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Abstract

This Master’s thesis investigates a new application for the matrix converter: Shunt reactive
power compensation. The suggested Matrix Converter-based Reactive power Compensa-
tion (MCRC) device is composed of a matrix converter, which input is connected to the
grid and an electric machine at the output of the converter. The reactive power flowing in
or out of the grid can be regulated with the matrix converter by controlling the magnitude
and/or phase angle of the current at the input of the converter. The matrix converter has
no bulky DC link capacitor like traditional AC-DC-AC converters. The thought electric
machine is a Permanent Magnet (PM) synchronous machine which is compact as well,
yielding an overall compact device.

The main focus of the thesis is to evaluate the reactive power range that the MCRC device
can offer. The reactive power range depends mainly on the modulation of the matrix
converter. Two different modulation techniques are studied: the indirect virtual space
vector modulation and the three-vector-scheme. The indirect space vector modulation can
provide or draw reactive power at the input of the matrix converter as long as there is
an active power flow through the converter that is different from zero. For pure reactive
power compensation the indirect space vector modulation cannot be used and the three-
vector-scheme must be used instead. Both modulation techniques are presented in details
as well as their reactive power compensation range.

To verify the reactive power capabilities of the device, three different simulation models are
built in MATLAB Simulink. The first simulation model represents the MCRC device with
the matrix converter modulated with the indirect space vector modulation. The second
model represents also the MCRC device with the matrix converter modulated with the
three-vector-scheme. In both model the PM machine is represented by a simple equivalent
circuit. Simulations done with both models show a good accordance between the theoretical
analysis of the device and the experimental results. The last simulation model features
a simplified version of the MCRC system connected to a grid where a symmetrical fault
occurs. The MCRC proves to be efficient in re-establishing the voltage to its pre-fault
value.
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Chapter 1

Introduction

1.1 The need for reactive power compensation

The electricity grid is under a lot of strain: The load and the electricity generation are
increasing year after year. Nevertheless the expansion of the grid is limited because of
economical and environmental reasons. It is therefore becoming very important to utilize
the power transfer capabilities of the grid to its maximum. For a simple lossless line like
the one presented in figure 1.1, the power transfer is as in equation (1.1).

P V R 〈0〉V S 〈s〉

jX

Figure 1.1: A simple power transmission line.

PS = PR = VSVR
X

sin δs (1.1)

VS is the voltage at the generation bus and is assumed to be constant. We see from equation
(1.1) that there are three parameters that can be controlled to increase the power transfer;
VR, the voltage at the load, X, the reactance of the line and δs, the power angle. In addition
to the transmission lines reaching their loading maximum, there are many disturbances:
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2 1. Introduction

The continuous variation of the load, random occurence of faults on the power lines and
the introduction of new renewable energies, like wind or solar power, which have varying
and unpredictable generation. These variations all make it very important to be able to
dynamically control VR, X and δ.

The reactive power at the receiving end of the line can be calculated as in equation (1.2)
and plotted as a function of the recieving end voltage VR as in figure 1.2.

QR = VSVR cos δ − V 2
R

X
(1.2)

V R

V SV S

2

QR

Capacitive

Inductive

Figure 1.2: The receiving end reactive power QR as a function of the receiving end voltage VR for a constant sending
end voltage VS .

The voltages in a power system must be kept close to a nominal voltage and thus it
can be assumed that VR ≥ VS

2 at all times and the curve on the right handside of the
peak is the relevant operation region [13]. In this operation region an increase in reactive
power (increase in inductive reactive power) will lead to a decrease in VR while a decrease
(increase in capacitive reactive power) will lead to an increase in VR. This illustrates the
strong connection between voltage and reactive power and at the same time indicates a
way of controlling the receiving end voltage VR: by injecting or drawing reactive power.

1.2 The MCRC device in the perspective of well-established
compensators

In this thesis we investigate a Matrix Converter-based Reactive power Compensation
(MCRC) device. The purpose of the device, as the name indicates, is to provide to or
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absorb reactive power from the grid on the input side, in a controlled manner. The system
is depicted in figure 1.3 and is composed of a matrix converter, a Permanent Magnet (PM)
synchronous machine at the output of the matrix converter and an input filter on the grid
side. The matrix converter controls the reactive power at its input by controlling the input
current. The matrix converter also controls the output voltage.

r

s

t

u

v

w

PM 
synchronous 
machine

Matrix 
converter

Input filter
Power grid

Load

Figure 1.3: The MCRC system composed of a matrix converter connected to a PM machine and the grid through an
input filter.

It is interesting to briefly compare qualitatively the suggested device with other well-
established reactive power compensators right away to determine if it presents some ad-
vantages and if so, what those are. The device can compensate for reactive power, but
it can also act as an energy buffer since it comprises a PM machine. In this preliminary
comparison however only the pure reactive compensation is considered. It is assumed that
no mechanic load is put on the shaft of the rotor so that no active power flows through the
matrix converter. The compensation devices object of this comparison are the synchronous
condenser and the STATCOM.

The synchronous condenser, depicted in figure 1.4 is a synchronous machine that "floats"
on the bus to which it is connected; the rotor is nearly in phase with the rotating flux in
the stator as almost no load is put on the rotor shaft [8] (only small friction losses will
draw a small amount of active power).
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GRIDSynchronous condenser

Excitation system

Figure 1.4: A general representation of the synchronous condenser composed of three-phase armature windings and an
excitation winding controlled by an excitation system, the synchronous condenser is connected in shunt to a grid.

The PM synchronous machine in the MCRC system is really functioning on the same
principle as the synchronous condenser. The main difference between the two compensating
devices is the manner the reactive power is controlled. In a conventional synchronous
machine, used as a synchronous condenser, the reactive power absorbed or produced can
be controlled by adjusting the field excitation [8]. It is thus operational and constructional
features of the machine that will limit the reactive power transfer: the stator current must
not exceed the thermal limit of the armature winding, the field current must not overheat
the field winding and the stator magnetic circuit end region must not be overheated either
[13]. In a PMmachine however the field excitation voltage is created by permanent magnets
which cannot be changed and reactive power must be controlled otherwise. This is the role
of the matrix converter interface. This means that in the MCRC device it is the matrix
converter which dictates the reactive power range of the device. The second difference is
the size of the device. The traditional synchronous condenser is very large in size [9]. On
the other side the MCRC system benefits from the compactness of the PM synchronous
machine and of the matrix converter to presumably form an overall small device.

The second object of comparison is the STATCOM. The STATCOM is a voltage source
converter with an energy storage unit that is usually a capacitor [24] and is represented
in figure 1.5. It is connected in shunt to the grid through a coupling transformer. In the
simplified model of the STATCOM in figure 1.5 the transformer is represented by its leakage
inductance. The output voltage of the VSC is kept in phase with the grid voltage. Hence
the current that flows through the reactance will be in almost perfect quadrature with the
grid voltage. By changing the magnitude of the VSC output voltage, the magnitude of
the current and its direction can be controlled. When the magnitude of the VSC output
voltage is larger than the grid voltage, the current is leading the voltage by 90 ◦ and the
STATCOM is emulating a capacitor. On the other hand when the voltage magnitude of
the output VSC is lower than the grid voltage, the current will be lagging the voltage by
90 ◦ the STATCOM emulates an inductance. In a VSC the maximum modulation index is
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V̂LL,converter
edc

= 1. In order to have reactive current flowing into the grid, the amplitude of the
converter output and hence the DC link voltage, needs to be larger than the grid voltage
amplitude. The STATCOM and the MCRC device are both composed of an energy storage
unit (respectively a capacitor and a PM machine) and a converter interface. However the
control of the reactive power is done differently in both devices. As was just explained the
voltage over the capacitor needs to be at least as large as the grid voltage for full inductive
and capacitive current control. In the MCRC system the output voltage must actually
be lower than the grid voltage because of intrinsic limitation of the matrix converter, see
section 3.1. However the size of the output voltage and excitation voltage does affect the
reactive power range directly, see section 3.3. The reactive power is controlled through the
input current. The matrix converter can control the magnitude or the phase angle of the
input current depending on the modulation. The limited size of the emf voltage will keep
the volume of the electric machine small. This feature further participates into making
the matrix converter solution compact. Another advantage of the MCRC system is that it
contains no large storage element like capacitors and inductors, unlike the STATCOM. This
is beneficial in several way: first the capacitor a component subjected to significant wear-
out [3] and also most capacitors have temperature dependent characteristics (cpacitance,
leakage current, impedance...) [5] which limits the application field of the device.

VSIedc

GRID

jX

jX

jX

V 0 deg
I 90deg

Figure 1.5: A general representation of a STATCOM connected to a grid in shunt.

This brief and rather superficial comparison of the MCRC device with the synchronous con-
denser and the STATCOM, indicates that there are clear advantages, although not quan-
tified, to this new suggested MCRC device: compact, no large storage element(capacitor
or reactor). With this preliminary aknowledgement we can proceed with the analysis of
the device.
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1.3 The Master’s Thesis

The Master’s thesis is divided into two main parts: The first part is dedicated to a theo-
retical analysis of the MCRC system while the second part is its experimental counterpart
presenting all the simulation results.

The analysis of the MCRC device starts out with the PM machine in chapter 2. Two
different operation modes of the PM machine will be investigated: loaded or at no-load.
It is important to clearly distinguish these two cases: when loaded the PM machine will
be absorbing or producing active power and can act as an energy buffer in addition to
providing or absorbing reactive power. An energy buffer function is a nice extra feature,
but requires that there is a physical energy buffer in the system: some inertia on the
rotor shaft (a flywheel for instance) which is not investigated in this thesis. When the PM
machine is not loaded, no active power is flowing through the matrix converter and the
MCRC system is a purely reactive power compensation device. No inertia is then needed
on the rotor shaft.

The matrix converter, which is the object of chapter 3, provides both the control of the
reactive power transfer to the grid side and the control of the PM machine. The main
focus of the Master’s thesis is the analysis of the reactive power compensation ability of
the matrix converter. The control of the PM machine is only mentioned very briefly in
section 3.3. In the preliminary project to this thesis, [7], the matrix converter was also
suggested for reactive power compensation. The matrix converter was controlled with
the conventional indirect space vector modulation and there were indications that this
modulation led to limitations in the amount of reactive power transferable to the input.
The conventional indirect space vector modulation was presented in [7]. It will be presented
here again in section 3.2, following a brief general presentation of the matrix converter in
section 3.1. The reader that has already read [7] or that is familiar to the indirect space
vector modulation could skip section 3.2 without losing much information. The range of
transferable reactive power at the input when the matrix converter is modulated with the
conventional indirect space vector technique will be investigated in section 3.3 for the two
following cases: loaded PM machine and machine running at no load. It will be shown that,
in the no load situation, no reactive power can be transferred at the input of the matrix
converter. The reason for this serious limitations, will be explained in details. This means
that the matrix converter cannot be used for pure reactive compensation when modulated
with indirect space vector modulation and can only be used for the case of loaded PM
machine and active power transfer through the matrix converter.

Although the conventional modulation technique does not work for the purpose of trans-
mitting only reactive power, it doesn’t mean the matrix converter should be discarted
altogether for pure reacive power compensation in the MCRC system. The input reactive
power depends among other factors, on the modulation technique [6]. In fact the con-
ventional indirect space vector modulation can be modified so as to enable reactive power
transfer on the input side of the matrix converter for no active power transfer through the
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converter. The modulation technique, called the three-vector-scheme, has been developed
by Kolar and Schafmeister in [21] and [20]. It is quite complex but will be explained in
details in section 3.4. The reactive compensation range of the Three-Vector-Scheme will
be also presented.

Part II of the thesis is dedicated to simulation results. Chapter 4 presents all the results
from simulations with the MCRC system with the matrix converter modulated with the
conventional indirect space vector modulation. Chapter 5 presents the results from the
simulations performed with the matrix converter modulated with the three-vector-scheme.
The simulations results are chosen such as to illustrate some of the theory that was de-
veloped in part I. The last results are performed with a simulation model that features a
simplified version of the MCRC device connected to a grid which is subject to a three-phase
symmetrical fault. The purpose of the simulation is to show that the MCRC device can
effectively compensate for reactive power and perform voltage support.
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Chapter 2

The PM synchronous machine

2.1 No-load operation of the PM synchronous ma-
chine

The theoretical analysis of the MCRC system starts out with the PM machine in the no-
load operation mode. In this first analysis of the PM machine the ohmic losses in the
armature windings and friction losses on the rotor of the PM synchronous machine are
ignored. The PM machine will be studied with the help of a simple equivalent circuit. The
single-phase equivalent circuit is contained within the stippled-line rectangle in the single-
phase circuit of the MCRC system depicted in figure 2.1. Let’s go in detail through the

I o

E f

V o V i

j X arX l 

MC

PM synchronousmachine

Figure 2.1: The per-phase simplified representation of the MCRC system.

different elements of the model of the PM synchronous machine in figure 2.1. The terminal
voltage of the PM machine corresponds to the output voltage of the matrix converter and
is denoted as ~Vo = Vo∠0 in figure 2.1. The terminal voltage is set as the reference here with
phase angle equal to 0. As the permanent magnets and the rotating flux they generate,

11



12 2. The PM synchronous machine

sweep across the stator conductors, a counter-emf or excitation voltage is created in the
armature windings [8]. The excitation voltage depends only on the permanent magnet
properties and will therefore be represented by a voltage source in our model, ~Ef = Ef∠δ
in figure 2.1. The angle δ is called the rotor angle and is the phase angle of the excitation
voltage with respect to the reference voltage at the terminal of the synchronous machine
~Vo. δ also corresponds to the displacement between the stator flux and the rotor. Here
since there is no load on the rotor and the friction losses are neglected, δ is zero.

The three-phase current flowing in the stator, which corresponds to the output current
of the matrix converter and is hence named ~Io, also generates a rotating field flux called
armature-reaction flux. This will induce a voltage in the stator windings. The armature-
reaction flux and induced voltage depend on the armature current’s magnitude and phase
angle. The armature-reaction voltage is therefore represented in our model in figure 2.1 by
a fictitious armature-reaction reactance Xar. In addition the model includes an armature
leakage reactance Xl which accounts for the flux leakage in the armature windings. The
armature current can be calculated as in equation (2.1) with positive current defined in the
direction shown in figure 2.1. This current direction, into the machine, corresponds to the
motor operation of the PM machine although it is really at the the limit generator/motor
when running at no-load.

~Io =
~Vo − ~Ef

j (Xar +Xl)
= Vo − Ef

jXs

(2.1)

In equation (2.1), Xs = Xar + Xl, is the synchronous reactance. From equation (2.1) we
see that the current is purely reactive and that its direction will depend on the relative
magnitude of the excitation voltage ~Ef and the terminal voltage ~Vo. In figure 2.2 the
phasor diagram for ~Ef , ~Vo and ~Io are represented. When Ef is larger than Vo, ~Io is leading

E f

I o

V o
V o

E f jX s
I o

I o

 jX s
I o

Figure 2.2: Phasor diagram of ~Vo, ~Ef and ~Io for Vo ≥ Ef (to the left) and Vo ≤ Ef (to the right).

the voltage ~Vo, the synchronous machine acts as a capacitor. When Ef is smaller than Vo,
~Io is lagging the voltage ~Vo and the synchronous machine acts as an inductor. This analysis
shows that no matter the sign of the output angle displacement, leading or lagging, the
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angle between the voltage and current will be 90 ◦ in this no load operation mode of the PM
machine. From an active power balance consideration, there should be a 90 ◦ displacement
angle at the input also, as the active power into the converter should match the output
active power and also be equal to zero (Pi = Po in a lossless matrix converter). Furthermore
the purpose of the MCRC system is to provide reactive power and hence it is optimum to
have a 90 ◦ phase shift between the input voltage and current for maximum reactive power
transfer. To summarize, the MCRC system imposes on the matrix converter a 90 ◦ phase
shift between voltage and current at the input and the output, leading or lagging. The
question is now; how does the matrix converter behave under the no-load operation of the
PM machine that imposes a 90 ◦ phase shift between voltage and current at the input and
output of it?

2.2 Loaded operation of the PM synchronous ma-
chine

The loaded operation mode of the PM machine will now be investigated. In this case
active power flows into the machine. We will simply assume in this section that their is
a corresponding load on the rotor shaft. Until now the armature resistance was neglected
in this analysis. We will now calculate the active and reactive power provided to the
synchronous machine including the resistance in the analysis as this will prove useful when
analyzing the simulation results in part II. The PM machine will be considered to be in
motor mode as previously, the current thus flowing in the direction indicated in figure 2.3.
Thus the rotor angle is negative, ~Ef = Ef∠− δ, with δ ≥ 0. The terminal voltage is still
the reference angle.

I o

E f

V o

j X arX l  R

Figure 2.3: Per-phase equivalent circuit of the PM machine.

The apparent power at the terminal of the machine can be calculated as in equation (2.2)
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[13].
~So = Po + jQo = ~Vo~I

∗
o (2.2)

The output armature current ~Io can be calculated as in equation (2.3):

~Io =
~Vo − ~Ef
R + jXs

= Vo − Ef cos δ + jEf sin δ
R + jXs

(2.3)

~Io = (Vo − Ef cos δ + jEf sin δ) (R− jXs)
R2 +X2

s

(2.4)

~Io = VoR− EfR cos δ + EfXs sin δ
R2 +X2

s

+ j
EfR sin δ − VoXs + EfXs cos δ

R2 +X2
s

(2.5)

Thus the active and reactive power can be found by multiplying the complexe conjugate
of ~Io with Vo:

Po = V 2
o R + VoEfXs sin δ − VoEfR cos δ

R2 +X2
s

(2.6)

Qo = V 2
o Xs − VoEfR sin δ − VoEfXs cos δ

R2 +X2
s

(2.7)

Now if the resistance can be neglected, R = 0, the active and reactive power expression
are simplified as follows:

Po = VoEfXs sin δ
Xs

(2.8)

Qo = V 2
o − VoEf cos δ

Xs

(2.9)

From equation (2.5) the expression for the output current Io and the output displacement
angle Φo can be found.

Io =

√√√√(VoR− EfR cos δ + EfXs sin δ
R2 +X2

s

)2

+
(
EfR sin δ − VoXs + EfXs cos δ

R2 +X2
s

)2

(2.10)

Φo = − tan−1
(
EfR sin δ − VoXs + EfXs cos δ
VoR− EfR cos δ + EfXs sin δ

)
(2.11)

The active power, Po = Pi, flowing through the matrix converter and the output reactive
power Qo are dictated by the PM machine through its parameter ~Ef , Xs and R and the
matrix converter through the terminal voltage ~Vo according to equations (2.6) and (2.7).
In the no-load case no active power is flowing through the converter and at the ouput of
the matrix converter there is only reactive current. However, in both loaded and no-load
situations, the input reactive power Qi, which is the most important quantity to determine
in the MCRC device, cannot be determined by looking at the PM machine alone. The
matrix converter needs to be analyzed for this purpose.



Chapter 3

The matrix converter

The last chapter ended with an important remark: The input reactive power of the MCRC
system cannot be calculated without analyzing the matrix converter both in the loaded and
no-load situations. The modulation technique of the matrix converter will in fact decide
along with the output power factor, the magnitude and polarity of the input reactive power
[6]. In this chapter a theoretical analysis of the matrix converter will be carried out to
assess the reactive compensation range of the MCRC device and also to try to answer the
question formulated at the end of section 2; How will the matrix converter behave when
there is a 90 ◦ phase shift between voltage and current at the input and the output, that
is when there is no active power transfer? To start the analysis a brief presentation of
some important features of the matrix converter is given in section 3.1. The modulation
influences the reactive power range at the input of the matrix converter. It is therefore
important to study the modulation technique carefully to understand what limitation it will
impose on the input reactive power transfer. After the modulation technique is studied in
section 3.2, the reactive power formation at the input of the matrix converter is investigated
with and without active power flow through the converter in section 3.3. It turns out that
the matrix converter cannot transfer reactive power at the input if their is no active power
flow through it. A modulation technique called three-vector-scheme is presented in the last
section to enable reactive power compensation in the no-load situation.

3.1 Topology and general operation features of the
matrix converter

3.1.1 Topology of the matrix converter

The matrix converter is an AC-AC converter made up of semiconductor-based switches.
The matrix converter itself contains no energy storage components such as capacitors or

15



16 3. The matrix converter

reactors, although a filter at the input is needed in combination with the converter [23].
The size of the needed filter can be reduced by increasing the switching frequency. There
are two main topologies for the matrix converter: Direct matrix converter, figure 3.1 and
indirect matrix converter, figure 3.2. The matrix converter that is the object of attention
in this thesis and that will be build in a MATLAB Simulink model will be configurated
with the direct topology. It is composed of nine switches that form a three by three array
connecting the input to the output directly.

It is also relevant to take a closer look at the indirect topology as the space vector mod-
ulation of the converter will be that of a indirect matrix converter. This is called virtual
indirect control as the space vector modulation outputs 12 gating signals as if it was pro-
viding the twelve switches of an indirect matrix converter. The 12 signals will be combined
into 9 signals to provide for the real matrix converter with a logic circuit. This modulation
technique was chosen for its simplicity compared to other techniques [2, 11]. As can be seen
in figure 3.2, the indirect matrix converter consists of a Current Source Rectifier (CSR)
part, a DC link, edc, and a Voltage Source Inverter (VSI) part.
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Figure 3.1: The direct matrix converter topology.

3.1.2 Modulation index limitation

The voltage transfer ratio of a nine switch direct AC-AC matrix converter has a limit
that can not be exceeded without increasing the complexity of the modulation and/or
decreasing the quality of the waveforms [23]. Venturini and Alesina proved meticulously
in [2], that no matter what modulation technique is used, Vo =

√
3

2 Vi is an absolute limit
for the voltage ratio. Let’s look at the main features of the proof.
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Figure 3.2: The indirect matrix converter topology.

Since the matrix converter directly connects the output voltage to the input voltage, via
the bidirectional switches, the target output voltage can never exceed the continuous input
voltage envelope which is made of the upper and lower bound of the input three-phase
voltage. The input phase voltage is defined as in equation (3.1).

vr(t)vs(t)
vt(t)

 =

 V̂i cos(ωit)
V̂i cos(ωit− 2π

3 )
V̂i cos(ωit+ 2π

3 )

 (3.1)

A three-phase AC voltage is represented in figure 3.3. The envelope of this voltage signal is
shown with a bold red line for the upper bound and a bold green line for the lower bound.
If the three phase signal in figure 3.3 represents the input voltage, then the target output
voltage waveform must fit into the input voltage envelope. Let’s define a voltage transfer
ratio or modulation index q as:

q = V̂o

V̂i
= Vo
Vi

(3.2)

The already-mentioned limitation that the output peak-to-peak voltage can never exceed
the difference between two input phase voltages can be translated into equation (3.3) if we
define IVLB(t) and IVUB(t) as the input voltage lower and upper bound, and OVLB(t)
and OVUB(t) as the output voltage lower and upper bound. The output bounds must be
contained within the input bounds.

IV LB(t) ≤ OV LB(t) ≤ OV UB(t) ≤ IV UB(t) (3.3)

The maximum possible voltage ratio is obtained when the maximum output voltage range
coincide with the minimum input voltage:

min
0≤ωint≤2π

(IV UB(t)− IV LB(t)) = max
0≤ωot≤2π

(OV UB(t)−OV LB(t)) (3.4)
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Figure 3.3: Three-phase AC voltage with amplitude of 1 with f = 50Hz and its envelope in a red bold line (upper bound)
and green bold line (lower bound).

For a sinusoidal three-phase voltage system, the maximum range of voltage (from lower
peak to upper peak) is

√
3 of the phase voltage amplitude and the minimum range is 3/2 of

the phase voltage amplitude, both indicated in figure 3.3. Hence, in the case of sinusoidal
three-phase input and output voltages, relation (3.4) becomes:

3/2V̂i =
√

3V̂o (3.5)

which corresponds to the maximum voltage (amplitude or rms-value alike) transfer ratio:

qmax = V̂o

V̂i
= Vo
Vi

=
√

3
2
∼= 0.866 (3.6)

A maximum transfer ratio of qmax = 0.866 is valid in the case of unity power factor at the
input. When qmax is exceeded, overmodulation mode is entered and the input current and
output voltage will contain more harmonics [17]. Furthermore if there is a displacement
angle of Φin between the input voltage and the input current, the voltage transfer ratio is
further reduced to:

qmax,Φ = qmax cos(Φi) =
√

3
2 cos Φi (3.7)

See [4] for a thorough explanation. We will also come back to this in section 3.2.1.
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3.2 Conventional indirect space vector modulation

There are several ways to modulate a converter: Carrier-based PWM and space vector
modulation being the most common. The modulation is done on a single-phase basis in
carrier-based PWM modulation. Because of this, the maximum input to output voltage
ratio is 0.5 if no measures, like third harmonic injection in the reference voltage, are taken
to increase the ratio. The maximum output voltage contained in the band delimited by the
red line for carrier-based PWM is shown in figure 3.4. The output voltage cannot exceed
the red lines because then there is a risk that no input voltage is available to build the
output voltage.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

Figure 3.4: The input voltage (in blue) and the maximum output voltage (in green) for carrier-based PWM.

Space vector modulation technique is inspired by motor drive control and contrary to
carrier-based modulation, it considers all three phases as one. Hence the maximum transfer
ratio of 0.866 can be obtained without third harmonic injection or other measures that
would add complexity. As was already mentioned, for modulating the matrix converter’s
output voltage and input current, virtual indirect control is used. We consider the matrix
converter as being build up of two virtual parts: a CSR and a VSI. The modulating signals
that would provide for the switches of each converter part are built with two independant
space vector modulation blocks and then with a logic circuit the signals for the matrix
converter are formed. We will first start by explaining the space vector modulation of the
VSI part and then continue with the CSR part of the matrix converter. First a common
angle measurement reference should be instaured for clarity. The reference when measuring
angles is defined from now to be the input voltage which was defined in equation (3.1).
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3.2.1 Space vector modulation of the VSI

A VSI is represented in figure 3.5.

edc

S up S vp S w p

S un S vn S wn

p

n

u

v
w



Figure 3.5: The voltage source inverter part of the matrix converter.

edc is the virtual DC link voltage which is assumed constant. The converter is made up of
three poles, each connected to one of the three output phase, u, v or w. We define ∆ as the
isolated neutral on the load side, n the negative side of the DC link and p as the positive
side of the DC link. The switches are named like in previous nomenclature. We assume
that the three-phase resistive load is balanced so that we get the following equalities for
the output phase voltages and output currents:

vu∆(t) + vv∆(t) + vw∆(t) = 0 (3.8)

iu(t) + iv(t) + iw(t) = 0 (3.9)
We define a space vector ~vo,sp in terms of the output phase voltages such that:

~vo,sp(t) = vu∆(t) + vv∆(t)e(j 2π
3 ) + vw∆(t)e(j 4π

3 ) (3.10)

The output phase voltages being:

vu∆(t) = V̂o cos(ωot− ξ) (3.11)

vv∆(t) = V̂o cos(ωot−
2π
3 − ξ) (3.12)

vw∆(t) = V̂o cos(ωot+ 2π
3 − ξ) (3.13)
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The angle ξ is measured with respect to the input voltage as previously defined. the angle
ξ can be set to zero right away, assuming that that the output voltage should be in phase
with the input voltage. Let’s insert equations (3.11), (3.12) and (3.13) into the equation
(3.10) of the output phase voltage space vector.

~vo,sp(t) = V̂o cos(ωot) + V̂o cos(ωot−
2π
3 )e(j 2π

3 ) + V̂o cos(ωot+ 2π
3 )e(j 4π

3 ) (3.14)

After some manipulation we obtain equation (3.15).

~vo,sp(t) = 3
2 V̂oe

jωot (3.15)

We see from equation (3.15) that the space vector has constant length 3
2 V̂o and rotates at

angular speed ωo. An interesting feature of the output phase voltage space vector is that
it is equal to the inverter pole voltage space vector which will prove very useful as we can
use these two space vectors interchangeably.

~vsp,pole(t) = vun(t) + vvn(t)e(j 2π
3 ) + vwn(t)e(j 4π

3 ) (3.16)

~vsp,pole(t) = vu∆(t) + v∆n(t) + (vv∆(t) + v∆n(t))e(j 2π
3 ) + (vw∆(t) + v∆n(t))e(j 4π

3 ) (3.17)

~vsp,pole(t) = vu∆(t) + vv∆(t)e(j 2π
3 ) + vw∆(t)e(j 4π

3 ) + v∆n(t) (1 + e(j 2π
3 ) + e(j 4π

3 ))︸ ︷︷ ︸
=0

= ~vo,sp(t)

(3.18)
The inverter pole voltages vun(t), vvn(t) and vwn(t), between a phase and the negative side
of the DC link, are either equal to 0 when the lower switch is ON or edc when it is OFF. In
each of the three poles of the converter, the two switches are complementary, in order not
to short-circuit the input or disconnect an output phase. This gives us 23 = 8 switching
states, all depicted in figure 3.6.

Two of these switching states (when all the upper switches are open [nnn] or closed [ppp])
will yield space vectors equal to zero, called zero vectors because the output phases are
short-circuited. The 6 other space vectors corresponding to the six remaining switching
states are all different from zero and are called active vectors. They are fixed directions
vectors and in the complex plane, they are distributed as shown in figure 3.7.

Let’s take an active vector, ~upnn and see how it is build. The switching state corresponding
to ~upnn is as indicated in figure 3.7, [pnn], which indicates that for phase u the upper switch
Sup is ON, for phase v the lower switch Svn is ON and for phase w the lower switch Swn is
ON. Hence the pole voltages are as follow:

vun(t) = edc (3.19)

vvn(t) = 0 (3.20)
vwn(t) = 0 (3.21)
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Figure 3.6: The eight switching states of the virtual VSI part of the matrix converter made of the six active vectors and
the two zero vectors (bottom two).

We can insert equation (3.19), (3.20) and (3.21) into equation (3.17) to obtain:

~vsp,pole = ~vo,sp = edc + 0e(j 2π
3 ) + 0e(j 4π

3 ) = edc (3.22)

Here the property previously shown, that the space vector of the pole voltages is equal
to the space vector of the output phase voltage is used. The other active vectors can be
computed in a similar manner. The active vectors delimit 6 so-called sectors also indicated
in figure 3.7. An updated reference space vector ~vo,sp is calculated every time intervall
Ts, which is the switching period. As the reference space vector ~vo,sp(t) sweeps along the
sectors at an angular speed of ωo, every Ts when it is recalculated, it is considered having
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Figure 3.7: The voltage active space vectors represented in the complex plane.

constant direction (constant angle) throughout the switching period Ts and we define the
angle θo,sp as the angle that ~vo,sp forms with the real axis at the instant the space vector is
calculated. The angle is indicated in figure 3.7.

~vo,sp = 3
2 V̂oe

jθo,sp (3.23)

The space vector ~vo,sp is build with the adjacent vectors of the sector where it lies, ~ux, ~uy
and one of the zero vectors ~uz if the reference space vector ~vo,sp does not have the maximum
possible length. Later in this section will be seen what this maximum possible length is.
The desired space vector, ~vo,sp, is synthesized by applying ~ux, ~uy and ~uz for respective time
intervalls Tx, Ty and Tz. Let’s calculate the gate-timing intervalls for sector I, see figure 3.8.∫ Ts

0
~vo,sp(t)dt =

∫ Tpnn

0
~upnndt+

∫ Tpnn+Tppn

Tpnn
~uppndt (3.24)

∫ Ts

0

3
2 V̂oe

jθo,spdt =
∫ Tpnn

0
~upnndt+

∫ Tpnn+Tppn

Tpnn
~uppndt (3.25)



24 3. The matrix converter

u pnn=edce
j0

u ppn=edce
j 
3

o , sp

vo , sp

T pnn

T s
u pnn

T ppn

T s
u ppn

Figure 3.8: Switch gating times calculation for sector I.

Ts
3
2 V̂o

[
cos θo,sp
sin θo,sp

]
= Tpnnedc

[
1
0

]
+ Tppnedc

[
cos π

3
sin π

3

]
(3.26)

We get the following relations (3.27) and (3.28), by solving the two equations in (3.26) and
introducing the voltage ratio index that was defined for the matrix converter, q = V̂o

V̂i
with

0 ≤ q ≤ qmax,Φ.

Tpnn = Ts
3
2
V̂o sin(π3 − θo,sp)

edc sin π
3

= Ts
3
2
qV̂i sin(π3 − θo,sp)

edc sin π
3

(3.27)

Tppn = Ts
3
2
V̂o sin θo,sp
edc sin π

3
= Ts

3
2
qV̂i sin θo,sp
edc sin π

3
(3.28)

Finally if the length of the desired space vector ~vo,sp does not have the maximum possible
length, q is not set to be qmax,Φ, there will remain some unused time in the switching
periode Ts. A zero vector must be applied since they are the only vectors that will not
modify the output voltage.

Tz = Ts − Tpnn − Tppn (3.29)
Now let’s extend these gating times to the other sectors. Sector I spreads from 0 to 60 ◦,
sector II from 60 ◦ to 120 ◦, sector III from 120 ◦ to 180 ◦, etc. If the reference space vector
~vo,sp is located in sector II it is the angle between ~uppn and ~vo,sp that is useful for calculating
Tppn, Tnpn and Tz and not θo,sp, which is the angle between the real axis and ~vo,sp. Hence
60 ◦, the angle of sector I, has to be substracted from θo,sp in order to use the same equations
(3.27), (3.28) and (3.29). The same can be done for the other sectors and a generalized
expression of the gate-timing interval Tx( for applying ~ux lower bound of the sector), Ty(for
applying the upper bound ~uy of the sector) and Tz can be found for all the sectors.

Tx = Ts
3
2
qV̂i sin(π3 − (θo,sp +ROTATION))

edc sin π
3

(3.30)



3.2. Conventional indirect space vector modulation 25

Ty = Ts
3
2
qV̂i sin(θo,sp +ROTATION)

edc sin π
3

(3.31)

Tz = Ts − Tx − Ty (3.32)

The angle θo,sp is always comprised between −180 ◦ and 180 ◦ in the build MATLAB
Simulink model, so for sector I,II and III, the needed rotation is ROTATION = −60 ◦ ·
(sector−1) and for sector IV, V and VI the rotation is ROTATION = +60 ◦ ·(7−sector).

To apply this VSI modulation for the matrix converter, the DC link voltage edc, that
appears in equation (3.30) and (3.31), still needs to be computed in order to calculate the
switch gating times. To do that, we will use the fact that in the indirect matrix converter
the DC link voltage edc is the middle stage of the converter and that the input power is
equal to the DC link power. Remember however that for the direct matrix converter the
DC link is only virtual.

Pi = 3
2 V̂iÎi cos Φi = Pdc = edcidc (3.33)

edc = 3
2
V̂iÎi cos Φi

idc
(3.34)

The current ratio of the CSR part, Îi
idc

, will be fixed to 1. This is actually the maximum
possible current ratio for the CSR as we will see in section 3.2.2. By fixing the current
ratio, the independant control of the input current amplitude is lost and will depend on
the voltage transfer ratio, see section 3.2.2. There is independent control of three variables
in the matrix converter: the output voltage magnitude V̂o and phase angle ξ and the input
displacement angle Φi.

edc = 3
2 V̂i cos Φi (3.35)

In a space vector controlled VSI, the maximum output phase voltage obtainable without
entering overmodulation mode and hence adding a lot of harmonics to the output voltage,
is V̂o,max = edc√

3 [17]. This limit can be understood by geometrical considerations. In the
complex plane the space vector cannot exceed the circle µ that has radius equal to the
length of the bissectrice of the triangle formed by the active vectors, that is V̂o,sp,max =
edc cos π

6 =
√

3
2 edc, see figure 3.9. Hence when the space vector of the output voltage has

length equal to
√

3
2 , the limit between the linear modulation region and overmodulation

region is reached. The reason can be shown with the example illustrated in figure 3.9:
when the space vector has length like the bissectrice of the sector, just like is depicted
in figure 3.9, the two active vectors will be applied for half of the switching period, and
the zero vectors will not be applied at all. This linear modulation/overmodulation limit
corresponds to equation (3.36) and (3.37).

Ts = T1 + T2 (3.36)

Tz = 0 (3.37)
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Figure 3.9: Maximum length of the reference space vector.

The space vector amplitude can be converted back to the output phase voltage amplitude
with equation (3.38) to find the well-known VSI modulation index limit.

V̂o,sp = 3
2 V̂o (3.38)

3
2 V̂o,max =

√
3

2 edc (3.39)

V̂o,max = 1√
3
edc (3.40)

If the reference space vector is further increased above the modulation limit, the sum of
gate-timing intervals for the active vectors will be more than one. The zero vector gate-
timing interval will be negative. It is obviously not possible to apply a switching state for
a negative time interval, but this translate into the switching cycle being abruptly ended.
Because of this, when reaching overmodulation mode, the output voltage can no longer vary
proportionally with the reference space vector voltage as it did in the linear modulation
range. The output voltage can no longer be controlled with the modulation index q. To
verify the maximum modulation index from equation (3.7), we insert the equation (3.35)
for the DC link voltage into equation (3.40).

V̂o,max = 1√
3

3
2 V̂i cos Φi (3.41)
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V̂o,max

V̂i
=
√

3
2 cos Φi = qmax cos Φi = qmax,Φ (3.42)

Just like the VSI, the matrix converter modulation is separated into a linear modulation
range and an overmodulation range. Since the modulation index of the CSI is fixed to its
maximum, it will not affect the modulation index of the matrix converter. The limit is
qmax =

√
3

2 for unity power factor.

Now that everything needed to calculate the gate-timing intervals has been provided we
need to look at the sequence in which the vectors or switching states are going to be applied
within a switching period Ts. We have already seen that the section in which the reference
space vector lies will decide the active vectors to be applied. There are switching patterns
in which it is not the adjacent active vectors that are applied but these sequences produce
higher THD (Total Harmonic Distortion) and/or switching losses, so they have not been
considered here [18]. There are many different possible switching patterns and they can
differ on the following characteristics [18]:

• the choice of which zero vector to apply during the switching period, ~u7, ~u8 or both;

• the choice of whether to split the switch gating time intervalls or not;

• the choice of the sequence in which to apply the two active vectors and the chosen
zero vector(s).

All these choices are important as they affect the THD in the output current and voltage
as well as the switching losses [18]. It was decided to use a symmetric sequence for the
modulation of VSI. Each active switching state is applied twice for half the switch-gating
time interval calculated, and both zero vectors are applied during a switching period, see
figure 3.10. This yields a total of 6 commutations which is more than for other patterns
where the switching states are not applied twice, however this symmetric pattern seems to
create lower THD [18]. There is hence a trade-off between switching losses and THD.
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Figure 3.10: The sequence of the switching states in the virtual VSI part.

3.2.2 Space vector modulation of the CSR

The space vector modulation of the virtual CSR part of the matrix converter, see figure
3.11, is very similar to the modulation of the VSI part. Hence the description of the
modulation will be succinct.
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Figure 3.11: The current source rectifier part of the matrix converter.

The main difference in the two modulations is that the input phase currents,

ir(t) = Îi sin(ωit− Φi) (3.43)

is(t) = Îi sin(ωit−
2π
3 − Φi) (3.44)

it(t) = Îi sin(ωit+ 2π
3 − Φi) (3.45)

are the parameters we want to control. The phase angle Φi is measured with respect to
the input voltage and is thus the input phase displacement. We will control them with a
single space vector reference, as was done for the VSI part, which is defined in equation
(3.46).

~ii,sp(t) = ir(t) + is(t)e(j 2π
3 ) + it(t)e(j 4π

3 ) (3.46)

After inserting (3.43), (3.44) and (3.45) into (3.46) and after some manipulations we get
the equation (3.47) that gives the reference space vector to be fed into the CSR modulation
block.

~ii,sp(t) = 3
2 Îie

j (ωit− Φi)︸ ︷︷ ︸
θi,sp(t) (3.47)

The CSR has 32 = 9 switching states as only one of the upper switches (Srp, Ssp or Stp)
and only one of the lower switches should be ON at any time (Srn, Ssn or Stn). At least
one because the current always must have a path to flow in and no more than one to avoid
short-circuiting the input voltages. The switching states are all presented in figure 3.12.
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Figure 3.12: The nine switching states of the vitual CSR part of the matrix converter.

Among the nine switching states there are 6 that correspond to active vectors, distributed
in the complex plane as in figure 3.13 and 3 that correspond to zero vectors. The zero
vectors correspond to switching states where the two switches that are connected to the
same input phase are ON at the same time. Let’s look at [rr] for instance. Srp and Srn
are ON at the same time and hence:

ir(t) = idc = −idc (3.48)

To satisfy equation (3.48), ir(t) must be equal to zero. We also have:

is(t) = 0 (3.49)

it(t) = 0 (3.50)
Hence the space vector corresponding to the switching state [rr] is 0, see equation (3.51).

~ii,sp(t) = 0 + 0e(j 2π
3 ) + 0e(j 4π

3 ) = 0 (3.51)

Let’s also look at an active vector and see how it is built, for instance [rs]. The switching
state [rs] corresponds to the active vector~irs. Srp and Ssn are ON and the closed path that
is formed is conducting the input phase current ir(t) = −it(t) that is also corresponding
to the virtual DC link current, idc. We can then write:
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Figure 3.13: The current active vectors in the complex plane.

ir(t) = idc = −is(t) (3.52)

it(t) = 0 (3.53)

The space vector corresponding to this switching state [rs] is:

~irs = idc − idcej
2π
3 + 0ej

−2π
3 = idc(1− ej

2π
3 ) =

√
3idce−j

π
6 (3.54)

The other active vectors are calculated in a similar manner.

The formulas (3.27), (3.28) and (3.29), developed earlier in section 3.2.1 to calculate the
switch-gating time intervals for the VSI switching states, can be used for the CSR. However
as can be seen in figure 3.13 the space vector angle θi,sp is measured from the real axis
which does not correspond to the lower active vector of sector I like it does for the VSI
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active vector, see figure 3.7 in section 3.2.1. Therefore 30 ◦ need to be added to θi,sp in
order to use equation (3.27), (3.28) and (3.29).

Tx = Ts
3
2
Îi sin(π3 − (θi,sp + π

6 )√
3idc sin π

3
(3.55)

Ty = Ts
3
2
Îi sin(θi,sp + π

6 )√
3idc sin π

3
(3.56)

Tz = Ts − Tx − Ty (3.57)

The ratio Îi
idc

= 1 is fixed as was previously mentioned. Only θi,sp = ωit − Φi and conse-
quently Φi are controlled. The ratio Îi

idc
= 1 is the maximum achievable current ratio in a

CSR. The length of the bissectrice of the triangle formed by two adjacent active vectors
is the maximum length of the space vector, just like for the VSI modulation. For the
CSR modulation it is Îi,sp,max =

√
3idc cos π

6 = 3
2idc. The space vector amplitude can be

converted back to the input phase current amplitude with equation (3.58).

Îi,sp,max = 3
2 Îi,max (3.58)

3
2 Îi,max = 3

2idc (3.59)

Îi,max = idc (3.60)
The different vectors are also applied in a symmetric sequence shown in figure 3.14 during
a switching period Ts. Just one zero vector is applied during a switching period unlike
two for the VSI modulation. In addition it can be mentioned that since the ratio Îi

idc
is set

to the maximum possible value there will be no zero vector applied during the switching
period.

It was mentioned earlier that the independent control of the input current amplitude was
not possibe since the CSR current ratio Îi

idc
= 1 is fixed and that the input current amplitude

will thus depend on the voltage transfer ratio. Let’s now see how. The voltage modulation
index was previously defined as:

q = V̂o

V̂i
(3.61)

with qmax =
√

3
2 being the absolute maximum for the modulation index. The maximum

modulation index is reduced to qmax,Φ = qmax cos Φi when the input displacement angle is
different from zero. Let’s now introduce a new modulation index M that represents the
liberty of control that remains after the modulation index has been corrected for the input
displacement angle. M can vary freely between 0 and

√
3

2 no matter what the input power
factor, cos Φi, is.

V̂o = M cos ΦiV̂i (3.62)
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Figure 3.14: The sequence of the switching states in the virtual CSR.

V̂o

V̂i
= q = M cos Φi (3.63)

Let’s see howM influences the current modulation by finding out how the VSI modulation
influences the DC link current. The power balance equation gives the following.

Pdc = edcidc = Po = 3
2 V̂oÎo cos Φo (3.64)

Equation (3.35) from section 3.2.1 can be inserted in equation (3.64) to find an expression
for idc.

idc =
3
2 V̂oÎo cos Φo

3
2 V̂i cos Φi

(3.65)

Equation (3.63) can be inserted in equation (3.65)

Îi = idc = M cos ΦiÎo cos Φo

cos Φi

(3.66)

Îi = MÎo cos Φo (3.67)
Equation (3.67) mirrors equation (3.63) and indicates how the current magnitude ratio is
dependent on the modulation index of the voltage modulation M and the output power
factor cos Φo. To summarize, the operating range of the matrix converter is the following,
with M varying freely between 0 and

√
3

2 , but as a common set point or operating point
for the current and voltage modulations, set by the voltage modulation index q:

V̂o = MV̂i cos Φi (3.68)
Îi = MÎo cos Φo (3.69)

This analysis will prove very useful in section 3.3 when the active and reactive power
transfer capabilities of the matrix converter will be analyzed.
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3.2.3 Combination of the VSI and CSR signals

Now that both modulations of the virtual VSI and CSR have been studied, we must
combine the 12 switch-gating signals into 9 switch-gating signals that will provide the 9
switches of the matrix converter [11]. The logic circuit, used for the conversion, is shown
in the simulation model of the MCRC device in figure B.2 in appendix B. The signals
indicated in figure B.2 are named like the switches they correspond to, see figure 3.1 and
figure 3.2 in section 3.1. For a more thourough explanation of the conversion logic circuit
see [7].

3.3 Reactive and active power ranges with conven-
tional space vector modulation

After having given a necessary presentation of the matrix converter and the indirect space
vector modulation, we can get to the core of the matter. In this section the reactive
compensation range of the matrix converter will be studied for the two following situations:

1. The matrix converter allows active power flow through it (Φi 6= ±90 ◦ and Φo 6= ±90 ◦)
and the PM machine acts as an energy buffer;

2. The matrix converter does not allow any active power flow through it (Φi = ±90 ◦
and Φo = ±90 ◦), the PM machine runs at no load and the matrix converter provides
pure reactive compensation.

3.3.1 Φi 6= ±90 ◦ and Φo 6= ±90 ◦

The reactive and active power transfers in an indirect matrix converter [10] are depicted
in figure 3.15. Although the matrix converter is direct rather than indirect as in figure
3.15, it is a useful to visualize the matrix converter in this manner as it modulated like it
is indirect. The virtual DC link clearly tranfers only active power according to equation
(3.70).

Pin = Pout = Pdc = edcidc (3.70)

The output reactive power depends on the load. For the MCRC system it will depend on
the operation of the PM machine. The reactive power is created independantly at the input
of the matrix converter and stems from a reactive power exchange between the phases via
the switches of the converter [6] as is illustrated in figure 3.15. The magnitude range and
polarity of the reactive power depends on the modulation technique used and the load
power factor [6] as has been previously mentioned. When modulating the matrix converter
with conventional indirect space vector modulation the reactive power and active power
transfer are closely related. Let’s calculate the relation between active and reactive power.
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Figure 3.15: The transfer of active and reactive power in an indirect matrix.

The active power at the input of the matrix converter can be calculated as in equation
(3.71).

Pi = 3
2 V̂iÎi cos Φi (3.71)

The reactive power at the input of the matrix converter can be calculated as in equation
(3.72).

Qi = 3
2 V̂iÎi sin Φi = 3

2 V̂iÎi cos Φi
sin Φi

cos Φi

(3.72)

Qi = Pi tan Φi (3.73)

Equation (3.73) shows how the active and reactive powers are directly related to eachother
through the tangent of the input displacement angle Φi.

Let’s now investigate the reactive power compensation range as a function of the matrix
converter parameters. We can insert equation (3.69), Îi = MÎo cos Φo with 0 ≤ M ≤

√
3

2 ,
into equation (3.71).

Pi = 3
2MV̂iÎo cos Φo cos Φi (3.74)

Equation (3.69) and (3.74) can be inserted in equation (3.73)

Qi = 3
2MV̂iÎo cos Φo cos Φi tan Φi (3.75)



36 3. The matrix converter

q and cos Φi are related through the equation q = V̂o
V̂i

= M cos Φi. So it is possible to write
Φi = cos−1 q

M
and insert it in the expression of the active power (3.74) and the reactive

power (3.75).
Pi = 3

2MV̂iÎo cos Φo
q

M
= 3

2qV̂iÎo cos Φo (3.76)

Qi = 3
2MV̂iÎo cos Φo

q

M
tan cos−1 q

M
(3.77)

Equation (3.77) can be simplified by using the trigonometric relation (3.78).

tan θ = ±
√

sec2 θ − 1 = ±
√

1
cos2 θ

− 1 (3.78)

The sign of the tan θ depends on θ: If θ ≥ 0 then tan θ ≥ 0 and if θ ≤ 0 then tan θ ≤ 0 for
θ ∈ [−π; π].

Qi = ±3
2MV̂iÎo cos Φo

q

M

√√√√ 1
cos2 cos−1 q

M

− 1 (3.79)

Qi = ±3
2MV̂iÎo cos Φo

q

M

√√√√ 1
( q
M

)2 − 1 (3.80)

Qi = ±3
2MV̂iÎo cos Φo

√
1− ( q

M
)2 (3.81)

The input reactive power can be both negative and positive, according to the sign of Φi.
This indicates that reactive power can be either provided or drawn by the matrix converter
no matter the direction of the active power flow. Only the positive reactive power will be
written from now. From equation (3.81), it is clear that for larger M the input reactive
power is also larger. If the modulation index M is set to its maximum value of

√
3

2 , we
have cos Φi = q√

3
2

which is the maximum possible input displacement angle. This also an
indication that the reactive power will be maximum.

Qi = 3
√

3
4 V̂iÎo cos Φo

√√√√1− ( q√
3

2

)2 (3.82)

The corresponding active power which was found in equation (3.76) is:

Pi = 3
2qV̂iÎo cos Φo (3.83)

In figure 3.16 and 3.17 are plotted the input active and reactive power ranges as functions of
the modulation index q and the output power factor cos Φo according to equation (3.82) and
(3.83). The parameters Îo and V̂i are set to constant values. It is clear from figure 3.16 and
3.17 that the input active and reactive powers are maximum for maximum output power
factor, cos Φo = 1 (Φo = 0 ◦). However the active power is maximum for the normalized
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modulation index qn = 1 while the reactive power is maximum for qn = 0. Oppositely the
active power is zero for qn = 0 while the reactive power is zero for qn = 1. For zero output
power factor cos Φo = 0 both active and reactive powers are zero.
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Figure 3.16: The active power (in [W]) through the matrix converter as a function of the normalized modulation index
qn = q

qmax
= 2√

3
V̂o
V̂i

, q ∈ [0; 1], and the output power factor cos Φo for constant output current magnitude Îo = 100A and

constant input voltage V̂i = 100V (The parameter values are indicated as RMS values in the graph).
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Figure 3.17: The maximum reactive power (in [VAR]) at the input of the matrix converter as a function of the
normalized modulation index qn = q

qmax
= 2√

3
V̂o
V̂i

, q ∈ [0; 1], and the output power factor cos Φo for constant output current

magnitude Îo = 100A and constant input voltage V̂i = 100V (The parameter values are indicated as RMS values in the
graph).

While an increasing output power factor gives increasing input active and reactive power,
the modulation index has opposite effect on active and reactive power. An increasing
modulation index yields increasing input active power but yields decreasing input reactive
power. Because of this effect of the modulation index there is always a trade-off between
active and reactive input power. This is due to the fact that the modulation index and
the input power factor limit eachother according to the relation qmax =

√
3

2 = M cos Φi. M
increases the active power while cos Φi increases the input reactive power at the input of
the converter. However the product of these two parameters must remain constant equal
to
√

3
2 . To understand better this trade-off between active and reactive power, one of them

should be expressed as a function of the other. This can be done by first taking the square
of equations (3.82) and (3.83).

P 2
i =

(3
2qV̂iÎo cos Φo

)2
(3.84)
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Q2
i =

(
3
√

3
4 V̂iÎo cos Φo

)2
1−

 q
√

3
2

2
 (3.85)

Q2
i =

(
3
√

3
4 V̂iÎo cos Φo

)2

−
(

3
√

3
4 V̂iÎo cos Φo

)2 q
√

3
2

2

(3.86)

Q2
i =

(
3
√

3
4 V̂iÎo cos Φo

)2

−

3
√

3
4

2√
3
V̂iÎo cos Φoq︸ ︷︷ ︸
Pi


2

(3.87)

In equation (3.86) the expression for the active power can be recognized and thus we can
write expression (3.88) which is the equation of a circle centered at the origin and with
radius 3

√
3

4 V̂iÎo cos Φo in the Pi −Qi plane as is depicted in figure 3.18:

Q2
i + P 2

i =
(

3
√

3
4 V̂iÎo cos Φo

)2

= S2
i (3.88)

P i

Q i

0 ;0

P i
*

Q i
* S i ,max
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33
4

V i I ocoso

i
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Figure 3.18: The circle defining the maximum range of active and reactive power at the input of the matrix converter
with radius equal to the available apparent power at the input of the matrix converter.

The radius of the limit circle corresponds to the maximum apparent power available at the
input of the matrix converter. Si depends on the output power factor cos Φo, the input
voltage Vi and the output current Io. If Vi and Io are set as constant parameters then Si
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depends only on cos Φo and is maximum for unity power factor and zero for zero power
factor. The reason for this is that when the output power factor is zero no current is
transmitted to the input of the matrix converter (this phenomenon will be explained in the
next section) and thus the apparent power is zero. Also, the circle representation shows
clearly how the matrix converter can be operated in the four quadrants of the Pi − Qi

plane. For instance for a given positive active power flow on the right hand side of the
Pi − Qi plane, as in figure 3.18 the reactive power can be positive or negative depending
on the sign of Φi.

In the case of the MCRC system there should be a speed control of the PM machine to keep
the speed at a constant value. A d-q analysis can be used to build a controller for the PM
synchronous machine [14]. When applying speed control both magnitude and phase angle
of the terminal voltage will be modified in order to keep the speed at the reference value.
Thus both q and cos Φo will vary continously. Exactly how these parameters will vary is
difficult to predict and will depend on disturbances and reference signal modifications. The
property of the MCRC will also make ~Io vary according to equation (2.5) in section 2.2 when
the magnitude or the phase of the output voltage of the matrix converter are modified.
Thus the three dimensional plots in figure 3.16 and 3.17 cannot be used as such for assessing
the active and reactive power range of the MCRC system. In the matrix converter q, Φo

and Io are independant parameters, but when the PM machine is introduced in the MCRC
system they become dependant according to the equations (2.10) and (2.11). Thus the
active and reactive power ranges can be plotted in two dimensions, as a function of only
q for instance, rather than in a three-dimensional plot by introducing the equations (2.10)
and (2.11) for the output current and power factor into the expressions of the input active
and reactive powers in the equations (3.82) and (3.83). The active power as a function of
the modulation index q, the input voltage V̂i and the excitation voltage magnitude Êf and
angle δ is:

Pi = 3
2qV̂iÎo cos Φo (3.89)

The corresponding maximum achievable input reactive power is:

Qi = 3
√

3
4 V̂iÎo cos Φo

√√√√√1−
 q
√

3
2

2

(3.90)

with;

Îo =

√√√√( V̂oR− ÊfR cos δ + ÊfXs sin δ
R2 +X2

s

)2

+
(
ÊfR sin δ − V̂oXs + ÊfXs cos δ

R2 +X2
s

)2

(3.91)

and,

cos Φo = cos
(

tan−1
(
ÊfR sin δ − V̂oXs + ÊfXs cos δ
V̂oR− ÊfR cos δ + ÊfXs sin δ

))
(3.92)

These equations (3.89) and (3.90) will be useful in part II to compare the measured active
power and maximum reactive power with the theoretical power ranges.
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3.3.2 Φi = ±90 ◦ and Φo = ±90 ◦

In the special case of Φi = ±90 ◦ and Φo = ±90 ◦ there is no active power flow through the
matrix converter. Let’s first look at equation (3.73). The active power Pi is zero, however
the term tan Φi will diverge to infinity because Φi = ±90 ◦. Therefore it is difficult to use
equation (3.73) to determine the reactive power transfer in this particular case and one
needs to go into the details of the space vector modulation and the internal mechanisms
of the matrix converter to understand it.

In order to examine the capability of the matrix converter to transfer reactive power with
zero power factor at the input and the output of the converter is to look at the influence
of the CSR modulation on the virtual DC link voltage value and oppositely the influence
of the VSI modulation on the virtual DC link current value.

The case of Φi = −90 ◦ and Φo = 90 ◦ will be considered here. However the conclusions can
be generalized to Φi = ±90 ◦ and Φo = ±90 ◦. First we examine the impact of conventional
CSR modulation on the virtual DC link voltage for Φi = −90 ◦. In figure 3.19 are depicted
the input voltage and input current space vectors ~vi,sp and ~ii,sp which are separated by a
Φi = −90 ◦ angle. The current space vector lies in sector III and it is therefore the active
vectors ~ist and ~isr that will be applied to build it. The duty ratios for applying ~ist and ~isr
are calculated as follow:

dst = sin(π3 − θi,sp) (3.93)

dsr = sin(θi,sp) (3.94)
Here the same equations (3.27) and (3.28) for the VSI modulation are used since the angle
θi,sp is measured from the lower active vector ~ist and not the bissectrice of the sector
(see section 3.2.2). The duty ratios are the gating times divided by the switching period
dx = Tx

Ts
.

Each time an active vector and its corresponding switching combination are applied in the
CSR (~irs,~irt,~ist...) a different input line voltage will be impressed on the DC link (vrs, vrt,
vst...). In fact each of the 6 active vectors corresponds to one of the 6 input line-to-line
voltage because a CSR switching combination connects one of the three input phases to
the positive side of the DC link and another input phase to the negative side of the DC
link. Thus it is the time interval of the application of a switching combination and the
value of the line voltages applied at the given instant that will determine the value of the
DC link voltage. For the case depicted in figure 3.19 it is respectively the line voltages vst
and vsr that are impressed on the virtual DC link during the switching of ~ist and ~isr. The
DC link voltage can be calculated according to the following equation (3.95).

edc = dstvst + dsrvsr (3.95)

For CSR modulation, the desired input phase current components are being build by
applying the appropriate active vectors for the appropriate amount of time calculated
according to the reference space vector. The input phase voltage however is fixed and if its
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Figure 3.19: The input voltage and current space vector represented in the complexe plane, Φi = −90 ◦.

value should be calculated, the opposite process can be used. At a given time instant the
voltage space vectors is constructed by a unique combination of voltage phase components.
The value that these components have at that given instant can be found by projecting
the space vector onto the active vectors that are being applied and by multiplying the
projection by 2

3 [15]. Let’s see how we can apply this for the given situation: We have the
current active vectors (~irs, ~irt, ~ist...) in figure 3.19 that represent the line voltages that
are applied to the DC link and we have the input voltage space vector ~vi,sp that is build
with phase voltages. To obtain the line voltages shouldn’t the line voltage space vector be
projected onto the active vectors? Let’s compute the input line voltage space vector:

~vL,i,sp(t) = vrs + vste
(j 2π

3 ) + vtre
(j 4π

3 ) (3.96)

Let’s express the line voltages as functions of the phase voltages by inserting ground o:

~vL,i,sp(t) = vro + vos + (vso + vot) e(j
2π
3 ) + (vto + vor) e(j

4π
3 ) (3.97)

~vL,i,sp(t) = vro + vsoe
(j 2π

3 ) + vtoe
(j 4π

3 )︸ ︷︷ ︸
~vi,sp

+ vos + vote
(j 2π

3 ) + vore
(j 4π

3 )︸ ︷︷ ︸
A

(3.98)
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Let’s compute A:
A = −vor − vot + vote

(j 2π
3 ) + vore

(j 4π
3 ) (3.99)

A = vor

(
e(j

4π
3 ) − 1

)
+ vot

(
e(j

2π
3 ) − 1

)
(3.100)

We can now insert the relation vor = e(j
2π
3 )vot in equation (3.100).

A = e(j
2π
3 )vot

(
e(j

4π
3 ) − 1

)
+ vot

(
e(j

2π
3 ) − 1

)
(3.101)

A = vot

(
1− e(j

2π
3 )
)

+ vot

(
e(j

2π
3 ) − 1

)
= 0 (3.102)

The term A being zero, it is clear from equation (3.98) that the line voltage space vector
and the phase voltage space vector are equal to eachother.

Now that it is proved that ~vi,sp = ~vL,i,sp, we can now proceed and compute the magnitude
of the line voltages vst and vsr by projecting ~vi,sp onto the active vectors ~ist and ~isr and by
multiplying by the factor 2

3 [12].

vst = 2
3 V̂i,sp sin θi,sp = 2

3
3
2 V̂LL sin θi,sp =

√
3V̂i sin θi,sp (3.103)

vsr = −2
3 V̂i,sp cos(θi,sp + π

6 ) = −2
3

3
2 V̂LL cos(θi,sp + π

6 ) = −
√

3V̂i cos(θi,sp + π

6 ) (3.104)

Equation (3.93), (3.94), (3.103) and (3.104) can be inserted in the expression of the DC
link voltage in (3.95).

edc = sin(π3 − θi,sp)
√

3V̂i sin θi,sp − sin θi,sp
√

3V̂i cos(θi,sp + π

6 ) (3.105)

edc =
√

3V̂i sin θi,sp[sin(π3 − θi,sp)− cos(θi,sp + π

6 )] (3.106)

edc =
√

3V̂i sin θi,sp[sin
π

3 cos θi,sp − cos π3 sin θi,sp − cos θi,sp cos π6 + sin θi,sp sin π6 ] (3.107)

edc =
√

3V̂i sin θi,sp [
√

3
2 cos θi,sp −

1
2 sin θi,sp −

√
3

2 cos θi,sp + 1
2 sin θi,sp]︸ ︷︷ ︸

=0

(3.108)

edc = 0 (3.109)

This analysis done for the particular example in figure 3.19 can be generalized for the
current space vector lying in any sector and the DC link voltage would in all cases be zero
like was found for the studied case as long as the current space vector lies 90 ◦ ahead of the
voltage space vector. The same analysis can also be performed for the current space vector
lagging the voltage space vector by 90 ◦ and the DC link voltage would be also found to
be zero.
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Figure 3.20: The input voltage and current space vector represented in the complexe plane, Φo = −90 ◦.

Now the effect of the VSI modulation on the virtual DC link current can be observed in a
similar manner.

idc = dpnniu − dppniw (3.110)

idc = sin(π3 − θo,sp)Îo sin θo,sp − sin θo,spÎo cos(π6 + θo,sp) (3.111)

idc = Îo sin θo,sp[(sin
π

3 cos θo,sp − cos π3 sin θo,sp)− (cos π6 cos θo,sp − sin π6 sin θo,sp)] (3.112)

idc = Îo sin θo,sp [(
√

3
2 cos θo,sp −

1
2 sin θo,sp)− (

√
3

2 cos θo,sp −
1
2 sin θo,sp)]︸ ︷︷ ︸

=0

(3.113)

This analysis can also be extended to any sector and to 90 ◦ output displacement angle
leading or lagging as for the CSR case. The virtual DC link current is zero in the case of
zero power factor at the output. This will in turn affect the CSR modulation because the
active vector which have length

√
3idc, see section 3.2.2, will be zero. Thus no input current

can be build with these active vectors. Similarly, when the input power factor is zero, the
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active vectors in the VSI modulation will be zero and no voltage can be build at the output.
We can conclude with this that the matrix converter is not very useful, especially not for
reactive power compensation, in this operation mode. However modifications can be made
to the modulation in order to extend the operation range of the matrix converter, as will
be presented in section 3.4.

3.4 Improved reactive power transfer with the three-
vector modulation scheme

In the previous section 3.3 we saw that the reactive power at the input was dependent
of the active power transfer and that no input reactive power can be generated in the
operating conditions of Φi = −90 ◦ and Φo = 90 ◦ when using virtual indirect space vector
modulation. In [21] and [20] is described a modulation technique that will enable reactive
power formation at the input of the converter with zero power factor at the input and the
output of the converter, thus with no active power transfer. The modulation technique is
in fact a modified version of the indirect space vector modulation.

To summarize, the issue with the conventional modulation was that, for an output power
factor of 0, the VSI modulation affects the average current DC link to be zero and similarly,
for an input power factor of zero, the CSR modulation afftects the average voltage DC link
to be zero. Since the modulation of the VSI and CSR were done simultaneously throughout
a switching period, they affected eachother; The average DC link voltage to be used by the
VSI was always zero and the average DC link current to be used by the CSR was always
zero. As a consequence the output voltage and input current to be build can only be zero
as well. The idea of the new modulation in [21] and [20] is to form the output voltage
and input current independently of eachother in two subsequent steps within a switching
period so that they do not undermine eachother. Since the output voltage and the input
current are formed independently with the new modulation the transfer ratios of current
and voltage can be set at different operating points. For the conventional modulation
the current transfer ratio was linked to the voltage transfer ratio through the modulation
index, M ∈ [0;

√
3

2 ], according to the following equations:

V̂o = MV̂i cos Φi (3.114)

Îi = MÎo cos Φo (3.115)
In the novel modulation scheme the current and voltage transfer ratios can be set indepen-
dently within the overmodulation limit. The voltage transfer ratio will be called q = V̂o

V̂i
as

before, while the current transfer ratio will be called qi = Ii,q
Io
. The index q in Ii,q indicates

that it is reactive current.

There are two different versions of the modified modulation technique called two-vector-
scheme and three-vector-scheme. The two techniques are advantageous at different voltage
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ratio levels q. The two-vector-scheme has higher current ratio for high voltage ratio, while
the three-vector-scheme has higher qi for low q. The three-vector-schemehas the overall
highest current transfer ratio. The focus will therefore be on the three-vector-scheme.

All the derivations in this section are based on the work in [21], [20] and [19].

3.4.1 The output voltage forming pulse half period

The first half of the switching period, which is called the voltage forming pulse half period
in [21], is dedicated to forming the output voltage as the name indicates. The only modi-
fications that are necessary during this half period are to be done in the CSR modulation
so that it doesn’t influence the average DC link voltage to be zero like in the conventional
modulation. The modulation of the VSI remains the same as it is in the conventional
indirect modulation, previously presented in section 3.2.1.

The voltage DC link needs to have an average value different from zero so that an output
voltage can be built. In the conventional modulation of the CSR the active vectors utilized
are those forming the sector where the current space vector lies. They correspond to
the highest positive input phase currents. We saw in section 3.3.2 that using these active
vectors led to connecting line voltages to the DC link such that the average DC link voltage
was zero. Now that the aim of the modulation is no longer to form an input current and
an output voltage at the same time, but rather only an output voltage in this first step, it
is the active vectors that will give the highest DC link voltage that will be utilized. The
highest DC link voltage is obtained by connecting the highest positive line voltage to the
DC link. That means that the active vectors forming the sector where the space vector of
the input voltage lies should be applied. For the case of −π

6 ≤ θi,sp ≤ π
6 depicted in figure

3.21 the active vectors ~irs and ~itr should be applied so that the line voltages urs and urt
are switched to the DC link.
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Figure 3.21: Modulation of the CSR part during the output voltage forming pulse half period for −π6 ≤ θi,sp ≤
π
6 .

The modulation of the CSR part during the first half of the switching period is really just
like the space vector of the input current was rotated 90 ◦ back so as to be superimposed
on the space vector of the input voltage. The equation derived in section 3.2.2 are then
used to calculate the gating time intervalls of the active vectors.

Trs = Ts
3
2
Îi sin(π3 − (θi,sp + π

6 )√
3idc sin π

3
(3.116)

Trt = Ts
3
2
Îi sin(θi,sp + π

6 )√
3idc sin π

3
(3.117)

The ratio Îi
idc

is kept to its maximum which is 1 such that no zero vectors will be applied.
The expression for the duty cycles, drs and drt, can then be simplified to equation (3.118)
and (3.119).

drs = Trs
Ts

= sin(π3 − (θi,sp + π

6 ) = cos(θi,sp + π

3 ) (3.118)
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drt = Trt
Ts

= sin(θi,sp + π

6 ) = cos(θi,sp −
π

3 ) (3.119)

Computing the DC link voltage will show how this modification of the CSR modulation is
effective in bringing the DC link voltage to a value different from zero.

edc = drsvrs + dtrvrt (3.120)

edc = cos(θi,sp + π

3 )
√

3V̂i cos(θi,sp + π

6 ) + cos(θi,sp −
π

3 )
√

3V̂i cos(θi,sp −
π

6 ) (3.121)

edc =
√

3V̂i[(
1
2 cos θi,sp −

√
3

2 sin θi,sp)(
√

3
2 cos θi,sp −

1
2 sin θi,sp)

+(1
2 cos θi,sp +

√
3

2 sin θi,sp)(
√

3
2 cos θi,sp + 1

2 sin θi,sp)]
(3.122)

edc =
√

3V̂i[
1
4 cos θi,sp sin θi,sp −

1
4 cos θi,sp sin θi,sp︸ ︷︷ ︸

=0

+

2
√

3
4 (cos2 θi,sp + cos2 θi,sp)︸ ︷︷ ︸

1

] =
√

3V̂i
√

3
2 = 3

2 V̂i
(3.123)

Although the value of the DC link voltage was calculated for the specific case of sector I,
−π

6 ≤ θi,sp ≤ π
6 , the result can be generalized to any other sector. By simply rotating the

space vector back to sector I, the same formulas apply. The formulas of the duty ratios of
the VSI are the same as for the conventional modulation. The equations of the duty ratios
are repeated for the generic case of 0 ≤ θo,sp ≤ π

3 depicted in figure 3.22.

dpnn = 3
2
qV̂i sin(π3 − θo,sp)

edc sin π
3

(3.124)

dppn = 3
2
qV̂i sin θo,sp
edc sin π

3
(3.125)

The expression for edc in equation (3.123) can be inserted into the duty ratio formulas
equations (3.124) and (3.125) to obtain the simplified formulas in equations (3.126) and
(3.127).

dpnn = 2√
3
q sin(π3 − θo,sp) (3.126)

dppn = 2√
3
q sin θo,sp (3.127)
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Figure 3.22: Modulation of the VSI part during the output voltage forming pulse half period for 0 ≤ θo,sp ≤ π
3 .

Finally to complete the description of the first part of the three-vector-scheme the rela-
tive duty ratios are computed as in equations (3.128), (3.129), (3.130) and (3.131) and
represented in figure 3.23.

dpnn,rs = dpnndrs (3.128)

dpnn,rt = dpnndrt (3.129)

dppn,rs = dppndrs (3.130)

dppn,rt = dppndrt (3.131)
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Figure 3.23: The duty ratios of the VSI (middle) and CSR (lower) part of the matrix converter and the relative duty
ratios (upper) for the voltage forming first half of the switching period for the generic case of the output voltage space vector
in sector I.

3.4.2 The input reactive current formation pulse

The second part of the switching period is dedicated to the input reactive current formation
and is hence called reactive input current forming pulse half period in [21]. In this time
interval the objective is to form an reactive input current and hence the average DC link
current must be different from zero. The VSI modulation needs to be modified so that
the average DC link current is different from zero although the displacement angle at the
output is 90 ◦. To do this the same trick as was used for the CSR modulation is used.
It is not the active vectors forming the sector where the output voltage space vector is
lying that are applied as before, but the active vector the closest to the space vector of the
output current. By doing this not only is the average DC link current not going to be zero
but the highest output phase current is going to be flowing through the DC link. For the
case of the space vector of the output voltage lying in sector I, 0 ≤ θo,sp ≤ π

3 , the space
vector of the output current will lie closer to the active vector ~upnp and the highest phase
current is then the corresponding −iv as is shown in figure 3.24.
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Figure 3.24: Modulation of the VSI part during the input reactive current forming pulse half period for 0 ≤ θo,sp ≤ π
3 .

In table 3.1 are represented all the sectors where the voltage space vector lies and the
corresponding active vector that should be applied so that the highest positive output
current flows through the DC link.

Table 3.1: Sector of output voltage space vector (left column), the corresponding active vectors to apply in the three-
vector-scheme (middle column) and the corresponding DC link current (right column).

sector active vector idc
I ~upnp −iv
II ~upnn iu
III ~uppn −iw
IV ~unpn iv
V ~unpp −iu
VI ~unnp iw
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For the generic case illustrated in figure 3.24, 0 ≤ θo,sp ≤ π
3 , the DC link current can be

calculated as:

idc = −iv = 2
3 Îo,sp cos(2π

3 −
π

2 − (π3 − θo,sp)) = Îo cos(θo,sp −
π

6 ) (3.132)

Now the CSR modulation remains to be explained. In the three-vector-scheme it is the
two active vectors closest to the input current space vector (the active vectors forming the
sector where the current space vector lies) that should be applied in practice for highest
possible input reactive current formation. However it is important that at least one of the
two current active vectors applied during the reactive current formation pulse half period
is the same as one of the two current active vectors applied during the voltage formation
pulse half period. Only three different current active vectors should hence be applied for the
CSR modulation during the entire switching period, hence the name three-vector-scheme.
The reason for this constraint is that the reactive current and voltage forming pulses half
period later needs to be merged and they can only be merged if the same input current
active vector is applied. The pulse merging process will be explained in the next section
3.4.3. For the configuration of figure 3.25, the space vector of the input voltage lies in
sector I and the space vector of the input current, which is 90 ◦ ahead lies in sector III like
previously. During the voltage formation pulse half period the active vectors ~irs and ~irt
were applied. Hence if the active vectors~ist and~isr which form the sector III are applied in
the reactive current formation pulse half period, all four current active vectors are different
and no pulse merging can be implemented. To overcome this apparent dilemma the active
vector~irs is going to be used in the reactive current forming pulse half period instead of~isr.
To obtain the desired input current despite using the opposite current active vector, the
current of opposite polarity is going to flow in the DC link. Therefore instead of applying
the voltage active vector corresponding to the highest positive output current in the VSI
modulation, inversion will be made and the opposite voltage active vector will be applied.
In figure 3.24, for instance, instead of ~upnp, the opposite vector ~unpn will be applied when
~irs is applied.
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Figure 3.25: Modulation of the CSR part during the input reactive current forming pulse half period for 0 ≤ θi,sp ≤ π
6 .

Input reactive current can only be formed when current flows in the DC link. For our
generic case the input current will be formed when −iv and then iv flows through the
DC link. During the remainder of the current forming pulse half period only zero voltage
vectors are applied, thus it is a current equal to zero that flow in the DC link during the
rest of the half period. Because reactive input current is formed only when the voltage
active vectors are used, the relative duty ratios dpnp,st and dnpn,rs, indicated in figure 3.25,
are going to be calculated right away. In figure 3.26 the geometrical relations used to
calculated the relative duty ratios are indicated.
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Figure 3.26: The geometrical relations used to calculated the relative duty ratios dpnp,st and dnpn,rs in the second half
of the pulse period dedicated to input reactive current formation, here for the input current space vector in sector III and
θi,sp ≥ 0 and the output voltage space vector in sector I (~upnp and ~unpn used in VSI modulation).

Let’s start by calculating the duty ratio dnpn,rs. As was seen in section 3.2.2 the active vec-
tors in the modulation of the CSR part of the matrix converter have length

√
3idc. During

the time interval ~unpn is applied, the average DC link current has value idc = dnpn,rsiv =
−dnpn,rsÎo cos(θo,sp − π

6 ). Thus the active vectors has length
∣∣∣−√3dnpn,rsÎo cos(θo,sp − π

6 )
∣∣∣.

The geometric relation indicated in figure 3.26 is:∣∣∣∣−√3dnpn,rsiv sin π3

∣∣∣∣ =
∣∣∣Îi,q,sp sin θi,sp

∣∣∣ (3.133)

The negative sign on the left hand side in equation (3.133) is due to ~irs being applied
instead of ~isr. The value of iv can be inserted in equation (3.133).∣∣∣∣−√3dnpn,rs(−Îo cos(θo,sp −

π

6 )) sin π3

∣∣∣∣ =
∣∣∣Îi,q,sp sin θi,sp

∣∣∣ (3.134)

The two negative signs on the left hand side of equation (3.134) cancel eachother, thus the
absolute signs can be removed. On the right hand side θi,sp ≥ 0 and the absolute signs can
also be removed here. Finally by rearranging the terms in equation (3.134) the expression
of dnpn,rs can be obtained:

dnpn,rs = Îi,q,sp sin θi,sp√
3Îo cos(θo,sp − π

6 ) sin π
3

=
3
2 Îi,q sin θi,sp√

3Îo cos(θo,sp − π
6 )
√

3
2

(3.135)
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dnpn,rs = Îi,q sin θi,sp
Îo cos(θo,sp − π

6 )
(3.136)

In a similar manner, by using the geometrical relation in figure 3.26, the duty ratio dpnp,st
is calculated.

√
3dpnp,st(−iv) sin π3 = Îi,q,sp sin(π3 − θi,sp) (3.137)

dpnp,st =
3
2 Îi,q sin(π3 − θi,sp)√
3
√

3
2 Îo cos(θo,sp − π

6 )
(3.138)

dpnp,st =
Îi,q cos(θi,sp + π

6 )
Îo cos(θo,sp − π

6 )
(3.139)

Let’s calculate the DC link voltage to see how the modified CSR modulation influences it.

edc = −dnpn,rsurs + dpnp,stust

= − Îi,q sin θi,sp
Îo cos(θo,sp − π

6 )
√

3V̂i cos(θi,sp + π

6 )

+
Îi,q cos(θi,sp + π

6 )
Îo cos(θo,sp − π

6 )
√

3V̂i sin θi,sp = 0

(3.140)

The negative sign is due to the VSI active vector inversion. The modified CSR modulation
makes the DC link voltage be zero and thus, does not influence voltage formation at the
output (no output voltage formation) which is the purpose of the modulation since there
should only be input reactive current formation in this intervall. In addition this property
of the modified modulation ensures the average power through the matrix converter to be
zero during the input reactive current pulse half period.

p = edc︸︷︷︸
=0

idc = 0 (3.141)

During the first output voltage pulse half period the average active power should also be
zero. This is the case since the conventional modulation is used for the VSI part. Recall
that this modulation makes the average DC link current go down to zero for an output
power factor of zero and thus the average power will also be zero.

The relative duty ratios for the voltage forming pulse half period are represented in figure
3.27.
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Figure 3.27: The duty ratios of the VSI (middle) and CSR (lower) part of the matrix converter and the relative duty
ratios (upper) during the input reactive current forming half of the switching period for the generic case of the input voltage
space vector in sector I such that θi,sp ≥ 0 and the input current space vector in sector III.

At this point it is important to make a comment about the sector location of the current
and voltage space vectors in the CSR modulation. In the generic case used to explain the
CSR modulation, the input voltage space vector was in sector I, such that 0 ≤ θi,sp ≤ π

6 .
Since the input current space vector is 90 ◦ ahead of the voltage space vector it lied in sector
III . If however the input voltage space vector is in sector I such that −π

6 ≤ θi,sp ≤ 0, the
input current space vector will lie in sector II. The active vectors that should be applied
during the input reactive current forming pulse half period, are then ~irt and ~ist. Since ~vi,sp
is still in sector I it is~irs and~irt that will be applied during the output voltage forming pulse
half period. Hence there are only three different active vector that will be applied in total.
Merging of the pulses is then possible without inversion of any of the VSI active vectors.
However the DC link voltage edc will not be zero like in equation (3.140) in that case and
the CSR modulation will infuence the output voltage formation. This is why an inversion
is necessary anyway. The active vector that is not common for the output voltage and
input reactive current forming pulse half period will be inversed, here ~ist. Consequently
the active vector in the VSI modulation must be inversed as well. This case of the input
voltage space vector lying in sector I such that −π

6 ≤ θi,sp ≤ 0 is illustrated in figure 3.28.
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Figure 3.28: The geometrical relations used to calculated the relative duty ratios dnpn,ts and dpnp,rt in the second half
of the pulse period dedicated to input reactive current formation, here for the input current space vector in sector II and
θi,sp ≤ 0 and the output voltage space vector in sector I (~upnp and ~unpn used in VSI modulation).

To calculate the relative duty ratios dnpn,ts and dpnp,rt the same equations (3.137) and
(3.140) are used with the absolute value of θi,sp to obtain positive duty ratios.

dpnp,rt = Îi,q sin |θi,sp|
Îo cos(θo,sp − π

6 )
(3.142)

dnpn,ts =
Îi,q cos(|θi,sp|+ π

6 )
Îo cos(θo,sp − π

6 )
(3.143)

3.4.3 Merging of the voltage and reactive current formation pulses

In the two previous sections 3.4.1 and 3.4.2, the modified modulation was explained: the
output voltage and the input voltage were created in two separate steps so that the CSR
and VSI modulations would not undermine eachother like in the conventional modulation.
However output voltage is only created in the first half of the switching period and thus
the voltage transfer ratio will be lower than for the conventional modulation. Similarly the
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reactive current is only created during the second half of the pulse period. The merging of
the voltage forming and reactive current forming pulse half period will increase the voltage
duty ratio as well as current transfer ratio. The merging technique will be explained with
the help of the same generic example as before: input voltage space vector in sector I such
that θi,sp ≥ 0, the input current space vector 90 ◦ ahead in sector III, the output voltage
space vector in sector I and the output current space vector 90 ◦ behind. This generic
example and the corresponding relative duty ratios calculated for the entire switching
period are represented in figure 3.29. Figure 3.29 represents the switching pattern for one
switching period of the three-vector-scheme modulation for the generic example if no pulse
merging is implemented.
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Figure 3.29: The relative duty ratios (upper row) during the entire switching period, the corresponding switching
combination (middle) and the input voltage and output current applied to the DC link (bottom row); for the generic case of
the input voltage space vector in sector I such that θi,sp ≥ 0 and the input current space vector in sector III and the output
voltage space vector in sector I.

In figure 3.29 are represented the relative duty ratios dnnn,rs and dnnn,rt from the volt-
age forming period and dppp,rs and dppp,st from the reactive current forming period. No
output voltage is formed when [nnn, rs] and [nnn, rt] are applied during the first half of
the switching period because zero voltage vectors, ~unnn here, do not produce any output
voltage. Similarly no reactive current is formed when [ppp, rs] and [ppp, st] are applied
during the second half of the switching period because when a zero voltage vector, ~uppp
here, is applied all the output phases are connected to one side of the DC link and thus
there is a breach in the path of the DC link current which is then zero. If the DC link
current is zero no input reactive current can be created. The switching combinations with
zero voltage vectors are thus superficial. The time slots dnnn,rs and dnnn,rt of the output
voltage forming pulse half period can be filled up with the reactive current forming pulses
[npn, rs] and [pnp, st] according to the merging that will be presented next. Thus only the
switching combinations [ppp, rs] and [ppp, st] remain in the reactive input current forming
second half. These switching combinations can surely be dropped, they don’t contribute
to any reactive current formation, leaving an empty reactive current formation pulse half
period. This means that the voltage formation pulse half period can now be expanded to
the entire switching period. This will restore to some extent the modulation index to the
value of the conventional modulation.
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Now let’s study closer the process of inserting the reactive current forming pulses [npn, rs]
and [pnp, st] into the voltage forming pulse half period. The pulse [pnp, st] is going to be
inserted entirely in a zero voltage vector time slot. The other pulse, [npn, rs], however is
not. There would probably not be enough zero voltage vector time intervals anyway to fit
both reactive current forming pulses [npn, rs] and [pnp, st]. [npn, rs] will be merged with
a pulse that presents the same current active vector ~irs, and as a consequence the same
DC link voltage urs. Two candidate pulses present themselves: [pnn, rs] and [ppn, rs]. The
property iu + iv + iw = 0 and thus iu + iv = −iw will be used because it states that it is
equivalent to apply iu + iv or −iw to the DC link. In practice this means that the pulse
[pnn, rs] with DC link current iu and DC link voltage urs is a perfect match for merging
with reactive forming pulse [npn, rs] with DC link current iv and DC link voltage urs. The
merging of these two pulses will yield a pulse equivalent to [ppn, rs] with DC link current
−iw and DC link voltage urs. Thus the pulse [ppn, rs], already present in voltage forming
half period, see figure 3.29, can be extended with the time interval of the merging. The
merging of the pulses [npn, rs] and [pnn, rs] can only last for the smallest duty ratios of
the merged pulses, min [dnpn,rs; dpnn,rs]. For the remaining time |dnpn,rs − dpnn,rs|, the pulse
with the longest duty ratio will be applied.

Now that all the output voltage forming pulses and the input reactive current forming
pulses have been calculated and incorporated into the pulse pattern of the modified mod-
ulation, there might remain some time intervall in the switching period depending on
whether the modulation indicis q and qi are set to their maximum or not. The remaining
time interval ∆t is calculated as in equation (3.144):

∆t = Ts −
∣∣∣dqnpn,rs − dpnn,rs∣∣∣−min [dnpn,rs; dpnn,rs]
−dppn,rs − dppn,rt − dpnn,rt − dqpnp,rt

(3.144)

This remaining time interval ∆t should be only be distributed among zero voltage vector
so as not to destroy the modulation. However it doesn’t matter how they are distributed
[1]. They will hence be distributed equally as in equation (3.145).

dppp,rs = dppp,rt = dnnn,rt = dnnn,st = ∆t
4

(3.145)

The choice between ~uppp or ~unnn is dictated by the desire of switching as little as possible.
This same motivation leads to setting the current active vectors in the following order: ~irs,
~irt and~ist such that only one commutation is needed from one vector to another. The final
pattern of a switching period in the modified modulation is represented in figure 3.30.
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Figure 3.30: The relative duty ratios (upper row) during the entire switching period after the merging, the corresponding
switching combination (second row), the input voltage and output current applied to the DC link (third row) and generalized
switching combination; for the generic case of the input voltage space vector in sector I such that θi,sp ≥ 0 and the input
current space vector in sector III and the output voltage space vector in sector I.

The last row of figure 3.30 is the generalized switching pattern for the case Φi = −90 ◦ and
Φo = 90 ◦ when θi,sp ≥ 0. The subscripts "lower" and "upper" refer to respectively the lower
and upper active vectors in the sector where the input and output voltage space vector lie.
~uzero represents a zero vector: ~unnn or ~uppp. The vectors ~umax and ~uinverse represent the
voltage active vectors used in the reactive current forming pulse half period: ~umax is the
active vector that will yield maximum positive DC link current and ~uinverse is the inverse
vector. In the appendix are added the generalized switching pattern for the case of θi,sp ≤ 0
as well.

When the matrix converter is to draw reactive power, that is Φi = 90 ◦, the modulation
needs to be modified accordingly. The details will not be presented here as the same
reasoning as was shown previously can be used. The generalized switching patterns are
added in the appendix for Φi = 90 ◦ and Φo = 90 ◦ in the two cases θi,sp ≥ 0 and θi,sp ≤ 0.

3.4.4 Reactive power compensation range

The reactive power compensation range for the conventional indirect space vector modu-
lation and the modified modulation, the Three-Vector-Scheme, are shown in figure 3.31.
The latter is only shown for its area of application, which is the case of no active power
transfer, that is for an output power factor equal to zero cos Φo = 0. From figure 3.31 we
can see how the reactive power range is raised above Qi = 0 with the three-vector-scheme
modulation for cos Φo = 0.
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Figure 3.31: The reactive power range (in [VAR]) at the input of the matrix converter as a function of the normalized
modulation index qn = q

qmax
= 2√

3
V̂o
V̂i

, q ∈ [0; 1], and the output power factor cos Φo for the conventional indirect space

vector modulation (in green) and for the Three-Vector-Scheme (in red) for constant output current magnitude Îo = 100A
and constant input voltage V̂i = 100V (The parameter values are indicated as RMS values in the graph).

The reactive power range is calculated using equation (3.146).

Qi = 3
2 Îi,qV̂i = 3

2qi,maxÎoV̂i (3.146)

The maximum current modulation index, qi, was first computed in [21] and then corrected
and slightly modified in [19]. For lower normalized voltage modulation indicis, qn = q√

3
2
≤

28−6
√

7
19 ≈ 0.64, the maximum normalized current modulation index is calculated as in

(3.147).

qi,n = 1
4

(√
16− 3q2

n − 3qn
)

(3.147)

For higher voltage modulation indicis q the maximum normalized current modulation index
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is calculated as in (3.148).
qi,n = 4

3 (1− qn) (3.148)
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results of the Matrix Converter-based

Reactive Compensation System
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This second part of the Master Thesis features the simulation results from three different
simulation models, all built in Simulink Matlab. The first simulation model to be presented
is that of a MCRC system with a matrix converter that is modulated with conventional
indirect space vector modulation and a PM machine that is modelled by the simple three-
phase equivalent circuit presented in chapter 2 of part I. the second simulation model is
similar to the first one, except the matrix converter is modulated with the three-vector-
scheme. In those two models the equivalent circuit of the PM synchronous machine is
composed of a non-neglectable resistor to dampen quickly initial current oscillations, R =
0.1 Ω (an explanation for the oscillation phenomena will be provided in chapter 5), a
synchronous reactance, Xs = 0.314 Ω (Ls = 0.1H) and an excitation voltage ~Ef . The
reactance value was chosen to be Xs = 0.314 Ω as it is a standard value for the synchronous
reactance [8]. In those two first models the input of the matrix converter is connected
to a three-phase voltage source, ~Vi = 100√

2∠0◦ V . The third simulation model represents
the MCRC system with three-vector-scheme modulation connected to a grid. This last
simulation model will be further described in section 5.

In all the three models, although the PM machine is represented by a simplified model, the
matrix converter’s model is detailed and no simplifications were made: The model contains
all the switching information. In all simulations the switching frequency is set to fs =
10000Hz. The choice of the switching frequency is a compromise between the benefits of
high switching frequency (harmonics at higher frequencies and thus need for smaller input
filter rating, smoother curves) and low computational speed at high switching frequency.
As a rule of thumb the simulation step should be at least one tenth of the switching period
for a acceptable resolution [16]. For fs = 10000Hz, the switching period is Ts = 1e−4 s and
thus the simulation step should not exceed Tsimulation = 1e−6 s. Tsimulation = 1e−6 s yields a
reasonable computational speed in MATLAB Simulink and was thus set as the simulation
step in the "Power GUI" along with a discrete solver. In the configuration parameters of
the overall model, the solver Dorman-Price, "ode 45", was chosen in MATLAB. Also, the
IGBTs and diodes in the bidirectional switches are modeled with on-state losses (on-state
resistance Ron = 0.001 Ω) and snubbers. The IGBT model also contains switching losses
with a finite current fall and tail time (Tfall = 1e−6 s and Ttail = 2e−6 s).

In all the simulations the output voltage is modulated so as to be in phase with the
input voltage and the frequency is 50Hz both at the input and the output of the matrix
converter.
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Chapter 4

Reactive compensation with
conventional modulation

In this first chapter of part II of the Master’s thesis, the studied simulation model of
the MCRC system contains a matrix converter modulated with conventional space vector
modulation. The simulation model built for these simulations is reported in appendix B,
in the figures B.1, B.2, B.3, B.4, B.5 and B.6.

It is important to select carefully relevant data from the simulations to properly show the
features of the reactive power compensation device. The very first feature of the MCRC
system that should be presented are all the input and output voltage and current waveforms
of the matrix converter.

The input displacement angle is kept to zero (Φi,ref = 0), no reactive power at the input,
the modulation index reference is set to qref = 0.5 and the excitation voltage is set to
~Ef = 50√

2∠ − 20 ◦. The excitation voltage was chosen with a negative rotor angle so as
to have the active power flow into the PM machine. The magnitude and phase angle
were chosen so as to have a substantial power flow. The waveforms of only one phase are
reported figure 4.1 for readability. The input current and output voltage contain harmonics
as there is no input filter in these first simulations. While the output voltage and the input
current contain a lot of harmonics, the output current is smoothened out by the inductance
of the equivalent circuit of the PM machine. The fundamental component at 50Hz and
phase angle of the previously shown waveforms are shown in figure 4.2 for the input voltage
and current and in figure 4.3 for the output voltage and current. Also we can read from
graph a) in figure 4.3 that V̂o = 54V and from graph c) in figure 4.2 that Φi = 0.35 ◦. The
measured value correspond well to the reference. There is however a small discrepancy
which could be due to the fact that the high harmonic content makes the measurements
in MATLAB Simulink inaccurate. Another factor that should be taken into account when
assessing the simulation results and their small errors compared with their references is
that the solver in MATLAB does not give an exact solutions. For instance, using different

67
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Figure 4.1: One phase of the input voltage (a) and current (b) and output voltage (c) and current (d) waveforms for
Φi,ref = 0 and qref = 0.5.

solvers or different time-step will yield slightly different results. Otherwise it could also be
an error in the modulation, however it is then small because the matrix converter performs
overall well and no errors could be found when inspecting the modulation closely several
times.

The next feature presented is the modulation curve of the matrix converter. The input
displacement angle reference, Φi,ref , is still kept constant at zero (no input reactive power)
and ~Ef = 50√

2∠−20 ◦. Only the modulation index reference of the voltage qref is increased.
The results of the simulations are reported in table 4.1. From looking at table 4.1 we
see that the output voltage magnitude, V̂o,meas, increases along with the modulation index
reference q. In figure 4.4 which shows the output voltage versus the modulation index, it is
clear that the measured output voltage magnitude, V̂o,meas, represented by the red curve,
follows approximately linearly the modulation index qref . As was explained in section
3.1 the modulation index q cannot exceed qmax =

√
3

2 . When the modulation index is
however increased above this limit, the output voltage will saturate at a value a little
above the limit of V̂max = qmaxV̂i = 86V . The red curve in figure 4.4 settles at about
91V . The theoretical modulation curve, qVi, is added in blue in figure 4.4 for comparison.
The theoretical modulation curve was set to settle at Vmax = 86.6V because ideally to
avoid increased harmonics in the output voltage and input current this limit should not
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Figure 4.2: The magnitude of the input voltage (a) and current (b) and input voltage and current phase angle (c) for
Φi,ref = 0 and qref = 0.5.

be exceeded. When comparing the theoretical and experimental curves it is clear that the
experimental curve is a little bit above the theoretical curve. This is probably due to the
same reason as before; inaccurate Simulink measurement box or solver.

Let’s now look at the other measured entities reported in table 4.1. Φi,meas is very close to
zero, its reference, for the lower modulation indicis. For qref ≥ qmax the angle starts to de-
viate sligthly from the reference. This is due to matrix converter entering overmodulation.
The losses ∆P in the matrix converter which is the difference between the input active
power Pi and the output power Po, are reported in the rightmost column. The power losses
decrease for low modulation indicis. For qref above 0.5 the losses increase again. The losses
in the converter follow the same trend as the output current Îo,meas which is normal as the
losses are strongly dependent on the current.

Now the behaviour of the matrix converter will be investigated for an input displacement
angle Φi different from zero. In the next battery of simulations the modulation index
reference is kept constant at qref = 0.5 and the excitation voltage is kept at ~Ef = 50√

2∠−20 ◦.
The input displacement angle is increased from Φi = 0 to Φi = −90 ◦. The results are
reported in table 4.2.

The measured input displacement angle follows quite nicely the reference Φref . The input
active and reactive powers were measured and reported in table 4.2. As excpected the
active power decreases when the input displacement angle is increased while the reactive
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Figure 4.3: The magnitude of the output voltage (a) and current (b) and output voltage and current phase angle (c) for
Φi,ref = 0 and qref = 0.5.
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Figure 4.4: Modulation curves of the output voltage V̂o versus the modulation index qref build with experimental data
from simulations (upper curve in red) and build with the theoretical values (lower curve in blue).
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Table 4.1: Results of the simulations done with constant input displacement angle reference Φi,ref = 0 and the modulation
index reference qref increased from 0.1 to 1.5; From left to right: The reference modulation index qref , the measured output
voltage V̂o,meas, the measured output current Îo,meas, the measured output and input displacement angle Φo,meas and
Φi,meas, the measured input and output powers Pi,meas and Po,meas, the absolute matrix converter losses ∆P = Pi − Po .

qref V̂o,meas Îo,meas Φo,meas Φi,meas Pi,meas Po,meas ∆P
[V ] [A] [◦] [◦] [W ] [W ] [W ]

0.1 9.9 123 -85 -0.8 360 143 217
0.2 21.7 91.5 -75 -1.4 910 740 170
0.3 32.6 66 -60 0.05 1779 1634 145
0.4 43.6 50.5 -30 0.3 2985 2845 140
0.5 54.1 53.5 5.2 0.4 4455 4350 105
0.6 64.3 72 29 0.7 6191 6064 127
0.7 73.6 94 41.2 1.5 8015 7870 145
0.8 82.2 116 48.2 3.2 9720 9560 160
0.866 86.8 128 51.2 4.3 10650 10490 160
0.9 88.7 133 53 4.6 11040 10890 150
1.0 90.9 139 53 4.5 11550 11405 145
1.1 91.5 141.5 53 4 11800 11644 156
1.2 91.6 143 52.5 4 12090 11928 162
1.3 91.6 145 52 4.1 12430 12274 156
1.4 91.3 146 51 4 12800 12650 150
1.5 91.2 147.8 50 4.2 13250 13085 165

Table 4.2: Results of simulations done with constant modulation index reference qref = 0.5 and with the input displace-
ment angle reference Φi decreased from 0 to −90 ◦; From left to right: The reference input displacement angle Φi,ref , the
measured input displacement angle Φi,meas, the measured output voltage V̂o, the measured output current Îo, the measured
output displacement angle Φo, the measured input current Îi A, the input active and reactive powers Pi,meas and Qi,meas.

Φi,ref Φi,meas V̂o,meas Îo,meas Φo,meas Ii,meas Pi,meas Qi,meas

[◦] [◦] [V ] [A] [◦] [A] [W ] [V ar]
0 0.35 54.1 53.7 5.0 29.7 4455 27.2
-10 -10.5 54.0 52.0 4.0 29 4280 793
-20 -20 54.0 48.1 4.7 28.1 3970 1445
-30 -27.8 54.5 42.5 7.5 26.5 3510 1480
-40 -37.3 54.9 42.7 7.9 29.4 3540 2696
-50 -48.5 52.8 41.1 2.0 33.5 3327 3760
-60 -60 47.0 34.2 -26.7 29 2205 3819
-70 -74 33.1 58.4 -72.1 23 940 3278
-80 -77.7 18 119 -44.6 74.7 2380 10915
-90 -84 1.6 147 -99.4 2.6 88.5 842
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power increases for Φref ≥ −50 ◦. This is the excpected behaviour according to figure
3.18 in section 3.3. The Pi − Qi circle can be consulted for Φref ≥ −50 ◦ because the
output voltage is approximately constant (qref = 0.5 for all simulations) and thus the
output current and power factor are also approximately constant. The input apparent
power is therefore a circle and the active and reactive power shares are determined by the
displacement angle. For Φref ≤ −50 ◦, the active and reactive powers’ values can no longer
be explained with the Pi−Qi circle since V̂o,meas, Îo,meas and Φo,meas are not constant even
though the modulation index is constant. In table 4.2 we see that the output voltage V̂o
collapses for the input displacement angle above Φi = −60 ◦ and can not be maintained to
its reference value of 50V . This is due to the fact that Φi and q limit eachother according to
the equation cos Φi = q√

3
2

as was seen in section 3.3. Thus the maximum input displacement

angle is Φi,max = cos−1
(

0.5√
3

2

)
= 54.7 ◦. The fact that the voltage cannot be maintained at

its reference value is a serious drawback as the output voltage needs to be controlled in the
MCRC system to control the PM machine. For an input displacement angle of Φi = −80 ◦
the system has a peak in the reactive power it provides to the grid. The input reactive
power is Qi = 10915V ar. The peak is due to the input displacement angle being large
and also to a peak in the ouput current Îo. From a first glance at table 4.2 this could
seem like a good operation set point to provide maximum reactive power. However, when
looking closely at table 4.2, it is clear that this is not a viable compensation mode as the
matrix converter modulation is really not functioning properly as was explained before.
Also it is clear from table 4.2 that for Φi = −90 ◦ the modulation of the matrix converter
collapses totally. The output voltage is down to V̂o,meas = 1.6V and the input current is
only Îi,meas = 2.6A although Îo,meas = 147A.

We should now examine whether the active and reactive power ranges calculated with
equation (3.89) and (3.90) in section 3.3 are obtainable with the built simulation model.
The active and corresponding maximum reactive powers are calculated as a function of the
modulation index q, Êf and δ and are reported in figure 4.5 in blue. To measure the active
power and the corresponding maximum reactive power the maximum input displacement
angle was tracked for each modulation index using the equation Φi,max = cos−1

(
q√
3

2

)
.

Since the reference and the measured input displacement angles are always a little off, the
reference needed to be adjusted to obtain the rreal maximum input displacement angle.
The results are reported in table 4.3. The measured input active and reactive powers are
plotted in red in figure 4.5. A good agreement is obtained between the theoretical and
measured values and we can see that while the active power flow in the MCRC system
increases with the modulation index q, the input reactive power first increases and then
falls down to zero for the maximum modulation index qmax. The maximum input reactive
power occures for q = 0.6, which corresponds to a maximum input displacement angle
of approximately −45 ◦. From figure 3.18 in section 3.3 we know that for this angle the
active and reactive powers are equal. This is also clear from figure 4.5 as the active and
reactive power curves cross at q = 0.6. With an increasing modulation index q, the active



73

Table 4.3: Results of simulations done with the modulation index reference increased from qref = 0 to qref = 0.866
and with the input displacement angle reference Φi set to its maximum possible value; From left to right: The reference
modulation index qref , the theoretical maximum displacement angle Φi,max calculated according to Φi,max = cos−1

(
2q√

3

)
,

the measured input displacement angle Φi,meas, the measured output voltage V̂o,meas, the measured output current Îo,meas,
the measured output displacement angle Φo,meas, the measured input active and reactive powers Pi,meas and Qi,meas.

qref Φi,max Φi,meas Pi,meas Qi,meas

[◦] [◦] [W ] [V ar]
0.05 -86.7 -86 170 2431
0.1 -83.4 -83.5 330 2922
0.2 -76.6 -76.6 815 3421
0.3 -69.7 -68.8 1675 4318
0.4 -62.5 -62 2872 5401
0.5 -54.9 -53.4 4180 5628
0.6 -46.2 -46.6 5570 5890
0.7 -35.5 -35.4 7300 5188
0.8 -22.5 -21 8950 3435
0.866 0 1 11400 -199

power share of the apparent power increases while the reactive power share decreases, see
figure 3.18. For modulation indicis lower than q = 0.6, corresponding to maximum input
displacement angles lower than −45 ◦, the reactive power share is larger than the active
power share, see figure 3.18. So as Pi increases, Qi also increases but with a slower slope
as q increases. For q = 0.6 and correspondingly Φi,max the reactive power at the input is
maximum. For modulation indicis above q = 0.6, the active power share becomes so large
that the reactive power share can no longer increase and starts decreasing toward zero.

Now let’s finally look at the waveforms for Φi,ref = −90 ◦ and qref = 0.5 and see how
the matrix converter behaves. In figure 4.6 are represented the input voltage and current
magnitudes and the input displacement angle. In figure 4.7 are represented the output
voltage, current and displacement angle. From both figures it is again clear that the
modulation collapses for a displacement angle of −90◦.
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Figure 4.5: The active and the reactive power ranges at the input of the MCRC device; the theoretical powers are in
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Figure 4.6: The magnitude of the input voltage (a) and current (b) and input voltage and current phase angle (c) for
Φi,ref = −90 ◦ and qref = 0.5.
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Figure 4.7: The magnitude of the output voltage (a) and current (b) and output voltage and current phase angle (c) for
Φi,ref = −90 ◦ and qref = 0.5.



Chapter 5

Improved reactive compensation with
the three-vector-scheme modulation

The last simulation in the previous section showed how the conventional indirect space
vector modulation collapses for an input phase displacement angle of Φi = −90 ◦, as was
predicted by the analysis in section 3.3. In section 3.4 is presented the three-vector-scheme
that makes pure reactive power compensation possible. The modulation was implemented
in MATLAB Simulink and the simulation model is to be found in appendix C in figure
C.1, C.2, C.3, C.4, C.5 and C.6. The simulation model was built such that the input
and output voltages are in phase (θi,sp = θo,sp) and Φi = −90 ◦ and Φo = 90 ◦ in order to
keep the modulation simple. In figure A.2 in appendix A, the switching patterns for all 6
sectors, used for the modulation of the simulation model, are added. Since the modulation
is implemented so that Φo = 90 ◦, this condition needs to actually be fullfilled at the
output of the matrix converter or terminal of the PM machine. To obtain approximately
zero power factor the resistance needs to be lowered compared with the reactance. A high
resistance was used for the previous simulations in order to dampen out initial oscillations
faster. In the next simulations the resistance will be set to R = 0.01 Ω while the reactance
is kept at Xs = 0.314 Ω as before. Thus the simulations need to run longer so as to see the
oscillations disappear. Another parameter that needs to be modified with respect to the
previous simulations is the excitation voltage. First of all the rotor angle should be set to
zero since no active power should flow through the matrix converter for this case of pure
reactive compensation. Secondly the amplitude of the excitation voltage should be set to
a low value (below terminal voltage amplitude) in order to obtain Φo = 90 ◦. From figure
2.2 in section 2.1 we see that when Vo ≥ Ef the current phasor lags the terminal voltage
with 90 ◦ which is what we want to obtain. On the other hand when Vo ≤ Ef the current
phasor leads the terminal voltage phasor. The excitation voltage is set to ~Ef = 10√

2∠0V .

For the first simulation the input and output voltage and current waveforms are presented.
The voltage ratio reference qref and the current ratio reference qi,ref can be set to different
values as was explained in section 3.4. The ratios will be set at an operating point located
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Figure 5.1: The input voltage (a) and current (b) waveforms for q = 0.2 and q = 0.7.

on the upper limit of the operation range of the three-vector-scheme modulated matrix
converter. For q = 0.2 the maximum qi can be calculated with equation (3.147) from
section 3.4 to be appromimately qi = 0.7. One phase of the input voltage and current are
shown in figure 5.1 and one phase of the output voltage and all the phase of the output
current are shown in figure 5.2. All the three phases of the output current are presented to
show the initial oscillations that slowly damp out. The initial oscillations are also visible
in the input current waveform in figure 5.1. Now that the oscillations are so large because
of low resistance value, it is in order to give an explanation to this phenomenon. We
call it oscillations but in figure 5.1 and 5.2 they rather manifest as DC-offsets. We call
them oscillations anyway because the fundamental components become oscillatory because
of the DC-offset in the waveforms, see the current magnitude in figure 5.3 and 5.4. We
observe that the output current contains a DC-offset component that fades away with
time, in addition to the forced AC response driven by the excitation voltage source. This
is typical of short-circuit currents in a synchronous machine [13] p.128. The DC offset is
the natural response of the synchronous machine (or R-L circuit here) to a short-circuit.
The DC current are induced to keep the flux linkage constant in the reactance coil at the
instant of short-circuit. The IGBTs are all initially OFF, that is open state, and when the
simulation starts and the IGBTs start switching the R-L circuit sees it as a short-circuit.
The oscillations also propagates to the input since the input current is build with output
current fragments. The corresponding magnitude and angle displacement are shown in
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Figure 5.2: The output voltage (a) and current (b) waveforms for q = 0.2 and q = 0.7.

figure 5.3 and 5.4. The measured output voltage is V̂o = 20.02V which is very close to its
reference qV̂i = 20V . The output current is measured to be Îo = 31.98A and the input
current is Îi = 22.28A. This is also very close to the reference of qiÎo = 0.7∗31.98 = 22.39A.

The last simulation result to be presented in this Master thesis will demonstrate how the
MCRC device can be used for voltage support. The MCRC device is connected to a grid
to which a three-phase symmetrical fault is connected after t = 1 s so as to reduce the
grid voltage by 23.4%. The MCRC device is set to start reactive power compensation at
t = 1.5 s to bring the voltage back to its nominal pre-fault value.

As we saw in the previous simulations the input current contains a lot of harmonics. These
needs to filtered away before the current can be injected into the grid. A simple RLC filter is
connected at the input of the matrix converter. The filter inductance L and capacitance C
are chosen such that the cut-off frequency is fc = 1

2π
√
LC
≈ 178Hz: L = 2mH, C = 400µF

and R = 4 Ω [22]. Having a filter at the input of the matrix converter modifies the voltage
at the input of the converter. This voltage change should be compensated for by a regulator
that provides a new reference to the modulation of the matrix converter. Also changes in
the gridside voltage due to a short-circuit fault on the grid should be compensated for by a
regulator. This has not been done in this thesis as no control system has been implemented.
Therefore the input voltage of the matrix converter will vary causing in turn the output
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Figure 5.3: The magnitude of the input voltage V̂i (a), current Îi (b) and the input displacement angle Φi (c) for q = 0.2
and q = 0.7.
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Figure 5.4: The magnitude of the output voltage V̂o (a), current Îo (b) and the output displacement angle Φo (c) for
q = 0.2 and q = 0.7.
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Figure 5.5: The gridside voltage: a fault occures at t = 0.1 s such that the voltage has a 23% drop, the compensation
device is set to start at t = 0.15 s to bring back the voltage to its pre-fault value.

voltage to vary and as a consequence the output current also. It is therefore difficult to
control the input current into the grid in these conditions, not to say impossible. To be
able to show the reactive power compensation feature of the MCRC device anyway, the
equivalent circuit of the PM machine is replaced by a constant current source such that
~Io = 60∠ − 90 ◦A. The MATLAB Simulink simulation model is shown in figure D.1 in
appendix D. The voltage on the gridside is shown in figure 5.5. We see that the voltage is
brought back to its pre-fault value immediately after the MCRC is set to work.
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Chapter 6

Conclusion and further work

6.1 Conclusion

A new application for the matrix converter was investigated in this Master’s thesis: A ma-
trix converter-based reactive power compensation device or MCRC device. In combination
with a PM machine, the matrix converter can provide or extract reactive power to a grid
it is shunt-connected to. When the PM machine is loaded, the MCRC device can act as
an energy buffer in addition to compensating for reactive power. When the PM machine
runs at no-load, the device provides pure reactive compensation.

The first part of the thesis was a theoretical analysis of the MCRC device. The two main
components of the device were presented: The PM machine and the matrix converter. The
aim of the PM machine analysis, in addtion to understanding the general functioning of the
machine, was to identify the conditions it imposes at the output of the matrix converter
for the two operation modes: loaded and at no-load. The equation for the output current
and output power factor were developed for the loaded operation mode. In the no-load
situation, the analysis showed that the output current is purely reactive and the output
power factor is zero. No active power flows through the matrix converter and the input
power factor is also zero.

The matrix converter was the next component to be analyzed. The modulation of the
matrix converter influences strongly the reactive power transfer at the input of the matrix
converter. The conventional indirect space vector modulation influences it such that the
input reactive power is dependent on the active power flow through the matrix converter.
The output power factor determines the amount of apparent power at the input of the
matrix converter. The input displacement angle will then decide how the apparent power
distributes in active and reactive power. The bigger the input displacement angle is, the
larger the reactive power share. The modulation index on the other hand increases the ac-
tive power share. However the input displacement angle and modulation index are inversely
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proportional. If the modulation index is increased, the maximum input displacement angle
is decreased and vice versa.

Despite this trade-off between the active and reactive power at the input of the matrix
converter, the following feature was found to be a characteristic of the indirect space vector
modulation: There cannot be any reactive power at the input of the matrix converter if no
active power flows through it. As a conclusion, when the matrix converter is modulated
with the conventional indirect space vector modulation, it cannot be used for pure reactive
compensation. It can only be used in combination with active power transfer and with an
energy buffer, load on the rotor shaft.

For pure reactive power compensation with the MCRC device another modulation must be
used: The three-vector-scheme was suggested instead of the conventional modulation. This
modulation is a modified version of the indirect space vector modulation and performs very
well for zero active power transfer. Both the conventional indirect space vector modulation
and the three-vector-scheme were described in details such that all the information needed
to implement simulation models is provided.

The second part of the thesis was dedicated to experimental results. Simulation models
for the MCRC device were implemented with a matrix converter modulated with the con-
ventional indirect space vector modulation and the three-vector-scheme. The PM machine
was modeled by a simple equivalent circuit. Simulations done with the conventionally
modulated matrix converter included: Input and output current and voltage waveforms, a
modulation curve of the output voltage versus the modulation index, the active and input
reactive power for a constant modulation index but varying input displacement angle and
the active power and the maximum input reactive power as functions of the modulation
index. The measured values corresponded overall quite well to the references. Deviations
from the reference were discussed to be due to inaccurate solver or inaccurate measuring
toolboxes.

The modulation curve confirmed that the absolute upper limit of the modulation index is
qmax =

√
3

2 . When the active and reactive power were measured for a constant modulation
index but varying input displacement angle it was clear that when the angle exceeded the
limit Φi,max = cos−1 q√

3
2
, the modulation collapsed and the voltage reference could not be

followed anymore. However for angles below the limit Φi,max, the simulation results showed
clearly the inherent trade-off between the active and reactive power at the input of the
matrix converter. The active power and the corresponding maximum input reactive power
as functions of the modulation index corresponded well to the theoretically calculated
powers and showed that the maximum reactive power compensation is obtainable for q =
0.6. q = 0.6 is the modulation index corresponding to Φi,max ≈ −45 ◦ for which the active
power is equal to the reactive power. The last simulation with the conventional modulation
were performed with no active power transfer. The modulation collapsed again and the
voltage reference could not be followed at all.

Finally simulations were performed with the three-vector-scheme modulated matrix con-
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verter. Input and output current and voltage waveforms were presented showing that the
modulation functions very well. A simplified version of the MCRC device where the equiv-
alent cicuit model of the PM machine was replaced with a current source and equipped
with a RLC filter, was connected to a grid. A three-phase symmetrical fault was connected
to the grid after some time. The device was able to compensate for reactive power and
bring the voltage back to its pre-fault value, thus proving that the MCRC can perform
reactive power compensation and voltage support.

6.2 Further work

As was made clear in this Master’s thesis no control system was investigated for the MCRC
system. This did not really impair the investigations but further work should be dedicated
to building a control system that regulates the PM machine speed and that would com-
pensate for the current when an input filter is added or compensate for the voltage when
voltage variations occur on the gridside, due to a fault for instance. This would also
mean that a more precise model of a PM machine than the equivalent circuit should be
introduced.
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Appendix A

Modulation sequence in
three-vector-scheme modulation
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Figure A.1: Generalized switching patterns used for the modulation of the matrix converter with the three-vector-scheme;
for Φi = −90 ◦ and Φo = 90 ◦ (two upper rows), θi,sp ≥ 0 (first row) and θi,sp ≤ 0 (second row); for Φi = 90 ◦ and Φo = 90 ◦
(two bottom rows), θi,sp ≥ 0 (third row) and θi,sp ≤ 0 (fourth row).



A-2 A. Modulation sequence in three-vector-scheme modulation
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Figure A.2: Switching patterns used for the modulation of the matrix converter with the three-vector-scheme; with input
space vector in phase with the output space vector and Φi = −90 ◦ and Φo = 90 ◦.



Appendix B

Simulation model of matrix converter
with conventional space vector
modulation

B-0



B-1

Figure B.1: The matrix converter, in the pink subsystem 2, is connected to a voltage source on the input side and
the equivalent circuit of a PM synchronous machine at the output; the modulation of the converter is located in the green
subystem 1.



B-2 B. Simulation model of matrix converter with conventional space vector modulation

Figure B.2: Subsystem 1: The indirect space vector modulation of the matrix converter is separated into the VSI
modulation, susubsystem 1 and the CSR modulation, subsubsystem 2; the logic circuit combines the 6 signals from the VSI
and the 6 signals from the CSR into 9 signals to provide for the matrix converter.
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Figure B.3: Subsystem 2: The matrix converter and the bidirectional switch.



B-4 B. Simulation model of matrix converter with conventional space vector modulation

Figure B.4: Subsubsystem 1: The VSI modulation.
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Figure B.5: Subsubsystem 2: The CSR modulation.



B-6 B. Simulation model of matrix converter with conventional space vector modulation

Figure B.6: The duty cycle calculation subsystem within the VSI modulation; the duty cycle calculation subsystem in
the CSR modulation is identical to the VSI subsystem except for a 30 ◦ phase shift.



Appendix C

Simulation model of matrix converter
with the three-vector-scheme
modulation

C-0



C-1

Figure C.1: The simulation model of the three-vector-scheme modulated matrix converter connected to an equivalent
circuit of the PM machine at the output and to a voltage source at the input.



C-2 C. Simulation model of matrix converter with the three-vector-scheme modulation

Figure C.2: The three-vector-scheme modulation subsystem and the logic circuit.



C-3

Figure C.3: The subsubsystem: the three-vector-scheme modulation implemented only for θi,sp = θo,so and Φi = −90 ◦
and Φo = 90 ◦ in order to keep the modulation simple.



C-4 C. Simulation model of matrix converter with the three-vector-scheme modulation

Figure C.4: The relative duty cycle calculation subsystem.



C-5

Figure C.5: The sequence ordering subsystem depends on whether θi,sp ≥ 0 or θi,sp ≤ 0; here depicted for θi,sp ≥ 0.



C-6 C. Simulation model of matrix converter with the three-vector-scheme modulation

Figure C.6: The switching combinations for the 6 sectors for θi,sp ≥ 0 as shown in figure 3.30 in section 3.4; the first
switching combination depends on which of the two merged pulses is the largest, this is determined in the sequence ordering
subsystem in figure C.5.



Appendix D

Simulation model of the MCRC
system connected to a grid for
voltage support
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D-1

Figure D.1: The MCRC system is connected to the grid for voltage support during a three-phase symmetrical fault.



D-2 D. Simulation model of the MCRC system connected to a grid for voltage support
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Reactive Power Compensation using an indirectly
Space Vector-modulated Matrix Converter
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Abstract—This paper investigates the implementation of a
matrix converter for shunt reactive power compensation. The
input of the matrix converter can be connected to the power grid
and the output to a Permanent Magnet Synchronous Machine
(PMSM). By controlling the input displacement angle Φi, the
reactive power flowing into the grid can be controlled.

To prove the concept of reactive power compensation using
the matrix converter, a simulation model of the matrix converter-
based reactive power compensation system is build in MATLAB
Simulink. The matrix converter model is implemented with the
direct topology, although the control strategy considers the matrix
converter as if it has an indirect topology and hence is separated
into a Voltage Source Inverter (VSI) part and a Current Source
Rectifier (CSR) part. As a result the input current and output
voltage can be controlled separately. The PMSM is modelled by
a simple equivalent circuit.

The range and limitation of reactive power compensation
of the system are analyzed theoretically and investigated by
simulations. The results show that reactive power is indeed
respectively provided to or drawn from the grid according to
the investigations made.

I. INTRODUCTION

Reactive power compensation enables more active power
to be transmitted in a power line and allows the voltage
along the power line to be controlled [1]. FACTs controllers
can be used to perform fast reactive compensation. There are
many different types of FACTS, mainly divided into variable
impedance type FACTS, like SVCs (Static VAR Compen-
sators), and VSC based type FACTS like STATCOMs (Static
synchronous Compensators). VSC based controllers seem to
be superior to variable impedance type controllers in several
ways. If we compare the SVC with the newer STATCOM we
find that the latter is utilizing less volume for the same ratings.
This is due to the fact that less passive components are needed.
In a STATCOM the capacitor is on the DC side and can
therefore be polarized. It would be enough with an electrolytic
capacitor for instance. In a SVC the capacitor needs to handle
AC voltage and will be larger and more expensive [2].

Following this trend of replacing passive elements like
capacitors with semiconductor devices, the matrix converter
might be next in line to further reduce the size, weight
and increase the lifetime of FACTS devices. As a FACTS
controller, the matrix converter would be connected in shunt
to the grid through its input side. The feature of the converter
that will be used for reactive compensation is that the reactive

power at its input can be directly controlled by the input
power factor angle. The output is connected to a PMSM
for energy buffering. The PMSM is, as the matrix converter,
small in volume, yielding a potentially very compact reactive
power compensation device. This paper shows the features
of a matrix converter based static reactive power compensator
device. Simulation results show how effectively reactive power
compensation is achieved.

II. MODULATION OF THE MATRIX CONVERTER

The Matrix Converter is a direct AC-AC converter made up
of only semiconductor-based bidirectional switches. It contains
no energy storage components such as capacitors or reactors,
although a small input filter is needed. There are two main
topologies for the matrix converter: direct matrix converter,
figure 1a) and indirect matrix converter, figure 1b).
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Fig. 1. a) The direct matrix converter b) The indirect matrix converter.

The matrix converter considered in this paper is built in
MATLAB following the configuration of the direct topology.
The space vector modulation technique however corresponds
to that of an indirect matrix converter. This is a well-known
modulation technique, called virtual indirect modulation as
the space vector modulation outputs 12 gating signals as if
it was providing the twelve switches of an indirect matrix



converter; six signals to the switches of the VSI part and six
signals to the switches of the CSR part, see figure 1. With a
logic circuit the 12 signals will be combined into 9 signals to
provide for the real matrix converter switches. The modulation
technique of the matrix converter will decide along with the
load displacement factor, the magnitude and polarity of the
input reactive power [3]. It is therefore important to study the
modulation technique carefully to understand what limitation
it will impose on the input reactive power formation.

A. The Space Vector Modulation of the Virtual VSI

The output phase voltages, v∗u(t) = V̂ ∗
o sin(ωt− ξ∗o), v

∗
v(t)

and v∗w(t) (all entities marked with an asterisk are desired
entities and all angles are measured with reference to the input
voltage) are the parameters we want to control in the VSI. We
want the output and input voltage to be in phase and hence
ξ∗o = 0. A space vector, �v∗sp(t) will be given as the reference
to the modulation unit.

�v∗sp(t) =
3

2
V̂ ∗
o e

jωt =
3

2
q∗V̂ie

jθ∗
sp(t) (1)

As we see from equation (1) the reference space vector is a
vector of constant length 3

2 V̂
∗
o rotating at a constant angular

speed ω. Here we need to define the modulation index q = V̂o

V̂i

introduced in equation (1). When the input displacement angle,
Φi, is zero, the maximum possible modulation index that is
achievable is qmax =

√
3
2 [4].

A VSI has 23 = 8 switching states as the upper and
lower switches of a phase are complementary in order not to
short-circuit the input and not to diconnect the output load,
especially harmful if the load is of inductive nature. Each
of the eight switching states corresponds to a fixed vector
when translated into space vectors. Six of these vectors are
called active vectors and are distributed like shown in figure
2. In figure 2, the angle θsp, introduced first in equation (1),
which is the angle between the real axis and the space vector,
is also depicted. The two remaining switching states, which
occur when all the three lower switches are ON together or all
the upper switches are ON together, are called zero vectors.
The output voltages are then short-circuited. The active vectors
define 6 so-called sectors also indicated in figure 2. Let’s take
the active vector �u1 and see how it is built. Sup, Snv and
Swn are ON. vv,out(t) and vw(t) are short-circuited, while
the virtual dc link voltage, edc, is across vu(t). Hence the
space vector corresponding to this switching state is:

�u1 = edc + 0ej
2π
3 + 0ej

−2π
3 = edc (2)

The other active vectors are calculated in a similar manner
and all have length edc.

The reference vector which sweeps along the sectors in
figure 2 at an angular speed ω is build by the two adjacent
active vectors, �ux and �uy , of the sector where it lies, and
a specifically chosen zero vector �uz . The time intervals Tx,
Ty and Tz for applying respectively �ux, �uy and �uz must be
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Fig. 2. The voltage space vectors in the complex plane.

computed using the following equations for sector I [5]:

T1 = Ts
3

2

V̂ ∗
o sin(π3 − θ∗sp)

edc sin
π
3

= Ts
3

2

qV̂i sin(
π
3 − θ∗sp)

edc sin
π
3

(3)

T2 = Ts
3

2

V̂ ∗
o sin θ∗sp
edc sin

π
3

= Ts
3

2

qV̂i sin θ
∗
sp

edc sin
π
3

(4)

Tz = Ts − T1 − T2 (5)

The virtual DC link, edc, must be computed and is found by
equating the input and virtual DC link power:

Pi = Pdc (6)

3

2
V̂iÎ

∗
i cosΦ

∗
i = edcidc (7)

edc =
3

2

V̂iÎ
∗
i cosΦ

∗
i

idc
=

3

2
V̂i cosΦ

∗
i (8)

We fix the ratio Î∗
i

idc
= 1; with Îi the magnitude of the input

phase current and idc the dc link current. By doing that we
lock the value of the input current magnitude. However the
input current angle can still be controlled as we please, see
section II-B. The same gate-timing formulas can be used for
the other five sectors by simply phase-shifting back to sector
I. An interesting observation worth mentioning at this point
is that equation (8) also implies that if the input displacement
angle is 90 ◦, which is the optimal for reactive compensation,
where only reactive power is drawn or fed into the grid, the
virtual DC link voltage will be zero. Hence the active vectors
�ux and �uy , which have length edc, will also be zero and it
will only be possible to build an output voltage of value zero
[5].

B. Space vector modulation of the Virtual CSR

The space vector modulation of the virtual CSR part is
similar to the modulation of the VSI part. The main difference
is that the input phase currents, i∗r(t) = Î∗i sin(ωt−Φ∗

i ), i
∗
s(t)



and i∗t (t) are the parameters we want to control. The current
space vector, �i∗sp(t) is:

�i∗sp(t) =
3

2
Î∗i e

j (ωt− Φ∗
i )︸ ︷︷ ︸

θ∗sp(t) (9)

The CSR has 32 = 9 switching states as only one of the
upper switches (Srp, SsporStp) and only one of the lower
switches should be ON at any time (Srn, SsnorStn): At least
one because the current always must have a path to flow in and
no more than one to avoid short-circuiting the input voltages.
The active vectors are distributed like in figure 3. The three
remaining states, that occur when the two switches connected
to the same input phase are ON together, are the zero vectors.
With a +π

6 phase shift of all the vectors, the vector ”star” in

�

� �� ��

� �

� � �

��
�
�� �� �

��
�
���� �

��
�
���� �

��
�
���� �

��
�
���� �

��
�
�� �� �

��

� �

��	



�� �	



�� ���

�

�

�

�

Fig. 3. The current space vectors in the complex plane.

figure 3 will correspond to the voltage vector ”star” of figure
2. We can then use the gate-timing formulas (3),(4) and (5)
we derived for the voltage space vector modulation:

Tx = Ts
3

2

Î∗i sin(
π
3 − (θsp +

π
6 )√

3idc sin
π
3

(10)

Ty = Ts
3

2

Î∗i sin(θsp +
π
6 )√

3idc sin
π
3

(11)

As previously mentioned the ratio Î∗
i

idc
= 1 is fixed. Only the

angle θsp is controlled. Following the same procedure as in
the previous section, we want to look at the effect of the VSI
modulation on the virtual DC link current. The average power
balance of the VSI part of the matrix converter is:

Po = Pdc (12)

idc =
3

2

V̂ ∗
o Îo cosΦ

∗
o

edc
(13)

We clearly see from equation (13) that if the output displace-
ment angle is 90 ◦, the DC link current is zero. Hence the
active vectors in figure 3 are zero and no input current can be
build [5].

III. REACTIVE POWER COMPENSATION WITH THE MATRIX
CONVERTER

In [6] it is suggested to connect the input of the matrix
converter to the power grid and its output to an PMSM which
will serve the purpose of an energy buffer. The layout is
shown in figure 4. In this section the range of reactive power
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Fig. 4. The matrix converter connected to the grid for reactive compensation.

compensation capacity of the device is examined. However in
order to conduct this analysis, a simple model of the system
will first be derived.

A. Model of the matrix converter based reactive power com-
pensating system

The PM synchronous machine can be modelled by an equiv-
alent circuit consiting of the excitation voltage which is created
in the armature winding as the permanent magnets and the
rotating flux they generate, sweep across the stator conductors.
The excitation voltage depends only on the permanent magnet
properties and will therefore be represented by a voltage
source �Ef in our model in figure 5.

�Ef = Ef∠δ (14)

The angle δ is called the rotor angle and is the phase angle of
the excitation voltage with respect to the voltage at the terminal
of the synchronous machine �Vo which is also in phase with
the grid voltage �Vi. The other component of the equivalent
circuit is the synchronous reactance which is again composed
of the synchronous and leakage reactance. The three-phase
currents flowing in the stator also generates a rotating field
flux called armature-reaction flux. This will induce a voltage
in the stator windings. The armature-reaction flux and induced
voltage depend on the armature current’s magnitude and phase
angle. The armature-reaction voltage is therefore represented
in our model in figure 5 by a fictitious armature-reaction
reactance Xar. In addition the model includes an armature
leakage reactance Xl which accounts for the flux leakage
in the armature windings [7]. This equivalent circuit of the
PMSM is used in the MATLAB simulation model. The matrix
converter is represented in figure 5 as a black box which
transforms the voltage and current levels. The active power
drawn or provided to a synchronous machine can be calculated
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Fig. 5. The per-phase simplified representation of the MCRC system.

as in (15) [7].

Po = 3
VoEf

Xl +Xar
sin δ = 3

qViEf

Xl +Xar
sin δ (15)

B. Reactive power compensation capacity

The reactive power at the input of the matrix converter is
governed by the following formula, considering the converter
to be lossless:

Qi = PitanΦ
∗
i = Po tanΦ

∗
i = 3

q∗ViEf

Xl +Xar
sin δ tanΦ∗

i

(16)
All the parameters are fixed except for q and Φi. Equation (16)
shows that the reactive power transfer is directly linked to the
transfer of active power [8]. This was also shown in section II,
where the special case of 90 ◦ input displacement angle was
examined. 90 ◦ input displacement angle corresponds to zero
input active power and hence 90 ◦ output displacement angle
to satisfy the active power balance. As seen from equation (13)
this will yield the DC link current to be zero. No current can
then be formed at the input, and no reactive power neither.
In conclusion, when using indirect space vector modulation
as such, there must be som active power transfer in order
to have reactive power creation at the input of the matrix
converter. Furthermore, because of these characteristics of
the modulation, there is a trade-off between the modulation
index q and the input displacement angle Φi. When the
input displacement angle is different from zero, the maximum
achievable modulation index is reduced [9].

qmax,Φ = qmax cosΦi =

√
3

2
cosΦi (17)

Similarly Φi is limited by q such that:

Φi,max = cos−1 q

qmax
(18)

This trade-off is not necessarily a serious drawback for the
reactive power compensating system as the active power
transfer should be kept as low as possible, by keeping q
low and thus Φi,max larger. This is illustrated in figure 14
in section IV where the theoretical values of Qi and Pi are
plotted for different values of q. Pi is calculated using equation
(15) and Qi using equation (16) with the maximum possible
input displacement angle calculated with equation (18). The
system parameters used in the calculations are the same as
were used in the simulations and are all given in section IV.

IV. SIMULATION RESULTS

In all simulations, the input voltage has amplitude V̂i =
100V , the input and output frequency is f = 50Hz and the
switching frequency is f = 5000Hz. The excitation voltage
of the PMSM has amplitude Êf = 50V . The rotor angle is
set at δ = −10 ◦ for operation in motor mode, a low value
that will yield low active power transfer, and zero for the
special case of no active power transfer. The values of Êf

was chosen as a compromise between the size of the PMSM
and the compensation range of the device. The synchronous
reactance was set at a typical values for synchronous machines
of Xs = 1.3Ω [7]. The set up used for the simulations is as
shown in figure 6.
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Fig. 6. The simulation set-up.

A. No reactive compensation, Φin = 0

The simulations are first done with a reference input power
factor angle equal to zero and a reference output voltage equal
to the half the input voltage, q = 0.5. Figure 7 and figure 8
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Fig. 7. The input voltage and current during one time period of 20 ms.

show respectively the input and output voltage and current
over a time period of T = 20ms. There is no input filter, so
as we can see in figure 7 the input current is highly distorted.
On the other hand the output current is smoothened by the
inductance of the PMSM.
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Fig. 8. The output voltage and current during one time period of 20 ms.
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Fig. 9. The magnitude of the fundamental of the output voltage.

In figure 9 and 10 are shown respectively the magnitude of
the output voltage and angle of the input voltage and current.
As we see from figure 9 the output phase voltage is close to 50
V and figure 10 shows that the output voltage and current are
in phase as we wanted. The input displacement angle, shown
in figure 9b), is Φi = 2 ◦ which is close to the desired unity
power factor.

In order to compare the input and the output power, the
input and output voltages and currents can be measured and
injected into equation (19).

P =
1

T

∫ T

0

v(t)i(t)dt = 50

∫ 1
50Hz

0

v(t)i(t)dt (19)

For the previous case of the modulation index set to q = 0.5
and the input displacement angle set to Φin = 0 the input
active power is Pi = 1703W and the ouput active power is
Po = 1630W . The difference comes from losses in the matrix
converter which is not ideal in the simulation model. Let’s
compare this with the power calculated with equation (15).
The rotor angle is measured to be δ = 7.8 ◦, which is lower
than the reference. The power fed to the machine is calculated
to be Po = 1620W which corresponds to the previous value.

By changing the value of the modulation index q, the output
voltage is accordingly changed. The curve in figure 11 shows
that for values of q between 0 and

√
3
2 the variation of the

output voltage scaled with the input voltage is proportional to
the variation of the modulation index. For higher values of q
however saturation is reached. The reaching of saturation at
qmax =

√
3
2 is related to this value being a physical limit of

the matrix converter voltage ratio [4], which if exceeded will
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Fig. 10. The input displacement angle.

lead to low-frequency distortion in the output voltage [9] as
was discussed in section II-A.
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Fig. 11. The output voltage scaled with the input voltage.

B. The case of no active power transfer, Φi = 90 ◦ and Φo =
90 ◦

In section II, it was shown that when no active power is
transferred no voltage can be build at the output of the matrix
converter and no current can be build at the input of the matrix
converter. To simulate this case the rotor angle δ was set to
zero and the input displacement angle Φi was set to 90 ◦. The
modulation index is set to its maximum value which is zero
as equation (17) indicates. The input and output powers are
calculated with the voltage and current measurements using
equation (19) and are obtained to be Pi = 29.1W and Po =
−71W . Not only are the values close to zero but the opposite
signs are a proof that there is no active power transfer from
input to output. In figure 12 we see that the output voltage
magnitude is indeed very low at a value of 0.5V . In figure 13
is depicted the input displacement angle and it is clear that it
is far from the reference angle. This indicates that the matrix
converter does not function properly in this operation mode.

C. Reactive power compensation capabilities

We now want to observe the reactive power compensation
capabibities of the matrix converter-based device. In figure
14 the active power and maximum possible reactive power
measured with the MATLAB Simulink model are plotted
versus the modulation index. For measuring the reactive power
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Fig. 13. The input displacement angle.

the input displacement angle was set at the maximum possible
value at the given modulation index. The theoretical active
and reactive powers calculated with equation (15) and (16)
are also plotted in figure 14. We see that although the active
and reactive power measurements have the same trend as the
theoretically calculated power values, they are much lower
in value. This is due to the fact that the rotor angle sets at
values lower than the reference and thus the active power fed
to the machine is lower. As a consequence the reactive power
is lower than the predicted theoretical value. This is not a
desirable behaviour, however it has the merit to illustrate how
the reactive power and the active power are directly related
through equation (16); if the active power transfer is lowered,
the input reactive power will follow as well. Also figure 14
illustrates the saturation of the modulation index for values of
q above

√
3
2 , as we can see that the measured active power

does not continue to increase above
√
3
2 . The reactive power

transfer to the grid is maximum for low modulation indexes
and decreases as q increases. This is due to the trade-off
between q and cosΦi described in equation (18) and (17).

V. CONCLUSION

Simulations done with the matrix converter-based reactive
power compensation system show that the device can indeed
deliver reactive power to a grid, especially effective for low
modulation indexes. However when using the indirectly space
vector modulated matrix converter, the input reactive power
is directly linked to the active power transfer and there must
always be some active power transfer for reactive power to be
delivered. This is not optimal for the purpose of such reactive
power compensation system. Thus further work will be to look
at possible modification of the modulation that would enable
input reactive power creation without any active power transfer
[10].
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