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Abstract

Studying animal cognition is both interesting on its own, and because it
can improve our understanding of human cognition. It can, for example, re-
veal when certain cognitive treats were developed in evolution. In this thesis,
we consider an investment problem from a behavioural experiment on two
jackdaws. The experiment was performed in 2012 by two neuroscientists at
NTNU.

In the experiment, the birds are rewarded if they invest enough in the correct
situations. The investments are measured by the amount of pecking the birds
perform on a computer screen. The birds must evaluate how probable they
believe it is that they will be rewarded and how much pecking they want
to do. We describe the experiment and develop a statistical model for the
situation, including the participants’ cognition. Furthermore, we present rel-
evant theory and methods and discuss how they apply to our model. We use
these methods to estimate the cognitive parameters and fit our model to the
observed data. From the fitted model, new data is simulated and compared
to the observed data. Several aspects of the birds’ behaviour are found to be
present in the simulated data.

There are however some patterns in the birds’ behaviour which is not found
in the simulations. For one of the birds, a hypothesis test results in the
model being rejected at a significance level of 0.05. Based on this, we suggest
changes in the model assumptions for that bird. Throughout the analysis, we
compare the birds to each other. At one point, we see a surprisingly big dif-
ference between them. The data suggest that one bird has much more belief
in its own memory when it is hungry. The other bird shows no such effect.
Finally, we discuss what could be interesting to consider for further work,
including further investigation of whether the birds do respond differently to
being hungry.
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Sammendrag

Forskning på dyrs kognitive egenskaper er interessant både i seg selv, og fordi
det kan hjelpe oss å forstå menneskelig kognisjon bedre. Det kan for eksem-
pel fortelle oss når visse intellektuelle egenskaper ble utviklet i evolusjonen.
I denne oppgaven betrakter vi et investeringsproblem fra et atferdseksperi-
ment på to kaier. Forsøket ble utført i 2012 av to nevroforskere ved NTNU.

I eksperimentet blir fuglene belønnet dersom de investerer tilstrekkelig i de
riktige situasjonene. Investeringene er målt i hvor mye fuglene hakker på en
dataskjerm. Fuglene må vurdere hvor sannsynlig de tror det er at de vil få
gevinst og hvor mye de ønsker å hakke. Vi beskriver eksperimentet og lager
en statistisk modell for situasjonen, inkludert deltakernes kognisjon. Videre
presenterer vi relevant teori og metoder, og diskuterer hvordan de kan an-
vendes på vår modell. Vi bruker disse metodene til å estimere de kognitive
parametrene og til å tilpasse modellen vår til de observerte dataene. Den
tilpassede modellen brukes til å simulere nye data, som sammenlignes med
observerte data. Det viser seg at flere aspekter av fuglenes adferd er tilst-
edeværende i de simulerte data.

Imidlertid er det noen observerte adferdsmønstre som ikke viser seg i simu-
leringene. For en av fuglene resulterer en hypotesetest i at modellen blir
forkastet på et 0.05 signifikansnivå. Basert på dette, foreslår vi endringer i
modellantagelsene for den fuglen. Gjennom hele analysen sammenligner vi
fuglene med hverandre. På et område finner vi en overraskende stor forskjell.
Dataene kan tyde på at den ene fuglen har vesentlig større tro på egen hukom-
melse når den er sulten. Den andre fuglen viser ikke noe tegn til en slik effekt.
Tilslutt diskuterer vi hva som kan være interessant å gjøre i videre arbeid,
deriblant å undersøke nærmere om det er slik at fuglene responderer ulikt på
å være sulten.
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1 Introduction
One of the most describing features about mankind is our tireless effort to
understand the world around us. Science is pushing the frontiers of human
knowledge, and we are closer to complete knowledge of the world than ever
before. The world around us can be described very precisely and it can be
challenging to point out phenomena in daily life which cannot be satisfyingly
described. That is until we consider the mind. Concepts such as cognition,
intelligence, self-consciousness, free will and others alike, are still far from
being understood and arguably holds the biggest unsolved mysteries today.
How does our mind work? Why do we act the way we do? How do we
make decisions? What makes us conscious, if we are anything other then
just randomly interacting atoms at all? Questions like these have befuddled
us throughout history and lie at the core of scientific fields such as psychol-
ogy, neuroscience, philosophy and behavioural analysis. The answers to these
questions tell us what governs human behaviour and are very useful in any
context involving humans and our decisions. This knowledge is consequen-
tially applicable in many other fields such as economics, politics, sociology,
biology (especially evolutionary biology) and psychiatry. For example, when
trying to predict the stock market it is relevant to understand the mind of the
buyers, and how they are affected by different factors. In psychiatry, a better
understanding of the mind can help to detect illness such as schizophrenia.
Understanding and describing the different personality types more accurate
can improve performance in work life by facilitating the workers better. Infor-
mation about what makes a person feel satisfied with his or her life situation
is interesting in politics, and can also help us live happier lives. Furthermore,
these topics may be more relevant than ever, due to the late years’ enormous
progress in artificial intelligence.

Often questions regarding psychology and behaviour are associated with
qualitative theory, in contrast to the quantitative nature of mathematics,
physics or chemistry. Historically, psychological knowledge has been argued,
discussed and reasoned its way forward, rather than performing quantitative
experiments, which is a significant part of the natural sciences. However, as
science and technology moved forward we were able to perform more and
better experiments which allowed more precise models describing psychol-
ogy and behaviour. This suggests and enables quantitative theory and the
use of precise relations, i.e. equations, also in psychology. In 1961 this was
embodied when Richard Hernstein introduced the matching law (Hernstein,
1961). He applied mathematical models in the analysis of behaviour and for-
mulated a precise relation between response and reinforcement in a decision
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process. This is considered as the founding of the field quantitative analysis
of behaviour, a substantial field still today, with its own active community;
"The Society for the Quantitative Analyses of Behavior" (SQAB). This use
of mathematics allows us not only to understand and describe psychological
concepts, but to quantify them precisely. The matching law has later been
proven to describe behaviour patterns in numerous areas, such as social dy-
namics (Borrero et al. 2007), economics and sport. Nonetheless, there is a
lot of behaviour where the matching law does not fit.

Quantitative analysis of behaviour is carried out on animals as well as hu-
mans, in fact, Hernstein’s paper from 1961 analyzed an experiment on pi-
geons. This is done both because of interest in animal cognition, but also
because it can help us understand humans better. Understanding animal
behaviour is interesting for example when trying to answer why we perceive
ourselves more conscious than animals. It is also the case that some results
on animals may be generalized to humans. For example is the mouse species
Mus musculus often used in behavioural experiments with the intention of
understanding the human brain better, due to its surprising similarities with
humans.

Among the people interested in animal cognition are the neuroscientists
Gerit Pfuhl and Robert Biegler. They have done research on behaviour and
metacognition on birds (Pfuhl & Biegler, 2012) as well as humans (Pfuhl et
al. 2012). In 2012 they performed a behaviour experiment, which was an
investment problem, on two jackdaws. We have been in contact with them
and been given the data from the experiment. The aim of this thesis is
to analyze the experiment, and hopefully to reveal some behaviour pattern.
Specifically, we will model the investment problem by using the model devel-
oped in Macody Lund (2018) and fit it to experimental data. Furthermore,
we will suggest a probabilistic model for how the birds make decisions, fit it
to the data and discuss the descriptiveness of the model.

2 Experiment
In this section, we first explain the experiment and then present the exper-
imental data. Further analysis will be done after we have introduced the
necessary theory and methods.
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2.1 Experiment description

The participants in the experiment were two jaybirds, hereinafter referred to
as Ari and Susan. The experiment is an investment problem, where Ari and
Susan must choose how much effort to put in, in order to be rewarded with
a piece of food. The chance of reward is dependent on information that is
given to the bird prior to the decision. The birds must, therefore, evaluate
this information and take it into account when deciding on an investment.
There is also a fixed time interval between the point at which they get the
information and when they have to make their decision. Hence they forget
some information and have to consider how precise their memories are when
choosing the investment. The metacognition of the birds, specifically their
belief in their own memory, will hence be reflected in the collected data.
Before the experiment was performed the birds did a lot of training so that
they know the experiment well. The experiment is a long series of trials
spanning over several days. Each trial goes as follows and is illustrated in
Figure 1.

• Step 1:
The bird is presented with an empty screen with a red dot on it. This
is shown until the bird pecks the red dot. When the bird pecks the dot,
the trial moves to step 2.

• Step 2:
The screen goes blank for a retention interval. With 50% probability,
the trial proceeds to 3A and with 50% probability it proceeds to 3B.

• Step 3A (non-matching case):
The screen shows a rectangle and a red dot at a different location than
the initial dot. The new location can be in any direction from the
initial dot, this is uniformly randomly decided. The distance the dot
moves, d, can take one of five possible values, this is also uniformly
randomly decided. There is now a fixed probability of 20% that there
is no chance of being rewarded. If reward is attainable, it is given if the
bird pecks the red dot enough times. The necessary number of pecks
is a stochastic variable with a geometric distribution with parameter
0.3, resampled for each trial. If the bird is rewarded, the trial ends and
after an intertrial interval, a new trial is started by returning to step
1. If the bird at some point pecks on the rectangle in the middle, the
trial is ended and after an intertrial interval, the next trial starts.

• Step 3B (matching case):
The screen shows a red dot at the same location as the initial red dot

3



Figure 1: A trial in the experiment. The initial dot is shown till the bird
pecks the dot. After a retention interval, it is randomly decided whether the
final dot’s position is matching or not matching the position of the initial dot.
The matching cases are never rewarding, and in these cases the experiment
proceeds only when the bird gives up, i.e. pecks the rectangle in the middle.
Some fixed proportion of the non-matching cases are rewarding. The reward
is attained by pecking enough times, the demanded number is stochastic.
The experiment proceeds when the bird is rewarded or if it pecks the rect-
angle. Non-matching non-rewarding cases behave like matching cases, the
experiment proceeds when the bird pecks the rectangle. The next trial starts
after an intertrial interval.
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and a rectangle. In matching cases there is no possibility of being
rewarded. Next trial starts when the bird pecks the rectangle.

We can think of the experiment as a task in detecting whether or not the
dot has moved, i.e. if the positions of the initial and final dots differ. In 50%
of the trials, the dot has moved. If so, the dot moves one of five possible
distances. The possible distances are:

d1 = 1.20, d2 = 2.15, d3 = 3.10, d4 = 4.05, d5 = 5.00, (1)

each distance has the probability 1/5 of being chosen in the non-matching
trials. The general rule is that when the dot has moved, reward is attainable,
and the bird should peck. If the dot has not moved, i.e. if d = d0 = 0, the
bird should give up and move on to the next trial. However, there are some
nuances to this view which we will describe in the following.

The bird is rewarded if and only if it pecks the demanded number of times
in a non-matching case with a chance of being rewarded. Hence, if the final
dot’s position seems to be the same as that of the initial the bird should not
invest too much, as there is a high probability that the dot has not moved.
If the final dot is far from the bird’s memory of the initial dot, it should peck
more, since it will be more probable that the dot has moved. The bird must
also take into account to what degree it trusts its own spatial memory. If
the bird thinks it has an extremely precise memory it should peck a lot even
though the dot has just barely moved as long as it is confident that it actu-
ally has moved. The biggest investment should be done when the final dot
does not match its memory of the initial dot at all and if the bird completely
trusts its memory. The investment should still be limited since 20% of the
non-matching cases are non-rewarding. In the non-matching cases it will for
each peck that does not result in reward become more probable that it is a
non-rewarding case, and at some point, the bird should stop no matter how
certain it is that the dot has moved. To sum up, the bird should peck more
the further away the final dot is from the initial dot because it will feel more
certain that the dot has moved. Also, if the bird has already pecked a couple
of times without success, it should take this as a hint that it probably is a
non-rewarding case, and it should consider stopping pecking.

The information the bird should collect in the experiment, because it is rel-
evant when choosing investment, is the position of the initial dot, and the
meta-data which is the proportion of matching cases/non-matching cases,
the proportion of non-matching cases that are rewarding, the parameter in
the geometric distribution deciding the sufficient number of pecks and how
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far the dot moves. The position of the initial dot is specific for that trial and
must be memorized in each trial. The meta-data is the same for all trials and
the birds will come up with estimates for them during the training period.
The experiment is short compared to the training and the metadata in the
experiment is identical to that in the training. Therefore it is reasonable
to believe that the estimation of these parameters is finished in the training
and kept constant during the experiment. The chosen investments, i.e. the
amount of pecking, is registered and can be used to evaluate the thoughts of
the birds.

2.2 Experimental data

We present the data from the experiment so that we get an idea of the main
tendencies in the observed behaviour. The experiment was performed over
six consecutive days. At day number three it occurred some technical prob-
lems which resulted in no testing of Ari on that day. Hence, we have five days
of test data for Ari, a total of 846 trials, and six days of test data for Susan,
a total of 1016 trials. Recall that the probability that a trial is a matching
case is 0.5 and that the non-matching cases are distributed uniformly over
the five distance levels. Ari performed 419 matching trials and about 85
non-matching trials for each distance level. Susan had 510 matching trials
and about 100 non-matching trials for each of the five distance levels. For
the data presentation that follows, it can be useful to think, as a rule of
thumb, that 1% of the matching trials make up roughly 5 trials, while one
per cent of the non-matching trials at a certain distance lever is about 1 trial.

A natural first question to ask about the behaviour of the birds is how often
they gave up without trying to peck, and how this ratio depends on the value
of d. This is illustrated in Figure 2. From the figure, we can see that the
general trend for both birds is that the more the dot has moved the more
often they peck. This pattern is to be expected. Reward is attainable when
the dot has moved, and the more the dot has moved the more convinced the
bird is that the dot actually has moved, hence it will not give up so often.
When d = 0, reward is not attainable, and the best thing to do is to give up
and move on to the next trial. However, we see in this case that both birds
do not give up without pecking in well over half the trials. This indicates
that the birds are not too good in realizing when the dot has not moved. Ari
has only one percentage point higher rate of giving up without trying when
d = 0, than when d = d1 = 1.20. Probably he is struggling with noticing
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d. The matching cases are represented in the leftmost bar-pair where d = 0.
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such a small movement of 1.20.

For d = 0 the correct response is to give up, we can see that Ari at 42%
does a marginally better job at this than Susan at 34%. However, when
d = d1 = 1.20 Susan outperforms Ari by only giving up 21% in contrast to
his 40%. Moving from d1 = 1.20 to d2 = 2.15 we see a big drop of over
50% in both birds’ ratio. It is clear that they are much better at noticing a
movement of 2.15 than 1.20. Susan is still doing the best job of having a low
giving up-ratio. For larger values of d Susan’s ratio flats out at 6− 7% while
Ari’s ratio continues to drop all the way to zero, except for one single d5-trial
where he did give up. He can obviously tell with great confidence when a dot
has moved d4 = 4.05 or more. Susan on the other hand also has a low ratio
at 6− 7% for the three biggest distance levels, but she is not as consistent as
Ari. She gives up a couple of times even though the dot has moved very far.
Comparing the blue and pink bars in the figure we see that the pink bars
are evener. Moving left to right, the blue bar starts higher but then declines
to a lower level than the pink bars do. Ari’s giving up-ratio is varying more
with the value of d. This serves him well at d = 0, where he correctly gives
up more than Susan, and at d = d4 and d = d5 where he correctly does not
give up. However, at d1 and d2 he incorrectly gives up more than Susan.
There is a meeting-point at d = d3 where both birds give up without trying
in 6% of the trials. Hence neither of Ari or Susan is clearly doing a better job
than the other. Based on this plot, they both have strengths and weaknesses.

The ideal pattern to have in Figure 2 is 100% at d = 0 and 0% at all
other distance levels. One should have a big decline in the ratio as we see
Ari has, but his bars should have been left-shifted. His high giving up-ratio
is stretching too far into the high values of d.

We have now seen how the ratio of how often the birds choose to invest,
i.e. peck, is for the different distance levels. What about the size of the
investment? In addition to more frequent investments for high values of d,
we should also find that the investments are bigger. In Figure 3 the average
number of pecks is plotted for all distances for both birds.

From Figure 3 there is a clear tendency, the birds peck more for bigger values
of d. As discussed earlier we again see that Ari does not invest too much
when d = d1, he invests almost one whole peck less than Susan in these cases.
Other than that, the two birds have a similar pattern in that they gradually
increase their investments with growing value of d. Notice that for both birds
the average investment at d = 0 is higher than when d = d1. At first glans,
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Figure 3: The average number of pecks for each distance level is illustrated,
including the trials where the bird gave up, i.e. pecked zero times. The
blue bars represent Ari’s investments and the pink bars represent Susan’s
investments.

9



0 d1 d2 d3 d4 d5
0

2

4

6

8

10

12

14

16

2 2.1

6.6
7.7

6.5

9.7

2.6
3.3

6.5
5.9

6.6
7.9

N
um

be
r

of
pe

ck
s

Average Investment in Non-Rewarding Trials

Ari Susan

Figure 4: The average number of pecks for each distance level when only
considering non-rewarding trials is illustrated. The blue bars represent Ari’s
investments and the pink bars represent Susan’s investments.

this might seem unreasonable. However, recall that when d 6= 0, 80% of the
trials are rewarding. This means that the bird might be rewarded after the
first peck, so even if the bird was willing to peck a lot, it was only able to
peck once. When d = 0, reward is not attainable, hence the bird is never
hindered from pecking as much as it wants.

In the 20% of the trials were reward is not attainable the bird is never hin-
dered from pecking. Hence, looking at only these cases we get a picture
of how much the birds are willing to peck. In Figure 3 the five bar-pairs
for the non-matching cases are held back due to the birds being rewarded.
When only using non-rewarding trials we expect the average investments to
be higher for non-matching cases (d 6= 0) and the same for matching cases
(d = 0). Furthermore, we expect the investments at d1 to be higher than the
investments at d = 0, since the birds should be willing to peck more when
the dot has moved 1.20 than when it has not moved at all. The average
investment for both birds for all distance levels when only considering non-
rewarding trials are plotted in Figure 4.
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In Figure 4 we see that investments in non-rewarding trials are bigger at
d1 than at d = 0, in contrast to what we saw in Figure 3. The average invest-
ment at d1 was limited by the rewarding trials. Once they are excluded, the
bars at d = 0 and d1 are both representing how much the bird is willing to
peck, instead of also reflecting their opportunity to peck. When only consid-
ering non-rewarding trials, we see an increase in investments at all distance
levels, as expected. Note that the bars are not strictly increasing from left
to right. This is not alarming as we now are considering pretty small sample
sizes. Non-rewarding trials make up only 20% of the trials, and only half
of them are non-matching. In addition, that 10% is divided between five
distance levels, so only 2% of the trials make up each of the bars where d 6= 0
in Figure 4. Consequentially the bars at d = 0 is based on roughly 100 trials,
while the other is only based on roughly 20 trials. When considering all the
data, we can see from Figure 3 that the investments are in fact increasing
with the distance d.

We have now looked at a couple of interesting statistics to get an impression
of how the birds behaved in the experiment. The next figure is presented
to give a picture of the experiment itself, and how often the trials lasted a
certain number of pecks. It will also give an overview and summarize some
of the observations we have done already. All trials in the experiment end,
either because the birds get rewarded or because it gives up. How fast the
trials typically end is dependent on the distance. Figure 5 shows the pro-
gression in trials with different values of d and gives a picture of how long
the different trials lasted. For both birds, we see that the blue graph with
d = 5.0 is the last one to hit zero. This means that the longest trials, i.e.
the trials with most pecks, has d = 5.0. This is not surprising as we have
already seen that these trials have the largest average investment. We also
see that the orange graph with d = 1.20 is the first to hit zero for Ari and for
Susan it is also the least represented for peck 7-12. This tells us that these
trials are quickly ended, even more quickly than when d = 0, represented
by the red graph. As discussed earlier this is due to the fact that the trials
with d = 1.20 can be ended both by the bird giving up and being rewarded,
whilst the trials with d = 0 are only ended by the bird giving up. Especially
for Ari, this effect is significant. We can see from Figure 5 that in only 20%
of the trials with d = 1.20 he reaches the choice of whether to perform the
third peck. Another pattern we see is that the six graphs for Ari are more
spread than the six graphs for Susan. This supports our observation that,
compared to Susan, the behaviour of Ari is differing more between the trials
with a low value of d and the trials with a high value of d, made from Figure
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Figure 5: The figure shows how quickly the trials end for different values of
d. For some number of pecks, k, on the first axis, the corresponding value on
the second axis is the proportion of trials where the bird had the choice of
performing the k’th peck. For k = 1 all graphs start at 1.0. This is because,
in 100% of the trials, the bird has the choice of performing the first peck
since it has not yet had the possibility of giving up or being rewarded.
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2. For example, we can see that when d = 1.20, Ari almost never reaches
peck number 10, but when d = 5.00 he does it in about 20% of the trials,
while Susan is at peck 10 only ranging from about 0% when d = 1.20 to
about 10% when d = 5.00.

3 Theory
In this section, we present theory that is relevant for the further analysis.
We discuss decision theory and introduce some necessary notions within this
topic. Two different ways of doing parameter estimation are presented. We
also remind the reader of statistical bootstrapping.

3.1 Decision theory

Consider a general choice, for example, what food to order or how to invest
your money. Together with a choice, we associate a possibility set, A, which
is a collection of the possible decisions. In the examples, this could be the
set of all dishes served by a restaurant and the set of all stocks in the market.
To make a choice we must define a goal, this is embodied mathematically by
a utility function. The utility measures how good an outcome is. A natural
utility function could be how good the food tastes or what the expected re-
turn on an investment is, perhaps in combination with the volatility. If there
is no randomness related to the choice the utility function simply maps each
decision to a utility, that is U : A 7→ R. In this case, the decision associated
with the highest utility should be chosen.

Most often in the real world, there is randomness related to a choice. In
that case, the utility will be a function of our decision and some random
variables. Suppose the random variables X1, X2, . . . , Xn are related to our
choice, then U = U(a,X1, X2, . . . , Xn), where a ∈ A is a possible decision.
Since the utility is a function of random variables it is itself a random vari-
able. Hence, we can in general not guarantee to receive a satisfying utility
from a choice because we can be unlucky. When making a choice related to
randomness we instead consider the expected utility

u(a) = E

[
U(a,X1, X2, . . . , Xn)

]
. (2)

We define the optimal decision to be the decision that maximizes the expected
utility,

aopt = arg max
a∈A

u(a), (3)
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and as the name suggests, this is the decision that should be made. To take
the expectation in (2) we must know the joint distribution of (X1, X2, . . . , Xn).
Sometimes this is given to us by the situation. It is, for example, well known
that a fair dice has a uniform distribution with 1/6 in probability for each
side. If this is not the case we must use our experience and knowledge of the
system to decide on a prior distribution for the variables. By prior distribu-
tion we mean the distribution the variable seems to have from our perspective.

Hitherto we have discussed making one choice alone. Often choices are related
to other choices, and making some decision might enable us to make more
choices. These relations can take many forms, we will in the following con-
sider one specific type of choice. We define a sequential choice to be a choice
with the natural numbers as its possibility set, that is A = {0, 1, 2, . . . }, and
with the property that in order to make decision k, we must first choose to
increase our decision from zero to one, receive the associated utility, increase
our decision from one to two, receive the associated utility and so on, all the
way up till we increase our decision from k−1 to k and receive the associated
utility. Thus, such a choice is a sequence of binary choices, each with pos-
sibility set A = {”increase”, ”not increase”}. For each step in the sequence,
we get to know how that decision would have worked out before we have to
decide whether or not to increase again. Note that we do not necessarily
get to know the realizations of X1, X2, . . . , Xn after deciding to increase from
zero to one, just the realised utility U(1, x1, x2, . . . , xn).

We give an example of a sequential choice to illustrate what it is and some
of the terms we have introduced. Suppose you are reading a book in cor-
rect order, and you are looking for the name "NTNU" which you know will
appear exactly one time. You have to make the choice, how many pages
should you read through before giving up? The possibility set is then the
natural numbers as you can choose to read any number of pages. The utility
function will be your subjective evaluation of how good or useful it is to
find/not find "NTNU" minus the bother it is to read some pages. The true
page number of "NTNU" can be considered to be a random variable, which
the utility function will depend on. Recall that in order to calculate what
decision which gives the highest expected gain we must know the distribu-
tion of the involved random variables. If you have almost no knowledge of
the book, a uniform distribution where each page is considered having an
equal probability of mentioning "NTNU" could be natural to use. If it is a
catalogue from NTNU you would probably put almost 100% on page 1. We
also see that this choice will satisfy the second criterion for being a sequential
choice since once you finish page one, you will know whether it mentioned
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"NTNU" or not. You might not know the realization of the random variable,
specifically, if you did not see "NTNU" you will not know what page is it
on. However you will know how choosing to read only one page would have
worked out, i.e. you will receive the utility U(a = 1, x), where x is the true
page number.

For sequential choices, we can represent the utility in a slightly different,
but useful manner. We define the expected sequential utility function evalu-
ated in k to be the expected utility associated with choosing to increase our
decision from k to k + 1 when already knowing the utility associated with
choosing k, that is

useq(k, C) = E

[
U(k + 1, X1, . . . , Xn)− C

∣∣∣∣ U(k,X1, . . . , Xn) = C

]
. (4)

In general, we will have a dependence on C, this embodies the fact that
whether or not to increase our decision will depend on any information we
have acquired. Hence, this function can not, in general, be evaluated prior
to starting increasing our decision. To do that we must perform the first k
actions such that we know the value of C. However, this can be simplified if
a criterion is satisfied. We will now discuss and identify a necessary criterion
such that we remove the dependence on C, such that we can examine useq
without having to consider different cases for C.

In many choices, there is only one element in the possibility set associated
with a positive utility for a given realization of X1, X2, . . . , Xn. This is the
case in our example as the page containing "NTNU" will be the only page
with positive utility. This will be the case in most situations related to
searching for some object and deciding for how long to look. In these sit-
uations, we would, of course, stop looking as soon as we find what we are
looking for. In terms of the expected sequential utility function, finding the
correct page would make useq negative for all the following pages. Hence,
useq would be dependent on C. Now, we restrict ourselves to cases of choices
with only one element in the possibility set associated with a positive utility
for a given realization of the random variables and when this decision has
not yet been done. In such cases, nothing else is revealed to us during the
choice than whether or not we have found what we are looking for. Hence,
when only considering cases prior to the finding, when it is still useful to look
more, we have no C-dependence. This is because there is only one possible
information we can get after reading k pages and that it is still useful to look
more, namely that we did not find "NTNU" on the first k pages. Since we
knew that this information would be present if we came to this situation,
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we can include it in useq from the start. This is done by putting C to be
whatever cost there is of reading the first k pages. Our criterion for being
able to represent the expected sequential utility function without C is conse-
quentially a searching-choice where we by searching learn nothing other than
whether we have succeeded or not. Note that there will technically be a de-
pendence on C as we by succeeding our search will make all further searching
useless. However, we are now only interested in the cases where the search
has not ended. We obviously would stop searching once succeeded. We can,
therefore, meaningfully, for these choices set

useq(k) = E

[
U(k + 1, X1, . . . , Xn)− C(k)

∣∣∣∣ U(k,X1, . . . , Xn) = C(k)

]
, (5)

where C(k) is the cost of reading k pages. With this notation, useq(k) is the
expected utility from choosing to read page k + 1 when already having read
pages 1, 2 . . . , k without finding "NTNU". Summarized, we eliminated C by
restricting us to choices where its only possible value is the cost of searching.

The expected sequential utility function represents the expected utility of
the sequence of binary choices of whether or not to increase the decision by
1. It is tempting to say that if useq(k) is positive we should increase, and
if it is negative we should give up and not increase. However, in sequential
choices, we should be willing to make some choices with a negative expected
utility if it allows us to later make choices with high enough expected utility.
We call this implied utility. For example, if you knew page 100 mentioned
"NTNU" you could be willing to read page 99 knowing that it would not
give positive utility since you then later would be able to read page 100 and
get positive utility. Again, we can simplify by adding a criterion. We require
that useq(k) is non-increasing as a function of k. Under this requirement, we
can use the decision rule to increase when useq(k) is positive and not increase
when useq(k) is negative. There will be no implied utility since once useq(k)
becomes negative, it will not become positive later.

3.2 Estimation

Given an experiment which is some choice, we can calculate the expected
utility of making some decision. In behavioural analysis, the utility will
typically depend on some cognitive parameters, θ, of the participant. In our
example earlier, a reader will experience some bother from reading a page,
the magnitude of that bother is a parameter. Thus, the expected utility
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function can be written as

u = u(a,θ) = E

[
U(a,X1, . . . , Xn)

]
, (6)

where a is a decision, and the cognitive parameters θ are incorporated in
both the function U and in the distribution of X1, . . . , Xn. Suppose we want
to estimate these parameters and we had some participant perform the ex-
periment. The participant made some decision ak ∈ A. How should we
use this information to make statistical inference about θ? This is a compli-
cated question of psychological and philosophical nature as well as statistical.
There is no clear answer, but we will discuss two possible methods in the fol-
lowing.

3.2.1 Maximum performance estimation

We define the performance, Q, of a participant to be the chosen expected
utility divided by the optimal expected utility, that is

Q(θ) =
u(ac,θ)

u(aopt(θ),θ)
, (7)

where ac is the chosen decision of the participant and aopt(θ) is the optimal
decision given the parameters θ. The performance is a measure of how good
decisions a participant makes. With optimal behaviour we have Q = 1. We
can then define the maximum performance estimator to be

θ̂MPE = arg max
(θ)

Q(θ). (8)

The estimate is the parameter values that maximize the performance of the
participant. Another interpretation is that we tune the parameters such that
the quality of the choices is as high as possible.

3.2.2 Maximum likelihood estimation

Maximum likelihood estimation is a fundamental estimation method in statis-
tics. Our presentation of the topic is based on Warpole et. al. (2012). Likeli-
hood is a measure of the plausibility of a model given some observed data. In
maximum likelihood estimation (MLE) we estimate parameters to have val-
ues such that the probability to sample the observed data from the model is
as high as possible. Suppose the random variables Y1 . . . , Yn are independent
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and identically distributed according to f(y|θ), where θ is unknown. Let the
realizations Y1 = y1, . . . , Yn = yn be given. Now the question is, under what
value of θ was this data generated? In MLE, we estimate θ to be the value
such that the probability of sampling the observed data, called the likelihood
L(θ|y1, . . . , yn), is as high as possible, that is

θ̂MLE = arg max
θ∈Θ

L(θ|y1, . . . , yn) = arg max
θ∈Θ

n∏
i=1

f(yi|θ). (9)

Differentiating a product of many factors is a much more difficult task than
differentiating a sum of many terms. Recall that (uv)′ = u′v + uv′, while
(u + v)′ = u′ + v′. To make this maximization easier we define the log-
likelihood l(θ|y1, . . . , yn) = log(L(θ|y1, . . . , yn)). The product in (9) will then
become a sum as log(ab) = log(a)+log(b), and the problem is much simplified.
The logarithm is a bijection, hence the ordering is reserved. This implies
that the value of θ which maximizes the log-likelihood will also maximize
the likelihood. Hence we maximize the log-likelihood instead, for example
by differentiating and solving

∂l(θ|y1, . . . , yn)
∂θ

= 0. (10)

In order to perform MLE we need a probability distribution, i.e. f(y|θ).
Note that this is not necessary to perform MPE, where we can simply use the
utility function. In MLE we maximize a probability, so in order to perform
it we need a distribution describing the probability that some decision are
made,

P (ac = a) = f(a|θ). (11)

We can then perform MLE by estimating θ to the value maximizing the
probability of making the chosen decision a. This probability should depend
only on the expected utility. The reason for this is the flexible nature of
the concept of utility. Utility is simply whatever the participant wants to
maximize. So any effect influencing the probability of some decision can be
embedded in the utility.

3.3 Bootstrapping

We now present statistical theory on bootstrapping, much of the following
presentation is inspired by Givens & Hoeting (2013). Bootstrapping is a sta-
tistical method where resampling of observed data is used to make inference.
It is typically used when we do not know anything about a distribution,
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except for some observed sample from that distribution. The sample will,
therefore, contain all available information, and the best way to further in-
vestigate the distribution is to resample the observed sample.

Suppose we are given a sample of some data x = {x1, . . . , xn} from some
generating mechanism. The generating mechanism can be described by some
probability distribution F which is unknown to us. Let us assume that all
we know is that all the sample points x1, . . . , xn come i.i.d. from the same
unknown distribution F . We define the empirical distribution, F̂ , to be
the distribution that puts a probability of 1/n at each of the observations
x1, . . . , xn. Heuristically one can think that we use our sample to construct
a distribution that imitates F . It should be noted that sampling from F̂
is equivalent to drawing from the original sample x = {x1, . . . , xn} with re-
placement.

Sampling from F̂ , we can produce arbitrarily many, for example, B, new
samples of the same size, called bootstrap samples. We denote the bootstrap
samples x∗(1), . . . ,x∗(B). All elements of all bootstrap samples will be i.i.d
from the empirical distribution, that is

x
∗(b)
1 , x

∗(b)
2 , . . . , x∗(b)n

iid∼ F̂ b = 1, 2, . . . , B. (12)

Suppose we are interested in a parameter of the distribution, θ = t(F ). One
way to estimate θ is to use the so called plug-in principle, that is θ̂ = t(F̂ ).
Hence if we have some way to compute the parameter given the distribution,
the plug-in principle is to use the empirical distribution instead of the true
distribution.

The estimation of the parameter θ based on data x is done using some
estimator, i.e. θ̂ = s(x). Hence, if we have an estimator s we can from our
original sample make an estimate of θ. But what is the associated uncertainty
to this estimate? We want to estimate SDF [θ̂], i.e. the standard deviation of
the estimate of θ when sampling from F . We now use the plug-in principle,
and replace the true distribution with the empirical distribution. Hence

ŜDF [θ̂] = SDF̂ [θ̂
∗], (13)

where θ̂∗ = s(x∗) is an estimate of θ based on a bootstrap sample x∗. This
estimator is called the ideal bootstrap estimator. Since F̂ is known, we have
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all the necessary information to compute the estimate in (13). Therefore, we
can in theory compute the ideal bootstrap estimate, and this is to prefer as
we then get the lowest possible uncertainty. However this is not always easily
done. Instead we can use each of our B bootstrap samples to compute one
estimate for θ, i.e.

θ̂∗(b) = s(x∗(b)) b = 1, 2, . . . , B. (14)

The empirical standard deviation, or standard error, of these B estimates will
then be an estimate of the ideal bootstrap estimator. This estimate is called
the bootstrap estimate of the standard deviation of the estimator θ̂ = s(x),
i.e.

ŜDF (θ̂)bootstrap =

√√√√ 1

B − 1

B∑
b=1

(θ̂∗(b) − θ̂∗(·))2, (15)

where θ̂∗(·) = 1
B

∑B
b=1 θ̂

∗(b). This latter method is very simple, but it will give
more uncertainty than the ideal bootstrap estimator. By performing the
sampling of the B bootstrap samples we are adding an error called Monte
Carlo error, hence making the estimate more uncertain.

Suppose we have estimated the parameter θ for both birds, and found that
θ̂Ari 6= θ̂Susan. When comparing the birds to each other, a natural question
to ask is whether or not the difference, δ̂θ = θ̂Ari − θ̂Susan, is statistically
significant. Do we have sufficient evidence to claim that there is a differ-
ence between the birds? To answer this, we can use a hypothesis test. Let
H0 : δ = 0 be that there is no difference between the birds, and let H1 : δ 6= 0
be that there is a difference. A natural test statistic to use is T = δ. As
before, when using a complicated estimator, an analytical solution can be
difficult to find. In stead we can use bootstrapping to explore the distribu-
tion of the difference δ̂θ = θ̂Ari − θ̂Susan. Under H0 we can mix the data from
Ari and Susan since there is no difference between them. From the mixed
data we sample for Ari B bootstrap samples of size 846, as that is the size
of his data set. Likewise we sample B bootstrap samples of size 1016 from
the mixed data for Susan. The reason we must use their respective sample
size is that the estimated difference based on the original data was generated
in that way. Hence we are interested in the distribution of the difference
when using 846 trials for Ari and 1016 for Susan. We can then compute B
estimates of δ by

δ̂
(b)
θ = θ̂

(b)
Ari − θ̂

(b)
Susan, for b = 1, . . . , B. (16)
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The distribution made up by δ̂(b), called the bootstrap distribution, is an
estimate of the distribution of δ̂θ under H0. We now consider the estimate,
δ̂θ = θ̂Ari− θ̂Susan, we get from using only Ari’s data for his estimate and Su-
san’s data for her estimate. If there is no difference between Ari and Susan,
this estimate is a realisation from the bootstrap distribution. If the estimate
is far out in the tail of the bootstrap distribution, it is unreasonable that it
comes from that distribution. In such a case, we reject the null hypothesis.
Specifically, at a 95% significance level, we reject H0 if δ̂ is in the lower or
upper 2.5% of the bootstrap distribution.

When performing bootstrapping we need to decide on a value of B, that
is how many bootstrap samples we shall draw. The value depends naturally
on what we are estimating. As a general rule of thumb, B = 200 should
be sufficient when estimating an average or the standard deviation. If we
want to estimate the behaviour in the tail we need a bigger B, since there
are less data in the tail. When we use the middle 95% of the bootstrap
distribution above a rule of thumb is that B = 1000 suffice. However, is the
bootstrap sampling algorithm runs quick, there is nothing that hinders us
from using an even bigger value of B. The estimates will only become better
with increasing B.

4 Model and methods
In this section, we go through how the theory is applied to our experiment
and introduce more specifically the methods we will use. We will also present
a model for the experiment.

4.1 Model

We now present the model we will use when analyzing the experiment quanti-
tatively. This model was developed in Macody Lund (2018), where the same
experiment was analyzed. Recall the procedure of the experiment described
in Section 2. The experiment starts with a blank screen with a red dot on it
being presented to the bird. This screen is the domain for which the entire
experiment will take place, we denote it D. Furthermore, we denote the ini-
tial red dot’s position by µ ∈ D. At this moment in time, the value of µ is
precisely known to the bird. Once the bird is ready it pecks the red dot, the
dot now disappears, and the screen goes blank for a retention interval.

During the retention interval, the bird forgets the exact position of the initial
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red dot. However, it has a memory of the position. To have a memory of the
position can be thought of as, having some idea of how probable it is that
different locations on the screen, in fact, was the true position of the initial
dot. Our model is that the bird considers the position of the initial dot to
be a random variable X. A normal distribution centred at the true position
of the dot seems reasonable, hence

X ∼ N(µ, σ2), (17)

where σ2 is a parameter descriptive of the spatial memory of the bird.

After the retention interval, the experiment is either in stage 3A or 3B,
this is unknown to the bird. Either way, a final dot Z is shown on the screen.
Its position matches that of the initial dot in 50% of the cases, i.e. if it is
stage 3B. In the non-matching cases, the generating mechanism described in
Section 2 was used to decide the position of the final dot. It is unreasonable
to believe that the bird understands this mechanism. Two features of the
mechanism it might notice is that the distribution of the final dot is point
symmetric about the initial dot and that the area close to the initial dot has
the highest probability density. We choose to model this as a normal distri-
bution centred at the initial dot, which also has these two features. Hence
the distribution of the final dot’s position is

f(z|x) = 1

2
δx(z) +

1

2
n(z;x, τ 2), (18)

where δx(z) is the dirac delta function which puts a probability of 1 at x and
n(z;x, τ 2) is the density at z for a normal distribution with expectation x
and variance τ 2. The distance between the initial dot and the final dot is
what we refer to as the distance level d = |z − µ|.

Recall that some fixed proportion of the non-matching trials are not reward-
ing. This information is hidden in the experiment in the sense that the bird
can not know whether a non-matching trial is rewarding or not. Hence it
must consider this to be stochastic. Let Y be a Bernoulli distributed variable
with success probability pY ,

fY (y) =

{
1− pY , for Y = 0,

pY , for Y = 1,
(19)

and let Y = 0 indicate that a trial is not rewarding and Y = 1 indicate that it
is rewarding. In the experiment, pY = 0.8 was used, meaning that for a non-
matching trial it is 4 times as probable that it is rewarding than that it is not.
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Symbol Description

D Screen
X,µ, σ2 Initial dot
Z, τ 2 Final dot
Y, pY Rewarding/not reawarding
N, pN Necessary pecks

Figure 6: Symbols describing the experiment.

Let N be the number of necessary pecks in order to be rewarded, this is
geometrically distributed, hence we set

fN(n) = (1− pN)n−1pN , (20)

where pN is the success probability. The value in the experiment was pN =
0.3, so the expected number of necessary pecks is E[N ] = 1/0.3 = 10

3
. The

established notation is summarized in Figure 6.

4.2 Decision and utility

Consider the experiment to be a choice where we must decide how many times
to peck. Recall that the bird is hindered from pecking more if rewarded, so
strictly speaking the choice is how many times the bird is willing to peck.
The possibility set is then

A = {0, 1, 2, . . . }. (21)

In order to make a decision, we should identify a utility function. We must
hence try to imagine what the bird is trying to achieve, what does it want?
Food is something all animals have an instinctive urge for as this is highly
necessary to survive. Since the reward is a piece of food, there should be a
positive utility associated with getting the reward. It is not the case that
an animal always is in a constant search for food. The effort to find food
is dependent on many variables including time since last meal and activity
level. However, in this project, we will for simplicity assume a constant util-
ity r > 0 of being rewarded.

Performing labour is a limited resource which must be spent wisely. It takes
both focus and uses up calories, hence we associate a cost c > 0 with having
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to perform a peck. Also here we assume that all pecks have the same cost,
implying that to perform n pecks have n times as high cost as a single peck.
This assumption is not indisputable but nonetheless used in this thesis. The
reward and the peck are the only things we will directly associate a utility
with. The following analysis has to do with the probability of being rewarded
for a certain number of pecks in different situations, this is to calculate the
expected utility.

We now establish the dependence the utility has on the random variables
X,Z, Y and N and the parameters r and c. What does it take to be re-
warded? First of all the dot has to have moved, that is we need X 6= Z.
Furthermore, recall that some of the non-matching cases were not reward-
ing. For the rewarding cases, we have that Y = 1. Hence, if X 6= Z and
Y = 1 reward is attainable. Reward is given if the bird pecks enough. That
is, if the number of pecks, k, it is willing to perform is greater than N , i.e.
k > N . We can then conclude that the bird is rewarded if and only if

Y I(X 6= Z)I(k > N) = 1, (22)

where I(B) is the indicator function, which is equal to 1 if B is true and 0
otherwise.

In a rewarding non-matching trial the birds pecks min{k,N} times, oth-
erwise it pecks k times. Each peck cost c, hence the utility function is

U(k, Y,X, Z,N) = Y I(X 6= Z)I(k > N)r

− Y I(X 6= Z)min{k,N}c− (1− Y I(X 6= Z))kc.
(23)

Oftentimes the next step would be to compute the expected utility and en-
courage to make the decision that maximizes the expected utility. However,
recall that the possibility set of this choice is A = {0, 1, 2, . . . } and that the
pecks are performed in a sequence. This is thus a sequential choice. The
experiment can be viewed as a long sequence of binary choices where the
bird must choose whether or not to peck. The possibility set for each choice
in the sequence is

A = {peck, not peck}. (24)

As discussed in Section 3 we can now define the expected sequential utility
useq(k). This is the expected utility associated with increasing our number
of pecks from k to k + 1 when knowing that the first k pecks did not result
in reward. If we choose to peck once more, reward is attained if and only if
Y = 1, X 6= Z and N = k + 1. We condition on the fact that the first k
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pecks are unrewarded, that is, Y = 0∪X = Z ∪N > k, and of course on the
position of the final dot. The expected sequential utility is hence

useq(k|Z = z) =

E[U(Y,X,Z,N, k + 1)− kc|Z = z, Y = 0 ∪X = Z ∪N > k] =

E[Y I(X 6= Z)I(N = k + 1)r − c|Z = z, Y = 0 ∪X = Z ∪N > k].

(25)

The calculation of this expectation is complicated, hence we leave it to ap-
pendix. The result is

useq(k|Z = z) =

pYN µ
z (σ

2 + τ 2, σ2)(1− pN)kpN · r
(1− pY ) + pYN µ

z (σ2, σ2 + τ 2) + pYN µ
z (σ2 + τ 2, σ2)(1− pN)k

− c,
(26)

where
Nµ
x0
(σ2 + τ 2, σ2) =

n(x0;µ, σ
2 + τ 2)

n(x0;µ, σ2) + n(x0;µ, σ2 + τ 2)
. (27)

It is also worth mentioning that this latter expression has a interesting in-
terpretation. The probability, from the birds’ perspective, that the dot has
moved, when knowing the position of the final dot, Z = z, is

P (X 6= Z|Z = z) = N µ
z (σ

2 + τ 2, σ2). (28)

This expression is hence the probability that a trial is non-matching, this is
also shown in Appendix. The sequential utility depends on the parameters
py, pN , σ2, τ 2, r and c, however not all of them are equally interesting to
estimate. Additionally, estimation in higher dimensions is a challenging task,
so we should avoid estimating too many parameters. The parameters pN , pY
and τ 2 were decided by the experimenter and kept constant throughout the
experiment. One could however still consider these to be cognitive param-
eters and estimate what the bird’s perception of these parameters are. On
the other hand, the true values of these parameters are known, in contrast
to that of σ2, r and c which are true cognitive parameters. We know nothing
about their values as they exist only inside the brain of the bird. Consequen-
tially, with limited computational power, we choose to not estimate pN , pY
nor τ 2. We rather consider these to be constant and have the values used in
the experiment. The values for the two former were pN = 0.3 and pY = 0.8.
Regarding the latter, recall that the actual generating mechanism used was
not a normal distribution which we have used in our model. That means the
experimenter did not explicitly choose a value for τ 2. We must hence use
another method of assigning a value to this parameter. Given that the bird
operates with a normal distribution for the position of the final dot in the
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non-matching cases, it is reasonable to use MLE to estimate τ 2 based on the
observations of Z. For the non-matching cases, our model states that the
final dot has a binormal distribution

f(z1, z2) =
1

2πτ 2
exp

{
−1

2

(
z21 + z22
τ 2

)}
, (29)

where z1 and z2 are the two coordinates of the final dot, and τ 2 is the variance
in each coordinate. We are interested in the distribution as a function of d,
hence we use that d2 = z21 + z22 and integrate over all point equidistant from
the origin

f(d) =

ˆ 2π

0

1

2πτ 2
exp

{
−d2

2τ 2

}
d · dθ = d

τ 2
exp

{
−d2

2τ 2

}
. (30)

All distance levels are used equally often. We therefore assume that the bird
has observed five realizations of d, one at each distance level d1, . . . , d5. The
likelihood becomes

L(τ 2|d1, . . . , d5) =
5∏
i=1

di
τ 2

exp{−d
2
i

2τ 2
}, (31)

and we get the following log-likelihood

l(τ 2|d1, . . . , dn) = logL(τ 2|d1, . . . , dn) =
5∑
i=1

log(di)− log(τ 2)− d2i
2τ 2

. (32)

To maximize the log-likelihood we solve

∂l(τ 2|d1, . . . , dn)
∂τ 2

=
5∑
i=1

d2i
2τ 4
− 1

τ 2
= 0. (33)

Multiplying the latter equation with −τ 2, dividing by 5 and moving the terms
with di to the other side we get

τ̂ 2SME =
1

10

5∑
i=1

d2i = 5.7075. (34)

As with pN = 0.3 and pY = 0.8, we now also consider τ 2 = 5.7 to be a
constant which we do not estimate.

The parameters r and c are the only two which is a measure of utility. Since
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there is no standard unit for utility, we can without loss of generality let
c = 1. Thus, a peck costs one unit of utility, and the value of r will represent
how many pecks the reward is worth. We conclude that the two parameters of
interest are σ2 and r. Thus, we investigate how the sequential utility depend
on these parameters. In Figure 7 the sequential expected utility is plotted for
different values of σ2 and r, for the other parameters we have used pN = 0.3,
pY = 0.8, τ 2 = 5.7 and consider the distance level d1 = 1.20. From Figure
7 we see that the blue curve is always above the red curve which is always
above the green curve. This means that for every binary choice of whether or
not to peck, a higher value of r gives a higher expected utility by choosing to
peck. Also, we see that the bigger value of r the later the curve hits zero. Re-
call that pecking should be done as long as the sequential utility is positive,
hence the figure shows that for all three values of σ2 more pecking should be
performed for higher values of r. Note that strictly speaking the sequential
expected utility is only defined for the natural numbers 0, 1, . . . , however, we
can see from (26) that useq(k|Z = z) is a continues function of k which can
be interesting to graph. To decide whether or not to peck we must consider
the graphs in Figure 7 evaluated at the integers. We see that when σ2 = 0.2
the blue graph is above and the other two are below zero. This means that
if r = 100 and the bird has already pecked five times, the bird should peck
once more, while if r = 50 or r = 20 it should not peck. Once six pecks
have been performed, all three graphs are below zero and pecking should not
be done. By similar observations we conclude that if σ2 = 1 and r = 100,
pecking should not be done when k = 5 nor when k = 6. For σ2 and r = 100
the utility by pecking another time when already having done six pecks is
positive. Hence we should be willing to perform the seventh peck in this case.

The effect r has on the utility is both straightforwardly and probably as
expected. The bigger value of r, the more valuable reward is, and therefore
being rewarded will have a higher utility and more pecking should be done
in order to achieve it. On the other hand, the effect σ2 has is slightly more
intricate. Figure 7 shows that the utility for σ2 = 0.2 and σ2 = 4 are more
similar to each other then they are to the utility for σ2 = 1. To understand
this, we revisit the situation the bird is presented with. The bird is shown
a final dot at a distance d = 1.20 from the initial dot and what we model
to be the centre of the probability distribution the bird puts on the initial
dot. Then the question is, is the final dot the same as the initial dot, or is
it a different dot? Or formulated differently, does this final dot come from a
distribution with variance σ2 or σ2 + τ 2? The bird experiences a distance of
1.20, but is this due to a bad memory or due to a movement and a bad mem-
ory? If the distance between the final dot and the centre of its memory is
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(a) σ2 = 0.2
(b) σ2 = 1

(c) σ2 = 4

Figure 7: Sequential expected utility for different values of σ2 and r. Dashed
lines are drawn at 5 and 6. Other parameters are kept at their respective
constant value and d = 1.20.
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1.20 when σ2 = 0.2, it is very unlikely that this movement is only due to the
variance in the memory. Such a precise memory would not be that mistaken.
The dot is very likely to have moved, i.e. been drawn from a distribution
with variance σ2 + τ 2, and hence there is a high utility of pecking because
reward is probably attainable. When increasing to σ2 = 1 the density of the
distribution representing the bird’s memory becomes higher at d = 1. This
means that it becomes more probable that the dot has not moved and that
the perceived movement of d = 1 is only perceived and not real. Hence the
bird should not peck as much. Increasing the forgetfulness of the bird further
to σ2 = 4 the density representing the memory evaluated in d = 1 decreases
due to spreading. If the dot has moved, it is from the birds perspective drawn
from a distribution with variance σ2 + τ 2, this distribution will also spread
when we increase σ2, but not as much as the former will due to the constant
τ 2. Recall that we are considering which of these two distributions the final
dot come from. Even though the distribution associated with a movement
spreads, it becomes more probable compared to the alternative. From (27)
and (28) we can see the ratio of interest. Hence the further increase of σ2

when d = 1 makes it seem more probable to the bird that the dot has moved
and more pecking should be done.

Each of the binary choices of whether or not to peck is characterized com-
pletely by the distance level d and the number of already performed pecks
k. For matching cases, d = 0, and for non-matching cases, d takes one of
five values. In total there are six different values for d. Both Ari and Susan
performed at most 16 pecks in a trial, so the value of k is ranging from 0 to
16, that is 17 different values. Hence there are no more than 6 · 17 = 102
different binary choices in the experiment. All of these 102 choices did not
necessarily appear in the experiment. For example, did neither of the birds
peck 16 times for d = 0, so the choice with d = 0 and k = 16 did not appear.
However, both birds did over 800 trials, most choices appeared several times.
Each of these 102 choices is associated with an expected utility by pecking.
For a higher value of d, it will seem more probable that the dot has moved
and the utility will be higher. The bigger value of k, the more probable it
is that either it is a matching case or a non-matching non-rewarding case so
the utility associated with continuing to peck will be lower. The sequential
expected utility in the 102 choices for r = 50 and σ2 = 1 is illustrated in
Figure 8. We see that pecking two times is correct even though d = 0. This
means that when d = 0 it will not be so obvious that the dot has moved, and
if being rewarded is worth the cost of 50 pecks it is, in fact, correct to peck
2 times. The black line is for d = 5 between k = 11 and k = 12. Hence, if 11
pecks have been performed, the expected utility for pecking another time is
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Figure 8: Sequential expected utility for all the choices in the experiment
when r = 50 and σ2 = 1. The utility ranges from 11 in the top-left corner
to −1 in the bottom-right corner. The black line separates the choices with
a positive sequential expected utility to the left from those with negative to
the right. Hence, left of the black line pecking should be done.
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positive. If 12 pecks have been performed, it is negative and pecking should
not continue. Consequentially, for these parameter values at most 12 pecks
should be performed.

4.3 Maximum performance estimation

In the following, we describe how the maximum performance estimator will
look in our case. Let us first consider one single trial, and then generalize to
several trials. From the definition of performance in (7), we see that we must
know how to calculate the chosen expected utility and the optimal expected
utility. The former will simply be the sum of the expected utility of all the
pecks the bird chose to perform in a trial. Suppose a bird chose to perform
k pecks in a trial with z = z0, the chosen expected utility is then given by

u(k,θ) = useq(0|Z = z0) + useq(1|Z = z0) + · · ·+ useq(k − 1|Z = z0), (35)

where θ can be any collection of the parameters pY , σ2, τ 2, pN , r and c,
depending on what parameters we want to estimate. Note that the terms in
(35) can be positive or negative, and that they are in descending order. If
the bird did not peck in that trial we let u(ac,θ) = 0.

As discussed earlier the bird should peck if useq(k) > 0. As the bird pecks,
useq(k) will decrease, when it becomes negative the bird should not peck
anymore. Also, if the bird at some point is rewarded it can not peck more.
Hence the optimal utility is achieved by pecking either, to the last peck, say
peck number i, with useq(i) > 0 or to reward is achieved, whichever happens
first. Note that the bird will get a worse chosen utility by pecking more than
i times even though it gets rewarded for it. This embodies the fact that the
bird does not make good decisions just because it it lucky. Consider the same
trial as earlier with z = zk. Suppose useq(i|Z = zk) > 0 > useq(i+1|Z = zk),
that is peck number i is the last beneficial peck. The optimal expected utility
is then

u(aopt(θ),θ) =

{∑j=w
j=0 useq(j|Z = zk) if rewarded by peck w < i,∑j=w
j=0 useq(j|Z = zk) otherwise.

(36)

The terms in (36) will also be in descending order and they will all be positive
as they all are associated with a peck that should be performed. If for some
trial there is no pecks with positive expected value, the optimal expected
utility is 0. This gain is then achieved by not pecking. Any peck will in such
a case result in a negative chosen expected utility.
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When considering multiple trials we simply sum up the optimal expected
gains for all trials and the chosen expected gain for all trials separately. Sup-
pose we have m trials, the performance become

Q(θ) =
u(ac,θ)1 + · · ·+ u(ac,θ)m

u(aopt(θ),θ)1 + · · ·+ u(aopt(θ),θ)m
, (37)

where u(ac,θ)i is the chosen gain in trial number i and u(aopt(θ),θ)i is the
optimal gain in trial number i. We can then estimate the parameters we are
interested in, θ, by maximizing the total performance Q.

4.4 MLE

As discussed in Section 3.2.2, in order to perform MLE we must have a
probability distribution describing how probable it is that the bird chooses to
peck in the different situations. We established that this probability should
be a function of the expected utility alone. Recall that when useq(k|Z =
z) > 0 pecking should be done, while the bird should give up otherwise. The
optimal distribution for this experiment is hence to have a probability of zero
to peck for negative utility and a probability of one for positive utility, that
is a step function. The actual distribution of the bird will naturally deviate
from this. The probability of pecking should be low for negative utility, and
grow with increasing utility and flat out somewhere below one. Probably the
actual distribution, hereinafter referred to as the choice-distribution of the
bird, will look like a smoothed step function. This situation is illustrated in
Figure 9. The black curve in Figure 9 is called a logistic function, and we
choose to model the bird’s choice-distribution as this. The logistic function in
its general form is very flexible, so we are not assuming much when we make
this choice. The probability that the bird will peck when having already
performed k pecks is then given by

f(a|k) =


1

(1+Q exp{−B·useq(k)})
1
ν
if a = "peck",

1− 1

(1+Q exp{−B·useq(k)})
1
ν
if a = "not peck",

(38)

where Q, B and ν are parameters deciding the shape of the logistic curve.
Heuristically a rule of thumb is that Q is related to the value of the logistic
function at the origin, B is related to the growth rate and ν decides where
the most growth is. For simplicity we introduce the notation that

A(k) = f("peck"|k) = 1

(1 +Q exp{−B · useq(k)})
1
ν

. (39)
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Figure 9: The Optimal distribution in red is a step function. A more realistic
distribution is the logistic function in black.
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Suppose now we have observed the experiment, and we know how many times
the different choices appeared and the decisions of the bird. Specifically let
mi,j be the number of times the choice with d = di and k = j appeared,
i = 0, . . . , 5 and j = 0, . . . , 16. Furthermore, let ni,j be the number of times
the bird choose to peck when d = di and k = j. Worth noting is that we will
always have mi,j > ni,j. Also, each peck which do not result in reward will
induce another choice with one higher value of k. Since the matching cases
never are rewarding we will hence have the identity n0,j = m0,j+1. For the
matching cases, the bird is sometimes rewarded, so not every peck induces a
new decision, instead of equality we will have ni,j > mi,j+1. The likelihood
function becomes

L(r, σ2, Q,B, ν|mi,j, ni,j) =
i=5∏
i=0

j=16∏
j=0

Ani,j · (1− A)mi,j−ni,j , (40)

where (39) and (26) together shows how the five parameters in the likelihood
function is involved. We get the following log-likelihood

l(r, σ2, Q,B, ν|mi,j, ni,j) =
i=5∑
i=0

j=16∑
j=0

ni,j log(A)+(mi,j−ni,j) log(1−A). (41)

As this is a very complicated function, we do not try to maximize this by
hand. We have experimented with different numeric algorithms and the
"Nelder-Mead method" solves the problem quick and precise. This is hence
the method we apply. The aim of performing MLE is to arrive at estimates
for the five parameters, i.e r̂MLE, σ̂2

MLE, Q̂MLE, B̂MLE and ν̂MLE. Together
these estimates will describe the birds’ appreciation of the reward, its evalu-
ation of its own memory and how the probability of pecking depends on the
utility, that is, we will have estimated the thoughts of the bird.

However, sometimes two different phenomena cannot be distinguished be-
tween. For example, the general relativity theory teaches us that there exists
no experiment that can distinguish between gravitation and acceleration.
Equivalently in behavioural analysis, it could be the case that two different
patterns of thinking may result in the exact same behaviour. As an example,
imagine you meet a friend who has cut her hair. The response to tell your
friend that you like her new haircut can be motivated by either a genuine
opinion that you liked her new haircut or wanting to make a pleasant atmo-
sphere. Hence, when she observes the mentioned response, it is not possible
for her to know what your thought process was. Having different patterns of
thought is embodied in our experiment as having different parameter values.

34



Consider two different parameter sets

(r1, σ
2
1, Q1, B1, ν1) 6= (r2, σ

2
2, Q2, B2, ν2), (42)

with the relation r1B1 = r2B2. Multiplying this relation with (α− 1), where
α is a arbitrary real number, on both sides and adding (B1c − B1c) = 0 to
the left side and (B2c−B2c) = 0 to the right side we get

B1(αr1 − c)−B1(r1 − c) = B2(αr2 − c)−B2(r2 − c). (43)

Moving the terms with α to the same side, the terms without α to the other
side and let both sides be the exponent of e we get

exp{B1(r1 − c)−B2(r2 − c)} = exp{B1(αr1 − c)−B2(αr2 − c)} = K. (44)

Since the left side does not involve α, the right side must also be invariant
of α, and hence equal to a constant K. We now let K = Q1

Q2
, for example by

letting Q1 = exp{B1(r1− c)} and Q2 = exp{B2(r2− c)}. Plugging this in to
(44) and moving parameters from the same parameter set to the same side
we get

Q1 exp{−B1(αr1 − c)} = Q2 exp{−B2(αr2 − c)}, (45)

which trivially implies that

1

(1 +Q1 exp{−B1(αr1 − c)})1/ν1
=

1

(1 +Q2 exp{−B2(αr2 − c)})1/ν2
, (46)

where ν1 = ν2. Since α was chosen arbitrarily, the latter equation holds
for all values of α. From (26) we can see that the utility of pecking can
for all the choices be expressed by αr − c, by letting α have the appropri-
ate value. We recognize (46) as the probability of pecking from (38). This
shows that for two pairs, (r1, B1) and (r2, B2), satisfying the relation r1B1 =
r2B2, and some Q1, we can find a Q2 such that f("peck"|r1, B1, Q1, ν, σ

2) =
f("peck"|r2, B2, Q2, ν, σ

2) for all ν, σ2 and for all choices, that is all k and d.

We have shown that given some parameter set, there exists another set which
gives the same probability distribution for pecking. Since there are infinitely
many pairs (ri, Bi) satisfying riBi = C there are infinitely many parameter
sets giving a certain distribution. Furthermore, this obviously implies that
the likelihood function evaluated in such equivalent parameter sets will take
the same value. Therefore, the likelihood function will not have a maximum
point, but instead a curve, described by riBi = C for some C, in the param-
eter space. This method will consequentially not give a estimate of r nor B,
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only the product rB. To view this in the context of the earlier discussion,
we can not distinguish between (r, B) = (10, 10) and (r, B) = (100, 1). Or
said differently, suppose two birds follow the probabilistic model in (38), one
with a low appreciation of food, but with a rapid growth in probability of
pecking with increasing utility will behave identically to another bird with a
high appreciation of food, but who needs more utility in order to have the
same probability of pecking.

5 Results and discussion

5.1 Maximum performance estimation

In this section, we present the results achieved by using the methods we have
discussed. Recall that our aim is to estimate the cognitive parameters and
arrive at a probabilistic model for the decision-making.

The maximum performance estimator was implemented according to (37).
As discussed in Section 4.2, we use pN = 0.3, pY = 0.8, τ 2 = 5.7075 and
c = 1, and estimate r and σ2. We use bootstrapping to estimate the stan-
dard deviation. Even though 200 bootstrap samples should suffice, we use
B = 1000 as the algorithm runs fast. The results for Ari from this method
is presented in the following table.

Maximum performance estimates for Ari
θ = r θ = σ2 θ = Q(r, σ2)

θ̂Ari
MPE 48.326 1.2033 0.83864
̂

SDF (θ̂Ari
MPE)bootstrap 4.3272 0.12134 0.016673

The table shows that, given Ari’s behaviour in the experiment, these pa-
rameter values make that behaviour closer to optimal behaviour than any
other parameter values. With the idea that the reward is worth r = 48.326
and a perceived memory-variance of σ2 = 1.2033, Ari’s behaviour achieves
83.864% of the possible expected utility. These estimates suggest that the
sequential expected utility Ari is using is closest to the red graph in Figure
7b, where r = 50 and σ2 = 1. We see that the estimated standard deviation
is for both r and σ2 about 10%, which is quite high. This means that for a
slightly different data set, the estimated parameters can be quite different.
This suggest that the performance function is fairly flat close to its maxi-
mum. The standard deviation for the performance Q is about 5%. Hence,

36



the estimate of the value of the maximum performance is more precise than
the estimated position of the maximum. The corresponding estimates for
Susan are given below.

Maximum performance estimates for Susan
θ = r θ = σ2 θ = Q(r, σ2)

θ̂Susan
MPE 48.243 1.3984 0.79092
̂

SDF (θ̂Susan
MPE )bootstrap 4.4198 0.15421 0.018733

The estimates indicate that Ari and Susan are about equally eager to be
rewarded and that Susan has slightly less belief in her own spatial memory
than Ari do. Her behaviour may also be less optimal, as she achieves only
79.092% of the possible expected utility. The standard deviation of Susan’s
estimates is about the same as those for Ari. The natural question to ask
now, is whether or not these estimates are strong enough evidence to claim
that there is a difference between the birds. To answer this, we follow the
procedure of the hypothesis test explained in Section 3.3. We perform three
hypothesis tests, one for each of r, σ2 and Q. Let the null hypothesis, H0, be
in each case that there is no difference between the birds. By bootstrapping
from the mixed data we get an estimate of the distribution of the estimated
difference in a parameter under H0. The results are presented in Figure 10.
As we can see from Figure 10a, our estimate is in the center of the distri-
bution. It is clear that the estimated difference for r, δ̂r = 0.083, is not
significant, as expected. There is no reason for believing that this differ-
ence does not come from the bootstrap distribution, hence we do not reject
H0. The estimated differences δ̂σ2 and δ̂Q are as mentioned leaning in the
direction of Ari maybe having a higher belief in own memory and higher per-
formance. However, Figure 10b and 10c shows that the differences are not
in the rejection region. We conclude that the MPE-method does not yield
sufficient evidence of claiming that there is a difference in the true parameter
values between the birds.

A big difference in the birds appear when we look at the correlation between
the estimated values for r and σ2. The sample correlation for Susan’s boot-
strap samples is corrSusan

sample(r̂, σ̂
2) = −0.65. For Ari we have corrAri

sample(r̂, σ̂
2) =

0.02. This means that for the bootstrap samples of Susan where r is esti-
mated to a high value, σ2 is more often estimated to a low value. It is not
obvious how this should be interpreted. One possible explanation is that
Susan sharpens her memory when she is hungry while Ari’s memory is on
a more constant level. It is both possible that Susan consciously chooses to
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(a) Difference in r (b) Difference in σ2

(c) Difference in Q

Figure 10: Bootstrap distribution for differences in r, σ2 and the performance
Q. The rejection region is marked with the read area and the acceptance
region is the green area. We use the significance level α = 0.05. The black
dashed line shows the estimated difference between the birds. None of the
observations are in the rejection region. Note that we always use δθ = θAri−
θSusan.
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work harder since she wants food more, or that this is a result of a subcon-
scious survival mechanism. It would be interesting to conduct an experiment
to further investigate whether Ari and Susan responds differently to being
hungry.

5.2 Maximum likelihood estimation

We now present the results from the maximum likelihood estimation. Recall
that in addition to using another estimation method, we are also using an-
other model which includes a choice-distribution that models a probabilistic
behaviour. As we discussed in Section 4.4, we can only estimate the product
rB, not r and B separately. Choosing some value for B will influence the
estimated value of r and Q, but nothing else. The fitted model describing
how the birds behave will be the same for all choices of B. For simplicity
let B = 1 for both birds. Also for these estimates, we use bootstrapping to
estimate the uncertainty. The number of bootstrap samples was as above
B = 1000. The resulting estimates for both birds are given in the tables
below.

Maximum likelihood estimates for Ari
θ = Q θ = ν θ = rB θ = σ2

θ̂Ari
MLE 3.1606 5.3447 19.304 0.64627
̂

SDF (θ̂Ari
MLE)bootstrap 15.515 2.3809 3.8897 0.091367

Maximum likelihood estimates for Susan
θ = Q θ = ν θ = rB θ = σ2

θ̂Susan
MLE 0.30772 1.6578 11.360 0.61550
̂

SDF (θ̂Susan
MLE )bootstrap 1.1410 1.9516 2.6097 0.18028

We see that for both birds, the MLE-estimates of σ2 is much smaller than
the corresponding MPE-estimates. However, when we change our model, the
parameter interacts. This means that we can not expect the value of σ2 in
this model to be the same as before introducing the three parameters linked
to the choice-distribution. The tables show that the three leftmost estimates
differ a lot between the birds. However, due to the high uncertainty asso-
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ciated with the estimates, the difference might be statistically insignificant.
Note that the estimate of Ari’s Q-value has a substantial estimated standard
deviation of 15.515. This might seem unreasonable. However, recall that
the logistic function compresses all the real numbers in to the interval (0, 1).
The value of Q is very sensitive to changes in the choice-distribution. Also,
the effect the three parameters have on the shape of the function do to some
extent overlap. This means that two functions which seems graphically very
similar can have fairly different parameter values. Hence when we perform
bootstrap sampling and change our data set a bit, we might see big changes
in the estimated parameter values. From the tables, we can see that δ̂rB
is the only difference that is bigger than the sum of the corresponding es-
timated standard deviation for each bird. This might therefore be the best
candidate of being a statistical significant difference. As before, we perform
hypothesis tests to decide whether the estimated differences in parameter
values are significant. As before, let the null hypothesis be that there are no
difference, and that the true value of the parameters are the same for the
birds. The bootstrap distributions of the differences under H0 are plotted
in Figure 11. From the figure we can see that even though there are big es-
timated differences, none of them are statistically significant. The observed
differences could very well appear even if the birds were identical. Clearly
the estimated parameter values are very sensitive to changes in the data set.
When we sample with replacement from the original data set we might get
very different estimated parameter values. Note that the difference in rB is
the closest one to being in the rejection region. This is coherent with our
expectation that it was the best candidate of being a statistical significant
difference.

The fitted choice distributions associate probability of pecking to expected
utility. This can be compared to the observed amount of pecking used to fit
the model. All 6 ·17 choices in the experiment has an associated utility given
by the fitted model. For each choice we also have observed in what proportion
the birds chose to peck. If the model is realistic that proportion should not
be to different from the choice distribution evaluated in the expected utility
of that choice, at least for the choices which appeared many times. For a
choice with a probability of 0.6 of pecking according to the model, we might
very well find the observed proportion to be 0 if the choice appeared only
a few times in the experiment. The estimated choice distribution together
with the observed proportions are given in Figure 12 for Ari and in Figure
13 for Susan. As we can see from the figure for Ari, the true proportions
are not lying too close to the fitted model. This alone need not be alarm-
ing. When sampling we must expect that the proportions will deviate from
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(a) Difference in Q (b) Difference in ν

(c) Difference in rB (d) Difference in σ2

Figure 11: Bootstrap distribution for differences in Q, ν, rB and σ2. The
rejection region is marked with the read area and the acceptance region is
the green area. We use the significance level α = 0.05. The black dashed
line is the estimated parameter difference between the birds. None of the
observations are in the rejection region. Note that we always use δθ = θAri−
θSusan.
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Figure 12: The black curve shows the estimated relation between expected
utility and probability of peck. Each dot corresponds to a choice in the ex-
periment, where the expected utility is calculated using the MLE-estimates
and the second coordinate is the observed proportion of pecking in the ex-
periment.
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Figure 13: The black curve shows the estimated relation between expected
utility and probability of peck. Each dot corresponds to a choice in the ex-
periment, where the expected utility is calculated using the MLE-estimates
and the second coordinate is the observed proportion of pecking in the ex-
periment.
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the probability. However, if the model was realistic the deviation from the
black curve should seem random and noisier. It seems as if it is a systematic
difference. The points which are below the curve are over-represented for
low utilities. It might seem as if the model does not fit very well. On the
other hand, this evaluation is purely qualitative and does not give reason
for rejecting the model yet. For Susan’s figure, the deviation from the black
curve seems more evenly spread. This suggests that the model is fitting her
better than Ari. Recall that some of the dots in the figures carry much more
weight than others. The rightmost dark blue dot represents the choice with
d = 0 and k = 0 which appeared 419 times for Ari and 510 for Susan. Some
choices only appeared once. Therefore, the black curve will not necessarily
appear visually to be the best fitting curve.

Recall from the discussion in Section 3.2.2 that the probability of pecking
should depend only on the associated expected utility. If we had in Figure 12
and 13 that the different colours were in layers, then this would indicate that
our utility function is unrealistic. If choices with a certain distance system-
atically were below choices with another distance, then our utility function
does not account for the value of d in a realistic manner. Hence, considering
whether such a pattern is apparent in the figures is a qualitative test for our
utility function. Looking at the figures, we see no such pattern. No colour
is systematically above any other colour. This gives an indication that the
utility is not unrealistic. We do see colour grouping in that the blue dots are
only on the left side, and the right side is dominated by orange and red dots.
This is, however, to be expected. There are no choices with high expected
utility for d = 0, as these trials never are rewarding.

To more easily compare the choice-distribution of the two birds they are
illustrated together in Figure 14. The figure shows that the red curve is
mostly above the blue. The curves do cross at useq = 1.5, but recall that no
choices have lower expected utility than −c = −1. Also, as Figure 12 and 13
show, all choices have lower expected utility than 2. Hence for all expected
utilities associated with a choice, Susan has a higher pecking probability.
This might lead one to believe that Susan is in general pecking more than
Ari does. When asserting a probability of pecking to a choice, our model first
associates a utility to that choice and then a probability to that utility. It is,
in other words, a two-step process. If a bird pecks a lot, this can be described
by both of these steps. A bird that has a very high utility for all choices can
have a slow increasing choice-distribution and still peck a lot. A good ex-
ample of this is that only the product rB is relevant for the behaviour. A
high value for r contributes to a high utility for choices, while a high value
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Figure 14: Probability of peck as a function of expected utility for the fitted
model. This is also referred to as the choice-distribution. The first coordinate
of the crosses indicates average expected utility where each of the 6 · 17
possible choices is weighted equally, not accounting for the fact that some
appeared more in the experiment. The second coordinate of the crosses is
the number of pecks performed divided by the number of opportunities to
peck. The red curve and cross represent Susan and the blue curve and cross
represent Ari.
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of B does not. That value will instead contribute to a high peck probability
as a function of utility. Recall that when using B = 1 we have estimated
r̂Ari = 19.304 and r̂Susan = 11.360. Because of this, Ari has typically a higher
utility for a choice than Susan has. But for a certain utility, Susan has a
higher probability. These two effects are opposing and evening each other
out. As the crosses in Figure 14 shows, Susan is pecking marginally more on
average than Ari does. The difference is however much smaller than what
the curves might make it seem like, due to the discussed effect.

5.3 Simulation

From the probabilistic model for the birds’ behaviour, we can generate new
data by simulating experiments. Simulated data is very interesting since we
know for sure that they are described by the model. Comparing generated
behaviour to the observed behaviour is a powerful method for answering
whether it is realistic that the observed behaviour comes from this model.

Simulation also allows us to test our estimators. When simulating data
we know the true value of the parameters since we choose them ourselves.
Therefore, estimation based on generated data will show how good the es-
timators perform. Both the variance and whether or not the estimator is
unbiased can be investigated by this technique. To keep the analysis brief
we only do this for Ari. We generate 1000 samples from Ari’s fitted model,
each of sample size 846 trails. For each of the samples we estimate the four
parameters Q, ν, rB and σ2. The estimates will then make up an approx-
imated distribution for the estimators. The results are shown in Figure 15.
The distribution of Q has a big weight close to zero and a long tail. Due
to the long tail, we see that the estimator becomes pretty unbiased with an
average estimation of about 20. However, the median of the distribution is
3.44 which is fairly close to the used value 3.16. The estimator is definitely
unbiased in expectation, but this is only due to some very few very extreme
observations. There are for example 3 observations over 1000. Looking at
the distribution in Figure 15a we see that the estimate has a high probability
of being close to the true value. The reason we test our estimators is to see
whether our estimates are realistic, that is, close to the true values. We pre-
fer an estimator that is biased but almost always close to the true value, and
not an estimator that is unbiased but almost always far from correct. Hence
we do not use bias correction. The spread of this distribution shows, as we
have already seen, that the variance in the estimation of Q is very big. All
MLE-estimators are consistent. This means that they converge to the true
value. Using a sample size of 2000 instead of 846 the average estimate of Q
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(a) Estimates of Q (b) Estimates of ν

(c) Estimates of rB (d) Estimates of σ2

Figure 15: Estimates of the four parameters based on 1000 generated data
sets of 846 trials from Ari’s fitted model. The black dashed line is the used
parameter value in the simulation. The average estimated values is the red
dashed line.
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Figure 16: Percentage of simulated trials the birds gave up without pecking,
based on 100, 000, 000 generated trials. The figure shows a blue bar for Ari
and a pink bar for Susan for six different values of d. The matching cases are
represented in the leftmost bar-pair where d = 0. The non-matching cases
make up the five other bar-pairs.

becomes 7.44. A further increase to 10, 000 trials gives 3.62. This reflects
the consistency of MLE. The estimators of ν, rB and σ2 all average close to
the used parameter value, as shown in Figure 15.

So far we have used simulated data to test our estimators. We will in
the following compare behaviour simulated from the model to the observed
behaviour. If the simulation deviates a lot from the observed data, then
this indicates that the model assumptions are unrealistic. We first simulate
100, 000, 000 trials for each bird and illustrate the behaviour in the same way
as we did with the observed data. First we look at the giving-up percentage,
shown in Figure 16. The general trend in the figure compared to Figure 2 is
that the birds give up less in the simulation than in the experiment. The ex-
ception from this trend is Ari’s extreme low giving-up percentage at the two
biggest d values, which is even lower than the simulated ones. We see that
Susan’s simulated behaviour is to give up less for all distance levels and at d5

48



0 d1 d2 d3 d4 d5
0

2

4

6

8

10

12

14

16

2.2 1.8

3.4 3.9 3.9 3.9
2.6 2

3.4 3.7 3.8 3.8 N
um

be
r

of
pe

ck
s

Average Investment - Simulation

Ari Susan

Figure 17: The average number of pecks for each distance level is illustrated,
including the trials where the bird gave up, i.e. pecked zero times. We
use 100, 000, 000 simulated trials. The blue bars represent Ari’s simulated
investments and the pink bars represent Susan’s simulated investments.

she is giving up over twice as much in the experiment than in the simulated
data. Perhaps the biggest difference between reality and the simulation is
Ari’s behaviour at d = 1. In the experiment, he gave up 40% compared to the
simulated 21%. This difference seems pretty big and may lead us to believe
that the model is unrealistic. This is simply a qualitative observation and
is not sufficient evidence for rejection of the model. We will later perform
hypothesis tests to see if the deviation from the model is significant.

We now consider the average investments at different distance levels. This is
illustrated in Figure 17. The figure matches the observed investments in Fig-
ure 3 quite well in several aspects. As the simulated data shows, the model
reproduces the fact that the average investment for both birds is lower at d1
than d0. As discussed earlier, this is due to the birds being rewarded at d1,
and thus hindered from pecking as much as they are willing to. We also see
that the fitted models have caught up the fact that Ari is pecking less than
Susan for low values of d, but that it evens out for bigger values of d. Overall
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Figure 18: The average number of pecks for each distance level when only
considering non-rewarding trials is illustrated. The data comes from a sim-
ulation of 100, 000, 000 trials, resulting in about 20, 000, 000 non-rewarding
trials. The blue bars represent Ari’s simulated investments and the pink bars
represent Susan’s simulated investments.

this figure matches the observed data well.

To see the investments when the birds are not being hindered by being
rewarded, we have in Figure 18 plotted the average investment in non-
rewarding trials. As expected the average investments are increased when
only considering non-rewarding trials. Also, note that the average invest-
ment at d1 becomes bigger than the average investment at 0. This effect is
coherent with the observed data in Figure 4. Both birds peck more at d5 in
reality than in the simulations, especially Ari. Ari was also giving up a lot
more for low values of d than the simulations suggest. It might seem that
Ari is not as willing to start pecking as often as the model suggest, but when
he first starts pecking, he is willing to peck more than the model. This sug-
gests that the model assumption that each peck costs the same is unrealistic.
Perhaps a better assumption for Ari would be that the first peck in a trial
has a bigger cost.
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Another plot that is very descriptive of the behaviour is the distribution
of the number of pecks performed in a trial. The observed distribution from
the experiment is plotted together with the distribution from the simulation
in Figure 19. The figure shows that the simulated data matches the observed
data pretty good. For both birds, we have that both the observed data and
the simulated data very seldom show more than 15 pecks. All four densities
have a peak of about 0.25 which is at either 0 pecks or 1 peck. In fact, the
most obvious difference between the simulated data and the observed data
is the relation between the 0 and 1. The model suggests that the proportion
of trials where 1 peck is performed should be at least 5 percentage points
bigger than the proportion with 0 pecks. This is not observed for Ari nor
Susan. Ari even has the opposite relation between 0 peck and 1 peck. The
figure supports our suspicion that Ari, in reality, has a bigger cost for the
first peck then the model does.

Hitherto, we have only compared the simulated behaviour and the observed
behaviour qualitatively. We have pointed at some trends that might give
reason to believe that the model is unrealistic. For example, we noted us
that the giving-up percentage for Ari at d1 and for Susan and d5 was quite
different from that of the simulated data. We will now do some quantitative
analysis such that we can consider whether it is evidence strong enough to
reject the proposed model. As before, we perform hypothesis tests. Let the
null hypothesis, H0, be that the observed data is generated from the model.
Let us consider a couple of test statistics and estimate their distributions by
simulating data. If a test statistic of the observed data is unreasonably far
out in the tail of the estimated distribution, we conclude that the observed
data does not have the same distribution as the model does. That is, H0 is
rejected. A very natural test statistic to use is the average number of pecks
in a trial for a data set of size 846 for Ari and 1016 for Susan. This statistic
summarizes and weights all trials equally, its estimated distribution, using
1, 000, 000 datasets, is plotted in Figure 20. The figure shows for both birds
that the observed average number of peck is near the middle of the density.
Hence we do not reject H0.

Let us now use some test statistics that we suspect will result in rejection.
Recall that Are seemed to give up unreasonably much in trials with d = d1.
Hence, we perform a hypothesis test where the test statistic is the giving-up
percentage at d1. Again, the null hypothesis is that the observed data is
generated from the model. For this test we also use 1, 000, 000 data sets of
size 846 for Ari and 1016 for Susan. The result is illustrated in Figure 21. As
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Figure 19: Distribution of number of pecks performed in trials, based on
100, 000, 000 trials.
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Figure 20: Distribution of the average number of pecks in simulated data sets
of size 846 for Ari and 1016 for Susan. For both birds we have used 1, 000, 000
data set, each used to compute one average. The red area represents the
rejection region of the hypothesis test. The black dashed line is the observed
average.

Figure 21: Distribution of the giving-up percentage at d1, based on 1, 000, 000
simulated data sets of the birds’ respective data set size. The read area
is the rejection region and the black dashed line is the observed giving-up
percentage.
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Figure 22: Distribution of the giving-up percentage at d5, based on 1, 000, 000
simulated data sets of the birds’ respective data set size. The read area
is the rejection region and the black dashed line is the observed giving-up
percentage.

the figure shows, the observed giving-up percentage at d1 for Ari is far out in
the tail of the distribution and definitely in the rejection region. This aspect
of Ari’s behaviour can not be explained by the model. Hence we reject H0 for
Ari. In contrast, Susan’s giving-up percentage at d1 fits the model very well.
Recall that we criticized the model for Susan regarding her high giving-up
percentage at d5. We now perform the same hypothesis test at the distance
level d = d5. The result is illustrated in Figure 22. From the figure we
see that neither of the birds’ observed giving-up percentage at d5 is extreme
enough to reject H0. Note however that Susan’s observation is very close to
the rejection region, which is coherent with our suspicion. The distributions
might appear to look strange. However, recall that both birds give up very
seldom at d5. Therefore we can see local maximums corresponding to giving
up one time, two times and three times. The reason for the spreading around
these maximums is that the number of d5 trials in a data set is stochastic.
Note that neither of the bird has a rejection region on the left side. The
lowest possible observation is 0%, which is not extreme enough to be in the
rejection region.
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6 Closing remarks
In this thesis, we have considered an experiment on metacognition in jay-
birds. We established a statistical model for the experiment and investigated
how the optimal investment pattern depends on the parameters of interest,
the reward r and the perceived spatial memory variance σ2. We introduced
and applied maximum performance estimation based on the observed data to
estimate r and σ2. The results showed that the birds are equally eager to be
rewarded with food. The estimated value for σ2 was slightly higher for Susan
than for Ari. However, by using bootstrapping to perform a hypothesis test,
we saw that this difference is not statistically significant at a α = 0.05-level.
The performance of Ari was significantly higher than Susan’s. In our model,
this should be interpreted as Ari making better decisions than Susan does.
The bootstrap resampling also revealed that the estimated values for r and
σ2 for Susan are correlating. The correlation factor of −0.65 could suggest
that Susan has more belief in her own memory when hungry. Ari has no
such correlation, and it would be interesting to conduct an experiment to
further investigate whether Susan and Ari really do respond differently to
being hungry.

Another approach was used where we established a full probabilistic model
for how the birds make decisions. The same utility function was used, but
for a certain utility, we associated with it a probability of choosing to peck,
by defining a choice-distribution. As this model gives the probability that
some decision is made, it allowed us to use maximum likelihood estimation.
The use of a choice-distribution adds three more parameters, Q, B and ν,
describing the shape of the choice distribution. We argued that r and B
could not be estimated, only their product. When using MLE we found big
differences between the birds in the estimated parameter values. However,
by performing a bootstrap hypothesis test we saw that these differences were
not significant. From the fitted model, we simulated new data for compar-
ison with the observed data. In a lot of aspects, the model describes the
behaviour of the birds well. Based on the generated data we performed three
hypothesis tests for each bird. The observed behaviour of Susan did in none
of these tests fall in the rejection region. Hence, we have not rejected that
she is behaving like the model suggests.

The fitted model for Ari did not pass all hypothesis tests. His giving-up
percentage of 40% at d1 showed to be significantly different from the simu-
lated 21%. Hence we reject the hypothesis that Ari’s behaviour is generated
from this model. This means that some model assumptions are not fitting
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Ari’s behaviour. There are several indicators pointing toward the cost Ari
experiences by performing the first peck in a trial is bigger than in the model.
First, we saw by comparing Figure 16 and 2 that in the simulations, Ari is
not giving up as much as in reality. This was later supported by considering
the distribution of the number of pecks, as shown in Figure 19. Lastly, the
aspect of his behaviour that makes us reject Ari’s model, his giving-up per-
centage at d1, would also in part be explained by a higher cost for the first
peck.

It seems to be reasons to believe that the birds respond differently to be-
ing hungry. It would, therefore, be interesting in further work to examine
whether this could be the case, for example by conducting an experiment
suited for that. Furthermore, since our model is not fully describing the
behaviour of the birds, we suggest the usage of a more sophisticated utility
function. By not assuming each peck having the same cost, Ari’s behaviour
is likely to be better explained.
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Appendices
A Calculation of E[Y I(X 6= Z)I(N = k + 1)r −

c|Z = z, Y = 0 ∪X = Z ∪N > k]

We now present the calculation of E[Y I(X 6= Z)I(N = k + 1)r − c|Z =
z, Y = 0 ∪ X = Z ∪ N > k] as mentioned in Section 4.2. The expression
Y I(X 6= Z)I(N = k + 1) is equal to 1 if and only if all three factors are
equal to 1, otherwise the expression is zero. Hence, by using the fact that
E[I(A)] = 1 · P (A) + 0 · (1− P (A)) = P (A), we get

E[Y I(X 6= Z)I(N = k + 1)r − c|Z = z, Y = 0 ∪X = Z ∪N > k]

= P (Y = 1, X 6= Z,N = k + 1|Z = z, Y = 0 ∪X = Z ∪N > k) · r − c.
(47)

By using the definition of conditional probability we can write

P (Y = 1, X 6= Z,N = k + 1|Z = z, Y = 0 ∪X = Z ∪N > k)

=
P (Y = 1, X 6= Z,N = k + 1, Y = 0 ∪X = Z ∪N > k)|Z = z)

P (Y = 0 ∪X = Z ∪N > k|Z = z)
.

(48)

The triple union in the numerator can be cancelled since it is intersected
with the event N = k+1 which implies N > k. The remaining events in the
intersection are independent of each other and only the event X 6= Z depends
on the condition Z = z. Also we use that P (A∪B) = P (A)+P (B\A), where
B \ A is the set difference, two times in the triple union in the denominator
and get

P (Y = 1, X 6= Z,N = k + 1, Y = 0 ∪X = Z ∪N > k)|Z = z)

P (Y = 0 ∪X = Z ∪N > k|Z = z)

=
pY P (X 6= Z|Z = z)(1− pN)kpN

(1− pY ) + pY P (X 6= Z|Z = z) + pY P (X 6= Z|Z = z)(1− pN)k
.

(49)
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We see from this expression that it only remains to calculate P (X 6= Z|Z =
z), that is the probability from a bird’s perspective that the initial dot’s
position is not equal to the final dot, which it knows the position of. This
is in other words the perceived probability of a non-matching trial. We first
write this in terms of a integral of the density

P (X 6= Z|Z = z) =

ˆ
x6=z

f(x|z)dx = 1−
ˆ
x=z

f(x|z)dx. (50)

Furthermore, Bayes theorem yields

f(x|z) = f(x)f(z|x)
f(z)

=
f(x)f(z|x)´

x∈D f(x)f(z|x)dx
, (51)

in the latter equality we use the law of total probability. The denominator
in (51) is a constant. hence we only integrate the numerator
ˆ
x=z

f(x)f(z|x)dx =

ˆ
x=z

n(x;mu, σ2)

(
1

2
δx(z) +

1

2
n(z;x, τ 2)

)
dx. (52)

An infinitesimal size multiplied with some finite size is an infinitesimal size,
and integrated over a single point it evaluates to zero. For the term involving
the dirac delta function we use that

´
R δx0(x)(g(x)dx = g(x0) for all functions

g on R, we get
ˆ
x=z

n(x;µ, σ2)

(
1

2
δx(z) +

1

2
n(z;x, τ 2)

)
dx =

1

2
n(z;µ, σ2). (53)

Next we consider the denominator in (51), substituting in the densities we
get
ˆ
x∈D

f(x)f(z|x)dx =

ˆ
x∈D

n(x;µ, σ2)

(
1

2
δx(z) +

1

2
n(z;x, τ 2)

)
dx. (54)

The dirac delta function is equal to zero for all values other than x = z,
hence the first term integrates to the same as (53), we can thus write

ˆ
x∈D

n(x;µ, σ2)

(
1

2
δx(z) +

1

2
n(z;x, τ 2)

)
dx =

1

2
n(z;µ, σ2) +

1

2

ˆ
x∈D

n(x;µ, σ2)n(z;x, τ 2)dx.

(55)

Due to the law of total probability the latter integral is the density of z
given that X 6= Z. Sampling X ∼ N(µ, σ2) and from that realization x0
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sampling Z ∼ N(x0, τ
2) is equivalent with sampling Z = X1 + X2, where

X1 ∼ N(µ, σ2) and X2 ∼ N(µ, τ 2). Hence the density of z in the non-
matching cases is the density of X1 +X2. The random variables X1 and X2

are independent, thus the variance of Z is the sum of the variance of X1 and
X2. That is ˆ

x∈D
n(x;µ, σ2)n(z;x, τ 2)dx = n(z, µ, σ2 + τ 2). (56)

This means that the denominator in (51) is
ˆ
x∈D

f(x)f(z|x)dx =
1

2
n(z;µ, σ2) +

1

2
n(z;µ, σ2 + τ 2). (57)

By plugging this and (53) into (50) we can write

P (X 6= Z|Z = z) = 1−
1
2
n(z;µ, σ2)

1
2
n(z;µ, σ2) + 1

2
n(z;µ, σ2 + τ 2)

=
n(z, µ, σ2 + τ 2)

n(z;µ, σ2) + n(z;µ, σ2 + τ 2)
= N µ

z (σ
2 + τ 2, σ2),

(58)

where the latter is a notation we choose to define for simplicity. We plug
(58) into (49), and that into (47) to get the final result

E[Y I(X 6= Z)I(N = k + 1)r − c|Z = z, Y = 0 ∪X = Z ∪N > k] =

pYN µ
z (σ

2 + τ 2, σ2)(1− pN)kpN · r
(1− pY ) + pYN µ

z (σ2, σ2 + τ 2) + pYN µ
z (σ2 + τ 2, σ2)(1− pN)k

− c.
(59)
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