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Abstract

As a part of the SmallSat project at NTNU, a satellite payload capable of capturing
and processing of hyperspectral images is being developed. Several processing steps are
performed on-board in the satellite, as well as compression of the resulting data to reduce
storage needs and to improve utilization of the limited throughput of the radio link to the
ground station. As the spatial, spectral and temporal dimensions of hyperspectral images
have increased, the need for performing these processing steps in hardware has emerged.
FPGA based solutions are attractive due to their reprogrammability and reduced cost
compared to dedicated ASICs. In this thesis, two problems related to hyperspectral
image processing in FPGA are explored.

The first problem is related to achieving high throughput when data is streamed into and
out of hardware processing cores that require streaming in different orders. To achieve
high performance, memory accesses must be performed as efficiently as possible for all
memory access patterns. Investigating this problem in the feasibility study prior to this
thesis work has led to the conclusion that the available direct memory access (DMA) so-
lutions are not suitable. During that work, a new special-purpose DMA core for stream-
ing of hyperspectral images, the Cube DMA, was developed. Further developments of
this core are presented in this thesis, including improvements in how transfers are per-
formed, implementation of stream to memory channel and addition of stream control
signals. The results show an increased throughput of 128% for block-wise transfers
compared to existing DMA solutions, while FPGA resource utilization is lower.

The other problem that has been explored is compression of image data in the satellite.
CCSDS123 is a compression algorithm designed for hyperspectral images. An efficient
and parallelized hardware implementation of this algorithm has been designed, imple-
mented and thoroughly verified. The results show that its performance is better than any
state of the art implementations in terms of achievable data throughput, while showing
modest power usage and resource utilization.
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Sammendrag

Som en del av SmallSat-prosjektet ved NTNU utvikles det en nyttelast for satelitter
som er i stand til takning og prosessering av hyperspektrale bilder. Flere prosesser-
ingssteg utfgres om bord i satelitten, samt komprimering av resulterende data for a re-
dusere behovene for lagringsplass og for & utnytte den begrensede radioforbindelsen til
bakkestasjonen bedre. Etter hvert som de romlige, spektrale og temporale dimensjonene
i hyperspektrale bilder har gkt, har det blitt ngdvendig & utfgre disse prosesseringsste-
gene i maskinvare. FPGA-baserte lgsninger er attraktive pad grunn av reprogrammer-
barheten og de reduserte kostnadene sammenlignet med dedikerte ASIC-er.

I denne oppgaven har to problemer knyttet til hyperspektral bildeprosessering i FPGA
blitt utforsket. Det f@rste er relatert til & oppna hgy hastighet ved strgmming av data
inn og ut av prosesseringskjerner i maskinvare som trenger at data strgmmes i forskjel-
lige rekkefglger. For a oppna hgy ytelse ma minneaksesser skje sa effektivt som mulig
for alle minneaksessmgnstere. Undersgkelser av dette problemet har ledet til den kon-
klusjonen at eksisterende lgsninger for direkte minneaksess (DMA) er uegnede. I det
forgdende prosjektarbeidet ble en ny DMA-kjerne, Cube DMA utviklet spesifikt for
strgmming av hyperspektrale bilder. Videreutvikling av denne kjernen er presentert i
denne oppgaven, som inkluderer forbedringer av hvordan overfgringer utfgres, imple-
mentasjon av en kanal for overfgring fra strgm til minne, og strgmkontrollsignaler. Re-
sultatene viser betydelige forbedringer i ytelse sammenlignet med eksisterende DMA-
Igsninger, og ressursbruken er mindre.

Det andre problemet som har blitt utforsket er komprimering av bildedata i satelitten.
CCSDS123 er en kompresjonsalgoritme som er designet for hyperspektrale bilder. En
effektiv og parallelisert FPGA-implementasjon av denne algoritmen har blitt designet,
implementert og grundig verifisert. Resultatene viser at ytelsen er bedre enn de nyeste
av implementasjoner nar det kommer til oppnaelig gjennomstrgmning (throughput), og
viser samtidig beskjeden effekt- og arealforbruk.
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Introduction

1.1 The NTNU SmallSat project

The oceans, covering 70% of the Earth surface area, are important parts of the global
environment, with their function as sinks for green-house gases and the environment
for marine life and resources. Facing the challenge of climate change, study of the
oceans from a fine scale (micro-biology) to a large scale (hurricanes, ice melt, harmful
algal blooms, fronts) is important. Traditionally, ship-based measurements have been the
norm, but these have several draw-backs, including the need for extensive engineering
and science infrastructure, subjecting people to harsh seafaring conditions and providing
only point measurements for phenomena that are spread across large areas [1].

An alternative approach is envisioned in the Autonomous Ocean Sampling Network
(AOSN), where a network of autonomous underwater vehicles (AUVs), autonomous
surface vehicles (ASVs) and unmanned aerial vehicles (UAVs) is capable of coordinated
missions that are executed together with conventional vehicles, buoys and fixed sensor
networks [6]. The benefits are significant reductions in cost and increased safety, more
information as well as more continuous information.

The NTNU SmallSat project’s focus is the development of a small satellite (SmallSat)
which is to be part of a proposed AOSN called a multi-agent marine observation system,
which is illustrated in Figure 1.1. The system is a cyber-physical system where the dif-
ferent components are tightly knit together by communication technology and intelligent
information processing [1]. The role of the SmallSat that is developed in the project is
to provide hyperspectral imaging (HSI) capabilities to this system.

One example where satellite hyperspectral imaging is of utility is in detecting algae
blooms. This is of interest beacuse some blooms generate neurotoxins that have signif-
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icant impacts on coastal marine and human populations [1]. Due to the spatial vastness
of such algae blooms, satellite imaging is particularly suited for tracking such activity in

the ocean. A satellite image of an algae bloom is shown in Figure 1.2.

Unmanned Aerial Vehicle (UAV)
with e \‘
Q HSI payload R ““

NTNU SmallSat
with
HSI payload

Figure 1.1: The main components of the proposed multi-agent marine observation sys-

tem [1]
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Figure 1.2: Phytoplankton bloom at the coast of Norway, observed from space [1]

1.2 Hyperspectral imaging

Hyperspectral imaging refers to digital imaging where the spectrum of the incoming
light at each pixel is sampled at many different wavelengths across a wide range of the
spectrum, typically more than hundred samples taken across wavelengths from the near-
infrared to beyond visible light. Each pixel thus has an approximation of the spectrum of
light reflected from the corresponding location in the scene that is imaged. This extensive
spectral information makes it possible to detect objects and materials with much greater
precision than with conventional color imaging.

A hyperspectral image is often called a hyperspectral image cube (HSI cube) due to
its three-dimensional structure with two spatial dimensions and one spectral dimension.
The cube consists of samples, also called components, with a spatial coordinate (x,y)
and a spectral coordinate z. The set of components at a fixed spatial coordinate is a pixel
in the image. This is illustrated in Figure 1.3 for a cube with spatial dimensions 8 x 8
and a spectral dimension of 4.

The HSI cube can also be viewed as a series of two-dimensional images, one for each
of the sampled spectral wavelengths. These are called planes. Figure 1.3 highlights one
plane in the HSI cube.
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Figure 1.3: Hyperspectral image cube

1.2.1 Component orderings

A HSI cube is a three dimensional structure, so streaming it or storing it in memory
requires the components to be ordered serially by defining a mapping from the three
dimensional coordinates to a unique one dimensional index. The most common ways of
ordering the components are Band Interleaved by Pixel (BIP), Band Interleaved by Line
(BIL) and Band Sequential (BSQ). Figure 1.4 illustrates these orderings for an image of
size 4 x4 x 4.

In BSQ ordering, the components are ordered such that all the components in the first
band, from the upper-left pixel to the lower-right pixel are followed by all the compo-
nents in the second band from the upper-left pixel to the lower-right pixel, and so on.

In BIL ordering, the components are also ordered separately for each band, but only for
each line. The first component of each pixel in the first line are followed by the second
component of each pixel in the first line, and so on. This pattern is repeated for the rest
of the lines in the cube.

In BIP ordering, all the components of a pixel are contiguous, meaning that all the com-
ponents of the uppler-left pixel are followed by all the components of the pixel to the
right, and so on, all the way to the lower-right pixel.

Table 1.1 shows how cube coordinates are mapped to one dimensional indices for these
three orderings.



1.3. SmallSat HSI payload 5

Row 0 Row 1 Row 2 Row 3

Band 0
Band 1

Band 2 BSQ

Band 3

Band 0 Band 1 Band 2 Band 3

Row 0

Row 1 BIL

Row 2
Row 3

Pixel 0 Pixel 1 Pixel 2 Pixel 3

Row 0

Row 1 BIP

Row 2
Row 3

I 1
1 1 1 L e e e = =
1

Band0 Band1 Band2 Band3

Figure 1.4: Different sample orderings in hyperspectral images, illustrated with an ex-
ample image of size 4 x 4 x 4

Name | Mapping

Band Interleaved by Pixel (BIP) | i = yN,N,+xN,+z
Band Interleaved by Line (BIL) | i = yN N, +zN, +x
Band Sequential (BSQ) i = zZNNy +yNy +x

Table 1.1: Mapping from cube to one-dimensional coordinates for different orderings

1.3 SmallSat HSI payload

One of the current areas of focus in the NTNU SmallSat project is the development of
a hyperspectral imaging payload that is capable of capturing and processing of hyper-
spectral images. The camera payload has so far been specified, and prototypes are being
developed. The idea is that hyperspectral images are not only acquired in the satellite,
but also processed in several steps before data is sent to the ground station.
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Figure 1.5 shows the proposed processing architecture, and how it is controlled from the
ground station. After raw image acquisition, the geometric and radiometric image pro-
cessing steps transform each pixel into geographic locations on the ocean surface, and
each of the samples into absolute reflectance values that are calibrated using measure-
ments of the atmosphere, solar radiation and so on. The spectral and spatio-temporal
steps remove undesirable optical features such as water reflections or shadows due to
clouds, and enhances spatial resolution by applying deconvolution techniques to con-
secutive frames [1].

At some point, data needs to be sent to the ground. Due to bandwidth limitations in radio
links as well as the desire for shortest possible download time, it is important that image
data is compressed, while also retaining the most important information.

The HSI payload consists of an HSI push broom camera connected to a Xilinx Zyng-
7000 APSoC which performes the processing. The HSI payload itself is in turn con-
nected through a Cubesat bus to the rest of the satellite.

1.3.1 HSI camera

The camera used in the HSI payload uses a technique called push broom scanning to
record the image. An overview of push broom scanning is shown in Figure 1.6. The
satellite is capturing the image line by line as it moves across the area of interest, as
seen to the left of the figure. Using optics, the incoming strip of light is separated
spectrally across a 2-dimensional CCD image sensor array. The image captured by the
sensor array has one spatial dimension, indicating the different locations (pixels) in the
imaged scene, and one spectral dimension which indicates light intensities sampled at
the different wavelengths. Each such captured line of pixels is called a frame, and can
be viewed as a 2-dimensional image with a spatial dimension and a spectral dimension.

When the capturing of one line has completed and the satellite has moved further on, a
new line of the scene can be captured. Relating this to Figure 1.3, the resulting HSI cube
is built up from top to bottom. Captured frames are read out from the sensor using Low
Voltage Differential Signalling (LVDS).
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Figure 1.5: The HSI payload processing and control architecture [1]
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Figure 1.6: Hyperspectral image acquisition process using push broom scanning
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The captured raw image is commonly referred to as a level O (LO) image. Various cor-
rections are applied to this image to account for systematic errors in the sensor system,
to provide a level 1 (L1) image. From this L1 image, further corrections for atmospheric
conditions can be performed to produce a level 2 (L2) image [7]. The distinctions be-
tween these levels are not important for this thesis, but will be used when discussing
compression performance in Chapter 7.

1.3.2  Zyng 7000-series All Programmable System on Chip

The Xilinx Zynq 7000 is a family of APSoC (All Programmable System on Chip) from
Xilinx that combine ARM processor cores with FPGA technology. This makes them
attractive for use in systems where tight integration between hardware and software is
important. In the HSI payload, the image sensor is connected through LVDS directly to
the FPGA, so that the captured frames can be processed and stored in memory.

An overview of the Zynq 7000 architecture is shown in Figure 1.7. The two main parts
of the system are the Processing System (PS), consisting of the CPU cores, on-chip
memory and peripherals, and the Programmable Logic (PL) which is the FPGA. The
architecture is quite intricate, but for the scope of this thesis, the following parts are the
important parts:

e Programmable Logic (PL): The FPGA

o Application Processor Unit (APU): Consists of the ARM Cortex A9 CPU cores,
cache and on-chip memory as well as timers, interrupt control, etc.

e Memory Interface: Connects to external DDR memory

e Central Interconnect: Provides flexible connections between the APU, PL, I/O
peripherals and memory

e PL to Memory Interconnect: Provides the PL with high-speed connections to the
on-chip and external memories

Various kinds of buses connect the different components in the system via the Central
Interconnect and the PL to Memory Interconnect. In this thesis, the focus will be on
communication between the processors in the APU, the external DDR memory and the
PL. These are all connected using the AXI bus standard, which will be detailed in the
next chapter.

The CPUs connect to the rest of the system through AXI buses connected to the Central
Interconnect, and also directly to the DDR memory interface. Via the Central Intercon-
nect, the CPUs can access the PL using the general purpose (GP) ports, as shown in
Figure 1.7. The GP ports are 32 bit wide, and are typically used for accessing control
registers of soft cores that are instantiated in the PL.

From the view of the PL, the rest of the system is available through the Central Intercon-
nect via two GP ports, and the on-chip and external DDR memory are available through
four high-performance (HP) ports. The high performance ports are 64-bit wide and are
optimized for high data bandwidths.
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Figure 1.7: Overview of the Zyng-7000 architecture [2]
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1.3.3 Integration of hardware and software

One strength of FPGAs is the ability to interface directly with external devices and pro-
cess data on the fly as it arrives. This avoids the need for storing data in memory before
starting to process it, which is often the case with other processing platforms (for in-
stance GPUs). In the SmallSat HSI payload, data from the image sensor is streamed
directly into the FPGA, which can then perform several processing steps before data is
stored in DDR memory.

Figure 1.8 shows the typical setup for this kind of on the fly processing. Data arrives
from the source, in this case the HSI camera sensor, and is processed directly in the
FPGA before being sent to the DDR memory using a direct memory access (DMA)
core. The DMA core takes care of issuing write transactions to the memory. The high
performance (HP) ports are used to provide maximal data bandwidth performance. The
CPU has access to configuration registers in the DMA core and in the hardware process-
ing core through connections to the Central Interconnect via one of the general purpose
(GP) ports in the PL.

Processing System

Control
CPU Generic Interrupt +—>
Controller <:> Data
Programmable Logic
Central
Interconnect < oP

IRQ
Control/status
Registers

DMA <:| Hardware <::| From
processing sensor

PL to Memory
DDR memory <:> Interconnect HP ]

Figure 1.8: Typical setup for on the fly processing

Another common use of FPGAs is to offload parts (or all) of software algorithms to
custom processing logic in the FPGA that can take advantage of massive data parallelism
or perform certain operations quicker than the CPU while consuming less power. This
is typically done by storing the data to be processed in DDR memory and then using a
DMA core to transfer data from the memory and into the hardware processing core, and
collecting the results and storing them back in memory, similarly to in the previous case.
This is illustrated in Figure 1.9.
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Figure 1.9: Typical architecture of a hardware/software system in the Zynq-7000

An important and limiting factor in the effectiveness of such hardware accelerations is
the obtainable data throughput to and from the memory. This depends on primarily on
the bus widths and clock frequencies used, but also on the effectiveness of the DMA
cores that are used.

1.4 Main contributions

The project assignment printed at the beginning of this thesis document lists two points:

e Establish complete dataflow for OTFP pre-processing
o Implement CCSDS123 — BSQ and BI processing order, test communication with
the rest of the system

The following paragraphs will explain how these two points are addressed.

A Direct Memory Access (DMA) core, the Cube DMA, has been created specifically for
streaming hyperspectral images into and out of hardware processing cores. The Cube
DMA is meant to take the place of the DMA block that is seen in Figures 1.9 and 1.8.
Its main role is to provide hardware processing cores with HSI cube data streamed in
different orderings depending on the needs of the particular core. Some processing cores
might require BSQ ordering of data that is stored in BIP order, while others might need
the cube data ordered in a blocks-wise fashion. The Cube DMA can be configured to
accommodate different combinations of BIP or BSQ ordering and sequential or block-
wise ordering. The OFTP pre-processing mentioned in the first point of the project
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assignment is one of several processing algorithms that are of interest to perform in
FPGA hardware in the satellite. The Cube DMA is flexible enough to support this core
as well as other processing cores. As such, the first point in the project assignment has
been expanded upon in this thesis.

CCSDS123 is a lossless compression algorithm for hyperspectral images that takes ad-
vantage of the 3D structure of HSI cubes. An efficient FPGA implementation of this
algorithm has been developed for compressing image data in BIP order. The core has
been thoroughly verified. The CCSDS123 implementation can also be viewed as an
application for the Cube DMA core, as it is one of many possible hardware processing
cores that can be used in the way depicted in Figure 1.9 (compressing image data already
in memory) and Figure 1.8 (compressing image data straight from image sensor). The
second point of the project assignment also mentions BSQ processing order. As it will
be detailed in Chapter 6, the choice of sample ordering has no effect on compression
performance, and in addition, the hyperspectral camera that is being developed for the
SmallSat project is using BIP ordering. The scope of this point of the assignment has
therefore been narrowed to only focusing on implementing CCSDS 123 for BIP ordering.

The title of the thesis has been changed from the assignment title that is shown at the
first page of this thesis document. During the work on this thesis, efficient streaming and
compression has stood out as the two main themes throughout, and while the streaming
part of the work deals with communication between peripherals, it has little to do with
the ZedBoard development board in particular. The title “Efficient Streaming of Hyper-
spectral Images” has therefore been chosen instead.

Two journal papers have been submitted based on this work:

e J. Fjeldtvedt, M. Orlandi¢, ”CubeDMA - Optimizing Three-Dimensional DMA
transfers for Hyperspectral Imaging Applications”, Microprocessors and Microsys-
tems Journal, Second round of review, 2018

e J. Fjeldtvedt, M. Orlandi¢, T. A. Johansen, ”An Efficient Real-Time FPGA Imple-
mentation of the CCSDS-123 Compression Standard for Hyperspectral Images”,
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing, Second round of review, 2018

A third paper detailing the parallelization of the CCSDS123 implementation is planned
for submission during 2018.

1.5 Structure of this thesis

The work done in this thesis has been focused on two separate problems, and hence the
thesis will be split in two parts. Three chapters are dedicated to the Cube DMA core:

e Chapter 2 will present the findings of the feasibility study that was conducted
prior to this thesis, and present the Cube DMA implementation that was performed
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then. It will also introduce some background details about interrupts and caches
in the Zynq-7000 SoC, as well as the AXI bus standards.

e Chapter 3 details the continued work on the Cube DMA done for this thesis.

o Chapter 4 presents results for the Cube DMA and compares performance to an-
other DMA core from Xilinx.

The next three chapters cover the CCSDS123 compression standard:

o Chapter 5 presents a detailed go-through of the CCSDS123 compression standard
and introduces other background information that is necessary to understand the
implementation.

e Chapter 6 discusses various trade-offs to consider when implementing the algo-
rithm, presents and discusses previous implementations, and covers in detail the
hardware implementation of the CCSDS 123 algorithm.

o Chapter 7 presents results for the CCSDS123 implementation and compares it to
previous implementations.

Verification performed of the hardware implementations of the Cube DMA and the
CCSDS123 algorithm is detailed in Chapter 8. Some conclusions and notes on future
work will be presented in Chapter 9.
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Chapter 1.

Introduction




Cube DMA: A DMA core for

hyperspectral images

This chapter will introduce the Cube DMA, which was partly implemented in the semester
project leading up to this master’s thesis. First the feasibility study that was conducted
will be summarized, motivating for the need for the Cube DMA. This is followed by
some background information regarding the AXI bus standards that are used, and then
an overview of the Cube DMA core, showing its architecture, port interfaces and gener-
ics, and register interface for configuration. Following this, a more in-depth overview of
the implementation of the MM2S channel will be shown. Lastly, some necessary infor-
mation about interrupts and cache coherency in the Zyng-7000 system will be presented.

2.1 Introduction

Hyperspectral images are processed in different ways by different processing algorithms.
Some might process one plane or band in the cube at a time (BSQ ordering), while others
might divide the image into blocks, or do a combination of the two. This means that cube
data must be streamed in different orders depending on the application. A common way
to achieve this is to arrange the image data in memory in such a way that when streamed
sequentially, the data is ordered in the desired way. This is problematic in a typical
satellite system, because the ordering of the components is already fixed when captured
by the camera sensor.

In addition, several different hardware processing algorithms operating with different
component orderings might be doing processing on the same data in memory. Changing

15
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the data layout at run-time is a costly operation both in terms of time and the space
needed for temporary storage during such a conversion.

Another approach is to let the component ordering in memory stay the same, and instead
change the access pattern when reading from memory. For instance, if the image is
stored in BIP format in memory, streaming in BSQ order can be achieved by reading only
the first component in the first pixel, skipping the rest of the components and reading the
first component in the second pixel, and so on. This was explored in my feasibility study
prior to this master’s thesis work [8].

2.1.1 Summary of feasibility study findings

At the outset of the feasibility study, the following specifications for the DMA core were
set:

1. Capability of streaming a HSI cube (stored in BIP format) in BIP and BSQ order
2. Capability of streaming a HSI cube block-wise
3. Support for components of sizes that are not byte multiples, e.g. 10 or 12 bits

The two first requirements have to do with the issues described in the introduction,
namely that different HSI algorithms might require components to be streamed in BIP
or BSQ order, and also sequentially or in blocks. A DMA core for use in hyperspectral
imaging should therefore support all of these streaming orders. The capability of doing
block-wise transfers is important for several compression algorithms, such as JPEG and
JPEG2000, where the image is divided into blocks and processed block-wise. Figure
2.1 shows in more detail what is meant by a block-wise transfer: The components are
streamed starting at the top left pixel of the block and ending at the lower right pixel in
the block, as the arrow in the figure illustrates. The blocks themselves are processed in
the same order, starting at the upper left block and ending at the lower right block. Figure
2.2 shows block-wise transfer in BSQ order, where each plane is streamed separately.



2.1. Introduction 17

P B N~ |
/. /. ya .
/ /S S S L £
/7 YAV 4 |/
//
//
Vs ///
T /1
//
—| L/
/1
19 / //
o 5 //

Figure 2.1: Block-wise streaming of a HSI cube in BIP order. The arrows indicate the
order in which the components are streamed from a block, and the numbers indicate the
order in which each block is streamed.
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Figure 2.2: Block wise streaming of a HSI cube in BSQ order. The arrows indicate
the order in which the components are streamed from a block, and the block numbers
indicate the order in which each block is streamed. The numbers on each plane indicate
the order in which each band is streamed.

The third requirement has to do with typical component sizes used in image sensors.
While the native sizes in a typical memory system are byte multiples, the image sensor
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selected for the SmallSat project at this time is capable of sampling the image with 10
or 12 bits per component. To optimize memory utilization and streaming bandwidths,
these should be stored in memory with the same number of bits and not padded to use
e.g. 16 bits.

In the study, three existing DMA IP cores from Xilinx were considered: The Xilinx AXI
DMA, the Xilinx Video DMA and the Xilinx DataMover. For all three cores, there is no
built-in support for handling data elements that have widths that are not byte multiples.
As such, the third requirement requires some extra logic to be developed no matter which
core is used. The following sections will go through the different cores with focus on
the two first requirements.

2.1.1.1 AXI DMA

The AXI DMA [9] is the go-to general purpose DMA solution from Xilinx. It is capable
of scatter-gather transfers where stream data is collected from non-consecutive segments
in memory, and it uses so-called block descriptors to describe such transfers. A block
descriptor contains the start address and length of a transfer, and several descriptors can
be chained together to describe longer transfers, as Figure 2.3 illustrates. The main
drawback of the AXI DMA is that each time there is a gap in the memory access pattern,
such as when starting on the next row in a block (and skipping the rest of the data in
the row), a new block descriptor must be used. This means that for block-wise transfers
with many blocks, there can be an unacceptable number of descriptors needed. That
problem can be solved by using fewer block descriptors and instead re-use the same
block descriptors. This does however require the CPU to intervene several times during
the transfer to set up the block descriptors with new data. BSQ ordered access patterns
are not possible for the same reason, since that would require one block descriptor for
every component in the image.

‘ Output stream | | | |

Memory

Start Start Start
Length Length Length
Next — Next — Next

Block descriptors

Figure 2.3: Scatter-gather transfer using block descriptors

The AXI DMA can be instantiated in a so-called 2D mode where block-wise transfers
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can be performed without needing to specify a new descriptor for each row in the block.
Instead of just giving the transfer length, a stride is also given, which indicates how many
bytes to skip before starting a new transfer of the same length. A vertical size parameter
is used to indicate how many such transfers to repeat. This is illustrated in Figure 2.4.
As an example, doing a transfer of an 8 x 8 x 128 block from a 512 x 2000 x 128 cube
would be done by setting the length to 8 - 128 (the number of components in one row of
the block), the stride to 512 - 128 (the number of components in one row of the whole
cube) and the vertical size to 8 (the number of rows in the block).

Buffer Address

VSIZE Stride

Stride

-— HSIZE —M—

Figure 2.4: Horizontal size, stride and vertical size when using the Video DMA or the
AXI DMA in 2D mode

This would be nearly ideal for HSI processing if it was not for two issues: 1) The de-
scriptor fields used for the stride is only 16 bits, limiting the cube width and depth that
can be used (the product must be less than 65536) and 2) When instantiated in 2D mode,
the start address of any transfer is required to be divisible by 8 bytes, which rules out
any bit non-byte aligned component widths and any cubes that have dimensions that are
not divisible by 8 bytes.

2.1.1.2 Video DMA

The Video DMA [10] is a more specialized core that is meant for streaming video. In-
stead of using block descriptors, the Video DMA has a set of 32 fixed frame buffer
pointers. The DMA cycles through the frame buffers and streams them either sequen-
tially or block-wise from memory. Block-wise streaming is done in the exact same way
as for the AXI DMA in 2D mode, and it also suffer from the same register width limita-
tions, meaning that it can only be used for sufficiently small HSI cubes. The fixed buffer
nature of the Video DMA also makes it hard to do an automated block-wise transfer,
as it would require the CPU to manually start new transfers after each block has been
completed.

The capabilities of the different DMA solutions are summarized in Table 2.1.
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2.1.1.3 DataMover

The DataMover [11] is a simpler DMA core than the AXI DMA or Video DMA. It
accepts command words that contain a start address and the number of bytes to transfer,
and it will execute the command and return back a status word when the transfer has
been completed. It is lower level than the AXI DMA and Video DMA in the sense
that it can only execute the given commands, and not automatically start new transfers
like the AXI DMA and Video DMA do. Because configuring the DataMover is done
through command words, some additional logic is required to make it controllable from
software, for example through a memory mapped register interface. The strength of the
DataMover, however, is that it allows very fine grained control of transfers and as such
it can be used to do any of the specified transfers if it is used together with logic that is
issuing the right commands.

2.1.1.4 Conclusions from the study

The conclusion of the feasibility study was that neither the AXI DMA or the Video DMA
cores from Xilinx can be used for HSI processing in all the ways that were specified. It
was therefore looked into how to create a special purpose DMA core for hyperspectral
images using the DataMover to perform the actual transfers. This led to the implemen-
tation of a special purpose DMA IP, the Cube DMA, that meets all the specifications.

Core BIP ‘ BSQ ‘ Block-wise (BIP or BSQ)
AXI DMA Yes No Yes (BIP)

AXI DMA 2D Depends No Depends (BIP)
Video DMA Depends No Depends
DataMover With ext. logic | With ext. logic With ext. logic

Table 2.1: Comparison of capabilities of considered DMA solutions

2.2 AXI bus standards

This section will go through the AXI bus standards, which are used in the Zyng-7000
SoC platform and in all the Xilinx DMA cores, and which is necessary for understanding
some of the implementation details of the Cube DMA and TinyMover cores that have
been developed in this work.

2.2.1 The AXI bus standards

Advanced eXstensible Interface (AXI) is a set of open bus standards developed by ARM
as a part of their Advanced Microcontroller Bus Architecture (AMBA) standard. Two
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revisions, AXI3 and AXI4 have up until now been specified. The AXI specifications
define three kinds of bus interfaces: AXI (sometimes referred to as full AXI), AXI-
Lite and AXI-Stream. These are tailored to different use cases, but have some general
principles in common.

An AXI bus connects two components together, where one is a master and the other
is a slave. The master initiates all communication, while the slave responds to requests
made by the master. There is always exactly one master and one slave on an AXI bus. To
build larger systems where several masters share access to several slaves, interconnects
provide the logic to route requests from a master to any of the connected slaves. The
AXI protocols are used in many of the internal buses in the Zyng-7000, as indicated in
Figure 1.7 where the green, blue and red colored buses use AXI. The arrows point in the
direction from master to slave.

AXI and AXI-Lite consist of five channels (the prefixes used in signal names shown in
parentheses):

Write Address channel (AW)
Write Data channel (W)
Write Response channel (B)
Read Address channel (AR)
Read Data channel (R)

The channels are separate and independent from one another. Figures 2.5 and 2.6 illus-
trate the direction of data flow in these channels.

2.2.1.1 Handshake mechanism

All of the channels use a common handshake mechanism to transfer data from the source
to the destination. This is controlled by two signals, xvalid and xready (where X is the
prefix for the channel). The xvalid signal is asserted by the interface which is sending
data to indicate that valid data is present on the data lines. The xready signal is asserted
by the recipient when it is ready to get the data. Either signal can be asserted first, but

Read address channel

Address
and control
—
Master Slave
interface interface

Read data channel

Read Read Read Read
data data data data

Figure 2.5: AXI channel architecture for reads [3]
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Figure 2.6: AXI channel architecture for writes [3]

in the clock cycle when both are asserted simultaneously, the transfer is said to have
occured. The cycle when this happens is called a beat. The beat is the fundamental unit
of data transfers.

2.2.1.2 Requests and transactions

The master initiates any communication by sending requests over the Write Address
and Read Address channels, using the described handshaking mechanism. The request
contains information about how many bytes to read or write, and the address to read from
or write to. A request initiates a read or write transaction between the master and the
slave. In case of reads, the slave will send the requested data on the Read Data channel,
and in the case of writes, the master will send the data on the Write Data channel. The
transaction ends when the associated data transfer is finished, which is indicated by the
data channel’s xlast signal being asserted. A slave might accept several requests on the
address channel before servicing the first request. This allows highly efficient operation,
since the master doesn’t have to wait for one transaction to complete before issuing the
next.

In addition to any data transfers, the slave also sends a response to all requests from
the master using a xresp signal in the Read Data and Write Response channels. This
response tells the master of any errors that might have occured; for instance that an
invalid address was contained in the request.
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2.2.1.3 Burst transfers

An important performance feature in the full AXI protocol (not AXI-Lite) is the support
for burst transfers. Instead of initating a new transaction for every unit of data to be
transferred, the master may give the slave a burst size (axsize) and burst length (axlen)
in addition to the address. The burst size indicates how many bytes will be transferred
in one beat, and the burst length tells the slave how many beats to expect in the case of
writes, or how many beats to transfer to the master in the case of reads.

2.2.1.4 AXI-Stream

AXI-Stream is a slimmed-down protocol for transfers where data is just moved from
one point to another, without any concept of addresses. It is modelled after the read and
write channels in the AXI protocol. Like for AXI buses, handshaking signals (tvalid
and tready) are used when transferring data, and tlast is used to indicate the end of a
transfer.

2.3 Overview of the Cube DMA core

An overview of the Cube DMA is shown in Figure 2.7. The Cube DMA consists of two
independent channels: The Memory Map to Stream channel (abbreviated to MM2S)
which reads data from memory and streams it into an accelerator, and the Stream to
Memory Map channel (S2MM) which receives a data stream from the accelerator and
stores the incoming data in memory. A common register interface is used to configure
both channels.

Both channels are capable of handling component sizes that are not byte multiples. In
the MM2S channel, packed data from the memory is unpacked into separate components
that are streamed to the accelerator, and in the S2MM channel, components from the
accelerator are packed into 64-bit words before being stored in memory.

A specialized core for doing BSQ transfers more efficiently than the Xilinx DataMover
was also developed, called the TinyMover. This will be detailed in section 2.6.
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Figure 2.7: Overview of Cube DMA core

2.3.1 MM2S channel

The MM2S channel in the Cube DMA can perform BIP ordered or BSQ ordered trans-
fers, which is selectable at run-time through register configuration. In BSQ ordered
mode, components from several planes can be streamed in parallel, meaning that in ev-
ery beat of the transfer, components from the same pixel but in different planes are output
in parallel. In BIP mode, several components from the same pixel can also be transferred
in parallel. The number of planes (in case of BSQ) or pixel components (in case of BIP)
to transfer in parallel is selected using generic parameters when instantiating the DMA
core.

In both BSQ mode and BIP mode the Cube DMA can order the pixels sequentially or
block-wise. A sequential transfer will start at the first pixel (upper left) and proceed
through the cube row by row until the last pixel (lower right). In a block-wise transfer,
the cube is divided into blocks with given sizes in the x and y directions. The pixels
in each block are transferred in an upper left to lower right fashion, and the blocks
themselves are also read in this order, starting with the upper left block and finishing
with the lower right block. Figure 2.8 illustrates this, with the arrows showing the order
of the components in the stream, and the numbers indicating the order that each block is
streamed in.
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Figure 2.8: Order of processing in the Cube DMA for a block-wise transfer with blocks
of size 4 x 4 and N, = 4 planes, starting at an initial offset.

The block dimensions are required to be powers of 2. This simplifies the hardware, and it
satisfies most block- or tile-based processing algorithms. There are no such restrictions
for the HSI cube size. The cube width or height might therefore not necessarily be
divisible by the block width or block height. As Figure 2.9 shows, this means that the
last block in each block row might have a width less than the other block widths, or
the last row of blocks might contain blocks that have a height that is less than the other
blocks’.

A control stream is output in parallel with the data stream from the DMA. This stream
contains a set of control bits for each component in the stream, which indicate whether
the component is in the last pixel of a block, in a block that is in the last row of blocks,
and so on. These control bits can be used by the accelerator to detect when it is handling
components that belong to blocks that are smaller than the given block size.
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Figure 2.9: Example of a HSI cube whith spatial dimensions 10x10 and block size 4x4

2.3.2 S2MM

The S2MM channel writes incoming stream data sequentially to memory. It supports
data words of different sizes, and will collect up data into 64 bit packets that are stored
in memory. The S2MM channel will continuously store data until the incoming stream’s
TLAST signal is asserted. The amount of bytes that were received can subsequently be
read out from the register interface. This approach has been chosen so that the DMA
can easily be used in cases where the accelerator’s result size is unknown, such as for
compression cores where the compressed size is unknown in advance.

2.4 Ports, generics and register layout

2.4.1 Interface ports

Table 2.2 shows the different I/O ports of the Cube DMA module. The control stream,
mm2s_ctrl and the IRQ outputs, mm2s_1irqgand s2mm_1irqg are optional.
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Name Direction | Interface type | Description
s_axi_ctrl_ status_x | Infout AXI-Lite Register interface for
configuration and
status readout
m_axi_mem In/out AXI DMA memory
read/write interface
m_axis _mm2s_* Out AXI-Stream MM2S stream (to
accelerator)
mm2s_ctrl Out Bit vector Control bits for each
component in the
stream
S_axis_mm2s_x* In AXI-Stream S2MM stream (from
accelerator)
mm2s_1irqg Out Bit MM2S IRQ flag
s2mm_irqg Out Bit S2MM IRQ flag

Table 2.2: Input and output ports in Cube DMA

2.4.2 Generic parameters

Table 2.3 shows the generic parameters that can be chosen when the Cube DMA is
instantiated. In the following explanations, the parameters for component width and
number of components in parallel will be referred to as W, and N,, respectively.

Name Symbol | Description Values
MM2S_COMP_WIDTH | W, The width of each Even number larger
component in bits than 8
MM2S_NUM__COMP N, The number of Greater or equal to 1
components to output
in each beat (BIP) or
number of planes to
transfer in parallel
(BSQ)
MM2S_AXIS_WIDTH | - The width of the AXI | Large enough to hold
Stream select number of
components with
selected width
TINYMOVER - Whether to include True/false
TinyMover core or not
S2MM_COMP_WIDTH | W, Similar to MM2S
S2MM_NUM_COMP N, Similar to MM2S
S2MM_AXIS_WIDTH | - Similar to MM2S

Table 2.3: Generic parameters for Cube DMA
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2.4.3 Register configuration

Programming the Cube DMA is done through a register interface. There are two sets
of registers, one for the MM2S channel, shown in Table 2.5, and one for the S2MM
channel, shown in Table 2.6.

For the MM2S channel, the dimensions (width, height and depth) of the HSI cube, as
well as the block dimensions are given. Block dimensions are restricted to be powers of
2. In addition, a few extra helper values must be given to the Cube DMA through the
register interface. These are explained in Table 2.4. The extra values are used during
address calculations in the Cube DMA, and are computed in software before starting a
transfer. This reduces the amount of logic needed in hardware to do these computations.

Field Description Expression
. . d
Number of plane transfers How many iterations needed to {-‘
process a complete cube Ne
Row size The size of one row of the w-d
cube in number of components
Last block row size The size of one row in the last | (w mod wy) -d
block in a row of blocks

Table 2.4: Helper values that must be computed in software and given to the core through
the register interface
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Field \ Description \ Unit \ Bits
Control register (0x00)

Start Core starts transfer when this bit 0
transitions from O to 1

Block-wise mode Cube is read in blocks of specified 2
size

Plane-wise mode Cube is read planewise, with a given 3
number of planes in parallel

Error IRQ enable Trigger IRQ when error condition 4
arises

Completion IRQ enable Trigger IRQ when transfer is 5
complete

Number of plane transfers | How many plane transfers to perform 15-8

Start offset Plane offset to start transferring from | c 23-16

Status register (0x04)

Transfer done Indicates whether the transfer is 0
completed

Error mask Indicates which errors occured 3-1

Error IRQ flag Set when IRQ was triggered due to 4
error. Cleared when 1 is written to
this bit.

Completion IRQ flag Set when IRQ was triggered due to 5
completion. Cleared when 1 is
written to this bit.

Base address register (0x08)

Base address The address of the first componentin | b 31-0
the first pixel of the HSI cube

Cube dimension register (0x0C)

Width The width of the HSI cube P 11-0

Height The height of the HSI cube p 23-12

Depth The depth of the HSI cube c 31-24

Block dimension register (0x10)

Block width log, of the width of each block p 3-0

Block height log, of the height of each block p 7-4

Last block row size Number of components in each row c 31-12
of the last block in a row

Row size register (0x14)

Row size Number of components in one row of | ¢ 19-0
the cube

Table 2.5: Register layout for the MM2S channel of the Cube DMA




30 Chapter 2. Cube DMA: A DMA core for hyperspectral images

For the S2MM channel, only the address of where to put incoming data needs to be
given.

Field | Description | Unit | Bits

Control register (0x20)

Start Core starts transfer when this bit 0
transitions from O to 1

Error IRQ enable Trigger IRQ when error condition 4
arises

Completion IRQ enable | Trigger IRQ when transfer is com- 5
plete

Status register (0x24)

Transfer done Indicates whether the transfer is 0
completed

Error mask Indicates which errors occured 3-1

Error IRQ flag Set when IRQ was triggered due to 4
error. Cleared when 1 is written to
this bit.

Completion IRQ flag Set when IRQ was triggered due to 5
completion. Cleared when 1 is writ-
ten to this bit.

Base address register (0x28)

Base address The address of where to store the in- | b 31-0
coming stream data

Received length register (0x2C)
Received length The number of bytes received from | b 31-0
start of transfer until TLAST was
asserted

Table 2.6: Register layout for the S2MM channel of the Cube DMA
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Figure 2.10: Relation between configuration register fields and HSI cube

2.5 Overview of MM2S channel implementation

This section will go briefly through the implementation of the MM2S channel which
was done in the project work leading up to this thesis [8].

A complete cube transfer consists of a series of sub-transfers. In the case of BIP non-
blocked transfers, the transfer consists of & sub-transfers, each transferring one row in the
cube. In the case of block-wise transfers, each sub-transfer covers one row in the block.
For BSQ transfers, there is one sub-transfer performed for each set of N. components.

As shown in Figure 2.7, the MM2S channel consists of the Xilinx DataMover or the
TinyMover which perform the sub-transfers, the unpacker which takes care of unpacking
the packed components from memory into a selected number N, of components to feed
in parallel to the accelerator, and the controller which sends sub-transfer commands to
the DataMover or TinyMover and configuration words to the unpacker.

2.5.1 DataMover

The DataMover IP from Xilinx can perform transfers with a length of up to 223 bytes,
and will issue the appropriate AXI read requests to perform the transfer. The DataMover
is controlled through a command word interface, where command words contain the start
address, the number of bytes to read and flags that control some aspects of the transfer,
such as whether tlast should be asserted on the stream coming out from the DataMover
when the transfer has been completed.
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2.5.2  Unpacker

The unpacker converts the incoming packed stream from memory to a stream where the
user selected number of components, N, are output in parallel, as illustrated in Figure
2.11. An overview of the unpacker architecture is shown in Figure 2.12. The unpacking
is performed in three steps: shifting, restructuring and buffering.

Packed stream from memory Offset  Unpacked stream Beat
e ]
N 1

Lel e P2l [ [roffif s 2]+ [o]
! 1

ol o [ el {17 [ of]0s [[ 7 [ & ] s [ 4]

| 15 | 14 | 13 | 12 | 11 | 10 | | 11 | 10 | 9 | 8 |

| 15 | 14 | 13 | 12 | v

Figure 2.11: Example of packed stream coming from memory and the resulting un-
packed stream when W, = 12 and N, = 4. Left: the stream of packed 64-bit words from
memory. Right: the unpacked stream with N. components in parallel.
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Figure 2.12: Overview of the MM2S unpacker module

2.5.2.1 Shifter

Shifting is necessary to perform when W, modW # 0, because in that case the LSB of a
component might not be aligned with the LSB of a byte as is shown in Figure 2.13. For
instance, if W, = 12, a component might have its LSB at a byte boundary, but it might
also have an offset of 4. Similarly, for W, = 10, a component might have an offset of 0,
2, 4 or 6 from the nearest byte boundary.
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Figure 2.13: The stream from the shifter, given the input shown to the left in Figure 2.11

2.5.2.2 Restructurer

After shifting has been performed, the data in the incoming 64-bit stream contains a
number of whole components, but might also contain partial components. The least
significant bits might be the remaining bits from a partial component in the previous 64-
bit word, while the most significant bits might be the least significant bits of a component
that is completed by bits from the next 64-bit word. This can be observed in Figure 2.13:
Component 5 has its least significant bits in the most significant bits of the first word,
and its most significant bits in the least significant bits of the second word. Similarly,
component 10 has its least significant bits in the most significant bits of the second word,
and the remaining bits in the least significant bits of the third word.

The restructurer performs the necessary operations to collect up whole (unsplit) com-
ponents before forwarding them to the next stage. For the example case, this means
that when receiving the first word, the whole components O through 4 can be forwarded,
while the least significant bits of component 5 are saved until the next word arrives and
they can be joined with the remaining bits of component 5 and be forwarded together
with components 6 through 10. The resulting stream is shown in Figure 2.14.
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Figure 2.14: The stream from the restructurer, given the input stream from the shifter
shown in Figure 2.13

2.5.2.3 Buffer

The buffer collects up the whole components arriving from the restructurer until there
are N, components ready to be output in parallel to the accelerator. The output stream
from the buffer is what is shown to the right in Figure 2.11.

2.5.2.4 Configuration FIFO

Each time data from a new sub-transfer starts arriving from the memory, the bit-offset
of the first component might be different, and the number of components in the packet
might change. The necessary information that is needed by the unpacker to handle a
sub-transfer correctly is called a configuration. The configuration word consists of the
number of bits to shift the incoming word from memory in the shifter module, the num-
ber of components in the last words from memory, which is needed by the restructuring
module, and some flags that are used during the unpacking process.

Each time a new packet arrives (first beat where tlast is O after being 1) from the Data-
Mover or TinyMover, the next configuration word is read from the configuration FIFO.

2.5.3 Controller

The controller module controls operations during DMA transfers. It keeps track of
transfer progress, calculates start addresses and transfer lengths for each sub-transfer,
and feeds the necessary commands to the DataMover (or TinyMover) and configuration
words to the unpacker.

An overview of the controller is shown in Figure 2.15. A slightly different controller is
used when the TinyMover core is used instead of the Xilinx DataMover.



2.5. Overview of MM2S channel implementation 35

DataMover
reset

i

IRQ
generation

—— reset

— irq

| DataMover
: Status register status @—— status
t interface

—

! " State machine 1 COTaplllstlon

L

DataMover
> command —— command
interface

Base address,
cube dimension, Address

block dimension, ———> generation
and row size 1
registers !
__________ 1 Unpacker
interface

\ A

—— config

Figure 2.15: Overview of the controller module

2.5.3.1 Address generation

Based on the configuration set in the configuration registers, the address generation mod-
ule takes care of calculating the necessary information needed to issue a command to the
DataMover and configure the unpacker for that particular transfer.

The address generator keeps track of the current position in the cube by using a set of
counters representing the x and y coordinates of the current block as well as the x and y
coordinates of the current pixel within that block in case of BSQ transfers. This part of
the address generation logic was rewritten for the master’s thesis, and is therefore shown
in more detail in the next chapter.

Based on the current position in the cube, the address generator calculates the following:

o The start address for the next sub-transfer
o The number of bytes in the next sub-transfer
e The bit-offset from the LSB in the first byte to the LSB of the first component
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Each time a command is handshaked with the DataMover or TinyMover, the address
generator increments its counters and moves on to the next position in the cube, and
calculates the necessary information for the next sub-transfer.

2.5.3.2 IRQ generation

The IRQ generator generates an interrupt request signal (IRQ) to the CPUs when either
an error occurs, or when a transfer completes. The software can decide which events
should trigger an IRQ by setting a 2-bit IRQ mask, where bit O is the error event bit and
bit 1 is the completion bit. When an IRQ event has occured, and the corresponding bit
is set in the IRQ mask, the IRQ output signal will be asserted. The software can find
out which event triggered the IRQ by reading the status register. The software must then
acknowledge the IRQ by writing to the same bit positions in the status register.

2.5.3.3 State machine

Sequencing of operations in the controller is controlled by a state machine. The state
transition diagram is shown in Figure 2.16.

The state machine goes from the idle state to the running state when the start bit in the
control register is set from software. When commands for all the sub-transfers needed
to transfer the whole cube have been accepted by the DataMover or TinyMover, the
state machine moves into a state where it is waiting for all status words from the Data-
Mover or TinyMove to come back. A completion tally counter keeps track of how many
commands have been issued versus how many have been completed. When all issued
commands have been completed, the state machine can move back to the idle state. The
other states shown in Figure 2.16 deal with error conditions that might arise during the
transfer, for instance that a read is attempted from an invalid memory address.



2.6. The TinyMover core 37

All
commands .
issued wait_

complete
Status word
with error
H

\ ard error received
asserted

All pending
status words
received

with error
received

Figure 2.16: State transition diagram for the state machine

2.6 The TinyMover core

During testing of the Cube DMA, it was found that BSQ transfers were being slower
than expected. This turned out to be due to a limitation in the DataMover where a new
read request cannot be issued more frequently than every 7th clock cycle. For BSQ
transfers where one read request is issued for each set of N, components in the cube, this
puts a severe limit on the achievable throughput.

A replacement for the DataMover, the TinyMover, was therefore implemented, special-
ized for tiny transfers where the number of bytes to fetch fits within one burst transfer
on the AXI bus. An overview of the TinyMover is shown in Figure 2.17.
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Figure 2.17: Overview of the TinyMover core

The TinyMover consists of a read request path, which is shown going right to left at the
top of Figure 2.17, and a read data path which is shown going left to right at the bottom
of the figure. The read request path translates the incoming command word containing
the start address and number of bytes to read, into an AXI read request. Information
needed when the data associated with the transaction that this request initiates comes
back from memory, is pushed to a FIFO. The read data path performs the necessary
steps to produce a contiguous AXI Stream containing the read data. It also takes care of
byte level shifting that is needed when read requests are made to memory addresses that
are not aligned with 32-bit boundaries.

2.7 Integrating DMAs with software

This section will lay out some necessary concepts and information about the Zyng-7000
SoC with regards to integrating DMAs with software running on the ARM processor
cores.

2.7.1 Interrupts on Zyng-7000

The software has two ways to find out when a DMA transfer has completed: It can
either repeatedly poll the DMA, typically by reading a status register and checking bits
that indicate completion, or set itself up to be interrupted when a DMA transfer has
completed.
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Using interrupts has several advantages over polling. Whereas polling requires the CPU
to periodically check the state of the DMA, interrupts allow the CPU to save power by
going into a sleep mode or to do other useful work while the transfer is on-going.

2.7.1.1 The Generic Interrupt Controller

Each CPU in the Zyng-7000 only has two interrupt inputs, the FIQ (fast interrupt re-
quest) and IRQ (interrupt request). FIQs have higher priorities than IRQs, meaning that
if both occur at the same time, the CPU will first handle the FIQ.

The Zyng-7000 has several different interrupt sources, such as different software gener-
ated interrupts, I/O peripherals and timers, and 16 interrupt signals that can be connected
to custom logic in the PL. Selecting which interrupt sources to forward to the FIQ or IRQ
inputs on the CPUs is done by the Generic Interrupt Controller (GIC), which is illustrated
in Figure 2.18.

The GIC allows the software to control which interrupt sources to enable (not ignore),
and how different interrupt sources will be prioritized when they signal interrupts at the
same time. Software can also control how interrupts are distributed to each of the two
CPU cores in the system. When an interrupt causes one of the CPUs to be interrupted
with a FIQ or IRQ, the software can check the GIC status registers to figure out which
of the many interrupt sources caused the FIQ or IRQ in question.

2.7.1.2 Interrupt handling

In ARM processor terminology, FIQs and IRQs are part of the broader exception con-
cept. Exceptions are events that cause the CPU to do a context switch: It stops running
its current instruction stream, saves the state of all registers, and looks up in a exception
vector table to find the address of an exception handler routine that it will start execut-
ing. The routine will handle whatever event caused the exception, and then the CPU will
restore the previous state and continue executing as it was before the exception occured.

FIQ and IRQ are two of the possible exception events. When these occur, an exception
handler must be run that will handle them. At that point, there is no information about
which one of the interrupt sources caused the IRQ. The exception handler must check
status registers in the GIC to find out.

Xilinx provides a driver for using the GIC in software. This driver also includes an ex-
ception handler that can be registered in the exception vector table. The driver allows the
user to add custom interrupt handlers for different interrupt sources. When the exception
occurs, the exception handler will then check with the GIC and call the correct interrupt
handler.
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Figure 2.18: The Zyng-7000 Generic Interrupt Controller (GIC) [2]

2.7.2 Caches

As in most modern processing systems, the Zynq-7000, uses a memory hierarchy to hide
the read- and write latencies of large DDR memories. The hierarchy is shown in Figure
2.19. Two levels of cache memory, Level 1 (L1) and Level 2 (L.2) is used between the
CPUs and the DDR memory, but to simplify the following text, these will be grouped
together and referred to as “’the cache”.

2.7.2.1 Caching and cache lines

The two main principles behind caches are that memory locations close to the currrent
location are likely to be used next (spatial locality), and if a memory location is accessed
now, it is likely to be accessed again later in the program (temporal locality). It is
therefore beneficial to copy data from the memory locations close to the location that
the CPU is currently accessing into the cache, so that when the CPU needs to access one
of these locations, it can find the data in the cache instead of doing slower read/write
operations on the main memory.

The Zyng-7000 caches are divided into lines of 32 bytes. These lines correspond to 32
byte continuous blocks in the main memory. Whenever the CPU accesses one particular
memory location that is not cached, the whole 32 byte memory block that the location
belongs to is copied into an available cache line. It remains in the cache line until it gets
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replaced by a newer cache line, or until it is explicitly removed by the software.

2.7.2.2 Coherency

When memory is shared between several units, such as between the CPUs and the DMA
in the Zyng-7000, the problem of cache coherency is introduced. The data in the DDR
memory isn’t necessarily the same as in the caches. For example, if the CPU reads from
a particular address, the surrounding data is put in a cache line. In the mean time, the
DMA might write new data into the DDR memory. The next time the CPU reads from
the same address, it will get the cached data instead of the new data written by the DMA.
The cached data has become stale.

Another scenario that can happen is that the CPU writes to an address that is cached.
The change will only occur in the cache, and not be visible in the DDR memory until the
cache line is evicted from the cache and written back to the memory. If the DMA reads
from the same region of memory during this period, it will get the old data and not the
new data that was written by the CPU. The data in the memory region has become stale.

The Zyng-7000 has a Snoop Control Unit (SCU) designed to keep the caches and mem-
ory coherent with an external hardware accelerator. To use this feature, it requires that
the external hardware, in our case the DMA, is connected to a special Accelerator Co-
herency Port (ACP) such that all memory requests are routed through the SCU. This
has several tradeoffs; for instance, accesses where data is present in the cache will be
quicker, but on the other hand the accelerator will compete with the CPUs to access data.
In the Zyng-7000 manual, Xilinx conclude that using the SCU and ACP is optimal for
medium-grain accelerators that operate on fairly small data sets. [2].

When the DMA is connected directly to the DDR memory through one of the High
Performance ports, cache coherency must be managed manually. To sum up the previous
discussion, the two issues that must be taken care of are:

o Memory becomes stale: The CPU writes data to a location in memory which is to
be streamed by the DMA, but the new data is only written to the cache and not to
the actual DDR memory.

o Cache becomes stale: The DMA has written an incoming stream to memory, but
when reading from this location the CPU instead reads an out-dated cache line.

2.7.2.3 Flusing and invalidating

Cache coherency is achieved manually by doing two operations from software: flushing
and invalidating. These are available as library functions in the Xilinx SDK,
Xil_CacheFlushRangeand Xil_CacheInvalidateRange. Behind the scenes,
these functions talk to the cache controllers inside the Zyng-7000. Both functions take
two arguments: A pointer to the start of the memory region in question and its length.
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Figure 2.19: Memory hierarchy in Zyng-7000

In the case of flushing, any cache line that contains data from within the given region is
written out to memory. This means that new values written by the software is actually
visible in the DDR memory, and the DMA will read the correct data from memory.

In the case of invalidating, any cache line that contains data from within the given region
is marked as invalid. This means that the next time the CPU reads from any address in
the region, it is forced to read data from the DDR memory and not outdated values from
the cache.



Cube DMA implementation

This chapter will present the continued work on the Cube DMA that was performed for
this thesis. It will also explain briefly how benchmarking was performed for the Xilinx
AXI DMA and the Cube DMA.

The following list shows the changes and new features that have been implemented for
the Cube DMA:

e Address generation and register layout has been simplified under the assumption
that block dimensions are powers of 2

o Added capability of doing BSQ transfer of complete cube without any user inter-
vention

e Added output of control stream in parallel with output data

e Completed implementation of S2MM channel

During the next sections these points will be detailed.

3.1 New address generation logic

A serious problem in the address generation logic implemented in the project was that
it did not handle the case where the cube width and height dimensions are not whole
multiples of the block dimensions. This would lead to the transfers of the last blocks in
each row of blocks being too large, and the number of transfers in the last row of blocks
to be too large.

To fix this, it was decided to restrict the block dimensions to be powers of 2. This is
a reasonable restriction, as any block- or tile based algorithms that have been looked
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at for hyperspectral image processing use block dimensions that are powers of 2. Con-
straining the block dimensions like this allows several computations to be made much
easier: Multiplying and dividing by the block dimensions becomes a matter of shift-
ing, and finding residuals (modulo operations) becomes a matter of picking out the least
significant bits.

This also turned out to improve the ease of use of the core. With the old address gen-
eration logic, quite a few helper values had to be computed in software and supplied by
the user through configuration registers. These are now for the most part computed by
the core itself, leaving only the values that were listed in 2.4 to be supplied externally.
These values could have been computed in hardware as well, but as they are only calcu-
lated once before the start of a cube transfer, it is better to save the additional logic and
perform the computations in software.

Code listing 3.1 shows in pseudo-code how the new address generation logic works.

if !mode_block:
num_blocks_y = 1
num_blocks_x = 1
current_block_height = height
current_block_width = width
length = row_size
else:
num_blocks_y = height / 2xxblock_height
num_blocks_x = width / 2*xblock_width

if !mode_plane:
num_plane_transfers =
current_block_width =1
length = depth

I
=

for num_plane_transfers-1 to 0:

block_address = offset
row_address = offset
block_row_address = offset
component_address = offset

for block_y in num blocks_y-1 to O:
for block_x in num_blocks_x-1 to 0:
for y in current_block_height-1 to 0:
for x in current_block_width-1 to 0:
if mode_block:
if block_x = 0:
current_block_width = width mod 2x*block_width
length = last_block_row_size
else:
current_block_width = 2xxblock_width
length = 2xxblock_width x depth

if block_y = 0:

current_block_height = height mod 2x+block_height
else:

current_block_height = 2xxblock_height

issue command (component_address, length)
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if x = 0 and y = 0O:

if block_x != 0:
block_address = block_address + (width mod 2xxblock_width)
else:

block_row_address = block_row_address
+ 2xxblock_height * row_size

block_address = block_row_address
if x !'= 0:
component_address = component_address + depth
else:
if y !'= 0:
row_address = row_address + width
else:
row_address = block_address
component_address = row_address

wait for tick from state machine
offset = offset + comp_per_cycle

Listing 3.1: Pseudo-code of address generation

3.2 Control stream implementation

The buffer module in the unpacker will collect up N. components before these are for-
warded to the accelerator, even if the buffer already contains components from another
sub-transfer. This means that the components that are output on the MM2S stream might
originate from different pixels or different blocks in the HSI cube. For the accelerator
that is processing the streamed data, it might be necessary to know whether the compo-
nents are from different blocks, and also whether or not the incoming components come
from a truncated block in the last column of blocks or from a truncated block in the last
row of blocks, such that appropriate padding etc. can be performed.

To help identify components correctly, a set of control signals per component are put out
in parallel with the data stream. These indicate:

1. Whether the component is part of the last pixel in a block
2. Whether the component is part of a block in the last column of blocks
3. Whether the component is part of a block that is in the last row of blocks

Figure 3.1 illustrates how these control signals relate to the HSI cube with an example
where N, = 4. The three first components in the stream are from the last pixel in a block,
and also from a block that is in the last column of blocks, and hence the corresponding
control bits are 1. The fourth component is from the first pixel in the next block, and
is not in the last column of blocks, so the corresponding bits are 0. However, it is in a
block that is in the last row of blocks, and the corresponding control bit for this is 1.
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Figure 3.1: Control bits

To implement this feature, the calculation of these signals was added to the address
generation logic. Since there are already counters keeping track of the current pixel and
block coordinates, this is mostly a matter of comparing these counter values to the total
number of blocks and total number of pixels, respectively.

The unpacker configuration FIFO was extended with room for the three new bits. The
bits are put in the unpacker configuration FIFO together with the other information that
describes the particular sub-transfer. This is done so that when the corresponding sub-
transfer data arrives from the DataMover or TinyMover, the associated control bits are
read from the FIFO.

The control bits are appended to each component before it is stored in the buffer. At
the buffer output, the control signals are split from the component again and put out
on a separate control bus. This makes sure that the right control signals are output
simultaneously with the components they belong to.
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3.3 S2MM channel implementation

3.3.1 Controller

The S2MM controller functionality shares much of the same logic with the MM2S con-
troller. It is therefore implemented in the same VHDL module, using a generic param-
eter to indicate whether the controller is to be used for S2ZMM or MM2S, and enabling
or disabling features using VHDL if generate statements. The difference between
the two is mainly how commands are issued to the DataMover.

The S2MM channel continually writes stream data to the memory until the incoming
stream asserts tlast. To achieve this behavior, a feature of the DataMover called inde-
terminate byte transfer is enabled. When instantiated in this mode, the DataMover will
accept packets that are larger than the given size in the command. It will report back a
status word with an End Of Packet bit (EOP) that indicates whether tlast was asserted
during the sub-transfer described by the command or not, and the actual number of bytes
that were read.

This allows transfers of any length by issuing commands for new sub-transfers every
time the DataMover reports a status that does not have the EOP bit set, because that
means that the DataMover has performed the largest possible sub-transfer, and there is
still more stream data to come.

Listing 3.2 shows how commands are issued to the DataMover in the S2MM Controller.

MAX_LENGTH = Ox3FFFFF
bytes_total = 0
start_address = base_address
loop:
issue command (start_address, MAX_LENGTH)
wait for status
if status.eop:
bytes_total = bytes_total + status.bytes_received
exit
else:
start_address = start_address + MAX_LENGTH
bytes_total = bytes_total + MAX_LENGTH

Listing 3.2: Pseudocode for S2MM command issuing

3.3.2 Component packer

Similarly as with the MM2S output stream, the incoming S2MM stream can contain any
number of components N, in parallel, and the component width W, does not have to be
a multiple of 8 bits. Since the AXI bus that connects the DMA to memory is 64 bits
wide, this means that the incoming components must be packed into 64 bit words before
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being written to memory. The component packer performs the opposite operation of the
component unpacker that was detailed in Section 2.5.2. Figure 3.2 shows an incoming
stream from an accelerator, and the resulting packed 64-bit words that are written to
memory.

Stream from accelerator Stream from packer BEt
Lo [z « o Jfsfla] o[ [f2] « [fo]
L7 [ e[ s [ &[] of[le | 7]l [s]
| 11 | 10 | 9 | 8 || 15 | 14 | 13 | 12 | 11 |10|
| 15 | 14 | 13 | 12 | v

Figure 3.2: Example of packing when W, = 12 and N, = 4. Left: stream from accelerator
with N, components in parallel. Right: the packed stream of 64-bit words.

The component packer architecture is shown in Figure 3.3

3.3.2.1 Buffer

The S2MM stream data is first put in a component buffer similar to the one used at the
last stage in the MM2S unpacker. The buffer collects components until there are enough
components to output to the next stage. The component joiner in the next stage notifies
the buffer about how many components it expects. When the number of components in
the buffer is larger or equal to the requested number, the buffer will forward the selected
number of components to the component joiner.

Number of
components
to request

From ]
o or L)1 Buffer [ Joiner [ Tomemory

Figure 3.3: The component packer
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3.3.2.2 Component joiner

The component joiner does the opposite operation of the component restructurer shown
in Section 2.5.2.2. It requests a number of components from the buffer that is great
enough to cover 64 bits of data, and any bits that are left over are saved and joined with
the next set of components from the buffer, as shown in Figure 3.4.

How many bits are needed to request from the buffer to cover 64 bits of data and how
many are left over changes each cycle, but there is a consistent pattern that allows this
to be efficiently done in hardware. The pattern repeats every N cycles, where N can be
determined by how many input words of width N, - W, are needed to cover a multiple
of the memory width which is 64 bits. This can be found by finding the least common
multiple between 64 and N, - W, (the least number of bits that divides both stream widths)
and dividing it by the memory stream width, which can also be expressed in terms of the
greatest common divisor:
N lem(64,N,. - W) 64

64 ~ gcd(64,N.-W,)’

For each cycle, the number of components to request from the buffer must be large
enough such that the number of bits from the buffer plus the number of leftover bits
from the previous cycle is larger than or equal to 64. Table 3.1 shows the expressions
that determine how many components to request from the buffer, how many bits to join
from the leftovers of the previous cycle, and how many bits are left over after the current
cycle. These are used in the VHDL implementation to select the arrangement of the
output bits and the next value of the leftover register for the different cycles.

Table 3.2 shows an example of these computations when the component width is 10 bits,
and Figure 3.4 shows the behavior of the component joiner during one full cycle.

Parameter Expression

i+ 1) -64 - 64
Number of components to request (i+1) !
We We

Leftover bits from previous cycle | ((i+1) modN)-64 mod W,

Leftover bits after current cycle i-64 mod W,

Table 3.1: Overview of component joiner cycles
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Leftover bits

4.-64 mod10=06
3-64 mod10=2
2:64 mod10=8
1-64 mod10=4

0-64 mod10=0

Leftover

Cycle | Number to request Leftover from prev.
0 |5-64/10] — |4-64/10] =7 | 0-64 mod 10 =0
1 [4-64/10] —|3-64/10] =6 | 4-64 mod 10=6
2 [3:64/10] — |2-64/10] =7 | 3-64 mod 10 =2
3 [2-64/10] — |1-64/10] =6 | 2-64 mod 10=38
4 [1-64/10] —|0-64/10] =6 | 1-64 mod 10 =4
Table 3.2: Overview of component joiner cycles
To DataMover
0 10 60 64 70
1 2 3 4 5 6
7 components requested
y 1 2 3 4 5 6
6 components requested
1 2 3 4 5 6 7
7 components requested
1 2 3 4 5 6
6 components requested
1 2 3 4 5 6 7
6 components requested

Beat

N

Figure 3.4: Component joiner behavior for one set of cycles when W, = 10 and W = 64

3.4 Test setup for comparing Xilinx AXI DMA and Cube

DMA

A typical DMA setup in the Zynq-7000 was shown in Figure 1.9. This setup has been
used when comparing the Cube DMA and the AXI DMA, with a simple FIFO used in
place of an actual hardware processing core. The FIFO simply forwards the incoming
MM2S stream from the DMA back to the S2MM input of the DMA.

Testing of the Cube DMA can easily be performed without involving any software, as
detailed in 8, but testing the Xilinx AXI DMA involves a lot more work because block
descriptor chains need to be set up to describe the transfer. Testing of both the AXI DMA
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and the Cube DMA has therefore been performed using a software program running on
one of the ARM cores on the Zyng-7000.

Similarly to the Cube DMA, the AXI DMA is also configured through registers. The
registers are accessible through an AXI-Lite interface, which is connected to the Central
Interconnect in the Processing System. This makes the registers appear as memory loca-
tions from the CPUs point of view, and transactions with these registers can be initiated
through read and write operations by the CPU.

The most important registers are the control and status registers, and two registers that
are pointing to the first and last block descriptor in the current chain, respectively. How-
ever, Xilinx provides ready-made libraries (drivers) with C code for using many of their
peripherals and IP cores, including the AXI DMA. This driver code takes care of many
of the register-level details of configuring the core.

A software program must generally perform the following steps to perform a DMA
transfer:

1. Set up the Generic Interrupt Controller (GIC)
. Register an interrupt handler function for DMA interrupts
. Register a GIC exception handler

2

3

4. Enable exceptions

5. Place data to be used in memory
6

. Flush all data in the cache belonging somewhere inside the input data region in
memory

. (For AXI DMA: Set up initial block descriptor chain)

3

8. Set up DMA registers and start transfer
9. Wait for interrupt(s) to occur

10. (For AXI DMA: Set up new chain of block descriptors and repeat step 9 until
transfer is done)

11. Invalidate cache data belonging to regions in memory where the DMA stores the
received data

Configuring the GIC, the ARM exception system and dealing with caches, is done
through driver code provided by Xilinx. The GIC driver provides an exception han-
dler that will itself call the user-provided interrupt handlers for specific GIC interrupts
such as the DMA interrupt. When only testing performance and not caring about data
validity, the cache related steps can be excluded from the program. However, in general
they are important to include to avoid the issues that were described in 2.7.2.

For the Xilinx AXI DMA, the test program is a bit more involved. The AXI DMA
performs transfers as described by a chain of block descriptors. Each time a transfer
needs to be started at a new location, a new block descriptor must be used. For sequential
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BIP transfers, only one block descriptor is needed, provided that the cube is small enough
for its total data size to be representable in the number of bits that the length field in the
descriptor has. For larger cubes, the transfer is simply described using a chain of two
(or more) descriptors, where the first have the maximum length, and the last has the
remaining length.

For block-wise transfers, each row in each block needs to be described by a separate
block descriptor, as shown in Figure 3.5. It is clear that this might require enormous
block descriptor chains; for instance, if a cube with spatial dimensions 512 x 2000x is
used with blocks of size 8 x 8, then a total of (512/8)-(2000/8) - 8 = 128000 descriptors
would be needed. This is larger than what the AXTI DMA can handle, and it is therefore
necessary to set up only a certain amount of block descriptors, start the transfer, set up
the next block descriptors in the chain, continue the transfer, and so on.

| Chain of BDs |

CHOOHOOHH
~

Figure 3.5: Descriptor setup for doing block transfers with AXI DMA

The test code used for the AXT DMA sets up an initial chain of block descriptors and
starts of a transfer. When that transfer has completed and an interrupt is triggered, a
new chain of block descriptors is set up for the next portion of the transfer and a new
transfer is started. This is repeated until the whole cube has been traversed. The test
code for the Cube DMA is similar, but it will perform the whole cube transfer without
any intervening from software. When the interrupt occurs, the transfer has been finished.

In both cases, an internal timer in the Application Processor Unit of the Zynq-7000 is
used to record the cycle counts right before a transfer is started and right after the transfer
has completed. The timer operates at half the frequency of the CPU, meaning that the
elapsed time can be found by multiplying the cycle difference between start end end by
half the CPU frequency.
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This chapter presents results for the Cube DMA implementation. It will briefly show
the results gathered in the project work regarding timing and resource utilization, and
provide more in-depth discussions of the results from the continued work in this thesis.

4.1 Performance comparison

The AXI DMA and Cube DMA are compared as shown in Table 4.2. The parameters
used for this comparison are shown in Table 4.1.

The results show that the achievable throughput for BIP block transfers in the Cube
DMA increases by 128% compared to the Xilinx AXI DMA. This is likely due to the
much greater overhead present when doing block transfers using the AXI DMA. For
each row in the block, the AXI DMA must fetch a new descriptor from memory. The
Cube DMA has no such overhead, but there are still possible delays related to the Zynq’s
memory system having to jump to new addresses when starting on a transfer of a new
row in the block.

For BSQ (plane-wise) transfers, the Cube DMA can achieve 14.1% of the theoretical
throughput. With the TinyMover used in place of the Xilinx DataMover, this rises to
73%. Further improvements are unlikely, as the TinyMover issues new read requests
as quickly as possible, meaning that the stalls that are occurring are due to the mem-
ory system of the Zyng-7000. It is expected that close to theoretical performance is
unachievable, as the memory system is optimized for sequential burst transfers and not
small and strided memory accesses.
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Cube parameters
Width

Height

Bands
Component width
Stored order
Block size

AXI DMA

Scatter-Gather

Burst size

Stream width

Dynamic Realignment Engine
Length reg. size

Cube DMA

Stream width
Components in parallel
Component width
Burst size

TinyMover

500
2000
100

BIP
8 x 8

Yes

16

64

Yes

Maximum (23 bit)

64

8

8

16

Tested with and without

Table 4.1: Parameters used for performance comparison

‘ BIP, seq. ‘ BIP, block ‘ BSQ, seq.

Theoretical 800 MB/s | 800 MB/s | 100 MB/s
AXI DMA 800 MB/s | 340 MB/s

Cube DMA 800 MB/s | 775 MB/s | 14.1 MB/s
Cube DMA (TinyMover) 73 MB/s

Table 4.2: Comparison of performance for AXI DMA and Cube DMA for different
transfer types on a HSI cube of size 500 x 2000 x 100, block size 8 x 8.
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4.2 Resource utilization

Table 4.3 shows the resource utilization of the Cube DMA components that are fixed in
size regardless of choice of generic parameters. Table 4.4 shows the LUT and register
usage of the MM2S channel’s controller and unpacker as the number of bits per compo-
nent W, and the number of components in parallel N, are changed. These results are also
plotted in Figures 4.1 and 4.2. For both, the general trend is an expected approximately
linear increase as N, grows. These results were gathered and analyzed more in detail in
the feasibility study report [8].

Table 4.5 shows the resource usage in terms of LUTs and registers for the S2MM packer,
with plots in Figures 4.3 and 4.4. For the values of W, that are not byte multiples, a clear
linear growth is observed as N, increases, similarly to in the MM?2S channel. This is
expected, as the width of muxes, registers and so on scale linearly with N,. It is also
observed that the LUT usage for W, = 18 is highest, followed by W, = 10 and W, = 12
and then W, = 8 and W, = 16. This ordering is due to the complexity of the component
joiner. For W, = 18, W, = 10, W, = 12, the number of cycles in the component joiner
are 9, 5 and 3, respectively. Since for each cycle there is a different choice of leftover
bits, arrangement of output word, and so on, the amount of logic grows with the number
of cycles.

In the cases where W, = 8 and W, = 16, the LUT usage is smallest. This is because the
component joiner is not needed for these component widths, as 64 (the bus width) is a
multiple of W, in these cases. Thus the incoming components can go straight from the
buffer to the DataMover.

The LUT and register usage for W, = 8 and W, = 16 fluctuates considerably. When
W, =16 and N, =4, or when W, = 8 and N, = 8, no LUTs or registers are used, because
in this case there is no packing to perform. For the other values of N,, variations are
due to how efficiently the buffer can be implemented for the different combinations. For
instance, if W, = 8, then if N, = 4, the buffer will always first fill up the lowest four
components, and then in the next cycle the upper four components, and the resulting
64-bit word is forwarded to the DataMover. It appears that the synthesis tool can deduce
this from its control flow analysis, and optimize the logic accordingly.

Module LUTs | Registers
DataMover IP for MM2S | 918 784
DataMover IP for S2MM | 149 1527

Register Interface 629 497
TinyMover 241 181
S2MM Controller 82 82
Total 2019 | 3071

Table 4.3: Area usage of modules and IPs used in Cube DMA whose area is independent
of generic parameters
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w. N LUTs Regs
¢ ¢ | Controller | Unpacker | Total || Controller | Unpacker | Total
8 1 | 336 85 421 248 199 447
8 | 2 | 357 129 486 248 209 457
8 3 | 331 173 504 248 219 467
8 | 4 | 282 201 481 248 229 477
8 | 5 | 354 235 589 248 239 487
8 | 6 | 288 281 569 248 249 497
8 | 7 | 354 313 667 248 259 507
8 8 | 351 340 691 248 269 517
10 | 1 | 368 303 671 248 290 538
10 | 2 | 363 396 759 248 303 551
10 | 3 | 428 402 830 248 315 563
10 | 4 | 435 431 866 248 327 575
10 | 5 | 431 463 894 248 339 587
10 | 6 | 362 506 868 248 351 599
10 | 7 | 423 535 958 248 363 611
12 | 1 | 361 229 590 248 288 536
12 | 2 | 356 275 631 248 302 550
12 | 3 | 362 331 693 248 317 565
12 | 4 | 365 371 736 248 331 579
12 | 5 | 362 402 764 248 345 593
12 | 6 | 339 439 778 248 359 607
16 | 1 | 277 73 350 243 190 433
16 | 2 | 276 103 379 243 208 451
16 | 3 | 277 147 424 243 226 469
16 | 4 | 349 170 519 243 244 487
18 | 1 | 410, 517 927 233 299 532
18 | 2 | 340, 611 951 233 316 549
18 | 3 | 410 571 981 233 335 568
18 | 4 | 331 581 912 233 355 588

Table 4.4: MM2S channel controller and unpacker area utilization at varying component
widths and number of components in parallel
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Figure 4.1: MM2S channel LUT usage for different bits per component W,, as a function
of the number of components in parallel N,.
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Figure 4.2: MM2S channel register usage for different bits per component W,, as a
function of the number of components in parallel N,
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W, | N. | LUTs | Registers
8 1 |73 69
8 2 | 54 68
8 3 1152 85
8 4 | 58 67
8 5 1232 101
8 6 | 156 100
8 7 | 316 117
8 8 |0 0
10 | 1 | 211 85
10 | 2 | 272 95
10 | 3 | 356 106
10 | 4 | 428 116
10 | 5 | 460 126
10 | 6 | 517 136
10 | 7 | 564 146
1211|132 86
12 2 | 192 98
12 | 3 | 278 111
12 | 4 | 330 123
12 | 5 | 385 135
12 | 6 | 459 147
16 | 1 |39 68
16 | 2 | 58 67
16 | 3 | 138 100
16| 4 |0 0
18 | 1 | 318 96
18 | 2 | 387 114
18 | 3 | 454 132
18 | 4 | 527 150

Table 4.5: S2MM channel packer area utilization at varying component widths W, and

number of components in parallel N,
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Figure 4.3: S2MM channel packer LUT usage for different bits per component W, as a
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Figure 4.4: S2MM channel packer register usage for different bits per component as a
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If a pure 64 bit stream is used for both the MM2S and S2MM channels (no unpacking or
packing is performed), the total number of LUTs and registers used are 2355 and 3319,
respectively. The Xilinx AXI DMA at comparable settings uses an estimated 2890 LUTs
and 4046 registers [9].

4.3 Timing

In the project work leading up to this thesis, the MM2S channel was found to have a
worst negative slack (WNS) of 1.988 ns when a constraint of 100 MHz is used, meaning
that a maximum frequency of 124 MHz could be achieved. The critical path was within
the address generation logic. With the changes made to the address generation logic and
the new feautres implemented for this thesis, the critical path of the complete design is
no longer in the address generation logic in the MM2S channel, but the received length
calculation in the S2MM channel. The WNS is now an improved value of 2.396 ns,
corresponding to a maximum frequency of 131 MHz. Further improvements are still
possible but were not prioritized in this thesis. The largest gain in clock speed can be
achieved by pipelining the additions that are performed in the address generation logic
in the MM2S channel, and the received length calculation in the S2MM channel.



CCSDS123 theory and background

This chapter will present the CCSDS123 algorithm and explain all its computational
steps, as well as introduce relevant terminology and mathematical notations. The bulk
of the text is based on the CCSDS123 Recommended Standard document [4]. The other
main source used is an Informational Report [12] from CCSDS, which provides a more
practical insight into how the algorithm works, which trade-offs are important, and so
on.

5.1 Overview

CCSDS123 is a compression algorithm standardized by the Consultative Committee
for Space Data Systems (CCSDS), specifically designed for lossless compression of
hyperspectral images. It is a formalized version of the Fast Lossless (FL) algorithm
devised by the NASA Jet Propulsion Laboratory [13]. It is intended to be suitable for
use on-board in spacecraft, with run-time complexity and memory usage low enough to
make it feasible to implement in high-speed hardware [12].

The algorithm is lossless, meaning that the exact original image can be restored from
the compressed image. The two main steps in the compression process are shown in
Figure 5.1: prediction and encoding. The prediction stage computes estimates of each
component based on previous components that are spatially and spectrally close in the
cube. The difference between the estimates and the actual component values, so-called
residuals, are encoded into variable length code words.
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mapped
prediction
. residuals
i — Predictor > Encoder > F:ompressed
image image

Figure 5.1: CCSDS123 compressor overview [4]

5.2 Definitions

This section will introduce some terminology and definitions that are used further when
explaining the CCSDS123 compression scheme.

5.2.0.1 Samples

Individual components in a HSI cube are referred to as samples in the CCSDS123 stan-
dard documentation, and are denoted by s. The same terminology will be used when
describing CCSDS123 and the implementations done in this work.

Samples have a bit resolution given by the parameter D in the range 2 < D < 16. The
lower sample value limit, the upper sample value limit and the mid-range sample value
are denoted by Smin, Smax and smiq, respectively. Samples can be unsigned or signed
integers. If unsigned samples are used,

D D-1
Smin =0, Smax =27 =1, Smig =2 .
If signed samples are used,

D—1 D—1
Smin = —2 , Smax = 2 =1, Smiga=0.

5.2.0.2 Cube size and coordinates

The HSI cube size is denoted by the symbols Nx, Ny and Nz.

Samples and other values that are computed during the compression process can be
addressed by their x, y and z coordinates on the form s, ,, meaning the sample in band z
at spatial location (x,y). The indices start at 0, meaning that 0 < x < Nx — 1 and similarly
for y and z.

Samples can also be addressed on the form s,(¢) where t = y- Ny +x. The two represen-
tations are used interchangeably, depending on which fits best.
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5.2.0.3 Mathematical notations

For any integer x and positive integer R, the function mod »[x] is defined as
mod j[x] = ((x+2871)  mod 28) — 281,

This is the mathematical description of what happens when the value x, represented in
two’s complement form, is stored in a register with R bits.

The notation clip(x, {Xmin,*max }) denotes clipping the value of x to be in the range

[xmimxmax} .

Xmin; X < Xmin;,
Chp(x7 {xmin’xmaX}) =93 Xmin < X < Xmax

Xmax, X > Xmax

Finally, the function sgn™ (x) is defined by

1, x>0
-1, x<0

sgn' (x) = {

5.3 Prediction

Prediction is based on values calculated from the neighboring previous samples to the
current sample s, . Figure 5.4 shows an overview of a typical prediction neighborhood.

5.3.1 Local sum and local difference vector

To simplify matters, neighboring previous samples in the same band as the current sam-
ple are named as shown in Figure 5.2, with NE denothing “North East”, N denoting
”North”, NW denoting "North West” and W denoting ”"West”.

5.3.1.1 Local sum

The neighboring samples in the band are used to compute a local sum 6, . The local
sum can be neighbor oriented or column oriented, which is illustrated in Figure 5.3. The
neighbor oriented local sum is the sum of each of the W, NW, N and NE samples. For
edge cases where the current sample is in the first or last row and/or column, special
rules apply. These are shown in (5.1).
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Szya—1 T Szy—1x—11Szy—1x+tSzy—1x+1, Y > 0,0 <x<Ny—1

48,y x—1, =0,x>0

Ozyx = SR Y (5.1)
Z(SZ,yfl.ersz,yfl,erl)a y>0,x=0
Szya—1 T 8zy—1x—1+28,y-1x, y>0,x=Ny—1

The column-oriented local sum is just the previous sample in the same column (N), but
weighted with 4 instead of 1 since it is the only sample in the sum. When y = 0 there is
no previous sample in the same column, so the W sample is used instead. The local sum
computation is summarised in (5.2).

4s;y-1x, y>0
Oryx = 43” o ) B (5.2)
Szyx—1, Y= 0,x>0

5.3.1.2 Local differences

Using the local difference 0, ,, a central local difference d. . is computed:

dzyx = 48zyx — Oz yx-

Similarly, three additional directional local differences are computed. These are labelled
dé\’/y’x, dév)“; and dgv%x, respectively. The directional differences are computed in the same
way as the central local difference, but use the corresponding neighbor sample instead of
sz,y,x as the first term in the subtraction. Again special rules apply in edge cases where the
current sample is on one of the borders and the neighbor doesn’t exist. The computations

are shown in (5.3), (5.4) and (5.5).

N
dN _ {4sz,y,x - GZ%X’ y> 0 (5 3)
X T 0 =0 .
9 y -
NW N NE
Sz,y-1,x-1 Sz,y—1,x Sz,y-1,x+1
w current
sz,y,x—1 sz,y,x

Figure 5.2: Neighboring samples in same band
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neighbor-oriented

Figure 5.3: Neighbors used in local sum calculations in neighbor-oriented and column-

oriented modes [4]
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Figure 5.4: Prediction neighborhood in spatial and spectral dimensions [4]
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4SIZV}VZC —Ozyx;, x>0,y>0

dYy, = 4sY — 0.y, x=0,y>0 (5.4)
0, y=0
4s2;’x —Ozyx, X>0,y>0

A =4y — 0y, x=0y>0 (5.5)

07 y:0

5.3.1.3 Local difference vector

The local differences from the current band and the P previous bands are collected into
a local difference vector, U, (t) which is used in the prediction calculation.

Which differences are included in the local difference vector depends on the prediction
mode. In full prediction mode, U,(T) is defined as

UZ(t) = [dév(t%d;v(t)’dévw(t)vdzfl(t)ﬂdzfzv"'adZ*Pz*(t)]T'

The notation P is shorthand for min{z, P}. Put simply, the number of local central
differences included from previous bands is P, unless z < P, in which case we must
naturally stop at z = 0.

In reduced prediction mode, directional local differences are not included. U,(¢) is then
defined as
UZ(I) = [dZ*l (t)vdZ*L RS dZ*PZ* (t)]T'

The number of elements in each local difference vector in band z is denoted C;, and is
given by
)P reduced prediction mode
o P’ +3, full prediction mode

5.3.2 Weights

Associated with each component in the local difference vector U,(¢) there is a corre-
sponding weight that the component is multiplied with during prediction calculation.
The weight vector W (t) contains the C, weight values. In full mode,

WZ(I) = [wév(t)vwW(t)awNW(t)’w(l)(t)’w(2)(t)7""w(f’;)(t)]T7

and in reduced mode,
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The weight value bit resolution is determined by a parameter €2 in the range 4 < Q < 19.
The weight values are represented as signed integers, using Q + 3 bits.

For all pixels except # = 1, the weight vector W,(¢) is computed from W,(¢ — 1) using
the weight update procedure shown in section 5.3.5. The weight vector W, (1) however
must be initialized to a starting value. This can be done in two ways: default weight
initialization and custom weight initialization. Only the default initialization will be
focused on in this thesis.

Default initialization is performed as shown in (5.6).

i (- . ;
wz“)(]):%zﬂ, (1) = {Swg ”(1)J fori€ [2,3,...,P]. (5.6)

5.3.3 Prediction calculation

The prediction calculation for sample s,(¢) uses the local sum o,(¢), local difference
vector U,(r) and weight vector W,(¢) to produce a scaled predicted sample, §,(t) as
shown in (5.7). The value d,(¢) is given by

i 0, reduced mode and z =0
W.(1)TU,(t), otherwise

The scaled predicted sample is used in the weight update calculation. The predicted
sample value §,(¢) is defined in (5.8. This value is passed on to the residual mapping
calculation.

clip < {mod;s [d:(0) +2%(0:(r) — 4smia)] J ) Cis0

ZQH
5.(t) =
) 2s5.1(1), t=0,P>0,z>0

28mid, t=0and (P=0o0rz=0)
(5.7)

5.(1) = FZS)J (5.8)

5.3.4 Residual mapping

The last stage of the prediction process is to calculate the prediction residual A (t) and
perform a mapping from this residual to a mapped residual J,(t) which is the final output
value from the predictor.



68 Chapter 5. CCSDS123 theory and background

The prediction residual is the difference between the actual sample value, s,(¢) and the
predicted sample, §;(¢) as shown in (5.9). The residual mapping converts the signed pre-
diction residual to an unsigned value that can be represented using D bits. The mapping
is designed such that it maps small prediction residuals to small mapped values. This
is done because the encoder generally will code small values with fewer bits [12]. The
residual mapping calculation is shown in (5.10).

A (t) = s5(t) — $:(t) (5.9)

1A:(1)[+0:(1),  |A:(1)] > O()

8.(t) = 2|A.(1)], 0< (—1)%=MA,(r) <0,(r) (5.10)
2|1A. ()| -1, otherwise
O (1) = min{§,(¢) — Smin, Smax — §:(¢) } (5.11)

5.3.5 Weight update

After each prediction of sample s,(¢), the weight vector W, (¢ + 1) for the sample in the
next pixel in the same band can be calculated. This calculation is called a weight update.
Put very simply, the weight update adjusts the weights based on the result of the previous
prediction in such a way that if the predicted sample was larger than the actual sample,
weight values are decreased and vice versa. This causes the weights to gradually adapt
to the statistics of the image data.

How much the weights should change is determined by a weight uppdate scaling ex-
ponent, p(t). Small values of p(¢) yield larger weight increments, which causes the
weights to converge faster at the cost of reduced steady-state performance [12]. p(¢) is
defined as

p(t) = Clip <Vmina+ \‘t t_NxJ a{vmim Vrnax}) +D—-Q (512)

mc
The value of p(¢) changes during traversal of the image, and the three parameters Vi,
Vmax and fipe are used to control the value of p(¢) and how quickly it should change.
p(t) will start at the value Vipin +D — Q and gradually increase at a rate given by fine
until it reaches the maximum value Vpy.x + D — Q. This has the effect that the rate at
which the weights adapt to image statistics becomes slower over time, yielding a trade-
off between initial quick adaptation to image statistics and then gradually better steady
state performance.

The weight update calculation is done as follows:

W, (t+1) = clip (Wz(t) + B (sgn+ e(1)]-27P1) . U.(1) + 1>J , { Omin, a)max})
(5.13)
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e, (1) is the scaled prediction error, defined as

er(t) = 2s:(t) — 5,() (5.14)

5.4 Encoding

There are two different encoders defined by the CCSDS123 standard, the sample adap-
tive encoder and the block adaptive encoder. The block adaptive encoder was originally
defined for a previous CCSDS 120 algorithm, but is included as an option in CCSDS123
so that implementers can re-use existing space-qualified hardware implementations [12].
In this thesis, the sample adaptive encoder will be used.

5.4.1 Golomb-Power-Of-2 coding

The sample adaptive encoder assigns variable-length code words of maximum size D +
Unmax to each incoming mapped residual. The coding technique used is called length-
limited Golomb-Power-Of-2 (GPO2), which is also used in JPEG-LS and other com-
pression schemes [12]. Up,x is called the unary length limit, and is a variable parameter
in the range 8 < Upax < 32.

For a fixed Upyx there are several code word mappings available depending on the value
of an integer k < D — 2. When £ is fixed, the mapping from input residual 6 to code
word is found by writing & as

§=u-2k+r,

where

u= {;J, r=38 mod?2*.

The code word generally has two components:

o If u < Unax: A unary encoding of u (u number of Os followed by a 1) followed by
the k lowest bits of r.
o If u > Upax: Unax number of Os followed by the D-bit representation of 8.

5.4.2 Adaptation to image statistics

For a given Upax, which GPO2-mapping (value of k) gives the smallest codes depends on
characteristics of the incoming data. The sample adaptive encoder adaptively changes
the value of k based on image statistics, so that a mapping that fits the incoming data
better is chosen. This is performed by keeping track of the average value of the input
residuals in each band. The average calculation is performed by accumulating the sample
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values separately for each band and dividing by the number of samples that have been
processed.

More concretely, there is an accumulator X, (r) for each band that accumulates the incom-
ing residual values in that band. A counter I'(#) common to every band is incremented
once per pixel. The ratio X,(¢)/I'(¢) is the average value of the incoming residuals in
band z. The counter has an initial value given by

(1) =2%,

where the initial count exponent, Y, is a parameter in the range 1 < ¥ < 8. Each band’s
accumulator also has an initial value given by

(1) = {217 (3.2K+6—49> F(I)J ,

where the accumulator initialization constant, K, is a parameter in the range 0 < K <
D -2,

The counter’s maximum value is given by the re-scaling counter size parameter y*. The
counter’s maximum value is 2¥" — 1. When the counter reaches this maximum value, the
accumulators in each band and the counter are re-scaled by dividing their values by 2.
This is done to make more recent sample values have more impact on the mean [12].

The accumulator and counter logic can be summed up as follows:

Y (t—1)4+8(t—1), C(t—1)<2” —1
()= FZ(I_I)JF(SZO_IH_IJ Me—1)=27 —1 (5.15)
2 ’ B
C(t—1)+1, Lt—1)<2" —1
(5.16)

I(t)= {F(r—l)Jrl

5 J [(t—1)=2" -1

The value of & for a given sample, k,(¢), is selected based on the accumulator and counter
as follows:

0, 2I0(t) > X, (¢) + B?F(t)J
k(1) = ) . 49 ]
max{l <i<D-=2|T()2' <X (t)+ {TFO)J }, otherwise
(5.17)

5.4.3 Encoding of a sample

For the encoding to be reversible, the decoder needs to know at every step which map-
ping (k value) has been used to encode a sample. To do this it needs to repeat the same
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calculations for k as the encoder has done, which means that it needs to use the same
accumulator values as the encoder. For this to work the first mapped residuals §,(0) in
each band of the compressed image must be stored uncoded in their original D-bit rep-
resentation, so that the decoder has the same initial starting point as the encoder. The
remaining residuals (¢ > 0) are coded using length-limited GPO2 as described previ-
ously. To summarize:

e If =0, the code word is the D-bit unsigned integer binary representation of J,(t)

o If + > 0 and u,(¢t) < Upnax. the code word consists of u,(z) *0’s followed by *1°,
followed by the k,(¢) least significant bits of ()

e If r > 0 and u,(¢) > Unax, the code word consists of Upax "0’s, followed by the
D-bit unsigned integer binary representation of &,(¢)

5.5 Summary of parameters

Table 5.1 shows a summary of the selectable parameters for the CCSDS123 compression
algorithm that have been introduced in the previous sections.

Parameter | Description | Range
Predictor parameters
D Sample bit resolution [2,16]
P Number of previous bands to use in [0,15]
prediction
Q Weight resolution (weight bit resolution is | [4,19]
Q+3)
Vinin Weight update scaling exponent initial [—6, Vimax]
parameter
Vinax Weight update scaling exponent final [Vinin, 9]
parameter
tinc Weight update scaling exponent change Power of two, [24, 2! 1
interval
R Register size [max{32,D+Q+2},64]
Encoder parameters
Unnax Unary length limit [8,32]
% Initial count exponent [1,8]
Y Re-scaling counter size [max{4,},9]
K Accumulator initialization constant [0,D—2]

Table 5.1: Selectable parameters for the CCSDS123 compressor
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Hardware implementation of
CCSDS123 compressor

This chapter will detail the implementation of a CCSDS123 compressor for FPGA in
VHDL. The chapter will start with an analysis of the various tradeoffs that must be
considered when designing a CCSDS123 compressor, followed by a presentation of pre-
vious hardware implementations. The bulk of the chapter will be detailing two imple-
mentations of CCSDS123: First, a serial implementation consisting of one processing
pipeline that can compress one image sample per clock cycle is presented, with detailed
descriptions of each stage in the pipeline. Following this, a parallelized version will be
presented where several pipelines are compressing samples in parallel.

6.1 Memory and performance trade-offs

CCSDS 123 supports compression in all three of the common sample orderings, BIP, BIL
and BSQ. When using the sample adaptive encoder, the choice of ordering has no effect
on the compressed image size, because the compression process is completely separate
for each band, and for each of the sample orderings pixels are processed in an upper-
left to lower-right fashion in each band. The only difference between sample orderings
when using the sample adaptive encoder is the ordering of the encoded samples in the
output bitstream. Sample ordering can therefore be chosen such that it fits best with
the larger system (image sensor, from memory streaming) and such that it optimizes
resource usage or parallelization. In the subsequent sections several tradeoffs between
the different sample orderings will be considered:

e Input image sample ordering with regards to streaming
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e Space requirements for weights, previous local differences and accumulators
e Pipelining and parallelization limitations

6.1.1 Streaming efficiency

In a typical HSI system, samples are either streamed from a memory or directly from
a camera sensor pipeline (on the fly). In the case of streaming from a camera sensor,
the native sample ordering from the sensor essentially dictates the sample ordering cho-
sen for the CCSDS123 implementation. Converting on-the-fly between BIP and BIL
orderings can be performed with relatively small memory needs (storage is needed for
approximately one line of image data to buffer up full pixels), but converting between
BI orderings and BSQ is not feasible to do on-the-fly, as it would require a whole cube
to be buffered.

In the case of streaming from memory, there is more leeway since memory access pat-
terns can be changed to achieve the wanted sample ordering regardless of how samples
are ordered in memory. However, as Chapter 2 showed, this comes with performance
penalties related to the memory subsystem’s ability to do strided accesses.

6.1.2 Local space requirements
6.1.2.1 Neighboring samples

When encoding a sample s, », the neighboring previous samples must also be available
in order to perform the local sum and difference calculations. This means that some
memory must be used to store the samples from the cycle where they are first streamed
until the cycle where they are used as neighbors.

Table 6.1 shows how many cycles this takes for different sample orderings.

Order | W | NE N | NW

BIP | N, | (Ne— DN, [ NN | (Ne+ DN,
BIL |1 | NN,—1 | NeN; | NeNo+1
BSQ | 1 | Ny—1 Ne | Ne+1

Table 6.1: Number of samples from the current sample to the previous samples.

6.1.2.2 Weight vectors and accumulators

Each band has its own weight vector used in prediction and accumulator used in the
encoder. These must also be stored in memory while samples from other bands are
being processed. In the case of BIP ordering, s,(r + 1) will be processed N, samples
after s;(¢), which means that the weight vector and accumulator for each band must be
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stored in memory. This is also the case for BIL ordering. Under BSQ ordering however,
s;(t+ 1) is processed immediately after s,(¢), and there is no need to store more than
one weight vector or accumulator.

6.1.2.3 Previous local differences

Another source of memory usage is the need to store the central local differences com-
puted in the P previous bands of the same pixel. Under BIP ordering, these were com-
puted during the P previous cycles. Under BIL ordering, they were computed in the P
previous strips of samples, the least recent PN, cycles previously. Under BSQ ordering,
the whole plane is processed before starting on the next, meaning that the most recent
local difference was produced NN, cycles previously, and the least recent PN,N,, cycles
previously. These are summarised in Table 6.2.

Order | z—1 | z—=2 | .. |z—P
BIP 1 2 P
BIL Ny 2N, PN,
BSQ | NN, | 2NN, PN,N,

Table 6.2: Number of samples from the current sample to sample from the same pixel in
the previous band

6.1.2.4 Summed up

Table 6.3 shows a summary of memory requirements for different sample orderings.
Which sample ordering requires most memory, depends somewhat on the image sizes
used. If the spatial dimensions Ny and N, are relatively small but the number of bands
is large, BSQ ordering might be the best choice, but for most images where spatial
dimensions are larger and the number of bands N, is smaller, it is clear that BSQ ordering
requires huge amounts of memory, even for small P. For example, the HICO images
have the size 512 x 2000 x 128 with 16 bits per sample, and with a typical value of
P =3, 6.95 MB of storage is required just to store the previous local differences. This
alone exceeds the total available block RAM of 4.9MB in a mid-range Zyng-7020 SoC.
For larger P it quickly grows past the available block RAM capacity also in high end
devices.

Order | Previous samples | Local differences | Weights vectors | Accumulator

BIP | (Nc+1)N.D P(D+3) N,C,(Q+3) N,(D+7v")
BIL (NN +1)D PN,(D+3) N.C;(Q+3) N.(D+7y")
BSQ | (Ny+1)D PN.Ny(D+3) C.(Q+3) D+vy*

Table 6.3: Memory usage comparison between sample orderings
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6.1.3 Pipelining and parallelization

The limiting factor for pipelined and parallel operation of the CCSDS123 algorithm
is the fact that calculating the predicted sample for s,(z + 1) requires the weight vector
W, (t+ 1) which is calculated from the prediction of s,(¢). This means that the prediction
calculation for s.(z + 1) cannot be started simultaneously with the calculation for s, (7).
This rules out parallelization for BIL and BSQ sample orderings, and it also limits how
often new samples can be accepted by the core. A completely pipelined design with one
sample accepted per clock cycle would be hard to implement, as it would require the
whole prediction and weight update process to be done in one clock cycle.

For BIP ordering, this is not an issue since the sample following s,(¢) is 5,11 (¢), which
has no relation with s,(¢) and can be processed simultaneously with s.(z). This also
means that a pipelined serial implementation which accepts one new sample per clock
cycle is easy to achieve.

6.2 Previous work

Several hardware implementations of CCSDS123 have been done previously, with dif-
ferent optimization goals in focus. A summary of previous implementations is shown in
Table 6.4.

Implementation ‘ Order ‘ Memory ‘ On-the-fly
Keymeulen et al [13] BIP | Internal Unknown
Santos et al [14] BSQ | Internal, multiple access No
Bascones et al [15] BIP | Internal Yes
Theodorou et al [16] BIP | External and internal No

Table 6.4: Previous CCSDS123 implementations

The oldest implementation looked at is by Keymeulen et al [13], which is the first hard-
ware implementation of the CCSDS123 standard. It assumes BIP ordering of incoming
samples and is capable of compressing one sample per clock cycle. Although the pa-
per shows incoming samples coming from a DDR memory, the authors also make it
clear that samples are read once in a row by row fashion, and hence this implementation
could be used for on-the-fly processing. The core stores weigths, accumulators and other
temporaries within the core.

Santos et al [14] present an implementation using BSQ sample ordering, with the main
focus being on low complexity and low memory footprint. As is seen in Table 6.3, BSQ
ordering has big advantages in the space needed to store previous samples as well as
just needing to store one weight vector and one accumulator, but local differences for
each sample in the P previous bands must be stored. The paper presents an approach
where local differences don’t have to be stored but are re-calculated when needed, and
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as such the implementation achieves very low memory usage. However, the price is paid
in input bandwidth efficiency, because the approach requires each sample to be read
2(P+1) times [14]. In addition, arranging the input stream in such a way that samples
are repeated requires either the memory access pattern to be non-sequential, which can
potentially reduce streaming efficiency, or that the data is arranged in memory in the
desired way, which would require 2(P + 1) as much storage. In addition, reading each
sample several times during the compression process prohibits on the fly compression
of image data coming straight from the image sensor.

The most high performant serial CCSDS123 implementation that has been found is pro-
posed by Theodorou et al[17]. It uses BIP ordering and is capable by compressing one
sample per clock cycle. It relies on external DDR memory to buffer samples coming
from the image sensor such that the current sample as well as the North and North East
neighboring samples can be streamed in parallel into the core. This greatly reduces the
amount of on-chip memory needed, since previous sample storage is the largest contrib-
utor to total memory usage for BIP ordering, as seen in Table 6.3. The downside to this
is however that the implementation does not support direct on the fly compression, at
least not without some extra logic dealing with streaming to and from the DDR memory.

Another implementation using BIP ordering is proposed by Béscones et al [15]. The
ability to perform compression without relying on external memory is highlighted in this
paper. This is achieved by queuing incoming samples in FIFOs internally in the FPGA
to obtain the neighboring samples. Local memory requirements for this implementation
is as shown in the BIP row of Table 6.3; memory usage scales linearly with N, - N,.
The advantage of this solution is the ability to perform on the fly compression, since it
compresses samples sequentially and requires each sample to be read only once.

Béscones et al also propose a parallel CCSDS123 implementation [18]. It naturally uses
BIP ordering, since that is the only ordering in which data dependencies between sub-
sequent samples can be avoided. The architecture proposed in this paper consists of C
instances of the same CCSDS core, each processing their own sample. Local differences
are shared between the cores, since e.g. the core handling s, will need the local central
difference d, produced by the core that is handling s,. Other than sharing local differ-
ences, the cores are operating independently of one another, each with its own weight
storage, sample storage and so on. This means that each CCSDS core must handle sam-
ples from a fixed subset of bands to avoid sharing of weights and accumulators between
cores. For instance, core 0 must handle sg, sc,s>¢c and so on, while core 1 must handle
S1, Sc+15 S2c+1 and so on. This has the implication that if N, is not divisible by C, some
of the cores will be unused when the last samples of each pixel are being processed,
which is pointed out in the paper with the recommendation that C is selected such that it
divides N,.

Another limitation of this parallel design is that even though C CCSDS cores are operat-
ing in parallel, the proposed design as a whole is not fully parallel because packing the
resulting code words from each core into blocks is done serially. The paper does point
out that the serial packing circuit can be clocked faster, but nonetheless this represents a
throughput bottleneck for large C.



78 Chapter 6. Hardware implementation of CCSDS123 compressor

6.3 Existing software implementations

When developing a hardware implementation of an algorithm, having a software imple-
mentation to compare results with is a great advantage. There are at least two software
implementations of CCSDS123 that have been considered when work on this thesis
commenced.

The European Space Agency (ESA) have a reference software implementation available
for download on their website [19]. This implementation is written in C and is open
source. Being a reference implementation, it supports all input sample orderings (BIP,
BIL, BSQ), output orderings, and all the selectable parameters listed in Table 5.1.

Another implementation is Emporda, an implementation created by the Group on In-
teractive Coding of Images (GICI) at the Autonomous University of Barcelona [20].
The Emporda implementation is also very complete, covering all possible parameters,
compression orders, sample formats, and so on. It is written in Java and is also open
source.

From a performance stand point, the reference implementation is somewhat faster as it
is written in C, but the code in the Emporda implementation seems more organized and
easier to understand. Emporda was therefore chosen as the implementation to use during
development of the hardware core. Throughout the development process, it turned out to
be easy to add debug printing statements in Emporda to show intermediate values during
various computations and comparing those to signal values in simulation. Emporda was
also used to create an automatic test system that will be detailed in Chapter 8.

6.4 Serial implementation

In the SmallSat project, the image sensor is scanning the image in a push broom fash-
ion, meaning that all spectral components of one line of pixels are captured at once. If
image data is to be compressed using CCSDS123 directly from the image sensor, this
means that either BIL or BIP ordering must be used. BSQ ordering would require the
whole cube to be captured and stored before compression can start. For the initial serial
implementation of the CCSDS123 algorithm, BIP was chosen because it makes it much
easier to later develop a parallelized version of the algorithm.

An overview of the CCSDS123 implementation is shown in Figure 6.1. Each box in this
figure represents a module, each of which will be detailed in the next sections.

Figure 6.2 show how pipeline operations are scheduled.
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Packing into 64 bit output words takes a variable number of clock cycles depending on
the size of encoded words.
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6.4.1 Control signal generation

In addition to the actual data passed between the different modules, some control infor-
mation is passed along as well.

A set of counters is used to keep track of the x, y and z coordinates of the current sample
that is coming in. The counter values are used to generate the following control signals:

e 7 value, the band of the current sample

o Flags indicating if the pixel is in the first line, the first pixel in a line, last in a line
or the last of all

e Weight update scaling exponent p (), used in the weight update calculation

6.4.2 Sample delay

The sample delay module takes care of delaying incoming samples in such a way that at
each clock cycle, the current, as well as the neighboring previous samples are available.
This is achieved by chaining together FIFOs of particular lengths, as shown in Figure
6.3.

As an example, the number of samples between a given sample and the one in the same
band but one pixel to the left, is exactly Nz. This means that if s, is pushed into a
FIFO of depth N, it will be present at the FIFO’s output Nz cycles later, in the same
cycle that s, ,, is read.

The sample delay is the most memory consuming part of the CCSDS123 implementa-
tion. The amount of memory needed in bits is

RAM bits = D(3- Nz + (Nx —2)-Nz) = D(Nx + 1)Nz.

Figure 6.3: Sample delay FIFOs. Each box represents a FIFO with a depth of exactly
the number shown on each box.
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6.4.3 Local sum and difference calculations

The local sum and difference calculations are performed in a three stage pipeline, shown
in Figure 6.4. The first two stages compute the local sum value, while the last stage

computes the local central difference, d; . and the directional differences, d?fyv};, dg,,x,
N
dgy -

The local sum calculation shown in (5.1) is split across two pipeline stages to reduce
delay. In the first stage, two values, term; and term, are calculated as shown in the
following equations.

Szyx—1+Szy—1x-1, ¥>0,0<x<Ny—1

sz yx-1, y=0,0<x<Ny—1
term; = b

zsz.y—l,x; y>0,x=0

Szyx—1tSzy—1x-1, Y> 0,x=Nx —1

Szy—1x+tSzy—1x+1, ¥y>0,0<x<Ny—1

0, y=0,0<x<Ny—1
termp =

2857y 10415 y>0,x=0

zsz,y—l,,x; y>0,x=Nxy—1

In the next pipeline stage, the local sum is produced by summing term; and termy.

In the last pipeline stage, the local central and directional differences are calculated.

Syl ———= Compute C\ o0

! term1 z
Sl —— 0

| ' Compute "

: ' . ¢
S,y —— Compute —| directional |—— 2ya)

| term2 differences W

: ()
sz.y»1,x(t) _’i E

H ! Compute

E central — d, (1)
S ' difference

Figure 6.4: Local sum, local difference and central difference calculations
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6.4.4 Central difference store

The central difference store keeps the local central differences computed in the previous
P bands, since these are needed together with the directional differences to form the
local difference vector Uy .

The local differences are stored in a shift register, as shown in Figure 6.5. Each cycle,
the local central difference just computed is stored in the first register, while the previous
contents is shifted one step. When z = N, — 1, the contents of the shift register is zeroed,
such that prediction of a new pixel doesn’t use local differences from the previous pixel.

6.4.5 Weight store

The weight store keeps the weight vectors in between updating the weights for band
z and reading the same band again for the next pixel. Weight vectors are stored in a
block RAM, in the order corresponding to the band they belong to, meaning that the
first index in the RAM is the weight vector for z = 0, the next is for z =1 and so on. A
dual port block RAM is used to be able to read a weight vector from one location while
simultaneously updating the weight value at another.

The z value of the incoming sample is used as an address to read the corresponding
weight from the weight store. Similarly, when updating weights, the z value of the new
weight vector is used as a write address. Figure 6.6 illustrates the situation when the
weight vector W, (¢) in band z;, is read and the weight vector W, . (t + 1) is being
updated. The band z,,p4qr. is related to the band z;, of the currently processed sample as:

Zupdate = (Zin - N) mod N, (6.1

where N = 1+2+ S+ 2+ 3 is the delay which corresponds to the number of pipeline
stages from the weight reading operation to the end of the weight update operation. The
value of N depends on the number of tree adder stages S in the dot product. The time
diagram of the described pipeline is given in Figure 6.7.

Reading a weight vector takes one clock cycle. The read is initiated when a new input
sample is handshaked, and is done in parallel with the local sum and difference compu-

o L]
U U

d d d d

z-1,y.x z-2,y.x z-3,y,x z-P,y,x

Figure 6.5: Local difference store
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tations. Because these computations take three clock cycles, it is necessary to delay the
read weight vector from the RAM by two cycles, such that the local difference vector
and weight vector for the same sample arrive at the dot product module simultaneously,
as shown in the timing diagram in Figure 6.7. This is taken into account by providing
the weight store with a variable length shift register which will delay the data by a given
number of cycles set by a generic constant in the module.

Since it takes N cycles from a weight has been read until the updated weight is stored,
the number of bands in the image, N, can generally not be less than N unless the input
stream 1is stalled such that the updated weights for a given sample are stored before
attempting to read them. This is of course only possible for from-memory streaming;
for on-the-fly processing it is not an option to stall the stream, so in this case we must
have N, > N. For most hyperspectral imagers, this is not an issue as N, is much greater
than N.

6.4.6 Dot product

The dot product is performed in a pipeline where the first stage multiplies each element
in U,(¢) with the corresponding element in W,(¢), and the following stages make up a
tree of adders that computes the sum of the multiplication results. Figure 6.8 shows the
structure of the dot product module.

The number of stages needed in the adder tree is given by S = [log,(C;)]. When the
number of elements is a power of 2, the adder tree is a perfect binary tree, and it can be
described as follows:

s(25 +i) = s(2i) +5(2i+1) for 0 <i <252,
where the initial indices are the multiplications:
s(i) = u;-@; for 0 <i<25—1.
The result taken from the last index:

A

d, =s(25"1 —2).

0 1 2 3 N+1 N+2 N+3 N_-2 N_-1

z z

W,(t+1) | W,(t+1) | Wyt+1) Wa(t)\ &Ww(t) W0 WN+3(t)x&WNZ-2(t) Wy,.o(t)

N

update —— - > in —--—>

z

Figure 6.6: The state of the weight store when current input sample is sy, 3()
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Figure 6.7: Timing diagram of pipeline operations from reading a weight vector until
writing back the updated weight vector

For the case when C; is not a power of 2, the tree is no longer a perfect binary tree,
but it can still be described as one where the elements s(i) for i > C, are set to 0. This
is illustrated in Figure 6.9 for the case where C, = 3. The benefit of this approach is
that the adder tree is described in the same way no matter the value of C,. Even though
unnecessary registers and adders are included, the synthesis tool is able to infer that the
0 inputs will have no impact and removes them.

6.4.7 Predictor

The predictor computes the scaled predicted sample, as defined in (5.7). This calculation
is split across two pipeline stages, where the first stage computes the numerator in the
fraction that is part of the argument to the clip function:

temp, = modj [sz(t) +2Q(Gz(t))}

Multiplying by a power of 2 is implemented by shifting. The term 4syq in (5.7) is
removed since this is an implementation using signed numbers, hence spjqg = 0.

In the next stage, the scaled predicted value is computed. For the case where ¢ > 0, the
computation performed is

- . tem
5.(1) = clip ( { 2Q+p11J 1, {25min, 25max + 1}) ,

where the floor value of the division by 22+ is performed by right shifting.

For the case where ¢t = 0 and P > 0,z > 0, the sample value from the previous band is
taken from a register that stores the sample from the previous calculation.

A multiplexer finally chooses between one of the three cases in (5.7).
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Figure 6.10: Predictor implementation
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6.4.8 Weight update

The weight update computation shown in (5.13) is performed in three pipeline stages.
The weight update scaling exponent, p(z), is already computed in the Control signal
generation and sent along with the pixel.

The first stage of the computation is the component-wise product
temp; = sgn” [e=(1)] - U, (2),

This product is equivalent to changing the sign of each component depending on whether
e, (1) is positive or negative. Since e,(¢) is defined as 2s.(z) — §,(¢), this is equivalent to
changing the sign when 2s,(f) < §,(¢), and otherwise performing no change to U(7).
This is implemented by computing both U,(¢) and —U,(¢) and choosing based on the
result of the comparison.

The second stage computes

1
temp, = {2 <2*p<’)templ +1)J .

Since p(¢) has a fairly small range of possible values (at most -6 to 9), the values of
2-F (t)templ resulting from each possible value of p(t) are calculated in parallel, and
then a multiplexer chooses which one to use based on the actual value of p(s). The
calculations are mere shifts, either to the left or right, depending on the sign of p(¢). The
selected vector out from the multiplexer is added with 1 and shifted one step to the right
to perform the divison by 2.

The final stage of the new weight calculation computes

W, (¢ +1) = clip (W (¢) + temp,, { Omin, Omax } ) -

6.4.9 Residual mapping

The residual mapping is computed in two pipeline stages. The first stage computes A,(7)
and 0,(¢) as defined in (5.9) and (5.11), respectively. The second stage computes the
residual mapping 6,(¢) as defined in (5.10), using a multiplexer to select between the
different cases.

One of the cases in (5.10) is where the inequality 0 < (—1)%(A_(r) < 6.(¢) holds. The
expression (—1)%() is equivalent to 1 when &.(r) is even, and —1 when §.(¢) is odd.
Using this, the inequality can be re-stated as

§;(t) is even and A; > 0 or §,(¢) is odd and A,(r) < 0.

This is easily implemented in hardware, as checking for odd/evenness is determined by
whether the LSB is O or 1.
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6.4.10 Encoding

An overview of the sample adaptive encoder implementation is shown in Figure 6.13.
As shown, the encoder is implemented as a five stage pipeline.

The first and second stages compute the right hand side (rhs) used in the inequalities
shown in (5.17) that determine the value of k;. In the third stage, each of these inequali-
ties are evaluated in parallel.

In the fourth stage k, and u, are chosen based on the results from each inequality evalu-
ation. A priority encoder is used in combination with a multiplexer to do this selection,
such that the highest integer i where the inequality with left hand side I'()2’ holds, is
chosen as the value for k,, and &,(¢)/2" is chosen as the value for u,. In addition, a
truncated version of &,(¢) with only the k, least significant bits is created. The bits are
right-shifted so that the most significant bits are taken from the truncated &,(¢) and the
rest is filled with zeros.

The fifth stage of the computation puts together the code word based on the rules detailed
in jsome section;, and computes the number of bits to use.

6.4.11 Bit packing

The bit packing module collects variable-length encoded words into packets of a given,
configurable size N. The packer’s operation centers around two registers of the output
size N. The registers alternate between being the current and next. Incoming words
from the encoder are stored in the current register. When the current register is full, any
left over bits are put in the next register, and the current register’s data is forwarded to
the output. In the following cycle, the registers switch roles such that the next register
becomes the current register, and the current register becomes the next register.

Due to the variable length of the incoming code words, the bit position in the current
register where an incoming word should be stored can be any value ranging from the
most significant bit N — 1 to the least significant bit 0. It is therefore necessary to create
N different candidates for the new value of the register where for each i € [0, N — 1], the
candidate for the new value consists of the i most significant bits of the current register
followed by the M bit padded input word. To select the correct candidate, a write pointer
is used to keep track of where the first non-occupied bit position is in the current register.

Figure 6.14 illustrates an example of how the packing is performed. In the example, the
left-most register starts out as the current register, and the incoming words in the first
4 cycles are put into the current register. The fifth word is larger than the remaining
space in the current register, so the leftover bits are stored as the most significant bits of
the next register. In the next clock cycle, the current register, which is now filled up, is
written to the output FIFO, and the next and current registers swap roles. The next input
words are written to what is now the current register, until we get the same situation
again in cycle 8.
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Figure 6.14: Illustration of the packing of variable length code words into fixed-size
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6.4.12 AXI Stream interfacing

When part of a complete system, the output stream might need to be stalled, for example
when the DMA core is waiting for write access to the memory. Stopping the output
stream is not supported by the CCSDS123 core itself. Only data and valid signals are
used to propagate data through the pipelines internally in the core. This choice was made
to simplify the implementation by avoiding valid/ready handshaking at every pipeline
stage within the core. Because the CCSDS123 core itself cannot handle output stalls, it
is necessary to buffer the output from the CCSDS123 core in a FIFO, so that pending
data is not lost when the AXI Stream slave that is receiving the compressed data is not
ready to receive.

Figure 6.15 shows the top level AXI Stream interfacing with the core, with the output
FIFO. If the output is stalled for a long period of time, the FIFO might become full and
data will be lost. To avoid this situation, the number of data words written to the FIFO,
which is available as an output signal from the FIFO, is monitored. Whenever this count
grows larger than a certain limit, the tready signal in the input AXI Stream interface
is de-asserted. No new data will enter into the CCSDS123 core, but all data present in
all pipeline stages of the core at that point in time will still come out in the following
cycles. This means that the FIFO capacity limit at which tready is de-asserted must be
low enough such that the FIFO has room for the additional data words that will come out
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of the CCSDS123 core. The limit is given by the worst-case number of packed words
that can come out of the core, which is when each of the Nyges pipeline stages has valid
data, and each data word out from the encoder has the maximum length of Up,x + D:

Nstages (Umax + D) -‘

limit = FIFO ity —
m capery {packed block size

The size of the FIFO can be varied, as long as it is larger than this limit. Choosing the
size is a trade-off between area usage and how often the input of the core is stalled when
the output is stalled.

6.5 Parallel implementation

This section will detail a parallel implementation of CCSDS123. First some challenges
related to distribution of samples will be introduced, followed by helpful terminology
that will make descriptions of the implementation clearer.

6.5.1 Streaming of samples in parallel

If N, samples are streamed in parallel, N, instances of each computational module are
needed to compress each sample simultaneously. The chain of computation modules,
starting at the local sum and difference calculations and ending at the sample adaptive
encoding, will be referred to as a pipeline.

When streamed in BIP order with N, samples in parallel, the incoming data words can
be thought of as consisting of N, lanes which can be numbered from 0 to N, — 1, where
lane O are the D least significant bits, lane 1 are the D next least significant bits, and so
on. Figures 6.16 and 6.17 show how samples are placed in lanes for the first 10 beats of
a transfer, when N, is 4 and N, is 8 and 9, respectively. The first sample in each pixel is
highlighted.

If it is assumed that N, is divisible by N,, i.e. N,modN, = 0, which is the case in
Figure 6.16, then each lane will always contain a fixed subset of bands in each pixel. For

Input Output
AXI Stream AXI Stream
tdata,
S:Iti?j’ - CCSDs123 - ost
core tvalid
J Output FIFO
tready 4——C < limit? count l—— tready

Figure 6.15: The top level diagram for the CCSDS123 IP module
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Lane 3 2 1 0 Beat Lane 3 2 1 0 Beat

5,(0) | 5,(0) | 5,(0) | 5,(0) 5,(0) | 5,(0) | 5,(0) | 5,(0)

$,(0) | s4(0) | s40) | s,(0) s,(0) | s4(0) | s4(0) | s,(0)

S5(1) | 8,(1) | 8,(1) | so(1) ,(1) | 8,(1) | 85(1) | 4(0)

$;(1) | s6(1) | 85(1) | s,(1) Ss(1) | 85(1) | 8,(1) | s5(1)

$5(2) | 8,(2) | 5,(2) | 5,(2) $,(2) | 84(2) | s4(1) | s,(1)

$/(2) | 84(2) | 85(2) | 5,(2) $5(2) | 8,(2) | 85(2) | 8,(2)

5,(3) | 5,(3) | 5,3) | 5,(3) $o(3) | 54(2) | 5,(2) | 54(2)

5;(3) | 56(3) | 85(3) | 5,(3) 5,(3) | 85(3) | 5,(3) | 54(3)

5,4) | 5,4) | 5,(4) | 5,(4) 5,3) | 5,03) | 5,3) | 5.3)

5,(4) | s5(4) | s5(4) | s,(4) S5(4) | 8,(4) | 5,(4) | 5(4)
Figure 6.16: Sample placement in Figure 6.17: Sample placement in
lanes when N, =8 and N, = 4 lanes when N; =9 and N, = 4

instance, lane n = 0 contains samples so(¢) and s4(¢) in bands z = 0 and z = 4, whereas
lane n = 1 always contains s1(¢) and ss(¢). More generally, s.(f) is always streamed
in lane n = zmodN,. This means that the serial pipeline implementation can be used
almost as-is, with one instance for each lane. All FIFO depths, RAM sizes and so that
are dependent on z, are replaced by z/N,. During development, this kind of parallel
implementation was the first step.

Things become more complicated when N, is not divisible by N,. When this is the case,
bands are no longer confined to a specific lane, but ”shift” between lanes as Figure 6.5.3
shows: s0(0) is in lane 0, but so(1) is in lane 1, and so on. Two options were considered
in this case.

One option is to stall the input stream when the last sample in a pixel has been received,
and realign the stream such that in the next beat the first sample of the next pixel is in
lane 0. This would allow each pipeline to process a fixed subset of samples similarly
to when N, is divisible by N,, but it would reduce throughput (since the input stream is
stalled once per pixel) and require extra logic to perform input stalling and realigning.

The other option is to not stall the input and instead let the set of bands handled by
each pipeline overlap. This means that the pipelines must share information besides
the local differences between them. Using Figure 6.17 as an example, pipeline 0 will
produce Wy (1) when processing so(0), which is needed by pipeline 1 when processing
so(1). The same applies to accumulators used in the encoder. Sample delay is also
more complicated, since a sample that arrived in lane 0 might for example be used as
the neighbor of a sample that arrived in lane 2. The upside is that throughput would be
maximized under this approach.
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6.5.2 Overview of architecture

An overview of the parallelized implementation is shown in Figure 6.18. The weight
store, central local difference store and accumulator storage is shared between the pipelines.
On overview of each pipeline is shown in Figure 6.19. The modules inside each pipeline
remain largely unchanged from their descriptions in Section 6.4. The only changes that
have been made are related to routing of data.

6.5.3 Definitions and terms

Before describing the building blocks of the parallel implementation, some helpful terms
and notations will be defined. When N, is not divisible by N,, it was observed that
samples from a particular band shift between different lanes. Therefore, the samples
from the same band in previous or future pixels are not necessarily in the same lane as
the current sample. It is therefore necessary to be able to find which lane a given sample
will occur in.

The stream of N, samples per beat can be thought of as being in a grid with N}, columns
numbered from 0 to N, — 1. If a certain sample is in lane i, that is in column i of
this imagined grid, then the sample n samples later is in lane (i +n)modN,, where
the modulo operation accounts for the wrap-around that occurs when i = N, — 1. In
particular, we are interested in the case where n = IV, i.e. the distance between samples
from different pixels in the same band. In this case, we can define

shift(i,At) = (i+ N,At)modN,

as the lane which the sample s.(¢ + Ar) is in, given that s,(¢) is in lane i. Referring to
Figure 6.17, we have for example that sample s3(0) is in lane 3, and shif?(3,2) = 0.

Another observation we make from Figure 6.17 is the fact that the number of beats be-
tween samples in the same band is not constant. For instance, so(1) arrives two beats
after s0(0), but so(4) arrives three beats after so(3). For the sample delaying which
produces the neighboring samples this becomes important, since the current and neigh-
boring samples must arrive in sync. Again thinking of the samples as placed in a grid,
finding the number of beats between two samples is the same as finding how many rows
there are between them. This is influenced by which lanes the samples are in. For in-
stance, if s;(7) is in lane 1, then s.4(¢) is in lane 2 of the same row, but if s,(¢) is in
lane 3 (and we assume N, = 4), then s, (¢) would be in lane 0 of the next row. Finding
how many row boundaries are crossed can be found by adding the initial lane number to
the number of samples to skip, and doing integer division of this sum by N,. Letting the
number of samples to skip be N, we can define

|+ N At
delay(i,At) = {H— £ J

Np



94

Chapter 6. Hardware implementation of CCSDS123 compressor

Input samples

Sample
delay

Central
difference
store

Weight store

Accumulator
store

Pipeline 0

Pipeline 1

Pipeline 2

Pipeline 3

Packer

!

Output bitstream

Figure 6.18: Overview of the parallel CCSDS123 implementation when number of

pipelines is 4

Control signal
generation

1

Current

Local sum

and
neighbor @

Local difference

samples

Previous local
differences

Directional
difference

A

Central local
P difference

Weight update

A

Dot product

—

Predictor

A

Weight vector

i

Updated

[—— > weight vector

Updated

———» accumulator

Residual
mapping

Encoding

—

Encoded
:> sample

f

Accumulator

Figure 6.19: Overview of pipeline architecture



6.5. Parallel implementation 95

as the number of beats from s,(r) arrives until s, (z + Ar) arrives, given that s.(¢) is in lane
i. As an example using Figure 6.17, we have that s¢(0) is in lane 0, and delay(0,1) =2,
and that so(3) is in lane 3 and delay(3,1) = 3.

6.5.4 Sample delay

The sample delay implementation is shown in Figure 6.20. The basic structure is similar
to the serial implementation, with four different FIFOs to produce the W, NE, N and
NW delayed samples. For each lane i there is a set of such FIFOs, with the depth of the
FIFOs given by the delay function to get the appropriate delay such that the neighboring
sample is available at the same time as the corresponding input sample.

Due to the shifting described previously, the samples coming out of the FIFOs must be
shifted according to the shift function, so that the delayed sample is used by the same
pipeline that is processing the corresponding input sample. Figures 6.21 and 6.22 show
examples of how this works when N, =4 and N, = 9 and N, = 11, respectively. The
rows of samples highlighted show the incoming samples at a given beat, and the output
from the W delay stage in the same beat. In each lane in the incoming stream we can
observe s,(¢) and in the same lane from the delay stage, the W neighbor s,(f — 1).
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Figure 6.20: Sample delay in parallel CCSDS123 implementation. The actual routing
might be different than shown, depending on the value of N, and the number of pixels
At.
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Figure 6.21: Example of sample delay to obtain W neighbor samples when N, = 4 and
N;=9
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Figure 6.22: Example of sample delay to obtain W neighbor samples when N, = 4 and
N, =11

6.5.5 Local differences

In the serial implementation, central local differences are stored in the local difference
store for use in prediction of subsequent samples. In the parallel implementation there
is still a need for a local difference store (as long as P > 0), but it is also necessary
for the pipelines to share local differences with pipelines that have a higher index. For
instance, if pipeline 3 is processing s, 3(¢), then the local difference d,,(¢) is calculated
by pipeline 2 and can be taken directly from there. However, the local difference d,_ (¢)
was processed in the cycle before and therefore needs to be stored. Figure 6.23 shows
how the local difference vectors for each pipeline are assembled from local differences
from lower indexed pipelines and from the local difference store.
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When z < P, only the z previous local differences should be used. In the serial im-
plementation this was solved by zeroing the contents of the local difference store each
time z = N; — 1, such that no local remaining differences from the previous pixel was
used. The same approach does not work for the parallel implementation, since previous
local differences are coming directly from other pipelines. If, for instance, pipeline 2
is handling sy, (¢) and pipeline 3 is handling so(t 4 1), then the local difference from
pipeline 2 should not be used by pipeline 3. This was solved by having each pipeline
mask the incoming previous local differences based on the z coordinate of the sample it
is processing, such that if z < P then the local differences with index i < z are included
in the local difference vector, while the positions with index i > z are set to zero.

6.5.6 Weight and accumulator storage

Weights and accumulators are stored in the exact same way, so two instances of the same
module, called shared store is used for both of them. The shared store is implemented
in much the same way as the sample delay, but an important difference is that while
the sample delay consists of rigid fixed-length FIFOs where the least recent element is
pushed out simultaneously with the current samples coming in, the shared store must
handle variable distances between read and write indices.

Figure 6.24 shows an overview of the shared store implementation. There are N, block
RAMs, labeled bank 0 to N, — 1, one for each lane. Each bank has the same depth,
M = [N;/N,]. To keep track of where to read and write from, a read counter and a write
counter is used, which the read and write addresses in each bank are derived from. The
counters are initialized such that the distance between their values is delay(0,1), and
are subsequently incremented each time read enable or write enable is high. The write
counter is used directly as the write address in each bank, while the read address for each
bank i is calculated as follows:

read counter, i+N;modN, <N,

read address(i) =
0 {(read counter — 1)modM, i+N;modN, >N,

This makes the initial distance between the initial read address and write address for
each bank equal to delay(i, 1)

Figure 6.25 shows the state of the weight store when N, = 61 and N, = 4, at two dif-
ferent points in time. The figure to the left shows the state right after reset, before any
processing has started. The read counter is initialized to 0, while the write counter is
initialized to delay(0, 1) = 15. For lanes 0 through 2, the read addresses are equal to the
counter value, which is 0, whereas for lane 3, the read address is one less, which wraps
around to 15. Hence, for lane 3, both the read address and the write address are the same.

As samples start arriving at the input of the core, the read enable of the weight store
will be high, and the read counter will start incrementing. The data that is read at this
point in time from the weight store is not actually used, since for the first pixel there is
no prediction performed. N cycles after the first set of samples arrived at the input of
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Figure 6.23: Routing of central differences between pipelines when N, =4 and P =5

the core, the updated weights for pixel 1 will start being produced by the weight update
module. From that point on, the write enable is high, and weights are written into each
lane in the weight store at the address pointed to by the weight counter. The figure to
the right shows the state of the shared store at this time, where the first weights for the
next pixel are being written to memory when the read counter has moved N steps from
the initial position.

Figure 6.26 shows the continuation of this example. To the left the state of the weight
store is shown a few clock cycles later, when the read pointer has come to 15, and the
first weights for the next pixel are being read simultaneously with samples s¢(0), so(1),
s1(1) and s, (1) arriving at the input. To the right the state is shown 15 cycles later when
the next pixel is arriving at the input.

An optional read delay is also available for cases where read data should be output a
given number of clock cycles after the read enable signal is asserted. The read delay
is set by a generic parameter and the read enable signal will be delayed by the given
number of clock cycles before triggering a read in the bank memories.
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Figure 6.24: Implementation of the shared store module
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Figure 6.25: State of the shared store when used as weight store, when N, = 61 and
N, = 4. The figure to the left shows the initial state after reset, while the right figure
shows the state when the last samples of pixel 0 and the first samples of pixel 1 are
arriving
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Figure 6.26: Implementation of the shared store module

6.5.7 Packing of variable length words

The last stage of the parallel implementation data flow is packing the variable-length
encoded words from each pipeline into fixed-size blocks and outputting these blocks on
the output stream interface.

Packing of the N, encoded variable-length words from the pipelines is performed by
right-shifting each input word by the length of the previous words and combining (or-
ing) it with the previous results. If the words from the pipelines are labelled Wy, ...,
WNP,l with lengths Ly, ... LNp,l, then Wy must be shifted by the number of bits leftover
from the previous cycle, Lyrey and or-ed with the bits remaining from the last cycle, Wprev,
to get WyreyWo. Wi must be shifted by Lyrey + Lo and or-ed with Wy into WpeyWoW1. W2
must be shifted by Lyrey + Lo + L1 and or-ed with Wy WoW) to get Wyey WoW W2 and so
on. A problem with this approach is that as the number of possible shifts required for
word W; grows with N, and with the maximum length Up,x + D of each word.

It is possible to take advantage of the fact that the output is going to be in fixed-size
blocks of size B. Instead of shifting each word as described, combining them and then
splitting up into blocks, blocks can be extracted as soon as they are filled up. Each time
the sum of previous words’ lengths exceeds B, a block will then have been extracted,
and the next word can be shifted relative only to the number of bits left over after that
block has been extracted.

If we define s; as how many bits input word W; must be right shifted, we can state this as

s; = XL;—_1 modB,
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where

i—1
SLi = Lyev + Y L;.
j=0
Each word needs to be shifted by at most B — 1 bits regardless of N, or maximum word
length.

Figure 6.29 shows an example of how this packing works for N, = 4.

The packer is implemented as a three stage pipeline which combines words and packs
them into blocks and pushes them to a FIFO, followed by logic that fetches blocks from
the FIFO and shifts them out when the output stream is ready. An overview is shown in
Figure 6.27.

6.5.7.1 Packing implementation

The first stage in the pipeline computes s; and an extraction count e; for each input word
W; that indicates how many blocks can be extracted when that word W; is added. The
extraction count is computed as follows:

{ZL,‘J
ei=|—1.
B

It should be noted that the extraction count can only be larger than 1 if Upax +D > B.
For cases where the block size is larger than the maximum output size, the extraction
count can be thought of as a flag indicating whether a block has been filled up when W;
is added or not.

The second and third stages form what will be termed a combiner chain, and are shown
in Figure 6.28. The combiner chain performs the combining of input words, using the
calculated shift amounts s; and extraction counts e;. In addition it receives the remaining
Lprev bits from the previous cycle.

Shifting of each word is performed in parallel, using s; to select the desired shifted ver-
sion of W; from a multiplexer. The last pipeline stage performs the combining of shifted
words and the extraction of full blocks. This is performed in a chain of or-operations
and extraction operations associated with each shifted input word. At each step in this
chain, the shifted input word is or-ed with the remaining bits from the previous step. If
the extraction count e; is non-zero, adding the word W; has accumulated enough bits to
fill one or more blocks. If e = 0, there is not yet enough bits to extract a full block, so
the accumulated bits are just passed on to the next step.

New full blocks produced at any step are appended to the filled blocks from earlier steps
in the chain and forwarded to the next step together with the new count of full blocks.
The remaining bits after extraction are forwarded to the next step. The remaining bits
from the last step in the chain are connected to a register such that they can be combined
with the words arriving in the next cycle.
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In the case where the last flag is set, the remaining bits are output as a separate block if
the number of remaining bits is non-zero.

6.5.7.2 Output buffering and interfacing

The output from the last step in the combiner chain is the filled blocks and a count of
how many there are. This information and the last flag is pushed into a FIFO. The FIFO
is necessary to handle the limited output bus bandwidth when N, and the length of the
incoming words is larger than the bus width. Even though the average number of bits
output per cycle is lower than the bus width, there might be times during the compression
where this is not the case. Hence it is necessary to buffer the incoming full blocks so
that they can be output sequentially one at a time.

The data word width of the FIFO is given by the maximum number of blocks that can
be extracted in one clock cycle. This value is given by

31+N,,(Umax+D)J .

max number of blocks = { 3

where B — 1 in the numerator is the maximum number of leftover bits from the previous
cycle, NP(Umax + D) is the number of input word bits in the worst case where all have
maximum length, and 1 is added to account for the extra block that can be included when
the last flag is set.

The output logic fetches the set of full blocks, the number of full blocks and the last flag
from the FIFO. In order to sequentially output the blocks from the set of blocks a counter
is used, starting at 0 and counting up each time a block is handshaked on the output. The
counter is used as an index into the set of blocks. At the last block the stream’s tlast
signal is asserted if the last flag from the FIFO is set. When the counter reaches the
number of blocks, a new word is read from the FIFO provided that it is non-empty.

At times when the average bitrate of the encoded samples is higher than the output bus
width, the FIFO might risk becoming full, similarly to the situation described in Section
6.4.12. It is therefore necessary to stall the input stream of the CCSDS123 core before
the FIFO might overflow. The FIFO module used has the ability to set a threshold on
the number of data words in the FIFO, and will output a signal when this threshold is
reached. This signal is used to de-assert tready at the input stream when this is the case.
Similarly to the case in Section 6.4.12, the threshold must be set such that there is room
left in the FIFO for all the packed encoded samples arriving from within the core when
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