
Compiled analog and digital building
blocks in 22nm FDSOI

Marjeris Romero

Master of Science in Electronics

Supervisor: Trond Ytterdal, IES

Department of Electronic Systems

Submission date: August 2018

Norwegian University of Science and Technology

Problem description

The continuous downscaling of CMOS technologies provides new challenges and
opportunities for energy efficient integrated circuits.

The main objective of this master thesis is to implement compilation of some
key analog and digital building blocks in 22nm FDSOI CMOS technologies for ap-
plication in medical ultrasound imaging applications. The project consists of the
following tasks:

• Choose a set of analog and digital building blocks

• Implement the blocks on transistor level

• Develop the required input files for the compiler

• Use the compiler to generate the layout

• Characterize and verify the blocks based on netlist extracted from layout

-

i

Abstract

This project shows the process of designing a cell library in a 22nm FDSOI process.
Part of this project was also to inspect the viability of using a custom layout
compiler presented in [8] for the 22nm node. For each cell in the library the input
files for the compiler had to be generated and the compiled layout was created and
compare to the manual layout of the cell.

iii

Sammendrag

Dette prosjektet dokumenterer prosessen rundt å designe et teknologibibliotek for
en 22nm FDSOI prosess. En del av prosjektarbeidet var også å undersøke mu-
ligheten for å bruke en layout-kompilator fra [8] på 22nm. For hver komponent
i biblioteket ble inndata til kompilatoren generert og den kompilerte layouten ble
sammenlignet med en tilsvarende layout som var tegnet manuelt.

v

Preface

This thesis was carried out during the spring of 2018, concluding a Master of Sci-
ence degree in Electronics at the Norwegian University of Science and Technology
(NTNU) in Trondheim.

The work in this thesis was aimed to help the transition into new technologies
at the Centre for Innovative Ultrasound Solutions (CIUS), a research-based inno-
vation centre focusing on ultrasound solutions for health care, maritime, oil & gas.
The work involves design, modelling and verification of both individual circuits and
larger building blocks in CMOS that can be used to implement larger systems, e.g,
for ultrasound imaging.

I would like to thank my supervising professor Trond Ytterdal for his most needed
help and support throughout this project. Thanks also to the board members
at Omega Verksted, for the amount of coffee and laughters shared together these
past years as a student. I also want to thank Torbjørn for his most kind words of
encouragement when I was struggling the most.

Marjeris Romero

vii

Contents

Problem description i

Abstract iii

Sammendrag v

Preface vii

1 Introduction 1
1.1 Motivation . 1
1.2 Previous work . 2
1.3 Main contributions . 2
1.4 Thesis outline . 2

2 Theory 5
2.1 Transistor properties . 5

2.1.1 Operating regions . 5
2.1.2 Subthreshold operation . 6
2.1.3 Series and parallel transistors 6

2.2 FDSOI transistors . 7
2.2.1 Body biasing . 8
2.2.2 Layout considerations . 8

2.3 Layout generation tool . 8
2.4 Digital components . 9

2.4.1 The Inverter . 9
2.4.2 The NAND Gate . 9
2.4.3 Compound gates . 10

2.5 Ring oscillator . 10
2.6 Analog components . 11

2.6.1 Basic Current Mirror . 11
2.6.2 Common-Source Amplifier . 11

ix

3 Methodology 13
3.1 Unit transistor . 13
3.2 Inverter . 14
3.3 NAND . 15
3.4 7-stage Ring oscillator . 16
3.5 Common-source amplifier . 16
3.6 Layout generation . 17

4 Results 19

5 Discussion 23
5.1 Using the compiler . 23

6 Conclusion 25
6.1 Further work . 25

Appendix A Layout and schematic in Cadence 29
A.1 Common source amplifier . 30
A.2 Ring oscillator . 32
A.3 NAND layout . 34
A.4 Inverter layout . 35

Appendix B Compiled cells 37
B.1 Common source amplifier . 38
B.2 Common source amplifier . 39

Appendix C Compiler input code 41
C.1 Core transistors definition file . 41
C.2 Digital cells netlist . 53
C.3 Digital cells object definition file . 55

x

List of Figures

2.1 nmos low frequency small signal model 5
2.2 Equivalent circuit for series connected transistors 7
2.3 Equivalent circuit for parallel connected transistors 7
2.4 Illustration of bulk cmos and fdsoi cmos 7
2.5 Symbol for an inverter logical gate 9
2.6 Symbol for a nand logical gate . 10
2.7 Symbol for an and logical gate . 10
2.8 A N-stage ring oscillator . 11
2.9 A simple CMOS current mirror . 11
2.10 A common-source amplifier with a current-mirror active load 12

3.1 Layout of NFET unit transistor . 14
3.2 Schematic of the inverter . 15
3.3 Schematic of the NAND gate . 16
3.4 Schematic of the 7 stage ring oscillator 16
3.5 Schematics of the common source amplifier 17

4.1 Voltage transfer curve for the balanced inverter. 20
4.2 Transient analysis of the ring oscillator. 20
4.3 AC analysis of the common source amplifier. 21

A.1 Layout of the common source amplifier 30
A.2 Schematic of the common source amplifier 31
A.3 Testbench of the common source amplifier 31
A.4 Layout of the 7 stages ring oscillator 32
A.5 Testbench of the 7 stages ring oscillator 33
A.6 Layout of NAND gate . 34
A.7 Layout of inverter gate . 35

B.1 Layout of the compiled common source amplifier 38
B.2 Compiled layout of the 7 stage ring oscillator 39

xi

List of Tables

2.1 Inverter truth table . 9
2.2 NAND truth table . 10
2.3 True table of a and gate . 10

4.1 Measurements of the cells with the manual layout 19
4.2 Measurements of the cells with the compiled layout 19

xiii

Abbreviations

FD-SOI Fully Depleted Silicon On Insulator
DRC Design Rule Check
LVS Layout Versus Schematic
MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
PMOS P-channel MOSFET
NMOS N-channel MOSFET
CMOS Complementary Metal-Oxide Semiconductor
PC Polycrystalline (silicon)
AUXPC Auxillary Polycrystalline

xv

1 | Introduction

Technology around us is developing at an accelerated pace and this includes med-
ical devices as well. There is a need for higher energy efficiency and lower power
consumption and to explore technologies in 22nm and lower for ultra-low power
implementations.

Silicon-on-insulator devices designed for optimum operation at 0.3V promise
longer operational life than conventional application-specific integrated circuits [7].
Ultra-low power (ULP) transistors are enabling technology progress in areas such
as implantable medical devices and energy harvesting circuits, but also increases
the life span of any sensor system, since the most efficient way to reduce power is
to reduce the operating voltage.

Each time the industry moves to a new technology node, there are certain
challenges that need to be faced and a set of building blocks need to be made
for a specific function and technology. FDSOI technology and bulk biasing can
also contribute to even lower power consumption by reducing leakage and allowing
lower supply voltage operation. Bulk biasing also allows equal sizing of NMOS
and PMOS transistors, as opposed to the conventional 2*wider PMOS transistor
size, resulting in reduced circuit area and capacitance[7].

1.1 Motivation

Technology libraries are usually sold as IPs from external vendors and are used by
analog designers in order to speed up the design process. Since we need to scale
down to a new technology node brings the need of developing new building blocks
that target specific task and a speficic technology, it would be ideal to lower the
designing time of some of the basic cells in a digital and analog library by using
some of the layout generation tools available out there. The cicCreator is one of
these tools and is open-source and available at [2].

This layout optimization tool helps speed up the process of generating multiple
versions of analog IC layout for quicker layout parasitics extraction and post-layout
simulation. Analog integrated circuits (ICs) have more considerations than the de-

1

sign of digital circuits, with long design cycles. Any tool that can speed up the
design process and shorten time to market will help to reduce the overall cost of
manufacturing ICs.

Since the compiler used in this project works in a hierarchical structure, there
is the need to describe digital and analog circuit building-blocks so they can be
used as custom library objects in future implementations of other CMOS circuits.
All objects need to be fully technology-independent, and placement and routing
should be defined in a way that allows easy implementation by the IC designer.

The optimization tool for the layout of the cells used in this project is presented
in [8], and there was a need to examine the portability of the existing compiler to
smaller process nodes. A task that may or not may be possible since smaller nodes
imply more layout constraints.

Since low power has become the biggest concern for almost every practical use
in the industry, transistors with an extremely low threshold voltage will be used.

1.2 Previous work

Previous work with compiled cells using the compiler tool[2] used in this project is
presented in [8].

The author had difficulties finding cells previously made for 22nm FDSOI, apart
for a single-stage power amplifier for WLAN in 22nm FDSOI[4], so it seems as the
implementation of a cell library for this node had never been try before.

1.3 Main contributions

The work of this master thesis consists in the implementation of building blocks in
the 22nm technology using the compiler presented in [8].

The main contributions of this thesis are

• A compiled inverter with minimum gate length in 22nm FDSOI.

• A ring oscillator with minimum gate length in 22nm FDSOI.

• A common-source amplifier using 22nm FDSOI technology.

1.4 Thesis outline

The rest of this thesis is organized as follows

Chapter 2 – Theory: This chapter contains the background theory used in the
rest of this thesis.

Chapter 3 – Methodology: Shows the implementation of the cell library in Ca-
dence.

2

Chapter 4 – Results: Shows results of the cells implemented after their para-
sitics had been extracted from layout.

Chapter 5 – Discussion: Discuss the results and some of the challenges in the
use of the compiler for this technology.

Chapter 6 – Conclusion: Final thoughts and further work.

3

2 | Theory

This chapter presents a brief summary of some of the concepts used throughtout
the rest of this project. It is assumed that the reader possesses a basic knowledge
of analog and digital circuits from before.

2.1 Transistor properties

There are two types of MOSFET transistors: nMOS (n-channel) and pMOS (p-
channel). N-channel devices use electrons as the majority current carriers, and
P-channel devices use holes to form a conductive channel.

+

−
vgs gmvgs gsvsb rds

Vg

Vs

Vdid

Figure 2.1: nmos low frequency small signal model

2.1.1 Operating regions

The behavior of a transistor can be broken down into 3 main parts:

• Triode region

• Active region (saturation)

• Off (subtreshold)

5

Triode region - VGS > Vth, VDS < (VGS − Vth). The drain current is proportional
to VDS , the same kind of relationship as in a resistor. Therefore the MOSFET can
be use as a resistor in this region.

Active region - VGS > Vth, VDS ≥ (VGS −Vth). A change in ID can be achieved
by changing VGS . This is also called the saturation region.

ID =
1

2
µnCox(

W

L
)(VGS − Vtn)2 (2.1)

The transconductance gm is then given by

dID
dVGS

= µnCox(
W

L
)(VGS − Vtn) (2.2)

2.1.2 Subthreshold operation

In subthreshold operation, also called weak inversion, transistors obey an expo-
nential voltage current relationship instead of a square-law. A small but finite
current flows even when VGS = 0. In the subthreshold region, the drain current is
approximately given by an exponential relationship:

ID(sub−th)
∼= ID0(

W

L
)e(qVeff/nkT) (2.3)

Plotting drain current on a logarithmic axis versus VGS in the subthreshold
region gives a straight line. The inverse of this slope, called the subthreshold slope
and equal to ln(10) ∗ nkT

q is a measure of the voltage change in VGS required to
effect an order-of-magnitude change in subthreshold drain current.

The current does not drop to zero even when VGS = 0V . This residual drain
current is called the subthreshold leakage and is given by

Ioff = ID0(
W

L
)e(−qVt/nkT) = (n− 1)µnCox(

W

L
)(
kT

q
)2e(−qVt/nkT) (2.4)

As we see from the equation above, the subthreshold offset drain current has a high
dependency on the absolute temperature (T), carrier mobility (µn) and threshold
voltage (Vt). In general, subthreshold leakage increases significantly with tempera-
ture and is often a dominant source of power consumption in modern technologies.

2.1.3 Series and parallel transistors

It is common practice to connect several unit transistors in series or parallel to scale
the effective width or length up or down. If two unit transistors are connected in
series, the effective length will increase as shown in figure 2.2. The width of the
equivalent transistor will as well increased by connecting the unit transistors in
parallel.

6

W
L2

W
L1

W
(L1+L2)

Figure 2.2: Equivalent circuit for series connected transistors

W
L2

W
L1

(W1+W2)
L

Figure 2.3: Equivalent circuit for parallel connected transistors

2.2 FDSOI transistors

Figure 2.4: Illustration of bulk cmos and fdsoi cmos

The market for semiconductors now focus on energy savings and the fully-depleted
silicon-on-insulator (FDSOI) is a planar process which is thought to help extend
the relevance period of Moore’s law[3].

FDSOI reduces the leakage and thus has the possibility to minimize power
consumption. Advantages of an FDSOI technology includes the reduction of par-
asitic capacitance between the source and drain of the transistor. The buried
oxide layer also constrains electrons flowing between the source and drain to re-
duce performance- and power-degrading leakage currents significantly. FDSOI also
allows to further control transistor behaviour by applying a voltage to the sub-
strate underneath the device, called also body biasing. Body biasing introduces a
new concept in processor design, different voltages applied to the top and buried
gate affect the characteristics of the transistor, which can be then be optimized for
either high performance or low power.

7

2.2.1 Body biasing

Modern FDSOI processes introduces the possibility to apply a voltage into the back
gate and use it as a fourth terminal. The back gate allows controlling the threshold
voltage by about 85mV/V when changing the back gate voltage[5], this is what is
called as body biasing.

Biasing is more efficient in FDSOI, thanks to the dielectric isolation by the
buried oxide layer. For Forward Body Biasing (FBB), the transistor required less
voltage in the gate to switch, resulting in faster transistor switching and lower
active power consumption. Similarly, Reverse Body-Biasing (RBB) can be applied
to the transistors to higher the threshold voltage of the transistor, which lowers the
off-stage leakage and minimised the static power consumption when the transistors
are off.

Body biasing capabilities in FDSOI opens a variety of opportunities such as
achieving lower threshold voltages for the devices and lower power, and it can also
be used for compensating process variations in a cell.

2.2.2 Layout considerations

In current advanced processes such as 20nm or 14nm there are several layout con-
siderations that must be taken into account[1]. The process used in this project
allows for activating what is called multi-patterning in the photolithography pro-
cess. This technique helps to enhance the feature density, allowing layout engineers
to place the devices with closer spacing between them. The spacing between the
metal shapes is now so small that current light sources cannot print them reliably,
so the solution with multiple patterning consists of splitting the dense shapes into
two masks and relying on interference patterns between the light from both masks
to make the final projection. This way the metal layer M1 will actually consist of
2 layer masks, marked with different colors in Cadence.

2.3 Layout generation tool

The layout compiler used in this project is presented in [8], where an ADC was
compiled from a SPICE netlist, a technology file and an object definition file into
a DRC/LVS clean layout and schematic in 28-nm FDSOI.

The compiler borrows the concept of inheritance from object-oriented program-
ming and outputs a GDSII file that can be loaded in Cadence Virtuoso. Parasitic
extractions, simulation and verification can then be performed.

Both the SPICE netlist and the object definition file are technology indepen-
dent. Instead of specifying transistors widths and lengths, the SPICE netlist only
contains permutations of unit transistors, either by series-connecting or parallel
connecting these. The routing of blocks is done in either by connectivity routing
or in the object definition file, which is written in JavaScript Object Notation, a
commonly used data exchange format.

8

The technology rule file specifies the dimension constraints for a specific tech-
nology, the GDSII layer numbers and data-type, layer material definitions, and
other design rules.

2.4 Digital components

Digital logic gates describes the functionality of a circuit in terms of Boolean values.
In CMOS, logic gates are composed of a pull-up network made by PMOS devices,
and a pull-down network made by NMOS devices.

2.4.1 The Inverter
The inverter is one of the most basic blocks in all digital systems. The static CMOS
inverter is composed of a NFET and a PFET. Its operation is easily understood
with a simple switch model of the MOS transistor. The transistor is modelled
with an infinite off-resistance (for |VGS | < |VT |), and a finite on-resistance (fr
|VGS | > |VT |). When the input voltage is high and equal to the supply voltage
VDD the NMOS transistor is on, while the PMOS is off, resulting in Vout and the
ground node being connected and the resulting voltage of zero. On the other hand
a input voltage of 0V causes the NMOS transistor to be off and PMOS to be on,
a direct path between VDD and Vout, yielding in a high output voltage.

For a balanced inverter the voltage swing is equal to the supply voltage, and the
swiching threshold VM is located around the middle of the available voltage swing
(or at VDD/2). This usually requires making the PMOS devices a bit larger than
the NMOS devices, which means making the PMOS wider, increasing the strength
of the PMOS. Increasing the strength of the NMOS, on the other hand moves the
switching threshold closer to GND.

IN OUT

Figure 2.5: Symbol for an inverter logical gate

Table 2.1: Inverter truth table
A Y
0 1
1 0

2.4.2 The NAND Gate
The NAND gate is other of the basic blocks in digital design. Figure 2.7 shows a
2-input CMOS NAND gate. It consists of two series NMOS transistors between

9

the output and VSS , and two parallel PMOS transistors between the output and
VDD. The truth table is given in Table 2.2 and the symbol is shown in Figure 2.7.

A

B
Y

Figure 2.6: Symbol for a nand logical gate

Table 2.2: NAND truth table
A B Y
0 0 1
0 1 1
1 0 1
1 1 0

2.4.3 Compound gates
The AND gate can be formed by combining NOT and NAND gates.

A

B
Y

Figure 2.7: Symbol for an and logical gate

Table 2.3: True table of a and gate
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

2.5 Ring oscillator

Single-ended ring oscillators are realized by placing an odd number of open-loop
inverting amplifiers or delay cells in a feedback loop configuration. Assuming each
inverter has a delay of Td and that there are N number of inverters, the half period
of oscillation would be given by

T0
2

= nTd (2.5)

10

and thus
f0 =

1

T0
=

1

2nTd
(2.6)

where f0 is the operational frequency of the oscillator and Td is the delay through
one delay stage.

NN − 11

Figure 2.8: A N-stage ring oscillator

2.6 Analog components

2.6.1 Basic Current Mirror
Figure 2.9 shows an ideal current mirror that accepts an input current Iin and
produces an output current Iout = Iin. An ideal current mirror will have zero input
resistance and high output resistance, and reproduces the input current regardless
of the source and load impedances that are connected to it[6]. It is assumed that
Q1 and Q2 are both in the active region. When Q1 and Q2 are the same size,
the drain current through the transistors will be identical, since they have the
same gate-source voltage, Vgs. A common use of a simple current mirror is in a
single-stage amplifier with active load.

Q1 Q2

v1

Iin

Iout

Figure 2.9: A simple CMOS current mirror

2.6.2 Common-Source Amplifier
An amplifier increases the amplitude of a input signal. The gain of a common
source amplifier is derived by using the small signal model of the the amplifier as
shown in 2.10.

11

The common source amplifier is a popular gain stage, specially when high input
impedance is desired. The use of a current mirror as an active load provides large
small signal resistances without large dc voltage drops.

Q3 Q2

Vout

Ibias
Q1

Vin

Figure 2.10: A common-source amplifier with a current-mirror active load

12

3 | Methodology

For this project two versions of each cell were made. First a manually drawn version
using the schematic and layout GUI in Cadence Virtuoso. Then a second version
was made by writing a spice netlist and an object definition file for the compiler
that generated an automatic layout. The goal was then to simulate the two versions
with parasitic capacitances extracted from the layout and discuss differences. The
digital cells had a targeted VDD of 300mV .

The 22nm FDSOI process used in this project provides both low threshold
voltage PMOS and NMOS devices. The back-gate bias can be used to calibrate
the threshold voltage of the transistors as explained in Section 2.2.1

To extract the different parameters and properties of the devices designed, a
simple test bench was created in order to simulate the devices under more realistic
conditions.

3.1 Unit transistor

In order to make the modifications of the cells easier, a unit transistor was made
in Virtuoso. For the digital cells the layout of the transistors were made in a way
that allows stacking multiple transistors together into other larger cells. Since the
22nm FD-SOI technology has much potential for using body biasing in new ways,
the bulk contact of both NFET and PFET devices are always made available in
the layout of every digital cell. The unit transistor for NFET is depicted in Figure
3.1 with dimensions 20nm in length and 100nm width.

For placing devices adjacent to each other in the most area efficient way, a unit
transistor with two dummy polys was made instead of the four dummy poly each
transistor need when the gate length is 20nm. The auxiliary poly (AUXPC) polys
are shown in red with diagonal lines. This layer is used over each end of the active
region of the transistor in order to minimize the mechanical stress and is one of the
design rules for this technology.

13

Figure 3.1: Layout of NFET unit transistor

3.2 Inverter

For the inverter cell both the PMOS ("pch") and NMOS ("nch") unit transistors
were used, as seen in Figure 3.2.

One of the many constraints that exist for minimal gate sizing in the used
technology is that the a each gate needs to have 2 dummy polys on each side for
the design to be DRC clean. Therefore a termination cell with 2 dummy polys was
placed on each side of every cell before running DRC and LVS checks. The layout
of the inverter cell can be seen in Figure A.7.

The bulk voltages are set to VBN = 0V and VBP = 0, 075V in order to balance
the inverter, as explained in Section 2.4.1.

14

Figure 3.2: Schematic of the inverter

The values for the body biasing voltages were found by performing a sweeping
simulation of the bulk voltages of both nch and pch transistors until VDD/2 at the
input leads to VDD/2 on the output. This allows using the same width for both
NMOS and PMOS devices.

3.3 NAND

The schematic in Figure 3.3 shows a basic NAND gate as described in Section 2.4.2.
The bulk voltages of the NFET and PFET were set as the same as in the inverter
in Section 3.2.

15

Figure 3.3: Schematic of the NAND gate

3.4 7-stage Ring oscillator

Figure 3.4 depicts a 7-stage ring oscillator with target frequency of 500 MHz and
supply voltage of V = 0, 7V . The NAND gate is used to enable the oscillation.
The testbench is shown in A.5 and the layout in A.4.

Figure 3.4: Schematic of the 7 stage ring oscillator

3.5 Common-source amplifier

Figure A.2 shows the schematics of a common source amplifier in 32nm. The width
of the unit transistors used here are set to 320nm. The supply voltage was 700mV
and Ibias = 10µA. A current mirror is used as the load like described in Section
2.6.2. The current through P0 and the two current mirrors is controlled by Ibias.

16

Figure 3.5: Schematics of the common source amplifier

3.6 Layout generation

Part of the work in this project involved defining different aspects 22nm manufac-
turing that had to be considered in other to improve the compiler.

For each cell a spice netlist was created and the object input files for the compiler
were written in order to generate the layout and can be seen in the Appendix C.1.

Some adjustments in the technology file had to be made in order to introduce
other layers that were needed. Part of this project was to check the usability of
the compiler for lower nodes at minimum gate length. The problems encounter in
this stage of the project are discussed in Section 5.1.

17

4 | Results

The voltage transfer curve of the inverter gate after being balanced with body
biasing is shown in Figure 4.1.

The transient analysis of the 7 stage ring oscillator is shown in Figure 4.2. The
operational frequency of the 7-stage ring oscillator was measured to 569MHz.

The AC analysis of the common source amplifier is shown in figure 4.3.
The generated layout of each cell is shown in Appendix B.
The measured sizes of the cells are presented in Table 4.1 and Table 4.2.

Table 4.1: Measurements of the cells with the manual layout
Name of the cell Length[nm] Width[nm] Area[nm2]

Inverter 0, 312 · 10−2 1, 868 · 10−2 0, 583 · 10−4

7-stages RO 2, 864 · 10−2 1, 868 · 10−2 5, 350 · 10−4

CS amp 2, 107 · 10−2 2, 799 · 10−2 5, 897 · 10−4

Table 4.2: Measurements of the cells with the compiled layout
Name of the cell Length[nm] Width[nm] Area[nm2]

Inverter 0, 732 · 10−2 4, 144 · 10−2 3, 033 · 10−4

7-stage RO 3, 168 · 10−2 4, 191 · 10−2 13, 277 · 10−4

CS amp 1, 845 · 10−2 4, 160 · 10−2 7, 675 · 10−4

19

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Vin (V)

V
o
u
t
(V

)

Vin

Figure 4.1: Voltage transfer curve for the balanced inverter.

0 0.2 0.4 0.6 0.8 1

·10−8

0

0.1

0.2

0.3

T (s)

V
o
u
t
(V

)

Trans analysis of the ring oscillator, with initial condition Vout = 0V

Vin

Figure 4.2: Transient analysis of the ring oscillator.

20

105 106 107 108 109 1010 1011 1012

−30

−20

−10

0

10

freq (Hz)

V
(d
b)

AC analysis of the common source amplifier

V(dB)

Figure 4.3: AC analysis of the common source amplifier.

21

5 | Discussion

The desired output of this project was to have two versions of each cell in the
library. One version with the manually drawn layout, and the other with the
compiled layout, and then to characterize each cell version and compare with the
other. In order to do this each cell needed to be able to pass both DRC and
LVS checks to extract parasitic capacitances. However this turned out to be more
difficult to achieve than expected, because the 22nm FDSOI technology had many
new layout constraints compared to what was supported in the current version of
the compiler. The problems encountered when using the compiler are discussed in
Section 5.1.

The results presented in Chapter 4 are simulated from the manual layout of the
cells and are in compliance with the design specifications.

The area of each cell was compared and we see that smaller area is achieved
with the manual layout, in some cases as much as 50%. The designer should then
consider if this is a critical factor or if some extra area is an acceptable tradeoff for
lower design time of a cell by using the compiler.

5.1 Using the compiler

A number of challenges were encountered when using the available compiler with
the minimum gate length for this technology of 20nm.

When using minimum length the gate of each transistor needs to have 4 sup-
porting gates with defined size and spacing. This was solved by using two termina-
tion cells with dummy polys at each cell with minimum length before running DRC.

When routing with the poly layer (PC) one must also have an auxiliary poly
(AUXPC) as a dummy poly all the way from one transistor edge to another. The
problem is that an AUXPC poly used for the edges of the active region of the tran-
sistor cannot be connected with ports of different nets. A poly cut layer (CT) is
used to cut the dummy poly afterwards. The CT layer was added in the technology
definition file and incorporated in the definition of the core transistor cell, so when
transistors are stacked, the cut layer will respect the correct size and spacing rules
automatically.

23

In the technology file of the compiler, one can change the number of cuts and
vias used for each layer. The standard is two cuts, but using two cuts in both drain
and source causes spacing errors for vias from M1 to M2. Therefore the compiler
in its current state is not suitable for more complex cells that require routing in
M2 or M3 in adjacent transistors when the gate length lower than 32nm.

Though the compiler was not an optimal tool for minimum gate devices, it
was easy to use when the gate length was set to 32nm, since this eliminates the
problems with the sizing and spacing of the vias for higher metals.

24

6 | Conclusion

FD-SOI technology provides many advantages in order to make circuits more en-
ergy efficient and lower the area. Back-biasing mechanisms gives more effective
optimization of circuits.

In this project the design of an inverter gate, a nand gate, a 7-stage ring os-
cillator and a common-source amplifier was presented. The layout generation tool
from [8] is used and compare with manual layout in Virtuoso.

As can be seen from the simulation results the area of the compiled cells is in
some cases significantly increased, but when considering the drastically reduced
design time and possibility of rapid experimentation and prototyping this seems
like a promising trade.

6.1 Further work

Compound cells like for instance the AND gate can now be made from the cells
presented in this project. Could have made more powerful cells with double the
transistors, CSX2. Other things for further investigation includes activating sharing
between the drain and source of two different transistors to make a continuous RX
with the compiler, so we could have achieve smaller size of the cells, though this
would have presented new challenges with via spacing.

25

Bibliography

[1] Cadence Unveils New Virtuoso Advanced Node for 20nm Design. https://
www.cadence.com/content/cadence-www/global/en_US/home/company/
newsroom/press-releases/pr/2013/cadenceunveilsnewvirtuosoadvancednodefor20nmdesign.
html. (Accessed on 01/02/2018).

[2] C.Wulff. Custom IC Creator. url: https://github.com/wulffern/ciccreator.

[3] FD-SOI Technology Innovations Extend Moore’s Law. https://www.globalfoundries.
com/sites/default/files/technicalpaper/fd-soi-technology-extend-
moores-law.pdf. (Accessed on 19/01/2018).

[4] S. T. Lee, A. Bellaouar, and S. Embabi. “A high-efficiency single-stage power
amplifier for WLAN 802.11ac in 22nm FDSOI”. In: 2017 IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S). Oct. 2017, pp. 1–3. doi:
10.1109/S3S.2017.8309265.

[5] S. S. Rao et al. “Body biasing for analog design: Practical experiences in 22
nm FD-SOI”. In: 2017 IEEE 20th International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS). Apr. 2017, pp. 73–78.
doi: 10.1109/DDECS.2017.7934580.

[6] D. Johns T.C Carusone and K. W. Martin. Analog Integrated Circuit Design.
Wiley, 2012. isbn: 9781118092330.

[7] S. A. Vitale et al. “FDSOI Process Technology for Subthreshold-Operation
Ultralow-Power Electronics”. In: Proceedings of the IEEE 98.2 (Feb. 2010),
pp. 333–342. issn: 0018-9219. doi: 10.1109/JPROC.2009.2034476.

[8] C. Wulff and T. Ytterdal. “A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR
ADC in 28-nm FDSOI for Bluetooth Low Energy Receivers”. In: IEEE Journal
of Solid-State Circuits 52.7 (July 2017), pp. 1915–1926. issn: 0018-9200. doi:
10.1109/JSSC.2017.2685463.

27

29

A | Layout and schematic in
Cadence

A.1 Common source amplifier

Figure A.1: Layout of the common source amplifier

30

Figure A.2: Schematic of the common source amplifier

Figure A.3: Testbench of the common source amplifier

31

A.2 Ring oscillator

Figure A.4: Layout of the 7 stages ring oscillator

32

Figure A.5: Testbench of the 7 stages ring oscillator

33

A.3 NAND layout

Figure A.6: Layout of NAND gate

34

A.4 Inverter layout

Figure A.7: Layout of inverter gate

35

37

B | Compiled cells

B.1 Common source amplifier

Figure B.1: Layout of the compiled common source amplifier
38

B.2 Common source amplifier

Figure B.2: Compiled layout of the 7 stage ring oscillator

39

C | Compiler input code

C.1 Core transistors definition file

1 //==
2 // Copyright (c) 2018 Carsten Wulff Software, Norway
3 //

===↪→

4 // Created : wulff at 2018-2-17
5 //

===↪→

6 // The MIT License (MIT)
7 //
8 // Permission is hereby granted, free of charge, to any person

obtaining a copy↪→

9 // of this software and associated documentation files (the
"Software"), to deal↪→

10 // in the Software without restriction, including without
limitation the rights↪→

11 // to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell↪→

12 // copies of the Software, and to permit persons to whom the
Software is↪→

13 // furnished to do so, subject to the following conditions:
14 //
15 // The above copyright notice and this permission notice shall be

included in all↪→

16 // copies or substantial portions of the Software.
17 //
18 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR↪→

19 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY,↪→

41

20 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE↪→

21 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER↪→

22 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM,↪→

23 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE↪→

24 // SOFTWARE.
25 //
26 //==
27

28 {
29 "patterns" : {
30 "Z" : ["-",
31 "x"],
32 "Y" : ["x",
33 "-"],
34 "z" : ["-----",
35 "-xxxx"],
36 "y" : ["-xxxx",
37 "-----"],
38 "u" : ["-xxxx"],
39 "p" : ["-----",
40 "xxxx-"],
41 "o" : ["xxxx-",
42 "-----"],
43 "v" : ["xxxx-"]
44 },
45 "cells":
46 [
47 {
48 "name": "DMOS",
49 "class": "Gds::GdsPatternTransistor",
50 "yoffset": -0.5,
51 "type": "pch",
52 "widthoffset": 0,
53 "fillCoordinatesFromStrings": [
54 [
55 "OD",
56 "------------------------",
57 "-----YYYY---------------",
58 "-----xCxC---------------",
59 "-----xxxx---------------",

42

60 "-----xCxC---------------",
61 "-----ZZZZ---------------",
62 "------------------------"
63],
64 [
65 "ODB",
66 "--------------------xxxx",
67 "--------------------xxxx",
68 "--------------------xxxx",
69 "--------------------xxCx",
70 "--------------------xxxx",
71 "--------------------xxxx",
72 "--------------------xxxx"
73],
74 [
75 "PO",
76 "------------------------",
77 "--mmmmmmmmmmmmmmmm------",
78 "------------------------",
79 "--mmmmmmGmmmmcmcmm------",
80 "------------------------",
81 "--mmmmmmmmmmmmmmmm------",
82 "------------------------"
83],
84 [
85 "POD",
86 "------------------------",
87 "--mmmmmmmmmmmmmmmm------",
88 "------------------------",
89 "------------------------",
90 "------------------------",
91 "--mmmmmmmmmmmmmmmm------",
92 "------------------------"
93],
94 [
95 "M1",
96 "--------------------xxxx",
97 "--------------------xxxx",
98 "-----wDww-----------xxxx",
99 "------------wGwww---xBxx",

100 "-----wSww-----------xxxx",
101 "--------------------xxxx",
102 "--------------------xxxx"
103]
104

43

105]
106 },
107

108 {
109 "name": "DMOS_PO",
110 "class": "Gds::GdsPatternTransistor",
111 "yoffset": -0.5,
112 "type": "pch_lvt",
113 "widthoffset": -2,
114 "fillCoordinatesFromStrings": [
115 [
116 "OD",
117 "------------------------",
118 "-----YYY----------------",
119 "-----xCx----------------",
120 "-----xxx----------------",
121 "-----xCx----------------",
122 "-----ZZZ----------------",
123 "------------------------"
124],
125 [
126 "ODB",
127 "--------------------xxxx",
128 "--------------------xxxx",
129 "--------------------xxxx",
130 "--------------------xxCx",
131 "--------------------xxxx",
132 "--------------------xxxx",
133 "--------------------xxxx"
134],
135 [
136 "PO",
137 "------------------------",
138 "mmmmmmmmmmmmmmmmmm------",
139 "------------------------",
140 "--mmmmmmGmmmmcmcmm------",
141 "------------------------",
142 "mmmmmmmmmmmmmmmmmm------",
143 "------------------------"
144],
145 [
146 "POD",
147 "------------------------",
148 "-mmmmmmmmmmmmmmmmm------",
149 "------------------------",

44

150 "------------------------",
151 "------------------------",
152 "-mmmmmmmmmmmmmmmmm------",
153 "------------------------"
154],
155 [
156 "M1",
157 "--------------------xxxx",
158 "--------------------xxxx",
159 "-----wDw------------xxxx",
160 "------------wGwww---xBxx",
161 "-----wSw------------xxxx",
162 "--------------------xxxx",
163 "--------------------xxxx"
164],
165 [
166 "CT",
167 "y-----------------------",
168 "u-----------------------",
169 "z-----------------------",
170 "------------------------",
171 "y-----------------------",
172 "u-----------------------",
173 "z-----------------------"
174]
175]
176 },
177

178

179 },
180 {
181 "name": "DMOS_PO_mirror",
182 "class": "Gds::GdsPatternTransistor",
183 "yoffset": -0.5,
184 "type": "pch_lvt",
185 "widthoffset": -2.2,
186 "fillCoordinatesFromStrings": [
187 [
188 "OD",
189 "------------------------",
190 "----------------YYY-----",
191 "----------------xCx-----",
192 "----------------xxx-----",
193 "----------------xCx-----",
194 "----------------ZZZ-----",

45

195 "------------------------"
196],
197 [
198 "ODB",
199 "xxxx--------------------",
200 "xxxx--------------------",
201 "xxxx--------------------",
202 "xxCx--------------------",
203 "xxxx--------------------",
204 "xxxx--------------------",
205 "xxxx--------------------"
206],
207 [
208 "PO",
209 "------------------------",
210 "------mmmmmmmmmmmmmmmmmm",
211 "------------------------",
212 "------mmcmcmmmmGmmmmmm--",
213 "------------------------",
214 "------mmmmmmmmmmmmmmmmmm",
215 "------------------------"
216],
217 [
218 "POD",
219 "------------------------",
220 "------mmmmmmmmmmmmmmmmm-",
221 "------------------------",
222 "------------------------",
223 "------------------------",
224 "------mmmmmmmmmmmmmmmmm-",
225 "------------------------"
226],
227 [
228 "M1",
229 "xxxx--------------------",
230 "xxxx--------------------",
231 "xxxx------------wDw-----",
232 "xBxx---wwwGw------------",
233 "xxxx------------wSw-----",
234 "xxxx--------------------",
235 "xxxx--------------------"
236],
237 [
238 "CT",
239 "-----------------------o",

46

240 "-----------------------v",
241 "-----------------------p",
242 "------------------------",
243 "-----------------------o",
244 "-----------------------v",
245 "-----------------------p"
246]
247]
248 },
249

250 {
251 "name": "DMOSDMY",
252 "class": "cIcCore::PatternTile",
253 "yoffset": -0.5,
254 "type": "pch",
255 "widthoffset": 0,
256 "fillCoordinatesFromStrings": [
257 [
258 "OD",
259 "------------------------",
260 "------------------------",
261 "------------------------",
262 "-----YYYY---------------",
263 "-----xxxx---------------",
264 "-----xxxx---------------",
265 "-----xxxx---------------",
266 "-----ZZZZ---------------",
267 "------------------------",
268 "------------------------",
269 "------------------------"
270],
271 [
272 "ODB",
273 "--------------------xxxx",
274 "--------------------xxxx",
275 "--------------------xxxx",
276 "--------------------xxxx",
277 "--------------------xxxx",
278 "--------------------xxxx",
279 "--------------------xxxx",
280 "--------------------xxxx",
281 "--------------------xxxx",
282 "--------------------xxxx",
283 "--------------------xxxx"
284],

47

285 [
286 "PO",
287 "------------------------",
288 "--mmmmmmmmmmmmmmmm------",
289 "------------------------",
290 "--mmmmmmmmmmmmmmmm------",
291 "------------------------",
292 "--mmmmmmmmmmmmmmmm------",
293 "------------------------",
294 "--mmmmmmmmmmmmmmmm------",
295 "------------------------",
296 "--mmmmmmmmmmmmmmmm------",
297 "------------------------"
298],
299 [
300 "POD",
301 "------------------------",
302 "------------------------",
303 "------------------------",
304 "--mmmmmmmmmmmmmmmm------",
305 "------------------------",
306 "------------------------",
307 "------------------------",
308 "--mmmmmmmmmmmmmmmm------",
309 "------------------------",
310 "------------------------",
311 "------------------------"
312]
313]
314 },
315

316

317 {
318 "name": "PCHDL",
319 "inherit": "DMOS",
320 "type": "pch_lvt",
321 "widthoffset": -1,
322 "beforePlace": {
323 "addEnclosures": [
324 [
325 "ODB",
326 0,
327 ["HYBRID"]
328]
329],

48

330 "addEnclosuresByRectangle": [
331 [
332 "ODB",
333 [0, -1, 24, 11],
334 ["PP"]
335],
336 [
337 "OD",
338 [5, 2, 4, 3],
339 ["LVTP"]
340]
341

342]
343 }
344 },
345 {
346 "name": "NCHDL",
347 "inherit": "DMOS",
348 "xoffset": -2,
349 "afterNew": {
350 "mirrorPatternString": 1
351 },
352 "type": "nch_lvt",
353 "beforePlace": {
354 "addEnclosures": [
355],
356 "addEnclosuresByRectangle": [
357 [
358 "ODB",
359 [-1, -1, 24, 11],
360 ["NW", "NP"]
361],
362 [
363 "OD",
364 [15, 2, 4, 3],
365 ["LVTN"]
366],
367 [
368 "ODB",
369 [0, 0, 4, 7],
370 ["HYBRID"]
371]
372]
373 }
374 },

49

375

376 {
377 "name": "PCHDL_PO",
378 "inherit": "DMOS_PO",
379 "type": "pch_lvt",
380 "widthoffset": -1,
381 "beforePlace": {
382 "addEnclosures": [
383 [
384 "ODB",
385 0,
386 ["HYBRID"]
387]
388],
389 "addEnclosuresByRectangle": [
390 [
391 "ODB",
392 [2, -1, 24, 11],
393 ["PP"]
394],
395 [
396 "OD",
397 [5, 2, 4, 3],
398 ["LVTP"]
399]
400

401]
402 }
403 },
404 {
405 "name": "NCHDL_PO",
406 "inherit": "DMOS_PO_mirror",
407 "xoffset": 0,
408 "afterNew": {
409 "mirrorPatternString": 0
410 },
411 "type": "nch_lvt",
412 "beforePlace": {
413 "addEnclosures": [
414],
415 "addEnclosuresByRectangle": [
416 [
417 "ODB",
418 [-1, -1, 23.8, 11],
419 ["NW", "NP"]

50

420],
421 [
422 "OD",
423 [15, 2, 4, 3],
424 ["LVTN"]
425],
426 [
427 "ODB",
428 [0, 0, 4, 7],
429 ["HYBRID"]
430]
431]
432 }
433 },
434 {
435 "name": "PCHDLDMY",
436 "inherit": "DMOSDMY",
437 "widthoffset": -1,
438 "beforePlace": {
439 "addEnclosures": [
440 [
441 "ODB",
442 0,
443 ["HYBRID"]
444]
445],
446 "addEnclosuresByRectangle": [
447 [
448 "ODB",
449 [0, -1, 24, 13],
450 ["PP"]
451],
452 [
453 "OD",
454 [5, 2, 4, 7],
455 ["LVTP"]
456]
457

458]
459 }
460 },
461 {
462 "name": "NCHDLDMY",
463 "inherit": "DMOSDMY",
464 "xoffset": -2,

51

465 "afterNew": {
466 "mirrorPatternString": 1
467 },
468 "beforePlace": {
469 "addEnclosures": [
470],
471 "addEnclosuresByRectangle": [
472 [
473 "ODB",
474 [-1, -1, 24, 13],
475 ["NW", "NP"]
476],
477 [
478 "OD",
479 [15, 2, 4, 7],
480 ["LVTN"]
481],
482 [
483 "ODB",
484 [0, 0, 4, 11],
485 ["HYBRID"]
486]
487]
488 }
489 },
490 {
491 "name": "NCHDLRDMY",
492 "type": "nch_lvt",
493 "xoffset": -2,
494 "widthoffset": 2,
495 "inherit": "NCHDLDMY",
496 "afterPaint": { "mirrorCenterX": -1 }
497 },
498 {
499 "name": "NCHDLR",
500 "type": "nch_lvt",
501 "xoffset": -2,
502 "widthoffset": 2,
503 "inherit": "NCHDL",
504 "afterPaint": { "mirrorCenterX": -1 }
505 }
506]
507 }

52

C.2 Digital cells netlist

1 **
2 ** Copyright (c) 2016 Carsten Wulff Software, Norway
3 **

***↪→

4 ** Created : wulff at 2016-11-16
5 **

***↪→

6

7

8 .subckt IVX1 A Y AVDD AVSS VBP VBN
9 MN0 Y A AVSS VBN NCHDL_PO

10 MP0 Y A AVDD VBP PCHDL_PO xoffset=2
11 .ends
12

13 .subckt IVX2 A Y AVDD AVSS
14 MN0 Y A AVSS AVSS NCHDL
15 MN1 AVSS A Y AVSS NCHDL
16 MP0 Y A AVDD AVSS PCHDL
17 MP1 AVDD A Y AVSS PCHDL
18 .ends
19

20 .subckt IVX4 A Y AVDD AVSS
21 MN0 Y A AVSS AVSS NCHDL
22 MN1 AVSS A Y AVSS NCHDL
23 MN2 Y A AVSS AVSS NCHDL
24 MN3 AVSS A Y AVSS NCHDL
25 MP0 Y A AVDD AVSS PCHDL
26 MP1 AVDD A Y AVSS PCHDL
27 MP2 Y A AVDD AVSS PCHDL
28 MP3 AVDD A Y AVSS PCHDL
29 .ends
30

31 .subckt NRX1 A B Y AVDD AVSS VBP VBN
32 MN0 Y A AVSS VBN NCHDL
33 MN1 AVSS B Y VBN NCHDL
34 MP0 N1 A AVDD VBP PCHDL
35 MP1 Y B N1 VBP PCHDL
36 .ends
37

38 .subckt NDX1 A B OUT AVDD AVSS VBP VBN
39 MN0 N1 A AVSS VBN NCHDL_PO
40 MN1 OUT B N1 VBN NCHDL_PO
41 MP0 OUT A AVDD VBP PCHDL_PO xoffset=2

53

42 MP1 AVDD B OUT VBP PCHDL_PO
43 .ends
44

45 .subckt NDX2 A B Y AVDD AVSS
46 MN0 N1 A AVSS AVSS NCHDL
47 MN1 Y B N1 AVSS NCHDL
48 MN2 N2 A Y AVSS NCHDL
49 MN3 AVSS B N2 AVSS NCHDL
50 MP0 Y A AVDD AVSS PCHDL
51 MP1 AVDD B Y AVSS PCHDL
52 MP2 Y A AVDD AVSS PCHDL
53 MP3 AVDD B Y AVSS PCHDL
54 .ends
55

56 .subckt ANX1 A B Y AVDD AVSS VBP VBN
57 XA1 A B YN AVDD AVSS VBP VBN NDX1
58 XA2 YN Y AVDD AVSS VBP VBN IVX1
59 .ends
60

61 .subckt EONX1 A B AN BN Y AVDD AVSS
62 MN1 N1 A AVSS AVSS NCHDL
63 MN2 Y B N1 AVSS NCHDL
64 MN3 N3 BN Y AVSS NCHDL
65 MN4 AVSS AN N3 AVSS NCHDL
66 MP1 NP1 A Y AVSS PCHDL
67 MP2 AVDD BN NP1 AVSS PCHDL
68 MP3 NP2 B AVDD AVSS PCHDL
69 MP4 Y AN NP2 AVSS PCHDL
70 .ends
71

72 .subckt IVTRIX1 A C CN Y AVDD AVSS
73 MN0 N1 A AVSS AVSS NCHDL
74 MN1 Y C N1 AVSS NCHDL
75 MP0 N2 A AVDD AVSS PCHDL
76 MP1 Y CN N2 AVSS PCHDL
77 .ends
78

79 .subckt NDTRIX1 A C CN RN Y AVDD AVSS
80 MN2 N1 RN AVSS AVSS NCHDL
81 MN0 N2 A N1 AVSS NCHDL
82 MN1 Y C N2 AVSS NCHDL
83 MP2 AVDD RN N2 AVSS PCHDL
84 MP0 N2 A AVDD AVSS PCHDL
85 MP1 Y CN N2 AVSS PCHDL
86 .ends

54

87

88 .subckt CS_AMP VIN IBIAS VOUT VBULKP VBULKN AVDD AVSS
89 MN3 IBIAS IBIAS AVSS VBULKN NCHDL
90 MN0 P1 IBIAS AVSS VBULKN NCHDL
91 MN1 VIN VIN AVSS VBULKN NCHDL
92 MN2 VOUT VIN AVSS VBULKN NCHDL
93 MP0 P1 P1 AVDD VBULKP PCHDL
94 MP1 VIN P1 AVDD VBULKP PCHDL
95 MP2 VOUT P1 AVDD VBULKP PCHDL
96 .ends
97

98 .subckt RINGOSC7 A E AVDD AVSS VBP VBN
99 XA0 A E N0 AVDD AVSS VBP VBN NDX1

100 XA1 N0 Z1 AVDD AVSS VBP VBN IVX1
101 XA2 Z1 N2 AVDD AVSS VBP VBN IVX1
102 XA3 N2 Z3 AVDD AVSS VBP VBN IVX1
103 XA4 Z3 N4 AVDD AVSS VBP VBN IVX1
104 XA5 N4 Z5 AVDD AVSS VBP VBN IVX1
105 XA6 Z5 A AVDD AVSS VBP VBN IVX1
106 .ends

C.3 Digital cells object definition file

1 //--
2 // Copyright (c) 2016 Carsten Wulff Software, Norway
3 //--
4 // Created : wulff at 2016-11-16
5 //--
6

7 {
8 "noPortTranslation" : 1,
9 "cells":

10 [
11 {
12 "name": "CS_AMP" ,
13 "symbol" : "cs_amp",
14 "class" : "Layout::LayoutDigitalCell",
15 "beforeRoute" : {
16 "addConnectivityRoutes" : [
17

18 ["M1","^P","-|--"],
19 ["M2","VOUT","-|--"],
20 ["M2","VIN","-|--"],
21 ["M1","IBIAS","-|--"]

55

22]
23 },
24 "afterRoute" : {
25 "addPortOnRects" : [["VIN","M1", "MN2:G"] , ["VOUT", "M1",

"MN2:D"],
["IBIAS","M1","MN0:G"],["VBULKN","M1","MN0:B"],["VBULKP","M1","MP0:B"]

↪→

↪→

26]
27 }
28 },
29

30 {
31 "name": "IVX1" ,
32 "symbol" : "inv",
33 "class" : "Layout::LayoutDigitalCell",
34 "beforeRoute" : {
35 "addDirectedRoutes" : [["M1","Y","MN0:D-|--MP0:D"],
36 ["PO","A","MN0:G-MP0:G"]]
37 },
38 "afterRoute" : {
39 "addPortOnRects" : [["Y", "M1", "MN0:D"],

["VBN","M1","MN0:B"],["VBP","M1","MP0:B"]]↪→

40 }
41 },
42

43

44 {
45 "name": "IVX2" ,
46 "class" : "Layout::LayoutDigitalCell",
47 "symbol" : "inv",
48 "setYoffsetHalf" : "" ,
49 "rows" : 2,
50 "beforeRoute" : {
51 "addDirectedRoutes" : [["M1","Y","MN0:D-|--MP0:D"],
52 ["PO","A","MN:G-MP:G"] ,
53 ["M1","A","MN0:G||MN1:G"] ,
54 ["M1","A","MP0:G||MP1:G"]
55]
56 },
57 "afterRoute" : {
58 "addPortOnRects" : [["A","M1", "MN0:G"] , ["Y", "M1",

"MN0:D"]]↪→

59 }
60 },
61 {
62 "name": "IVX4" ,

56

63 "class" : "Layout::LayoutDigitalCell",
64 "symbol" : "inv",
65 "setYoffsetHalf" : "" ,
66 "rows" : 4,
67 "beforeRoute" : {
68 "addDirectedRoutes" : [

["M1","Y","MN0:D,MN2:D-|--MP0:D,MP2:D"],↪→

69 ["PO","A","MN:G-MP:G"] ,
70 ["M1","A","MN0:G||MN3:G"] ,
71 ["M1","A","MP0:G||MP3:G"]
72]
73 },
74 "afterRoute" : {
75 "addPortOnRects" : [["A","M1", "MN0:G"] , ["Y", "M1",

"MN0:D"]]↪→

76 }
77 },
78 {
79 "name": "NRX1",
80 "class" : "Layout::LayoutDigitalCell",
81 "rows" : 2,
82 "symbol" : "nor",
83 "setYoffsetHalf" : "" ,
84 "beforeRoute" : {
85 "addDirectedRoutes" : [["M1","Y","MN0:D-|--MP1:D"],
86 ["PO","A","MN0:G-MP0:G"],
87 ["PO","B","MN1:G-MP1:G"]
88]
89 },
90 "afterRoute" : {
91 "addPortOnRects" : [["A", "M1" ,"MN0:G"], ["B", "M1",

"MN1:G"], ["Y", "M1", "MN1:S"]]↪→

92 }
93 },
94 {
95 "name": "NDX1" ,
96 "class" : "Layout::LayoutDigitalCell",
97 "rows" : 2,
98 "symbol" : "nand",
99 "setYoffsetHalf" : "" ,

100 "beforeRoute" : {
101 "addConnectivityRoutes": [
102 // ["M1","^N","-|--"]
103],
104 "addDirectedRoutes" : [["M1","OUT","MN1:D-|--MP1:S"],

57

105 ["M1","OUT","MP1:S-|MP0:D"],
106 ["PO","A","MN0:G-MP0:G"],
107 ["PO","B","MN1:G-MP1:G"],
108 ["M1","N1","MN0:D|-MN1:S"]
109]
110 },
111 "afterRoute" : {
112 "addPortOnRects" : [["A", "M1" ,"MN0:G"], ["B", "M1",

"MN1:G"], ["Y", "M1", "MN1:D"]]↪→

113 }
114 },
115 {
116 "name": "NDX2",
117 "class": "Layout::LayoutDigitalCell",
118 "rows": 4,
119 "symbol": "nand",
120 "setYoffsetHalf": "",
121 "beforeRoute": {
122 "addConnectivityRoutes": [
123 ["M1", "Y", "-|--", "onTopL", "", ""],
124 ["M2", "A$", "-|--", "", "", "NCH"],
125 ["M1", "A$", "--|-", "", "", "PCH"],
126 ["M2", "B$", "--|-", "", "", "NCH"],
127 ["M1", "B$", "-|--", "", "", "PCH"]
128

129],
130 "addDirectedRoutes": [
131 ["PO", "A", "MN0:G-MP0:G"],
132 ["PO", "B", "MN1$:G-MP1$:G"],
133 ["PO", "A", "MN2:G-MP2:G"],
134 ["PO", "B", "MN3:G-MP3:G"]
135]
136 },
137 "afterRoute": {
138 "addPortOnRects": [
139 ["A", "M1", "MN0:G"],
140 ["B", "M1", "MN1:G"],
141 ["Y", "M1", "MN2:S"]
142]
143 }
144 },
145 {
146 "name": "ANX1",
147 "class": "Layout::LayoutDigitalCell",
148 "composite": 1,

58

149 "symbol": "and",
150 "beforeRoute": {
151 "addDirectedRoutes": [
152 ["M1", "YN", "XA2:MN0:G-|--XA1:MN1:D"]
153]
154 },
155 "afterRoute": {
156 "addPortOnRects": [
157 ["A", "M1", "XA1:MN0:G"],
158 ["B", "M1", "XA1:MN1:G"],
159 ["Y", "M1", "XA2:MN0:D"]
160]
161 }
162 },
163 {
164 "name": "EONX1",
165 "class": "Layout::LayoutDigitalCell",
166 "setYoffsetHalf": "",
167 "rows": 4,
168 "beforeRoute": {
169 "addDirectedRoutes": [
170 ["PO", "A", "MN1:G-MP1:G"],
171 ["PO", "A", "MN4:G-MP4:G"]
172],
173 "addConnectivityRoutes": [
174]
175 },
176 "afterRoute": {
177 "addPortOnRects": [
178 ["A", "M1", "MN1:G"],
179 ["B", "M1", "MN2:G"],
180 ["AN", "M1", "MN4:G"],
181 ["BN", "M1", "MP2:G"]
182]
183 }
184 },
185 {
186 "name": "IVTRIX1",
187 "class": "Layout::LayoutDigitalCell",
188 "rows": 2,
189 "setYoffsetHalf": "",
190 "description": "Tristate inverter, Y = A if C, Y =HiZ if CN",
191 "beforeRoute": {
192 "addDirectedRoutes": [
193 ["M1", "Y", "MN1:D-|--MP1:D"],

59

194 ["PO", "A", "MN0:G-MP0:G"]
195]
196 },
197 "afterRoute": {
198 "addPortOnRects": [
199 ["A", "M1", "MN0:G"],
200 ["CN", "M1"],
201 ["C", "M1"],
202 ["Y", "M1", "MN1:D"]
203]
204 }
205 },
206 {
207 "name": "NDTRIX1",
208 "class": "Layout::LayoutDigitalCell",
209 "rows": 3,
210 "setYoffsetHalf": "",
211 "description": "Tristate nand, Y = !A if C and !RN, Y =HiZ if

CN",↪→

212 "beforeRoute": {
213 "addDirectedRoutes": [
214 ["M1", "Y", "MN1:D-|--MP1:D"],
215 ["M1", "N2", "MP2:S|-MP0:D"],
216 ["M1", "N2", "MN0:D-MP0:D"],
217 ["PO", "A", "MN0:G-MP0:G"],
218 ["PO", "RN", "MN2:G-MP2:G"]
219]
220 },
221 "afterRoute": {
222 "addPortOnRects": [
223 ["A", "M1", "MN0:G"],
224 ["CN", "M1"],
225 ["C", "M1"],
226 ["RN", "M1", "MN2:G"],
227 ["Y", "M1", "MN1:D"]
228]
229 }
230 },
231

232 {
233 "name": "RINGOSC7" ,
234 "symbol" : "ringosc",
235 "class" : "Layout::LayoutDigitalCell",
236 "beforeRoute" : {
237 "addDirectedRoutes" : [["M2","A","XA0:MP0:G--|-XA6:MP0:D"]

60

238],
239 "addConnectivityRoutes":[
240 ["M1","^N","-|--","offsetlow"],
241 ["M1","^Z","-|--","offsetlow"]
242]
243 },
244 "afterRoute" : {
245 "addPortOnRects" : [["E","M1","XA0:MN1:G"]]
246 }
247 }
248]
249 }

61

