
The Vent Learning Analytics Dashboard
and VSON container format for visualization

data

Nils Herde

Master of Science in Informatics

Supervisor: Michail Giannakos, IDI
Co-supervisor: Boban Vesin, IDI

Katerina Mangaroska, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Summary

Education is increasingly more digitized, and dispersed on several platforms, devices
and applications. Inspired by domains like business intelligence; learning analytics is
becoming increasingly prevalent as a means to improve and adapt the educational field.
However, challenges arise when trying to collect and analyze data originating from vari-
ous sources, as well as when trying to extract meaningful insights from large amounts of
data. This thesis documents the development of Vent, an educational dashboard meant to
visualize data in an attempt to aid educators in their work, and highlights some of the chal-
lenges tied to integrating highly divergent data sources in a coherent manner. The thesis
also introduces the VSON data container, conceptualized explicitly to carry data meant for
visualization purposes.

i

Sammendrag

Utdanning blir stadig mer digitalisert, samt spredt utover flere plattformer, enheter og
applikasjoner. Inspirert av domener som virksomhetsetterretning har læringsanalyse blitt
et stadig viktigere verktøy undervisere kan ta i bruk for å forbedre og tilpasse undervis-
ningen. Det oppstår likevel utfordringer i forbindelse med innsamling og analyse av data
fra disse mange kildene, samt i prosessen med forstå essensen i potensielt svært store
datamengder. Denne oppgaven dokumenterer utviklingen av Vent, et verktøy for visualis-
ering av undervisningsdata som forsøker å bistå undervisere i deres arbeid, i tillegg til å
fremheve en del utfordringer i forbindelse med integrering av meget varierte data på en
enhetlig måte. Oppgaven introduserer også det nye VSON-dataformatet, som er spesifikt
utviklet for å bære data ment for bruk i visualiseringer.

ii

Preface

This thesis was written during the school year of 2017/2018 for the Department of
Computer and Information Science (IDI) at the Norwegian University of Science and
Technology (NTNU). It is the final stretch of a six year journey I have traveled with many
fine people without whom this would not have been possible. Not least, my family that
has been of immense support, especially these last couple of months.

I would like to thank my supervisor Michail Giannakos as well as my co-supervisors,
Boban Vesin and Katerina Mangaroska for their aid and support during my work with this
thesis. I hope that the thesis will prove useful for them in their continued quest of improv-
ing education for all students.

A special thanks to Annie Aasen for support, proofreading, and for simply being quite
awesome.

2018-06-01

Nils Herdé

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents vii

List of Figures ix

1 Introduction 1
1.1 Background and motivation . 1
1.2 Contributions and objectives . 2

1.2.1 Initial goals . 2
1.2.2 Changing focus . 2

1.3 Thesis structure . 3

2 Background and related work 5
2.1 Digitized education . 5

2.1.1 Learning Analytics . 5
2.2 Dashboards . 6

2.2.1 Dashboard for multimodal learning analytics 6
2.3 The Experience API . 7

3 Implementation 9
3.1 Requirements and reasoning . 9
3.2 The back end . 10

3.2.1 Spring Boot . 10
3.2.2 Kotlin . 11

3.3 The front end . 11
3.3.1 Vue.js . 12

v

3.3.2 Highcharts . 12
3.4 Architecture . 13

3.4.1 Reasoning and early iterations 13
3.4.2 Factors and challenges affecting the architecture 13
3.4.3 Final implementation . 19

3.5 Challenges in development . 23
3.5.1 Technical . 23
3.5.2 Data sources . 24

4 Vent System Object Notation 25
4.1 Conception . 25
4.2 What is VSON . 26

4.2.1 Simple and minimal . 26
4.2.2 Standardized and self documenting 26
4.2.3 Stable and extensible . 26
4.2.4 JSON-Schema . 27

4.3 Schema . 27
4.3.1 Course . 28
4.3.2 Units . 28
4.3.3 Other notes . 29

4.4 Related Work . 29
4.4.1 The Experience API . 29

5 Results 31
5.1 Vent . 31

5.1.1 Other visualizations . 36
5.2 Fulfilled goals and objectives . 37

5.2.1 Status of initial goals . 37
5.2.2 Status of additional goals . 38

6 Discussion and future work 39
6.1 Project development summary and final product 39
6.2 The way forward . 40

6.2.1 Suggested evolution of data sources 40
6.2.2 Vent back end . 40
6.2.3 Future development of VSON 40
6.2.4 Continued development of Vent for visualizations 41

Bibliography 43

Appendix 45
A Desired visualizations . 45
B README files for Vent . 47

B.1 README for Vent backend . 48
B.2 README for Vent frontend . 49

C VSON json-schema definition . 50

vi

D The Hoov application . 53

vii

viii

List of Figures

3.1 Vue components in nested tree structure 12
3.2 Early draft of the architecture. 13
3.3 ProTuS database design late September 2017 15
3.4 ProTuS database in mid spring 2018 . 16
3.5 ProTuS database in late spring 2018 . 17
3.6 Final design of the architecture. 20

5.1 The initial prompt when opening Vent 32
5.2 A component of the solidgauge chart type 32
5.3 A component of the spider chart type 33
5.4 A component of the column chart type 34
5.5 A component of the pie chart type . 35
5.6 A component of the pie chart type with drill down 35
5.7 A component of the line chart type . 36

ix

Chapter 1
Introduction

This thesis chronicles the development of the Vent1 educational dashboard from initial
conception, through the changed focus triggered by development challenges, all the way
to its current state as of spring 2018. In this chapter I will present the background for
the development project, the initial objectives of the development process as well as the
additional objectives redefined during the development. Finally I will present the outline
of this thesis.

1.1 Background and motivation
The origins for this thesis was proposed by my supervisor Michail Giannakos and his
team consisting of Boban Vesin and Katerina Mangaroska. Having researched educational
dashboards they identified that the way forward in understanding education is in looking
at the complete picture instead of individual aspects of a complex educational picture
(Mangaroska and Giannakos (2017)). In other words, they wanted to develop software that
could gather data from several data sources and combine them into holistic visualizations.

Giannakos is the course supervisor of IT2805 - Web Technologies at the Norwegian
University of Science and Technology (NTNU). In this subject they use software by the
name of ProTuS. ProTuS is by its own definition “a tutoring system designed to help
learners in learning essentials of programming languages. The environment is designed for
learners with no programming experience ” (Vesin (2018)). ProTuS is explicitly crafted to
track and monitor user behaviour on the site as to generate data for later analysis. ProTuS
also incorporates Mastery Grids developed at the university of Pittsburgh for some of its
features, which also tracks and analyses data as to allow for adaptive learning (Sahebi
(2018)).

Data from ProTuS and Mastery Grids together with NTNUs learning management
system Blackboard (Blackboard (2018)) were to form the basis for such a multi-data edu-
cational dashboard.

1Visualized Education NTNU

1

Chapter 1. Introduction

1.2 Contributions and objectives
Based on the context described above, the aim of this thesis seemed somewhat straight
forward. Create a system that could collect data from the mentioned data sources and
convey this information through useful and informative visualizations.

The exact visualizations to create would be elicited through dialog with professors
responsible for the courses from which data would be gathered from. The resulting list
which can be seen in appendix A.

1.2.1 Initial goals
The initial goals for this thesis can therefore be summed up with the following steps:

1. Decide on a set of technologies flexible enough for interaction with multiple data
sources

2. Find sensible and smart ways of pulling data from said data sources

3. Elicit desirable visualizations from course professors

4. Extract data needed to create visualizations

5. Display visualizations in a sensible way

The end result of this would be a made-to-measure dashboard specifically tailored to
the needs of Giannakos and his team.

1.2.2 Changing focus
As mentioned, in addition to recounting the development of this educational dashboard,
this thesis is partly responsible for chronicling why and how my focus shifted somewhat
during this process. More on that in chapters 3 and 4. In short the various challenges
associated with having to work with data sets that had no particular standard, missing
documentation and generally were not at all generated with visualizations in mind, leads
me to propose some solutions to help facilitate visualizations of educational data in a more
general way. This in turn resulted in the addition of a few goals:

1. Extract common denominators for data needed to create the requested visualizations
mentioned in appendix A

2. Find a suitable way of containing this data

3. Express this container format in a general and reproducible way

4. Create a visualization dashboard built around this new data format

The results of the first three of these steps are what will be referred to as the VSON
data format, and is explained in detail in chapter 4. Note that this chapter has been written
as to be understandable on its own for those that should not be interested in the rest of the
thesis.

2

1.3 Thesis structure

1.3 Thesis structure

Chapter/Appendix Description
1. Introduction A short introduction to the background and goals for

the project
2. Background Theory Some background theory and related work
3. Implementation The implementation of the Vent educational dash-

board
4. VSON An introduction and explanation of the VSON data

format developed for this thesis
5. Results The results of the development process in terms of

visualizations and goals achieved
6. Discussion & future work Discussion of the results achieved and the way for-

ward
A. Elicited visualizations A list of the visualizations requested by professors

Michail Giannakos and Hallvard Trætteberg
B. Vent Readmes The readme files created for the Vent educational

dashboard
C. VSON Schema The schematic definition of the VSON data format
D. Hoov The Hoov application for data gathering that was de-

veloped but never used during the project

Table 1.1: Overview of the thesis structure

3

Chapter 1. Introduction

4

Chapter 2
Background and related work

This chapter will briefly explain some of the background for this project, as well as look
into some related work. Initially this thesis was intended as a made-to-measure project
with a targeted focus strictly accommodating the inceptive specifications. As the project
progressed, the scope shifted slightly as I will explain later in the thesis. Not aiming to
be a complete literature review the initial scope of this thesis was limited to the work per-
formed by Giannakos and his team. The experiences made during the project did however
require some re-alignment with the status quo of data sharing in educational research, and
hopefully the end result will end up having a positive effect on the field of visualizing
learning analytics.

The chapter is divided into sections discussing the current state of (digitized) education
and learning analytics, educational dashboards and multimodal learning analytics, before
introducing The Experience Api (xAPI) (Rustici (2018)).

2.1 Digitized education
Not that long ago, education mostly circled around the textbook, the classroom and the
occasional quiz or exam. Of course there have been elements of television, excursions,
experiments and group work for decades or even centuries. However the digitization of all
things has also included the field of education (Schroeder (2009)), and what is certain is
that the educational circle no longer revolves around a few select entities (Muñoz-Cristóbal
et al. (2016)). A modern educational environment involves a multitude of devices and
applications spanning everything from personal mobile phones to powerful work stations,
and simple text editors to fully fledged LMSs (Schroeder (2009)).

2.1.1 Learning Analytics
Common for these devices and applications is that they allow for unprecedented logging
and data collection. Registering time spent on individual resources or how a student types
his or her essay is not only feasible, but often quite trivial to accomplish. Experiences from

5

Chapter 2. Background and related work

other fields where the digitization has opened the gates on big data analysis and process
optimization suggest that ways of improving education might be found in these large sets
of educational data (Muñoz-Cristóbal et al. (2016)). The challenge is not only in analyzing
and understanding the data, but also in the process of gathering it in a sensible form from its
multiple sources. The large variety of applications and ecosystems introduces challenges
with regards to this process. An understandable egocentric perspective fueled by deadlines,
lack of information, or even sometimes malicious intents of purposeful lock-in can make
data-sharing an afterthought in the development process.

Integrating, analyzing and understanding the vast amount of information available with
regards to education will not only be important to individual educators and students, but
also to policy makers and institutions on various levels. But still there are many chal-
lenges associated with this, like data privacy issues, scoping and determining what data
is pedagogically meaningful and to what people or instances (Johnson et al. (2011); Elias
(2011)).

2.2 Dashboards
Many definitions exist for (educational) dashboards. According to Few (2006) an infor-
mation dashboard is “a visual display of the most important information needed to achieve
one or more objectives; consolidated and arranged on a single screen so the information
can be monitored at a glance”. Yoo et al. (2015) in turn, defined a learning dashboard
as “a display which visualizes the results of educational data mining in a useful way”. A
summary of more definitions can be found in the literature review by Schwendimann et al.
(2017), together with their own definition that defines a learning dashboard to be “a single
display that aggregates different indicators about learner(s), learning process(es) and/or
learning context(s) into one or multiple visualizations.”

However, the usefulness of displayed information on a dashboard varies from use case
to use case. An altimeter is probably more essential on the airplane dashboard than in
the car. To put this in context with Vent, in our use case the dashboard will not first and
foremost be a so called ’always on’, glanceable display. Rather Vent will cluster multiple
sets of information into manageable sub-views as to not overwhelm the viewer with too
much information. Therefore it could be argued that Vent oversteps the dashboard defini-
tion by offering multiple views, however I see few reasons to get caught up in semantic
nit-picking. For all intents and purposes Vent is a learning dashboard.

2.2.1 Dashboard for multimodal learning analytics
Where Vent initially would differentiate itself is in the way it combines multiple data
sources to give useful information to the educator. Schwendimann et al. (2017) found that
more than half of the researched dashboards only relies on one data source. And according
to Mangaroska and Giannakos (2017) “learning is becoming more blended and distributed
across different learning environments and contexts, making it impossible to holistically
understand the process of learning if integration is neglected”. So much so that they “high-
light the importance of learning analytics integration and aggregation of learning-related
data across multiple sources for designing informed and optimal learning strategies”. In

6

2.3 The Experience API

other words, given the multitude of software and hardware found in education as described
in 2.1, looking at isolated sources of data will yield very few true insights into the overall
state of an educational context. The integration of multiple data sources is also one of
the challenges highlighted by Dyckhoff et al. (2012), and it is here that Vent set out to
differentiate itself.

2.3 The Experience API
“The Experience API (or xAPI) is a new specification for learning technology that

makes it possible to collect data about the wide range of experiences a person has (online
and offline).” Rustici (2018)

During the development of Vent, it became obvious that a standard vocabulary to talk
about distributed educational data was needed. The details will be discussed in section
3.4.2 and chapter 4. xAPI aspires to be that vocabulary by using a student-centered
approach build on current web technologies (Kevan and Ryan (2016)). xAPI describes
learner action in so called ”Activity Statements” containing a minimum of three proper-
ties: ”Actor”, ”Verb” and ”Object”. Not unlike the Resource Description Framework1

model known from semantic web technologies which uses subject, predicate, object (Las-
sila et al. (1998)) An example would be Annie (actor) read (verb) The Hitchhiker’s Guide
to the Galaxy (object), or Stephen (actor) completed (verb) the midterm (object). Presum-
ably using unique identifiers for actors and objects. xAPI predefines certain additional
properties containing the likes of contextual or assessment data. However it is inherently
extensible as to accommodate unforeseen data collection needs (Kevan and Ryan (2016)).
These activity statements are generated by each individual educational application and
transmitted to one or more central learning record stores (LRS). In an effort to promote
flexibility, the xAPI maintainers removed its core verbs and left it up to the community to
figure out what verbs are best suited in the move from version 0.9 to version 0.95.

Together with its very broad actor, verb, object model, this makes xAPI a very compre-
hensive and flexible language well suited for most use cases regarding transfer and storage
of educational data. The lack of specificity does however allow for miscommunication
like two data sources using different verbs to mean the same thing. For example using
finished, ended and completed interchangeably, essentially segregating similar data points
into different verb-actions. This could be mitigated somewhat using common techniques
for natural language processing. Surrounding xAPI are also guidelines for secure commu-
nication and a few other (helpful) elements that to some extent adds to its complexity.

In my oppinion, xAPI seems like an overall well thought out standard that should
fit all but a very select few use cases for talking about educational data. It is however
worth noting that xAPI spans educational data in general and is not specifically tied to the
visualization of educational data. More on that in section 4.4.1.

1https://www.w3.org/RDF/

7

Chapter 2. Background and related work

8

Chapter 3
Implementation

This chapter will present the implementation details of Vent. Vent stands for ’Visualized
Education NTNU’ and consists of two main parts. The data-processing application built
using Spring Boot1 serving as the compatibility layer between data source and presentation
layer, and the web application based on Vue.js2 and Highcharts3 serving up the visualiza-
tions to the end user. I will present the architecture and implementation details, as well
as the reasoning behind each component in the technology stack. Lastly, I will discuss
challenges encountered during development.

3.1 Requirements and reasoning
The main requirement that influenced the decision process with regards to the technology
was the need to easily integrate with multiple data sources. Choosing the correct frame-
work when integrating with existing systems can be the difference between a day’s or a
month’s worth of work. Knowing that the data sources would be accessed through vastly
different means, the emphasis was put on finding a flexible framework that could handle
that. At that time the two main data sources that would be integrated was to my knowledge:

• ProTuS - by direct access to the MySQL database

• Blackboard4 - presumably via some sort of HTTP based API like REST or SOAP

Knowing this, and based upon previous experience, the following main points were
laid down as requirements for a back end framework:

1https://spring.io/projects/spring-boot
2https://vuejs.org/
3https://www.highcharts.com/
4NTNUs new LMS

9

Chapter 3. Implementation

• A powerful ORM tool5

– Avoids having to write manual SQL-queries for database interaction

– Very flexible when working with multiple sources of data

• Modern HTTP libraries

• Easy exposure of data as JSON representations

• Good integration with an IDE6

– Can save a lot of time when developing and refactoring an application

For the graphical interface the choice of creating a web based application was a fairly
easy one. Barring the need for higher than average performance or the need to access
specific low-level APIs like virtualization support or similar, the advantages of a web ap-
plication are numerous. Some of these are:

• Total platform and device independence

• Unparalleled accessibility through all connected devices

• A vast amount of libraries and tools for both code and graphical elements

• Great IDE support

Both with regards to back and front end the amount of available frameworks, libraries
and tool sets are overwhelming. A detailed analysis of all options is not within the scope
of this thesis, and the decisions were made based upon conversations with the supervisor
as well as personal preference. The technology stack will be presented in the next section.

3.2 The back end

3.2.1 Spring Boot
Spring Boot is a ”convention over configuration” approach to minimize configuration and
fuzz as to just get up and running with the Spring framework as efficiently as possible.
The Spring framework is a popular and widely used Java-based application framework
that has been around for more than 15 years. One of its key features is its support for all
Java-based data access frameworks like JDBC7, Hibernate8 and JPA9. This makes Spring a
superbly flexible framework when it comes to working with different data sources. When
the data sources are configured as desired, the data is exposed as POJO (Plain Old Java
Objects, or in this case POKO as Kotlin is used) to the application and any operations on

5https://en.wikipedia.org/wiki/Object-relational mapping
6Integrated Development Environment
7http://www.oracle.com/technetwork/java/javase/jdbc/index.html
8http://hibernate.org/
9https://en.wikipedia.org/wiki/Java Persistence API

10

3.3 The front end

the objects are mirrored to the database or databases. This avoids manual writing of SQL-
queries which is both time consuming and prone to breaking when handling edge-cases.
Especially when modifying or refactoring the application as most IDEs do not work too
well with what is often plain text queries.

Other benefits of using Spring Boot is that through its widespread use there are large
amounts of documentation, blog posts and support tickets with valuable information, es-
pecially useful for a solo developer. Being Java-based also opens the door to a plethora of
libraries of all kinds. More on this in the Kotlin section (3.2.2).

MySQL

Seeing as Spring Boot abstracts operations on the database system itself, the decision to
pick a database system for Vent was not terribly impactful. Given that one of the data
sources (ProTuS) itself uses MySQL and that it is the default in a vanilla Spring Boot con-
figuration, I decided to use that. However replacing the database layer with PostgreSQL,
MSSQL, or even NoSQL databases like MongoDB or Neo4J, should be fairly trivial as all
of these are supported in conjunction with Spring Boot.

3.2.2 Kotlin
As previously mentioned Spring Boot, is a Java-based framework with all the pros and
cons associated. Among these cons are critiques10 of excessively verbose code that can
negatively impact readability, and the widespread problem of Null Pointer Exceptions11.

Kotlin is a programming language that explicitly addresses these shortcomings includ-
ing others. While not being the only programming language trying to achieve this, what
separates Kotlin from most of the others is that it can be compiled to run in the Java Virtual
Machine. This allows for 100% interoperability with Java-based frameworks and systems.
Kotlin version 1.0 was released in February 2016, however the language has been around
since 2011 and is therefore not as young as one might believe. In 2017 Google announced
first-class support for Kotlin on the Android platform, which is a testament to its maturity.
Tempted by these advantages and the relatively low risk, I decided to give Kotlin a try
in the preliminary phase of the development. I was happy enough with the results that I
decided to continue writing in Kotlin.

3.3 The front end
The assumption made concerning the front end part of the application was that this would
be a fairly thin layer without too much complexity. However Vent is hopefully going to see
continued development in the future and it seemed a lack of foresight to not plan for future
growth. The goal was therefore to find tools with low overhead to allow me to quickly get
started, but that would still be powerful enough to scale as needed without having to be
replaced at a later point.

10https://softwareengineering.stackexchange.com/questions/141175/why-is-verbosity-bad-for-a-
programming-language

11https://en.wikipedia.org/wiki/Criticism of Java

11

Chapter 3. Implementation

As the main goal of the front end is to display visualizations of educational data, find-
ing a good tool to facilitate this was therefore key. This was a field wherein I did not have
a lot of experience, and it was thus the single item in the technology stack where most of
the research time was spent.

3.3.1 Vue.js

The nature of the project having many charts and visualizations with different values
seemed like a perfect fit for a component based approach. In short, a component is a
small, self-contained part of ones code that handles logic, templating and styling for it-
self. Somewhat comparable to an object in the object-oriented paradigm, a component is
instantiated by a parent component with parameters creating a tree-structure. See figure
3.1 for illustration.

Figure 3.1: Vue components in nested tree structure

Several frameworks offers this kind of functionality, with the most popular right now
being React12. However personal preference made me look for an alternative and after
some research I landed on Vue.js. According to their documentation13 one of its key
features is that Vue scales down just as well as up. This means that the threshold to
get started with Vue.js is low, and that the framework should be able to fit a growing
application size with ease.

3.3.2 Highcharts

Many JavaScript charting libraries were researched and considered for this project. Some
of these were Google charts, Chartlist.js, D3, and Charts.js. In the end the choice fell
on Highcharts. Highcharts excelled in particular in two categories. In the variation of
charts offered, which was important at a point were I knew little about what visualizations
were going to be used. And the substantial amount of exhaustive documentation provided
for the library, adding obvious value to its use. In addition, Highcharts seemed trivial to
integrate with Vue.js. These factors made Highcharts a very good match for my use case.

12https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1
13https://vuejs.org/v2/guide/comparison.html#Scale

12

3.4 Architecture

Note that replacing the charting library should not only be possible, but the very modular
nature of the project should facilitate such a change.

3.4 Architecture
In this section I will have a look at the architecture and what considerations were made to
shape the final design of the application. It is in this section that I discuss the challenges
that spurred the need for a standard format expressing educational data for visualization
purposes discussed in chapter 4.

3.4.1 Reasoning and early iterations
The initial flow of the Vent application was quite simple. Data from various sources would
be collected, and processed in some fashion before finally being visualized in a graphical
manner. This description coincides very well with the separation of layers associated with
a Model-View-Presenter14 architectural pattern. MVP is a derivation of the more known
Model-View-Controller pattern, where the view and model layers are strictly separated by
the presenter (controller) layer. In the initial architecture design I therefore sketched out
a fairly straight-forward implementation of a layered MVP architecture, where different
data sources could also be horizontally separated, as shown in figure 3.2

Spring Boot

JPA

Vent
Schema

Model

ProTus

Controller

Model

Mastery

Controller

Model

Vent

Controller

Vue.jsJSON
API

Mastery
Schema

ProTus
Database

Highcharts
Visualisations

Vent Database

Backend Frontend

Figure 3.2: Early draft of the architecture.

This turned out to be a robust base to build on, with a lot of reasonable assumptions and
decisions that later fascilitaed my development work. However, further work uncovered
some challenges that required me to rethink parts of the design. Or rather, I discovered
advantages to exploring a more general approach.

3.4.2 Factors and challenges affecting the architecture
During the development of Vent, there has been a total of four different data sources dis-
cussed for implementation. To illustrate the effect they had on the architecture I will look
at each one separately.

14https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter

13

Chapter 3. Implementation

Blackboard

Blackboard Learn is the learning management system used at NTNU starting from 201715

and was initially intended to be one of the data sources used for the visualizations. How-
ever in late November 2017 the team (myself and my supervisors) were finally denied
access to the data in a time frame suitable for this thesis. Although this meant that Black-
board would not be integrated into the initial version of Vent, the goal has always been to
allow for its integration at a later point in time. Blackboard exposes its data as a JSON
API16, which in turn implied that the system would need to be able to pull from, and
presumably cache, data from such an API.

ProTuS

ProTuS is a programming tutoring system developed at NTNU, and is currently actively
used in a few different classes at NTNU. ProTuS is explicitly designed to collect data and
is thus a great source of information for the kinds of visualizations intended to be found in
Vent. ProTuS does not currently have a dedicated API, but access was granted to the entire
MySQL database. This makes for easy integration with Vent, as Spring Boot handles all
connectivity between data store and POJO. However, despite easy connection there were
a few caveats.

ProTuS is under active development and its database design shows signs of having been
built on bit by bit for years, and a thorough refactoring has not been performed in some
time. Thus the database structure is not necessarily ideal or very intuitive to understand for
someone not actively maintaining it. Another challenge that I faced was that the database
structure of ProTuS was not stable throughout the development of Vent. In figure 3.3, 3.4
and 3.5 you can see a few snapshots of how the database differed between early fall 2017
all the way to spring 2018. Most notably is the removal of many foreign keys working
as semantic links that complicates flow and navigation when trying to extract data from
the database. Every database change on the ProTuS side implied reworking the ProTuS
implementation in Vent. This constant need for adjustment to a changing data source
heavily affected the realizations mentioned later on.

15https://www.ntnu.no/aktuelt/2016/els
16https://developer.blackboard.com/portal/displayApi

14

3.4 Architecture

Figure 3.3: ProTuS database design late September 2017

15

Chapter 3. Implementation

Figure 3.4: ProTuS database in mid spring 2018

16

3.4 Architecture

Figure 3.5: ProTuS database in late spring 2018

Mastery Grids

Mastery Grids (Sahebi (2018)) is integrated into ProTuS and supplies a number of tasks
and assignment presented to the users of ProTuS. In most cases the user will get a pop-up
leading to the Mastery Grids site where they will complete the proposed unit. Mastery
Grids mine their own set of data from the user interactions and together with ProTuS were
the fundamental data sources planned for Vent when Blackboard integration was delayed.

Mastery Grids provides a public API for their recorded data. The format is JSON-
esque in that it is clearly meant to be JSON, but the API returns invalid JSON that breaks
most parsers of the format. Another problem was the lack of documentation for this API
as properties had nondescript names like ”k” or ”p”. Upon request even the Mastery
Grids developers had problems defining what the different data actually is, since a lot of
it was implemented by people who have since left the project. Finally, a divergence from
convention made the format much harder to parse than one would expect. Normally an
array of topics in a JSON-format would look like listing 3.2. However, we see that the
data presented in 3.1 has variable data as property keys instead of values, which in the end

17

Chapter 3. Implementation

resulted in having to write a fully custom parser and test classes for this data instead of
being able to plug in an existing one from a parsing library.

1 t o p i c s : {
2 ” V a r i a b l e s and O p e r a t i o n s ” : {
3 v a l u e s : {
4 ” Examples ” :{
5 ” k ” : 0 ,
6 ” p ” : 0
7 } ,
8 ” C h a l l e n g e s ” : {
9 ” k ” : 0 ,

10 ” p ” : 0
11 } ,
12 ” Coding ” : {
13 ” k ” : 0 ,
14 ” p ” : 0
15 }
16 }
17 }
18 }

Listing 3.1: Actual data received from the Mastery Grids API

1 ” t o p i c s ” : [
2 {
3 ”name ” : ” V a r i a b l e s and O p e r a t i o n s ” ,
4 ” v a l u e s ” : [
5 {
6 ” c a t e g o r y ” : ” Examples ” ,
7 ” k ” : 0 ,
8 ” p ” : 0
9 } ,

10 {
11 ” c a t e g o r y ” : ” C h a l l e n g e s ” ,
12 ” k ” : 0 ,
13 ” p ” : 0
14 } ,
15 {
16 ” c a t e g o r y ” : ” Coding ” ,
17 ” k ” : 0 ,
18 ” p ” : 0
19 }
20]
21 }
22]

Listing 3.2: Proper formatting of data according to JSON convention

JExercise

The fourth data source explored for implementation into Vent was JExercise. JExercise is a
plugin to the IDE Eclipse, developed by NTNU professor Hallvard Trætteberg, that guides
students through their programming exercises. In addition, it tracks a number of metrics
regarding the students’ progress and programming habits which are to be visualized in
Vent.

18

3.4 Architecture

Initially, useful visualization data from JExercise was to be pushed to a server from
each user installation and from there be integrated into Vent. The server was implemented
as a simple Node17 app as per the specifications of Trætteberg for maximum flexibility.
The app, named Hoov(er), can be seen in appendix D. However for various reasons the
server was never used and data ended up being provided as exported files from JExercise.

The data exported directly from JExercise is in the form of files with a .ex extension.
These files are in the XMI (XML Metadata Interchange) format specifically intended to
be read and processed by the teacher’s software. This is a highly specialized format that
requires numerous libraries and custom packages related to JExercise to process, which is
not suitable for parsing, indexing or browsing by general learning analytic tools (Dodero
et al. (2017)). It was never my intention to integrate this fully into Vent as to avoid unnec-
essary complexity, but rather have a separate service that could receive relevant data from
JExercise. Even if Hoov did not end up being used, the idea was still to have a separate ser-
vice that could do conversion and extract relevant data. This service proved a lot of work,
and was never prioritized. Especially as such a service was under active development by
another masters student Boye Borg Nygård for his thesis18.

In other words JExercise did not end up integrated in the initial version of Vent, but
should be easier to implement once Nygård’s extraction service is finalized. I did however
see the challenges posed by highly specialized and somewhat obscure formats.

Summary

In summary we can see how even a modest number of different data sources can expo-
nentially complicate this kind of project development. The unstable nature of some data
repositories, the lack of documentation and adherence to standards, as well as the large
amount of noise in general data sets that complicate extraction of data relevant for visual-
izations. These were the recurring challenges that spurred the idea I will take a closer look
at in chapter 4.

3.4.3 Final implementation

In this section I will have a look at the final architecture of Vent, as well as go into some
details of each layer. Excerpts of code will be presented to illustrate sections, but for
complete reference all code is available in the project repository19.

The architecture closely resembles the one showed in figure 3.2, except that the Vent-
specific section has been transformed into an additional layer on top of the modules of
each data source. The data source controllers have also been changed to act as conversion
layers from source model to VSON-format which is then exposed by the Vent controller.
This is a result of the lessons learned from working with various data sources as explained
in 3.4.2 and elaborated on in chapter 4.

17https://nodejs.org/en/
18https://github.com/boyeborg/work-in-progress
19https://github.com/hernil/vent

19

Chapter 3. Implementation

Spring Boot

JPA

Vent
Schema

Model

ProTus

Compatibility layer

Model

Mastery Grids

Compatibility layer

VSON-
model

Vent

Controller Vue.js

JSON
API

Mastery
Schema

ProTus
Database

Highcharts
Visualisations

Vent Database

Backend Frontend

Figure 3.6: Final design of the architecture.

Models

The models consist of Kotlin data-classes that are defined as Entities managed by Spring
Boot. Examples of such classes can be seen in listings 3.3 and 3.4. Note that in these
examples Kotlin provides get() and set() as well as equals(), hashcode() and
toString() methods out of the box unless explicitly implemented in the classes them-
selves. In Java, a similar class would probably be upwards of 100 lines long. The different
annotations have the following functionality:

• @Entity - Defines the class as a JPA entity

• @Id - Defines the did property as the entity’s primary key

• @JsonIgnore - Informs JPA to not include this field when exposing the data as
JSON

• @GeneratedValue - Informs JPA that this is a managed value that it should
generate

• @OneToMany - Defines a one-to-many relation to other classes that will be
reflected in the database

Other things that should be noted is the override keyword being used because the
CourseUnit class implements the Unit interface as seen in 3.5. Also, all properties
are given default values as this is a prerequisite for JPA.

1 @Entity
2 data c l a s s C o u r s e U n i t (
3 @Id
4 @JsonIgnore
5 @GeneratedValue (s t r a t e g y = G e n e r a t i o n T y p e .AUTO)
6 v a l d i d : Long = 0 ,
7 o v e r r i d e v a l name : S t r i n g = "" ,
8 o v e r r i d e v a l t y p e : S t r i n g = "" ,
9 o v e r r i d e v a l t o p i c : S t r i n g = "" ,

10 o v e r r i d e v a l d i f f i c u l t y : I n t = 0 ,
11 v a l opened : Double = 0 . 0 ,
12 v a l comple t ed : Double = 0 . 0 ,

20

3.4 Architecture

13 v a l recommended : Double = 0 . 0 ,
14 o v e r r i d e v a l t i m e S p e n t : I n t = 0 ,
15 o v e r r i d e v a l p e r f o r m a n c e : Double = 0 . 0 ,
16 v a l e x p e c t e d P e r f o r m a n c e : Double = 0 . 0
17) : Un i t {
18

19 }

Listing 3.3: A Kotlin data class complete with getters and setters

1 @Entity
2 data c l a s s L e a r n e r (
3 @Id
4 @GeneratedValue (s t r a t e g y = G e n e r a t i o n T y p e .AUTO)
5 p r i v a t e v a l dId : Long = 0 ,
6 v a l i d : S t r i n g = "" ,
7 v a l name : S t r i n g = "" ,
8 @OneToMany(c a s c a d e = [CascadeType . ALL])
9 var t o p i c s : L i s t<Topic> = m u t a b l e L i s t O f () ,

10 @OneToMany(c a s c a d e = [CascadeType . ALL])
11 var a c t i v i t y T o p i c : L i s t<A c t i v i t y T o p i c> = m u t a b l e L i s t O f ()
12)

Listing 3.4: A Kotlin data class complete with getters and setters

1 i n t e r f a c e Uni t {
2 v a l name : S t r i n g
3 v a l t y p e : S t r i n g
4 v a l t o p i c : S t r i n g
5 v a l d i f f i c u l t y : I n t
6 v a l t i m e S p e n t : I n t
7 v a l p e r f o r m a n c e : Double
8 }

Listing 3.5: A Kotlin interface

Compatibility layer

In the compatibility layer, the raw data from a given data source is processed and converted
into a data format (VSON as described in chapter 4) that is comprehensible to the Vent
front end performing the actual visualizations. The complexity of implementing this layer
is directly proportional to the simplicity and clarity of the source data.

Vent layer

Data converted in the compatibility layer is stored as Models in the same way that the
source data, except that they are in processed form. This is in some ways a duplication
of the data, but can be seen as a form of cache to avoid having to perform the compu-
tations of the compatibility layer for each request. If the amount of data should become
unmanageable, it is easy to envision a simple purging mechanism for source data caching
where the data represented in the Vent layer would become the main data repository. How-
ever, depending on the ease of access to the actual source data, keeping the cached data
would significantly simplify detailed queries at the relatively low cost of additional storage
requirements.

21

Chapter 3. Implementation

Controllers

The controller in Spring Boot is the part of the application that handles HTTP-requests and
from there serves data, performs operations or in other ways react to these requests. For
my use case the controllers only serve up data upon request, and thanks to Spring Boot the
end result is quite simple. The code seen in listing 3.6 is all that is needed to serve the data
for a given course.

The @CrossOrigin annotation defines from what origins the requests will be con-
sidered valid. In this example I only allow them to come from a local deployment of the
Vent front end. In production one would add the server on which the solution has been
deployed.

Consider the HTTP Get-request to the URL:
http://localhost:8080/course/courseId
@RequestMapping defines what URLs should trigger this controller class, in this case
/course and the @GetMapping annotation will trigger the getDataById function
when appending the url with courseId. @PathVariable will map the subsequent
courseId to the id variable.

1 @ R e s t C o n t r o l l e r
2 @CrossOrig in (o r i g i n s = a r r a y O f ("http://localhost:3000"))
3 @RequestMapping ("/course")
4 c l a s s CourseResou rce (v a l r e p o s i t o r y : C o u r s e R e p o s i t o r y) {
5 @GetMapping (v a l u e = "/{id}")
6 fun ge tDa taById (@PathVar iab le i d : S t r i n g) = r e p o s i t o r y . f i n d B y I d (i d)
7 }

Listing 3.6: A Spring Boot controller written in Kotlin

Front end

The front end is written in JavaScript using the Vue.js framework and Highcharts li-
brary. Vue advocates the use of a Component-based development model where one creates
atomic self-contained modules that can be instantiated with parameters. Not unlike the
core principle of object-oriented programming. Each component handles its own templat-
ing, logic and styling based on the data it is instantiated with. In its simplest form a Vue
component looks like listing 3.7. In 3.7 the component simply takes in a property called
text and displays that text in red. Using this component would look something like listing
3.8.

1 <t e m p l a t e>
2 <d i v c l a s s =” s imple−component”>
3 {{ t h i s . t e x t }}
4 </ d iv>
5 </ t e m p l a t e>
6

7 <s c r i p t >
8 e x p o r t d e f a u l t {
9 name : ’ SimpleComponent ’ ,

10 p r o p s : {
11 t e x t : {
12 t y p e : S t r i n g ,
13 d e f a u l t : ” H e l l o World ” ,

22

3.5 Challenges in development

14 r e q u i r e d : t r u e ,
15 } ,
16 } ,
17 } ;
18 </ s c r i p t >
19

20 <s t y l e scoped>
21 . s imple−component {
22 c o l o r : r e d ;
23 }
24 </ s t y l e >

Listing 3.7: A very basic Vue.js component

1 <s imple−component : t e x t =”Good morning World”></ s imple−component>

Listing 3.8: Using a simple Vue.js component

Each chart type is thus created as a component and can be instantiated with the appro-
priate data according to the view. A view is simply a collection of components instantiated
with some data. Several instances of the same chart type can of course be used in the
same view. This approach is not only a pleasant way of organizing code, but forces a very
modular approach that makes changing or modifying parts of the application very simple.
Creating a new type of visualization and plugin it into the application is simple, and one
could also imagine pulling in other charting libraries than Highcharts if something should
be missing there. Creating new views that are student-centric, or perhaps for student as-
sistants is a matter of combining existing views and components in the desired way.

3.5 Challenges in development

3.5.1 Technical
Other than data source related problems, there were some purely technical challenges.

Although Spring Boot vastly simplifies the process of getting started with a Spring
based application, Spring is still a large and rather complex ecosystem that offers almost
infinite configuration options. Getting familiar enough with it to understand the process
of, for instance, creating multiple data stores, required a certain amount of time consuming
trial and error before succeeding. Although this is expected when exploring new technolo-
gies, there is no doubt that having someone familiar with the framework to consult would
have been an advantage. All in all, using Spring Boot did still result in time saved by
facilitating processes like data management and HTTP control flow.

Choosing Kotlin as a back end language also implied some challenges. This was ex-
pected, considering it was a new language that had to be learned. Especially using Kotlin
in conjunction with Spring entailed some challenges, as documentation for this combina-
tion is somewhat sparser than with traditional Java. All in all, this gave no more trouble
than what was expected, and inherent properties of Kotlin actually ended up being very
pleasant to work with. For example its much condensed syntax, and its very modern URL
library that made working with remote APIs a much more enjoyable process than what I
have previously experienced with Java.

23

Chapter 3. Implementation

3.5.2 Data sources
The challenges related to the data sources have already been pointed out on section 3.4.2.
Suffice to say that the various data sources have not been all too pleasant to work with,
and frankly quite challenging to integrate. Importing data has spanned from being very
simple with the ProTuS database integration, to plain frustrating with the JExercise data
that requires numerous custom packages and libraries even to open and process. The
lack of documentation for the various properties in the data sets made the creation of
the compatibility layer very challenging. Because of the aforementioned challenges, and
given that the focus was shifted somewhat towards trying to find more clever ways to work
with educational data in visualization context, all of these integrations have not been fully
completed.

24

Chapter 4
Vent System Object Notation

This chapter will present and explain the Vent System Object Notation (VSON
for short). It will be written as to be understandable on its own so that readers may learn
about VSON without needing to read the entire thesis. First I will reiterate some of the
challenges that lead to the conception of VSON, then I will describe what VSON is and
what problems it does, and does not, try to solve. Lastly I will present the actual schematic
definition of VSON before briefly mentioning related work in the form of The Experience
API.

4.1 Conception
The conception for VSON was two-fold. For one, any graphical visualization of data
would need to process a somewhat stable data format. In the case of Vent that would, at
the very least, mean doing a processing of various data sources in the front end in charge
of actual visualizations, or rather that the Vent back end presented preprocessed data to the
front end. In any case some data carrier format would need to be designed.

In addition, as explained in more detail in section 3.4.2, some challenges in working
with multiple data sources were uncovered:

• Unstable - Unstable data sources means that when the source data format changes,
the visualization application has to be modified to account for said changes.

• Undocumented - Most data sources had little, or no, documentation. This made it
hard to understand what properties map to what behaviour.

• Noise - The data sources contain a lot of data not necessarily linked to actual be-
haviour needing visualization. This makes it harder to process, ads overhead and
can also be a source of leakage of unwanted information.

From these experiences came the idea of creating a unifying format that contains the
data needed for basic educational visualizations. (For other efforts in this area, refer to
section 4.4)

25

Chapter 4. Vent System Object Notation

4.2 What is VSON
VSON is a very concrete solution to a very specific problem. It is a minimal standard for
representing data specifically intended for graphical visualizations of educational data.
Nothing more, nothing less. Underlying this is the idea that a small, highly specialized
and targeted set of tools is better than a large, monolithic one that tries to do everything
at once. That is why VSON is not a general format for representing educational data,
but rather a higher order abstraction of such data meant for visualization purposes. The
name VSON is a nod to JSON (JavaScript Object Notation) and stands for Vent System
Object Notation. Vent (Visualized Education NTNU) is the visualization tool that VSON
was initially developed for.

4.2.1 Simple and minimal
VSON is meant to do one thing, and to do it well. Keeping VSON minimal is in part to
make it easy to understand and to use. Having to read hundreds of pages of documentation
not only deters many from using something, it also inevitably leads to some confusion.
That is why there, by design, is a very limited set of properties defined by VSON specif-
ically meant to be used in the context of visualizations of educational data. For example,
there is a timeSpent property because time spent on a task or assignment has been de-
termined to be relevant for visualization. There is no phoneNumber property as VSON
is not meant to power a phone book.

4.2.2 Standardized and self documenting
When creating a virtual learning environment1 or educational system, there will probably
come a point when visualizing user interaction with the learning material might become
useful or even necessary. Instead of trying to figure out what data is useful for such vi-
sualizations, VSON offers a standard format that covers a number of visualizations. Data
represented as VSON can even be plugged right into Vent for visualization.

Knowing exactly what data is needed, and how to represent it saves a lot of work. Each
property defined in VSON is typed, exemplified and described so as to act as documenta-
tion for a developer. VSON-data can even be validated as discussed in 4.2.4.

4.2.3 Stable and extensible
Using a stable format for data delivery has advantages both for the visualization tool and
for the data provider. The developers of the visualization tool can focus on developing
features and new ways to visualize information, knowing that the data being processed
will be recieved in a stable form. The data provider can do all sorts of refactoring and
changes to the data store knowing that as long as data is still available through stable API
endpoints serving VSON-formatted data, the visualization tools will not break.

VSON is meant to be stable, but not rigid or inflexible. VSON does not prohibit
additional properties, and only a very select few properties are required. Omitting data

1https://en.wikipedia.org/wiki/Virtual learning environment

26

4.3 Schema

will naturally result in sparser visualizations. So, if your visualizations would benefit
from additional information feel free to add the proper properties. However, do consider
whether your additions might be generalized and potentially add value for others. In which
case do consider extending VSON itself by contacting the maintainers2.

4.2.4 JSON-Schema
VSON is defined through a JSON-schema3 as seen in appendix C. JSON-schema is a
proposed IETF4 specification5 to describe, annotate and validate JSON documents. It is
to JSON what XSD (XML Schema Definition) is to XML and tries to bring the advan-
tages of strict validation and annotation to the more human-readable world of JSON. The
VSON schema is used as documentation of the VSON data format, and also functions as
a validator of VSON data.

JSON was used for VSON as it has already established itself as a standard for data
transfer on the web, and because it, in my biased opinion, strikes a good balance between
human and machine readability.

4.3 Schema

1 {
2 ” c o u r s e ” : {
3 ” i d ” : ”TDT4100 ” ,
4 ”name ” : ” Objec t−o r i e n t e d programming ” ,
5 ” u n i t s ” :
6 [
7 {
8 ”name ” : ” t e s t a s s i g n m e n t ” ,
9 ” t y p e ” : ” e x c e r c i s e ” ,

10 ” t o p i c ” : ” s o m e t o p i c ” ,
11 ” d i f f i c u l t y ” : 5 ,
12 ” opened ” : 0 . 5 ,
13 ” comple t ed ” : 0 . 5 ,
14 ” recommended ” : 0 . 5 ,
15 ” t i m e S p e n t ” : 3600 ,
16 ” p e r f o r m a n c e ” : 0 . 6 ,
17 ” e x p e c t e d P e r f o r m a n c e ” : 0 . 8 5
18 }
19] ,
20 ” s t u d e n t s ” :
21 [
22 {
23 ” i d ” : ” sha256 ” ,
24 ” p e r f o r m a n c e ” : 0 . 5 ,
25 ” u n i t s ” :
26 [
27 {

2https://github.com/hernil/vson
3http://json-schema.org/
4Internet Engineering Task Force: https://www.ietf.org/
5http://tools.ietf.org/html/draft-handrews-json-schema-01

27

Chapter 4. Vent System Object Notation

28 ”name ” : ” t e s t r e s o u r c e ” ,
29 ” t y p e ” : ” t a s k ” ,
30 ” t o p i c ” : ” s o m e t o p i c ” ,
31 ” d i f f i c u l t y ” : 4 ,
32 ” opened ” : t r u e ,
33 ” comple t ed ” : f a l s e ,
34 ” recommended ” : f a l s e ,
35 ” t i m e S p e n t ” : 3500 ,
36 ” p e r f o r m a n c e ” : 0 . 7
37 }
38]
39 }
40]
41 }
42 }

Listing 4.1: Example VSON-file

For the actual schema definition see appendix C or the project repository6.
4.3.1 Course
The schema describes a data container of type course. A course is the top level of a VSON
file. A course has an id which should be unique. The subject identifier is probably a safe
choice. In addition it has a human readable name, a list of units and a list of students.

4.3.2 Units
A unit is defined as a part of the course that the student interacts with, and that can have
metrics associated with it. Examples of these are,

• A written resource a student should read, or a video to watch

• A small quiz or task to be performed

• An exercise, paper or midterm

For flexibility, I have not tried to define all possible types of units one could imagine
interacting with. This also lets the educator decide on what resolution to work with. For
example whether to view a midterm as a whole, or wanting to visualize each question or
section separately. Also whether it is interesting to distinguish between a written and a
video resource. Other properties a unit has should be well defined in the schema itself.
There are very few properties that are required as not all metrics can be tracked for all
types of units, however omitting data will of course affect the visualizations.

Note also that there is a difference between course units and student units. Course units
are an average of all students’ interaction with a unit. So while the opened property of
student unit will be a boolean, it will be a numeric value between 0 and 1 for the same
course unit. The reason for the duplication of data is two-fold. It adds flexibility in that
general visualizations on the data are easily implemented, while advanced filtering on the
more precise data is still available. Most use cases of VSON probably will not even use the
students property in the beginning as skipping it greatly simplifies the implementation.

6https://github.com/hernil/vson

28

4.4 Related Work

It also helps human readability immensely by acting as a summary of the complete data
set, which has been determined to be desirable in and of itself.

4.3.3 Other notes
The student ID

The student object has an id. It is a good practice to hash or otherwise anonymize that id
as to avoid information leakage from a public API. For example it is a bad idea to expose
a student’s performance metrics identified by their school email.

Avarages

As with the averages calculated in the course units from the total student units, the student
object has a calculated average for the performance property. The same reasoning
applies for that as for the course units. Performance was chosen as it is perhaps the single
most interesting metric. In addition, averaging time spent and other metrics of units as
diverse as small reading assignments and midterms make little sense. Exactly how the
performance metric is calculated is up to each data provider, however the data should be
normalized to a percentage (i.e. a value between 0 and 1).

The dimension of time

VSON data has no concept of time (except the timeSpent property of course). That
means that if one should desire some sort of time line for the development of the data sets,
one would have to provide snapshots of VSON data at the desired resolution. Thus al-
lowing for comparisons between snapshot X and Y. This decision was made for simplicity
and clarity. The more features are built straight into the container format, the harder it is
to understand and implement.

4.4 Related Work
This short sections presents how The Experience API (xAPI) relates to VSON. For a more
comprehensive look at related work with regards to Vent as a whole, see chapter 2.

4.4.1 The Experience API
“The Experience API (or xAPI) is a new specification for learning technology that

makes it possible to collect data about the wide range of experiences a person has (online
and offline).” Rustici (2018)

xAPI is a complete specification that aims to standardize the way educational data is
generated, transferred and stored. As discussed in section 2.3 it is flexible and well thought
out to accommodate a vast amount of current and future educational scenarios with its sim-
ple syntax of Actor, Verb, Object triplets. However, being a general tool for educational
data, xAPI has complexities and overhead that complicates its use as a carrier of visual-
ization data. Therefore xAPI is not strictly an alternative to VSON, but rather a potential

29

Chapter 4. Vent System Object Notation

foundation on which VSON could be applied on top to allow for easy visualizations of
xAPI data. This is, in my opinion, the obvious next step in allowing VSON to quickly
cover a substantial amount of educational data sources and should be a priority in the next
phase of its evolution.

30

Chapter 5
Results

Most results from this thesis are grounded in actual code produced when creating the Vent
back and front end, as well as the specification for the VSON data format described in
chapter 4. However I have created some proof-of-concept visualizations using components
I have developed. These are presented in the next section. Lastly some notes about the
results with regards to the goals mentioned in section 1.2.

5.1 Vent
In the initial version of Vent I have created components for a few chart types that seemed
the most fitting starting point for the visualizations requested by the professor(s) upon
query (see appendix A). They are presented in the following section. First are the compo-
nents currently used in views, then comes components that are finished and could easily
be included in future views but that have not yet been used as of writing. So far, the logic
and configuration options of the Vent front end have been kept to the bare minimum as to
not overly complicate things. Considering the loose coupling to the back end, and the fact
that VSON data by design should not be sensitive there are no concepts of users, login or
preferences. In the future it could be conceivable to imagine these features to let individ-
ual professors configure their preferred views for a course, but for now that has not been a
priority.

Figure 5.1 shows the initial, and only, prompt displayed to the user when first navi-
gating to the Vent dashboard. Vent is a data visualization tool and therefore needs data to
visualize. This fetching of data is not performed automatically as the loose coupling from
the back end suggests that you should be able to load data from any source. However there
is a suggested default that can easily be changed by modifying the defaultVSONUrl
variable so as to make loading data a one-click task most of the time.

31

Chapter 5. Results

Figure 5.1: The initial prompt when opening Vent

Used components

These components are in active use in views existing in the initial version of Vent.

Figure 5.2: A component of the solidgauge chart type

The solidgauge chart type has been implemented as a component showing a progress
from 0 to 100%. Here it is used to illustrate the total completion rate of all course content.
Solidgauge is the most prominent graph type in the initial Vent because if its very simple
nature.

32

5.1 Vent

Figure 5.3: A component of the spider chart type

The spider, or radar as it is sometimes known, chart type was one that was specifically
suggested when brainstorming how to illustrate various data sets. In this example it is used
to compare actual performance to the expected performance goals set for each topic.

33

Chapter 5. Results

Figure 5.4: A component of the column chart type

This simple column chart illustrates the average time spent on each task (each unit
according the the VSON specification) in the course. Notice the additional information
available when hovering over the bar using the mouse cursor.

Implemented components

These chart components are implemented but not currently used to visualize actual VSON
data. This is either due to not having found the appropriate use case for them, or that no
time could be found to implement the visualizations they could be useful for. Therefore
they are illustrated here with dummy data. Note that the entire library of Highchart charts1

are available and could be made into Vent components when needed.

1https://www.highcharts.com/demo

34

5.1 Vent

Figure 5.5: A component of the pie chart type

Figure 5.6: A component of the pie chart type with drill down

35

Chapter 5. Results

Figure 5.5 shows a pie chart populated with dummy data about browser market shares.
The piechart component supports a mode called drill down, where a data point can be
clicked for a finer break down of the data as seen in 5.6. A pie chart visualization with drill
down can be instantiated by passing in the series and drilldownSeries properties.

Figure 5.7: A component of the line chart type

A simple line chart component creating visualization as seen in figure 5.7 has also
been implemented, but has found no particular use case as of writing. The screenshot is
therefore populated with dummy data.

5.1.1 Other visualizations
The dashboard has been developed for larger screens and thus does not adapt well to being
displayed in a document of this size. However, it is simply a combination of the different
components shown, populated with various data. In addition to the visualizations shown
in the examples, the following visualizations have been implemented:

• Content usage by topic

• Content usage by content type

• Content completion by topic

• Content completion by content type

• Content recommendation rate by topic

36

5.2 Fulfilled goals and objectives

• Content recommendation rate by content type

All implemented visualizations are based off of the desired visualizations as found in
appendix A. There are still quite a few of these missing, which should be part of the next
development phase of the Vent dashboard.

5.2 Fulfilled goals and objectives
As presented in section 1.2 these were the initial, and additional goals defined during
the project. All these are touched upon indirectly in previous sections, and some will be
discussed further in chapter 6. Here I will briefly give the status for each one in turn.

Initial goals:

1. Decide on a set of technologies flexible enough for interaction with multiple data
sources

2. Find sensible and smart ways of pulling data from said data sources

3. Elicit desirable visualizations from course professors

4. Extract data needed to create visualizations

5. Display visualizations in a sensible way

Additional goals:

1. Extract common denominators for data needed to create the requested visualizations
mentioned in appendix A

2. Find a suitable way of containing this data

3. Express this container format in a general and reproducible way

4. Create a visualization dashboard built around this new data format

5.2.1 Status of initial goals
1. Completed with the Vent backend

2. Implemented for ProTuS and Mastery Grids. Denied access for Blackboard data.
Awaiting dependence on Boye Borg Nygårds project Nygård (2018) for JExercise
implementation

3. Completed and available in appendix A.

4. Needs further work

5. Some working visualizations available in the Vent front end

37

Chapter 5. Results

5.2.2 Status of additional goals
1. Completed as described in appendix C

2. Completed as described in chapter 4

3. Completed with the schematic definition found in appendix C

4. The initial version of the dashboard is available as described earlier in this chapter

38

Chapter 6
Discussion and future work

In this chapter I will reiterate what this thesis set out to do, what challenges were encoun-
tered, what consequences they had for the development and finally what actually ended up
being created. Lastly I will recommend a way forward for Vent, VSON and the various
data sources encountered during the development.

6.1 Project development summary and final product

Initially this thesis was supposed to chronicle the development of a made-to-measure visu-
alization system specifically for a few select data sources originating from a course taught
at NTNU. Several challenges with various aspects of the data sources were encountered.
First, the temporary denial of access to data from NTNUs Blackboard LMS platform.
Later it was various challenges as explored in section 3.4.2, including challenges regard-
ing constantly changing source format and badly documented APIs. This in turn made me
reconsider the project’s priorities and long-term viability. The overall value of the project
would not be very high if shortly upon completion everything would break after a source
change.

From there started the conception of a standard way of representing educational data
for visualizations. This could be a standard way to expose data from various sources that
could instantly be plugged into a visualization dashboard. Aiming to solve the challenges
encountered during the development of Vent, VSON was designed to be simple, stable and
well documented. Vent would still be needed as a middle layer, and still be susceptible to
the same breaking, however the formalization of the VSON data format would hopefully
encourage the use of it as a stable data format at a later point.

Vent as it stands consists of two main parts. The front end acting as a visualization
dashboard for VSON-data and the back end that is responsible for converting data from
various sources to VSON format. The back end is, as it stands, not fully completed. The
foundations are laid and its completion would not be far off provided close work with the
data source providers to overcome challenges like bad or nonexistent documentation.

39

Chapter 6. Discussion and future work

All in all I find Vent as a whole to be much better suited for future expansion than it
would have been by simply rushing through the initial integrations without regard to the
over all consequences posed by integrating various data sources. Not all aspects are, at
the time of writing, fully completed. However, the ground work has been done to greatly
facilitate future development in a robust way.

6.2 The way forward
Going forward there are a few different aspects of this thesis that should be further de-
veloped. From the bottom up (source data to visualization) these are the following: The
source data aligning with standard representations and formats. A compatibility layer
between xAPI and VSON. The future development of VSON as a standard. And the con-
tinued development of Vent as a visualization tool for educational data. This separation is
not the suggested chronological order in which to tackle further development.

6.2.1 Suggested evolution of data sources
Whilst the Vent back end will act as a compatibility layer between the source data provided
by ProTuS, Mastery Grids and JExercise this is a rather fragile situation due to the unsta-
ble nature of these data formats. For easy compatibility with Vent visualizations exposing
their data as VSON would provide a predictable way to communicate the visualization
data. However, in my opinion, an even better approach would be to implement the Expe-
rience API as the default way to gather and communicate educational data. Following the
xAPI standard will yield advantages such as being more open, easier to integrate and also
compatibility with a whole ecosystem of educational applications. It is also worth men-
tioning that Blackboard, NTNUs LMS, already incorporates xAPI. Thus, this move would
advance the interoperability between all systems, facilitating a holistic overview that could
help achieve insights and improve education. My experiences from this project is that no
one is best served by only adhering to their own locked in models. Rallying behind an
open standard, that already has shown some merit, will only have positive consequences
and accelerate the whole field of educational data mining and learning analytics. This is
the same conclusion drawn by Dodero et al. (2017).

6.2.2 Vent back end
The Vent back end as a compatibility layer will hopefully be marginalized to only be
needed for the conversion from xAPI to VSON. This might still be a little bit down the
road, and completing the conversion from ProTuS, Mastery grids and JExercise to VSON
might be a desirable starting point. xAPI to VSON conversion should still be a priority as
it would allow for instant integration of Blackboard as soon as access to its data is granted.

6.2.3 Future development of VSON
VSON as it has been presented in this thesis is an initial draft. The only way it will
provide any value in the future is by being adopted, adapted and refined in actual use by a

40

6.2 The way forward

community. Without that, it will at most serve as an influence or starting point for others
interested in visualizing educational data. Few things are created right from the beginning,
and even if I hope that the initial proposal is a solid one, I fully expect that it will be
modified and improved upon adoption in other projects.

6.2.4 Continued development of Vent for visualizations
The Vent front end is perhaps the most straight forward component to develop further. All
the foundations are laid down for creating new components and visualizations in a very
simple and straight forward way. The list of desired visualizations found in appendix A is
a great starting point. The Vent front end is independent of integration with third party data
sources as it only relies on being served VSON as its data container. If more data is needed
for the visualizations than what VSON currently provides, one can simply add the desired
properties at will. If they are found useful they can then trickle down and become a part
of the main VSON specification. Hopefully the very loose coupling with the Vent back
end makes it even easier to use as any data served as VSON can seamlessly be visualized
without the need if a complicated application setup.

Another future development that could be envisioned is the addition of time sensitive
views. As of now the dashboard visualizations are a snapshot of a point in time, as VSON
data in and on itself does not have any sort of time line property (see section 4.3.3). How-
ever, VSON data could easily be time stamped and exposed in weekly, daily or even hourly
snapshots and the Vent front extended with views that handle sets of VSON data.

41

Chapter 6. Discussion and future work

42

Bibliography

Blackboard, I., 2018. Learning Management System Innovation. http://www.
blackboard.com/learning-management-system/index.html, ac-
cessed: 2018-03-22.

Dodero, J. M., González-Conejero, E. J., Gutiérrez-Herrera, G., Peinado, S., Tocino, J. T.,
Ruiz-Rube, I., 2017. Trade-off between interoperability and data collection performance
when designing an architecture for learning analytics. Future Generation Computer Sys-
tems 68, 31–37.

Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., Schroeder, U., 2012. Design
and implementation of a learning analytics toolkit for teachers. Journal of Educational
Technology & Society 15 (3), 58.

Elias, T., 2011. Learning analytics. Learning.

Few, S., 2006. Information dashboard design.

Johnson, L., Smith, R., Willis, H., Levine, A., Haywood, K., 2011. The 2011 horizon
report. austin, tx: The new media consortium. In: International Conference on Educa-
tional Data Mining. Montréal, Québec, Canada. pp. 38–70.

Kevan, J. M., Ryan, P. R., 2016. Experience api: Flexible, decentralized and activity-
centric data collection. Technology, knowledge and learning 21 (1), 143–149.

Lassila, O., Swick, R. R., et al., 1998. Resource description framework (rdf) model and
syntax specification.

Mangaroska, K., Giannakos, M., 2017. Learning analytics for learning design: Towards
evidence-driven decisions to enhance learning. In: European Conference on Technology
Enhanced Learning. Springer, pp. 428–433.

Muñoz-Cristóbal, J. A., Rodrı́guez-Triana, M. J., Gallego-Lema, V., Arribas-Cubero,
H. F., Asensio-Pérez, J. I., Martı́nez-Monés, A., 2016. Toward the integration of moni-
toring in the orchestration of across-spaces learning situations. In: CrossLAK. pp. 15–
21.

43

http://www.blackboard.com/learning-management-system/index.html
http://www.blackboard.com/learning-management-system/index.html

Nygård, B. B., 2018. Work in progress. https://github.com/boyeborg/
work-in-progress, accessed: 2018-05-26.

Rustici, S., 2018. What is the Experience API? https://xapi.com/overview/,
accessed: 2018-03-22.

Sahebi, S., 2018. Adaptive Navigation Support and Open Social Learner Modeling for
PAL. http://adapt2.sis.pitt.edu/wiki/Adaptive_Navigation_
Support_and_Open_Social_Learner_Modeling_for_PAL, accessed:
2018-03-14.

Schroeder, U., 2009. Web-based learning–yes we can! In: International Conference on
Web-Based Learning. Springer, pp. 25–33.

Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni,
M. S., Holzer, A., Gillet, D., Dillenbourg, P., 2017. Perceiving learning at a glance:
A systematic literature review of learning dashboard research. IEEE Transactions on
Learning Technologies 10 (1), 30–41.

Vesin, B., 2018. Programming tutoring system. https://xapi.com/overview/,
accessed: 2018-03-17.

Yoo, Y., Lee, H., Jo, I.-H., Park, Y., 2015. Educational dashboards for smart learning:
Review of case studies. In: Emerging issues in smart learning. Springer, pp. 145–155.

44

https://github.com/boyeborg/work-in-progress
https://github.com/boyeborg/work-in-progress
https://xapi.com/overview/
http://adapt2.sis.pitt.edu/wiki/Adaptive_Navigation_Support_and_Open_Social_Learner_Modeling_for_PAL
http://adapt2.sis.pitt.edu/wiki/Adaptive_Navigation_Support_and_Open_Social_Learner_Modeling_for_PAL
https://xapi.com/overview/

Appendix

A Desired visualizations

This appendix shows a list of visualizations gathered by Katerina Mangaroska in discus-
sion with Michail Giannakos and Hallvard Trætteberg. The list suggests a number of
visualizations that would add value to an educational dashboard. The list is in no partic-
ular order. It was used to decide what initial visualizations should be available in Vent,
as well as formed the basis for what data was needed when developing the VSON data
format. The list was sent to me the 24th of February.

45

46

B README files for Vent

47

B.1 README for Vent backend

48

B.2 README for Vent frontend

49

C VSON json-schema definition

1 {
2 ” $ i d ” : ” h t t p : / / h e r n i l . com / schema . j s o n ” ,
3 ” $schema ” : ” h t t p : / / j son−schema . o rg / d r a f t −06/ schema #” ,
4 ” t y p e ” : ” o b j e c t ” ,
5 ” d e f i n i t i o n s ” : {
6 ” u n i t ” : {
7 ” t y p e ” : ” o b j e c t ” ,
8 ” r e q u i r e d ” : [” name ” , ” t y p e ” , ” t o p i c ”] ,
9 ” p r o p e r t i e s ” : {

10 ”name ” : {
11 ” $ i d ” : ” / p r o p e r t i e s / name ” ,
12 ” t y p e ” : ” s t r i n g ” ,
13 ” d e s c r i p t i o n ” : ” Unique human−r e a d a b l e name w i t h i n t h e scope of

t h i s s u b j e c t ” ,
14 ” examples ” : [” d a y s t o w e e k c o n v e r s i o n ” , ” i n h e r i t a n c e . a n i m a l s ”]
15 } ,
16 ” t y p e ” : {
17 ” $ i d ” : ” / p r o p e r t i e s / t y p e ” ,
18 ” t y p e ” : ” s t r i n g ” ,
19 ” d e s c r i p t i o n ” : ” D e s c r i b e s what t y p e o f u n i t t h i s i s ” ,
20 ” examples ” : [” r e s o u r c e ” , ” t a s k ” , ” e x e r c i s e ”]
21 } ,
22 ” t o p i c ” : {
23 ” $ i d ” : ” / p r o p e r t i e s / t o p i c ” ,
24 ” t y p e ” : ” s t r i n g ” ,
25 ” d e s c r i p t i o n ” : ” D e s c r i b e s what t o p i c t h i s b e l o n g s t o ” ,
26 ” examples ” : [” For l o o p s ” , ” I n h e r i t a n c e ”]
27 } ,
28 ” d i f f i c u l t y ” : {
29 ” $ i d ” : ” / p r o p e r t i e s / d i f f i c u l t y ” ,
30 ” t y p e ” : ” number ” ,
31 ” d e s c r i p t i o n ” : ” The d i f f i c u l t y o f t h e g i v e n u n i t ” ,
32 ” d e f a u l t ” : 0
33 } ,
34 ” opened ” : {
35 ” $ i d ” : ” / p r o p e r t i e s / opened ” ,
36 ” t y p e ” : [” b o o l e a n ” , ” number ”]
37 } ,
38 ” comple t ed ” : {
39 ” $ i d ” : ” / p r o p e r t i e s / comple t ed ” ,
40 ” t y p e ” : [” b o o l e a n ” , ” number ”]
41 } ,
42 ” recommended ” : {
43 ” $ i d ” : ” / p r o p e r t i e s / recommended ” ,
44 ” t y p e ” : [” b o o l e a n ” , ” number ”]
45 } ,
46 ” t i m e S p e n t ” : {
47 ” $ i d ” : ” / p r o p e r t i e s / t i m e S p e n t ” ,
48 ” t y p e ” : ” i n t e g e r ” ,
49 ” d e f a u l t ” : 0 ,
50 ” examples ” : [
51 3500
52]
53 } ,
54 ” p e r f o r m a n c e ” : {

50

55 ” $ i d ” : ” / p r o p e r t i e s / p e r f o r m a n c e ” ,
56 ” t y p e ” : ” number ” ,
57 ” d e f a u l t ” : 0 ,
58 ” examples ” : [
59 0 . 6
60]
61 }
62 }
63 }
64 } ,
65 ” p r o p e r t i e s ” : {
66 ” i d ” : {
67 ” t y p e ” : ” s t r i n g ” ,
68 ” d e s c r i p t i o n ” : ” Unique i d e n t i f i e r f o r a c o u r s e . For example c o u r s e

code . ” ,
69 ” examples ” : [” TDT4100 ” , ” IT3010 ”]
70 } ,
71 ”name ” : {
72 ” t y p e ” : ” s t r i n g ” ,
73 ” d e s c r i p t i o n ” : ”Human−r e a d a b l e name of t h e c o u r s e . ” ,
74 ” examples ” : [” Objec t−o r i e n t e d programming ” , ”Web deve lopmen t ”]
75 } ,
76 ” u n i t s ” : {
77 ” t y p e ” : ” a r r a y ” ,
78 ” i t e m s ” : {
79 ” t y p e ” : ” o b j e c t ” ,
80 ” a l l O f ” : [
81 {” $ r e f ” : ” # / d e f i n i t i o n s / u n i t ”} ,
82 {
83 ” p r o p e r t i e s ” : {
84 ” opened ” : {
85 ” t y p e ” : ” number ” ,
86 ” d e s c r i p t i o n ” : ” Avarage s t u d e n t opened r a t e f o r t h i s u n i t .

Value between 0 and 1”
87 } ,
88 ” comple t ed ” : {
89 ” t y p e ” : ” number ” ,
90 ” d e s c r i p t i o n ” : ” Avarage s t u d e n t c o m p l e t i o n r a t e f o r t h i s

u n i t . Value between 0 and 1”
91 } ,
92 ” recommended ” : {
93 ” t y p e ” : ” number ” ,
94 ” d e s c r i p t i o n ” : ” Rate a t which t h i s u n i t has been

recommended t o s t u d e n t s . Value between 0 and1 ”
95 } ,
96 ” t i m e S p e n t ” : {
97 ” d e s c r i p t i o n ” : ” Avarage t ime s p e n t on t h i s u n i t . Value i n

s e c o n d s ”
98 } ,
99 ” p e r f o r m a n c e ” : {

100 ” t y p e ” : ” number ” ,
101 ” d e s c r i p t i o n ” : ” Avarage s t u d e n t p e r f o r m a n c e f o r t h i s u n i t .

Value between 0 and 1”
102 } ,
103 ” e x p e c t e d P e r f o r m a n c e ” : {
104 ” $ i d ” : ” / p r o p e r t i e s / e x p e c t e d P e r f o r m a n c e ” ,
105 ” t y p e ” : ” number ” ,

51

106 ” d e s c r i p t i o n ” : ” D e f i n e s t h e u n i t s e x p e c t e d p e r f o r m a n c e
measure . ” ,

107 ” d e f a u l t ” : 1 ,
108 ” examples ” : [
109 0 . 8
110]
111 }
112 }
113 }
114]
115 }
116 } ,
117 ” s t u d e n t s ” : {
118 ” t y p e ” : ” a r r a y ” ,
119 ” i t e m s ” : {
120 ” t y p e ” : ” o b j e c t ” ,
121 ” p r o p e r t i e s ” : {
122 ” i d ” : {
123 ” t y p e ” : ” s t r i n g ” ,
124 ” d e s c r i p t i o n ” : ” Unique s t r i n g i d e n t i f y i n g a s t u d e n t . P r e f e r a b l y

anonymized i n t h e form of a hash o r s i m i l a r ”
125 } ,
126 ” p e r f o r m a n c e ” : {
127 ” t y p e ” : ” number ” ,
128 ” d e s c r i p t i o n ” : ” O v e r a l l s t u d e n t p e r f o r m a n c e . Va lues between 0

and 1”
129 } ,
130 ” u n i t s ” : {
131 ” t y p e ” : ” a r r a y ” ,
132 ” i t e m s ” : {
133 ” t y p e ” : ” o b j e c t ” ,
134 ” a l l O f ” : [
135 {” $ r e f ” : ” # / d e f i n i t i o n s / u n i t ”} ,
136 {
137 ” p r o p e r t i e s ” : {
138 ” opened ” : {
139 ” t y p e ” : ” b o o l e a n ” ,
140 ” d e s c r i p t i o n ” : ” True i f t h e s t u d e n t has opened t h e

u n i t . ”
141 } ,
142 ” comple t ed ” : {
143 ” t y p e ” : ” b o o l e a n ” ,
144 ” d e s c r i p t i o n ” : ” True i f t h e s t u d e n t has comple t ed

t h e u n i t . ”
145 } ,
146 ” recommended ” : {
147 ” t y p e ” : ” b o o l e a n ” ,
148 ” d e s c r i p t i o n ” : ” True i f t h e u n i t i s recommended t o

t h e s t u d e n t . ” ,
149 ” d e f a u l t ” : f a l s e
150 } ,
151 ” t i m e S p e n t ” : {
152 ” t y p e ” : ” i n t e g e r ” ,
153 ” d e s c r i p t i o n ” : ”How many s e c o n d s t h e u s e r has s p e n t

on t h e u n i t . ” ,
154 ”minimum ” : 0
155 }

52

156 }
157 }
158]
159 }
160 }
161 }
162 }
163 }
164 }
165 }

Listing 1: The VSON schema definition

D The Hoov application
The Hoov application (Hoov is a play on the fact that it is supposed to hoover up infor-
mation) was written upon request from Hallvard Trætteberg so as to function as an API
endpoint where he could configure the JExercise plugin to post its gathered data. It was
written to specifications supplied by Trætteberg and was completed and deployed on Jan-
uary 5th 2018, but the functionality needed in JExercise was never implemented. Thus
Hoov has stood unused since its deployment. It has been added to the appendix as it is
mentioned earlier in the thesis, and to illustrate work that has been done, although without
any tangible results.

1 var e x p r e s s = r e q u i r e ("express") ;
2 var app = e x p r e s s () ;
3 var p o r t = 3000 ;
4 var b o d y P a r s e r = r e q u i r e (’body-parser’) ;
5 app . use (b o d y P a r s e r . j s o n ()) ;
6 app . use (b o d y P a r s e r . u r l e n c o d e d ({ e x t e n d e d : t rue })) ;
7

8 var mongoose = r e q u i r e ("mongoose") ;
9 mongoose . Promise = g l o b a l . P romise ;

10 var mongo adr = p r o c e s s . env .MONGO ADR;
11 mongoose . c o n n e c t ("mongodb://" + mongo adr + ":27017/hoov1") ;
12

13 var logSchema = new mongoose . Schema ({
14 key : Objec t ,
15 p a y l o a d : O b j e c t
16 }) ;
17

18 var LogEntry = mongoose . model ("LogEntry" , logSchema) ;
19

20 app . g e t ("/entries" , (req , r e s) => {
21 LogEntry . f i n d ({} , f u n c t i o n (e r r , doc) {
22 r e s . j s o n (doc)
23 }) ;
24 }) ;
25

26 app . p o s t ("/entries/add" , (req , r e s) => {
27 // Sort request body to assure sorted data in key
28 var s o r t e d B o d y = s o r t K e y s (t r i m O b j (r e q . body)) ;
29 var query = {’key’ : s o r t e d B o d y . key } ;
30 LogEntry . f indOneAndUpdate (query , so r tedBody , { u p s e r t : t rue } , f u n c t i o n (

e r r , doc) {

53

31 i f (e r r) re turn r e s . send (5 0 0 , { e r r o r : e r r }) ;
32 re turn r e s . send (s o r t e d B o d y) ;
33 }) ;
34 }) ;
35

36 s o r t K e y s = f u n c t i o n (x) {
37 i f (t y p e o f x !== ’object’)
38 re turn x ;
39 i f (Array . i s A r r a y (x))
40 re turn x . map (s o r t K e y s) ;
41 var r e s = {} ;
42 O b j e c t . keys (x) . s o r t () . f o r E a c h (k => r e s [k] = s o r t K e y s (x [k])) ;
43 re turn r e s ;
44 }
45

46 t r i m O b j = f u n c t i o n (o b j) {
47 i f (! Array . i s A r r a y (o b j) && t y p e o f o b j != ’object’) re turn o b j ;
48 re turn O b j e c t . keys (o b j) . r e d u c e (f u n c t i o n (acc , key) {
49 acc [key . t r i m ()] = t y p e o f o b j [key] == ’string’? o b j [key] . t r i m () :

t r i m O b j (o b j [key]) ;
50 re turn acc ;
51 } , Ar ray . i s A r r a y (o b j) ? [] : { }) ;
52 }
53

54

55 app . l i s t e n (p o r t , () => {
56 c o n s o l e . l o g ("Server listening on port " + p o r t) ;
57 }) ;

Listing 2: The Hoov application code

1 {
2 ”name ” : ” hoov ” ,
3 ” v e r s i o n ” : ” 1 . 0 . 0 ” ,
4 ” d e s c r i p t i o n ” : ” A p p l i c a t i o n f o r r e c i e v i n g (h o o v e r i n g up) d a t a from t h e

J E x e r c i s e p l u g i n ” ,
5 ” main ” : ” app . j s ” ,
6 ” s c r i p t s ” : {
7 ” dev ” : ” node app . j s ” ,
8 ” t e s t ” : ” echo \” E r r o r : no t e s t s p e c i f i e d \” && e x i t 1”
9 } ,

10 ” keywords ” : [
11 ” node ” ,
12 ” mongodb ” ,
13 ” mongoose ” ,
14] ,
15 ” a u t h o r ” : ” N i l s Herde ” ,
16 ” l i c e n s e ” : ”MIT” ,
17 ” d e p e n d e n c i e s ” : {} ,
18 ” devDependenc ie s ” : {
19 ” body−p a r s e r ” : ” ˆ 1 . 1 8 . 2 ” ,
20 ” e x p r e s s ” : ” ˆ 4 . 1 6 . 2 ” ,
21 ” mongoose ” : ” ˆ5 .0 .0− r c 0 ”
22 }
23 }

Listing 3: The Hoov application package.json definition

54

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	Introduction
	Background and motivation
	Contributions and objectives
	Initial goals
	Changing focus

	Thesis structure

	Background and related work
	Digitized education
	Learning Analytics

	Dashboards
	Dashboard for multimodal learning analytics

	The Experience API

	Implementation
	Requirements and reasoning
	The back end
	Spring Boot
	Kotlin

	The front end
	Vue.js
	Highcharts

	Architecture
	Reasoning and early iterations
	Factors and challenges affecting the architecture
	Final implementation

	Challenges in development
	Technical
	Data sources

	Vent System Object Notation
	Conception
	What is VSON
	Simple and minimal
	Standardized and self documenting
	Stable and extensible
	JSON-Schema

	Schema
	Course
	Units
	Other notes

	Related Work
	The Experience API

	Results
	Vent
	Other visualizations

	Fulfilled goals and objectives
	Status of initial goals
	Status of additional goals

	Discussion and future work
	Project development summary and final product
	The way forward
	Suggested evolution of data sources
	Vent back end
	Future development of VSON
	Continued development of Vent for visualizations

	Bibliography
	Appendix
	Desired visualizations
	README files for Vent
	README for Vent backend
	README for Vent frontend

	VSON json-schema definition
	The Hoov application

