 is
used to record the cycle counts right before a transfer is started and right after the transfer
has completed. The timer operates at half the frequency of the CPU, meaning that the
elapsed time can be found by multiplying the cycle difference between start end end by
half the CPU frequency.

4

Cube DMA results

This chapter presents results for the Cube DMA implementation. It will briefly show
the results gathered in the project work regarding timing and resource utilization, and
provide more in-depth discussions of the results from the continued work in this thesis.

4.1 Performance comparison

The AXI DMA and Cube DMA are compared as shown in Table 4.2. The parameters
used for this comparison are shown in Table 4.1.

The results show that the achievable throughput for BIP block transfers in the Cube
DMA increases by 128% compared to the Xilinx AXI DMA. This is likely due to the
much greater overhead present when doing block transfers using the AXI DMA. For
each row in the block, the AXI DMA must fetch a new descriptor from memory. The
Cube DMA has no such overhead, but there are still possible delays related to the Zynq’s
memory system having to jump to new addresses when starting on a transfer of a new
row in the block.

For BSQ (plane-wise) transfers, the Cube DMA can achieve 14.1% of the theoretical
throughput. With the TinyMover used in place of the Xilinx DataMover, this rises to
73%. Further improvements are unlikely, as the TinyMover issues new read requests
as quickly as possible, meaning that the stalls that are occurring are due to the mem-
ory system of the Zynq-7000. It is expected that close to theoretical performance is
unachievable, as the memory system is optimized for sequential burst transfers and not
small and strided memory accesses.

53

54 Chapter 4. Cube DMA results

Cube parameters
Width 500
Height 2000
Bands 100
Component width 8
Stored order BIP
Block size 8 × 8

AXI DMA
Scatter-Gather Yes
Burst size 16
Stream width 64
Dynamic Realignment Engine Yes
Length reg. size Maximum (23 bit)

Cube DMA
Stream width 64
Components in parallel 8
Component width 8
Burst size 16
TinyMover Tested with and without

Table 4.1: Parameters used for performance comparison

BIP, seq. BIP, block BSQ, seq.
Theoretical 800 MB/s 800 MB/s 100 MB/s
AXI DMA 800 MB/s 340 MB/s
Cube DMA 800 MB/s 775 MB/s 14.1 MB/s
Cube DMA (TinyMover) 73 MB/s

Table 4.2: Comparison of performance for AXI DMA and Cube DMA for different
transfer types on a HSI cube of size 500×2000×100, block size 8×8.

4.2. Resource utilization 55

4.2 Resource utilization

Table 4.3 shows the resource utilization of the Cube DMA components that are fixed in
size regardless of choice of generic parameters. Table 4.4 shows the LUT and register
usage of the MM2S channel’s controller and unpacker as the number of bits per compo-
nent Wc and the number of components in parallel Nc are changed. These results are also
plotted in Figures 4.1 and 4.2. For both, the general trend is an expected approximately
linear increase as Nc grows. These results were gathered and analyzed more in detail in
the feasibility study report [8].

Table 4.5 shows the resource usage in terms of LUTs and registers for the S2MM packer,
with plots in Figures 4.3 and 4.4. For the values of Wc that are not byte multiples, a clear
linear growth is observed as Nc increases, similarly to in the MM2S channel. This is
expected, as the width of muxes, registers and so on scale linearly with Nc. It is also
observed that the LUT usage for Wc = 18 is highest, followed by Wc = 10 and Wc = 12
and then Wc = 8 and Wc = 16. This ordering is due to the complexity of the component
joiner. For Wc = 18, Wc = 10, Wc = 12, the number of cycles in the component joiner
are 9, 5 and 3, respectively. Since for each cycle there is a different choice of leftover
bits, arrangement of output word, and so on, the amount of logic grows with the number
of cycles.

In the cases where Wc = 8 and Wc = 16, the LUT usage is smallest. This is because the
component joiner is not needed for these component widths, as 64 (the bus width) is a
multiple of Wc in these cases. Thus the incoming components can go straight from the
buffer to the DataMover.

The LUT and register usage for Wc = 8 and Wc = 16 fluctuates considerably. When
Wc = 16 and Nc = 4, or when Wc = 8 and Nc = 8, no LUTs or registers are used, because
in this case there is no packing to perform. For the other values of Nc, variations are
due to how efficiently the buffer can be implemented for the different combinations. For
instance, if Wc = 8, then if Nc = 4, the buffer will always first fill up the lowest four
components, and then in the next cycle the upper four components, and the resulting
64-bit word is forwarded to the DataMover. It appears that the synthesis tool can deduce
this from its control flow analysis, and optimize the logic accordingly.

Module LUTs Registers
DataMover IP for MM2S 918 784
DataMover IP for S2MM 149 1527
Register Interface 629 497
TinyMover 241 181
S2MM Controller 82 82
Total 2019 3071

Table 4.3: Area usage of modules and IPs used in Cube DMA whose area is independent
of generic parameters

56 Chapter 4. Cube DMA results

Wc Nc
LUTs Regs

Controller Unpacker Total Controller Unpacker Total
8 1 336 85 421 248 199 447
8 2 357 129 486 248 209 457
8 3 331 173 504 248 219 467
8 4 282 201 481 248 229 477
8 5 354 235 589 248 239 487
8 6 288 281 569 248 249 497
8 7 354 313 667 248 259 507
8 8 351 340 691 248 269 517

10 1 368 303 671 248 290 538
10 2 363 396 759 248 303 551
10 3 428 402 830 248 315 563
10 4 435 431 866 248 327 575
10 5 431 463 894 248 339 587
10 6 362 506 868 248 351 599
10 7 423 535 958 248 363 611
12 1 361 229 590 248 288 536
12 2 356 275 631 248 302 550
12 3 362 331 693 248 317 565
12 4 365 371 736 248 331 579
12 5 362 402 764 248 345 593
12 6 339 439 778 248 359 607
16 1 277 73 350 243 190 433
16 2 276 103 379 243 208 451
16 3 277 147 424 243 226 469
16 4 349 170 519 243 244 487
18 1 410, 517 927 233 299 532
18 2 340, 611 951 233 316 549
18 3 410 571 981 233 335 568
18 4 331 581 912 233 355 588

Table 4.4: MM2S channel controller and unpacker area utilization at varying component
widths and number of components in parallel

4.2. Resource utilization 57

1 2 3 4 5 6 7 8
0

200

400

600

800

Nc

L
U

T
s

BPC=8
BPC=10
BPC=12
BPC=16
BPC=18

Figure 4.1: MM2S channel LUT usage for different bits per component Wc, as a function
of the number of components in parallel Nc.

1 2 3 4 5 6 7 8
400

500

600

Nc

R
eg

is
te

rs

BPC=8
BPC=10
BPC=12
BPC=16
BPC=18

Figure 4.2: MM2S channel register usage for different bits per component Wc, as a
function of the number of components in parallel Nc

58 Chapter 4. Cube DMA results

Wc Nc LUTs Registers
8 1 73 69
8 2 54 68
8 3 152 85
8 4 58 67
8 5 232 101
8 6 156 100
8 7 316 117
8 8 0 0
10 1 211 85
10 2 272 95
10 3 356 106
10 4 428 116
10 5 460 126
10 6 517 136
10 7 564 146
12 1 132 86
12 2 192 98
12 3 278 111
12 4 330 123
12 5 385 135
12 6 459 147
16 1 39 68
16 2 58 67
16 3 138 100
16 4 0 0
18 1 318 96
18 2 387 114
18 3 454 132
18 4 527 150

Table 4.5: S2MM channel packer area utilization at varying component widths Wc and
number of components in parallel Nc

4.2. Resource utilization 59

1 2 3 4 5 6 7 8
0

200

400

600

Nc

L
U

T
s

BPC=8
BPC=10
BPC=12
BPC=16
BPC=18

Figure 4.3: S2MM channel packer LUT usage for different bits per component Wc as a
function of the number of components in parallel Nc

1 2 3 4 5 6 7 8
0

50

100

150

200

Nc

R
eg

is
te

rs

BPC=8
BPC=10
BPC=12
BPC=16
BPC=18

Figure 4.4: S2MM channel packer register usage for different bits per component as a
function of the number of components in parallel

60 Chapter 4. Cube DMA results

If a pure 64 bit stream is used for both the MM2S and S2MM channels (no unpacking or
packing is performed), the total number of LUTs and registers used are 2355 and 3319,
respectively. The Xilinx AXI DMA at comparable settings uses an estimated 2890 LUTs
and 4046 registers [9].

4.3 Timing

In the project work leading up to this thesis, the MM2S channel was found to have a
worst negative slack (WNS) of 1.988 ns when a constraint of 100 MHz is used, meaning
that a maximum frequency of 124 MHz could be achieved. The critical path was within
the address generation logic. With the changes made to the address generation logic and
the new feautres implemented for this thesis, the critical path of the complete design is
no longer in the address generation logic in the MM2S channel, but the received length
calculation in the S2MM channel. The WNS is now an improved value of 2.396 ns,
corresponding to a maximum frequency of 131 MHz. Further improvements are still
possible but were not prioritized in this thesis. The largest gain in clock speed can be
achieved by pipelining the additions that are performed in the address generation logic
in the MM2S channel, and the received length calculation in the S2MM channel.

5

CCSDS123 theory and background

This chapter will present the CCSDS123 algorithm and explain all its computational
steps, as well as introduce relevant terminology and mathematical notations. The bulk
of the text is based on the CCSDS123 Recommended Standard document [4]. The other
main source used is an Informational Report [12] from CCSDS, which provides a more
practical insight into how the algorithm works, which trade-offs are important, and so
on.

5.1 Overview

CCSDS123 is a compression algorithm standardized by the Consultative Committee
for Space Data Systems (CCSDS), specifically designed for lossless compression of
hyperspectral images. It is a formalized version of the Fast Lossless (FL) algorithm
devised by the NASA Jet Propulsion Laboratory [13]. It is intended to be suitable for
use on-board in spacecraft, with run-time complexity and memory usage low enough to
make it feasible to implement in high-speed hardware [12].

The algorithm is lossless, meaning that the exact original image can be restored from
the compressed image. The two main steps in the compression process are shown in
Figure 5.1: prediction and encoding. The prediction stage computes estimates of each
component based on previous components that are spatially and spectrally close in the
cube. The difference between the estimates and the actual component values, so-called
residuals, are encoded into variable length code words.

61

62 Chapter 5. CCSDS123 theory and background

Figure 5.1: CCSDS123 compressor overview [4]

5.2 Definitions

This section will introduce some terminology and definitions that are used further when
explaining the CCSDS123 compression scheme.

5.2.0.1 Samples

Individual components in a HSI cube are referred to as samples in the CCSDS123 stan-
dard documentation, and are denoted by s. The same terminology will be used when
describing CCSDS123 and the implementations done in this work.

Samples have a bit resolution given by the parameter D in the range 2 ≤ D ≤ 16. The
lower sample value limit, the upper sample value limit and the mid-range sample value
are denoted by smin, smax and smid, respectively. Samples can be unsigned or signed
integers. If unsigned samples are used,

smin = 0, smax = 2D−1, smid = 2D−1.

If signed samples are used,

smin =−2D−1, smax = 2D−1−1, smid = 0.

5.2.0.2 Cube size and coordinates

The HSI cube size is denoted by the symbols NX , NY and NZ .

Samples and other values that are computed during the compression process can be
addressed by their x, y and z coordinates on the form sz,y,x, meaning the sample in band z
at spatial location (x,y). The indices start at 0, meaning that 0≤ x≤NX−1 and similarly
for y and z.

Samples can also be addressed on the form sz(t) where t = y ·NX +x. The two represen-
tations are used interchangeably, depending on which fits best.

5.3. Prediction 63

5.2.0.3 Mathematical notations

For any integer x and positive integer R, the function mod ∗R[x] is defined as

mod ∗R[x] = ((x+2R−1) mod 2R)−2R−1.

This is the mathematical description of what happens when the value x, represented in
two’s complement form, is stored in a register with R bits.

The notation clip(x,{xmin,xmax}) denotes clipping the value of x to be in the range
[xmin,xmax]:

clip(x,{xmin,xmax}) =


xmin, x < xmin,

x, xmin ≤ x≤ xmax

xmax, x > xmax

Finally, the function sgn+(x) is defined by

sgn+(x) =

{
1, x≥ 0
−1, x < 0

5.3 Prediction

Prediction is based on values calculated from the neighboring previous samples to the
current sample sz,y,x. Figure 5.4 shows an overview of a typical prediction neighborhood.

5.3.1 Local sum and local difference vector

To simplify matters, neighboring previous samples in the same band as the current sam-
ple are named as shown in Figure 5.2, with NE denothing ”North East”, N denoting
”North”, NW denoting ”North West” and W denoting ”West”.

5.3.1.1 Local sum

The neighboring samples in the band are used to compute a local sum σz,y,x. The local
sum can be neighbor oriented or column oriented, which is illustrated in Figure 5.3. The
neighbor oriented local sum is the sum of each of the W, NW, N and NE samples. For
edge cases where the current sample is in the first or last row and/or column, special
rules apply. These are shown in (5.1).

64 Chapter 5. CCSDS123 theory and background

σz,y,x =


sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1, y > 0,0 < x < NX −1
4sz,y,x−1, y = 0,x > 0
2(sz,y−1,x + sz,y−1,x+1), y > 0,x = 0
sz,y,x−1 + sz,y−1,x−1 +2sz,y−1,x, y > 0,x = NX −1

(5.1)

The column-oriented local sum is just the previous sample in the same column (N), but
weighted with 4 instead of 1 since it is the only sample in the sum. When y = 0 there is
no previous sample in the same column, so the W sample is used instead. The local sum
computation is summarised in (5.2).

σz,y,x =

{
4sz,y−1,x, y > 0
4sz,y,x−1, y = 0,x > 0

(5.2)

5.3.1.2 Local differences

Using the local difference σz,y,x, a central local difference dz,y,x is computed:

dz,y,x = 4sz,y,x−σz,y,x.

Similarly, three additional directional local differences are computed. These are labelled
dN

z,y,x, dNW
z,y,x and dW

z,y,x, respectively. The directional differences are computed in the same
way as the central local difference, but use the corresponding neighbor sample instead of
sz,y,x as the first term in the subtraction. Again special rules apply in edge cases where the
current sample is on one of the borders and the neighbor doesn’t exist. The computations
are shown in (5.3), (5.4) and (5.5).

dN
z,y,x =

{
4sN

z,y,x−σz,y,x, y > 0
0, y = 0

(5.3)

Figure 5.2: Neighboring samples in same band

5.3. Prediction 65

Figure 5.3: Neighbors used in local sum calculations in neighbor-oriented and column-
oriented modes [4]

Figure 5.4: Prediction neighborhood in spatial and spectral dimensions [4]

66 Chapter 5. CCSDS123 theory and background

dN
z,y,x =


4sNW

z,y,x−σz,y,x, x > 0,y > 0
4sN

z,y,x−σz,y,x, x = 0,y > 0
0, y = 0

(5.4)

dN
z,y,x =


4sW

z,y,x−σz,y,x, x > 0,y > 0
4sN

z,y,x−σz,y,x, x = 0,y > 0
0, y = 0

(5.5)

5.3.1.3 Local difference vector

The local differences from the current band and the P previous bands are collected into
a local difference vector, Uz(t) which is used in the prediction calculation.

Which differences are included in the local difference vector depends on the prediction
mode. In full prediction mode, Uz(T) is defined as

Uz(t) = [dN
z (t),d

W
z (t),dNW

z (t),dz−1(t),dz−2, ...,dz−P∗z (t)]
T .

The notation P∗z is shorthand for min{z,P}. Put simply, the number of local central
differences included from previous bands is P, unless z < P, in which case we must
naturally stop at z = 0.

In reduced prediction mode, directional local differences are not included. Uz(t) is then
defined as

Uz(t) = [dz−1(t),dz−2, ...,dz−P∗z (t)]
T .

The number of elements in each local difference vector in band z is denoted Cz and is
given by

Cz =

{
P∗z , reduced prediction mode
P∗z +3, full prediction mode

5.3.2 Weights

Associated with each component in the local difference vector Uz(t) there is a corre-
sponding weight that the component is multiplied with during prediction calculation.
The weight vector Wz(t) contains the Cz weight values. In full mode,

Wz(t) = [ωN
z (t),ω

W
z (t),ωNW

z (t),ω(1)(t),ω(2)(t), ...,ω(P∗z)(t)]
T ,

and in reduced mode,

Wz(t) = [ω(1)(t),ω(2)(t), ...,ω(P∗z)(t)]
T .

5.3. Prediction 67

The weight value bit resolution is determined by a parameter Ω in the range 4≤Ω≤ 19.
The weight values are represented as signed integers, using Ω+3 bits.

For all pixels except t = 1, the weight vector Wz(t) is computed from Wz(t− 1) using
the weight update procedure shown in section 5.3.5. The weight vector Wz(1) however
must be initialized to a starting value. This can be done in two ways: default weight
initialization and custom weight initialization. Only the default initialization will be
focused on in this thesis.

Default initialization is performed as shown in (5.6).

ω
(1)
z (1) =

7
8

2Ω, ω
(i)
z (1) =

⌊
1
8

ω
(i−1)
z (1)

⌋
for i ∈ [2,3, ...,P∗z]. (5.6)

5.3.3 Prediction calculation

The prediction calculation for sample sz(t) uses the local sum σz(t), local difference
vector Uz(t) and weight vector Wz(t) to produce a scaled predicted sample, s̃z(t) as
shown in (5.7). The value d̂z(t) is given by

d̂z(t) =

{
0, reduced mode and z = 0
Wz(t)T Uz(t), otherwise

The scaled predicted sample is used in the weight update calculation. The predicted
sample value ŝz(t) is defined in (5.8. This value is passed on to the residual mapping
calculation.

s̃z(t) =


clip

(⌊
mod∗R

[
d̂z(t)+2Ω(σz(t)−4smid)

]
2Ω+1

⌋)
, t > 0

2sz−1(t), t = 0,P > 0,z > 0
2smid, t = 0 and (P = 0 or z = 0)

(5.7)

ŝz(t) =
⌊

s̃z(t)
2

⌋
(5.8)

5.3.4 Residual mapping

The last stage of the prediction process is to calculate the prediction residual ∆z(t) and
perform a mapping from this residual to a mapped residual δz(t) which is the final output
value from the predictor.

68 Chapter 5. CCSDS123 theory and background

The prediction residual is the difference between the actual sample value, sz(t) and the
predicted sample, ŝz(t) as shown in (5.9). The residual mapping converts the signed pre-
diction residual to an unsigned value that can be represented using D bits. The mapping
is designed such that it maps small prediction residuals to small mapped values. This
is done because the encoder generally will code small values with fewer bits [12]. The
residual mapping calculation is shown in (5.10).

∆z(t) = sz(t)− ŝz(t) (5.9)

δz(t) =


|∆z(t)|+Θz(t), |∆z(t)|> Θz(t)
2|∆z(t)|, 0≤ (−1)s̃z(t)∆z(t)≤Θz(t)
2|∆z(t)|−1, otherwise

(5.10)

Θz(t) = min{ŝz(t)− smin,smax− ŝz(t)} (5.11)

5.3.5 Weight update

After each prediction of sample sz(t), the weight vector Wz(t +1) for the sample in the
next pixel in the same band can be calculated. This calculation is called a weight update.
Put very simply, the weight update adjusts the weights based on the result of the previous
prediction in such a way that if the predicted sample was larger than the actual sample,
weight values are decreased and vice versa. This causes the weights to gradually adapt
to the statistics of the image data.

How much the weights should change is determined by a weight uppdate scaling ex-
ponent, ρ(t). Small values of ρ(t) yield larger weight increments, which causes the
weights to converge faster at the cost of reduced steady-state performance [12]. ρ(t) is
defined as

ρ(t) = clip
(

νmin,+

⌊
t−Nx

tinc

⌋
,{νmin,νmax}

)
+D−Ω (5.12)

The value of ρ(t) changes during traversal of the image, and the three parameters νmin,
νmax and tinc are used to control the value of ρ(t) and how quickly it should change.
ρ(t) will start at the value νmin +D−Ω and gradually increase at a rate given by tinc
until it reaches the maximum value νmax +D−Ω. This has the effect that the rate at
which the weights adapt to image statistics becomes slower over time, yielding a trade-
off between initial quick adaptation to image statistics and then gradually better steady
state performance.

The weight update calculation is done as follows:

Wz(t +1) = clip
(

Wz(t)+
⌊

1
2

(
sgn+[ez(t)] ·2−ρ(t) ·Uz(t)+1

)⌋
,{ωmin,ωmax}

)
(5.13)

5.4. Encoding 69

ez(t) is the scaled prediction error, defined as

ez(t) = 2sz(t)− s̃z(t) (5.14)

5.4 Encoding

There are two different encoders defined by the CCSDS123 standard, the sample adap-
tive encoder and the block adaptive encoder. The block adaptive encoder was originally
defined for a previous CCSDS 120 algorithm, but is included as an option in CCSDS123
so that implementers can re-use existing space-qualified hardware implementations [12].
In this thesis, the sample adaptive encoder will be used.

5.4.1 Golomb-Power-Of-2 coding

The sample adaptive encoder assigns variable-length code words of maximum size D+
Umax to each incoming mapped residual. The coding technique used is called length-
limited Golomb-Power-Of-2 (GPO2), which is also used in JPEG-LS and other com-
pression schemes [12]. Umax is called the unary length limit, and is a variable parameter
in the range 8≤Umax ≤ 32.

For a fixed Umax there are several code word mappings available depending on the value
of an integer k ≤ D− 2. When k is fixed, the mapping from input residual δ to code
word is found by writing δ as

δ = u ·2k + r,

where

u =

⌊
δ

2k

⌋
, r = δ mod 2k.

The code word generally has two components:

• If u <Umax: A unary encoding of u (u number of 0s followed by a 1) followed by
the k lowest bits of r.

• If u≥Umax: Umax number of 0s followed by the D-bit representation of δ .

.

5.4.2 Adaptation to image statistics

For a given Umax, which GPO2-mapping (value of k) gives the smallest codes depends on
characteristics of the incoming data. The sample adaptive encoder adaptively changes
the value of k based on image statistics, so that a mapping that fits the incoming data
better is chosen. This is performed by keeping track of the average value of the input
residuals in each band. The average calculation is performed by accumulating the sample

70 Chapter 5. CCSDS123 theory and background

values separately for each band and dividing by the number of samples that have been
processed.

More concretely, there is an accumulator Σz(t) for each band that accumulates the incom-
ing residual values in that band. A counter Γ(t) common to every band is incremented
once per pixel. The ratio Σz(t)/Γ(t) is the average value of the incoming residuals in
band z. The counter has an initial value given by

Γ(1) = 2γ0 ,

where the initial count exponent, γ0, is a parameter in the range 1≤ γ0 ≤ 8. Each band’s
accumulator also has an initial value given by

Σz(1) =
⌊

1
27

(
3 ·2K+6−49

)
Γ(1)

⌋
,

where the accumulator initialization constant, K, is a parameter in the range 0 ≤ K ≤
D−2.

The counter’s maximum value is given by the re-scaling counter size parameter γ∗. The
counter’s maximum value is 2γ∗−1. When the counter reaches this maximum value, the
accumulators in each band and the counter are re-scaled by dividing their values by 2.
This is done to make more recent sample values have more impact on the mean [12].

The accumulator and counter logic can be summed up as follows:

Σz(t) =

Σz(t−1)+δz(t−1), Γ(t−1)< 2γ∗ −1⌊
Σz(t−1)+δz(t−1)+1

2

⌋
, Γ(t−1) = 2γ∗ −1

(5.15)

Γ(t) =

Γ(t−1)+1, Γ(t−1)< 2γ∗ −1⌊
Γ(t−1)+1

2

⌋
, Γ(t−1) = 2γ∗ −1

(5.16)

The value of k for a given sample, kz(t), is selected based on the accumulator and counter
as follows:

kz(t)=


0, 2Γ(t)> Σz(t)+

⌊
49
27 Γ(t)

⌋
max

{
1≤ i≤ D−2 | Γ(t)2i ≤ Σz(t)+

⌊
49
27 Γ(t)

⌋}
, otherwise

(5.17)

5.4.3 Encoding of a sample

For the encoding to be reversible, the decoder needs to know at every step which map-
ping (k value) has been used to encode a sample. To do this it needs to repeat the same

5.5. Summary of parameters 71

calculations for k as the encoder has done, which means that it needs to use the same
accumulator values as the encoder. For this to work the first mapped residuals δz(0) in
each band of the compressed image must be stored uncoded in their original D-bit rep-
resentation, so that the decoder has the same initial starting point as the encoder. The
remaining residuals (t > 0) are coded using length-limited GPO2 as described previ-
ously. To summarize:

• If t = 0, the code word is the D-bit unsigned integer binary representation of δz(t)
• If t > 0 and uz(t) < Umax, the code word consists of uz(t) ’0’s followed by ’1’,

followed by the kz(t) least significant bits of δz(t)
• If t > 0 and uz(t) ≥Umax, the code word consists of Umax ’0’s, followed by the

D-bit unsigned integer binary representation of δz(t)

5.5 Summary of parameters

Table 5.1 shows a summary of the selectable parameters for the CCSDS123 compression
algorithm that have been introduced in the previous sections.

Parameter Description Range
Predictor parameters
D Sample bit resolution [2,16]
P Number of previous bands to use in

prediction
[0,15]

Ω Weight resolution (weight bit resolution is
Ω+3)

[4,19]

νmin Weight update scaling exponent initial
parameter

[−6,νmax]

νmax Weight update scaling exponent final
parameter

[νmin,9]

tinc Weight update scaling exponent change
interval

Power of two, [24,211]

R Register size [max{32,D+Ω+2},64]
Encoder parameters
Umax Unary length limit [8,32]
γ0 Initial count exponent [1,8]
γ∗ Re-scaling counter size [max{4,γ0},9]
K Accumulator initialization constant [0,D−2]

Table 5.1: Selectable parameters for the CCSDS123 compressor

72 Chapter 5. CCSDS123 theory and background

6

Hardware implementation of
CCSDS123 compressor

This chapter will detail the implementation of a CCSDS123 compressor for FPGA in
VHDL. The chapter will start with an analysis of the various tradeoffs that must be
considered when designing a CCSDS123 compressor, followed by a presentation of pre-
vious hardware implementations. The bulk of the chapter will be detailing two imple-
mentations of CCSDS123: First, a serial implementation consisting of one processing
pipeline that can compress one image sample per clock cycle is presented, with detailed
descriptions of each stage in the pipeline. Following this, a parallelized version will be
presented where several pipelines are compressing samples in parallel.

6.1 Memory and performance trade-offs

CCSDS123 supports compression in all three of the common sample orderings, BIP, BIL
and BSQ. When using the sample adaptive encoder, the choice of ordering has no effect
on the compressed image size, because the compression process is completely separate
for each band, and for each of the sample orderings pixels are processed in an upper-
left to lower-right fashion in each band. The only difference between sample orderings
when using the sample adaptive encoder is the ordering of the encoded samples in the
output bitstream. Sample ordering can therefore be chosen such that it fits best with
the larger system (image sensor, from memory streaming) and such that it optimizes
resource usage or parallelization. In the subsequent sections several tradeoffs between
the different sample orderings will be considered:

• Input image sample ordering with regards to streaming

73

74 Chapter 6. Hardware implementation of CCSDS123 compressor

• Space requirements for weights, previous local differences and accumulators
• Pipelining and parallelization limitations

6.1.1 Streaming efficiency

In a typical HSI system, samples are either streamed from a memory or directly from
a camera sensor pipeline (on the fly). In the case of streaming from a camera sensor,
the native sample ordering from the sensor essentially dictates the sample ordering cho-
sen for the CCSDS123 implementation. Converting on-the-fly between BIP and BIL
orderings can be performed with relatively small memory needs (storage is needed for
approximately one line of image data to buffer up full pixels), but converting between
BI orderings and BSQ is not feasible to do on-the-fly, as it would require a whole cube
to be buffered.

In the case of streaming from memory, there is more leeway since memory access pat-
terns can be changed to achieve the wanted sample ordering regardless of how samples
are ordered in memory. However, as Chapter 2 showed, this comes with performance
penalties related to the memory subsystem’s ability to do strided accesses.

6.1.2 Local space requirements

6.1.2.1 Neighboring samples

When encoding a sample sz,y,x, the neighboring previous samples must also be available
in order to perform the local sum and difference calculations. This means that some
memory must be used to store the samples from the cycle where they are first streamed
until the cycle where they are used as neighbors.

Table 6.1 shows how many cycles this takes for different sample orderings.

Order W NE N NW
BIP Nz (Nx−1)Nz NxNz (Nx +1)Nz
BIL 1 NxNz−1 NxNz NxNz +1
BSQ 1 Nx−1 Nx Nx +1

Table 6.1: Number of samples from the current sample to the previous samples.

6.1.2.2 Weight vectors and accumulators

Each band has its own weight vector used in prediction and accumulator used in the
encoder. These must also be stored in memory while samples from other bands are
being processed. In the case of BIP ordering, sz(t + 1) will be processed Nz samples
after sz(t), which means that the weight vector and accumulator for each band must be

6.1. Memory and performance trade-offs 75

stored in memory. This is also the case for BIL ordering. Under BSQ ordering however,
sz(t + 1) is processed immediately after sz(t), and there is no need to store more than
one weight vector or accumulator.

6.1.2.3 Previous local differences

Another source of memory usage is the need to store the central local differences com-
puted in the P previous bands of the same pixel. Under BIP ordering, these were com-
puted during the P previous cycles. Under BIL ordering, they were computed in the P
previous strips of samples, the least recent PNx cycles previously. Under BSQ ordering,
the whole plane is processed before starting on the next, meaning that the most recent
local difference was produced NxNy cycles previously, and the least recent PNxNy cycles
previously. These are summarised in Table 6.2.

Order z−1 z−2 ... z−P
BIP 1 2 P
BIL Nx 2Nx PNx
BSQ NxNy 2NxNy PNxNy

Table 6.2: Number of samples from the current sample to sample from the same pixel in
the previous band

6.1.2.4 Summed up

Table 6.3 shows a summary of memory requirements for different sample orderings.
Which sample ordering requires most memory, depends somewhat on the image sizes
used. If the spatial dimensions Nx and Ny are relatively small but the number of bands
is large, BSQ ordering might be the best choice, but for most images where spatial
dimensions are larger and the number of bands Nz is smaller, it is clear that BSQ ordering
requires huge amounts of memory, even for small P. For example, the HICO images
have the size 512× 2000× 128 with 16 bits per sample, and with a typical value of
P = 3, 6.95 MB of storage is required just to store the previous local differences. This
alone exceeds the total available block RAM of 4.9MB in a mid-range Zynq-7020 SoC.
For larger P it quickly grows past the available block RAM capacity also in high end
devices.

Order Previous samples Local differences Weights vectors Accumulator
BIP (Nx +1)NzD P(D+3) NzCz(Ω+3) Nz(D+ γ∗)
BIL (NxNz +1)D PNx(D+3) NzCz(Ω+3) Nz(D+ γ∗)
BSQ (Nx +1)D PNxNy(D+3) Cz(Ω+3) D+ γ∗

Table 6.3: Memory usage comparison between sample orderings

76 Chapter 6. Hardware implementation of CCSDS123 compressor

6.1.3 Pipelining and parallelization

The limiting factor for pipelined and parallel operation of the CCSDS123 algorithm
is the fact that calculating the predicted sample for sz(t + 1) requires the weight vector
Wz(t+1) which is calculated from the prediction of sz(t). This means that the prediction
calculation for sz(t + 1) cannot be started simultaneously with the calculation for sz(t).
This rules out parallelization for BIL and BSQ sample orderings, and it also limits how
often new samples can be accepted by the core. A completely pipelined design with one
sample accepted per clock cycle would be hard to implement, as it would require the
whole prediction and weight update process to be done in one clock cycle.

For BIP ordering, this is not an issue since the sample following sz(t) is sz+1(t), which
has no relation with sz(t) and can be processed simultaneously with sz(t). This also
means that a pipelined serial implementation which accepts one new sample per clock
cycle is easy to achieve.

6.2 Previous work

Several hardware implementations of CCSDS123 have been done previously, with dif-
ferent optimization goals in focus. A summary of previous implementations is shown in
Table 6.4.

Implementation Order Memory On-the-fly
Keymeulen et al [13] BIP Internal Unknown
Santos et al [14] BSQ Internal, multiple access No
Bascones et al [15] BIP Internal Yes
Theodorou et al [16] BIP External and internal No

Table 6.4: Previous CCSDS123 implementations

The oldest implementation looked at is by Keymeulen et al [13], which is the first hard-
ware implementation of the CCSDS123 standard. It assumes BIP ordering of incoming
samples and is capable of compressing one sample per clock cycle. Although the pa-
per shows incoming samples coming from a DDR memory, the authors also make it
clear that samples are read once in a row by row fashion, and hence this implementation
could be used for on-the-fly processing. The core stores weigths, accumulators and other
temporaries within the core.

Santos et al [14] present an implementation using BSQ sample ordering, with the main
focus being on low complexity and low memory footprint. As is seen in Table 6.3, BSQ
ordering has big advantages in the space needed to store previous samples as well as
just needing to store one weight vector and one accumulator, but local differences for
each sample in the P previous bands must be stored. The paper presents an approach
where local differences don’t have to be stored but are re-calculated when needed, and

6.2. Previous work 77

as such the implementation achieves very low memory usage. However, the price is paid
in input bandwidth efficiency, because the approach requires each sample to be read
2(P+1) times [14]. In addition, arranging the input stream in such a way that samples
are repeated requires either the memory access pattern to be non-sequential, which can
potentially reduce streaming efficiency, or that the data is arranged in memory in the
desired way, which would require 2(P+ 1) as much storage. In addition, reading each
sample several times during the compression process prohibits on the fly compression
of image data coming straight from the image sensor.

The most high performant serial CCSDS123 implementation that has been found is pro-
posed by Theodorou et al[17]. It uses BIP ordering and is capable by compressing one
sample per clock cycle. It relies on external DDR memory to buffer samples coming
from the image sensor such that the current sample as well as the North and North East
neighboring samples can be streamed in parallel into the core. This greatly reduces the
amount of on-chip memory needed, since previous sample storage is the largest contrib-
utor to total memory usage for BIP ordering, as seen in Table 6.3. The downside to this
is however that the implementation does not support direct on the fly compression, at
least not without some extra logic dealing with streaming to and from the DDR memory.

Another implementation using BIP ordering is proposed by Báscones et al [15]. The
ability to perform compression without relying on external memory is highlighted in this
paper. This is achieved by queuing incoming samples in FIFOs internally in the FPGA
to obtain the neighboring samples. Local memory requirements for this implementation
is as shown in the BIP row of Table 6.3; memory usage scales linearly with Nx ·Nz.
The advantage of this solution is the ability to perform on the fly compression, since it
compresses samples sequentially and requires each sample to be read only once.

Báscones et al also propose a parallel CCSDS123 implementation [18]. It naturally uses
BIP ordering, since that is the only ordering in which data dependencies between sub-
sequent samples can be avoided. The architecture proposed in this paper consists of C
instances of the same CCSDS core, each processing their own sample. Local differences
are shared between the cores, since e.g. the core handling sz+1 will need the local central
difference dz produced by the core that is handling sz. Other than sharing local differ-
ences, the cores are operating independently of one another, each with its own weight
storage, sample storage and so on. This means that each CCSDS core must handle sam-
ples from a fixed subset of bands to avoid sharing of weights and accumulators between
cores. For instance, core 0 must handle s0,sC,s2C and so on, while core 1 must handle
s1, sC+1, s2C+1 and so on. This has the implication that if Nz is not divisible by C, some
of the cores will be unused when the last samples of each pixel are being processed,
which is pointed out in the paper with the recommendation that C is selected such that it
divides Nz.

Another limitation of this parallel design is that even though C CCSDS cores are operat-
ing in parallel, the proposed design as a whole is not fully parallel because packing the
resulting code words from each core into blocks is done serially. The paper does point
out that the serial packing circuit can be clocked faster, but nonetheless this represents a
throughput bottleneck for large C.

78 Chapter 6. Hardware implementation of CCSDS123 compressor

6.3 Existing software implementations

When developing a hardware implementation of an algorithm, having a software imple-
mentation to compare results with is a great advantage. There are at least two software
implementations of CCSDS123 that have been considered when work on this thesis
commenced.

The European Space Agency (ESA) have a reference software implementation available
for download on their website [19]. This implementation is written in C and is open
source. Being a reference implementation, it supports all input sample orderings (BIP,
BIL, BSQ), output orderings, and all the selectable parameters listed in Table 5.1.

Another implementation is Emporda, an implementation created by the Group on In-
teractive Coding of Images (GICI) at the Autonomous University of Barcelona [20].
The Emporda implementation is also very complete, covering all possible parameters,
compression orders, sample formats, and so on. It is written in Java and is also open
source.

From a performance stand point, the reference implementation is somewhat faster as it
is written in C, but the code in the Emporda implementation seems more organized and
easier to understand. Emporda was therefore chosen as the implementation to use during
development of the hardware core. Throughout the development process, it turned out to
be easy to add debug printing statements in Emporda to show intermediate values during
various computations and comparing those to signal values in simulation. Emporda was
also used to create an automatic test system that will be detailed in Chapter 8.

6.4 Serial implementation

In the SmallSat project, the image sensor is scanning the image in a push broom fash-
ion, meaning that all spectral components of one line of pixels are captured at once. If
image data is to be compressed using CCSDS123 directly from the image sensor, this
means that either BIL or BIP ordering must be used. BSQ ordering would require the
whole cube to be captured and stored before compression can start. For the initial serial
implementation of the CCSDS123 algorithm, BIP was chosen because it makes it much
easier to later develop a parallelized version of the algorithm.

An overview of the CCSDS123 implementation is shown in Figure 6.1. Each box in this
figure represents a module, each of which will be detailed in the next sections.

Figure 6.2 show how pipeline operations are scheduled.

6.4. Serial implementation 79

Figure 6.1: Overview of the CCSDS123 BIP implementation. Bold arrows show the
main data path. Each box represents a VHDL module

Figure 6.2: Scheduling of pipeline operations. The dashed bars indicate clock cycles.
Packing into 64 bit output words takes a variable number of clock cycles depending on
the size of encoded words.

80 Chapter 6. Hardware implementation of CCSDS123 compressor

6.4.1 Control signal generation

In addition to the actual data passed between the different modules, some control infor-
mation is passed along as well.

A set of counters is used to keep track of the x, y and z coordinates of the current sample
that is coming in. The counter values are used to generate the following control signals:

• z value, the band of the current sample
• Flags indicating if the pixel is in the first line, the first pixel in a line, last in a line

or the last of all
• Weight update scaling exponent ρ(t), used in the weight update calculation

6.4.2 Sample delay

The sample delay module takes care of delaying incoming samples in such a way that at
each clock cycle, the current, as well as the neighboring previous samples are available.
This is achieved by chaining together FIFOs of particular lengths, as shown in Figure
6.3.

As an example, the number of samples between a given sample and the one in the same
band but one pixel to the left, is exactly NZ . This means that if sz,y,x−1 is pushed into a
FIFO of depth NZ , it will be present at the FIFO’s output NZ cycles later, in the same
cycle that sz,y,x is read.

The sample delay is the most memory consuming part of the CCSDS123 implementa-
tion. The amount of memory needed in bits is

RAM bits = D(3 ·NZ +(NX −2) ·NZ) = D(NX +1)NZ .

Figure 6.3: Sample delay FIFOs. Each box represents a FIFO with a depth of exactly
the number shown on each box.

6.4. Serial implementation 81

6.4.3 Local sum and difference calculations

The local sum and difference calculations are performed in a three stage pipeline, shown
in Figure 6.4. The first two stages compute the local sum value, while the last stage
computes the local central difference, dz,y,x and the directional differences, dNW

z,y,x, dW
z,y,x,

dN
z,y,x.

The local sum calculation shown in (5.1) is split across two pipeline stages to reduce
delay. In the first stage, two values, term1 and term2 are calculated as shown in the
following equations.

term1 =


sz,y,x−1 + sz,y−1,x−1, y > 0,0 < x < NX −1
4sz,y,x−1, y = 0,0 < x < NX −1
2sz,y−1,x, y > 0,x = 0
sz,y,x−1 + sz,y−1,x−1, y > 0,x = NX −1

term2 =


sz,y−1,x + sz,y−1,x+1, y > 0,0 < x < NX −1
0, y = 0,0 < x < NX −1
2sz,y−1,x+1, y > 0,x = 0
2sz,y−1,x, y > 0,x = NX −1

In the next pipeline stage, the local sum is produced by summing term1 and term2.

In the last pipeline stage, the local central and directional differences are calculated.

Figure 6.4: Local sum, local difference and central difference calculations

82 Chapter 6. Hardware implementation of CCSDS123 compressor

6.4.4 Central difference store

The central difference store keeps the local central differences computed in the previous
P bands, since these are needed together with the directional differences to form the
local difference vector Uz,y,x.

The local differences are stored in a shift register, as shown in Figure 6.5. Each cycle,
the local central difference just computed is stored in the first register, while the previous
contents is shifted one step. When z = Nz−1, the contents of the shift register is zeroed,
such that prediction of a new pixel doesn’t use local differences from the previous pixel.

6.4.5 Weight store

The weight store keeps the weight vectors in between updating the weights for band
z and reading the same band again for the next pixel. Weight vectors are stored in a
block RAM, in the order corresponding to the band they belong to, meaning that the
first index in the RAM is the weight vector for z = 0, the next is for z = 1 and so on. A
dual port block RAM is used to be able to read a weight vector from one location while
simultaneously updating the weight value at another.

The z value of the incoming sample is used as an address to read the corresponding
weight from the weight store. Similarly, when updating weights, the z value of the new
weight vector is used as a write address. Figure 6.6 illustrates the situation when the
weight vector Wzin(t) in band zin is read and the weight vector Wzupdate(t + 1) is being
updated. The band zupdate is related to the band zin of the currently processed sample as:

zupdate = (zin−N) mod Nz, (6.1)

where N = 1+ 2+ S+ 2+ 3 is the delay which corresponds to the number of pipeline
stages from the weight reading operation to the end of the weight update operation. The
value of N depends on the number of tree adder stages S in the dot product. The time
diagram of the described pipeline is given in Figure 6.7.

Reading a weight vector takes one clock cycle. The read is initiated when a new input
sample is handshaked, and is done in parallel with the local sum and difference compu-

Figure 6.5: Local difference store

6.4. Serial implementation 83

tations. Because these computations take three clock cycles, it is necessary to delay the
read weight vector from the RAM by two cycles, such that the local difference vector
and weight vector for the same sample arrive at the dot product module simultaneously,
as shown in the timing diagram in Figure 6.7. This is taken into account by providing
the weight store with a variable length shift register which will delay the data by a given
number of cycles set by a generic constant in the module.

Since it takes N cycles from a weight has been read until the updated weight is stored,
the number of bands in the image, Nz, can generally not be less than N unless the input
stream is stalled such that the updated weights for a given sample are stored before
attempting to read them. This is of course only possible for from-memory streaming;
for on-the-fly processing it is not an option to stall the stream, so in this case we must
have Nz ≥ N. For most hyperspectral imagers, this is not an issue as Nz is much greater
than N.

6.4.6 Dot product

The dot product is performed in a pipeline where the first stage multiplies each element
in Uz(t) with the corresponding element in Wz(t), and the following stages make up a
tree of adders that computes the sum of the multiplication results. Figure 6.8 shows the
structure of the dot product module.

The number of stages needed in the adder tree is given by S = dlog2(Cz)e. When the
number of elements is a power of 2, the adder tree is a perfect binary tree, and it can be
described as follows:

s(2S + i) = s(2i)+ s(2i+1) for 0≤ i≤ 2S−2,

where the initial indices are the multiplications:

s(i) = ui ·ωi for 0≤ i≤ 2S−1.

The result taken from the last index:

d̂z = s(2S+1−2).

Figure 6.6: The state of the weight store when current input sample is sNz−3(t)

84 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.7: Timing diagram of pipeline operations from reading a weight vector until
writing back the updated weight vector

For the case when Cz is not a power of 2, the tree is no longer a perfect binary tree,
but it can still be described as one where the elements s(i) for i ≥Cz are set to 0. This
is illustrated in Figure 6.9 for the case where Cz = 3. The benefit of this approach is
that the adder tree is described in the same way no matter the value of Cz. Even though
unnecessary registers and adders are included, the synthesis tool is able to infer that the
0 inputs will have no impact and removes them.

6.4.7 Predictor

The predictor computes the scaled predicted sample, as defined in (5.7). This calculation
is split across two pipeline stages, where the first stage computes the numerator in the
fraction that is part of the argument to the clip function:

temp1 = mod∗R
[
d̂z(t)+2Ω(σz(t))

]
Multiplying by a power of 2 is implemented by shifting. The term 4smid in (5.7) is
removed since this is an implementation using signed numbers, hence smid = 0.

In the next stage, the scaled predicted value is computed. For the case where t > 0, the
computation performed is

s̃z(t) = clip
(⌊

temp1
2Ω+1

⌋
+1,{2smin,2smax +1}

)
,

where the floor value of the division by 2Ω+1 is performed by right shifting.

For the case where t = 0 and P > 0,z > 0, the sample value from the previous band is
taken from a register that stores the sample from the previous calculation.

A multiplexer finally chooses between one of the three cases in (5.7).

6.4. Serial implementation 85

Figure 6.8: Dot product when Cz = 4 Figure 6.9: Dot product when Cz = 3. The
dashed multiplication and sum are removed
by the synthesis tool during elaboration.

Figure 6.10: Predictor implementation

86 Chapter 6. Hardware implementation of CCSDS123 compressor

6.4.8 Weight update

The weight update computation shown in (5.13) is performed in three pipeline stages.
The weight update scaling exponent, ρ(t), is already computed in the Control signal
generation and sent along with the pixel.

The first stage of the computation is the component-wise product

temp1 = sgn+[ez(t)] ·Uz(t),

This product is equivalent to changing the sign of each component depending on whether
ez(t) is positive or negative. Since ez(t) is defined as 2sz(t)− ŝz(t), this is equivalent to
changing the sign when 2sz(t) < ŝz(t), and otherwise performing no change to Uz(t).
This is implemented by computing both Uz(t) and −Uz(t) and choosing based on the
result of the comparison.

The second stage computes

temp2 =

⌊
1
2

(
2−ρ(t)temp1 +1

)⌋
.

Since ρ(t) has a fairly small range of possible values (at most -6 to 9), the values of
2−ρ(t)temp1 resulting from each possible value of ρ(t) are calculated in parallel, and
then a multiplexer chooses which one to use based on the actual value of ρ(t). The
calculations are mere shifts, either to the left or right, depending on the sign of ρ(t). The
selected vector out from the multiplexer is added with 1 and shifted one step to the right
to perform the divison by 2.

The final stage of the new weight calculation computes

Wz(t +1) = clip(Wz(t)+ temp2,{ωmin,ωmax}) .

6.4.9 Residual mapping

The residual mapping is computed in two pipeline stages. The first stage computes ∆z(t)
and θz(t) as defined in (5.9) and (5.11), respectively. The second stage computes the
residual mapping δz(t) as defined in (5.10), using a multiplexer to select between the
different cases.

One of the cases in (5.10) is where the inequality 0≤ (−1)s̃z(t)∆z(t)≤ θz(t) holds. The
expression (−1)s̃z(t) is equivalent to 1 when s̃z(t) is even, and −1 when s̃z(t) is odd.
Using this, the inequality can be re-stated as

s̃z(t) is even and ∆z ≥ 0 or s̃z(t) is odd and ∆z(t)≤ 0.

This is easily implemented in hardware, as checking for odd/evenness is determined by
whether the LSB is 0 or 1.

6.4. Serial implementation 87

Figure 6.11: Weight update implementation

Figure 6.12: Residual mapping implementation

88 Chapter 6. Hardware implementation of CCSDS123 compressor

6.4.10 Encoding

An overview of the sample adaptive encoder implementation is shown in Figure 6.13.
As shown, the encoder is implemented as a five stage pipeline.

The first and second stages compute the right hand side (rhs) used in the inequalities
shown in (5.17) that determine the value of kz. In the third stage, each of these inequali-
ties are evaluated in parallel.

In the fourth stage kz and uz are chosen based on the results from each inequality evalu-
ation. A priority encoder is used in combination with a multiplexer to do this selection,
such that the highest integer i where the inequality with left hand side Γ(t)2i holds, is
chosen as the value for kz, and δz(t)/2i is chosen as the value for uz. In addition, a
truncated version of δz(t) with only the kz least significant bits is created. The bits are
right-shifted so that the most significant bits are taken from the truncated δz(t) and the
rest is filled with zeros.

The fifth stage of the computation puts together the code word based on the rules detailed
in ¡some section¿, and computes the number of bits to use.

6.4.11 Bit packing

The bit packing module collects variable-length encoded words into packets of a given,
configurable size N. The packer’s operation centers around two registers of the output
size N. The registers alternate between being the current and next. Incoming words
from the encoder are stored in the current register. When the current register is full, any
left over bits are put in the next register, and the current register’s data is forwarded to
the output. In the following cycle, the registers switch roles such that the next register
becomes the current register, and the current register becomes the next register.

Due to the variable length of the incoming code words, the bit position in the current
register where an incoming word should be stored can be any value ranging from the
most significant bit N−1 to the least significant bit 0. It is therefore necessary to create
N different candidates for the new value of the register where for each i ∈ [0,N−1], the
candidate for the new value consists of the i most significant bits of the current register
followed by the M bit padded input word. To select the correct candidate, a write pointer
is used to keep track of where the first non-occupied bit position is in the current register.

Figure 6.14 illustrates an example of how the packing is performed. In the example, the
left-most register starts out as the current register, and the incoming words in the first
4 cycles are put into the current register. The fifth word is larger than the remaining
space in the current register, so the leftover bits are stored as the most significant bits of
the next register. In the next clock cycle, the current register, which is now filled up, is
written to the output FIFO, and the next and current registers swap roles. The next input
words are written to what is now the current register, until we get the same situation
again in cycle 8.

6.4. Serial implementation 89

Figure 6.13: Overview of sample adaptive encoder. The dashed lines indicate the divide
between different pipeline stages

90 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.14: Illustration of the packing of variable length code words into fixed-size
packets

6.4.12 AXI Stream interfacing

When part of a complete system, the output stream might need to be stalled, for example
when the DMA core is waiting for write access to the memory. Stopping the output
stream is not supported by the CCSDS123 core itself. Only data and valid signals are
used to propagate data through the pipelines internally in the core. This choice was made
to simplify the implementation by avoiding valid/ready handshaking at every pipeline
stage within the core. Because the CCSDS123 core itself cannot handle output stalls, it
is necessary to buffer the output from the CCSDS123 core in a FIFO, so that pending
data is not lost when the AXI Stream slave that is receiving the compressed data is not
ready to receive.

Figure 6.15 shows the top level AXI Stream interfacing with the core, with the output
FIFO. If the output is stalled for a long period of time, the FIFO might become full and
data will be lost. To avoid this situation, the number of data words written to the FIFO,
which is available as an output signal from the FIFO, is monitored. Whenever this count
grows larger than a certain limit, the tready signal in the input AXI Stream interface
is de-asserted. No new data will enter into the CCSDS123 core, but all data present in
all pipeline stages of the core at that point in time will still come out in the following
cycles. This means that the FIFO capacity limit at which tready is de-asserted must be
low enough such that the FIFO has room for the additional data words that will come out

6.5. Parallel implementation 91

of the CCSDS123 core. The limit is given by the worst-case number of packed words
that can come out of the core, which is when each of the Nstages pipeline stages has valid
data, and each data word out from the encoder has the maximum length of Umax +D:

limit = FIFO capcity−
⌈

Nstages(Umax +D)

packed block size

⌉
.

The size of the FIFO can be varied, as long as it is larger than this limit. Choosing the
size is a trade-off between area usage and how often the input of the core is stalled when
the output is stalled.

6.5 Parallel implementation

This section will detail a parallel implementation of CCSDS123. First some challenges
related to distribution of samples will be introduced, followed by helpful terminology
that will make descriptions of the implementation clearer.

6.5.1 Streaming of samples in parallel

If Np samples are streamed in parallel, Np instances of each computational module are
needed to compress each sample simultaneously. The chain of computation modules,
starting at the local sum and difference calculations and ending at the sample adaptive
encoding, will be referred to as a pipeline.

When streamed in BIP order with Np samples in parallel, the incoming data words can
be thought of as consisting of Np lanes which can be numbered from 0 to Np−1, where
lane 0 are the D least significant bits, lane 1 are the D next least significant bits, and so
on. Figures 6.16 and 6.17 show how samples are placed in lanes for the first 10 beats of
a transfer, when Np is 4 and Nz is 8 and 9, respectively. The first sample in each pixel is
highlighted.

If it is assumed that Nz is divisible by Np, i.e. Nz modNp = 0, which is the case in
Figure 6.16, then each lane will always contain a fixed subset of bands in each pixel. For

Figure 6.15: The top level diagram for the CCSDS123 IP module

92 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.16: Sample placement in
lanes when Nz = 8 and Np = 4

Figure 6.17: Sample placement in
lanes when Nz = 9 and Np = 4

instance, lane n = 0 contains samples s0(t) and s4(t) in bands z = 0 and z = 4, whereas
lane n = 1 always contains s1(t) and s5(t). More generally, sz(t) is always streamed
in lane n = zmodNz. This means that the serial pipeline implementation can be used
almost as-is, with one instance for each lane. All FIFO depths, RAM sizes and so that
are dependent on z, are replaced by z/Nz. During development, this kind of parallel
implementation was the first step.

Things become more complicated when Nz is not divisible by Np. When this is the case,
bands are no longer confined to a specific lane, but ”shift” between lanes as Figure 6.5.3
shows: s0(0) is in lane 0, but s0(1) is in lane 1, and so on. Two options were considered
in this case.

One option is to stall the input stream when the last sample in a pixel has been received,
and realign the stream such that in the next beat the first sample of the next pixel is in
lane 0. This would allow each pipeline to process a fixed subset of samples similarly
to when Nz is divisible by Np, but it would reduce throughput (since the input stream is
stalled once per pixel) and require extra logic to perform input stalling and realigning.

The other option is to not stall the input and instead let the set of bands handled by
each pipeline overlap. This means that the pipelines must share information besides
the local differences between them. Using Figure 6.17 as an example, pipeline 0 will
produce W0(1) when processing s0(0), which is needed by pipeline 1 when processing
s0(1). The same applies to accumulators used in the encoder. Sample delay is also
more complicated, since a sample that arrived in lane 0 might for example be used as
the neighbor of a sample that arrived in lane 2. The upside is that throughput would be
maximized under this approach.

6.5. Parallel implementation 93

6.5.2 Overview of architecture

An overview of the parallelized implementation is shown in Figure 6.18. The weight
store, central local difference store and accumulator storage is shared between the pipelines.
On overview of each pipeline is shown in Figure 6.19. The modules inside each pipeline
remain largely unchanged from their descriptions in Section 6.4. The only changes that
have been made are related to routing of data.

6.5.3 Definitions and terms

Before describing the building blocks of the parallel implementation, some helpful terms
and notations will be defined. When Nz is not divisible by Np, it was observed that
samples from a particular band shift between different lanes. Therefore, the samples
from the same band in previous or future pixels are not necessarily in the same lane as
the current sample. It is therefore necessary to be able to find which lane a given sample
will occur in.

The stream of Np samples per beat can be thought of as being in a grid with Np columns
numbered from 0 to Np − 1. If a certain sample is in lane i, that is in column i of
this imagined grid, then the sample n samples later is in lane (i + n)modNp, where
the modulo operation accounts for the wrap-around that occurs when i = Np− 1. In
particular, we are interested in the case where n = Nz, i.e. the distance between samples
from different pixels in the same band. In this case, we can define

shift(i,∆t) = (i+Nz∆t)modNp

as the lane which the sample sz(t +∆t) is in, given that sz(t) is in lane i. Referring to
Figure 6.17, we have for example that sample s3(0) is in lane 3, and shi f t(3,2) = 0.

Another observation we make from Figure 6.17 is the fact that the number of beats be-
tween samples in the same band is not constant. For instance, s0(1) arrives two beats
after s0(0), but s0(4) arrives three beats after s0(3). For the sample delaying which
produces the neighboring samples this becomes important, since the current and neigh-
boring samples must arrive in sync. Again thinking of the samples as placed in a grid,
finding the number of beats between two samples is the same as finding how many rows
there are between them. This is influenced by which lanes the samples are in. For in-
stance, if sz(t) is in lane 1, then sz+1(t) is in lane 2 of the same row, but if sz(t) is in
lane 3 (and we assume Np = 4), then sz+1(t) would be in lane 0 of the next row. Finding
how many row boundaries are crossed can be found by adding the initial lane number to
the number of samples to skip, and doing integer division of this sum by Np. Letting the
number of samples to skip be Nz, we can define

delay(i,∆t) =
⌊

i+Nz∆t
Np

⌋

94 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.18: Overview of the parallel CCSDS123 implementation when number of
pipelines is 4

Figure 6.19: Overview of pipeline architecture

6.5. Parallel implementation 95

as the number of beats from sz(t) arrives until sz(t+∆t) arrives, given that sz(t) is in lane
i. As an example using Figure 6.17, we have that s0(0) is in lane 0, and delay(0,1) = 2,
and that s0(3) is in lane 3 and delay(3,1) = 3.

6.5.4 Sample delay

The sample delay implementation is shown in Figure 6.20. The basic structure is similar
to the serial implementation, with four different FIFOs to produce the W, NE, N and
NW delayed samples. For each lane i there is a set of such FIFOs, with the depth of the
FIFOs given by the delay function to get the appropriate delay such that the neighboring
sample is available at the same time as the corresponding input sample.

Due to the shifting described previously, the samples coming out of the FIFOs must be
shifted according to the shift function, so that the delayed sample is used by the same
pipeline that is processing the corresponding input sample. Figures 6.21 and 6.22 show
examples of how this works when Np = 4 and Nz = 9 and Nz = 11, respectively. The
rows of samples highlighted show the incoming samples at a given beat, and the output
from the W delay stage in the same beat. In each lane in the incoming stream we can
observe sz(t) and in the same lane from the delay stage, the W neighbor sz(t−1).

Figure 6.20: Sample delay in parallel CCSDS123 implementation. The actual routing
might be different than shown, depending on the value of Nz and the number of pixels
∆t.

96 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.21: Example of sample delay to obtain W neighbor samples when Np = 4 and
Nz = 9

Figure 6.22: Example of sample delay to obtain W neighbor samples when Np = 4 and
Nz = 11

6.5.5 Local differences

In the serial implementation, central local differences are stored in the local difference
store for use in prediction of subsequent samples. In the parallel implementation there
is still a need for a local difference store (as long as P > 0), but it is also necessary
for the pipelines to share local differences with pipelines that have a higher index. For
instance, if pipeline 3 is processing sz+3(t), then the local difference dz+2(t) is calculated
by pipeline 2 and can be taken directly from there. However, the local difference dz−1(t)
was processed in the cycle before and therefore needs to be stored. Figure 6.23 shows
how the local difference vectors for each pipeline are assembled from local differences
from lower indexed pipelines and from the local difference store.

6.5. Parallel implementation 97

When z < P, only the z previous local differences should be used. In the serial im-
plementation this was solved by zeroing the contents of the local difference store each
time z = Nz− 1, such that no local remaining differences from the previous pixel was
used. The same approach does not work for the parallel implementation, since previous
local differences are coming directly from other pipelines. If, for instance, pipeline 2
is handling sNz−1(t) and pipeline 3 is handling s0(t + 1), then the local difference from
pipeline 2 should not be used by pipeline 3. This was solved by having each pipeline
mask the incoming previous local differences based on the z coordinate of the sample it
is processing, such that if z < P then the local differences with index i ≤ z are included
in the local difference vector, while the positions with index i > z are set to zero.

6.5.6 Weight and accumulator storage

Weights and accumulators are stored in the exact same way, so two instances of the same
module, called shared store is used for both of them. The shared store is implemented
in much the same way as the sample delay, but an important difference is that while
the sample delay consists of rigid fixed-length FIFOs where the least recent element is
pushed out simultaneously with the current samples coming in, the shared store must
handle variable distances between read and write indices.

Figure 6.24 shows an overview of the shared store implementation. There are Np block
RAMs, labeled bank 0 to Np− 1, one for each lane. Each bank has the same depth,
M = dNz/Npe. To keep track of where to read and write from, a read counter and a write
counter is used, which the read and write addresses in each bank are derived from. The
counters are initialized such that the distance between their values is delay(0,1), and
are subsequently incremented each time read enable or write enable is high. The write
counter is used directly as the write address in each bank, while the read address for each
bank i is calculated as follows:

read address(i) =

{
read counter, i+Nz modNp < Np

(read counter−1)modM, i+Nz modNp ≥ Np

This makes the initial distance between the initial read address and write address for
each bank equal to delay(i,1)

Figure 6.25 shows the state of the weight store when Nz = 61 and Np = 4, at two dif-
ferent points in time. The figure to the left shows the state right after reset, before any
processing has started. The read counter is initialized to 0, while the write counter is
initialized to delay(0,1) = 15. For lanes 0 through 2, the read addresses are equal to the
counter value, which is 0, whereas for lane 3, the read address is one less, which wraps
around to 15. Hence, for lane 3, both the read address and the write address are the same.

As samples start arriving at the input of the core, the read enable of the weight store
will be high, and the read counter will start incrementing. The data that is read at this
point in time from the weight store is not actually used, since for the first pixel there is
no prediction performed. N cycles after the first set of samples arrived at the input of

98 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.23: Routing of central differences between pipelines when Np = 4 and P = 5

the core, the updated weights for pixel 1 will start being produced by the weight update
module. From that point on, the write enable is high, and weights are written into each
lane in the weight store at the address pointed to by the weight counter. The figure to
the right shows the state of the shared store at this time, where the first weights for the
next pixel are being written to memory when the read counter has moved N steps from
the initial position.

Figure 6.26 shows the continuation of this example. To the left the state of the weight
store is shown a few clock cycles later, when the read pointer has come to 15, and the
first weights for the next pixel are being read simultaneously with samples s60(0), s0(1),
s1(1) and s2(1) arriving at the input. To the right the state is shown 15 cycles later when
the next pixel is arriving at the input.

An optional read delay is also available for cases where read data should be output a
given number of clock cycles after the read enable signal is asserted. The read delay
is set by a generic parameter and the read enable signal will be delayed by the given
number of clock cycles before triggering a read in the bank memories.

6.5. Parallel implementation 99

Figure 6.24: Implementation of the shared store module

Figure 6.25: State of the shared store when used as weight store, when Nz = 61 and
Np = 4. The figure to the left shows the initial state after reset, while the right figure
shows the state when the last samples of pixel 0 and the first samples of pixel 1 are
arriving

100 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.26: Implementation of the shared store module

6.5.7 Packing of variable length words

The last stage of the parallel implementation data flow is packing the variable-length
encoded words from each pipeline into fixed-size blocks and outputting these blocks on
the output stream interface.

Packing of the Np encoded variable-length words from the pipelines is performed by
right-shifting each input word by the length of the previous words and combining (or-
ing) it with the previous results. If the words from the pipelines are labelled W0, ...,
WNp−1 with lengths L0, ... LNp−1, then W0 must be shifted by the number of bits leftover
from the previous cycle, Lprev and or-ed with the bits remaining from the last cycle, Wprev,
to get WprevW0. W1 must be shifted by Lprev +L0 and or-ed with W0 into WprevW0W1. W2
must be shifted by Lprev + L0 +L1 and or-ed with WprevW0W1 to get WprevW0W1W2 and so
on. A problem with this approach is that as the number of possible shifts required for
word Wi grows with Np and with the maximum length Umax +D of each word.

It is possible to take advantage of the fact that the output is going to be in fixed-size
blocks of size B. Instead of shifting each word as described, combining them and then
splitting up into blocks, blocks can be extracted as soon as they are filled up. Each time
the sum of previous words’ lengths exceeds B, a block will then have been extracted,
and the next word can be shifted relative only to the number of bits left over after that
block has been extracted.

If we define si as how many bits input word Wi must be right shifted, we can state this as

si = ΣLi−1 modB,

6.5. Parallel implementation 101

where

ΣLi = Lprev +
i−1

∑
j=0

L j.

Each word needs to be shifted by at most B−1 bits regardless of Np or maximum word
length.

Figure 6.29 shows an example of how this packing works for Np = 4.

The packer is implemented as a three stage pipeline which combines words and packs
them into blocks and pushes them to a FIFO, followed by logic that fetches blocks from
the FIFO and shifts them out when the output stream is ready. An overview is shown in
Figure 6.27.

6.5.7.1 Packing implementation

The first stage in the pipeline computes si and an extraction count ei for each input word
Wi that indicates how many blocks can be extracted when that word Wi is added. The
extraction count is computed as follows:

ei =

⌊
ΣLi

B

⌋
.

It should be noted that the extraction count can only be larger than 1 if Umax +D > B.
For cases where the block size is larger than the maximum output size, the extraction
count can be thought of as a flag indicating whether a block has been filled up when Wi
is added or not.

The second and third stages form what will be termed a combiner chain, and are shown
in Figure 6.28. The combiner chain performs the combining of input words, using the
calculated shift amounts si and extraction counts ei. In addition it receives the remaining
Lprev bits from the previous cycle.

Shifting of each word is performed in parallel, using si to select the desired shifted ver-
sion of Wi from a multiplexer. The last pipeline stage performs the combining of shifted
words and the extraction of full blocks. This is performed in a chain of or-operations
and extraction operations associated with each shifted input word. At each step in this
chain, the shifted input word is or-ed with the remaining bits from the previous step. If
the extraction count ei is non-zero, adding the word Wi has accumulated enough bits to
fill one or more blocks. If e = 0, there is not yet enough bits to extract a full block, so
the accumulated bits are just passed on to the next step.

New full blocks produced at any step are appended to the filled blocks from earlier steps
in the chain and forwarded to the next step together with the new count of full blocks.
The remaining bits after extraction are forwarded to the next step. The remaining bits
from the last step in the chain are connected to a register such that they can be combined
with the words arriving in the next cycle.

102 Chapter 6. Hardware implementation of CCSDS123 compressor

In the case where the last flag is set, the remaining bits are output as a separate block if
the number of remaining bits is non-zero.

6.5.7.2 Output buffering and interfacing

The output from the last step in the combiner chain is the filled blocks and a count of
how many there are. This information and the last flag is pushed into a FIFO. The FIFO
is necessary to handle the limited output bus bandwidth when Np and the length of the
incoming words is larger than the bus width. Even though the average number of bits
output per cycle is lower than the bus width, there might be times during the compression
where this is not the case. Hence it is necessary to buffer the incoming full blocks so
that they can be output sequentially one at a time.

The data word width of the FIFO is given by the maximum number of blocks that can
be extracted in one clock cycle. This value is given by

max number of blocks =
⌊

B−1+Np(Umax +D)

B

⌋
+1,

where B−1 in the numerator is the maximum number of leftover bits from the previous
cycle, Np(Umax +D) is the number of input word bits in the worst case where all have
maximum length, and 1 is added to account for the extra block that can be included when
the last flag is set.

The output logic fetches the set of full blocks, the number of full blocks and the last flag
from the FIFO. In order to sequentially output the blocks from the set of blocks a counter
is used, starting at 0 and counting up each time a block is handshaked on the output. The
counter is used as an index into the set of blocks. At the last block the stream’s tlast
signal is asserted if the last flag from the FIFO is set. When the counter reaches the
number of blocks, a new word is read from the FIFO provided that it is non-empty.

At times when the average bitrate of the encoded samples is higher than the output bus
width, the FIFO might risk becoming full, similarly to the situation described in Section
6.4.12. It is therefore necessary to stall the input stream of the CCSDS123 core before
the FIFO might overflow. The FIFO module used has the ability to set a threshold on
the number of data words in the FIFO, and will output a signal when this threshold is
reached. This signal is used to de-assert tready at the input stream when this is the case.
Similarly to the case in Section 6.4.12, the threshold must be set such that there is room
left in the FIFO for all the packed encoded samples arriving from within the core when
the input stream has been stalled. This number is equal to the total number of pipeline
stages from the input of the core and to the FIFO, which is given by

Nstages = 3+S+2+2+5+3 = S+15,

where S is the number of pipeline stages in the dot product and the other numbers are the
number of pipeline stages in local difference calculation, prediction, residual mapping,
encoding and packing.

6.5. Parallel implementation 103

The depth of the FIFO must be at least as large as Nstages, but should be larger to avoid
stalling the input stream in brief moments where encoded bit rate is high or the output
stream is stalling. The FIFO depth is ultimately a trade-off between performance and
block RAM utilization.

In the case of on the fly processing it is not possible to stall the input stream. Hence,
it is important for the FIFO to be large enough to avoid any overflow situation. The
necessary FIFO depth to avoid overflow is dependant on the expected image statistics
and how fast the predictor can adapt, and is therefore only possible to determine through
testing on actual images.

Figure 6.27: Implementation of variable length word packer

104 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.28: Implementation of combiner chain used in packing

6.5.8 Improved packer

6.5.8.1 Overview

The packing scheme described in the previous section combines each incoming word
serially in combinatorial logic. This is doable for Np < 6, but for larger Np the critical
path has been shown to become too large to meet a timing constraint of 10ns (100 MHz).
The critical path is the summation of lengths Li used to determine the shift of each word
and the extraction count.

To make it possible to have larger Np, an improved version was designed, shown in
Figure 6.30. The new version does not attempt to combine all the Np incoming words in
one large combiner chain, but distributes them across several combiner chains operating
in parallel. The number of combiner chains is determined by a generic parameter setting
the number of words per combiner chain, 1 ≤ Nper chain ≤ Np. Selecting Nper chain has
several tradeoffs which will be discussed further on. Given Np and Nper chain, the number
of combiner chains is Nc = dNp/Nper chaine, and the chains can be numbered from 0 to
Nc−1, where the chain with the lowest index handles the Nper chain words with the lowest
indices, and so on.

6.5. Parallel implementation 105

Figure 6.29: Operation of the variable length word packer

6.5.8.2 Shifts, extraction counts and combiner chains

To eliminate the critical path in the previous packer implementation, the shift amounts
si and extraction counts ei are computed sequentially for each combiner chain, using Nc
clock cycles, as shown in Figure 6.30. Since this takes more than one clock cycle, Lprev
from the previous set of words is not available when computation starts. It is therefore
not possible to compute si and ei directly. What is done instead, is to compute the sums

¯ΣLi =
i−1

∑
j=0

L j = ΣLi−Lprev,

first, and then in the last cycle computing ΣLi = ¯ΣLi +Lprev and then computing si, ei
for use in the combiner chains, and the left over number of bits, Lprev for the next set of
words.

When several combiner chains are working in parallel, the remaining bits out from chain
i cannot be input into chain i+ 1, since this would create a large critical path from the
start of combiner chain 0 all the way through combiner chain Nc− 1. One way this
could be solved, is to apply the same kind of sequential delay as was done for the length
calculations, displacing each combiner chain by one clock cycle from the previous. This
would however require large delay registers for the left-most chains to keep the full
blocks from each chain synchronized with the last chain i = Nc−1, and it would require

106 Chapter 6. Hardware implementation of CCSDS123 compressor

larger FIFOs to prevent overflows due to the extra number of total pipeline stages in the
circuit.

The solution that was developed, was to let each combiner chain shift its input words to
make room for the remaining bits from the previous chain, but not combine them with
the remaining bits from the preceding chain. Instead, the gaps are filled with remaining
bits at the output of each combiner chain. This can be done very efficiently by logically
or-ing the first block from each combiner chain with the remaining bits from the previous
chain. When a chain has produced no blocks, the remaining bits from the chain are or-ed
with the remaining bits from the previous chain and used as the remaining bits to join
with the first block of the next chain, and so on.

Each combiner chain outputs a block set containing the blocks that were produced and
a count of how many there are. Each combiner chain has a dedicated block set FIFO
where this information is pushed when the chain has produced at least one block. A
separate control FIFO is used to keep track of which block set FIFOs contain valid data.
When one or more block sets is pushed to one of the block FIFOs, a new word is pushed
to the control FIFO with a block set mask as well as the last flag that indicates end of
compression. The block set mask is a bit string where each bit corresponds to one of the
combiner chains. For instance, a block set mask ’101’ means that there are valid block
sets from combiner chains 0 and 2. Figure 6.31 shows an example of how this works
when Nc = 3.

An alternative option could be to have all the combiner chains share a common FIFO.
This solution would reduce some of the overhead related to having separate FIFOs (block
RAM instances and control logic), but it would also lead to less effective memory uti-
lization since it would require the maximum number of bits to be stored even if only a
small number of blocks contain valid data, as Figure 6.32 illustrates.

The block output logic detailed in Section 6.5.7.2 is also expanded in the new packer.
Since there are now several block sets if Nc > 1, the output logic must go through each
valid block set and output each valid block within each set. The output logic fetches the
block set mask from the control FIFO and reads from the block set FIFOs corresponding
to the block set mask. The block set corresponding to the left-most bit in the block mask
is loaded into a shift register and during the subsequent cycles, each block in the set is
output until the given number of valid blocks in the set is reached. The next block set (if
any) is loaded into the shift register and the same procedure is repeated until all block
sets have been output, in which case a new control word is read from the control FIFO.

6.5. Parallel implementation 107

Figure 6.30: Implementation of improved variable length word packer

108 Chapter 6. Hardware implementation of CCSDS123 compressor

Figure 6.31: Memory utilization
when using separate block set FI-
FOs

Figure 6.32: Memory utilization
when using one block set FIFO

7

CCSDS123 implementation results

This chapter presents the results gathered for the CCSDS123 implementations. It will
first present an issue that was discovered when gathering results, followed by resource
utilization, timing and power consumption results with analysis and discussion. Finally,
some comparisons with previous implementations will be presented.

7.1 Compression analysis

The Emporda software compressor has been used to run CCSDS123 on a selection of
hyperspectral images to evaluate compression performance and compare it to results on
the same images using JPEG 2000. Images from two different hyperpsectral imagers,
HICO and AVIRIS were used, both calibrated images (L1) and atmospherically cor-
rect versions of the images (L2). Hyperspectral Imager for the Coastal Ocean (HICO)
created at Oregon State University is a spaceborne hyperspectral imaging spectrometer
designed to sample the coastal ocean [21]. Its images should therefore be quite similar
to the images taken by the SmallSat HSI payload, which is also focused on coastal and
ocean imaging. HICO images have the size 512× 2000× 128. The Airborne Visible /
Infrared Imaging Spectrometer (AVIRIS) is another imager, developed by the NASA Jet
Propulsion Laboratory. It is used on board aircraft flying at high altitudes. Images taken
by AVIRIS have the size 614× 512× 224, in other words smaller spatial dimensions
than HICO, but almost twice the number of wavelengths or bands.

The results are shown in Figure 7.1. As the results show, the two perform very similarly.
It should be noted that JPEG 2000 is used here in lossless mode. With loss, JPEG2000
can presumably achieve much better compression ratios. The two show a very similar
compression ratio, with CCSDS123 slightly better for most images. For most of the L1

109

110 Chapter 7. CCSDS123 implementation results

images, the compression ratio is about 3 (meaning that the compressed image has a size
reduced by a factor of 3). Level 2 images do not achieve as good compression ratios.
Interestingly, the drop in compression ratio is smaller for the AVIRIS image. Why there
is such a drop for L2 images is not clear, but this is something that could be investigated
if the CCSDS123 implementation should be applied to compression of L2 images.

Based on this analysis, it is clear that CCSDS123 performs at least as well, and some-
times better than lossless JPEG 2000. A big advantage with CCSDS123 is that it is
designed to be implementable in hardware [12].

HIC
O-L

1B
-1

HIC
O-L

1B
-2

HIC
O-L

1B
-3

HIC
O-L

1B
-4

HIC
O-L

1B
-5

HIC
O-L

1B
-6

HIC
O-L

2-1

HIC
O-L

2-2

HIC
O-L

2-3

HIC
O-L

2-4

HIC
O-L

2-6

AVIR
IS

-L
1

AVIR
IS

-L
2-1

AVIR
IS

-L
2-2

AVIR
IS

-L
2-3

AVIR
IS

-L
2-4

0

0.5

1

1.5

2

2.5

3

C
om

pr
es

si
on

R
at

io

CCSDS123
JPEG 2000

Figure 7.1: Compression performance for CCSDS123 and JPEG 2000

7.2 Implementation results

Table 7.1 shows the default values used for the CCSDS123 parameters when looking
at utilization. The values are the same as used in the CCSDS Information Report on

7.2. Implementation results 111

CCSDS123 [12], as well as in the papers by Báscones et al, which makes it easier to
compare results.

Parameter Description Value
Predictor parameters
D Sample bit resolution 16
P Number of previous bands to use in prediction 3
Ω Weight resolution (weight bit resolution is Ω+3) 19
νmin Weight update scaling exponent initial parameter −1
νmax Weight update scaling exponent final parameter 3
tinc Weight update scaling exponent change interval 26

R Register size 64
Prediction mode Full
Local sum mode Neighbor

Encoder parameters
Umax Unary length limit 18
γ0 Initial count exponent 1
γ∗ Re-scaling counter size 6
K Accumulator initialization constant 3
Image size
Nx Width 512
Ny Height 2000
Nz Bands 128
Core parameters
Nper chain Words per combiner chain min(4,Np)
- Packer FIFO depth 256

Table 7.1: Default CCSDS123 parameters used when analyzing utilization, power and
performance

The default synthesis and implementation (place and route) settings in Xilinx Vivado
have been used. There have been no special optimizations enabled. A clock constraint
of 100 MHz has been used in all synthesis and implementation runs.

7.2.1 Resource utilization

7.2.1.1 Issue with sub-optimal block RAM utilization

When synthesizing the core for different number of pipelines it was discovered that the
number of block RAMs used varied considerably even though it is theoretically supposed
to remain constant. The two effects observed were (for the same set of parameters used
in utilization analysis, shown in Table 7.1):

• Shared store block RAM utilization for weights increasing linearly with Np

112 Chapter 7. CCSDS123 implementation results

• Sample delay block RAM utilization varying from 32 to 48 depending on Np

Both observations can be explained by looking closer at the block RAMs present in the
Zynq 7-series FPGAs. The fundamental block RAM unit has a capacity of 36Kb and can
be configured in a slew of different ways: 32K×1 (meaning 32768 memory locations of
1 bit each), 16K×2, 8K×4, 4K×9, 2K×18, 1K×36 and 512×72 [22]. The synthesis
tool tries to map the RTL to a fitting set of such configurations.

In the case of the weight store (shared store), the issue is the very wide data words used.
For P = 3 and Ω = 19, the width is Cz · (Ω+ 3) = 132 per pipeline. With e.g. Np = 4
the width is already 528 bits. If Nz < 512, this means that block RAMs in the widest
512× 72 configuration can be used, resulting in 132Np/72 block RAMs needed. If Nz
is much less than 512, this means that these block RAMs will be under-utilized, since
only a depth of Nz is needed. A better solution to using block RAMs for this purpose is
to use LUT elements as RAM, which is a feature of the 7-series FPGAs [23]. One LUT
element can be configured as a 32×1 bit dual port RAM, and several such elements can
be connected together to form RAMs. For wide but shallow RAMs, such as the weight
store, this is a good solution since it allows just the right number of LUTs to be used to
create the desired RAM instead of instantiating many under-utilized block RAMs.

In the case of sample delay, the reason for the varying block RAM usage turned out to
be sub-optimal inference on the part of the Vivado synthesis tool. When instantiating
block RAMs to implement an array in RTL code, the synthesis tool will extend its depth
to the closest power of 2 [24]. For large RAM depths, this can have huge effects. For
instance, if the desired depth is 20000, the depth actually implemented will be rounded
up to 215 = 32768, which is an increase of 64%. The suggested solution to this by Xilinx
is to manually write the RTL in such a way that the intended memory is split into smaller
chunks that are powers of 2. In the example case with a depth of 20000, the memory can
be split into one section of depth 214 = 16384 and one section of the remaining depth of
3616, which will be extended to 4096 when inferring block RAM. The result is a much
improved total of 20480 instead of 32768.

To perform this split of large block RAMs into smaller power of 2 sized block RAMs,
a small wrapper module was written. The wrapper module decomposes the given depth
into powers of 2 larger than a given lower limit. For instance, it will decompose 20000
into 214 + 212. This is all done at elaboration time, and the result is used to instantiate
just the right block RAMs to cover the depth given. Address decoding logic is also
instantiated, such that the correct block RAM is selected for different address ranges.

7.2.1.2 Serial implementation results

The area utilization in terms of LUTs and registers is shown in Table 7.2 and illustrated
in Figures 7.2 and 7.3 for different values of P. In addition to the total utilization, the
utilization of the dot product, predictor and weight update modules are included. Other
modules are not included because their utilization is independent of P. For the typical
value of P = 3, utilization is 2952 LUTs and 2469 registers, which correspond to 1.71%

7.2. Implementation results 113

and 0.72% utilization on a Zynq Z-7035 SoC, respectively. As the plots show, both the
number of LUTs and the number of registers scale linearly with P, which is expected
as P determines the size of weight vectors and local difference vectors, which in turn
determine the number of terms to compute in the dot product and the number of weights
to process in parallel in the weight update module.

Table 7.4 shows resource utilization for different D, and Figures 7.4 and 7.5 show the
total number of LUTs and a breakdown of the LUT usage in the components that are
affected by D, respectively. Interestingly, DSP usage is higher for smaller D than for
larger D. It is not immediately clear why this is the case. The DSPs are used in the
dot product to perform each of the Cz multiplications needed to compute each term
in Wz(t) ·Uz(t), and hence 6 is the expected number for the default test parameters
where P = 3 and full prediction mode is used (Cz = 6). The use of 7 DSP blocks for
D < 16 might be due to optimizations performed by the synthesis tool under its given
set of optimization settings. In all synthesis and implementations done here, the default
optimization settings are used. Figure 7.5 does indeed show that the LUT usage for the
dot product module is very low for D < 16, indicating that some of the addition logic
might be done in an additional DSP instead of with LUTs and carry chains. For D = 16
one less DSP is used, but also the number of LUTs increases sharply. By placing stricter
constraints on DSP usage, the number of DSPs used could assumably be reduced.

Increasing the weight resolution, Ω has little impact on LUT usage, but some impact
on register usage as Table 7.5 shows. Larger Ω increases the dot product LUT usage
due to larger adders in the adder tree, but the predictor and weight update total is fairly
constant. Register usage increases by 20% from the lowest to the highest value of Ω.
This is due to wider pipeline registers needed to store the weight vector from the weight
store and until it is used in weight update. These results show that the choice of Ω has
only a modest impact on resource usage, and given the impact it has on compression
ratio, it should be set to to the maximum value.

Block RAM usage is shown in Fig 7.6, for different values of D. For D = 8, 20 block
RAMs are used, while for the maximum D = 16, 36 block RAMs are used, correspond-
ing to 14% and 25% of available block RAM of a Zynq Z-7020 SoC.

P LUTs Registers
Dot. Pred. Weight. Total Dot. Pred. Weight. Total

0 111 344 310 2258 133 121 412 1686
3 270 531 617 2952 272 238 807 2469
6 420 741 964 3716 501 288 1206 3280
9 567 950 1297 4426 583 347 1612 3950

12 712 1157 1621 5123 721 404 2011 4667
15 909 1364 1945 5872 862 461 2410 5387

Table 7.2: LUT and register usage for different number of previous bands P

114 Chapter 7. CCSDS123 implementation results

0 3 6 9 12 15
0

1,000

2,000

3,000

4,000

5,000

6,000

P

L
U

T
s

Total
Dot product

Predictor
Weight update

Figure 7.2: LUT usage in total and in dot product, predictor and weight update, for
different values of P

0 3 6 9 12 15
0

1,000

2,000

3,000

4,000

5,000

6,000

P

R
eg

is
te

rs

Total
Dot product

Predictor
Weight update

Figure 7.3: Register usage in total and in dot product, predictor and weight update, for
different values of P

7.2. Implementation results 115

D
LUTs DSPDot. Pred. Weight. Coder Total

8 77 337 476 281 1892 7
10 83 414 513 355 2184 7
12 89 457 549 423 2439 7
16 270 531 617 577 2952 6

Table 7.3: LUT and DSP usage for different sample widths D

D Dot. Pred. Weight. Coder Total
8 74 139 682 168 1758

10 76 162 707 193 2143
12 82 184 755 213 2285
16 272 228 807 250 2469

Table 7.4: Register usage for different sample widths D

8 10 12 14 16
1,500

2,000

2,500

3,000

D

L
U

T
s

Figure 7.4: LUT usage for different values of sample width D

Ω
LUTs Registers

Dot. Pred. Weight. Total Dot. Pred. Weight. Total
4 86 414 793 2823 79 228 600 2067
8 90 450 751 2821 81 228 656 2199

12 94 486 668 2777 87 228 704 2323
16 255 512 584 2886 257 228 737 2366
19 270 531 617 2952 272 238 807 2469

Table 7.5: LUT and register usage for different choices of weight resolution

116 Chapter 7. CCSDS123 implementation results

8 10 12 14 16
0

200

400

600

D

L
U

T
s

Dot product
Predictor

Weight update
Encoder

Figure 7.5: LUT usage in dot product, predictor and weight update, for different values
of sample width D

8 10 12 14 16

20

24

28

32

36

D

B
lo

ck
R

A
M

s

Figure 7.6: Block RAM usage for different values of sample width D

7.2. Implementation results 117

7.2.1.3 Parallel implementation results

Tables 7.6, 7.7 and 7.8 show resource utilization in terms of LUT, registers, block RAM
and DSPs in total and broken down into the main components shown in Figure 6.18.

Figure 7.8 and 7.7 show the resource utilizations in terms of percentages in total of the
available resources in a Zynq Z-7020 SoC and a Zynq Z-7035 SoC, respectively. From
these figures it is clear that resource utilization grows linearly with Np across the whole
range, and that for both FPGAs, available LUT resources are the limiting factor for how
large Np can be made with the given set of compression parameters and image size.

Figure 7.9 shows how many of the utilized LUTs and registers are used by pipeline logic
(local sum and difference calculations, prediction, weight update, residual mapping and
encoding). For Np ≥ 4 this stabilizes at around 72%, meaning that resource utilization
grows about equally for pipeline logic and the other components (weight store, accumu-
lator store, sample delay and local difference store).

As Figures 7.10 and 7.11 show, the packer is by far the largest contributor to LUT and
register usage among the components other than the pipelines. As Np grows, the size of
the combiner chains (Np ≤ 4) and eventually the number of combiner chains in parallel
also increases (Np > 4). As the number of combiner chains increases, the number of
block sets to select in the output logic also increases and requires larger muxes to select
block sets. The close to linear LUT utilization in the weight store, accumulator store and
sample delay is due to the use of distributed memory, where LUT elements are used as
memory elements. Similarly, register usage in these modules scales linearly with Np as
each lane has its own memory element with read data registers.

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

Np

R
es

ou
rc

es
(%

)

LUTs
Registers
BRAMs

DSPs

Figure 7.7: Resource utilization on Zynq Z-7035

118 Chapter 7. CCSDS123 implementation results

Np Pipelines Sample Acc. Weight Packer Totalstore store store
1 2137 468 112 504 526 3747
2 4247 672 128 366 884 6297
3 6435 866 196 566 1139 9202
4 8499 856 180 366 1665 11566
5 10723 1029 230 464 2263 14709
6 12765 1226 272 555 2513 17331
7 15005 1458 317 647 2826 20253
8 16550 1802 350 731 3238 22671
9 19297 2042 397 815 4131 26682
10 21191 1886 440 923 4668 29108
11 23584 2186 416 1014 5008 32208
12 25136 2268 454 1112 5455 34425

Table 7.6: LUT and register utilization in pipelines, sample delay, accumulator store,
weight store and packer for different Np

Np Pipelines Sample Acc. Weight Packer Totalstore store store
1 1856 156 36 152 687 2887
2 3532 238 56 280 1069 5175
3 5394 351 78 410 1255 7488
4 6869 440 98 546 1636 9589
5 8921 540 120 670 2579 12830
6 10424 648 142 814 3033 15061
7 12460 756 164 951 3358 17689
8 13455 808 184 1085 3810 19342
9 15994 909 206 1209 4094 22412
10 17311 1000 228 1332 4507 24378
11 19546 1100 250 1476 4784 27156
12 20479 1200 272 1611 5189 28751

Table 7.7: Register utilization in pipelines, sample delay, accumulator store, weight store
and packer for different Np

7.2. Implementation results 119

Np
Block RAM DSPsSample delay Packer Total

1 32 1 33 6
2 32 2 34 12
3 33 2 35 18
4 32 3 35 24
5 32.5 4.5 37 30
6 33 5.5 38.5 36
7 35 5.5 40.5 42
8 32 6.5 38.5 48
9 36 7.5 43.5 54

10 35 8.5 43.5 60
11 33 8.5 41.5 66
12 36 9.5 45.5 72

Table 7.8: BRAM and DSP usage for different Np

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

60

70

Np

R
es

ou
rc

es
(%

)

LUTs
Registers
BRAMs

DSPs

Figure 7.8: Resource utilization on Zynq Z-7020

120 Chapter 7. CCSDS123 implementation results

1 2 3 4 5 6 7 8 9 10 11 12
50

60

70

Np

%
of

to
ta

l

LUTs pipelines Regs pipelines

Figure 7.9: Ratio of number of LUTs and registers used by pipeline logic by the total
number of LUTs

The LUT usage of the packer is examined for different number of words per chain and
different block sizes in Figure 7.12 when Np = 4. Regardless of the number of words
per combiner chain, it is clear that choosing the smallest possible block size can reduce
area usage greatly. There is also a clear benefit in using more words per combiner chain
than one, although this leads to worse storage efficiency in the block set FIFOs which
might require deeper FIFOs to be used. This is a tradeoff that must be investigated and
tuned using the expected image statistics for the particular application the core is being
used for.

Figure 7.13 shows how the LUT usage in the FIFO scales with the maximum encoded
word length Umax + D for three choices of block size when Np = 4. The growth in
utilization is highest for block size 64, while quite modest for lower block sizes. When
larger block sizes are used it is clear that finding a good compromise on Umax in terms
of compression performance versus area usage can be important to reduce LUT usage.

7.2.1.4 Utilization for different image sensors

Table 7.9 shows resource utilization for a variety of different image sensors. The main
factor that influences the differences between these results is Nx ·Nz, since it decides the
amount of memory that is needed to store delayed samples, weights and accumulators.
Since LUTs are used as RAM for storing weights, accumulators and in the one-pixel
delay FIFOs, LUT usage increases with Nx ·Nz. The amount of block RAM used also
increases as the depth of the NE FIFO in the sample delay module increases. Images
from the IASI image sensor with its large spectral resolution of 8461 are too large to

7.2. Implementation results 121

1 2 3 4 5 6 7 8 9 10 11 12

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Np

L
U

T
s

Weight store
Accumulator store

Sample delay
Packer

Figure 7.10: Total LUT usage for weight store, accumulator store and sample delay for
parallel implementation

1 2 3 4 5 6 7 8 9 10 11 12

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Np

R
eg

is
te

rs

Weight store
Accumulator store

Sample delay
Packer

Figure 7.11: Total register usage in weight store, accumulator store and sample delay for
parallel implementation

122 Chapter 7. CCSDS123 implementation results

8 16 32 64 128
0

1,000

2,000

3,000

Block size

L
U

T
s

1 per chain
2 per chain
4 per chain

Figure 7.12: LUT usage for different block sizes when processing different number of
words per combiner chain, when Np = 4

16 24 32 40 48
0

500

1,000

1,500

2,000

Umax +D

L
U

T
s

Block size 16
Block size 32
Block size 64

Figure 7.13: LUT usage for different block sizes and different maximum variable word
lengths Umax + D when Np = 4

7.2. Implementation results 123

Model D Nx Ny Nz LUTs Regs BRAM DSPs
SFSI 12 496 140 240 9416 8730 46 28
MSG 10 3712 3712 11 7984 8133 16 28
MODIS 12 1354 2030 17 8859 8682 12 28
M3-Target 12 640 2843 260 10824 8827 64 28
M3-Global 12 320 28283 386 11351 9086 48 28
Landsat 8 1024 1024 8 6583 7410 7 28
Hyperion 12 256 3242 242 9640 8888 28 28
CRISM-FRT 12 640 510 545 12882 9313 130 28
CRISM-HRL 12 320 480 545 12646 9130 68 28
CRISM-MSP 12 64 2700 74 8803 8843 6 28
CASI 12 405 2852 72 8922 8960 16 28
AVIRIS 16 614 512 224 12033 10696 71 24
AIRS 14 90 135 1501 12191 8569 68 28
IASI 12 66 60 8461 - - - -
HICO 16 512 2000 128 11589 10661 35 24

Table 7.9: Resource utilization needed to compress images from different sensors, with
Np = 4

be able to compress on a Zynq-7020 or Zynq-7035 and are therefore excluded from this
comparison.

7.2.2 Timing

In the serial implementation, the top ten critical paths of the design are in the first
pipeline stage of the local sum computation, where two samples of size D are summed.
The worst negative slack (WNS) is 3.20ns when synthesized for meeting 10ns (100
MHz) constraints, meaning that the design could run at approximately 147 MHz with a
throughput of 147 Msamples/s.

The WNS of the parallel implementation is shown in Figure 7.14. Even though the value
is fluctuating, a general downward trend can be observed. The critical path is related to
the logic that produces the last signal by or-ing the last signal from the control module
in each of the pipelines. It is not immediately clear why this turns out to be the critical
path, especially since the negative slack varies sharply from one value of Np to the next
(e.g. from 8 to 9). It should be noted that since these timing results are produced at
default synthesis settings and with a constraint on 100 MHz, the fluctuations in negative
slack might simply have to do with the synthesis tool weighing other factors, such as
area, differently for different Np.

124 Chapter 7. CCSDS123 implementation results

1 2 3 4 5 6 7 88 9 10 11 12
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Np

W
or

st
ne

ga
tiv

e
sl

ac
k

(W
N

S)

Figure 7.14: Worst negative slack (WNS) for different number of pipelines

7.2.3 Power estimation

Power usage of the implementation has been estimated using the power estimation fa-
cilities in Xilinx Vivado. To get the most accurate estimates, the post-implementation
design has been used together with simulation data from post-implementation functional
simulation such that realistic activity factors for the signals in the design are used.

Figure 7.15 shows estimates for 1 ≤ Np ≤ 8. Power usage increases roughly linearly
with Np. The linear increase is due to the added logic for each pipeline as well as
the increasing complexity of the packer. It can also be observed that there are some
fluctuations in the power contribution from the weight, accumulator, sample and local
difference stores, with minimums when Np is 1, 2, 4 and 8. This is mainly due to the
different number of block RAMs that are instantiated in the NE FIFO of the sample
delay module for different Np. Block RAM inference is most effective when the depth
is a power of two, as was detailed in Section 7.2.1.1. The depth of each FIFO is given
by NxNz/Np, which in this case with Nx = 512 and Nz = 128, will be a power of two if
Np also is a power of two. For other values of Np, more block RAMs will be instantiated
per lane, thus increasing both static and dynamic power consumption in these cases.

Figure 7.16 shows how much of the total power is dynamic power. Static power con-
sumption in the design is mainly due to leakage in the memories used in the stores, which
fluctuates around 0.125W in a similar way as the dynamic power of the stores shown in
7.15.

7.2. Implementation results 125

Np
Power (W)

Packer Stores Pipelines Total
1 0.009 0.088 0.154 0.251
2 0.018 0.095 0.195 0.308
3 0.038 0.144 0.247 0.429
4 0.047 0.112 0.282 0.441
5 0.055 0.142 0.318 0.515
6 0.062 0.17 0.353 0.585
7 0.087 0.202 0.425 0.714
8 0.098 0.157 0.443 0.698
9 0.111 0.185 0.517 0.813
10 0.129 0.203 0.562 0.894

Table 7.10: Power usage for different Np

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

Np

Po
w

er
(W

)

Total
Packer
Stores

Pipelines

Figure 7.15: Power estimates for different Np. Stores refer to the sum of the power used
in the weight, accumulator, sample and local difference stores.

126 Chapter 7. CCSDS123 implementation results

1 2 3 4 5 6 7 8 9 10
40

60

80

Np

D
yn

am
ic

po
w

er
(%

)

Figure 7.16: Dynamic power as percentage of total power usage

7.3 Comparison with existing work

Table 7.12 shows the performance of the implementations that were listed in Table 6.4,
together with the design presented in this thesis. Table 7.11 shows the values of P and D
that have been used, as well as the hardware platform.

Based on the information that is present in the papers, all the BIP implementations have
a roughly similar architecture, but large differences in performance can be observed.
The implementation by Theodorou et al[17] achieves a high maximum frequency for the
Virtex-5 series of devices, which seems to suggest a highly pipelined architecture, sim-
ilarly to the one presented in this thesis. The implementation by Keymeulen et al [13]
does not achieve more than 40 MHz on the same device, suggesting less pipelined archi-
tecture. The implementation by Bascones et al [15] cannot achieve more than 50 MHz
on a Virtex-7 device, and at that frequency the throughput is less than 50 Msamples/s,
suggesting that the implementation does not compress one sample per clock cycle. The
paper does not go into implementation details, so further comparison is not possible.

The parallel implementation done in this work is much faster than any previous designs
that have been looked at. The key difference between this implementation and the paral-
lel implementation proposed by Bascones et al[18] is that variable-length word packing
is performed fully in parallel in this implementation. As long as the output stream band-
width is large enough, this means that Np samples can be compressed per clock cycle.
Another advantage in this implementation is that the pipelines are fully utilized even if
Np does not divide Nz. In the implementation by Bascones et al, each clock cycle where
the last samples in a pixel are transferred will contain some lanes that are empty, thus
not utilizing the parallel cores fully.

7.3. Comparison with existing work 127

Implementation Order P D Platform On-the
fly

UAB Emporda [20] All 15 16 i7 7500U No
Keymeulen et al [13] BIP 3 13 Virtex-5 No
Santos et al [14] BSQ 3 16 Virtex-4 No
Bascones et al [15] BIP 15 16 Virtex-4 Yes
Bascones et al [15] BIP 15 16 Virtex-7 Yes
Theodorou et al [16] BIP 3 16 Virtex-5 No
Proposed - Serial BIP 3 16 Zynq-7000 Yes
Proposed - Parallel BIP 3 16 Zynq-7000 Yes

Table 7.11: Summary of previous CCSDS123 implementations and the proposed imple-
mentation

Implementation Platform fmax Throughput Throughput
[MHz] [Msamples/s] [Mb/s]

UAB Emporda [20] i7 7500U - 4.928 [15] 78
Keymeulen et al [13] Virtex-5 40 40 520
Santos et al [14] Virtex-4 134 11.2 179
Bascones et al [15] Virtex-4 50 23.3 379
Bascones et al [15] Virtex-7 50 47.6 760
Theodorou et al [16] Virtex-5 110 110 1760
Proposed- Serial Zynq-7000 147 147 2352
Proposed- Parallel - 4 Zynq-7000 156 624 9984
Proposed- Parallel - 5 Zynq-7000 150 750 12000

Table 7.12: Performance comparison of CCSDS123 implementations

128 Chapter 7. CCSDS123 implementation results

8

Verification and testing

The Cube DMA and CCSDS123 implementations have been tested both in simulation
and on physical FPGA hardware. This chapter will present the verification and testing
that has been performed both on the Cube DMA and the CCSDS123 implementation.

8.1 Simulation

8.1.1 Cube DMA

An overview of the test bench used when simulating the Cube DMA design is shown in
Figure 8.1. A Xilinx-provided RAM module with an AXI interface is used to simulate
the actual RAM system in the Zynq-7000. Test data is fed into the S2MM channel
stream and the Cube DMA is configured through the register interface to perform a
transfer. The test data is just values counting from 0 and up. After the S2MM transfer
has completed, a transfer is configured on the MM2S channel, reading from the location
in memory where the S2MM channel wrote the incoming data. The test bench does
not automatically check this data, but it allows for easy visual inspection of waveform
diagrams showing the stream coming out of the MM2S channel.

129

130 Chapter 8. Verification and testing

Figure 8.1: Test bench used for Cube DMA testing

8.1.2 CCSDS123

8.1.2.1 Automated verification system

An automated verification system has been created, which runs simulations with data
from a given HSI cube and compares the compressed bitstream from the implemented
design with the compressed bitstream from the Emporda software implementation. Spend-
ing some time on this was well worth it, as it allowed changes to be made to design with
a much larger degree of confidence: If the bit streams match exactly after a code change,
there is a very slim chance that the new code change introduced a bug in the code.

To be able to easily configure both Emporda and the CCSDS123 core with the exact
same parameters, a common configuration file format was created, and a Python script to
read such a configuration file and generate the necessary configuration file for Emporda
as well as an include file for the Verilog test bench. The verification flow is shown in
Figure 8.2.

The configuration is given as a JSON file, an example of which is shown in Listing 8.1.
The parameters section lists the different CCSDS-123 parameters that are summarized in
Table 5.1, as well as prediction mode and local sum mode. The images section contains
details about the image that is going to be encoded, such as its dimensions, sample
ordering and endianness.

Listing 8.1: Example of CCSDS-123 configuration

{” p a r a m e t e r s ” :
{”D” : 16 ,

”P” : 5 ,
”R” : 32 ,
”OMEGA” : 14 ,
”TINC LOG” : 5 ,
”V MIN” : −1,

8.1. Simulation 131

Figure 8.2: Overview of automatic verification of design

132 Chapter 8. Verification and testing

”V MAX” : 1 ,
”UMAX” : 18 ,
”COUNTER SIZE” : 6 ,
”INITIAL COUNT” : 1 ,
”K” : 7 ,
” o u t w o r d s i z e ” : 8 ,
” e n c o d e r ” : ” sample ” ,
”mode” : ” f u l l ” ,
” locsum mode ” : ” n e i g h b o r ” } ,

” images ” : [
{” f i l e n a m e ” : ” image . b i p ” ,

” o r d e r ” : ” BIP ” ,
” e n d i a n n e s s ” : ” l i t t l e ” ,
”NX” : 50 ,
”NY” : 50 ,
”NZ” : 5}

]
}

A Python script verify.py reads the configuration file and does the following:

• Generates a Verilog file with all the parameter definitions, which is later included
in the test bench.
• Generates a configuration file for Emporda and runs Emporda with the necessary

command line arguments to compress the input file given in the JSON configura-
tion.
• Strips the header from the compressed image to produce the final golden reference

file that can be compared against

The script sets up what is needed to perform a simulation and compare the result with a
golden reference. It can optionally run the simulation, or simulation can be run manually
using a shell script simulate.sh. The script takes the file name of the image as
argument, calls the Vivado-generated shell scripts compile.sh and elaborate.sh,
and starts the simulation by calling the Vivado simulator xsim with the image file name
as argument. The test bench will stream data from the image sequentially into the design,
and store each 64-bit word coming out of the design into a file out_0.bin until the
design asserts the LAST signal, indicating that it is done. The test bench then feeds the
image into the design once more, and stores resulting 64-bit words to a file out_1.bin.
This is done to test that the core correctly compresses a new image after a previous
compression has been completed. After the simulation is done, the verify.py script
will optionally check whether the out_0.bin and out_1.bin files are identical to
the file compressed by Emporda.

The test bench also calculates some statistics about the core. It counts how many cycles
the input is stalled and presents at the end of the simulation this count, as well as the
total number of cycle spent, and the percentage ratio. This information is useful when
tuning the packer FIFO size. The test bench also keeps track of how many of the cycles

8.2. Testing on hardware 133

contain valid output data and presents this in a similar fashion. This is useful to get a
picture of the output bandwidth utilization.

8.1.2.2 Random parameter testing

Since the CCSDS123 algorithm accepts a wide range of parameters, it is unfeasible to
test the implementation for all possible combinations of parameters. A script to perform
randomized parameter testing was therefore created, which runs the above described
verification flow with randomized configurations and input images with random sizes.
Even if the total coverage of the input space is still limited by this approach, using
random parameters improves the span of parameters that are covered and ensures that
many different areas of the parameter space are covered.

The script performes a user-given number of runs. For each run, it picks random (but
valid) values for each of the parameters listed in Table 5.1 and creates a randomly sized
HSI cube. The verification steps outlined in the previous section are then performed.
If verification fails, all the data that is particular for that run, such as the parameters
used, input HSI cube and the bistreams, are saved to a folder such that the error can be
investigated. Each failed run has its own such folder which is uniquely named using the
time and date when the run was performed.

Several issues were discovered using this script:

• The number of bits used to represent the encoded word length was calculated
wrongly based on the generic parameters for Umax and D, causing too few bits to
be used in the specific case when Umax = 16.

• Comparison of actual and expected bitstreams failed when the last bytes in the
actual bitstream are 0

• Test bench did not wait for handshake when last samples were being input, causing
problems when the core happens to stall the input before the last samples were
accepted.

The core has been tested in simulation against the Emporda compressor for a selection
of parameters and edge cases. To reduce simulation time, cube dimenions have been
restricted to less than 100 for these tests. The core has also been tested on a set of
special test pattern images produced by CCSDS for verifying that certain edge cases
where overflows occur are handled correctly.

8.2 Testing on hardware

The Cube DMA and CCSDS123 core has been tested on a hardware Zynq 7000 SoC
using a Digilent ZedBoard development board shown in Figure 8.3. The ZedBoard
contains a Zynq Z-7020 SoC, 512MB DDR memory and various peripheral connections.

134 Chapter 8. Verification and testing

The board has a USB connector for connecting to the JTAG debugging system on the
Zynq Z-7020 SoC.

Figure 8.3: ZedBoard development board used for hardware testing [5]

An overview of the Zynq 7000 system when testing on hardware is shown in Figure 8.4.
The following sections will go through various parts shown in this figure.

8.2.1 Interfacing with Zynq 7000 SoC

The Zynq 7000 system can be interacted with using a JTAG interface that connects to
a PC. A Xilinx command line tool, XSDB, can be used to interact with the system by
issuing commands to perform various operations:

• Access the memory map as seen from the CPUs, e.g. register interfaces instanti-
ated in logic implemented in the FPGA

• Upload programs and run them on the CPUs
• Program the FPGA with a bitstream file
• Upload and download binary files to/from DDR memory

The XSDB tool is also scriptable using Tcl, which makes it easy to automate tests and
making functions for programming registers with correct values when doing transfers.

8.2. Testing on hardware 135

Figure 8.4: Overview of Zynq 7000 system for testing Cube DMA and CCSDS123
implementation

8.2.2 Xilinx ChipScope debugging

A feature of Xilinx FPGA products is ChipScope debugging, which is the ability to
monitor signals in the FPGA design and sample them over a period of time. The sampled
signals are shown in a waveform diagram, similar to when simulating. The start of the
sampling period is triggered by any kind of user-defined trigger event, such as on a rising
edge of a particular signal.

ChipScope debugging is set up in the Vivado GUI or by using XDC constraint files, by
selecting a set of signals to monitor from the synthsized netlist. The capture of signals is
performed by Integrated Logic Analyzer (ILA) cores that are instantiated in the FPGA.
The ILA cores consume block RAMs to store signal transitions as they are captured.
This is the main limiting factor for how many signals can be sampled, and for how long.

8.2.3 Stream monitors

For data transfers of whole HSI images, it is infeasible to use ChipScope debugging
to sample the whole transfer. There are not enough hardware resources to do so, and
it would be impractical to analyze enormous waveform captures. For this reason, a
small VHDL module, the stream monitor was created, illustrated in Figure 8.5. The
stream monitor sits between two AXI Stream end points and measures the following
information:

136 Chapter 8. Verification and testing

• Total number of cycles from start of monitoring to tlast is asserted
• Number of handshakes
• Number of cycles where there is no handshake because tready is low
• Number of cycles where there is no handshake because tvalid is low

This is information that is useful for confirming that a transfer has been properly con-
ducted (by checking that the number of handshakes matches what is expected), and to
analyze the causes of slow-downs in data rate between the end points; whether it is due
to the master not having valid data or whether it is the slave that is not ready to receive.
In addition, it provides an accurate way of figuring out the total transfer time, which can
be found by multiplying the number of clock cycles by the clock frequency.

The stream monitor has a register interface which can be connected to the PS to allow
the CPU or JTAG debugging system to read out the measured counts. The register map
is shown in Table 8.1. The stream monitor is by default in an idle state, where any
handshake activity will trigger it to go into a measurement state where it starts counting
the events that were previously listed. When tlast is asserted, the stream monitor goes
back to the idle state again. The stream monitor also has a control register which allows
for manually stopping measurements (in cases where tlast is not used for instance) and
also manually starting measurements.

Figure 8.5: The stream monitor module

Offset Register Field Bits
0 Control Start 0
0 Control Reset 1
4 Total count 31-0
8 Handshake count 31-0
12 Not ready count 31-0
16 Not valid count 31-0

Table 8.1: Register layout for the stream monitor module

8.2. Testing on hardware 137

8.2.4 Typical hardware testing flow

When testing the Cube DMA and/or the CCSDS123 core, the following steps were gen-
erally performed:

1. Set up ChipScope debugging (if needed)

2. Initialize Zynq-7000 system using XSDB scripts provided by Xilinx

3. Program FPGA with bitstream for system with Cube DMA and FIFO or CCSDS123
core

4. Connect to FPGA from Vivado GUI and set up trigger for ChipScope debugging
(if needed)

5. Upload input data from PC to DDR memory on the ZedBoard via JTAG

6. Set up S2MM channel registers

7. Set up MM2S channel registers, this starts transfer

8. Check that transfer is complete by checking S2MM and MM2S status registers

9. Check stream monitor registers

10. Download resulting data from S2MM channel from memory to a binary file on the
PC, via JTAG

11. Verify correctness of data

138 Chapter 8. Verification and testing

9

Conclusion

The work presented in this thesis has provided the NTNU SmallSat project with a
flexible and efficient DMA core and a state of the art FPGA implementation of the
CCSDS123 compression standard for hyperspectral images. This chapter will draw
some conclusions from the implementation and gathered results, and ideas for future
work will be presented.

9.1 Cube DMA

The Cube DMA core is adaptable to a wide range of hardware accelerators with different
requirements for stream ordering, component bit widths and number of components to
process in parallel. The Cube DMA provides an easier programming model from a
software perspective, since a complete HSI cube transfer can be set up once through
configuration registers instead of needing to set up chains of block descriptors. Packing
and unpacking of data allows maximal memory utilization when hyperspectral images
with component sizes other than byte multiples are used, e.g. 10 or 12 bits.

A performance comparison with the Xilinx AXI DMA has been performed. It performs
similarly to the Xilinx AXI DMA for sequential transfers, and has an improvement of
128% in achievable throughput for block-wise transfers. BSQ (plane-wise) transfers are
made possible by this core, achieving 73% of the theoretically achievable throughput
when using the TinyMover core instead of the Xilinx DataMover.

Utilization results show that including the logic for packing and unpacking in these
cases results in an increase in area utilization that is linear with the number of bits per
component and the number of components per beat in the transfer. Logic utilization is

139

140 Chapter 9. Conclusion

less than in the Xilinx AXI DMA, and maximal clock frequency that can be achieved is
131 MHz.

The Cube DMA core has been tested in simulation and on a physical Zynq Z-7020
FPGA using the ZedBoard development board, using all combinations of BIP and BSQ
(plane-wise) orderings with and without block-wise ordering.

9.2 CCSDS123

The CCSDS123 implementation has been implemented with generic parameters cover-
ing the full range of all the parameters defined in the CCSDS123 standard. The core can
compress any number of samples in parallel per clock cycle, provided that resource and
I/O bandwidth constraints are obeyed.

A serial implementation which consists of one compression pipeline has been imple-
mented first, and has been used to analyze how the number of previous bands used in
prediction P, the sample width D and the weight resolution affects resource utilization.
The main conclusions are that LUT, register and block RAM usage scales linearly with
all three parameters. For , the increase is almost negligible, with register usage being the
most affected with an increase of 20% from the lowest to highest value of .

Building on the serial implementation, the final parallel implementation has been per-
formed, where any number Np of computational pipelines can compress one sample per
clock cycle in parallel. LUT, register and DSP utilization scales linearly with Np. Block
RAM usage remains largely independent of Np, but does increase slowly due to addi-
tional overhead when weights, delayed samples, local differences and accumulator val-
ues must be shared between several pipelines. As Np is increased, the LUT utilization
becomes the limiting factor in terms of resources, reaching 70% of the total available
LUTs on a lower-end Zynq Z-7020 device when Np = 12. LUT usage can be reduced
somewhat by replacing distributed RAMs used in weight and accumulator storage and
sample delay with block RAM.

Analysis of LUT and register usage for different Np reveals that for Np ≥ 4, the com-
putational pipelines account for roughly 70% of the utilization, while the rest is due to
storage of weight, samples, local differences and accumulators, and the variable length
word packing. Of these, the packing is by far the largest contributor to both LUT and
register usage. Analysis of how the packed block size, number of combiner chains and
the maximum code word length Umax +D affects the packer has been performed, and
shows that significant reductions in resource utilization can be achieved by combining
at least two words per combiner chain and by reducing the block size. Reducing the
maximum code word length shows only moderate improvements.

Timing analysis shows that the serial implementation can achieve a clock speed of 147
MHz, with the critical path being the local sum computation (summation of two D+ 3
bit numbers). For the parallel implementation, achievable clock speed depends on Np,

9.3. Future work 141

and varies from 126 MHz to 157 MHz, with some sporadic jumps for some values of Np
but with a general downward trend as Np increases.

Power estimation has been performed using simulation data to achieve realistic signal
activity data. The power use scales approximately linearly with Np, with a total power
usage of 0.25W at Np = 1 and 0.89W at Np = 12. Static power remains at around 0.13W,
while dynamic power is increasing as Np is increased.

The implementation has been verified by comparing compressed images both from sim-
ulation and real hardware tests, with images compressed using an existing software im-
plementation. To cover a broad range of parameters, randomized testing has been used,
where simulation is run repeatedly using randomly chosen parameters.

Comparing with the state of the art, it is clear that the parallel implementation supersedes
any previous implementations with regards to achievable compression performance. The
greatest improvement in the presented implementation is the ability to pack any number
of variable length words into fixed-size words each clock cycle. Other improvements
include the ability to effectively handle images where the number of spectral bands Nz
is not a multiple of the number of samples to compress in parallel Np, which is achieved
by performing shifting and delaying operations to reorder weights, accumulators and
delayed samples in such a way that samples from different pixels can be compressed in
the same clock cycle.

9.3 Future work

9.3.1 Cube DMA

The Cube DMA has been tested extensively using the sequential BIP transfer mode,
since this is the mode used by the CCSDS123 core. For other transfer modes, however,
testing has been performed by initiating transfers of small cubes consisting of compo-
nents numbered from 0 and upwards, and checking waveform diagrams for the expected
stream output. A fully automated test bench could be implemented also for the Cube
DMA.

An algorithm for performing principal component analysis (PCA) is under development
in the SmallSat project. This algorithm needs to sample random pixels from the HSI
cube and process them. This could be performed using the Xilinx AXI DMA by creating
a chain of block descriptors where each descriptor points to a random pixel in the cube.
Another option could be to extend the Cube DMA implementation with support for this
built-in. This would require a random number generator to be added, and the logic in the
address generator to be changed for this new transfer mode.

142 Chapter 9. Conclusion

9.3.2 CCSDS123

There is an option in the CCSDS123 standard for providing custom weights and custom
accumulator initialization constants instead of using the default ones. The idea is that
optimized weights and accumulators can be found for a set of training images that are
similar to images that are expected to apply the algorithm on. Adding support for this
would only change the code for the weight update module and in the sample adaptive
encoder module, and would presumably be easy to implement.

Another area to look into is power usage. The implementation presented here has not
been done with power optimization in mind. For small Np it is doubtful that much of a
difference can be made, as the Zynq-7000 processing system alone consumes quite a lot
of power. For larger Np however, there could be considerable improvements made by
applying power saving techniques.

Finally, at the present moment, the core does not have any configuration interface for
control by the CPUs. It keeps track of compression progress internally and will be in
a state where it is ready to compress a new image when a complete image of the hard
coded size has been compressed. Being able to externally reset the core’s internal state
could be of interest in cases of corrupt data. It could also be of interest to be able to set
the image dimensions through a register interface instead of as generic parameters.

Bibliography

[1] M. E. Grøtte, J. Fortuna, R. Birkeland, J. Veisdal, M. Orlandic, H. Martens, J. T.
Gravdahl, F. Sigernes, T. A. Johansen, J. O. Reberg, G. Johnsen, and K. Rajan,
“Hyper-spectral imaging Small satellite in multi-agent marine observation system,”
Internal Document, vol. 1, no. Non-published, pp. 1–16, 2017.

[2] Xilinx, “Zynq-7000 All Programmable SoC Technical Reference Manual,” Tech.
Rep., 2016.

[3] ARM, “AMBA AXI and ACE Protocol Specification,” Tech. Rep., 2011.

[4] Consultative Committee for Space Data Systems, “Lossless Multispectral and
Hyperspectral Image Compression Recommended Standard, CCSDS 123.0-B-1,”
Tech. Rep., 2012.

[5] Xilinx, “Digilent ZedBoard.” [Online]. Available: https://www.xilinx.com/
support/university/boards-portfolio/xup-boards/DigilentZedBoard.html

[6] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb, “Autonomous oceano-
graphic sampling networks,” Oceanography, vol. 6, no. Non-published, pp. 86–94,
1993.

[7] Oregon State University, “HICO Sensor and Data Characteristics,” Tech.
Rep., 2009. [Online]. Available: http://hico.coas.oregonstate.edu/datasets/
datacharacteristics.shtml

[8] J. Fjedtvedt, Direct Memory Access for Hyperspectral Imaging Applications.
NTNU, 2017.

[9] Xilinx, “LogiCORE IP Product Guide, AXI DMA v7.1,” Tech. Rep., 2017.

[10] ——, “LogiCORE IP Product Guide, AXI Video Direct Memory Access v6.2,”
Tech. Rep., 2016.

[11] ——, “LogiCORE IP Product Guide, AXI DataMover v5.1,” Tech. Rep., 2017.

[12] Consultative Committee for Space Data Systems, “Lossless Multispectral and Hy-
perspectral Image Compression Information Report, CCSDS 120.2-G-1,” Tech.
Rep., 2015.

143

144 Bibliography

[13] D. Keymeulen, N. Aranki, A. Bakhshi, H. Luong, C. Sarture, and D. Dolman,
“Airborne demonstration of fpga implementation of fast lossless hyperspectral data
compression system,” in Adaptive Hardware and Systems (AHS), 2014 NASA/ESA
Conference on. IEEE, 2014, pp. 278–284.

[14] L. Santos, L. Berrojo, J. Moreno, J. F. López, and R. Sarmiento, “Multispec-
tral and hyperspectral lossless compressor for space applications (hyloc): A low-
complexity fpga implementation of the ccsds 123 standard,” IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp.
757–770, 2016.

[15] D. Báscones, C. González, and D. Mozos, “FPGA Implementation of the CCSDS
1.2.3 Standard for Real-Time Hyperspectral Lossless Compression,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 2017.

[16] G. Theodorou, N. Kranitis, A. Tsigkanos, and A. Paschalis, “High performance
ccsds 123.0-b-1 multispectral & hyperspectral image compression implementation
on a space-grade sram fpga,” in Proceedings of the 5th International Workshop on
On-Board Payload Data Compression, Frascati, Italy, 2016, pp. 28–29.

[17] ——, “High performance ccsds 123.0-b-1 multispectral & hyperspectral image
compression implementation on a space-grade sram fpga,” in Proceedings of the
5th International Workshop on On-Board Payload Data Compression, Frascati,
Italy, 2016, pp. 28–29.

[18] D. Báscones, C. González, and D. Mozos, “Parallel Implementation of the CCSDS
1.2.3 Standard for Hyperspectral Lossless Compression,” MDPI Remote Sensing,
2017.

[19] European Space Agency, “ESA Reference Implementation of CCSDS123,”
2017. [Online]. Available: https://www.esa.int/Our Activities/Space Engineering
Technology/Onboard Data Processing/Data Compression Tools

[20] GICI group, Universitat Autonoma de Barcelona, “Emporda Software,” 2011.
[Online]. Available: http://www.gici.uab.es

[21] Oregon State University, “HICO Instrument Design and Heritage,” Tech. Rep.,
2009. [Online]. Available: http://hico.coas.oregonstate.edu/hico/design.shtml

[22] Xilinx, “7 Series FPGAs Memory Resources User Guide,” Tech. Rep., 2016.

[23] ——, “7 Series FPGAs Configurable Logic Block User Guide,” Tech. Rep., 2016.

[24] ——, “Answer Record #61995,” Tech. Rep., 2018. [Online]. Available:
https://www.xilinx.com/support/answers/61995.html

A

Using the automatic verification
scripts

This appendix will go through in detail how to use the automatic verification scripts that
were mentioned in Section 8.1.2. The verification scripts currently only work in a Linux
environment, as several Linux tools such as dd, od, and cmp are used, in addition to
Bash scripting.

A.1 Installing Emporda

Emporda can be downloaded from the following website: http://gici.uab.cat/
GiciWebPage/emporda.php.

Emporda is a Java program which comes pre-built as dist/emporda.jar in the
extracted directory tree. The source code is also included in the archive, and can be
compiled using the ant tool (requires a Java Development Kit to be installed). The
pre-built program is enough to just run Emporda.

Installing Emporda can most easily be performed by copying the emporda.jar to
/usr/bin and creating the following bash script in /usr/bin:

/usr/bin/emporda
#!/bin/bash
java -jar /usr/bin/emporda.jar "$@"

145

146 Appendix A. Using the automatic verification scripts

The bash script should be given the file name emporda (note: no extensions), such that
it can be invoked from the command line by just typing emporda.

An alternative is to keep the script somewhere else, e.g. in the same directory where
Emporda was extracted, and instead add that directory to the PATH variable.

When these steps have been completed, Emporda should run when typing emporda.

A.2 Using the automatic verification scripts

The automatic verification system assumes that Emporda is started by running the com-
mand emporda, so it is important to set up Emporda as described in the previous chap-
ter.

The verification scripts found in the tools directory of the CCSDS123 source tree are
the following:

• gen cube.py: Generate a cube of any given size
• verify.py: Generate golden reference and simulation include files for performing

verification using a specific image and a specific set of parameters defined in a
JSON configuration file. Optionally also run simulation and check results

• fuzzer.py: Perform randomized testing (”fuzzing”) by creating random images
and instantiating the core with random sets of parameters

All three scripts use a common set of functions defined in ccsds_lib.py.

A.2.1 Creating a simulation snapshot

To be able to run a simulation, the design must be elaborated for simulation use. The eas-
iest way to do this is to open the CCSDS123 project file (project/project.xpr)
and start a behavioral simulation. This will run the necessary elaboration commands
to create a new simulation snapshopt at project/project.sim/sim_1/behav.
This can also be accomplished using command line tools.

A.2.2 Generating a cube

Before running verification, a HSI cube must be generated (if none is available). The
tool gen_cube.py will create a HSI cube where the sample values are just numbers
counting upwards, starting at 0.

python tools/gen_cube.py image.bip 50 50 50

It is important to match the file name and the dimensions with what is given in the
conf.json file.

A.2. Using the automatic verification scripts 147

A.2.3 Creating configuration file and running

To run verification of the CCSDS123 core with a specific image and a set of parameters,
a configuration file in JSON format has to be written. The following is an example of
such a file. This file will from now on be referred to as conf.json, but of course the
file can have any name.

conf.json

{"parameters":
{"D": 16,
"P": 5,
"R": 32,
"OMEGA": 14,
"TINC_LOG": 5,
"V_MIN": -1,
"V_MAX": 1,
"UMAX": 18,
"COUNTER_SIZE": 6,
"INITIAL_COUNT": 1,
"K": 7,
"out_word_size": 8,
"encoder": "sample",
"mode": "full",
"locsum_mode": "neighbor"},

"images": [
{"filename": "image.bip",
"order": "BIP",
"endianness": "little",
"NX": 50,
"NY": 50,
"NZ": 50}

]
}

When this file has been filled with the desired parameters and image information, verifi-
cation is run as follows:

python tools/verify.py run conf.json

This will run Emporda to generate the golden reference from the given image, write the
simulation parameter file to be included in the test bench, run the simulation script that
calls the Xilinx simulator xsim, and compares the resulting bitstreams afterwards and
reports whether they are correct.

Optionally, the simulation parameter and golden reference file names can be given as ar-
guments to verify.py. If not given, the defaults are params.v and golden.bin.

148 Appendix A. Using the automatic verification scripts

A.2.4 Running manually or in Vivado GUI

Verification can also be run manually if that is desired. In that case, verify.py can
be run in generate mode:

python tools/verify.py generate conf.json

This will create the simulation parameters file params.v and the golden reference file
golden.bin. Simulation will not be run when the generate parameter is given.

To run a manual simulation run, the simulate.sh script found in the root directory
of the source tree is used:

./simulate.sh image.bip params.v

An optional argument, BUBBLES can be supplied at the end of the command to make the
test bench insert ”bubbles” in the input and output streams. At random times, the input
stream will then be stalled (tvalid is low) or the output stream be stalled (tready is
low). This tests that the core can handle streaming stalls correctly without data corrup-
tion or data loss.

To run the simulation in the Vivado GUI, an image and a parameter file must be created
by using verify.py in generate mode. To be able to run the simulation correctly,
the two generated files must be copied. The parameter file must be moved/copied to the
tb source folder:

cp params.v tb/comp_params.v

The image must be copied to where the simulation snapshot is:

cp image.bip project/project.sim/sim_1/behav/test.bin

test.bin is the default filename used in the test bench, and it is expected to be found
in the simulation snapshot folder. If another kind of simulation is to be run, e.g. a post-
implementation functional simulation, the path is changed accordingly to where that
simulation snapshot has been created.

A.3 Performing randomized testing

The fuzzer.py script performs randomized testing of the CCSDS123 core. Running
this script requires a simulation snapshot to be set up, as described in Section A.2.1.
When this has been done, random testing is performed by running

python tools/fuzzer.py N

where N is the number of random tests to perform. For each of the N iterations, the
verification flow described in the previous sections is performed, but with a randomly
sized cube and randomly selected parameters. For each iteraton, Emporda is used to

A.3. Performing randomized testing 149

create a golden reference, and the results from running simulation are checked with it.
After all runs have finished, a summary looking like this will be printed:

Done. 5 out of 5 tests passed.

Parameters that have been covered:
PIPELINES: 4, 7, 2, 8
D: 16
OMEGA: 5, 17, 12, 16
K: 5, 7, 10, 11, 9
TINC_LOG: 7, 8, 6, 5, 4
COUNTER_SIZE: 5, 7, 8, 6
encoder: sample
V_MAX: 3, 9, 2, -6
P: 9, 3, 6, 1, 11
R: 46, 38, 57, 54, 48
mode: full, reduced
UMAX: 14, 8, 11, 21
locsum_mode: column, neighbor
out_endianness: little
out_word_size: 8
V_MIN: 1, 7, 0, -1, -6
INITIAL_COUNT: 2, 6, 1, 4

The list shows each of the different parameter values that have been exercised. During
runs, the specific set of parameters for each run is also printed.

In some cases it might be interesting to constrain one or more of the parameters to a
specific value. For instance, it might of interest to test the core exclusively when = 8.
To do this, a set of fixed parameters can be defined in a JSON file whose filename is
supplied as the second argument to fuzzer.py:

fuzzer.py 5 fixed.json

A.3.1 Handling of failed tests

If a test fails, either because simulation itself could not run properly or if the bitstreams
do not match the golden reference, then all the files related to that particular test run
is copied into failed_runs/MMDD-hhmmss/, where MMDD is the month and date
in two digits, and hhmmss is the hours, minute and second when the test failed. For
example, a failed run might be found in failed_runs/0626-083025. Inside the
directory for the failed run, the following files are found:

• conf.json: A configuration file with the parameters that were used
• gen_comp_params.v: Include file with the parameters used
• golden.bin: The golden reference that was used

150 Appendix A. Using the automatic verification scripts

• input.bip: The generated randomly sized input image
• out_0.bin, out_1.bin: The bitstreams that were captured from the CCSDS123

core during simulation

Saving this data for each failed test allows easy investigation of the particular failure.
All information necessary to debug the problem is found in these files.

A.4 Investigating errors

When errors occur in the bitstream, it is helpful to run the simulation in the Vivado GUI
to look for possible causes by investigating signals inside the core. To do this, we need
to find the location in the waveform diagram where the first erroneous word is output.
To find the byte position where the bitstreams start to differ, the cmp command in Linux
can be used. Running cmp golden.bin out_x.bin results in something like the
following output:

golden.bin out_0.bin differ: byte 8321, line 48

The output stream from the core has a width equal to the block size that is used, which
is typically 8 bytes (but can be set to other sizes depending on the BUS_WIDTH generic
parameter). Assuming a bus width of 8, we can find the first erroneous 64-bit word by
using the od command. To do this, we must find the nearest 8-byte boundary. In the
example, 8321mod8 = 1, so 8321− 1 = 8320 is the 8-byte boundary where the 64-
bit word starts in the file. The following call to od will extract the 64-bit word at this
location:

> od -t x8 -j 8320 -N 1 out_0.bin
0020200 00000000000000db
0020201

This tells us that the 64-bit hexadecimal string we need to search for in the Vivado
waveform window is 00000000000000db. To perform the search, right click on the
s_axis_tdata signal in the waveform viewer and select Find Value.... A search field
will appear at the top of the window, where the value can be pasted, as shown in Figure
A.1.

When investigating the cause of the error, it is important to keep in mind that there is
a FIFO in the packer module. Depending on the occupancy of the FIFO (this can be
monitored by looking at the read/write counts), the word might have been pushed into
the FIFO many cycles before.

A.4. Investigating errors 151

Figure A.1: Searching for waveform value in Vivado simulator

152 Appendix A. Using the automatic verification scripts

B

Using simulation results to improve
power estimates

Power estimation can be performed on the implemented design by opening it in project
mode in Vivado and selecting Report Power. Using the default settings, this will use
probabilistic methods to arrive at a rough estimate of the power consumption of the
design.

The accuracy of the power estimate can usually be improved by giving the power estima-
tion algorithm typical activity factors for each signal in the design. This can be achieved
by running a functional simulation on the implemented design and recording the tran-
sitions of each signal when applying typical (real-world) inputs. This can be done as
follows:

1. Create a new top module which instantiates the actual top module with all generics
tied to specific values

2. Create an amended version of the test bench that instantiates the new top module
(without any generics)

3. Run implementation with the new top module as top level entity

4. Create a new simulation environment with the amended test bench as simulation
top

5. Run Tcl commands to start logging of signal and run simulation

6. Run power estimation and use the simulation activity file (.SAIF) created during
the previous step

153

154 Appendix B. Using simulation results to improve power estimates

The first two steps are necessary because the regular test bench cannot be used with the
implemented design. During synthesis and subsequent steps, any generic parameters
are replaced with actual values. Trying to instantiate e.g. the implemented design in
the regular test bench will cause errors because the test bench will try to instantiate the
module with generic parameters. The solution is to create a new top module without
generics, and change the test bench to instantiate this module instead.

To actually retrieve the switching activity of the signals in the design, the following
sequence of Tcl commands can be run in Vivado when a new simulation environment
has been created:

open_saif <filename.saif>
log_saif [get_object -r /<test bench instance>/*]
run <time>
close_saif

The argument to log_saif is a list of signals to capture. The easiest choice here is
to just fetch all signals within the design, which is what the get_object command
does with the -r flag. When logging has been set up, the simulation can be run for
any duration, but it should run long enough to exercise as much logic as possible so that
switching activity for as many signals as possible is recorded.

In the CCSDS123 sources, tb/synth_top.vhd contains a top level entity that in-
stantiates the actual CCSDS123 core top with generic parameters tied to specific values
given in tb/synth_params.vhd. An amended test bench that uses this new top is
found in tb/top_impl_tb.v.

