


work harder since she wants food more, or that this is a result of a subcon-
scious survival mechanism. It would be interesting to conduct an experiment
to further investigate whether Ari and Susan responds differently to being
hungry.

5.2 Maximum likelihood estimation

We now present the results from the maximum likelihood estimation. Recall
that in addition to using another estimation method, we are also using an-
other model which includes a choice-distribution that models a probabilistic
behaviour. As we discussed in Section 4.4, we can only estimate the product
rB, not r and B separately. Choosing some value for B will influence the
estimated value of r and (), but nothing else. The fitted model describing
how the birds behave will be the same for all choices of B. For simplicity
let B =1 for both birds. Also for these estimates, we use bootstrapping to
estimate the uncertainty. The number of bootstrap samples was as above
B = 1000. The resulting estimates for both birds are given in the tables
below.

Maximum likelihood estimates for Ari

0=0aQ 0=v 0=rB 0 = o?
phii 3.1606 5.3447 19.304 0.64627
SDr(BN ) sootsirap || 15-515 2.3809 3.8807 0.091367

Maximum likelihood estimates for Susan

0=0aQ 0=v 0=rB 0 = o?
pousan 0.30772 | 1.6578 11.360 0.61550
SDp (O orstray || 1-1410 1.9516 2.6097 0.18028

We see that for both birds, the MLE-estimates of o2 is much smaller than
the corresponding MPE-estimates. However, when we change our model, the
parameter interacts. This means that we can not expect the value of o2 in
this model to be the same as before introducing the three parameters linked
to the choice-distribution. The tables show that the three leftmost estimates
differ a lot between the birds. However, due to the high uncertainty asso-
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ciated with the estimates, the difference might be statistically insignificant.
Note that the estimate of Ari’s Q-value has a substantial estimated standard
deviation of 15.515. This might seem unreasonable. However, recall that
the logistic function compresses all the real numbers in to the interval (0, 1).
The value of @) is very sensitive to changes in the choice-distribution. Also,
the effect the three parameters have on the shape of the function do to some
extent overlap. This means that two functions which seems graphically very
similar can have fairly different parameter values. Hence when we perform
bootstrap sampling and change our data set a bit, we might see big changes
in the estimated parameter values. From the tables, we can see that ¢,p
is the only difference that is bigger than the sum of the corresponding es-
timated standard deviation for each bird. This might therefore be the best
candidate of being a statistical significant difference. As before, we perform
hypothesis tests to decide whether the estimated differences in parameter
values are significant. As before, let the null hypothesis be that there are no
difference, and that the true value of the parameters are the same for the
birds. The bootstrap distributions of the differences under H, are plotted
in Figure 11. From the figure we can see that even though there are big es-
timated differences, none of them are statistically significant. The observed
differences could very well appear even if the birds were identical. Clearly
the estimated parameter values are very sensitive to changes in the data set.
When we sample with replacement from the original data set we might get
very different estimated parameter values. Note that the difference in rB is
the closest one to being in the rejection region. This is coherent with our
expectation that it was the best candidate of being a statistical significant
difference.

The fitted choice distributions associate probability of pecking to expected
utility. This can be compared to the observed amount of pecking used to fit
the model. All 6-17 choices in the experiment has an associated utility given
by the fitted model. For each choice we also have observed in what proportion
the birds chose to peck. If the model is realistic that proportion should not
be to different from the choice distribution evaluated in the expected utility
of that choice, at least for the choices which appeared many times. For a
choice with a probability of 0.6 of pecking according to the model, we might
very well find the observed proportion to be 0 if the choice appeared only
a few times in the experiment. The estimated choice distribution together
with the observed proportions are given in Figure 12 for Ari and in Figure
13 for Susan. As we can see from the figure for Ari, the true proportions
are not lying too close to the fitted model. This alone need not be alarm-
ing. When sampling we must expect that the proportions will deviate from
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Fitted choice-distribution - Ari
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Figure 12: The black curve shows the estimated relation between expected
utility and probability of peck. Each dot corresponds to a choice in the ex-
periment, where the expected utility is calculated using the MLE-estimates
and the second coordinate is the observed proportion of pecking in the ex-
periment.
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Fitted choice-distribution - Susan
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Figure 13: The black curve shows the estimated relation between expected
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periment, where the expected utility is calculated using the MLE-estimates
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the probability. However, if the model was realistic the deviation from the
black curve should seem random and noisier. It seems as if it is a systematic
difference. The points which are below the curve are over-represented for
low utilities. It might seem as if the model does not fit very well. On the
other hand, this evaluation is purely qualitative and does not give reason
for rejecting the model yet. For Susan’s figure, the deviation from the black
curve seems more evenly spread. This suggests that the model is fitting her
better than Ari. Recall that some of the dots in the figures carry much more
weight than others. The rightmost dark blue dot represents the choice with
d = 0 and k = 0 which appeared 419 times for Ari and 510 for Susan. Some
choices only appeared once. Therefore, the black curve will not necessarily
appear visually to be the best fitting curve.

Recall from the discussion in Section 3.2.2 that the probability of pecking
should depend only on the associated expected utility. If we had in Figure 12
and 13 that the different colours were in layers, then this would indicate that
our utility function is unrealistic. If choices with a certain distance system-
atically were below choices with another distance, then our utility function
does not account for the value of d in a realistic manner. Hence, considering
whether such a pattern is apparent in the figures is a qualitative test for our
utility function. Looking at the figures, we see no such pattern. No colour
is systematically above any other colour. This gives an indication that the
utility is not unrealistic. We do see colour grouping in that the blue dots are
only on the left side, and the right side is dominated by orange and red dots.
This is, however, to be expected. There are no choices with high expected
utility for d = 0, as these trials never are rewarding.

To more easily compare the choice-distribution of the two birds they are
illustrated together in Figure 14. The figure shows that the red curve is
mostly above the blue. The curves do cross at us., = 1.5, but recall that no
choices have lower expected utility than —c = —1. Also, as Figure 12 and 13
show, all choices have lower expected utility than 2. Hence for all expected
utilities associated with a choice, Susan has a higher pecking probability.
This might lead one to believe that Susan is in general pecking more than
Ari does. When asserting a probability of pecking to a choice, our model first
associates a utility to that choice and then a probability to that utility. It is,
in other words, a two-step process. If a bird pecks a lot, this can be described
by both of these steps. A bird that has a very high utility for all choices can
have a slow increasing choice-distribution and still peck a lot. A good ex-
ample of this is that only the product rB is relevant for the behaviour. A
high value for r contributes to a high utility for choices, while a high value
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Figure 14: Probability of peck as a function of expected utility for the fitted
model. This is also referred to as the choice-distribution. The first coordinate
of the crosses indicates average expected utility where each of the 6 - 17
possible choices is weighted equally, not accounting for the fact that some
appeared more in the experiment. The second coordinate of the crosses is
the number of pecks performed divided by the number of opportunities to
peck. The red curve and cross represent Susan and the blue curve and cross
represent Ari.
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of B does not. That value will instead contribute to a high peck probability
as a function of utility. Recall that when using B = 1 we have estimated
Tari = 19.304 and Tsugan = 11.360. Because of this, Ari has typically a higher
utility for a choice than Susan has. But for a certain utility, Susan has a
higher probability. These two effects are opposing and evening each other
out. As the crosses in Figure 14 shows, Susan is pecking marginally more on
average than Ari does. The difference is however much smaller than what
the curves might make it seem like, due to the discussed effect.

5.3 Simulation

From the probabilistic model for the birds’ behaviour, we can generate new
data by simulating experiments. Simulated data is very interesting since we
know for sure that they are described by the model. Comparing generated
behaviour to the observed behaviour is a powerful method for answering
whether it is realistic that the observed behaviour comes from this model.

Simulation also allows us to test our estimators. When simulating data
we know the true value of the parameters since we choose them ourselves.
Therefore, estimation based on generated data will show how good the es-
timators perform. Both the variance and whether or not the estimator is
unbiased can be investigated by this technique. To keep the analysis brief
we only do this for Ari. We generate 1000 samples from Ari’s fitted model,
each of sample size 846 trails. For each of the samples we estimate the four
parameters Q, v, rB and o2. The estimates will then make up an approx-
imated distribution for the estimators. The results are shown in Figure 15.
The distribution of ) has a big weight close to zero and a long tail. Due
to the long tail, we see that the estimator becomes pretty unbiased with an
average estimation of about 20. However, the median of the distribution is
3.44 which is fairly close to the used value 3.16. The estimator is definitely
unbiased in expectation, but this is only due to some very few very extreme
observations. There are for example 3 observations over 1000. Looking at
the distribution in Figure 15a we see that the estimate has a high probability
of being close to the true value. The reason we test our estimators is to see
whether our estimates are realistic, that is, close to the true values. We pre-
fer an estimator that is biased but almost always close to the true value, and
not an estimator that is unbiased but almost always far from correct. Hence
we do not use bias correction. The spread of this distribution shows, as we
have already seen, that the variance in the estimation of () is very big. All
MLE-estimators are consistent. This means that they converge to the true
value. Using a sample size of 2000 instead of 846 the average estimate of @)
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Figure 15: Estimates of the four parameters based on 1000 generated data
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parameter value in the simulation. The average estimated values is the red
dashed line.
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Giving Up Without Pecking - Simulation
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Figure 16: Percentage of simulated trials the birds gave up without pecking,
based on 100,000,000 generated trials. The figure shows a blue bar for Ari
and a pink bar for Susan for six different values of d. The matching cases are
represented in the leftmost bar-pair where d = 0. The non-matching cases
make up the five other bar-pairs.

becomes 7.44. A further increase to 10,000 trials gives 3.62. This reflects
the consistency of MLE. The estimators of v, rB and ¢? all average close to
the used parameter value, as shown in Figure 15.

So far we have used simulated data to test our estimators. We will in
the following compare behaviour simulated from the model to the observed
behaviour. If the simulation deviates a lot from the observed data, then
this indicates that the model assumptions are unrealistic. We first simulate
100, 000, 000 trials for each bird and illustrate the behaviour in the same way
as we did with the observed data. First we look at the giving-up percentage,
shown in Figure 16. The general trend in the figure compared to Figure 2 is
that the birds give up less in the simulation than in the experiment. The ex-
ception from this trend is Ari’s extreme low giving-up percentage at the two
biggest d values, which is even lower than the simulated ones. We see that
Susan’s simulated behaviour is to give up less for all distance levels and at d5
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Average Investment - Simulation
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Figure 17: The average number of pecks for each distance level is illustrated,
including the trials where the bird gave up, i.e. pecked zero times. We
use 100,000,000 simulated trials. The blue bars represent Ari’s simulated
investments and the pink bars represent Susan’s simulated investments.

she is giving up over twice as much in the experiment than in the simulated
data. Perhaps the biggest difference between reality and the simulation is
Ari’s behaviour at d = 1. In the experiment, he gave up 40% compared to the
simulated 21%. This difference seems pretty big and may lead us to believe
that the model is unrealistic. This is simply a qualitative observation and
is not sufficient evidence for rejection of the model. We will later perform
hypothesis tests to see if the deviation from the model is significant.

We now consider the average investments at different distance levels. This is
illustrated in Figure 17. The figure matches the observed investments in Fig-
ure 3 quite well in several aspects. As the simulated data shows, the model
reproduces the fact that the average investment for both birds is lower at d;
than dy. As discussed earlier, this is due to the birds being rewarded at dy,
and thus hindered from pecking as much as they are willing to. We also see
that the fitted models have caught up the fact that Ari is pecking less than
Susan for low values of d, but that it evens out for bigger values of d. Overall
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Average Investment in Non-Rewarding Trials - Simulation
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Figure 18: The average number of pecks for each distance level when only
considering non-rewarding trials is illustrated. The data comes from a sim-
ulation of 100,000,000 trials, resulting in about 20, 000,000 non-rewarding
trials. The blue bars represent Ari’s simulated investments and the pink bars
represent Susan’s simulated investments.

this figure matches the observed data well.

To see the investments when the birds are not being hindered by being
rewarded, we have in Figure 18 plotted the average investment in non-
rewarding trials. As expected the average investments are increased when
only considering non-rewarding trials. Also, note that the average invest-
ment at d; becomes bigger than the average investment at 0. This effect is
coherent with the observed data in Figure 4. Both birds peck more at ds in
reality than in the simulations, especially Ari. Ari was also giving up a lot
more for low values of d than the simulations suggest. It might seem that
Ari is not as willing to start pecking as often as the model suggest, but when
he first starts pecking, he is willing to peck more than the model. This sug-
gests that the model assumption that each peck costs the same is unrealistic.
Perhaps a better assumption for Ari would be that the first peck in a trial
has a bigger cost.
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Another plot that is very descriptive of the behaviour is the distribution
of the number of pecks performed in a trial. The observed distribution from
the experiment is plotted together with the distribution from the simulation
in Figure 19. The figure shows that the simulated data matches the observed
data pretty good. For both birds, we have that both the observed data and
the simulated data very seldom show more than 15 pecks. All four densities
have a peak of about 0.25 which is at either 0 pecks or 1 peck. In fact, the
most obvious difference between the simulated data and the observed data
is the relation between the 0 and 1. The model suggests that the proportion
of trials where 1 peck is performed should be at least 5 percentage points
bigger than the proportion with 0 pecks. This is not observed for Ari nor
Susan. Ari even has the opposite relation between 0 peck and 1 peck. The
figure supports our suspicion that Ari, in reality, has a bigger cost for the
first peck then the model does.

Hitherto, we have only compared the simulated behaviour and the observed
behaviour qualitatively. We have pointed at some trends that might give
reason to believe that the model is unrealistic. For example, we noted us
that the giving-up percentage for Ari at d; and for Susan and d; was quite
different from that of the simulated data. We will now do some quantitative
analysis such that we can consider whether it is evidence strong enough to
reject the proposed model. As before, we perform hypothesis tests. Let the
null hypothesis, Hy, be that the observed data is generated from the model.
Let us consider a couple of test statistics and estimate their distributions by
simulating data. If a test statistic of the observed data is unreasonably far
out in the tail of the estimated distribution, we conclude that the observed
data does not have the same distribution as the model does. That is, Hy is
rejected. A very natural test statistic to use is the average number of pecks
in a trial for a data set of size 846 for Ari and 1016 for Susan. This statistic
summarizes and weights all trials equally, its estimated distribution, using
1,000, 000 datasets, is plotted in Figure 20. The figure shows for both birds
that the observed average number of peck is near the middle of the density.
Hence we do not reject Hy.

Let us now use some test statistics that we suspect will result in rejection.
Recall that Are seemed to give up unreasonably much in trials with d = d;.
Hence, we perform a hypothesis test where the test statistic is the giving-up
percentage at d;. Again, the null hypothesis is that the observed data is
generated from the model. For this test we also use 1,000,000 data sets of
size 846 for Ari and 1016 for Susan. The result is illustrated in Figure 21. As
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Simulated average number of peck - Ari Simulated average number of peck - Susan
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Figure 20: Distribution of the average number of pecks in simulated data sets
of size 846 for Ari and 1016 for Susan. For both birds we have used 1, 000, 000
data set, each used to compute one average. The red area represents the
rejection region of the hypothesis test. The black dashed line is the observed
average.
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Figure 21: Distribution of the giving-up percentage at d;, based on 1, 000, 000
simulated data sets of the birds’ respective data set size. The read area
is the rejection region and the black dashed line is the observed giving-up
percentage.

33



Simulated giving up precentage at ds - Ari Simulated giving up precentage at ds - Susan
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Figure 22: Distribution of the giving-up percentage at ds, based on 1, 000, 000
simulated data sets of the birds’ respective data set size. The read area
is the rejection region and the black dashed line is the observed giving-up
percentage.

the figure shows, the observed giving-up percentage at d; for Ari is far out in
the tail of the distribution and definitely in the rejection region. This aspect
of Ari’s behaviour can not be explained by the model. Hence we reject Hy for
Ari. In contrast, Susan’s giving-up percentage at d; fits the model very well.
Recall that we criticized the model for Susan regarding her high giving-up
percentage at ds. We now perform the same hypothesis test at the distance
level d = ds. The result is illustrated in Figure 22. From the figure we
see that neither of the birds’ observed giving-up percentage at ds is extreme
enough to reject Hy. Note however that Susan’s observation is very close to
the rejection region, which is coherent with our suspicion. The distributions
might appear to look strange. However, recall that both birds give up very
seldom at d5. Therefore we can see local maximums corresponding to giving
up one time, two times and three times. The reason for the spreading around
these maximums is that the number of d5 trials in a data set is stochastic.
Note that neither of the bird has a rejection region on the left side. The
lowest possible observation is 0%, which is not extreme enough to be in the
rejection region.
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6 Closing remarks

In this thesis, we have considered an experiment on metacognition in jay-
birds. We established a statistical model for the experiment and investigated
how the optimal investment pattern depends on the parameters of interest,
the reward r and the perceived spatial memory variance o2. We introduced
and applied maximum performance estimation based on the observed data to
estimate r and o2. The results showed that the birds are equally eager to be
rewarded with food. The estimated value for o was slightly higher for Susan
than for Ari. However, by using bootstrapping to perform a hypothesis test,
we saw that this difference is not statistically significant at a o = 0.05-level.
The performance of Ari was significantly higher than Susan’s. In our model,
this should be interpreted as Ari making better decisions than Susan does.
The bootstrap resampling also revealed that the estimated values for r and
o? for Susan are correlating. The correlation factor of —0.65 could suggest
that Susan has more belief in her own memory when hungry. Ari has no
such correlation, and it would be interesting to conduct an experiment to
further investigate whether Susan and Ari really do respond differently to
being hungry.

Another approach was used where we established a full probabilistic model
for how the birds make decisions. The same utility function was used, but
for a certain utility, we associated with it a probability of choosing to peck,
by defining a choice-distribution. As this model gives the probability that
some decision is made, it allowed us to use maximum likelihood estimation.
The use of a choice-distribution adds three more parameters, ), B and v,
describing the shape of the choice distribution. We argued that r and B
could not be estimated, only their product. When using MLE we found big
differences between the birds in the estimated parameter values. However,
by performing a bootstrap hypothesis test we saw that these differences were
not significant. From the fitted model, we simulated new data for compar-
ison with the observed data. In a lot of aspects, the model describes the
behaviour of the birds well. Based on the generated data we performed three
hypothesis tests for each bird. The observed behaviour of Susan did in none
of these tests fall in the rejection region. Hence, we have not rejected that
she is behaving like the model suggests.

The fitted model for Ari did not pass all hypothesis tests. His giving-up
percentage of 40% at d; showed to be significantly different from the simu-
lated 21%. Hence we reject the hypothesis that Ari’s behaviour is generated
from this model. This means that some model assumptions are not fitting
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Ari’s behaviour. There are several indicators pointing toward the cost Ari
experiences by performing the first peck in a trial is bigger than in the model.
First, we saw by comparing Figure 16 and 2 that in the simulations, Ari is
not giving up as much as in reality. This was later supported by considering
the distribution of the number of pecks, as shown in Figure 19. Lastly, the
aspect of his behaviour that makes us reject Ari’s model, his giving-up per-
centage at dy, would also in part be explained by a higher cost for the first
peck.

It seems to be reasons to believe that the birds respond differently to be-
ing hungry. It would, therefore, be interesting in further work to examine
whether this could be the case, for example by conducting an experiment
suited for that. Furthermore, since our model is not fully describing the
behaviour of the birds, we suggest the usage of a more sophisticated utility
function. By not assuming each peck having the same cost, Ari’s behaviour
is likely to be better explained.
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Appendices

A Calculation of E[YI(X # Z)I(N = k+ 1)r —
c|lZ=2Y=0UX=ZUN > k]

We now present the calculation of E[YI(X # Z)I(N = k+ 1)r —c|Z =
2,Y =0UX = ZUN > k| as mentioned in Section 4.2. The expression
YI(X # Z)I(N = k+ 1) is equal to 1 if and only if all three factors are

equal to 1, otherwise the expression is zero. Hence, by using the fact that
E[I(A)]=1-P(A)+0-(1—P(A)) = P(A), we get

EYI(X#Z2)IIN=k+1)r—cZ=2Y=0UX=ZUN > k]
=PY=1,X#4ZN=k+1Z=2Y=0UX=ZUN>k)-r—c
(47)
By using the definition of conditional probability we can write
PY=1,X#ZN=k+1|Z=2Y=0UX=ZUN >k)

PY=1,X#ZN=k+1Y=0UX=ZUN>k)|Z=2) (48
PY =0UX=ZUN > k|Z = z) ‘

The triple union in the numerator can be cancelled since it is intersected
with the event N = k+ 1 which implies N > k. The remaining events in the
intersection are independent of each other and only the event X # Z depends
on the condition Z = z. Also we use that P(AUB) = P(A)+ P(B\ A), where
B\ A is the set difference, two times in the triple union in the denominator
and get

PY=1,X#ZN=k+1Y=0UX=2UN >k)|Z=2)
P(Y=0UX=ZUN >k|Z = 2)
pyP(X # Z|Z = 2)(1 — px)*py
(1—py)+pyP(X £ Z|Z =2)+pyP(X # Z|Z = 2)(1 — pn)F

(49)
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We see from this expression that it only remains to calculate P(X # Z|Z =
z), that is the probability from a bird’s perspective that the initial dot’s
position is not equal to the final dot, which it knows the position of. This
is in other words the perceived probability of a non-matching trial. We first
write this in terms of a integral of the density

P(X#Z|Z=z2) = flz]z)de =1 —/ f(z|z)dz. (50)
TH#z =z
Furthermore, Bayes theorem yields

f@)f(zle) _ f@)f ( %)
FG) feep F@)f(zl2)de

in the latter equality we use the law of total probability. The denominator
in (51) is a constant. hence we only integrate the numerator

f(z]z) =

(51)

/ fx)f(z]z)dx = /acz n(x; mu, o) (%590(2) + %n(z; X, 72)> dr. (52)

An infinitesimal size multiplied with some finite size is an infinitesimal size,
and integrated over a single point it evaluates to zero. For the term involving
the dirac delta function we use that [, d,,(z)(g(z)dz = g(z) for all functions
gon R, we get

[ it (314 gutein®) e = St 63)

Next we consider the denominator in (51), substituting in the densities we

F@ Gl = [ nlpo?) (26.2) + sn(z2,72) ) dz. (54)
/ /zeD (2 2

The dirac delta function is equal to zero for all values other than z = z,
hence the first term integrates to the same as (53), we can thus write

/ n(w; p, o?) (1(533(2) + 1n(,z, x, 72)> dr =
z€D 2 2

1 1

(55)
—n(Z;u,UQH—/ n(z; p, 0 )n(z; x, 7)d.
2 z€D

2

Due to the law of total probability the latter integral is the density of z
given that X # Z. Sampling X ~ N(u,0?) and from that realization x
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sampling Z ~ N(z,7?) is equivalent with sampling Z = X; + Xy, where
X1 ~ N(p,0%) and Xy ~ N(p,7%). Hence the density of z in the non-
matching cases is the density of X; + X5. The random variables X; and X,
are independent, thus the variance of Z is the sum of the variance of X; and
X5. That is

/ n(x; p, oH)n(z; 2, 78 dr = n(z, pu, 0 +7°). (56)
z€D

This means that the denominator in (51) is

/ f@)f(|0)dr = oz o) + on(zmo + 72, (57)
r€D 2 2

By plugging this and (53) into (50) we can write

In(z;p,0?)
PX#Z|Z=2z)=1- 2
A= sn(zi p,0%) + g0z, 07 + 72)

(58)
2, .2
_ 71(227%‘7 +7%) Z/\/'Z“(Uz 472, 0%),

n(z; p,02) +n(z; p, 02 +72)

where the latter is a notation we choose to define for simplicity. We plug
(58) into (49), and that into (47) to get the final result

EVIX £ 2)(N=k+1)r—c|Z=2Y =0UX=ZUN >k =
pyNF(o? +7%,0%)(1 — pn)rpy - 7 . (59)
(1 —py) +pyNE (o2, 0%+ 72) 4+ py Nt (0% + 72,0%)(1 — py)* ’
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