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Abstract

Light-emitting wristbands and other wearable devices have become a popular gimmick
at concerts and large events in recent years. Usually, these devices can be remotely
controlled through radio signals, allowing them to light up in response to stage events,
at specific intervals, or in beat with music. However, few of these are spatially aware,
which means that the emitted colors are often uniform or randomly distributed across
the venue. Therefore, these devices are great for simple effects, but they can not be
utilized for more advanced effects that require positional awareness and coordination.
The few systems that are spatially aware either require elaborate set ups and provide
very coarse positioning, or they require that the end-user inputs their exact location in
terms of section, row and seat number. This significantly limits the use and applicability
of these systems.

Zedge, a company specializing in mobile applications, wanted to investigate whether
it was possible to utilize mobile phones to add positional awareness to such systems.
This could in effect substitute the specialized bands and devices with existing mobile
devices, and would allow for far more sophisticated light shows to be coordinated in
large venues and crowds. They also wanted the solution to be cheap and easy to use,
without requiring elaborate setup and specialized hardware.

This report proposes a new, novel approach for indoor positioning that is potentially
better suited than existing approaches at providing relative positions in indoor venues.
The project set out to investigate if it is possible to create a system that can be used
to orchestrate a position-aware light show across the devices of an audience in a large
indoor arena, using only an inexpensive, off-the-shelf camera and the devices themselves
to determine their positions.

The resulting approach is cheaper, easier to set up, provides better relative accuracy and
is less susceptible to signal interference than any other existing solution when used under
specific conditions and assumptions. It is accompanied by a fully functional prototype of
a system that can serve as a platform for further research and improvement. The proto-
type includes a server with a simple but extendable implementation of a new approach
to Indoor Positioning Systems based on mobile devices and a camera, an Android client,
and an administrator interface for managing the server.

Preliminary results indicate that the system should be capable of detection, positioning
and streaming with at least 500 devices in an indoor venue. The report also provides
ideas and suggestions for further research and improvements.



Abstract

Lysende armb̊and og andre lignende enheter har blitt en populær gimmick p̊a konserter
og andre store eventer de siste årene. Slike enheter kan vanligvis kontrolleres ved hjelp av
radiosignaler, som tillater dem å lyse i sammenheng med hendelser p̊a scenen eller i takt
med musikken. Det er imidlertid svært f̊a enheter som benytter seg av posisjonering, noe
som betyr at fargesammensetningen ofte er helt tilfeldig eller unfiform. Disse systemene
fungerer derfor greit til enkle lysshow, men kan ikke brukes for mer avanserte effekter
som krever koordinasjon og informasjon om enhetenes posisjon. De f̊a systemene som
benytter seg av slik informasjon krever enten avanserte og kostbare oppsett og tilbyr
bare grov posisjonering, eller de krever at hver enkelt deltager manuelt fyller inn data
som for eksempel seksjon, rekke og setenummer. Dette legger en kraftig begrensning for
hvor og n̊ar systemet kan brukes.

Zedge, et firma som spesialiserer seg p̊a mobile enheter, ønsket å undersøke om det var
mulig å benytte deltagerenes mobiltelefoner til å posisjonere enhetene i slike systemer.
Ett slikt produkt kan i mange tilfeller erstatte spesialiserte armb̊and og andre enheter,
og kan tillate mer sofistikerte lysshow som kan koordineres mellom enhetene basert p̊a
deres posisjon. De ønsket ogs̊a at en eventuell løsning skulle være billig og lett å bruke,
uten avanserte oppsett og spesialisert hardware.

Denne rapporten beskriver en ny fremgangsm̊ate for inndendørs posisjonering, som i
noen tilfeller kan tilby bedre relativ posisjonering enn eksisterende løsninger. Målet for
prosjektet var å undersøke hvorvidt det er mulig å lage ett system som kan brukes til å
koordinere ett lysshow over flere enheter, ved å bruke ett relativt enkelt og kommersielt
tilgjengelig kamera til å posisjonere enhetene.

Resultatet er en fremgangsm̊ate som er billigere, enklere å sette opp, og som er mindre
p̊avirket signalstøy enn eksisterende løsninger, n̊ar den brukes under de rette forutset-
ninger. Som en del av resultatet foreligger det ogs̊a en funksjonell prototype som kan
brukes som en platform for videre utvikling. Systemet inkluderer implementasjon av en
server som enkelt kan utvides og forbedres, samt en Android klient og en administrator
klient for administrasjon av serveren.

Foreløpige resultater indikerer at systemet burde klare å oppdage, posisjonere og strømme
video til 500 enheter i en innendørs arena, og rapporten bidrar ogs̊a med spesifikke forslag
og ideer til videre utvikling.
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1. Introduction

1.1. Background

Over the recent years, light-emitting wristbands and devices, such as Glow Motion and
Xylobands, have become a favorite gimmick at concerts and other large events. Xy-
lobands were first used during a Coldplay concert in 2012, 1, and has since been used by
many artists and at several different events and venues with great success.

These devices can usually be controlled to emit light remotely through radio signals,
either manually in response to stage events, at specific intervals, or in tune with the
music. However, they are not spatially aware, resulting in the emitted colors being
uniform or randomly distributed across the venue. As such, these devices are great
for simple effects, but they can not be utilized for more advanced effects that require
positional awareness and coordination.

Zedge, a company specializing in mobile applications, hereafter referred to as the client,
wanted to research whether it was possible to utilize mobile phones to add positional
awareness to such systems. This could in effect substitute the specialized bands and
devices with existing mobile devices, and would allow for far more sophisticated light
shows to be coordinated in large venues and crowds. The client also wanted to investigate
if it was possible to develop a system that is cheap and easy to use, without requiring
elaborate setup and specialized hardware. Displaying and coordinating colors across
mobile devices is not a difficult task; however, Indoor Positioning System (IPS) is a very
complex and challenging problem.

Positioning systems are becoming increasingly important, and research in this area is
being fueled by increasing demand and interest from academia, industry and govern-
ment agencies. Outdoor positioning systems have seen much progress, and the Global
Positioning System (GPS) have had particularly great success. IPS however, are still in
the early stages of development.

A large variety of IPS technologies exist, such as Infrared, Ultrasound, WiFi, Radio
Frequency Identification (RFID), Bluetooth (BT), Ultra Wide Band (UWB), and others

1https://www.geek.com/gadgets/xylobands-turn-coldplay-concerts-into-giant-light-show-1496831/

1



CHAPTER 1. INTRODUCTION

[1],[77], but there is no single solution that works well under all circumstances. Through-
out the last decade, several new technologies and methods have also emerged, such as
RADAR by Microsoft Research Asia [45], HORUS by University of Maryland [79], LiFS
as proposed by Tsinghua University [69] and the ZigBee specification [49].

Nevertheless, many challenges remain for IPS, such as transmitter-receiver synchroniza-
tion errors, multi-path interference effects and a need for high sampling rates [1]. There-
fore, the best general systems often combine several different technologies and methods,
making the solutions expensive and complicated.

Fingerprint-positioning based on WiFi is among the most popular and widespread tech-
nologies for 2D modeling, it is relatively cheap, and can provide excellent accuracy and
performance under the right circumstances. It is likely the most suitable existing option
for indoor positioning in large crowds, and it is a well-researched technology. However,
it has several significant drawbacks as described below, many of which are shared with
most of the other existing IPS solutions.

WiFi fingerprint positioning requires a broad set of algorithms to support it, and so
computation and algorithm complexity is relatively high. The method also requires a
tremendous amount of work up front for data support, so the preliminary work has a
high-cost factor [70]. However, most significantly, this method, along with most other
existing IPS solutions, is highly susceptible to interference from the human body [21].
Other significant issues include the multi-path effect [62] and variations in the software
and hardware of the devices to be positioned [35]. These factors significantly reduce
the applicability of these technologies in crowded areas such as concert arenas, which is
precisely where the system being developed is to be used.

Zedge proposed a solution based on a stage-mounted camera, that would detect devices
in the crowd and find their relative position. They did not specify exactly how the
solution would detect the devices and their positions but wanted to know if such a
solution was at all feasible and worth investigating.

This research aims to develop a new method for indoor positioning that is better suited
than existing approaches for providing relative positions in indoor venues. The client has
a hypothesis that a system such as the one described above is viable, but any outcome
from this research, positive or negative, is valuable to them. It is evident that a positive
result provides more value for the client than a negative result, but either outcome
provides some value. If successful, the approach could provide a method that is cheaper,
easier to set up, provides better relative accuracy and is less susceptible to interference
than any other existing solution when used under specific conditions and assumptions.

2
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1.2. Objectives

The objective is to create a system that can be used to project a light-show across
the devices of large crowds at indoor events, using a stage-mounted camera for indoor
positioning. The specific scenario is defined as follows:

Indoor concert hall or arena The system is only intended for indoor use, where GPS
is not available.

Low-light environment The system is intended for low-light or no light conditions,
where the light can be controlled by the event organizer.

100 to 2000 participants It will be used for small to medium-sized events.

Stage-mounted camera The organizer must be able to mount a camera near the top
of the stage, such that it can capture the whole audience.

Pre-installed apps The participants are required to have the client application installed
on their devices.

One-time positioning One-time positioning is adequate, and the ability to continuously
track device positions is not required.

Active participants The audience is assumed to be active and willing to participate in
a setup procedure over a short duration, announced over speakers.

The general idea was initially pitched by Zedge and has since been more precisely defined
and refined in cooperation with them. The research problem then led to a hypothesis,
that such a system was feasible, and several related Research Questions (RQs).

• RQ-1: Is it possible to locate devices at an indoor arena using a stage-mounted
camera, for the purpose of displaying light-shows across the devices?

• RQ-1.1: Can a camera and a unique discrete-time light signal sent from each device
be utilized to identify the position of the devices under these conditions?

3
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• RQ-1.2: How does the camera hardware specifications affect the performance of
the system, and what are the minimum requirements for the camera?

• RQ-2: Which methods and techniques are most appropriate for object detection
and object tracking under these conditions?

RQ-1 is a result of said hypothesis, and it has also led to some closely related sub-
questions. RQ-1.1 and RQ-1.2 have originated from my own experience and lack of
relevant research on the topics they are concerned with. They have been defined through
dialogue and cooperation with the client.

RQ-2 spurred from a literature review on current research on object tracking, which
revealed that there is a significant amount of different methods and techniques for general
purpose object tracking. I was, however, unable to find any conclusive research on
suitable methods for the specific conditions this system will operate under, such as;
low-light, active markers that can disappear and reappear and movement that is mostly
restricted to arm-waving.

1.3. Approach

The research approach is a combination of experiments and traditional literature reviews.
Some of the most likely and possible challenges have been discovered and defined during
the preliminary research, while many challenges will likely be discovered during the
development of the prototype, and solved using a combination of existing literature and
new development. The approach for each research question is presented in Table 1.1.

The research strategy, data generation and data analysis for RQ-1 have been defined in
cooperation with the client and involves the design and implementation and evaluation
of a prototype of the system. For RQ-1.1 and RQ-1.2 I have selected to do software
simulation and experiments to generate data, and use a quantitative evaluation.

RQ-2 will also use an experimental research strategy, where data will be generated
through software simulation and testing and evaluated empirically based on quantitative
performance measures, such as error-rates. Conclusions will be drawn based on the
empirical quantitative analysis for RQ-1.1, RQ-1.2, and RQ-2, while the conclusion for
RQ-1 will be based on qualitative measurements, including a small-scale real-world test
and feedback from the client.

The overlying goal of the research is to determine whether a hypothesis, that the ap-
proached suggested by the client is feasible for their stated purpose, is correct. RQ-1 is
subjective, the data analysis is qualitative, and my own beliefs will affect the analysis
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RQ # Source Strategy Data generation Data analysis

RQ-1 client
design and
implementation

client feedback,
real world test

qualitative;
client satisfaction

RQ-1.1
experience,
dialogue with client

experiment
software,
simulated test

quantitative;
system performance measures

RQ-1.2
experience,
dialogue with client

experiment
software,
simulated test

quantitative;
system performance measures

RQ-2
literature review,
object tracking

experiment
software,
simulated test

quantitative; object tracking
performance measures

Table 1.1.: Research methodology

of the research, which suggests an interpretivist paradigm. However, the sub research
questions are mostly based on experimental empirical testing with quantitative data
analysis, where my own beliefs as a researcher are distinctly separate from the scientific
results. This makes the sub-questions more in line with the positivist paradigm. RQ-2
share many of the traits with the sub-questions of RQ-1, and therefore also lends itself
to the positivist paradigm.

1.4. Similar work

Throughout the research and work with this project, there has not been found any
existing work that offers the same features as the Crowdstream system. Products do
exist that offer random light shows through specialized hardware or smartphones, and a
select few that offers location-aware light shows which require the user to submit their
position manually.

1.4.1. Xylobands

Xylobands2 was the first audience-based light show technology to gain any real traction.
It was first used by Coldplay on their Mylo Xyloto tour in 2012 and has since been used
at many large events and venues. The wristbands themselves contain light-emitting
diodes and radio receivers. The bands can be controlled remotely through radio signals,
instructing them to light up or blink. There exists an RGB version which can emit any
color on the RGB spectrum and a single color version which only emits a single color.
The bands are not location-aware but have been a great success nonetheless.

2http://www.xylobands.com
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1.4.2. Glow Motion

Glow Motion3 is very similar to Xylobands, but they also offer many other types of
products besides wristbands. Examples of other types are large beach balls, medallions,
and costumes. The technology in all products are the same, radio-controlled LED’s, and
none of them are location-aware.

1.4.3. Cue Audio (XTAudioBeacons)

Cue Audio4, formerly known as XTAudioBeacons, is a data-over-audio method that uses
sound waves in a similar way to how Bluetooth employs electromagnetic waves. This is
a technology that has many use-cases, but it is primarily being marketed to events and
venues as a means to offer synchronized light shows. Like Crowdstream, it requires users
to install a separate application on their smartphone, and for it to be running during the
event. Unlike Crowdstream it does not require an active internet connection during the
event, because signals and data are transmitted to the application through ultrasonic
waves from the venue’s speakers, which are detected by the microphone of the device.
This does, however, make it impossible to send data to specific devices, as all data are
effectively broadcast to all devices in range of a given speaker. It is also not possible to
send data from the device to the system, such as the GPS location.

Much like Bluetooth beacons, this system does support coarse-grained indoor position
sensing by relying on the proximity to a given beacon, or speaker. This allows the system
to divide a venue into sections, each within audible range of a specific beacon or speaker.
It does, however, provide very rudimentary control, and devices could potentially be
included in many sections or none at all, depending on their position. Still, the system
has had some commercial success and has recently gone from an open-source project to
a commercial product.

1.4.4. Dan Deacon App

The Dan Deacon App5 is an application that emits light based on sound signals. In that
sense, it is similar to Cue Audio, except it relies on audible sound instead of ultrasound.
However, unlike Cue Audio which offers a general protocol for transmitting data, the
Dan Deacon App merely reacts to the frequency and volume of the sound by emitting
pre-configured light. An example could be that it flashes in sync with the bass of a

3https://www.glowmotiontechnologies.com
4www.cueaudio.com
5https://itunes.apple.com/us/app/dan-deacon/id536378735?mt=8
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particular track, or emits a red and green light during the calm parts of a song. This
solution is not location-aware.

1.4.5. Card Stunts Smartphone Light Show

This solution by Cards Stunts6 is the only existing solution found capable of orchestrat-
ing high-precision location-aware light shows. This system is the solution that closest
resembles the Crowdstream system, and they are almost identical in the following ways:

• Requires an application to be installed on the participants’ device.

• Requires an active internet connection, either WiFi or Mobile Data.

• Can be remote controlled and used to stream almost any content.

• Can send and receive data to/from individual devices.

• Can be used to create sophisticated, location-aware light shows.

However there is one significant difference which sets the systems apart; Card Stunts
solution requires each participant to manually submit their position in the venue, iden-
tified by a section, row, and seat. This imposes a significant restriction on the practical
use of the system, as it can only be used in venues that have numbered seats.

1.5. Contributions

This research set out to investigate if it is possible to create a system that can be used
to orchestrate a position-aware light show across the devices of an audience in a large
indoor arena, using only an inexpensive, off-the-shelf camera and the devices themselves
to determine their positions. In this report I propose a novel method for IPS that pro-
vides high relative precision between devices and is less susceptible to interference in very
crowded indoor arenas than many existing solutions. I also provide a fully functional
prototype of a system that can serve as a platform for further research and improve-
ment. The prototype includes a server with a simple but extendable implementation of
a new approach to IPS based on mobile devices and a camera, an Android client, and a
Command Line Interface (CLI) for managing the server.

The pre-requisites and assumptions required make the system less useful for general

6http://www.cardstunts.com/smart-phone-light-shows/
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indoor positioning problems, but it is still a valuable contribution for the client and
hopefully also for others. This is described in more detail in section 1.6.

1.6. Limitations

This section describes some of the most significant limitations of the project, related to
the study itself and the operational conditions of the resulting solution.

1.6.1. Research limitations

The research for a solution has some limitations. Some were imposed by the client;
others are due to the nature of the project, all of which are discussed in the following
sections.

Hardware

The objective was to find a solution using only a camera and the participants’ devices,
which eliminates many other possible solutions based on, e.g., Bluetooth, Ultrasound
or Augmented Reality. It might seem redundant to state this as a limitation since it is
already defined in the objective, but it is important to note that there might exist other
solutions that can achieve the same result using other technologies.

Time

Due to the nature and circumstances of a master thesis project, it has a set duration
and deadline. This imposes hard restrictions on how much time can be spent researching
and implementing a solution, which is roughly 8 months in total. This has resulted in
an attempt to strike a balance between the time spent on research, and the time spent
on implementing a prototype. It was important to get this balance right, as too much
focus on research could result in an unfinished prototype, which is an important part of
the project for the client. However, as it is a master thesis, it is also important that the
practical work is based on a good foundation of research and theoretical work.

8
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Cost

The client wanted an inexpensive solution, which places some restrictions on the project
and especially on the prototype. This restriction has the most impact on the type
of camera used, which in the prototype is a commercially available middle-range web
camera for desktop computers. Such cameras have severe restrictions on the ability to
manually control the camera settings, such as shutter speed, iso-sensitivity, and aperture.
The performance of the camera in terms of Frames Per Second (FPS) is also significantly
impacted by light conditions, as the normal operating conditions for such cameras are
significantly different from the operating conditions for the Crowdstream system. Some
issues described in this thesis could likely be reduced or eliminated using better camera
hardware.

Real-world tests

Due to time, cost and practical limitations, it has not been possible to perform a large-
scale real-world test of the system. This requires cooperation with an event organizer
and a venue, which was not possible to organize within the time frame of the project.

1.6.2. Operational conditions

There are several significant limitations that are imposed by the system and methods
developed throughout this project. These limitations are a result of a couple of strong
assumptions regarding the environment the system will operate in, as well as the assump-
tion that the audience is willing to participate actively during parts of the positioning
process. These assumptions were discussed and defined with the client beforehand and
were deemed both reasonable and acceptable for their intended usage. However, the as-
sumptions will greatly limit the scope of the system, and its use is limited to a particular
scenario and environment.

Environment

The system will only be effective in dark environments where the glow from devices in
the audience can easily be distinguished from the background. This greatly simplifies
the object detection process and makes it possible to track devices during the positioning
process reliably.

9
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Camera motion and position

The system relies on a stationary camera, and can not compensate for camera motion
during the positioning process. The camera should also be placed high above the audi-
ence, to minimize the chance of devices being occluded during the positioning process.

Relative position

The system does not measure absolute positions. For the intended purpose, the system
only needs to know how the devices in the audience are positioned relative to each other.
Most other uses of IPS relies on absolute positioning.

Audience participation

The audience needs to actively participate both before and during the positioning pro-
cess. They need to install and start an application on their device beforehand, as well
as connect to the system server. During the positioning phase, they need to actively
participate by holding their device up towards a stage-mounted camera, with the device
screen facing the camera.

One-shot positioning

The system will perform a time-limited positioning process, and can not track the posi-
tions of devices as they are moved to different locations after this process has finished.
The positioning process can, however, be repeated an unlimited number of times.

1.7. Outline

The research focuses on the problems related to object detection, multiple object track-
ing, and indoor positioning. These problems are most likely the problems that are
hardest to solve, and the success of the prototype will ultimately depend on how well
the system can detect, track and position the devices in the audience. The other signif-
icant components of the system, such as client/server communication and streaming of
data already have well established and working solutions that can be built on.

The thesis is outlined as follows:

10
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Chapter 2 provides an overview of the current research and State of the Art (SOTA)
on image segmentation and object detection for images. There exists a large body of
research on the topic, and this chapter covers and summarizes the most successful and
relevant areas of research.

Chapter 3 offers an introduction and overview of the current research and SOTA on
multiple object tracking. As for detection, there already exists a large body of research
on the topic. The field of object tracking, and in particular multiple object tracking, is
still heavily researched and new contributions in the field are frequent.

Chapter 4 discusses some possible methods and approaches for how a camera, a computer
and mobile devices can be utilized to position said devices in an indoor environment.
It also discusses the most relevant methods and algorithms described in chapter 2 and
chapter 3 in context of the Crowdstream system, and how they can be utilized to aid in
device positioning.

Chapter 5 gives an overview of the prototype system, followed by a detailed description of
the architecture, design and finally implementation based on the discussion in chapter 4.
The system consists of several different components and clients, and each is covered
individually.

Chapter 6 describes a set of tests and experiments that have been conducted throughout
the development of the methods and prototype. It also presents the results of these
tests.

Next, chapter 7 provides a summary, the final results and some conclusions that can be
drawn from the research. In addition, it includes an evaluation and discussion of the
project in a retrospective manner and discusses some of the most exciting discoveries.

Finally, chapter 8 concludes the thesis with a summary of the current research and
state of the prototype. It also provides suggestions and ideas for future research and
development of the system.

Appendix A is a test plan for the real world tests and experiments that were conducted
during the project.

Appendix B contains the test results from the real world tests.

Appendix C describes how the system can be installed and deployed, and also how it
can be set up for further development.

Appendix D contains a detailed description of all system parameters and their recom-
mended values.
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2. Object Detection

Object detection and object recognition is the act of detecting and recognizing semantic
objects in digital images and videos. It is a well-researched domain and has many
applications in areas of computer vision, including image retrieval, medical imaging, face
recognition and video surveillance. Object detection and object recognition is however
still a challenge for computer vision systems, and several approaches have been developed
over multiple decades.

Object detection is an essential component of the Crowdstream system because the
performance of most object tracking methods have a strong correlation with the perfor-
mance of the object detection component [37]. And object tracking is an integral part of
the system because it dictates how well it can recognize and position participant devices,
which is a core aspect of the system.

Several object detection approaches have been developed, often combining statistical
analysis of visual features with temporal analysis of the motion features. This chapter
contains a basic introduction of the basic concepts and recent advancements in object
detection.

Section 2.1 provides a short introduction to image segmentation, an important aspect
of almost any object detection method. Next, section 2.2 and section 2.3 provides a de-
scription of common segmentation techniques based on visual and temporal information
respectively. After that, in section 2.4 follows an overview of current state-of-the-art
methods, which usually utilizes a combination of multiple methods and algorithms to
provide state-of-the-art feature detection and feature extraction, which further can be
used for object detection. Finally, section 2.5 contains a brief summary of the chapter.

2.1. Image segmentation

Image segmentation is the process of partitioning or dividing an image into multiple
segments, in order to create a representation of an image that is easier to analyze [59].
The input is commonly the raw image data, and the output is a simplified representation
of the image, divided into distinct regions. The pixels in a region are similar with regard
to some defined characteristic, such as color, intensity or texture. Adjacent regions are
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typically significantly different with respect to the same characteristic [59].

A common use of image segmentation is to detect objects or edges in images, and these
regions can then be used for further analysis and processing. Practical applications
of image segmentation includes content-based image retrieval, machine vision, medical
imaging [48] [17], object detection [13] (pedestrian detection, face detection) and video
surveillance.

A video has primarily two sources of information that can be used for object detection:

• Visual features: color, texture, shape

• Motion features: position, movement, velocity, direction

Several different methods have been devised to utilize this information, some which use
a single source of information while others use a combination. Some of these methods
will be described further in the following sections.

2.2. Visual analysis

Visual segmentation methods rely solely on the visual information in an image, such
as color, texture or shape, and can be utilized for single images as well as sequences of
images such as videos. Visual segmentation algorithms are often based on one of the
following two basic methods for partitioning:

• Similarity Partitioning an image into regions that are similar according to a set
of predefined criteria

• Discontinuity Detecting boundaries of regions based on local discontinuity in
intensity

Many general-purpose algorithms and techniques have been developed for single image
segmentation, and they can be divided into several different categories [22]. Some of the
most commonly used categories are[60]:

• Threshold-based methods

• Edge-based methods

• Region-based methods
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• Clustering-based methods

• Match-based methods

• Neural Network (NN)- and Genetic Algorithm (GA)-based methods

These methods will be described in more detail in the following sections.

2.2.1. Thresholding (similarity)

Threshold segmentation is a straightforward method and can be used to create a binary
image out of a grayscale image [59]. The most straightforward thresholding methods
classify each pixel as background if the image intensity Ii,j is less than some fixed con-
stant T (that is, Ii,j < T ), or foreground (object) if the image intensity is higher than
that constant. Threshold segmentation can be divided into three different thresholding
methods, based on how the threshold value is used:

Global threshold When using global thresholding, the image is divided into foreground
and background using a single predefined threshold across the entire image [12]

Optimal global threshold Optimal global thresholding uses an algorithm to determine
the threshold value, in an attempt to select a threshold value that optimally segments
the image into foreground and background regions.

Local threshold A local threshold method divides the image into multiple non-overlapping
sections, which are then assigned threshold values separately, either manually or based
on some algorithm.

An important aspect of this method is to select the threshold value T , either manually
or automatically, and several algorithms exist. These methods can be divided into six
groups based on the information the algorithm utilizes [58]:

• Histogram-based methods

• Clustering-based methods

• Entropy-based methods
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• Object Attribute-based methods

• Spatial methods

• Local methods

One of the most common methods is Otsu’s method [58], which finds a globally opti-
mal threshold by maximizing the histogram variance between the foreground and back-
ground.

Other popular methods commonly used in the industry are the Maximum Entropy
Method [82], Balanced Histogram Thresholding [15], Iterative Selection Thresholding
Method [51] and K-Means Clustering.

The primary advantage of thresholding as an image segmentation technique is its compu-
tational efficiency and low complexity. It is particularly useful for high-contrast images,
where the foreground pixels can be easily separated from the background pixels based on
the intensity histogram. The drawback is that it can be difficult to obtain good results
when the foreground and background cannot be distinguished based on the intensity
histogram alone, such as when there is a significant overlap in the grayscale values of
the image.

Because it only considers the gray scale information of the image it is very susceptible
to noise, and it is often necessary to combine it with other methods to achieve accurate
results. It is still a popular method due to its low computational cost and complexity, and
it can effectively be combined with methods that utilize spatial and motion information
[46].

Most algorithms assume that images are multimodal, and these algorithms will often
fail in the case of unimodal images. A few algorithms have been developed specifically
to handle such images. Examples of unimodal image threshold selection algorithms are

T-Point Algorithm The tail of the histogram is fitted by two line segments, and the
threshold is selected at their intersection [10].

Maximum deviation A straight line is drawn from the histogram peak to the end of
the tail, and the threshold is selected at the point of the histogram further from the
straight line [53].
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Rayleigh distribution model This algorithm assumes that the peak of the histogram is
noise, and lets the user specify an allowed proportion of noise from which the threshold
is determined [68].

2.2.2. Edge-based segmentation (discontinuity)

Edge-based segmentation works by detecting edges and then dividing the image into
regions based on the detected edges. Adjacent regions with different intensity values are
separated by a discontinuity in intensity, and this discontinuity can often be detected
using derivative operations, which can be calculated by using differential operators [57].

Several popular methods exist, and some of the most common ones are Canny Edge De-
tection [9], Deriche-Canny Edge Detection, Laplace of Gaussian (LOG), Robert’s cross
detection, Prewitt detection, Marr-Hildreth edge detection, Shen-Castan edge detection
and Sobel detection [39]. Table 2.1 provides a comparison of the advantages and disad-
vantages of some of these methods.

For general purpose edge detection, Canny Edge Detection and it’s derivatives generally
outperform the other alternatives. This is mostly due to being more robust to noise but
comes at the cost of increased computational cost [39], and other methods might provide
better performance for specific types of images.

Operator Advantages Disadvantages

Classical (sobel, prewitt,
kirsch)

simple,
edge orientation

sensitive to noise,
inaccurate

Zero Crossing (Laplacian)
edge orientation,
fixed characteristics

sensitive to noise,
double detection

LOG, Marr-Hildreth
edge position,
few double detections

issues with corners and curves
no edge orientation

Gaussian(Canny,
Shen-Castan)

insensitive to noise,
accurate

complex,
computationally expensive,
time consuming

Table 2.1.: Comparison of common edge detection methods

2.2.3. Region-based segmentation (similarity)

Region-based approaches are prevalent image segmentation methods, and the basic idea
is to partition images into regions by grouping neighboring pixels of similar intensity [4].
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Common approaches are region splitting-and-merging (top-down approach) and region
growing (bottom-up approach). Region merging works by selecting a seed pixel and then
merging nearby similar pixels into the region where the seed pixel is located.

Advantages of region-based methods are that they can separate the connected regions
with similar characteristics accurately, and can provide boundary information. The idea
is also relatively simple.

Some significant issues with this approach are that it can be difficult to determine good
starting points (seed pixels), it is hard to automate, and it needs proper criteria for
similarity [22]. It also has a significant computational cost [3], is susceptible to noise
and does not handle shadows well [20].

2.2.4. Clustering-based segmentation (similarity)

Clustering-based methods perform the image segmentation by assigning pixels to sepa-
rate, disjoint groups or clusters, based on their similarity with other pixels in the assigned
cluster, and the dissimilarity with pixels in the other clusters.

One of the most popular methods for image segmentation based on clustering is K-means
Clustering.

K Means Clustering and derivatives K-means is one of the simplest and best-known
algorithms for solving clustering problems in general. It utilized unsupervised learning
to minimize an objective function, which for image segmentation purposes is usually a
squared error function. There are several derivatives and improvements of the k-means
algorithm.

Fuzzy C-means Clustering and its improved version are also popular approaches.

2.2.5. Match-based segmentation (similarity)

Match-based segmentation techniques compare a template image to the input image in
order to find images with a certain intensity distribution or shape and are best suited
for applications where the intensity and configuration of the objects to be detected is
roughly known in advance.
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2.2.6. Neutral network and genetic algorithm based methods

Deep learning has had some significant breakthroughs and advances in recent years,
and this includes the field of computer vision. Approaches based on Deep Convolu-
tional Neural Network (DNCC) using weakly- and semi-supervised learning has shown
excellent results, providing state-of-the-art performance on several challenging object
recognition datasets, and continue to improve continuously. However, these methods are
often complex and introduce a significant computational cost.

2.3. Motion analysis

Segmentation and detection of moving objects in videos or sequences of images, also
known as background subtraction or foreground detection, is an important aspect of
many modern multimedia applications. It is particularly important in the image pro-
cessing field, and a lot of its research has been driven by the so-called second-generation
coding techniques [31]. It is also important in other areas such as video surveillance,
general object recognition, the medical field, and navigation.

Unlike visual analysis, motion analysis can utilize information from multiple images in
a sequence to perform the segmentation. Motion analysis and the related segmenta-
tion methods generally work best with fast moving objects, and accurately segmenting
sequences with slow-moving objects, and a dynamic background is a challenging task.

An efficient way to obtain foreground objects is background modeling, and a large num-
ber of background modeling methods have been proposed over the last few decades.
And even though background modeling methods for background subtraction have been
studied for several decades, no single optimal solution exists, and each method has it’s
own strengths and weaknesses [74].

The proposed methods generally share a common scheme:

1. Build a background model based on the first or previous frames

2. Compare the current frame with the background model to detect moving objects

3. Update the background model

The various background modelling methods can be categorized into region-based meth-
ods, boundary- or pixel -based methods, and a combination of the two [74].
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2.3.1. Boundary-based methods

Boundary- or pixel-based methods utilize the information carried in each pixel sepa-
rately, and assign them to regions such that pixels in the same region share certain
characteristics with other pixels in the same region, and can as such detect the bound-
aries or edges of moving objects. Boundary-based methods are susceptible to noise but
can produce accurate representations of the detected objects.

Examples of popular boundary-based methods are Gaussian Mixture Model (GMM)
[63], Adaptive Gaussian Mixture Model (AGMM) and Pixel Based Adaptive Segmenter
(PBAS) [24].

2.3.2. Region-based methods

Unlike boundary-based methods, region-based methods utilize the relations between
pixels to segment images into regions and perform the background subtraction. Region-
based methods are also less susceptible to input noise, but they can only provide rough
outlines of the detected foreground objects.

Example of region-based methods have been published by Elgammal et al. [16], Liu [34]
and Russel [55].

2.3.3. Hybrid methods

Hybrid methods, which use a combination of region-based and boundary-based methods,
can often provide a better background model and handle changes to the illumination as
well as dynamic backgrounds [44]. Even though such hybrid approaches can accurately
segment an image into foreground and background regions, their computational cost and
complexity are relatively high. Examples of hybrid approaches have been proposed by
Cristani [11] and Toyoma [66].

2.4. Feature descriptors

Feature detection, extraction, and description is an active area of research and is one
of the most studied topics in computer vision literature. Feature detection refers to the
process of identifying points or regions in an image that can be used to describe an
image’s contents. There is no universal definition of what constitutes a feature, and it
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often depends on the problem domain, but typical features are edges, corners, ridges,
and blobs. Table 2.2 provides an overview of common feature detection methods.

Category Classification Methods and Algorithms

Corner-based Differential based Harris, KLT, Shi-Tomasi, LOCOCO, S-LOCOCO

Corner-based Gradient based FAST, AGAST, BRIEF, SUSAN, FAST-ER

Corner-based Template based ANDD, DoG-curve, ACJ, Hyperbola, fitting

Corner-based Contour based
NMX, BEL, Pb, MS-Pb, gPb, SCG, SE, tPb, DSC,
Sketch Tokens

Blob
(interest point)

PDE based
SIFT, SURF, CenSurE, LoG, DoG, DoH, Hessian,
RLOG, MO-GP, DART,KAZE, A-KAZE, WADE

Blob
(key point)

Template based ORB, BRISK, FREAK

Blob
(interest region)

Segmentation based
MSER, IBR, Salient Regions, EBR, Beta-Stable,
MFD, FLOG, BPLR

Table 2.2.: A summary of the current state-of-the-art feature detectors [33].

Once a feature has been detected, the feature can be extracted to a feature descriptor
or feature vector, which often involves a considerable amount of complexity and image
processing. This process, including detection, extraction and the resulting descriptor, is
known as feature description.

There exists a large number of feature description methods, and they vary widely in
the kinds of features they detect, extract and describe, as well as the computational
complexity and their applicability. Table 2.3 shows a comparison of the performance
of the most popular state-of-the-art feature detection methods. There exists no single
optimal feature detection method today, mainly due to the virtually infinite number of
possible applications [56]. Examples of the variance of applications can be detecting
one or multiple features, differences in image conditions (scale, viewpoint, illumination,
contrast, image quality, etc.) and scenes (indoor, outdoors).

Most of the proposed state-of-the-art algorithms require intensive computations, and
many rely on specialized hardware and processing capabilities to achieve acceptable
computational performance. This limits their use for online applications and also to
some degree for offline applications depending on the intended use.

Several feature detection algorithms, Scale-Invariant Feature Transform (SIFT), Speeded
Up Robust Features (SURF) and Maximally Stable Extremal Region (MSER) in partic-
ular, have shown excellent performance in surveys in the computer vision literature, e.g.
[67]. These, as well as a few other popular methods, will be described in more detail in
the following sections.
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Feature detector
Invariance Qualities

Rotation Scale Affine Repeatability Localization Robustness Efficiency

Harris +++ +++ +++ ++

Hessian ++ ++ ++ +

SUSAN ++ ++ ++ +++

Harris-Laplace +++ +++ ++ +

Hessian-Laplace +++ +++ +++ +

DoG ++ ++ ++ ++

Salient Regions + + ++ +

SURF ++ +++ ++ +++

SIFT ++ +++ +++ ++

MSER +++ +++ ++ +++

Table 2.3.: Overview of the performance of the dominant feature detection algorithms
[67].

2.4.1. Scale-Invariant Feature Transform

The SIFT algorithm is a Partial Differential Equation (PDE) based blob detector, which
uses a local feature detector and a local histogram-based descriptor. It detects sets of
interest points in an image and computes a histogram-based descriptor for each interest
point [56]. It can identify objects in noisy images, and under partial occlusions, because
the SIFT algorithm is invariant to changes in scaling, orientation, and illumination, as
can be seen in table 2.3. A large number of improvements and extensions have been
proposed to enhance and tailor SIFT to specific uses.

2.4.2. Speeded Up Robust Features

SURF is a very popular, patented local feature detector and descriptor, that is in part
inspired by SIFT. Surveys have shown SURF to be faster than SIFT terms of speed, and
it is less sensitive to illumination changes. However, SURF is more sensitive to variations
in rotation, scale, and affine transformations, although both methods generally display
poor performance in regards to affine transformations in general [27], as shown in table
2.3. Like SIFT, a large number of derivatives and improvements have been suggested.
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2.4.3. Features from Accelerated Segment Test

Unlike SIFT and SURF, which utilizes blob-detection 2.2, Features from Accelerated
Segment Test (FAST) [54] is a feature detector that uses corner-detection, specifically
gradient-based corner detection. Its most prominent feature is its computational effi-
ciency, which makes it very suitable for online (real-time) processing. It does, however,
suffer in terms of accuracy and robustness compared to detectors such as SIFT and
SURF, but for many applications that is an acceptable trade-off considering the major
improvements it offers in terms of speed and computational complexity. This algorithm
also has several derivatives and improvements, such as FAST-ER.

2.4.4. Maximally Stable Extremal Region

As can be seen in table 2.2, MSER is a method for blob-detection. It is a technique
proposed by Matas et al. [40] to find corresponding elements in images taken from
different viewpoints, e.g., by cameras in a stereo configuration, and is considered to be
best of its kind. Several improvements have been proposed, including support for color
images [18] and increased robustness to blur and scale changes [19].

2.5. Summary

Computer vision is one of the most active research fields in information technology today.

Image segmentation and filtering has been studied for a long time and has a large body
of established research. It is usually part of the initial steps in computer vision systems,
and the system performance is often directly related to the performance and accuracy
of the pre-processing and image segmentation. The performance of the Crowdstream
system will be highly dependent on the performance of the image segmentation and its
ability to correctly detect objects.

Feature detection and description algorithms are fundamental in modern applications of
computer vision. However, these algorithms are typically computationally expensive and
complicated, which often prevents them from achieving the speed needed for real-time
applications.

Object detection and recognition is an area that has undergone a lot of research, and it
is still actively researched.
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3. Object Tracking

Multiple Object Tracking (MOT) is an important computer vision problem which has
gained increasing attention due to its academic and commercial potential. Although
different kinds of approaches have been proposed to tackle this problem, it still remains
challenging due to factors like abrupt appearance changes and severe object occlusions
[37].

Object tracking is an essential aspect of Crowdstream because it lays the foundation for
how well the server can correctly position devices in the crowd, which is essential for the
function of the system.

The task of MOT mainly consists of attempting to detect and identify multiple objects
in individual frames in a sequence and recover the identity information of the objects
in subsequent frames. MOT tracking can be decomposed into two separate steps that
address independent issues [5]. The first is time independent detection, as described in
chapter 2. The second step relies on modeling detection errors and target motions to
associate object detection to the most likely object trajectories.

Some examples of objects that can be tracked are vehicles [29], pedestrians[47], sport
players [73] or groups of animals (birds [36], etc.).

MOT is a challenging task, especially in complex scenes where objects are occluded by
background or other objects [65]. It becomes even more challenging when objects of
interest have similar appearances, like similarly colored balls or insects. In that case,
the motion cues are particularly useful for discriminating multiple objects [78].

This chapter provides an overview of the basics of object tracking as well as current
state-of-the-art methods which are relevant in regards to the implementation of the
Crowdstream system.

There are two major topics to be considered when developing a MOT method. The
first is how to measure similarity between objects, eg. the modelling of appearance
(section 3.3), motion (section 3.4), interaction (section 3.5), exclusion (section 3.6) and
occlusion (section 3.7). The other is how to associate identity information based on the
similarity of objects between frames in a sequence, which usually involves inference and
data association, covered in section 3.8. But first, section 3.1 defines the problem of

23



CHAPTER 3. OBJECT TRACKING

MOT.

3.1. Problem definition

The problem of MOT has previously been defined in numerous different ways in the
research literature, depending on the perspective of the authors. However, Luo et al. [37]
attempts to provide a general formulation and argues that existing work and formulations
can be unified under their definition. Their definition states that MOT can be viewed
as a multi-variable estimation problem:

The objective of MOT is to find the ”optimal” sequential states of all the
objects, which can generally be modeled by performing Maximal a Posteriori
(MAP) estimation from the conditional distribution of following states given
all the observations. [37]

This formulation unifies MOT methods from previous works by viewing them as ap-
proaches to solving the above MAP problem, either through probabilistic inference or
deterministic optimization, which will be described in more detail in subsection 3.2.3.

3.2. Categories

Most MOT methods combine existing research and methods in new ways, making it
difficult to categorize MOT methods distinctively. It is therefore useful to categorize the
methods according to three different criteria: initialization method, processing mode and
output.

DBT DFT

Initialization automatic, imperfect manual, perfect

# of objects varying fixed

Applications specific type of objects any type of objects

Advantages
can handle varying number of objects,
can handle objects as they appear

no object detector required,
can disregard appearing objects

Disadvantages
performance depends on object detection,
added complexity with appearing objects

requires manual initialization,
fixed # of objects

Table 3.1.: Comparison of the most important differences of DBT and DFT in regard to
Crowdstream, adopted from [37].
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3.2.1. Initialization method

MOT methods can usually be grouped into one of two sets based on how objects are
initialized [2]:

• Detection-Based Tracking (DBT)

• Detection-Free Tracking (DFT)

The following sections provide an overview of these two methods, and Table 3.1 provides
a comparison of the most important differences of these two methods in regard to the
Crowdstream system.

Figure 3.1.: Two common object initialization approaches for MOT. Top: Detection-
Free Tracking (DFT), bottom: Detection-Based Tracking (DBT) [37].

Detection-Based Tracking (DBT)

When using DBT, also commonly referred to as ”tracking-by-detection,” objects are first
detected and then associated with trajectories. This can be seen in Figure 3.1, where
the video is first processed by the object detector, before being passed to the object
tracker. There are two issues worth noting. First, since the object detector is trained in
advance, the majority of DBT focuses on specific kinds of targets, such as pedestrians,
vehicles or faces. Second, the performance of DBT highly depends on the performance
of the employed object detection [37].
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Detection-Free Tracking (DFT)

As shown in Figure 3.1, the tracking system requires both manual initialization in ad-
dition to the video that is being processed as input. DFT requires manual initialization
of a fixed number of objects in the first frame and then proceeds with data association
and tracking of these objects in subsequent frames [37]. A major issue with DFT is that
it cannot handle objects that appear after the initialization phase, making it unfeasible
for many practical scenarios. It does, however, work well in the cases where it can be
used.

3.2.2. Processing mode

MOT can also be categorized into online and offline tracking, with the difference being
whether observations from future frames are used when processing the current frame or
not. Online, also called causal, tracking methods rely only on past information, while
offline, or batch tracking approaches utilize observations both in the past and in the
future [37]. Table 3.2 provides an overview of the most important differences between
online and offline processing as it pertains to the Crowdstream system.

Online Tracking

In online tracking, object trajectories are estimated using only information from past
frames as well as the current frame, e.g., [80], [80]. The trajectories are processed in
a step-wise manner, and thus online tracking is also called sequential tracking. On-
line MOT algorithms are applicable to real-time applications such as advanced driving
assistant systems and robot navigation [78].

Offline Tracking

Offline tracking can utilize detection results from both past and future frames, eg. [61]
[76]. Sequences can be processed as one, or they can be split into batches, e.g., to
reduce the computational load. Individual detections are linked together to form track-
lets, which can then be combined either iteratively or in a time-sliding window [72], to
construct longer trajectories that span the entire sequence.

26



CHAPTER 3. OBJECT TRACKING

Online tracking Offline tracking

Input past and present observations all observations

Methodology
append current observations
to existing trajectories

link observations into tracklets,
link tracklets into trajectories

Advantages suitable for online tasks
can obtain global optimal solution,
can utilize more data for tracking,
no hard time-constraints,

Disadvantages
limited time for processing,
limited detection data available,

potential processing delay,
can not be used for online tasks

Table 3.2.: Comparison of online and offline tracking methods

3.2.3. Output

The last category classifies MOT methods based on their output, which can be either
deterministic or probabilistic. The output of a deterministic tracking method is constant
for the same input, while the output of a probabilistic method might vary between
runs given the same input. The difference between these methods results from the
optimization methods as mentioned in section 3.1.

3.3. Appearance model

Single object tracking methods often rely heavily on a visual appearance model to dis-
criminate the foreground from the background and to measure the similarity between
objects. While appearance modeling is an important aspect of MOT, it is usually not
considered to be the core component.

Technically, an appearance model consists of two components, visual representation and
statistical measuring. The visual representation describes the visual characteristics of
an object, while statistical measuring is the computation of similarity between different
observations of objects. Formally, the similarity between two observations i and j can
be written as

Si,j = F (oi, oj)

where oi and oj are visual representations of different observations, and F is a function
that measures the similarity between them [37].
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3.3.1. Visual representation

An object can be described according to a number of different visual features, using
either a single one or a combination of several features. These features can be grouped
into the following categories:

Local Features

Local features use local search to detect features in an image. The Kanade–Lucas–Tomasi
feature tracker is an example of a method that utilizes local search.

Region features

Region features are obtained from a larger segment of an image, eg. a bounding box.
Typical features are color histogram [26], raw pixel templates, gradient-based represen-
tations [7] and level-set formulation [43].

Others

There are a few other types of representations besides local and region features, such as
the Probabilistic Occupancy Map (POM) [5] and gait features [64].

3.3.2. Statistical measuring

Statistical measuring is the second component of the appearance model and is used to
measure the similarity between two objects. Some methods utilize a single measure,
while other methods use a combination of measures.

Single measure

Single measures are simple to calculate and use, and several single measure similar-
ity models exist. Some common measures are color, shape, depth and texture. The
Bhattacharyya distance is commonly used to calculate the distance between two color
histograms ci and cj , where the similarity S is calculated using Bhattacharyya distance
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B as S(Ti, Tj) = exp(−B(ci, cj)) [72]. Another commonly used method is the Normal-
ized Cross Correlation (NCC), which can be used to calculate the similarity between two
objects based on the raw pixel template mentioned above in 3.3.1 [47].

Multiple measures

Combining multiple complementary measures can increase the models’ robustness, but
comes at the cost of increased complexity and computation. Fusing information from
several measures can be difficult and error-prone. Fusing can be achieved using one of
several available strategies for data fusion. Common strategies are boosting, concatena-
tion, summation, product and cascading.

3.4. Motion model

The motion model captures the dynamic behavior of an object and predicts the next
position of objects in the future frames [37]. Intuitively, it predicts the next position
of each object along each track, and objects that are close to the predicted position
are given a high similarity score. Also, some potential matches can be pruned early as
they are highly unlikely. In many cases, objects can be assumed to move at a constant
velocity and not change directions abruptly, thereby significantly reducing the search
space. Below follows a brief description of three common motion models.

3.4.1. Static motion model

The static motion model is by far the simplest model and assumes a constant position
with a bound on the maximum inter-frame motion. It works best when the velocity is
low and constant, overall movement is small, and object overlap is infrequent.

3.4.2. Linear motion model

The Linear Motion Model is by far the most popular model, and it strikes a good balance
between performance and complexity [7]. This model assumes that objects move with
constant velocity V , eg. V (t) = V (t + 1) where t is a point in time. An example of a
basic model using the linear motion model is Three-Frame Constant Velocity Prediction.
Other commonly used implementations are velocity smoothing[42], position smoothing
[72] and acceleration smoothing [32].
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3.4.3. Non-linear motion model

In cases where the linear model cannot accurately model the object dynamics, a non-
linear motion model can be considered. It can be deployed to model objects that move
freely or in a non-linear fashion, e.g., objects that are being affected by gravity. However,
Non-linear Motion Models are complex and can be computationally expensive.

3.5. Interaction model

The interaction model captures how objects interact and affect each other. The interac-
tion model is also known as the mutual motion model, and an example of such interaction
is when a crowd of people moves across a street; as each person follows someone, they are
also guiding others. Another example is when a pedestrian walks along the boardwalk,
they adjust their velocity and direction in order to avoid collisions. These are examples
of two common interaction models, namely crowd motion pattern models [25] and social
force models [23] respectively.

3.5.1. Social force models

Social Force models, also known as Group Models, considers all objects to be dependent
on other objects and environmental factors. These models can assist in tracking objects
in a group by modeling objects as agents with behavior based on two aspects individual
forces and group forces:

Individual forces. Two types of forces are considered for each object in a group:

• fidelity, an agent should not change his desired destination

• constancy, an agent should not suddenly change momentum, including velocity
and direction

Group forces. Three types of forces are considered for a whole group:

• attraction, agents moving in a group will stay close to the group

• repulsion, agents moving in a group will keep some distance from other members
of the group to be comfortable

30



CHAPTER 3. OBJECT TRACKING

• coherence, agents moving in a group will move with similar velocity and direction

Several publications exist where one or multiple forces have been modeled successfully,
usually implemented as one or multiple energy-minimizing objective functions, e.g., [47].

3.5.2. Crowd motion pattern models

Crowd Motion Pattern Models can often assist in tracking objects in over-crowded sce-
narios, where tracking individual objects is difficult. In such cases, individual appearance-
and motion-models may prove inadequate due to objects being hard to detect and dis-
tinguish, and crowd motion models may provide additional cues to aid tracking. Motion
patterns are often learned through machine learning methods and applied as prior knowl-
edge to aid in object tracking.

3.6. Exclusion model

The exclusion model is a constraint that is employed in order to avoid physical collisions
when searching for solutions to a MOT problem and comes from the fact that two
objects cannot occupy the same physical space. This is usually modeled by two separate
constraints [41]:

• detection-level exclusion two devices detected in the same frame cannot be
associated with the same object

• trajectory-level exclusion two trajectories cannot be infinitely close to each
other

3.6.1. Detection-level exclusion

Two different approaches can be utilized to model detection-level exclusion:

Soft constraints Exclusion constraint is modeled by minimizing a cost function that
penalizes any hypothesis that maps multiple trajectories to a single object in the same
frame [41].
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Hard constraints Enforces the constraint by disregarding any hypothesis that maps
multiple trajectories to a single object in the same frame [38].

3.6.2. Trajectory-level exclusion

Similar to soft detection-level constraints, trajectory-level exclusion is often modeled by
minimizing a cost function that penalizes any hypothesis where two objects that are
close together have different trajectories. The penalty can be inversely proportional
to the distance between two objects, or proportional to the spatial-temporal overlap
between two trajectories [41]. In either case, this will generally suppress one of the two
trajectories if they are close enough.

3.7. Occlusion handling

Occlusions are likely the most critical challenge in MOT and are a primary cause for loss
of objects or tracks. Several different methods have been proposed in order to overcome
the issues caused by occlusion.

3.7.1. Part-to-whole

The part-to-whole strategy builds on the assumption that parts of the object are still
visible as the occlusion occurs, which is a reasonable assumption in many cases. Based
on this assumption, steps are taken to observe and utilize the visible part of the object
to infer the occluded parts. Next, as affinities between objects in subsequent frames are
calculated, the occluded parts are ignored or given a lower weight than the visible parts
[26].

3.7.2. Hypothesize-and-test

This strategy eliminates most challenges posed by occlusion by proposing and testing a
multitude of hypotheses according to the actual observations at hand. There are several
methods that can be used to generate the hypotheses, eg. Zhang et al. [81] generate a
hypothesis pair by considering objects that are close and of similar scale as occlusions
of one another. Further, these hypotheses can then be used as input where MAP can be
used to find the optimal solution, as described in section 3.1.
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3.7.3. Buffer-and-recover

The buffer-and-recover strategy stores the last known state of objects as they become
occluded, and uses this information to recover their trajectories once the occlusion ends.
Mitzel et al. [43] keeps trajectories alive for a maximum of 15 frames during occlusion,
and extrapolates the position during occlusion based on velocity and direction before
the occlusion. When the occlusion ends, the track is matched with the trajectory and
the object identity is recovered.

3.8. Inference

Inference in MOT can generally be categorized as using one of two approaches, proba-
bilistic inference or deterministic optimization.

3.8.1. Probabilistic inference

Methods that are based on probabilistic inference usually represent the states of objects
as a distribution with some uncertainty. The goal of the tracking algorithm then is
to estimate the probabilistic distribution of the target state based on all existing ob-
servations. [37]. Probabilistic inference is particularly well suited for online tracking,
as it requires only the past and present observations, and a Markov Property is often
assumed.

Several different methods for probabilistic inference have been utilized with great success
in MOT, but the most popular methods are Kalman filter [50], Extended Kalman Filter
[43] and Particle Filter [7].

3.8.2. Deterministic optimization

Unlike approaches for probabilistic inference, methods based on deterministic optimiza-
tion attempts to find the MAP solution, using observations from all frames or a sliding
window. To achieve this, the problem of MOT is usually modeled as an optimization or
energy minimization problem. Such methods are often better suited for offline tracking
because observations from some or all frames need to be known in advance.

In practice, approaches based deterministic optimization have proven more popular than
probabilistic methods. Despite probabilistic methods providing a more intuitive and
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optimal solution to the problem, optimization methods often provide a good enough
solution in less time and are easier to infer.

Given the observations from all frames or a window of frames, these methods aim to
associate all observations from a unique object with a trajectory, ideally finding the
optimal association. Several approaches have been used successfully, and some of the
most popular ones are Bipartite Graph Matching using a greedy assignment algorithm [7]
or the optimal Hungarian algorithm [72], Dynamic Programming [5], Min-cost Max-flow
Network [81], Conditional Random Field (CRF) [76] and Maximum-weight Independent
Set (MWIS) [8].

3.9. Summary

Both Multiple Object Tracking and Multiple Target Tracking play an essential role in
modern computer vision and have gained increasing attention due to their academic
and commercial potential. The objective is to estimate object trajectories and maintain
their identities through sequences of images. It has a wide range of applications, such
as visual surveillance, sports analysis, robot navigation and autonomous driving.

The majority of recent research and progress in regards to MOT has been in the field of
tracking-by-detection, where object detections from an object detector are linked in order
to form trajectories and associate them with the identities of the objects. However, other
methods exist, such as tracking-by-decision[71], based on Markov Chains and Monte
Carlo Data Association.

The task of MOT becomes significantly more challenging when the objects of interest
have similar appearances.
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4. Device Positioning and Association

This chapter describes the details of the method that has been developed and imple-
mented in the Crowdstream prototype. section 4.1 explains the general approach that
was used, and also discusses some of the most important choices and decisions that were
made during the development of the solution. section 4.2 and section 4.3 discusses the
most relevant and applicable theory from chapter 2 and chapter 3 respectively. sec-
tion 4.4 provides a brief summary of the conclusions and final approach that has been
used.

Some decisions were made despite knowing that they are not optimal solutions, often
due to time constraints or because the client agreed that the proposed solution was
adequate. In the cases where sub-optimal solutions were chosen, the alternatives are
mentioned and discussed in chapter 8.

4.1. Positioning

As stated in section 1.2, the client wanted to investigate if a solution using only a
stage-mounted camera was feasible, which narrows the possible approaches. Given this
requirement, a few possible solutions were proposed and discussed. In co-operation with
the client, it was decided that an approach based on discrete-time signals should be
attempted, as it seemed to be the most viable option.

4.1.1. Discrete-time signals

The idea is that each device emits a unique discrete-time signal, which can uniquely
identify the device in a recording. This allows the system to capture a recording during a
specific time when each device is emitting a unique signal, and then process the recording
in order to detect the relative placement of each device in the crowd. This position can
then be mapped to a device, identified by its IP-address, by matching the position of
each detected sequence in the recording to the IP-address where each respective sequence
was sent to.
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The initial solution attempted to combine display colors with discrete-time signals, but
this proved to be ineffective due to the fact that at longer distances these colors appear
almost indistinguishable, such as in Figure 4.1.

Figure 4.1.: Example of how colors from a LED screen appear indistinguishable at a
distance.

The final solution is based on binary discrete-time signals or binary modulation. In
practice, this is a sequence of bits, which uniquely identifies each device. Each bi‘ in the
sequence, hereafter called symbol, signifies a white, ‘1‘ or black ‘0‘ screen.

4.1.2. Sequence generation

The sequences are generated randomly, one for each connected device, with some restric-
tions. The sequence has a pre-set, configurable length, and the length of the sequence
needs to be large enough such that it can assign a unique sequence to each device. Also,
in order to avoid certain types of detection errors, the sequence generation algorithm
will output a maximum of 3 symbols of a given type in succession. This has to be ac-
counted for when setting the length of the sequence, as it reduces the number of devices
a sequence of a given length can identify.

In addition, each sequence has a pre-configured prefix of length 3, which is used by
the algorithm to detect the start of a sequence, but these are added in addition to the
configured sequence length.
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4.1.3. Symbol rate

Due to randomness introduced by the client emitting the signals, described in section 5.4,
the timing of each symbol the signal is not entirely constant or predictable. To account
for this, the client emitting the signal must track the difference between the target
duration for each symbol, or target unit interval, and the actual duration of each symbol.

The target duration can be calculated as follows, where the target fps is provided by the
server, and is sent to each client together with the sequence:

target duration = 1000ms/target fps

The actual duration must be tracked by the client using a timer or similar construct,
and the difference (∆) can then be calculated as:

∆n = target duration− actual durationn

The client then has to adjust the duration of the next symbol n + 1 in the sequence
according to this difference:

durationn+1 = target duration + ∆n

By doing so, the estimated end of symboln+1 in the sequence occurs at a time relative
to the start of the sequence

tendn+1 = n + 1 ∗ target duration

,

and the whole sequence of length m ends at

tendm = m ∗ target duration

This predictability is vital in order to accurately sample the signal, as described in
subsection 4.1.5. Figure 4.2 shows how this affects the signal in practice. The signal
starts at t = 1, but the duration of the first symbol is too short due to random factors.
The target duration of the signal at t = 2 is therefore increased to compensate, which
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in this case results in a correctly timed transition at t = 3. The transition to t = 4 is
correct, so no adjustments are made to the duration of the symbol starting at t = 4. The
duration of the symbol at t = 4 ends up being too long, so the duration of the symbol
at t = 5 is reduced to compensate. However, this the duration of the next symbol is also
extended by the device.

Figure 4.2.: Symbol rate and symbol adjustments for the sequence 101010.

4.1.4. Capture FPS

Another issue is caused by the fact that the camera does not record at a constant
FPS. The FPS during recordings will usually vary between 15-30 FPS, depending on
the environment and lighting conditions. This is caused by the camera adjusting the
shutter speed according to the lighting conditions, in order to avoid over- or under-
exposure during the recording. Given more advanced hardware the shutter speed could
be controlled manually, but such low-level control is not available for the simple hardware
used in this project.

To account for this, the system uses a capture rate that is at least three times the signal
rate in order to minimize errors. Specifically, the symbol rate is adjusted such that

symbol rate ≤ capture fps/3

Because the capture rate can vary between 15 and 30 fps depending on conditions, the
signal rate should in most circumstances be set to

15/3 = 5hz

or less, to account for the worst possible lighting conditions. This allows the system to
sample each unit interval at least three times, possibly up to 6 times when capturing
at 30 FPS. This allows the system to utilize triple modular redundancy or N-modular
redundancy, described in subsection 4.1.6, in order to detect and correct transmission
errors. Because the system uses binary modulation, the symbol rate is also the bit rate
of the signal.
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While the frame rate can vary, the timing between each frame at a given frame rate is
relatively constant and predictable, such that an fps of 15 will roughly capture frames at
times t = 0ms, t = 33ms and t = 67ms. It is important to note that, due to the variance
described in the previous subsection, this does not ensure that each symbol is sampled
three times, only that the system captures at least three frames each unit interval.

Figure 4.3 illustrates an example of when frames might be captured using a variable
frame rate between 15 and 30 frames, on a sequence of 10101. The frame rate is close
to 30 for the first two symbols, capturing 6 frames per symbol. Then it decreases to 4
and 3 for symbol number 3 and 4 respectively. While the frame rate increases again for
the last symbol, capturing 5 frames during the unit interval, it only manages to capture
2 samples of the actual symbol. This is due to the timing of symbol 5 being off by more
than half the unit interval.

Such significant differences between the target and actual duration will likely lead to
errors in the detection algorithm, but this rarely occurs in practice. Possible solutions
can be better hardware that is able to capture at a higher FPS, optimizing the signal
emitter to better match the target unit interval, or changes to the detection algorithm
itself.

Figure 4.3.: Recorded frames with a variable FPS between 15 and 30 frames.

4.1.5. Discrete-time signal sampling

Because the signal is binary and discrete, if the unit interval was constant and pre-
dictable, the system could efficiently sample each symbol exactly once at each interval.
However, in this case, as the unit interval is neither constant nor predictable, this is not
a viable option. Therefore, the system utilizes information from all the captured frames
in an attempt to minimize errors.

Since the FPS the device captures at varies, it is not possible to determine precisely

39



CHAPTER 4. DEVICE POSITIONING AND ASSOCIATION

when a specific frame in the video sequence occurred based on the recording itself.
To accurately sample the signal at specific times, the system generates a list of when,
relative to the first frame, each subsequent frame in the sequence occurred. This data is
generated while the camera is recording by utilizing a timer and comparing the captured
time of each individual frame with the time of the first frame, and storing the result.

Through this mechanism, it is possible to accurately sample the signal at specific intervals
in order to detect the actual sequence.

4.1.6. Triple to N-modular redundancy

The system utilizes Error Correction Codes (ECC)/Forward Error Correction (FEC),
specifically modular redundancy, in order to detect and correct errors in the transmission
from the clients. By using a capture FPS that is at least three times the signal frequency,
the system is guaranteed triple modular redundancy, and potentially higher redundancy
if the FPS is higher.

Starting with the first detected symbol, the system will use information from every
recorded frame in order to accurately sample the signal. The detected symbol is corrected
by a majority vote or democratic voting where the number of positive and negative results
of each sample within the calculated time-span of a symbol are counted and compared.
If there is a tie, the sample that lies closest to the center of the calculated time-span is
chosen.

Figure 4.4 demonstrates this process in detail. The process proceeds as follows, where
Symbol N starts at t = N :

Figure 4.4.: Sampling and detected symbols
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Symbol 1 The capture FPS is 30, yielding 6 frames within the unit interval of the
symbol which corresponds to six samples. Five samples detect ‘1‘, one sample detects
‘0‘, the result is ‘1‘. The actual unit interval of the symbol is too short, but this does
not impact the outcome of the result.

Symbol 2 The FPS is still 30, resulting in six samples. Three samples detect ‘0‘, the
next three detect ‘1‘, which is a tie. The sample closest to the center of the unit interval
is sample number four, which detects ‘1‘, therefore the result is ‘1‘. The actual unit
interval is off by half, but the detection is still correct.

Symbol 3 The capture FPS is reduced, capturing four frames in the unit interval. All
samples detect ‘1‘, the result is correctly determined as ‘1. The signal also transitions
to the next symbol at the correct time for the first time during the sequence.

Symbol 4 The FPS is further reduced, yielding only three samples. Due to the tran-
sition being correct, all three samples correctly detect ‘0‘, and the result is ‘0‘.

Symbol 5 The capture FPS increases again, providing five frames during the unit
interval. The detected samples are three ‘0‘ and two ‘1‘, the result is therefore ‘0‘, which
is incorrect. This is caused by the fact that the transition from Symbol 4 to Symbol 5
is delayed by 3/4 of the unit interval. Such large discrepancies between the target and
actual unit interval will result in incorrect results, displaying a possible flaw with the
detection algorithm. However, differences of this magnitude have not been detected in
practice thus far, but are in theory possible due to the ‘best-effort‘ scheduling provided
by the operating system on the devices.

4.1.7. Network latency

Network latency is by no means a new problem, but it nonetheless has to be accounted
for by the Crowdstream system. In practice, network latency will affect when each device
receives the sequence signal, and therefore also when each device can begin signaling its
sequence. One possible approach would be to include a time stamp of some time in the
near future together with the signal, which indicates when the signaling should begin.
While the solution is feasible, it introduces unnecessary constraints and complexity on
the clients.

Another approach is to let each client start the signal at their leisure, provided it is
within a certain amount of time after the sequences were sent, while the camera is still
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capturing. This effectively eliminates any issues regarding network latency, and as a
side-effect also any other problems that could cause the sequence to start too early or
too late. This is the approach used by the Crowdstream system.

The system begins recording just before the sequences are sent, and will record for a
limited amount of time, e.g., twice the time it takes to display the full sequence. All
sequences are prefixed with a single known sequence-prefix starting with ‘1‘, for example
‘101‘, which signals the start of a sequence. As the tracking algorithm processes each
frame it uses this prefix to detect the beginning of each individual track, disregarding
the prefix itself. Next, it stores the capture time of the last frame of the prefix as the
start time of the actual track. Then, the timing of all subsequent samples for that track
is treated relative to this stored start time, ignoring the start of the actual recording.
This lets all tracks operate with separate start times within the captured video, such
that it does not matter when devices begin signaling their sequence as long as the whole
sequence can be captured by the camera.

4.1.8. Summary

The result is an indoor positioning method which in theory can be used to determine
the relative position of multiple devices in a crowded area, something that has generally
been considered a tough problem. It accomplishes this using only a camera, a server
and the devices themselves. The method is general enough such that it and can eas-
ily be extended, improved or customized by changing or replacing one or more of the
components or algorithms involved.

The next chapters discuss how this method has been combined with methods for device
detection and tracking in a prototype system to solve the exact problem as stated by the
client, to position devices in a large audience at a concert or in an arena environment.

4.2. Device detection

This section provides a detailed discussion of some of the most relevant methods men-
tioned in chapter 2, in context of the Crowdstream system. It covers their applicability,
potential issues, advantages, and drawbacks. It also mentions which methods that were
ultimately chosen and implemented in the prototype, and why.
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4.2.1. Visual analysis

As mentioned in section 2.2, there exists a large number of methods and algorithms
for visual analysis. For this particular task, simple thresholding appears to be a viable
option. It has low complexity and is computationally efficient, while also providing good
results for specific inputs. Low complexity is important due to the limited time con-
straints of the project, while computational efficiency is necessary to avoid making the
audience wait for prolonged amounts of time while processing the input. The images
that will be processed by this system also happen to be a good fit for simple thresh-
olding, because the devices in the image are bright, and easily distinguishable from
the black background in a histogram. The following section describes the thresholding
implementation in detail.

Thresholding method

The most commonly used threshold selection algorithms assume that the intensity his-
togram of the image is multi-modal, typically bi-modal such as the histogram in Fig-
ure 4.5. However, in the case of Crowdstream, the input images are essentially uni-modal,
as can be seen in Figure 4.6. This is caused by the fact that the background pixels present
the majority of the pixels present in the image, and the black background, therefore,
dominates the foreground pixels in the intensity histogram.

Figure 4.5.: Example of a multi-modal histogram, based on a nature photography.

Under these circumstances, many of the commonly used algorithms will fail or perform
poorly, such as Otsu’s method, as can be seen in Figure 4.7. It shows how some nearby
devices are detected as a single device, resulting in false negatives. It also incorrectly
detects devices at the top of the image, false positives, which are in fact other sources of
light or reflections with much less intensity than the mobile devices. Compared to the
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Figure 4.6.: Example of uni-modal histogram, based on an image captured with Crowd-
stream.

detection result in Figure 4.8, which uses a manually defined threshold, one can see that
using a manual value provides a more accurate result, with both less false negatives and
less false positives.

Input 257 devices 253 devices 675 devices

FN FP FN FP FN FP

Manual threshold 5 3 8 4 24 19

Otsu’s Method 12 15 10 18 36 95

Guassian Blur + Otsu’s 13 18 19 14 107 36

Table 4.1.: Comparison of commonly used threshold selection algorithms on 3 different
real-world sample images. It shows the amount of False Negatives (FN) and
False Positives (FP) for each algorithm as they are applied to each image.

Tests on real-world sample images showed that both a direct application of Otsu’s
Method and a combination with a Gaussian Blur filter was being outperformed by sim-
ple manual global thresholding, as can be seen in Table 4.1. For these images and this
specific use-case, Otsu’s method generally selects a threshold value that is too low. This
causes it to detect devices where there are none, leading to a large number of false pos-
itives. It also causes devices that are clustered near each other to be combined into
a single device, missing the other nearby devices, which increases the number of false
negatives. A commonly used technique, which involves pre-processing the image with a
Gaussian blur filter before applying Otsu’s Method thresholding, only seems to magnify
the issues by combining even more nearby devices into a single detection.

There does exist a few threshold selection algorithms that are specifically designed to
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Figure 4.7.: Example of Otsu’s Method thresholding applied to a real-world image sam-
ple with 257 devices. Green circles indicate devices that were detected by
the algorithm. Red circles highlight incorrect detections.

handle uni-modal images, as mentioned in subsection 2.2.1. However, because all the
histograms of the images that are being processed by the Crowdstream system are simple
and predictable, see Figure 4.6, a simple binary thresholding algorithm performs well.

The system uses a manual global threshold which can be tuned to the specific environ-
ment the system is operating in. Depending on the brightness of the surroundings, a
value between 200 and 240 will usually provide adequate results.

4.2.2. Motion analysis

Research has shown that sophisticated methods do not always produce more precise
results than their simpler counterparts, and they also introduce a significant compu-
tational cost and complexity. It has also been shown that most background modeling
methods can handle static backgrounds fairly well, while the real challenge lies in adapt-
ing them to dynamic backgrounds and environments[44]. The video recordings that will
be processed by the system will have a static background and a static camera, reducing
the need for complex motion analysis.

Also, as described in section 2.3, motion analysis provides best results when working
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Figure 4.8.: Example of manual binary thresholding, using a value of 240, applied to a
real-world image sample with 257 devices.

with fast moving objects. However, this system will be processing video captured during
a time where the audience is asked to hold their devices still, which does not lend itself
well to any motion analysis segmentation algorithms.

Feature descriptors

Modern feature detection and extraction algorithms will likely introduce a lot of com-
plexity to this prototype of Crowdstream, and given the time constraints of the project,
it is not feasible to attempt to implement any such algorithms as this point.

4.2.3. Summary

For the purpose of this prototype, the detection method will be based on manual thresh-
olding. Thresholding is simple and effective and works well with the types of input this
particular system will process.
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4.3. Device tracking and association

Crowdstream differs from other common use cases of device tracking and association
because the objects that will be tracked by the system are expected to disappear and
frequently reappear, due to the nature of the sequence and positioning phase that occurs
during tracking. Many tracking methods do not handle occlusion well, and some not at
all, which effectively makes many of them unusable for this application.

4.3.1. Initialization method

The difference between DBT and DFT is whether a detection model is adopted (DBT)
or not (DFT), which ultimately dictates whether the tracking algorithm can track new
objects as they appear during the tracking process. Because the Crowdstream system
involves network latency and other random factors, it cannot guarantee that all objects
will be detectable in the first frame. The system must, therefore, be able to track objects
that appear during the tracking process, which in practice makes a DBT based method
the only viable option.

4.3.2. Processing mode

The difference between online and offline methods is the way they process observations,
which can also affect the tracking performance and computational requirements. Offline
tracking is not suited for applications that require real-time tracking, but as Crowd-
stream has no such hard requirements, both options remain viable. There are usability
aspects to consider in regards to both the speed and performance of the method used,
so a solution has to strike a balance between the time required to complete the track-
ing, and the performance of the tracking method. Because real-time tracking is not a
requirement, an offline method is likely the most viable option as it allows the algorithm
to utilize more data and computation-time to improve the performance.

4.3.3. Output

The output of the tracking method in the prototype is deterministic, partly because it
is easier to implement and also because it is easier to test and compare the results of
different detection algorithms and changes in their parameters.
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4.3.4. Appearance model

The color histogram is simple, and one of the most studied similarity measures, but it
ignores the spatial features of the objects. The spatial features are often important for
multiple object tracking, especially when objects have similar visual appearances such as
in the case of Crowdstream. Gradient-based features can consider the shape of objects
and are robust to certain transformations, but cannot handle occlusion well, which is
paramount to the performance of the system. There are other more robust measures, but
they are often computationally expensive or require multiple cameras or other setups.

Because the objects that will be tracked by the Crowdstream system are all rectangle-
shaped lights, it is likely that shape and texture will not be able to contribute much
towards a more robust similarity model. Likewise, because all the lights are white, color
and color histograms will also most likely not be effective similarity measures.

Considering how objects being tracked by Crowdstream are almost visually identical,
alternatives to appearance models, especially models that rely on spatial awareness and
application-specific domain knowledge, have been emphasized.

4.3.5. Motion model

The targets tracked by Crowdstream will be hand-held devices. The objects might move
abruptly and in a non-linear fashion, which reduces the general applicability of linear
motion models. A non-linear motion model might be applicable, but will likely require
a great amount of effort and resources, probably too much considering the scope of this
project.

It is however likely that most objects will remain within a static region during the
tracking phase, bounded by twice the length of the participants’ arms. This lends itself
well to a linear motion model, specifically a static motion model. This can be combined
with a simple constant velocity or three-frame velocity prediction linear motion model
to handle cases where two objects overlap.

4.3.6. Interaction model

Interaction models are difficult and time-consuming to implement and configure correctly
and has therefore not been considered for the current prototype. However, social force
models and crowd motion patterns could be viable for future development.
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4.3.7. Exclusion model

As mentioned in section 3.6, exclusion modelling is usually handled by two separate
constraints, detection-level exclusion and trajectory-level exclusion.

Detection-level exclusion The prototype utilizes a hard constraint to enforce detection-
level exclusion. It disregards any hypothesis that maps multiple trajectories to a single
object in the same frame, and will instead attempt to find a better hypothesis. This
approach was chosen because of time constraints, it is simple to implement, and provides
adequate performance. Soft constraints could possibly provide better results and should
be considered for future work.

Trajectory-level exclusion The system does not use a model for trajectory-level exclu-
sion, also due to time constraints. As with detection-level soft constraints, this requires
an algorithm that utilizes cost functions, so implementing one will also enable the other
with little effort. Trajectory-level exclusion should be considered for future work.

4.3.8. Occlusion handling

As mentioned in section 3.7, occlusion handling is one of the most critical parts of MOT.
It is particularly important in the Crowdstream system because objects are expected to
disappear and reappear at regular intervals, making many of the commonly used tracking
and occlusion-handling algorithms unsuitable. The part-to-whole method, described in
subsection 3.7.1, is one such example because the targets being tracked will intentionally
be completely occluded and not detectable for significant parts of the tracking phase.

The prototype uses a Buffer-and-Recover method, similar to what was described in
subsection 3.7.3. It uses prior trajectory, velocity, and a maximum radius, based on
an arm’s length, to attempt to detect and associate appearing devices with recently
occluded ones. If a device cannot be rediscovered within a set amount of frames, it will
be discarded for the remains of the session, to avoid it interfering with other trajectories.

4.3.9. Inference

Inference is a very effective tool in MOT, and would likely have a large impact on
the performance of the tracking algorithm. However, due to time constraints and the
fact that preliminary tests without inference provided adequate performance for the
prototype, an inference model has not been implemented.
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Both probabilistic inference and deterministic optimization could prove effective for this
system. There is a lot of domain-specific knowledge and information that could be used
to drive an inference model.

Most notably, the fact that the system knows all valid sequences in advance enables it
to aggressively prune any hypothesis that would result in an invalid sequence, or in two
devices having the same sequence.

The inference engine could also incorporate knowledge about how the devices are likely to
move during the initiation phase, e.g., devices might be more likely to move horizontally
than vertically. It is also plausible that devices will move within a defined area restricted
by an arm’s length, that their velocity will slow down as it nears the edge of the said
area, and then abruptly change direction. Such information could enhance the accuracy
and performance of the tracking algorithm if encoded and modeled successfully.

4.4. Positioning summary

The system uses detection-based offline-tracking with a deterministic output. In ad-
dition, it utilizes a simple linear-motion model, hard detection-level exclusion, and a
method based on Buffer-and-Recover to handle occlusions.
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5. Prototype Implementation

The project has resulted in a basic functional prototype system. The system includes
a server application, a CLI for server administration, a client application for Android
devices and a TCP/IP based protocol for communication. This chapter provides an
overview of the implemented system as well as details on the implementation of each
component.

To start, section 5.1 provides an overview of the system architecture and all its compo-
nents. Next, section 5.2 describes the protocol that has been developed for communica-
tion between all involved components. Then section 5.3 provides a detailed description
of the implementation of the server, which is the core of the system. Following that,
section 5.4 and section 5.5 covers the implementation of the mobile client and the ad-
ministrator client, respectively. Finally, section 5.6 details the implementation of a
comprehensive debugging and testing framework that has been created to support the
development of the system.

5.1. System architecture

The system consists of a server application and any number of clients, using a traditional
client/server architecture. Figure 5.1 shows the overall architecture of the system, and
how clients can communicate with the server. The clients can connect to the server over
a network, and it uses a simple customized linefeed TCP/IP protocol for communication.
Clients can connect to the server through a local WiFi connection at the venue, or by
using a mobile network (cellular network). The admin CLI is only available as a python
script, so it must be run on a platform that supports Python.

5.2. Crowdstream protocol

The protocol is a simple linefeed delimited Transport Connection Protocol (TCP) pro-
tocol, which receives and sends lines of text delimited by Carriage Return Line Feed
(CLRF).
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Figure 5.1.: The Crowdstream architecture

Each line is a list of Comma Separated Values (CSV), where the first token is a command,
and the following tokens are arguments.

5.2.1. Server-to-mobile client communication

The server can send three different commands to a client:

Position response (pos,[response])
The position response is sent as a response after receiving a clients GPS position and
has the following parameter

• response A single value of ’0’ or ’1’

The response describes whether the device was rejected or accepted, where ‘0‘ indicates
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that the device was rejected and ‘1‘ indicates that it was accepted. If the device was
rejected, the application should gracefully disconnect and notify the user.

Sequence (s,[fps],[sequence])
The sequence command is sent by the server to initiate the sequencing phase, and in-
cludes the following two parameters:

• fps The target FPS the sequence should be displayed at

• sequence A sequence of ‘0‘ and ‘1‘s of arbitrary length

Once received by the device, the sequence of ‘0‘ and ‘1‘ should be displayed by the
device as black and white, respectively. Each frame should be displayed for the duration
indicated by the FPS parameter, where the duration of each frame is calculated as

duration in ms = 1000/fps

Color (c,[r],[g],[b])
The color command defines a single color, using the Red Green Blue color model (RGB)
scheme, that should be displayed by the device, and has the following parameters:

• r The value of red in a RGB value

• g The value of green in a RGB value

• b The value of blue in a RGB value

The color should be displayed immediately, and its duration is infinite. In practice, this
color should be displayed until a new color is received or when the device is disconnected
from the server.

5.2.2. Mobile client-to-server communication

The server only supports a single command coming from the client.

Position (pos,[lat],[long])
The position command is used to send the current position of the client to the server. The
position of the device is compared to the position of the server, which can be manually
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set or automatically detected, and the result is used by the server to determine if the
client is located in the correct area and allowed to participate in the event. It has the
following two parameters:

• lat A GPS latitude value

• long The GPS longitude value

5.2.3. Admin-client to server communication

The server supports persistent administrator connections, but it can also be used with
a simpler request/response model. To support a request/response model, the server will
always reply with a single response for each command, regardless of what happened
during the execution of the command. If the command was successful, the server will
respond with any data requested by the command, or ”OK” if no data was requested. If
the command is unsuccessful, the server will respond with an error message describing
what went wrong. As can be seen in Figure 5.2, the server can handle multiple commands
over the course of a single admin session. It also shows how the server will notify the
user of invalid commands if the user is already authenticated. However, if the server
receives any commands other than ’pos’ or ’auth’, it will immediately terminate the
connection. Finally, if the user tries to authenticate with an incorrect password, the
server will respond with ’auth unsuccessful’ before terminating the connection.

The server supports an authentication command as well as four different administrator
commands.

Administrator commands

Authenticate (auth,[password])
The authentication command should be issued at the start of an admin session to identify
the client as an administrator. The command accepts a single parameter:

• password The administrator password

The password is used by the server to determine if the authentication is successful. If
the password is incorrect, the connection is terminated immediately. The password must
be configured on the server in advance and is transmitted to the server as plain text.
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Figure 5.2.: Administrator protocol sequence diagram

Initiate (init,[rounds])
The initiate command is used to start the sequencing phase, where a unique sequence
of bits is sent to each connected device. The command accepts a single parameter:

• rounds The maximum number of sequencing phases/rounds to run

55



CHAPTER 5. PROTOTYPE IMPLEMENTATION

The ‘rounds‘ parameter can be used to run multiple sequencing phases, to maximize the
number of devices detected. A value between 3 and 5 is recommended.

Status (status)
The status command can be used to retrieve the status of the server and the clients and
accepts no parameters. The response includes a list of all connected devices and their
status as ’detected’ or ’not detected’.

Start stream (stream,[source])
The stream command is used to start the streaming of content to all currently detected
devices, and accepts a single parameter:

• source The path of the content to stream, relative to the designated ‘content‘
folder on the server.

The source can be either an image or a video, and it will begin streaming immediately
to all connected devices.

Stop stream (stop)
The stop command can be used to stop any current streaming, and it does not accept
any parameters. The broadcast will stop immediately and is followed by a single request
for all devices to display a black screen.

5.3. Crowdstream server

The server is implemented using Python 3.6. Python was chosen for its features and
capabilities with image processing, networking, and rapid prototyping. It is also great
for rapid deployment and is easy to set up and use. Lastly, it is one of the most popular
languages in the scientific community, along with Matlab1 and R2.

The server is entirely asynchronous, spawning new threads to perform any background
tasks and commands such as capturing and analyzing video, streaming and providing
status reports.

1https://www.mathworks.com/products/matlab.html
2https://www.r-project.org/
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Image processing is mostly handled through the use of OpenCV3 and NumPy4.

OpenCV is an open source computer vision and machine learning software library, while
NumPy is a library that assists general scientific computing in Python.

The server optionally uses IPData5 to retrieve its current location, which is used to
determine whether mobile devices are close enough to participate in the event or not.

5.3.1. Architecture

The overarching design is based on an object-oriented programming paradigm. How-
ever, some components such as the image processing and tracking components utilize
functional programming. This is done to leverage the compositional nature of functional
programming, which works well for pipelines such as image processing. Figure 5.3 shows
the architecture of the server and how the different classes interact.

Classes

CrowdstreamServer CrowdstreamServer and its start method is the entry point for
the server application. It has some configurable fields that reads its default values
from the global configuration, but which can be overridden per instance before calling
start. It has two dependencies, NetworkService and DeviceService, which handle
network communication and the devices respectively. CrowdstreamServer processes
all commands coming through the NetworkService, creating a new thread to execute
the task if asynchronously if required. Some tasks might require interaction with the
DeviceService, such as streaming video. It then sends the response back through the
NetworkService. CrowdmstreamServer is also responsible for accepting or rejecting
new connections, authentication, access control and server location.

CrowdstreamProtocol The CrowdstreamProtocol acts as a wrapper for each con-
nection, managing the TCP/IP socket, connection, and protocol communication. It
abstracts away the connection details and lets higher layers in the application interact
with complete lines of text instead of individual TCP packets.

3https://opencv.org
4http://www.numpy.org/
5https://api.ipdata.co
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Figure 5.3.: Server architecture, simplified UML Class Diagram

NetworkService The NetworkService handles all communication with the clients. It is
started when the server is started and will listen for connections and incoming data. As it
receives new connections or data, it uses callbacks to signal events to other components.
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It also manages all active connections as a collection of CrowdstreamProcotols . The
network stack is described in more detail in subsection 5.3.2.

CameraService CameraService is responsible for managing the camera and its con-
nection, making sure related resources are obtained, managed and released correctly.

Device The Device class holds information about a single, located device, such as the
IP and its position. It also has a single method, transpose, that transposes the detected
position of the device onto a provided matrix, and stores the result on the object.

DeviceService DeviceService has a fairly small API, but it and its dependencies
are responsible for the majority of the complexity in the application. It manages all
connected devices and provides methods to run the detection phase as well as controlling
the stream and accepting or rejecting connecting devices. The implementation of this
class is described in subsection 5.3.4 and subsection 5.3.5

Modules

The entities at the bottom of the diagram are implemented as stand-alone modules and
are mostly used by DeviceService.

Detection This module contains functions to perform object detection on an image.
The module uses a functional paradigm and is described in detail in subsection 5.3.5.

Tracking Contains functions and a class, Track, for tracking objects in a video, which
is further described in subsection 5.3.5.

Video Utilities for working with video or images, such as writing a capture to disk and
creating empty frames.

Sequences Helper functions for generating, encoding and decoding sequences.
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Figure 5.4.: Server state diagram

5.3.2. Networking

The network stack is built using Twisted6, an event-driven, low-level networking engine.
It offers high performance and provides access to low-level networking features and func-
tionality. It works through a single ‘main loop‘, the event loop, which blocks until an
event arrives, and then calls the relevant event handler. The current implementation of
Crowdstream uses a select() based loop, as it is supported on all platforms. Other, more
optimized loops could easily be used instead if required.

Figure 5.4 shows a state diagram of the server and how it handles incoming connection

6https://twistedmatrix.com/trac/
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and task execution.

5.3.3. Initialization phase

The initialization phase is started by calling DeviceService.position_device() with
a single parameter, indicating the maximum number of attempts to locate all devices,
which creates a new thread for the task. This begins a complex process of generating and
sending sequences, capturing a recording and storing it to disk together with generated
metadata, performing object detection, tracking, and association, and if necessary repeat
the process a set number of times or until all connected devices are detected.

The process begins by checking how many undetected devices are currently connected,
to avoid unnecessary work in case all devices are detected already. Next, it stops any
ongoing tasks such as streaming and broadcasts a black color to all devices, to prepare
them for the initialization phase.

Next, it will generate a unique sequence for each non-detected device, and assign it to
their IP-address. Concurrently, a new thread will be spawned in an attempt to acquire
a lock on the camera to warm it up, which includes adjusting the focus, shutter speed,
ISO-sensitivity aperture, as well as capturing a small number of test frames. Once the
camera and sequences are ready, the camera will start recording, and the sequences are
sent to their assigned IP-addresses.

The camera will continue recording for the duration of the full sequence plus a few
seconds of an extra buffer to account for network delays. During the recording, the
exact time of each frame relative to the first frame is stored with millisecond precision.
When the recording is complete, the recorded frames and the corresponding metadata
is written to disk, the camera released, and the thread recycled.

The next part of the process is the detection and tracking of devices. It starts by
opening both the recently captured recording and the related metadata file which holds
the timing information for each frame. It performs object detection and object tracking,
as described in subsection 5.3.4 and subsection 5.3.5, on each frame that was captured.
The result is a list of Track objects, which holds the detected sequence and a history of
all positions for each track.

Using this information, the system will then attempt to map the detected sequences
to the original sequences that were broadcast. If a match is found, the IP-address
corresponding to where the original sequence was sent is looked up and associated with
the track. Finally, a new Device is instantiated using the IP-address combined with the
position of the device track, resulting in a detected device with an associated IP and an
estimated position.
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Once all tracks are processed, if any connected IP-addresses were not successfully mapped
to a position, the whole process will be rerun, up to a specified number of maximum
attempts. Subsequent runs will exclude already mapped devices, and the system will
attempt to keep these devices dark, to avoid interfering with the next attempt. This
process has proven effective in tests, as it becomes substantially easier to map devices
when there are fewer of them.

When all devices are detected, or the maximum number of attempts has been reached,
the system is ready for streaming.

5.3.4. Detection

Object detection and related functionality is contained in the detection module. It has a
fairly simple API, implementation and no external dependencies, such that it can easily
be improved, extended or replaced. The current implementation utilizes OpenCV3 for
image processing, but this is not exposed to the module’s clients and can easily be
changed.

The main function, detect_devices, accepts four input parameters:

• input image: The input image to perform object detection on

• threshold func: A function accepting an input image and returning an output
image

• find contours func: A function accepting an input image, returning nested list
of points indicating the detected contours.

• find contour centers func: A function accepting a nested list of points, and
returning a list of points

The result of applying all these operations in succession is a list of the centers of all
detected objects.

The module contains several available implementations:

Thresholding

The thresholding function must accept a single parameter, the input image, and return
the result of applying the threshold function.
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• Simple Threshold Threshold function that applies a manually defined global
threshold to the whole image.

• Otsu Threshold Implementation that uses Otsu’s Method, as described in sub-
section 2.2.1.

• Gaussian Otsu Threshold Applies a Gaussian Blur filter before applying Otsu’s
Method.

Find contours

The contours function must accept the input image as a parameter and return a single
contour for each image, where a single contour is represented by a list of points.

• External Contours This implementation finds the external contours of each ob-
ject.

• External Approximated Contours This implementation finds the external con-
tours of each object and uses a simple approximation to simplify the contour rep-
resentation.

Find contour centers

A contour centers function must accept a list of contours and return a list of points, one
for each contour provided as input.

• Minimum Enclosing Circle Finds the minimum enclosing circle for each of the
provided contours.

• Contour Moments Centroid Computes the image moments of each contour,
and calculates the centroid from these moments.

The default implementation uses Simple Threshold, External Approximated Contours
and Minimum Enclosing Circle. The module also provides functionality for debugging
and visualizing detections.
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5.3.5. Tracking

Object tracking, specifically multiple-object-tracking, is by far the most complex task
involved in positioning of the devices. The current implementation is kept as simple as
possible, adequate for a proof-of-concept, but can be improved upon in many areas.

Object tracking is kept entirely separate from object detection, such that one can easily
replace one without affecting the other. Tracking and related functionality are imple-
mented in the tracking module, which defines a single public method.

The perform_tracking() method accepts 2 parameters:.

• detected positions: A list of lists of Point, representing all detected positions
in all frames

• timestamps: The time stamps of all frames, relative to the first frame in the
sequence

The current implementation of the tracking algorithm is relatively simple. It only in-
corporates information from the previous and current frames, and in practice functions
much like an online tracking algorithm. It would, however, be easy to implement more
advanced tracking if necessary as all information about all detections, both present, and
future, are provided to the algorithm.

The algorithm iterates through all frames and processes each frame individually. Infor-
mation from previous frames is carried forwards through mutable Track objects, which
contain a complete history for each track, including the states (hidden or visible), posi-
tions and time stamps.

The frame processing algorithm starts by creating an empty list for all the devices that
were occluded during this frame, and a complete list of previously detected devices that
have yet to be mapped to a track for this frame. It also creates an empty map for
all taken positions, used to enforce the hard constraint for detection-level exclusion as
described in section 3.6. Lastly, it generates a K-Dimensional Tree (K-D tree), based
on the SciKit7 library, which is used to represent all detected positions. A k-d tree is
a binary search tree that is optimized for searching in spaces with k dimensions and is
used to perform queries such as finding the nearest or N-nearest co-ordinates for a given
position. This dramatically enhances the performance of the algorithm compared to a
naive nearest neighbor search, especially when the number of devices passes 1000.

Then it iterates through each existing track, processing one track at a time. Tracks

7http://scikit-learn.org
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that have been discovered but have since been lost are initially skipped, in order to map
currently visible devices first. This approach has shown a small but consistent positive
effect on the results of the tracking algorithm in tests.

It begins by searching for all detected positions in the current frame within a small
search radius of the device. The search radius, centered around predicted position of
the device, scales linearly with the amount of time that has passed since the device was
last seen, and is limited by a maximum search radius. This mechanism is in place to
handle cases where the device is signaling ‘0‘ and then moved short distances. It allows
the search to start with a minimal search radius, assuming participants will not move
excessively during initialization as they will be asked to hold their devices still.

1 time_since_last_detection = timestamp - track.last_seen

2 if time_since_last_detection > MAX_HIDDEN_TIME:

3 continue

4 search_distance = min(SEARCH_RADIUS_EXPANSION_RATE *

time_since_last_detection , MAX_SEARCH_RADIUS)

5 distance , index = tree.query(track.position ,

distance_upper_bound=search_distance)

If no match is found in range, the device is considered hidden, and the algorithm con-
tinues to the next track. If one or more matches are found, it will attempt to greedily
associate the track with the closest match. If the position has not yet been claimed by a
track in this frame, the current track will claim the position, and the algorithm continues
to the next track.

However, if the position is already claimed, it will determine which track has the closest
predicted location and let it claim the position. It will then attempt to claim the second
nearest position for the track that was rejected. If this position has also been claimed,
it will recursively attempt to greedily assign each position to the nearest track, until
all tracks have been assigned or a track has no unassigned positions within its search
radius, whereby it is marked as hidden. This is a simple greedy approach, but is very
efficient and provides adequate results.

Once all previously visible tracks have been processed, it will process all tracks that
have previously been discovered but since been lost. These tracks will have an increased
search radius compared to the tracks processed in the previous phase as they have been
hidden for at least 1 frame. A new K-D tree is generated for the remaining, unclaimed
positions, and the process described above is repeated.

Finally, any positions that have not been claimed by any existing tracks, visible or
hidden, are considered new tracks and will be included in the next iteration.

Once all tracks and detected positions have been accounted for, the updated state is
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applied to the existing tracks, and new tracks are created. As each Track is updated
or created the algorithm will determine whether it should attempt to decode a signal
symbol from a track history. Based on the symbol rate and time stamp it is possible
to determine when the signal for a given track is supposed to transition, and then use
all samples between the last two transitions to perform a majority vote and detect the
symbol. The detected symbol is then appended to any previous symbols on the same
track.

The whole process is then repeated for all remaining frames. When all the frames have
been processed, each Track has a complete history of its state, position, time stamps,
and the detected sequence. The subsequent steps, which involves mapping the sequence
to IP-addresses, have already been described in subsection 5.3.3.

5.3.6. Streaming

Once the initialization phase is complete, all detected devices will receive streaming data
once an administrator begins streaming content. The system supports both images and
videos in various formats and resolutions. The server will process the input and send
data in a separate thread so that it does not interfere with the normal operation of the
server.

Images

When streaming images it will first map the position of each detected device to a location
on the input image, e.g., a device that was detected in the center of the capture will
receive colors from the center of the input image. Once this mapping has been done, it
will not remap any devices until the resolution of the input changes.

Next, it will iterate through all devices, mapping a color from the input image to each
device, and finally broadcast the designated colors to all devices. The color for each
device can be the value of a single pixel or the average of a region of pixels centered
around the transposed location.

Stop must be used manually to hide the image once it has been broadcast.

Video

When streaming video, each frame will be extracted and processed as a single image,
as described above. If no other content has been streamed, or the resolution is different
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from previous content, all devices will be transposed to the new resolution of the first
frame. No processing is required for subsequent frames of the same resolution.

The FPS of the stream can be configured and can be set to either a manual value or
based on the FPS of the input video. The stream will end once the video is finished
streaming or stop is used.

5.4. Mobile client

The client is implemented as a native Android application. It is implemented using
Kotlin8, a relatively new language that was recently announced as being officially sup-
ported on Android.

5.4.1. Connection

After launching, the application will automatically attempt to connect to a server, which
can be configured with a hostname and port in settings, until it is connected or manually
disconnected. It uses a simple exponential back-off algorithm to avoid draining the
battery and overloading the server in case there many clients attempting to connect at
the same time.

Once connected, the device will send its current position to the server and wait for a
response. The server can either reject the device, in which case it will disconnect, or
accept the device.

If accepted, the application will adjust the screen to maximum brightness and display
a plain, black surface. It will also prevent the screen from turning off while the app
is running in the foreground, in order to make it easier for the detection algorithm to
correctly detect the device during the sequencing phase.

If the client is disconnected, not rejected, at any time, it will immediately try to recon-
nect. If it is able to reconnect, it can continue to display incoming data if it had already
been detected before the disconnect, given that it has the same Internet Protocol (IP)
address as it had before it disconnected.

8https://kotlinlang.org/
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5.4.2. Initialization

Once the device is ready, it will wait for data from the server according to the protocol
as described in section 5.2. When the client receives a sequence from the server, it will
set up an asynchronous task to display the sequence at the given FPS. Because Android,
the operating system, takes some liberties in how and when it will render updates to
the User Interface (UI), it is not possible to use the regular Application Programming
Interface (API) to display this sequence. Android tries to batch screen updates together,
and because the application is attempting to display several frames per second, it will
lead to some frames being completely missed, while others are rendered out of sync.

To overcome this, all colors are being rendered using a ‘SurfaceView‘, which provides
lower level access to the rendering API. This allows the application to render frames
at a near constant FPS. However, because it is not truly constant, a drift may occur
during the display of the initial sequence. This drift is entirely random and may be
caused by background tasks or garbage collection, and will lead to cumulative delays
in all subsequent frames. To account for this drift, the sequencing task will attempt to
adjust for any incorrect timings between two intermittent frames, such that the sequence
as a whole is displayed using a constant FPS. That is, requested fps ≈ actual fps as
the total duration of the sequence increases.

This allows the device to be detected correctly despite minor variances in the frame rate
during the initial sequence, as long as the variance between any two frames is no longer
than a maximum, defined as max variance in ms ≤ 1000/fps .

Once the full sequence has been displayed, the screen will turn black to avoid interfering
with any subsequent sequencing phases. This process can be repeated any number of
times for any number of devices, and the device will wait for input from the server.

If the device was not successfully detected during the sequencing phases, it will be
disconnected, reset the brightness and allow the device to turn off its display. If the
device was successfully detected it will be waiting for further input from the server, and
display any incoming data according to the protocol.

5.4.3. Streaming

During regular streaming mode, the device will display any data it receives instantly
using the ‘SurfaceView‘ API, and not attempt to correct for any timing issues. There
will likely be many devices that are slightly out of sync by a few milliseconds, but
given the environment and usage, the client has agreed that small discrepancies in the
synchronization between devices are tolerable. The network overhead and amount work
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involved in attempting to synchronize all devices would not be feasible nor important to
the intended use of the system.

5.5. Administrator client

The administrator interface comes in two variants; both implemented in Python version
3.6.

The first is a TCP/IP network client that uses a persistent connection. It requires the
user to authorize once at the beginning of the session and lets the user send any command
directly through the CLI after that point.

The other interface, named ‘CWS-CLI‘, is a CLI tool that utilizes a simpler request-
response model. It is implemented using python-fire9 and python-requests10. The server
was initially only implemented with support for a persistent connection client, but a
request-response model was added to provide a better user experience, which is important
to the project owner. Unlike the persistent client, the admin CLI provides complete
documentation of all the available commands and arguments and is able to provide rich
feedback to the user. It is also completely stateless and can be invoked directly from the
command-line on any system with a python interpreter. It provides a user experience
similar to that of any other tool that can be invoked from a command-line. It comes
bundled as an installable package, and after installation, it can be invoked as ‘cws-cli‘
followed by a command, or ‘help‘ for help.

Each command results in two requests being sent to the server, as can be seen in Fig-
ure 5.5. The first request is always an ’auth’ request, which is needed in order to
authorize the user. Because the CLI terminates the connection between each command,
this request has to be included with each command. The tool has configurable settings
which let the user set a default IP, port, and password in order to avoid having to type
these details for each command. If the authorization is successful, the CLI will send
the actual command to the server and await a response. The server will always attempt
to send a response to each request, but failing to do so, the CLI will terminate the
connection after a short timeout.

9https://github.com/google/python-fire
10http://docs.python-requests.org/en/master/
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Figure 5.5.: CWS-CLI request-response model

5.6. Testing framework

The prototype comes with extensive support for programmatic and synthetic testing at
various levels, including unit tests, integration tests, and system tests. This has proven
invaluable during the research and development of this project as it has allowed rapid
development, testing, and comparison of changes to any part of the system.

There are several components that can be used by themselves or in conjunction in
order to isolate, mock and test specific parts of the system. The essential components
are described in the next subsections. Together, these components provide a robust
framework for testing and further development of the system.

5.6.1. Test video generator

The test video generator is the most important part of the test bed. It can create
test videos that can be used as input to the system in a variety of ways, and it has
an extensive set of features and settings which can be used to customize the generated
videos.
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It requires at least 2 arguments:

• device shape: A tuple, indicating the number and shape of the devices, e.g.
(20,20) for 20x20 devices

• path: A relative or absolute path, where the output file and related data will be
stored

Using these parameters, the generator will produce a video with the indicated number of
devices in a rectangle, broadcasting a randomly selected sequence for each device. The
video, along with the sequences and timestamps for each frame, are then stored to disk
at the provided location.

This video, along with the generated time stamps and actual device positions for each
frame, can then be provided to the system in order to test the detection, tracking and
mapping algorithms. However, in order to make the generator more useful and realistic,
it also supports the following additional parameters:

• sequences: A list of sequences, one for each device. Default: randomly generated
sequences.

• fps: The FPS of the recording. Default: 30

• movement: A value indicating how far the devices can move per frame. Default:
2

• symbol frequency: Symbols per second. Default: 5

• device color variation: Allowed color variation for devices, 0-255. Default: 50

• device size range: Allowed size variation range in pixels. Default: (1,5)

• output resolution: Resolution of generated video. Default: (1080, 720)

• max movement distance: Maximum allowed movement from initial position.
Default: 20

• max start delay: Maximum start delay for devices to begin broadcasting, in
frames. Default: 20

Figure 5.6, Figure 5.7, Figure 5.9 and Figure 5.11 show different variations of the pro-
duced test videos, and also display how the generator evolved from simple grids of devices
to complex randomized positions and movements. Some of the devices in the figures are
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Figure 5.6.: Generated test video with 25 devices

Figure 5.7.: Generated test video with 100 devices in square formation

not visible in the images, depending on the symbol they are signaling.

In combination, these parameters allow the generator to produce reasonably realistic
captures. It is able to simulate random movement, changes in detected device colors due
to external light sources and changes in device size due to partially occluded or tilted
screens. It also simulates network latency with delayed starts as well as technical details
such as capture fps, symbol frequency and resolution.

The resulting video is visually very similar to real-world videos of crowds with smart-
phones at venues after thresholding has been applied. Figure 5.8 and Figure 5.10 display
how real images appear after thresholding has been applied, and demonstrates the sim-
ilarity between the generated output and the real images. The overall pattern of the
crowd is different, but the individual devices can be made to be quite similar, both in
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Figure 5.8.: Real image after thresholding, medium sized arena

Figure 5.9.: Generated test video with 100 devices, random movement

appearance and behavior.

The video can then be used as input to the system, either directly or as input to the
capture component. The video generator is also able to produce annotations that are
compatible with Sloth11, which is a well-known tool for reading and writing annotations.
This enables it to be processed by a large number of existing tools and libraries.

11http://sloth.readthedocs.io/en/latest/
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Figure 5.10.: Real image after thresholding, large arena

Figure 5.11.: Generated test video with 2500 devices, random movement

5.6.2. Simulated camera

The CameraService has been mocked to provide a video generated by the test generator
instead of providing a real video stream. This allows seamless interaction with a simu-
lated environment. The mock can be configured to provide a specific video or generate
a new one. The generated video can be random, or more importantly, during system
tests, it can hook into the sequence generation of the server and generate a video which
simulates the exact sequences used internally by the server.

This allows easy and realistic simulation of any number of devices, as the system is
completely unaware that the video is being generated. It can generate videos simulating
thousands of devices in various configurations and can be used to test the detection,
tracking and mapping components of the system.
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5.6.3. Simulated network

NetworkService has been mocked in order to provide a simulated environment of con-
nected devices. It takes two arguments, the number of clients that should be simulated
and a callback for received data. The mock will then simulate the specified number of
clients while the other parts of the system are completely unaware whether the connec-
tions are real or not. All simulated devices will be connected and accepted by default,
and therefore will not send any further data to the server.

The NetworkServiceMock be used in conjunction with the CameraServiceMock in order
to adequately simulate the server environment in a realistic manner. This setup will
simulate a number of connections, while still allowing an admin to connect interact with
the server. When an admin starts the initialization phase, the CameraService mock
will intercept the request for the camera, and instead generate and return a video that
simulates the sequences that were sent by the server. Once one or more devices have
been successfully detected, the administrator can begin streaming content to the fake
devices.

Streaming data coming from the server will be displayed in a window as a circle of the
correct color. Each device will have it’s own designated position on the screen, simulating
a position in the crowd. This effectively shows how the stream would look through a
camera from above if all participants held their devices pointing upwards. Figure 5.12
shows the output of streaming to 400 simulated clients in a 20x20 grid.

Figure 5.12.: Output using simulated clients.
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5.6.4. Mobile test client

The mobile test client is functionally the same as a mobile device and connects through
TCP/IP, but it can be run from a local terminal. It accepts input from the keyboard
which is sent to the server, such as the POS command with GPS coordinates. It will
also accept and display sequences and streamed content on the screen. Multiple of these
can be scripted and run in parallel in order to set up and test real TCP/IP connections.
It can also be combined with the CameraService mock in order to generate a test video
based on the sequences sent to each client.
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6. Experimentation and Testing

This chapter describes a variety of experiments and tests that have been conducted
during the project and discusses relevant results and discoveries. These experiments
and tests range from fully simulated and synthetic tests, with thousands of devices, to
real-world experiments with a small number of devices. It was not possible to conduct
a large-scale real-world test without assistance from an event organizer, which was not
possible to arrange due to time restrictions.

Based on the results from the simulated tests and initial real-world experiments, in-
creasing the number of devices beyond two alone has no impact on the performance of
the algorithm. Seemingly, the factor that most impacts the performance is whether the
devices are close or overlapping, and this effect can be tested using only two devices.

Also, given the similarity of the generated video and the real recordings after the thresh-
old has been applied, real experiments have focused on particular scenarios using only a
few devices, while large-scale tests have been conducted using generated input.

A number of automated tests have been implemented in order to detect possible issues,
bugs, and flaws during the development of the system. Another set of automated tests
have been developed to test, measure and track the performance of the system, both in
terms of detection results, tracking results and the execution speed.

These measurements have then been used to compare the performance of the system
using different parameters or different algorithms altogether. This section covers some
of the most significant tests and provides a discussion of their results.

Section 6.1 provides an overview of some of the most common methods for evaluating
MOT systems. Next, section 6.2 and section 6.3 describes and discusses the tests and
results for device detection and device tracking, respectively. Then, section 6.4 covers
the tests and experiments that were conducted using a real camera, real participants,
and real devices. Finally, section 6.5 briefly describes various other tests that have been
implemented in order to verify the functionality of the system.
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6.1. Evaluation

Metrics and data sets are required in order to evaluate the approach and its performance
quantitatively. This is particularly important in order to measure the influence of various
components and their parameters, and how they affect the performance of the system.
This helps guide towards and design a better system. However, performance evaluation
for multiple object tracking is not an easy task.

6.1.1. Metrics

The choice of evaluation metrics is crucial, as they provide the means for the compari-
son. The current approach utilizes tracking-by-detection, so some of the metrics should
evaluate detection performance in addition to the metrics for tracking performance. The
metrics can then be categorized into metrics for detection and metrics for tracking. This
section provides a brief overview of some of the most common metrics and measures for
multiple object tracking. It is important to note the difference between ”precision” as
a metric for calculating accuracy, and the category of metrics called ”precision. The
former relates to the ratio between true positives and total predictions, while the latter
relates to the physical position of the detected object.

Detection

Detection metrics are commonly grouped further into metrics for accuracy and metrics
for precision.

Accuracy The well-known Precision and Recall metrics are commonly used, along with
False Alarms per Frame (FAF). Another popular metric, called Multiple Object De-
tection Accuracy (MODA), considers the relative number of false positives and miss
detections and is the most comprehensive metric for accuracy [28].

Precision Multiple Object Detection Precision (MODP) measures the quality of align-
ment between predicted detections and the ground truths and is the most commonly
used metric for precision. [28].
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Tracking

Like the detection metrics, tracking metrics are commonly divided into groups based on
what is being measured.

Accuracy These metrics measure how accurately a method can track its targets. Mul-
tiple Object Tracking Accuracy (MOTA) is by far the most commonly used metric, and
combines the rate of false positives, false negatives, and mismatches into a single number
[6]. It provides a fairly reasonable measure of the overall tracking performance but has
received some criticism. Another commonly used metric is ID switches, which counts
how many times the algorithm switches the associated ID for a track [75].

Precision These metrics describe how precisely the tracking algorithm can track the
objects, either by bounding box overlap or distance. Common measures are Multiple
Object Tracking Precision (MOTP) [6], Tracking Distance Error (TDE) [30] and Optimal
Subpattern Assignment (OSPA) [52].

Completeness Completeness measures how many of the ground truth trajectories are
tracked, and includes the number of mostly tracked, partly tracked and mostly lost
trajectories. Mostly tracked are defined as tracks that are covered for at least 80% of
their lifetime, while mostly lost are tracks that are covered for maximum 20% of their
lifetime. Everything in between is counted as partly tracked.

Robustness Metrics for robustness measure how well the algorithm can recover from
occlusion. Only two such metrics, Recover from Short-Term Occlusion and Recover from
Long-term Occlusion, have been presented [61].

6.1.2. Data set

Consistent input is important to be able to compare different tracking components and
their parameters. Because there are no existing data sets with devices emitting Crowd-
stream sequences, a data set had to be created.

Because the data-set had to be created from the ground up during this project, it has
not been possible to accurately annotate the data-set with ground truths and some of
the other data that is necessary to compute many of the most popular measures. Most
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of the metrics can only be applied to the generated tests, as there is not enough data
available to compute any valuable metrics for the other tests in the data set.

An overview of the generated dataset can be seen in Table 6.1. Ground Truth (GT)
indicates whether the data includes the absolute truth regarding the position and tracks,
while Sequence Truth (ST) refers to if the actual sequences that were broadcast are
available.

As can be seen in Table 6.1, the generated tests has the most comprehensive annotations
to compare against and includes the actual position of all devices in each frame, as well
as their trajectories throughout the recording.

The recordings from real life tests and experiments are annotated with the actual se-
quences that were broadcast during the test but has no data on the positions or tracks
of the recorded devices. The real videos and images have no attached metadata, and
can only be evaluated visually.

GT ST

Real world images from people holding their devices at events

Real world videos of people holding their devices at events

Single images from generated videos with varying parameters

Generated videos with varying parameters

Single images from real tests with Crowdstream

Captured recordings from real tests with Crowdstream

Table 6.1.: Crowdstream data-set, with Ground Truth (GT) and Sequence Truth (ST)

6.2. Detection

A number of detection tests have been implemented, and these are used to track and
compare the performance of different algorithms and parameters on a set of images.
There are mainly four types of images that have been tested:

• Real world photos of people using their smartphones at events

• Single frames from real-world recordings at events

• Single frames from video captured with Crowdstream during tests
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• Single frames from generated videos

Each image has been tested against different combinations of detection algorithms and
parameters, as described in subsection 4.2.1, which illustrates the test and comparison
of 3 common thresholding algorithms.

6.2.1. Metrics

Accuracy Because the detection algorithm utilizes a manual global threshold to detect
objects, it is not meaningful to compute any accuracy metrics based on the generated
tests. The reason is that any pixel with an intensity above the threshold is detected
as an object, and any value below the threshold is not. And since the video would be
generated, the resulting metric would simply indicate where the generator used color
values below or above the threshold, which has no value in itself.

Accuracy metrics would be more valuable if they were computed for the real images but
requires the images to be manually annotated with ground truths first. Due to time
restrictions and other priorities, this has not been done. Therefore, no accuracy metrics
have been used for detection.

Precision The algorithm used in Crowdstream does not provide a bounding box for
the detected object, but rather the centroid of the bounding box. Therefore, it is not
possible to use any of the most commonly used metrics that are based on the intersection
of the bounding box. Instead, precision is measured as the Euclidean distance from the
detected centroid to the actual centroid of the device.

Computational performance The computational performance is measured by the num-
ber of frames processed per second (Hz). The hardware used for this test is an Intel
Core i7-7700K at 4.2GHz with 32GB of RAM.

6.2.2. Tests

Real images

The detection algorithm has been tested on a large number of real images, such as the
image in Figure 6.1. The range of images vary in many ways, such as:

81



CHAPTER 6. EXPERIMENTATION AND TESTING

• Number of devices

• Distance between camera and devices

• Light conditions

• Colors on the screens of the devices

• Distance between devices

As can be seen in Figure 6.1, the detection algorithm is reasonably accurate and precise.
The factor that has the most significant on the detection algorithm is the amount of
surrounding light. Some light can be accounted for by tweaking the threshold value, but
the detection algorithm does not work well in broad daylight.

Figure 6.1.: Detection at long range with many devices

Captured images

The detection algorithm has been tested on a number of frames from recordings made
during real tests and experiments. As with the tests in subsection 6.2.2, these tests indi-
cate that the algorithm is susceptible to surrounding light, and particularly other direct
sources of light or high-intensity reflections. This, however, is expected, s algorithm does
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not utilize any other information than the color intensity to detect objects. The image
in Figure 6.2 is an example of an image that has been used for these types of tests.

Figure 6.2.: Detection and tracking of real device at close range in low light environment

Generated images

Generated images are used for testing the precision of the algorithm. The precision
error for a single object is calculated as the Euclidean distance between the position of
an actual object and the nearest detected position.

errori = ‖d(gti,pi)‖ = e(i)

where g is the ground truth position and p is the detected position for an object i.

The average error for a frame f is then computed

avgerrorf =

∑nf
i=0 e(i)

nf
= fe(f)

where nf is the total number of detections in the frame.

Finally, the average error over a collection of images c is then calculated:

avg error for collection =

∑nc
i=0 fe(i)

nc

where nc is the total number of frames in the collection.

83



CHAPTER 6. EXPERIMENTATION AND TESTING

Figure 6.3 shows the results of plotting the average error for a collection of images against
the average size of the devices in the collection.

In practice, the size of actual devices is usually in the range of five to 15 pixels. It shows
that error distance increases as the size of the devices increases when testing with 100
detectable objects.

Figure 6.3.: Distance from actual object to detected object (precision error) plotted
against the object size in pixels (size), with 100 objects.

Sequences of generated images have also been used to calculate the precision of the
detection algorithm after tracking.

This is done by comparing the position of actual objects to the detected position for the
actual track, instead of the nearest detected object.

Also, instead of summing the error for all detections in a frame and dividing by the
number of frames, we sum the error for all detections for a given track and divide by
the number of detections for the specific track.

That is, for a track t, the total error is calculated as

errort =

∑nt
i=0 e(i)

nt
= te(t)
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where nt is the total number of detections for the track. Next, the total error for a
sequence s is calculated by summing the error for all tracks and dividing by the total
number of detected tracks. When ns is the total number of tracks in a sequence, the
average error of all tracks in the sequence becomes

avgerror for sequence =

∑ns
i=0 te(i)

ns

Figure 6.4 shows the average error for a sequence plotted against the amount of random
movement in pixels. All sequences have 400 objects at a random size between five and
ten pixels. In practice, the amount of random movement is usually in the range between
ten and 30 pixels for the conducted experiments.

Figure 6.4.: Euclidean distance (precision error) plotted against the amount of move-
ment. (400 objects with a random size between five and ten.)

Performance

Detection performance has been tested by repeatedly performing detections on a se-
quence of 500 frames using an ever decreasing threshold value in steps of 1, such that
the number of detections increases for each consecutive run. In Figure 6.5, the aver-
age number of frames processed per second (HZ) has been plotted against the average
number of detections in each frame.
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As can be seen from the figure, the performance of the algorithm decreases as the
number of objects in each frame increases. However, it is still able to process well over
1000 frames per second with 250 devices in each frame on average.

Figure 6.5.: Frames processed per second (Hz) plotted against avg. number of devices
in each frame.

6.2.3. Discussion

The results from the detection tests indicate that a manual threshold works well, but
requires some adjustments according to the environment. A reasonable default value
is 200 for a medium sized venue with some stage lighting. If the venue is large or has
a lot of indoor lighting, the value must likely be reduced in order to avoid too many
false negatives. This will however also increase the number of false positives, and very
bright venues will have a significant negative impact on the performance of the detection
algorithm. The threshold value should be increased if the venue is dark, as this provides
a significant improvement to the number of false negatives and false positives.

The computational performance of the detection algorithm is directly impacted by the
amount of participating devices but is able to process over 1000 frames per second with
250 devices. This should be more than enough for any scenario the system is intended
for.
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The detection algorithm is not directly impacted by the amount of participating devices
in terms of detection performance. However, it is not able to separate two devices that
are very close, which is a likely side effect when introducing more devices and will detect
only one of those devices.

The precision of the algorithm is excellent as long as it is able to separate each device
from the others. If it can distinguish between objects correctly, the distance between the
actual and detected object is marginal. However, when multiple objects are detected as
a single object, the precision decreases. This effect scales with the size of the detected
objects, because the size affects the distance from the centroid of the object to the
centroid of the union of two objects.

6.3. Tracking

The tracking tests consist of a variety of different videos, which can be categorized as
follows:

• Real world videos of people using their smartphones at events

• Generated videos with varying amount of devices and parameters

• Real captures of mobile devices executing the initialization sequence

The real world videos do not have a ground truth to compare the results against, so
the tests have to be examined and evaluated visually. The tracking tests support com-
prehensive visual debugging tools, which will display all new, lost and currently tracked
devices, as well as many other features such as the current search radius.

The generated videos and real captures have been stored along with the original se-
quences that were used at the time, as well as time stamps. In addition, the generated
videos include the actual positions of all devices in all frames, which can be compared
against the detected and associated positions.

6.3.1. Metrics

Accuracy Unlike the accuracy metrics for detection, accuracy metrics for tracking can
still provide value even if they are collected from generated tests. Because the tracking
algorithm is more complex than the detection algorithm, the randomness introduced by
the video generator will significantly impact the result.
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MOTA is by far the most popular metric for accuracy for multiple object tracking
approaches. MOTA is calculated as

MOTA = 1−
∑

t(mt + fpt + mmet)∑
t gt

where mt, fpt ,and mmet are the number of misses, of false positives, and of mismatches,
respectively, for time t. It can be seen as a combination of three ratios; the ratio of misses
in the sequence, the ratio of false positives and the ratio of mismatches [6]. Note that
MOTA can also be negative in cases where the number of errors made by the tracker
exceeds the number of all objects in the scene.

Metrics for track precision and recall are also calculated as follows.

Precision measures how many of the hypothesis tracks are correct, and is calculated as

Precision =
#GT

#HT

where #GT is the number of ground-truth tracks and #HT is the number of hypothesis
tracks.

Recall measures how many of the ground-truth tracks that were covered by a hypothesis,
and is calculated as

Recall =
#TGT

#GT

where #TGT is the number of correctly tracked ground truths and #GT is the number
of ground-truths.

Precision MOTP is the most common metric for tracking precision, and measures the
overlap in the estimated position for matched object-hypothesis, averaged by the total
amount of matches made.

”It shows the ability of the tracker to estimate precise object positions, independent
of its skill at recognizing object configurations, keeping consistent trajectories and so
forth.” [6]

MOTP is calculated as follows:

MOTP =

∑
i,t d

t
i∑

t ct
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where dti is the overlap in positions between a hypothesis i and its corresponding ground-
truth at time t, and ct is the number of matches at time t.

Completeness Measures for completeness have not been included in these tests, due
to how the algorithm works. All objects that are detected are also covered by tracks,
which means that the metrics would merely be another measure for detection, which is
already covered.

Robustness Measures for robustness have not been included in these tests. This is
due to the unique behavior related to occlusion for this algorithm, such that existing
measures are not applicable.

Computational performance The computational performance is measured as the num-
ber of frames processed per second (Hz), excluding the detector. The hardware used for
this test is an Intel Core i7-7700K at 4.2GHz with 32GB of RAM.

6.3.2. Tests

Real video

The tracking algorithm is able to track devices in recordings from real events reliably.
It is not possible to utilize any metrics or measures for these types of videos without
manually creating ground truths, so these tests have been evaluated visually. Figure 6.6
shows an example of the tracking algorithm as it is tracking devices in a video. Cyan
circles indicate active tracks while green circled indicate newly discovered tracks. Red
circles indicate lost tracks.

As can be seen in Figure 6.6, the algorithm is able to track the devices reasonably
accurately. Temporarily occluded objects will be re-associated with its existing track if
it re-appears within the search radius and also within a given time frame for the track.
If it does not, it is considered lost. This might not make sense when doing general
tracking such as in the figure, but for Crowdstream it is not possible to associate the
device with a sequence if it has been occluded during for more than a defined number
of unit intervals. Therefore, such tracks are discarded immediately when detected.
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Figure 6.6.: Tracking in real video recording. Copyright belongs to GettyImages.

Captured video

The tests using captured video as input are actually re-runs of previously conducted
experiments and real-world tests, where the recording and associated metadata has been
stored for reuse. The test framework makes it possible to recreate and replay the test
scenario exactly as it was executed at the time it was recorded. This data includes
the time stamp of each frame as well as the actual sequences that were generated and
broadcast.

Figure 6.2 is a frame extracted from a video that has been used in these tests. These
videos could be manually inspected frame by frame in order to annotate them with
additional data such as the actual device positions and symbols, in order to collect and
calculate more advanced metrics. This has not been possible due to time restrictions,
and it is therefore not possible to calculate any meaningful metrics for these tests.

However, they still provide value as these tests can assert whether the algorithm is able
to correctly track and position the devices after making changes to the implementation.

Generated video

As previously mentioned, generated videos are annotated with ground truths provided
by the video generator. This enables various metrics to be calculated, which can be seen
in Table 6.2.
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The tests have been generated with moderate movement between 0 and 3 pixels per
frame and a maximum of 20 pixels from the origin point. This allows some overlap of
devices as the number of devices passes approximately 200 in total. The tests also have
a randomized sequence start delay for each device of one second, and a random color
intensity between 190 and 250. The threshold is 200, such that some false negatives are
produced in order to more closely simulate a real scenario.

The columns in the table are as follows; Number of devices, ground-truths, false positives,
misses, mismatches, MOTA, correspondences, overlap, MOTP, precision and recall.

GT FP Miss MM MOTA Corr Overlap MOTP Prec Rec

25 2472 229 91 87 0.83 2381 2336 0.98 0.45 1

100 9780 870 341 491 0.82 9439 8955 0.94 0.56 1

225 21864 2367 925 1092 0.79 20939 19675 0.93 0.51 1

400 39378 4109 1866 1889 0.80 37512 35261 0.93 0.54 1

625 61692 7096 3933 3087 0.77 57759 54083 0.93 0.53 1

900 88782 11385 8779 4535 0.72 800003 74626 0.93 0.57 1

Table 6.2.: Tracking results for generated tests

The algorithm produces a lot of false positives, which significantly impacts the preci-
sion. However, false positives are pruned when the tracks are compared against valid
sequences, and therefore has almost no impact on the performance of the system. The
most important metrics are recall and the number of mismatches. MOTA is less valuable
as it includes the number of false positives, which are reliably pruned at a later stage.

The results for MOTP indicate that the algorithm detects almost the precise location of
the objects, which is expected due to the nature of the threshold detection approach.

Performance

The computational performance of the tracking algorithm has been tested by execut-
ing the tracking algorithm repeatedly on a single video, while decreasing the detection
threshold value by five between each run. The video has been generated such that more
devices are detected for each decrease in the threshold value. The performance timing of
algorithm does not include the detection phase. The results can be seen in Figure 6.7.

The tracker generally performs well terms of computational efficiency and is able to
process well over 100 frames per second while tracking over 700 targets. The performance
drops drastically from 0 to 100 devices, which is likely due to the increased overhead
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Figure 6.7.: Frames processed per second (Hz) plotted against the number of tracks

of creating the K-D trees without performing a significant amount of look-ups for each
tree.

However, as the number of tracks increases further this initial overhead is marginalized by
the time spent on processing and look-ups of the nearest neighbors, such that additional
tracks have less impact on the overall performance. Without a K-D tree or similar
implementation, the processing time would scale exponentially with the number of tracks.

6.3.3. Discussion

The results of the tracking tests indicate that, besides the performance of the detection
algorithm, the amount of movement has the most significant impact on the ability to
correctly track devices.

This is closely related to the tracking parameters for max search radius and search radius
expansion rate, which control the search radius of the algorithm as it attempts to relocate
a track after it has been occluded. As the average amount of movement increases, the
values of these parameters must increase in order to allow the algorithm to associate the
tracks once the devices re-appear correctly. However, doing so also increases the chances
that a track will incorrectly be associated with another nearby device.
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Values for these parameters must be carefully selected such that it minimizes the amount
of incorrectly associated devices, while still allowing some random movement. Setting
the value too low is preferable to setting it too high, as that will produce only a few
false negatives for devices that are moving excessively, without affecting other devices.
Setting the value too high will cause incorrect associations between all nearby devices
and can cause all devices to be tracked incorrectly.

The tracking algorithm works well when there is little to moderate movement and not
too many overlapping devices. It is often able to correctly track all devices in generated
tests with roughly 1000 devices and moderate movement.

It is also able to correctly track and associate devices in real-world tests, which can be
seen in Figure 6.8. This is a very bright environment which includes false positives, but
it is still able to track both devices correctly.

The precision of the tracking algorithm depends on the results of object detection. The
amount of movement, which can cause devices to overlap, and the size of the detected
objects, are the two most significant factors for precision.

6.4. Real world experiments

6.4.1. Setup

The test plan in appendix A describes a number of tests that were planned. Only
the tests listed under Device Positioning have been conducted. The client pointed out
that usability and performance are not important, and these tests were therefore not
prioritized.

A number of small-scale tests and experiments were executed in order to test the device
positioning functionality, using combinations of the following:

• Stationary devices The devices are statically placed near the ground

• Low movement The devices are held and moved slowly within a range of 1 meter

• Moderate movement The devices are held and moved moderately fast within a
range of 1 meter

• High movement Devices are held and moved fast within a full arms length,
roughly 2 meters
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• Low light conditions No direct light sources or sunlight

• Moderate light conditions Some sunlight, no direct light

• High light conditions Daylight and direct light from roof lighting

• Short distance Devices placed approximately 1 meter from the camera

• Medium distance Devices placed approximately 5 meters from the camera

• Long distance Devices placed approximately 10 meters from the camera

• Partial short-term obstruction Device is partially obstructed for 0.5 seconds

• Complete short-term obstruction Device is completely obstructed for 0.5 sec-
onds

• Partial long-term obstruction Device is partially obstructed for 2 seconds

• Complete long-term obstruction Device is completely obstructed for 2 seconds

The tracking, detection and system parameters have been constant for all tests.

6.4.2. Metrics

In order to measure the effects the various parameters have on the algorithm, some
key metrics have been chosen for evaluation. These experiments are not annotated on a
frame-per-frame basis, so metrics for detections in a frame cannot be utilized. Therefore,
all metrics described here relate to successfully mapped tracks.

• True Positives The total number of True Positive (TP)

• False Positives The total number of False Positive (FP)

• False Negatives The total number of False Negative (FN)

• Precision Ratio of true positives to number of detected tracks. (TP/(TP +FP ))

• Recall Ratio of correctly detected tracks to total number of ground truth tracks.
(TP/GT )
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6.4.3. Discussion

The results of the tests are available in appendix B. The results of the obstruction tests
were all negative, and are therefore not included in the table. Because the devices are
signaling roughly five signals per second, any obstruction that lasts as long or longer
than the unit interval of 0.2 seconds will cause the algorithm to fail.

There are however some exciting results from the other tests that could help guide further
development. First of all, it is worth noting how Precision has little or no impact on the
overall performance of the system. Intuitively this makes sense, because false-positive
tracks are not successfully mapped to devices because the resulting sequence is not
recognized.

Recall carries more value, as the system must be able to track the device in order to
attempt to map the sequence.

The system performs well with no or low movement, as well as low and moderate light
conditions. However, bright light at close range with low movement causes the algorithm
to fail. It was discovered that the detection algorithm is very susceptible to reflections
of light at close range, especially on devices where the frame is white or metal.

This is not an issue as the distance increases because the intensity of the reflection is
reduced, and the frame is no longer detected as an object. This effect also has no impact
during stationary tests, because there are no ID switches since the device itself is always
its nearest neighbor. But once movement is introduced, there are ID switches between
the actual device and the reflection from its frame, causing the algorithm to fail.

Depending on the intensity of the reflection, the issue can be mitigated by increasing
the threshold, as long as the intensity of the screen is higher than that of the reflection
by some margin.

Figure 6.8 shows that the detection algorithm is able to detect the devices during the
initialization phase in very bright conditions with no movement, but also includes some
false positives on the frame of one device. Once movement is introduced, this causes the
algorithm to fail for that particular device.

This effect is magnified by increased movement. Moderate movement combined with
bright conditions also causes issues, because the detection algorithm detects reflections
and surrounding items as objects, causing ID switches between them and the device.
The system fails entirely during high movement as it was not configured to handle such
cases. This could be remedied by increasing the nearest neighbor search distance, but
that would introduce other errors in practical use where there are more devices and less
distance between them.
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Figure 6.8.: Detection and tracking using real devices in bright environment.

6.5. Other tests

6.5.1. Positioning and streaming

Because positioning depends on the sequence being displayed, it is not possible to use
real-world videos from other events to test this part of the system. The tests, therefore,
rely solely on a set of generated videos and recordings of actual devices during the
initialization phase.

The tests also assert that the devices are mapped to the correct positions, and that the
mapping from the input content onto each device is correct.

Once devices have been detected and correctly tracked, it is relatively trivial to map the
IP-address of a device to a relative position in the venue. This algorithm works well and
is always able to associate the IP with a location if the device has been tracked correctly.
It is also able to map the input image or video to the correct devices in the venue, and
correctly handles differences in resolution.

An example of such tests asserts that the colors from a low-resolution image, shown in
Figure 6.9, maps correctly to a set of devices that have been generated, recorded and
processed using a resolution of 1080x720 pixels.

6.5.2. System and integration tests

There are no completely automated system tests, but through the use of the mock classes
described above it is possible to start and run a real server in a completely or partly
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Figure 6.9.: 400x400 pixel image used to verify that colors are mapped correctly to de-
vices.

simulated environment. This allows complete testing of the protocol, the system and
the integration between the admin client, the server, and mobile clients.
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7. Conclusions

This chapter provides a brief summary of the work and results of this project. First,
section 7.1 provides a brief summary of the background, research, and objectives of the
project. Next, section 7.2 presents the most significant results, and discusses them in
relation to the research questions defined in section 1.2. Then, section 7.3 contains an
evaluation of the research and project as a whole, as well as an evaluation of some of the
decisions that were made and approaches that were used. Finally, section 7.4 provides
a discussion of the results and contributions of the project in a broader perspective.

7.1. Summary

The background for the research and system presented in this document was an in-
quiry from Zedge, a company specializing in mobile applications. Over the recent years,
light-emitting wristbands and other wearable items have become increasingly popular
at concerts and other large events, indicating that there is a significant market for such
technologies.

Zedge wanted to know whether it was feasible to utilize smartphone devices to add
positional awareness to such systems, in order to create better and more sophisticated
light shows than what is currently possible with existing technologies. Specifically, they
wanted to find out if a solution that utilizes a simple camera in some way was a feasible
approach to achieve adequate positional precision.

A review of existing literature and technologies found that there are no existing methods
or research on attempting to position devices of large crowds using a camera. There exists
a large body of research on indoor positioning systems in general, and the field is still
actively researched. There is also a large variety of existing technologies for this purpose,
but no single solution works well under all circumstances.

There is, however, one particularly important issue with all existing research and tech-
nologies, which is the fact that all current solutions are highly susceptible to interference
from the human body. This poses a significant problem for the scenario described by
Zedge as this will by its definition include a large number of people, and renders the
existing solutions unusable without modification.
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Searching for existing solutions, regardless of technology, revealed a few systems that
attempt to achieve a similar result to what was described by the client. However, only
two solutions provide positional awareness, and both are very limited. One only does so
under particular and limited circumstances and requires manual input of position, the
other requires significant setup costs and only provides coarse segmentation of sections.

7.2. Results

This section presents a brief summary of the objectives and the work that has been
done. It also discusses the results in the context of the research questions defined in
section 1.2.

7.2.1. Objective

The objective of this research was to determine whether it was at all possible to locate
devices at an indoor arena using a solution based on a stage-mounted camera, and if the
solution has the adequate precision for it to be used to orchestrate light shows using the
devices. The scenario described by the client was defined in section 1.2 as:

• Indoor concert hall or arena

• Crowd of 100 - 2500 people

• Low or no-light conditions

• Stage-mounted camera

• The participants have the required app pre-installed

• The participants are willing to participate in a setup procedure for a short duration,
announced over speakers

• One-time positioning is adequate, and the ability to continuously track locations
is not required

Furthermore, the following research questions were defined:

• RQ-1: Is it possible to locate devices at an indoor arena using a stage-mounted
camera, for the purpose of displaying light-shows across the devices?
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• RQ-1.1: Can a camera and a unique discrete-time light signal sent from each device
be utilized to uniquely identify the position of the devices under these conditions?

• RQ-1.2: How does the camera hardware specifications affect the performance of
the system, and what are the minimum requirements for the camera?

• RQ-2: Which methods and techniques are most appropriate for object detection
and object tracking under these conditions?

7.2.2. Research questions

RQ1

The client has stated that they are very satisfied with the research, and especially the
resulting outcome. They were hoping to gain some insight into whether the camera-
based approach was feasible and if so – how. This research question has been covered
in-depth in chapter 4, which provides a detailed description of one possible approach.
Combined with the results of chapter 5 and chapter 6 it is fair to say that a camera-based
solution for the described scenario is a feasible approach worth investigating further.

RQ1.1

Referring back to section 4.1 and the results of chapter 5 and chapter 6, it is likely that
a unique discrete-time light signal sent from the devices is one possible approach for
detecting and identifying devices using a camera.

RQ1.2

As described in chapter 4, the camera hardware has a significant impact on the system.
Some of the limitations imposed by the hardware can be accounted for to a certain degree,
such as the variable fps and lack of low-level camera control. However, as described in
chapter 6, there are some absolute minimum requirements for the camera that must be
met for the system to function reliably.

The camera must be able to record with a frame rate that is minimum three times
the symbol rate in order to provide enough samples for reliable detection and tracking.
The symbol rate can, in theory, be any value, but in practice, a minimum value of 5
is recommended to improve the participant experience. A lower value requires a longer
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initialization phase, which in turn also increases the chance of detection or tracking
failures. This imposes a minimum requirement of roughly 15 frames per second on the
camera, which is achievable even with low-end web cameras.

The resolution of the camera has less impact on the result, slightly depending on the
distance from the crowd, given that it is above some undefined minimum. Realistically,
any modern camera will have adequate resolution for small venues; larger venues might
benefit from at least 1080x720 resolution.

RQ2

Reviewing the literature for object detection (chapter 2) and object tracking (chapter 3)
revealed that most existing solutions are not suitable for detection and tracking under
the conditions defined by the client. However, some of the basic components described
in the literature are still applicable and can be utilized with some modifications, as
described in chapter 4.

7.3. Evaluation

This section provides an evaluation of the progress and the different phases of the project.
Is also includes a short evaluation of the chosen technologies and the impact they had
on the project.

7.3.1. Project phases

Research review

The initial phase of the project consisted mostly of literature reviews, and has resulted in
a comprehensive review of existing and relevant research in object detection and object
tracking. The results of this review can be seen in chapter 2 and chapter 3, respectively.

This phase was very long and thorough, perhaps even too much so. The majority of
the literature that was reviewed was not applicable to the project, mostly due to the
nature of the objects and the environment they will be detected and tracked in. The
basic methods for image segmentation and the components of multiple object tracking
have been instrumental, but the state-of-the-art feature descriptors are not applicable
without significant modifications.

101



CHAPTER 7. CONCLUSIONS

This phase could possibly have been shorter in order to leave more time for the other
phases.

Develop positioning approach

The next phase consisted of a combination of further research and experimental proto-
typing, in order to determine if the suggested approach was actually feasible at all. This
phase resulted in some very promising results, with preliminary tests suggesting that the
approach was viable. The results of this phase are described in chapter 4.

The first steps involved finding suitable photos and videos of people holding their devices
at large events on the internet. These were then used to create necessary components
for object detection and object tracking, which was able to detect and to some degree
track these devices reliably.

The next steps included creating a basic sequence and video generator which could
produce some simple videos with stationary, flashing dots, mimicking devices during the
initialization phase.

Then began the process of sampling the video to track the lights across multiple frames,
in order to detect the sequences they were emitting. Once the underlying algorithm was
working for stationary targets, emitting lights at pre-defined intervals, the test generator
was layered with additional complexity. This included movement, randomized sizes,
randomized intensities, randomized starts and more. For each layer that was added, the
algorithm was improved to handle the newly introduced element.

This phase was very experimental in nature, and involved a lot of trials an error. It
was by far the most complex and demanding part of the project, but also the most
interesting. It should possibly have started earlier than it did, on account of a shorter
research phase.

Once the algorithm could reliably track roughly 90% of the devices in a simulated test
with 2500 units and moderate movement, it was time to start looking at the other factors
of the system.

Implement prototype

After some preliminary testing using the above-mentioned approach, the next phase
consisted mostly of software implementation and testing. This resulted in a complete,
fully functional system based on a client/server architecture. The system includes a
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server, an Android client application, two administrator clients and a custom protocol
for TCP/IP based communication between the above components. It also includes a
comprehensive testing framework with complete support for simulated environments
and a desktop version of the client application. The system has been described in detail
in chapter 5.

This phase was not as complicated as the previous phase, but it was very time-consuming.
Most of the work, except for the positioning approach, has been researched and imple-
mented many times before. However, it still requires a lot of thought and effort to design
and implement a server, a mobile client, administrator clients and a custom TCP/IP
protocol for communication between all the above-mentioned components.

The required amount of thought and planning was magnified by the fact that it is difficult
and very time consuming to perform real, physical tests. This made it very important to
develop a good framework for testing early on, which could be used to test isolated parts
or the system as a whole. However, this also imposes some requirements and complexity
onto the prototype itself, as the test framework must be able to isolate test fixtures or
simulate components without affecting other parts of the system.

The implementation phase was a continuous cycle of developing components for the
system, developing testing features to exercise the component, and then refactoring the
system to allow seamless execution of the tests.

The testing framework proved immensely useful, and made it extremely simple and
quick to test different algorithms and changes in the system. The ability to quickly test
and isolate various components of the system has been invaluable and integral to the
development of the system. It has allowed rapid development and extensive testing of
the communication between the server and devices, without having to use actual devices
which can be very time consuming to work with. Using the framework alone, it was
possible to develop a prototype that required very few changes once testing with real
devices began.

This phase was very time consuming, but the effort was required in order to deliver a
prototype that would be of use to the client, and to be able to test the system in a
real-world scenario.

Real-world tests, experiments, and evaluation

Once the system was functional, some small-scale real-world tests and experiments were
performed. The first few experiments were done early, using only a single device. These
recordings were then stored, along with all relevant meta-data, so that they could be
used as input to the test framework later. This allowed the system to easily be tested
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against real recordings without having to go through the whole setup with physical
devices again.

These initial experiments revealed some unforeseen issues, that were not possible to
detect during the simulated test. Solving the problems required some changes in the
implementation of the server and mobile client. The exact nature of the problems was
unforeseen, but the fact that there would be some issues was expected. The prototype
was still surprisingly close to being functional considering it had only been tested against
generated videos in simulated environments during development.

The most significant difference was the variable frame rate of the camera, which required
the system to gather some additional metadata during the recording. The other issue
was related to the mobile client, and how unreliable the screen refresh rate is. Both
of these issues were solved, however, and required few or no modifications to the core
algorithm.

Once the system was able to detect and stream content to a few devices reliably, some
larger scale tests and experiments were conducted.

It would have been advantageous to arrange and perform a large-scale test, not only
to test the prototype itself, but also to test the concept and the idea. It would be
interesting to find out what potential participants think of the concept, the length of the
initialization phase, their willingness to participate and so on. However, in agreement
with the client, most of the user-oriented features and interaction has been left out in the
prototype. The focus of the project was to find out whether a solution was technically
possible, and any future user research, user interface and user interaction are left to
Zedge if they find that the concept is worth investigating further.

7.3.2. Technology

Programming language

The choice of programming language, Python 3.6, was mostly based on objective criteria
such as the excellent support for image processing, networking, and rapid development.
The fact that it is a high-level weakly typed language with a completely dynamic type
system makes it extremely easy to iterate and make changes quickly. This likely saved
a lot of time, especially during the initial stages of development, as it allowed rapid
changed to some parts of the system without having to worry about compilation issues
in other parts that were no longer important.

The nature of the type system also made it a lot easier to design and create the test
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framework, as it allows injecting, wrapping or replacing any function, method or property
from anywhere. In a statically typed language, this would require a lot more thought,
effort, and ceremony in order to create the necessary interfaces and extension points.

Python also makes it very easy to distribute and deploy the server software, both stan-
dalone and through docker, as it is supported on a large variety of platforms and has
sophisticated installation and setup tools.

However, as the system matured and the rate of significant changes decreased, some of
the disadvantages of a dynamically typed language slowly began to surface. The lack
of static types makes it more difficult to refactor without breaking anything, and also
decreases the correctness of refactoring tools. A newly introduced feature, type hints1,
does help alleviate this but it is rather verbose.

Another problem surfaced when attempting to utilize concurrency and parallel execution,
as the concurrency model in Python is somewhat complicated. It offers a lot of different
tools for concurrency, and requires selecting the right tool for the job. That is not to say
that the concurrency model is terrible, but it certainly is a bit complicated and requires
a lot of research and effort to work with.

Using Python for prototyping and experimental software development has been a success,
but it required some adjustment and time to get used to and fully utilize the power of
its dynamic nature. It is recommended for future development and prototyping, but
perhaps other options should be considered for a production system.

Image and video processing

OpenCV (Open Source Computer Vision Library) is one of the most popular computer
vision libraries available, and it has a mature Python interface.

The library has more than 2500 optimized algorithms, which includes a com-
prehensive set of both classic and state-of-the-art computer vision and ma-
chine learning algorithms.

It is written in C++, and uses the excellent NumPy package, which offers highly opti-
mized matrix operations among other things. Together, these libraries provide excellent
computer vision capabilities and performance, interfacing directly with highly optimized
CUDA2, OpenCL3 and C/C++ functions.

1https://docs.python.org/3/library/typing.html
2https://docs.nvidia.com/cuda/
3https://www.khronos.org/opencl/
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OpenCV has proven to be an excellent library during the development of the prototype,
and is the recommended choice for further development.

Networking

Twisted4 is an excellent “event-driven networking engine written in Python and licensed
under the open source MIT License“. It makes it fairly easy to implement custom
network applications and protocols, while still offering all the power of a low-level net-
working engine if needed. It is able to handle at least 2500 request per second with
2000 concurrent connections5, which is more than what is required for the Crowdstream
system.

While the essential features are simple to use, the low-level network features are still
complicated. Implementation of all the various clients, two administrator clients and
one basic client for testing, proved to be harder than expected.

Summary

The most compelling reasons for continuing with Python are the excellent libraries and
the simple deployment to a large variety of platforms. However, OpenCV is available
for many other languages, and most languages offer good networking libraries with ca-
pabilities similar to Twisted.

7.4. Discussion

The approach used in this project has been a combination of literature reviews and
experimental software design. In this thesis, I propose a new and novel approach for
indoor positioning systems, and also present a basic prototype system that utilizes said
approach.

The system has proven reliable in small-scale tests and large-scale simulations. However,
it has not been tested in a real, practical scenario at an indoor venue with hundreds of
participants. It is unlikely that the system will fail to function entirely, but depending
on the surrounding environment the reliability of the detection, tracking and positioning
algorithms could be severely impacted.

4https://twistedmatrix.com/trac/
5https://programmingzen.com/benchmarking-tornado-vs-twisted-web-vs-tornado-on-twisted/
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The most significant threat is caused by surrounding light sources causing reflections in
the device frames themselves to be detected and mistaken for devices. Because of the
proximity between the false positives and the devices, the system will not be able to
separate the two, and the device will not be detected correctly. However, such high-
intensity reflections have only been observed when the devices are in close proximity to
the camera, and the device frame is exposed to direct light.

In general, the system does not seem to be impacted by false positive detections as long
as these detections are not within the search radius of an actual device. It is however
impacted by movements in the crowd, and large movements will cause the respective
devices to fail. However, as the participants will be asked to hold their devices still
during this short period, this will hopefully not pose a significant problem.

As mentioned in section 1.6, the system and particularly the detection and tracking
components, have been developed for a particular scenario. It is unlikely that this
project will contribute anything to the general problem of multiple-object tracking. The
most significant contribution is in the area of Indoor Positioning Systems, as it seems like
this approach has not been used or described before. The general approach can easily
be applied in other areas which require indoor positioning, as long as the underlying
conditions described in section 7.4 hold true.

The experimental results and the implemented prototype indicates that the suggested
approach, which utilizes a camera to detect devices in a crowd, is able to produce reliable
results for the intended scenario.
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8. Future

This section provides some recommendations for possible extensions, improvements, and
further research. Section 8.1 contains an overview of the current state of the research
and the prototype, while section 8.2 provides some ideas, pointer, and suggestions for
future development, research, and improvements for the system and the prototype.

8.1. Current state

8.1.1. Research

The preliminary research was thorough, and there does not seem to be any existing
research that directly relates to this project. However, the possibility of using colors
instead of the current on/off scheme was not tested thoroughly enough, and should be
revisited.

8.1.2. Server

The current state of prototype bears clear indications that it is still a prototype. It is
lacking in documentation, and could use some refactoring of the code. Overall, however,
the quality of the code is good, and the separation of concerns between the various
components is also good.

The test framework is working well, but could also use some refactoring and documen-
tation. It could also be extended to generate even more realistic tests, which account,
e.g., perspective distortion, motion patterns and colored symbols.

Detection

The implementation details of the object detection algorithm are hidden behind a well-
defined interface, and can easily be replaced or modified if required.
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Tracking

The tracking algorithm is also hidden behind a well-defined interface, but it should
perhaps be integrated more with the rest of the server implementation to utilize more
domain knowledge. This includes knowledge about the sequences in particular. Im-
provements in the tracking component would likely provide the most short-term benefit
to the system, as described in section 8.2.

8.1.3. Mobile client

The implementation of the mobile client is very rudimentary. It provides the required
functionality to function properly, but does not offer a very good user experience. The
implementation of the network protocol is also very basic, and should be refactored or
rewritten to be more robust. However, the implementation of the surface view, which
displays the colors, and the logic which synchronizes the display of the sequences, is
working well.

8.1.4. Administrator clients

The two administrator clients work well, but should likely be extended to provide ad-
ditional functionality, e.g., the ability to manually disconnect devices or retrieve more
information about the current state of the server.

8.1.5. Protocol

The protocol functions well enough to serve a few hundred clients, but a linefeed protocol
might be unnecessarily verbose for a production system. It could be replaced with a much
more compact protocol based on raw bytes, in particular for streaming data. The color
values could easily be compressed to 3 bytes, RGB. The streaming protocol could also
be replaced with a UDP protocol as it does not need the extra features, and overhead,
provided by TCP.
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8.2. Future Development

8.2.1. Multiple cameras

Occlusion and articulated motion are two of the most detrimental factors of the current
system. One possible solution to overcome this problem could be to utilize multiple
cameras mounted at different positions. This does add considerable complexity, but
has shown noticeable improvements over single camera approaches for general object
tracking[14].

8.2.2. Perspective distortion

Because the camera will be mounted near or above the stage, at some distance from the
crowd and at an angle, there will be perspective distortion. Because of this distortion, as
seen in Figure 8.1, participants closer to the camera require a large search distance than
participants farther away, as their movement will be more significant in the captured
video. It also affects the mapping of content onto the participant devices, which should
be corrected for this distortion.

Figure 8.1.: Example of perspective distortion
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8.2.3. Interaction model

An interaction model, as mentioned in section 3.5, could increase the accuracy of the
tracking algorithm. It could, for example, include the interaction of people moving
together as a crowd, perhaps in motion with the music. It could also include devices
”bumping” off each other, modeling how the participants cannot physically occupy the
same space, and their hands or bodies are likely to bump off each other if they get too
close.

8.2.4. Inference

The current inference method utilizes a basic greedy nearest neighbor approach, and
could possibly be improved. As mentioned in section 3.8, two general approaches exist;
probabilistic inference and deterministic optimization. Methods based on Kalman filter,
Extended Kalman Filter or any of the methods based on deterministic optimization,
particularly a min-cost max-flow network, could potentially provide better results at the
cost of some complexity and speed.

8.2.5. Feature descriptors

Modern feature detection and extraction algorithms will likely introduce much complex-
ity to this prototype of Crowdstream, and given the time constraints of the project, it
is not feasible to attempt to implement any such algorithms as this point. However, it
could be considered again in the future if the performance of the current object detection
scheme proves to be insufficient.

8.2.6. Colored symbols

At the initial stages of the project, the possibility of using colored symbols instead of the
current on/off implementation, was investigated and researched. The conclusion at the
time was that it would be difficult to distinguish the different colors at longer distances,
partly based on existing images of large crowds holding their devices. However, it is
possible that careful selection of the possible color values, for example, one carefully
selected hue of red, green and blue respectively, for a total of 3 colors, could be viable.
This would most likely reduce the amount of failed tracks, as there is more information
available to the tracking algorithm which can be utilized to associate a detection to a
track.
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There are two possible approaches that utilize colors:

Assign one color to each sequence or device Using this scheme, each device would
receive a single color that should be used for the whole sequence. This would let the
tracking algorithm discard any detections that do not match the color of the existing
track.

Assign one color to each symbol In this scheme, each symbol in all the sequences
is assigned a specific color. The algorithm would then utilize its knowledge of all the
generated sequences in order to determine if a considered association would result in an
invalid sequence.

The first approach is the easiest to implement and would require very little modification
the algorithm itself. The second approach requires slightly more modification, but is still
reasonably easy to implement. The second scheme is most likely more robust, as the
first scheme would still fail when devices assigned the same color are near each other.

8.2.7. Motion model

The motion model could be improved to model the motion pattern of devices when held
by humans. There are motion bounds for the range of movement, bounded by the length
of a humans arms. The device will also most likely move more or less horizontally within
these bounds, and abruptly change directions near these bounds. This could be modeled
explicitly to increase the accuracy of the predicted position of a device.

8.2.8. Android Instant App

In order to lower the barrier for participation, it is possible to implement the Android
application as an ”Instant App”1. These applications do not require installation, and
can be launched directly from, e.g., a link. This could potentially increase the number
of participants. This application is a good candidate for an instant app as it is minimal
in size and has a limited number of screens.

1https://developer.android.com/topic/google-play-instant/
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8.2.9. General tracking

There are many general improvements that could be made to the tracking component
of the system. These include improvements to the existing algorithm, or replacing with
another algorithm altogether. Some possible alternatives are methods based on Joint
Probabilistic Data Association Filter, Kalman filters, or Multi-Hypothesis Tracking,
possibly with Murty’s K-best method.

8.2.10. Admin panel

The administrator interface leaves a lot to be desired. One possible solution is to add
an HTTP interface to the server, and build a web front-end for it. Python and Twisted
offer excellent HTTP support, and it would be fairly easy to implement the API for it.

8.2.11. Security

The security of the system has not been prioritized, but should be improved before
using it in production. The administrator password is sent in clear-text on every login
or request in the case of Admin client and Admin CLI, respectively. If an HTTP interface
as suggested above is created, one possible solution would be to use standard HTTPS
for administrator access.
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Glossary

Bhattacharyya distance A measure of the similarity of two probability distributions.
28, 123

blob A region of an image in which some properties are constant or approximately
constant; all the points in a blob can be considered in some sense to be similar to
each other. 20, 123

centroid The arithmetic mean position of all the points in a shape. 63, 81, 87, 123

contour A curve joining all the continuous points (along the boundary), having same
color or intensity. 62, 63, 123

Euclidean distance The straight line distance between two points. 81, 123

image moment A certain particular weighted average (moment) of the image pixels’
intensities, or a function of such moments, usually chosen to have some attractive
property or interpretation. 63, 123

multimodal A continuous probability distribution with two or more modes (peaks). 15,
123

symbol A state of the communication channel that persists for a fixed period of time.
39, 66, 123

symbol rate The number of symbol changes, waveform changes, or signaling events,
across the transmission medium per time unit using a digitally modulated signal
or a line code. Also known as baud rate and modulation rate. 38, 123

tracklet A fragment of the track followed by a moving object, as constructed by an
image recognition system. 26, 123
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Glossary

unimodal A continuous probability distribution with exactly one mode (peak). 15, 123

unit interval The minimum time interval between condition changes of a data transmis-
sion signal. Also known as pulse time and symbol duration time. 38, 39, 123
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Acronyms

AGMM Adaptive Gaussian Mixture Model. 19, 123

API Application Programming Interface. 68, 123

BT Bluetooth. 1, 123

CLI Command Line Interface. 7, 51, 69, 123, 135

CLRF Carriage Return Line Feed. 51, 123

CRF Conditional Random Field. 34, 123

CSV Comma Separated Values. 52, 123

DBT Detection-Based Tracking. ix, x, 24, 25, 47, 123

DFT Detection-Free Tracking. ix, x, 24–26, 47, 123

DNCC Deep Convolutional Neural Network. 18, 123

ECC Error Correction Codes. 40, 123

FAF False Alarms per Frame. 78, 123

FAST Features from Accelerated Segment Test. 22, 123

FEC Forward Error Correction. 40, 123

FN False Negative. 94, 123

FP False Positive. 94, 123
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Acronyms

FPS Frames Per Second. 9, 38–41, 53, 68, 123

GA Genetic Algorithm. 14, 123

GMM Gaussian Mixture Model. 19, 123

GPS Global Positioning System. 1, 54, 123

GT Ground Truth. 123

IP Internet Protocol. 67, 123

IPS Indoor Positioning System. 1, 2, 7, 123

JPDAF Joint Probabilistic Data Association. 123

KDE Kernel Density Estimation. 123

LOG Laplace of Gaussian. 16, 123

MAP Maximal a Posteriori. 24, 32, 33, 123

MODA Multiple Object Detection Accuracy. 78, 123

MODP Multiple Object Detection Precision. 78, 123

MOT Multiple Object Tracking. x, 23–27, 31, 33, 34, 49, 77, 123

MOTA Multiple Object Tracking Accuracy. 79, 88, 91, 123

MOTP Multiple Object Tracking Precision. 79, 88, 91, 123

MSER Maximally Stable Extremal Region. 20, 22, 123

MTT Multiple Target Tracking. 34, 123

MWIS Maximum-weight Independent Set. 34, 123

NCC Normalized Cross Correlation. 123
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Acronyms

NN Neural Network. 14, 123

OSPA Optimal Subpattern Assignment. 79, 123

PBAS Pixel Based Adaptive Segmenter. 19, 123

PDAF Probabilistic Data Association. 123

PDE Partial Differential Equation. 21, 123

POM Probabilistic Occupancy Map. 28, 123

RFID Radio Frequency Identification. 1, 123

RGB Red Green Blue color model. 53, 123

RQ Research Question. 3, 123

SIFT Scale-Invariant Feature Transform. 20–22, 123

SOTA State of the Art. 11, 123

SURF Speeded Up Robust Features. 20–22, 123

TCP Transport Connection Protocol. 51, 123

TDE Tracking Distance Error. 79, 123

TP True Positive. 94, 123

UI User Interface. 68, 123

UWB Ultra Wide Band. 1, 123
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Test Plan for Crowdstream Server 

Purpose 
This document describes the plan for testing the prototype of the Crowdstream system. This test 
plan supports the following objectives: 
 

● Identify existing project information and the software that should be tested 
● List the recommended test requirements 
● Describe the testing methods to be employed 
● Identify the required resources and provide an estimate of the test efforts 
● List the deliverable elements of the test activities 

 

Scope 
The test plan describes the integration, usability and system tests that will be conducted on the 
crowdstream prototype. It it assumed that unit testing has already been provided through unit 
tests and simulated tests. 
The interfaces between the following components will be tested: 

● Crowdstream server 
● Crowdstream mobile app 
● Crowdstream admin CLI 

 
The most critical performance measures to test are: 

● Response time for admin CLI 
● Response time for device connections and disconnects 
● Network delay during streaming 
● App performance during streaming on older devices 

 

Tests 

Device positioning 
The system should be able to position 90% of participating devices under normal circumstances 

Objectives 
Determine how well the system can detect, track and position devices under varying conditions 
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Cases 
Stationary devices 
Low random movement 
Medium random movement 
High random movement 
Partial short-term (0.2s) obstruction of device 
Complete short-term (0.2s) obstruction of device 
Partial medium-term(2s) obstruction of device 
Complete medium-term(2s) obstruction of device 
Low light conditions 
Medium light conditions 
High light conditions 
Short distance from camera, < 5m 
Medium distance from camera, 5-10m 
Long distance from camera, > 10m 
 

Method 
A number of real devices will be placed at the floor or held by assistants in one half of a hall. A 
camera will be placed near the roof at the other end of the hall, which will be used by the system 
to record the devices. 

Analysis 
The system will be evaluated based on it’s detection performance during testing. The input from 
the camera as well as frame timing data will be stored so that it can be used for further 
evaluation, analysis and development. 

System streaming performance 
The system can successfully handle 2500 devices in simulated tests. Due to practical 
constraints it is not possible to test with 2500 real devices. 

Objective 
Determine how well the system performs during streaming with real devices. 

Cases 
Stream from video 
Stream from single image 
Stream from webcam 
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Method 
The system will be set up with roughly 10 devices. The system will then be used to stream 
different content to all devices. 

Analysis 
The output from the devices during streaming will be recorded and analysed. Should also look 
at number of dropped frames, latency and other metrics. 

Usability 
The system should be simple to set up and use for the client 

Objective 
Determine if the system can be used by someone with general technical knowledge but no 
system specific knowledge, using a written guide. 

Method 
The client will be provided with a written explanation of how to set up and use the system 

Analysis 
Feedback from the client will be reviewed. 
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B. Results from experiments
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APPENDIX B. RESULTS FROM EXPERIMENTS

Movement Light Distance GT TP FP FN Recall Precision

Stationary

Dark
Close 2 2 0 0 100% 100%
Medium 2 2 0 0 100% 100%
Far 3 3 0 0 100% 100%

Medium
Close 2 2 0 0 100% 100%
Medium 2 2 2 0 100% 50%
Far 3 3 3 0 100% 50%

Bright
Close 2 2 3 0 100% 40%
Medium 2 2 11 0 100% 15.4%
Far 3 3 16 0 100% 15.8%

Low

Dark
Close 2 2 0 0 100% 100%
Medium 2 2 0 0 100% 100%
Far 2 2 0 0 100% 100%

Medium
Close 2 2 1 0 100% 66.7%
Medium 2 2 3 0 100% 40%
Far 2 2 5 0 100% 28.6%

Bright
Close 2 1 4 1 50% 20%
Medium 2 2 11 0 100% 15.4%
Far 2 2 14 0 100% 12.5%

Moderate

Dark
Close 2 2 0 0 100% 100%
Medium 2 2 0 0 100% 100%
Far 2 2 0 0 100% 100%

Medium
Close 2 1 2 1 50% 33.3%
Medium 2 2 3 0 100% 40%
Far 2 2 5 0 100% 28.6%

Bright
Close 2 1 3 1 50% 25%
Medium 2 1 9 1 50% 10%
Far 2 0 14 2 0% 0%

High

Dark
Close 2 0 0 2 0% 0%
Medium 2 0 0 2 0% 0%
Far 2 0 0 2 0% 0%

Medium
Close 2 0 3 2 0% 0%
Medium 2 0 4 2 0% 0%
Far 2 0 7 2 0% 0%

Bright
Close 2 0 4 2 0% 0%
Medium 2 0 11 2 0% 0%
Far 2 0 17 2 0% 0%

Table B.1.: Experiment results
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C. Setup

C.1. Installation

The system offers simple installation through python pip1 or easy install2. It requires
an existing Python 3.6 environment and an internet connection, but any additional
dependencies will be downloaded and installed automatically. Using either installation
method will result in two new tools being available on the command-line:

cws This tool is the actual server, and can be used to configure and start an instance
of the server.

cws-cli This tool is the administrator CLI, which provides access to and control of an
already running server instance.

Both tools provide documentation and help regarding available commands and their
arguments.

C.2. Deployment

C.2.1. Local machine

In order to run the system on a local machine, simply install and run ‘cws‘ from the
command-line, optionally specifying a port and administrator password.

The server can then be manged by executing commands with ‘cws-cli‘ or the CLI client.

1https://pypi.org/project/pip/
2http://setuptools.readthedocs.io/en/latest/easy install.html
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C.2.2. Docker

The server comes with a complete Dockerfile, which can be used to run the server in a
Docker3 container. It it based on an existing image4 to provide OpenCV support, but
has no other dependencies.

C.2.3. Packaging

The server can be run locally from a terminal or remotely in a docker container, which
makes it easy to launch the server at remote locations closer to the venue it is intended
for.

C.3. Development

The source code for the server, test framework and admin clients can be downloaded
from:

https://github.com/ezet/crowdstream-server

The source code for the mobile application can be downloaded from:

https://github.com/ezet/crowdstream-client

3https://www.docker.com/
4https://hub.docker.com/r/jjanzic/docker-python3-opencv/
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D. Configuration

The server offers several configurable parameters, some of which are described in the
sections below.

D.1. Server Configuration

Sequence length The length of the sequence, excluding the prefix. Must be long
enough to assign each connected device a unique sequence, following the rules described
in subsection 4.1.2.

Symbol frequency The symbol frequency, symbols per second, that devices will be
asked to broadcast at. Must be minimumcapturefps/3 or less.

Camera Dimensions The resolution of the camera used for recording

Extend Capture Seconds How many additional seconds to extend to the recording
duration, to compensate for network delay

Sample rectangle size The size of each rectangle, a device, used to map the source
image onto the target devices. The average RGB value of all pixels within each rectangle
will be sent to each device.

Sequence prefix The sequence prefix that is prepended to all sequences.

Max Init Rounds The maximum number of times to run the init sequence in an attempt
to successfully map all connected devices
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APPENDIX D. CONFIGURATION

Warmup frames Number of frames used to warm up the camera. These frames will
not be included in the stored recording.

Map Visible First When true, the algorithm will attempt to associate all currently
visible devices with their tracks first, before attempting to associate previously occluded
devices. Recommended setting is ‘True‘.

Max Symbol Streak The maximum number of times a given symbol can appear in
succession in a sequence. Used to avoid long streaks of ‘0‘ or ‘1‘. A lower setting is
preferable, but drastically reduces the entropy of any given sequence length. Recom-
mended setting is ‘2‘ or ‘3‘.

Detection Threshold The global threshold value for object detection. Should be tuned
specifically for the environment and lightning conditions. A lower value will detect more
devices, but may also produce more false positives. A higher setting will produce less false
positives, but will also increase the amount of false negatives. A very dark arena can use
values closer to 200, where a bright venue should use values close to 250. Recommended
setting is 200-250.

password The administrator password

D.1.1. Location settings

position acceptance radius The radius, in gps coordinates, for which to restrict device
participation.

restrict device location Whether devices should be restricted by their location or not.

auto detect location Whether the server should attempt to auto detect its own location
or not.

longitude Manually override longitude for server position
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latitude Manually override latitude for server position

Detection parameters, detection.py

Tracking parameters, tracking.py
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