


CHAPTER 6. EXPERIMENTATION AND TESTING

not utilize any other information than the color intensity to detect objects. The image
in Figure 6.2 is an example of an image that has been used for these types of tests.

Figure 6.2.: Detection and tracking of real device at close range in low light environment

Generated images

Generated images are used for testing the precision of the algorithm. The precision
error for a single object is calculated as the Euclidean distance between the position of
an actual object and the nearest detected position.

error; = [[d(gts, ps)|| = e(i)

where g is the ground truth position and p is the detected position for an object .

The average error for a frame f is then computed

nf .
avgerrory = 2izo€l)) = fe(f)

nf
where nf is the total number of detections in the frame.

Finally, the average error over a collection of images c is then calculated:

iz fe(i)

nc

avg error for collection =

where nc is the total number of frames in the collection.
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Figure 6.3 shows the results of plotting the average error for a collection of images against
the average size of the devices in the collection.

In practice, the size of actual devices is usually in the range of five to 15 pixels. It shows
that error distance increases as the size of the devices increases when testing with 100
detectable objects.

1.6 4

1.4 4

1.2 A

1.0

0.8

0.6

precision error

0.4 4

0.2 1

0.0 4

size

Figure 6.3.: Distance from actual object to detected object (precision error) plotted
against the object size in pixels (size), with 100 objects.

Sequences of generated images have also been used to calculate the precision of the
detection algorithm after tracking.

This is done by comparing the position of actual objects to the detected position for the
actual track, instead of the nearest detected object.

Also, instead of summing the error for all detections in a frame and dividing by the
number of frames, we sum the error for all detections for a given track and divide by

the number of detections for the specific track.

That is, for a track ¢, the total error is calculated as

errory = ==—~ = te(t)
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where nt is the total number of detections for the track. Next, the total error for a
sequence s is calculated by summing the error for all tracks and dividing by the total
number of detected tracks. When ns is the total number of tracks in a sequence, the
average error of all tracks in the sequence becomes

Z?:SO te(i)

ns

avgerror for sequence =

Figure 6.4 shows the average error for a sequence plotted against the amount of random
movement in pixels. All sequences have 400 objects at a random size between five and
ten pixels. In practice, the amount of random movement is usually in the range between
ten and 30 pixels for the conducted experiments.
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Figure 6.4.: Euclidean distance (precision error) plotted against the amount of move-
ment. (400 objects with a random size between five and ten.)

Performance

Detection performance has been tested by repeatedly performing detections on a se-
quence of 500 frames using an ever decreasing threshold value in steps of 1, such that
the number of detections increases for each consecutive run. In Figure 6.5, the aver-
age number of frames processed per second (HZ) has been plotted against the average
number of detections in each frame.
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As can be seen from the figure, the performance of the algorithm decreases as the
number of objects in each frame increases. However, it is still able to process well over
1000 frames per second with 250 devices in each frame on average.
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Figure 6.5.: Frames processed per second (Hz) plotted against avg. number of devices
in each frame.

6.2.3. Discussion

The results from the detection tests indicate that a manual threshold works well, but
requires some adjustments according to the environment. A reasonable default value
is 200 for a medium sized venue with some stage lighting. If the venue is large or has
a lot of indoor lighting, the value must likely be reduced in order to avoid too many
false negatives. This will however also increase the number of false positives, and very
bright venues will have a significant negative impact on the performance of the detection
algorithm. The threshold value should be increased if the venue is dark, as this provides
a significant improvement to the number of false negatives and false positives.

The computational performance of the detection algorithm is directly impacted by the
amount of participating devices but is able to process over 1000 frames per second with
250 devices. This should be more than enough for any scenario the system is intended
for.
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The detection algorithm is not directly impacted by the amount of participating devices
in terms of detection performance. However, it is not able to separate two devices that
are very close, which is a likely side effect when introducing more devices and will detect
only one of those devices.

The precision of the algorithm is excellent as long as it is able to separate each device
from the others. If it can distinguish between objects correctly, the distance between the
actual and detected object is marginal. However, when multiple objects are detected as
a single object, the precision decreases. This effect scales with the size of the detected
objects, because the size affects the distance from the centroid of the object to the
centroid of the union of two objects.

6.3. Tracking

The tracking tests consist of a variety of different videos, which can be categorized as
follows:

e Real world videos of people using their smartphones at events
e Generated videos with varying amount of devices and parameters

e Real captures of mobile devices executing the initialization sequence

The real world videos do not have a ground truth to compare the results against, so
the tests have to be examined and evaluated visually. The tracking tests support com-
prehensive visual debugging tools, which will display all new, lost and currently tracked
devices, as well as many other features such as the current search radius.

The generated videos and real captures have been stored along with the original se-
quences that were used at the time, as well as time stamps. In addition, the generated
videos include the actual positions of all devices in all frames, which can be compared
against the detected and associated positions.

6.3.1. Metrics

Accuracy Unlike the accuracy metrics for detection, accuracy metrics for tracking can
still provide value even if they are collected from generated tests. Because the tracking
algorithm is more complex than the detection algorithm, the randomness introduced by
the video generator will significantly impact the result.
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MOTA is by far the most popular metric for accuracy for multiple object tracking
approaches. MOTA is calculated as

Yoe(my + fpe + mmey)

MOTA=1-—
Ztgt

where m¢, fp: ,and mme; are the number of misses, of false positives, and of mismatches,
respectively, for time t. It can be seen as a combination of three ratios; the ratio of misses
in the sequence, the ratio of false positives and the ratio of mismatches [6]. Note that
MOTA can also be negative in cases where the number of errors made by the tracker
exceeds the number of all objects in the scene.

Metrics for track precision and recall are also calculated as follows.

Precision measures how many of the hypothesis tracks are correct, and is calculated as

#GT

Precision = SHT

where #GT is the number of ground-truth tracks and #HT is the number of hypothesis
tracks.

Recall measures how many of the ground-truth tracks that were covered by a hypothesis,
and is calculated as

_ #TGT

- #GT

where #T'GT is the number of correctly tracked ground truths and #G7T is the number
of ground-truths.

Recall

Precision MOTP is the most common metric for tracking precision, and measures the
overlap in the estimated position for matched object-hypothesis, averaged by the total
amount of matches made.

"It shows the ability of the tracker to estimate precise object positions, independent
of its skill at recognizing object configurations, keeping consistent trajectories and so
forth.” [6]

MOTP is calculated as follows:

it di

MOTP =
Do ct
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where dﬁ is the overlap in positions between a hypothesis ¢ and its corresponding ground-
truth at time ¢, and ¢; is the number of matches at time t.

Completeness Measures for completeness have not been included in these tests, due
to how the algorithm works. All objects that are detected are also covered by tracks,
which means that the metrics would merely be another measure for detection, which is
already covered.

Robustness Measures for robustness have not been included in these tests. This is
due to the unique behavior related to occlusion for this algorithm, such that existing
measures are not applicable.

Computational performance The computational performance is measured as the num-
ber of frames processed per second (Hz), excluding the detector. The hardware used for
this test is an Intel Core i7-7700K at 4.2GHz with 32GB of RAM.

6.3.2. Tests

Real video

The tracking algorithm is able to track devices in recordings from real events reliably.
It is not possible to utilize any metrics or measures for these types of videos without
manually creating ground truths, so these tests have been evaluated visually. Figure 6.6
shows an example of the tracking algorithm as it is tracking devices in a video. Cyan
circles indicate active tracks while green circled indicate newly discovered tracks. Red
circles indicate lost tracks.

As can be seen in Figure 6.6, the algorithm is able to track the devices reasonably
accurately. Temporarily occluded objects will be re-associated with its existing track if
it re-appears within the search radius and also within a given time frame for the track.
If it does not, it is considered lost. This might not make sense when doing general
tracking such as in the figure, but for Crowdstream it is not possible to associate the
device with a sequence if it has been occluded during for more than a defined number
of unit intervals. Therefore, such tracks are discarded immediately when detected.
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Figure 6.6.: Tracking in real video recording. Copyright belongs to Gettylmages.

Captured video

The tests using captured video as input are actually re-runs of previously conducted
experiments and real-world tests, where the recording and associated metadata has been
stored for reuse. The test framework makes it possible to recreate and replay the test
scenario exactly as it was executed at the time it was recorded. This data includes
the time stamp of each frame as well as the actual sequences that were generated and
broadcast.

Figure 6.2 is a frame extracted from a video that has been used in these tests. These
videos could be manually inspected frame by frame in order to annotate them with
additional data such as the actual device positions and symbols, in order to collect and
calculate more advanced metrics. This has not been possible due to time restrictions,
and it is therefore not possible to calculate any meaningful metrics for these tests.

However, they still provide value as these tests can assert whether the algorithm is able
to correctly track and position the devices after making changes to the implementation.

Generated video

As previously mentioned, generated videos are annotated with ground truths provided
by the video generator. This enables various metrics to be calculated, which can be seen
in Table 6.2.
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The tests have been generated with moderate movement between 0 and 3 pixels per
frame and a maximum of 20 pixels from the origin point. This allows some overlap of
devices as the number of devices passes approximately 200 in total. The tests also have
a randomized sequence start delay for each device of one second, and a random color
intensity between 190 and 250. The threshold is 200, such that some false negatives are
produced in order to more closely simulate a real scenario.

The columns in the table are as follows; Number of devices, ground-truths, false positives,
misses, mismatches, MOTA, correspondences, overlap, MOTP, precision and recall.

| | GT | FP | Miss | MM | MOTA | Corr | Overlap | MOTP | Prec | Rec |
|25 [2472 [ 229 |91 |87 |083 [2381 |[2336 098 |045 |1 |
| 100 | 9780 | 870 | 341 |491 |0.82 | 9439 | 8955 | 0.94 |056 |1 |
| 225 | 21864 | 2367 | 925 | 1092 | 0.79 | 20939 | 19675 |0.93 | 051 |1 |
| 400 | 39378 | 4109 | 1866 | 1889 | 0.80 | 37512 | 35261 [0.93 | 054 |1 |
| 625 | 61692 | 7096 | 3933 | 3087 | 0.77 | 57759 | 54083 093 | 053 |1 |
| 900 | 88782 | 11385 | 8779 | 4535 | 0.72 | 800003 | 74626 | 0.93 | 057 |1 |

Table 6.2.: Tracking results for generated tests

The algorithm produces a lot of false positives, which significantly impacts the preci-
sion. However, false positives are pruned when the tracks are compared against valid
sequences, and therefore has almost no impact on the performance of the system. The
most important metrics are recall and the number of mismatches. MOTA is less valuable
as it includes the number of false positives, which are reliably pruned at a later stage.

The results for MOTP indicate that the algorithm detects almost the precise location of
the objects, which is expected due to the nature of the threshold detection approach.

Performance

The computational performance of the tracking algorithm has been tested by execut-
ing the tracking algorithm repeatedly on a single video, while decreasing the detection
threshold value by five between each run. The video has been generated such that more
devices are detected for each decrease in the threshold value. The performance timing of
algorithm does not include the detection phase. The results can be seen in Figure 6.7.

The tracker generally performs well terms of computational efficiency and is able to

process well over 100 frames per second while tracking over 700 targets. The performance
drops drastically from 0 to 100 devices, which is likely due to the increased overhead
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Figure 6.7.: Frames processed per second (Hz) plotted against the number of tracks

of creating the K-D trees without performing a significant amount of look-ups for each
tree.

However, as the number of tracks increases further this initial overhead is marginalized by
the time spent on processing and look-ups of the nearest neighbors, such that additional
tracks have less impact on the overall performance. Without a K-D tree or similar
implementation, the processing time would scale exponentially with the number of tracks.

6.3.3. Discussion

The results of the tracking tests indicate that, besides the performance of the detection
algorithm, the amount of movement has the most significant impact on the ability to
correctly track devices.

This is closely related to the tracking parameters for mazx search radius and search radius
expansion rate, which control the search radius of the algorithm as it attempts to relocate
a track after it has been occluded. As the average amount of movement increases, the
values of these parameters must increase in order to allow the algorithm to associate the
tracks once the devices re-appear correctly. However, doing so also increases the chances
that a track will incorrectly be associated with another nearby device.
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Values for these parameters must be carefully selected such that it minimizes the amount
of incorrectly associated devices, while still allowing some random movement. Setting
the value too low is preferable to setting it too high, as that will produce only a few
false negatives for devices that are moving excessively, without affecting other devices.
Setting the value too high will cause incorrect associations between all nearby devices
and can cause all devices to be tracked incorrectly.

The tracking algorithm works well when there is little to moderate movement and not
too many overlapping devices. It is often able to correctly track all devices in generated
tests with roughly 1000 devices and moderate movement.

It is also able to correctly track and associate devices in real-world tests, which can be
seen in Figure 6.8. This is a very bright environment which includes false positives, but
it is still able to track both devices correctly.

The precision of the tracking algorithm depends on the results of object detection. The

amount of movement, which can cause devices to overlap, and the size of the detected
objects, are the two most significant factors for precision.

6.4. Real world experiments

6.4.1. Setup

The test plan in appendix A describes a number of tests that were planned. Only
the tests listed under Device Positioning have been conducted. The client pointed out
that usability and performance are not important, and these tests were therefore not
prioritized.

A number of small-scale tests and experiments were executed in order to test the device
positioning functionality, using combinations of the following;:

e Stationary devices The devices are statically placed near the ground
e Low movement The devices are held and moved slowly within a range of 1 meter

e Moderate movement The devices are held and moved moderately fast within a
range of 1 meter

e High movement Devices are held and moved fast within a full arms length,
roughly 2 meters
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Low light conditions No direct light sources or sunlight

Moderate light conditions Some sunlight, no direct light

High light conditions Daylight and direct light from roof lighting

Short distance Devices placed approximately 1 meter from the camera
Medium distance Devices placed approximately 5 meters from the camera
Long distance Devices placed approximately 10 meters from the camera
Partial short-term obstruction Device is partially obstructed for 0.5 seconds

Complete short-term obstruction Device is completely obstructed for 0.5 sec-
onds

Partial long-term obstruction Device is partially obstructed for 2 seconds

Complete long-term obstruction Device is completely obstructed for 2 seconds

The tracking, detection and system parameters have been constant for all tests.

6.4.2. Metrics

In order to measure the effects the various parameters have on the algorithm, some
key metrics have been chosen for evaluation. These experiments are not annotated on a
frame-per-frame basis, so metrics for detections in a frame cannot be utilized. Therefore,
all metrics described here relate to successfully mapped tracks.

True Positives The total number of True Positive (TP)

False Positives The total number of False Positive (FP)

False Negatives The total number of False Negative (FN)

Precision Ratio of true positives to number of detected tracks. (T'P/(T P+ FP))

Recall Ratio of correctly detected tracks to total number of ground truth tracks.
(TP/GT)
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6.4.3. Discussion

The results of the tests are available in appendix B. The results of the obstruction tests
were all negative, and are therefore not included in the table. Because the devices are
signaling roughly five signals per second, any obstruction that lasts as long or longer
than the unit interval of 0.2 seconds will cause the algorithm to fail.

There are however some exciting results from the other tests that could help guide further
development. First of all, it is worth noting how Precision has little or no impact on the
overall performance of the system. Intuitively this makes sense, because false-positive
tracks are not successfully mapped to devices because the resulting sequence is not
recognized.

Recall carries more value, as the system must be able to track the device in order to
attempt to map the sequence.

The system performs well with no or low movement, as well as low and moderate light
conditions. However, bright light at close range with low movement causes the algorithm
to fail. It was discovered that the detection algorithm is very susceptible to reflections
of light at close range, especially on devices where the frame is white or metal.

This is not an issue as the distance increases because the intensity of the reflection is
reduced, and the frame is no longer detected as an object. This effect also has no impact
during stationary tests, because there are no ID switches since the device itself is always
its nearest neighbor. But once movement is introduced, there are ID switches between
the actual device and the reflection from its frame, causing the algorithm to fail.

Depending on the intensity of the reflection, the issue can be mitigated by increasing
the threshold, as long as the intensity of the screen is higher than that of the reflection
by some margin.

Figure 6.8 shows that the detection algorithm is able to detect the devices during the
initialization phase in very bright conditions with no movement, but also includes some
false positives on the frame of one device. Once movement is introduced, this causes the
algorithm to fail for that particular device.

This effect is magnified by increased movement. Moderate movement combined with
bright conditions also causes issues, because the detection algorithm detects reflections
and surrounding items as objects, causing ID switches between them and the device.
The system fails entirely during high movement as it was not configured to handle such
cases. This could be remedied by increasing the nearest neighbor search distance, but
that would introduce other errors in practical use where there are more devices and less
distance between them.

95



CHAPTER 6. EXPERIMENTATION AND TESTING

o]

Figure 6.8.: Detection and tracking using real devices in bright environment.

6.5. Other tests

6.5.1. Positioning and streaming

Because positioning depends on the sequence being displayed, it is not possible to use
real-world videos from other events to test this part of the system. The tests, therefore,
rely solely on a set of generated videos and recordings of actual devices during the
initialization phase.

The tests also assert that the devices are mapped to the correct positions, and that the
mapping from the input content onto each device is correct.

Once devices have been detected and correctly tracked, it is relatively trivial to map the
IP-address of a device to a relative position in the venue. This algorithm works well and
is always able to associate the IP with a location if the device has been tracked correctly.
It is also able to map the input image or video to the correct devices in the venue, and
correctly handles differences in resolution.

An example of such tests asserts that the colors from a low-resolution image, shown in
Figure 6.9, maps correctly to a set of devices that have been generated, recorded and
processed using a resolution of 1080x720 pixels.

6.5.2. System and integration tests

There are no completely automated system tests, but through the use of the mock classes
described above it is possible to start and run a real server in a completely or partly
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Figure 6.9.: 400x400 pixel image used to verify that colors are mapped correctly to de-
vices.

simulated environment. This allows complete testing of the protocol, the system and
the integration between the admin client, the server, and mobile clients.
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7. Conclusions

This chapter provides a brief summary of the work and results of this project. First,
section 7.1 provides a brief summary of the background, research, and objectives of the
project. Next, section 7.2 presents the most significant results, and discusses them in
relation to the research questions defined in section 1.2. Then, section 7.3 contains an
evaluation of the research and project as a whole, as well as an evaluation of some of the
decisions that were made and approaches that were used. Finally, section 7.4 provides
a discussion of the results and contributions of the project in a broader perspective.

7.1. Summary

The background for the research and system presented in this document was an in-
quiry from Zedge, a company specializing in mobile applications. Over the recent years,
light-emitting wristbands and other wearable items have become increasingly popular
at concerts and other large events, indicating that there is a significant market for such
technologies.

Zedge wanted to know whether it was feasible to utilize smartphone devices to add
positional awareness to such systems, in order to create better and more sophisticated
light shows than what is currently possible with existing technologies. Specifically, they
wanted to find out if a solution that utilizes a simple camera in some way was a feasible
approach to achieve adequate positional precision.

A review of existing literature and technologies found that there are no existing methods
or research on attempting to position devices of large crowds using a camera. There exists
a large body of research on indoor positioning systems in general, and the field is still
actively researched. There is also a large variety of existing technologies for this purpose,
but no single solution works well under all circumstances.

There is, however, one particularly important issue with all existing research and tech-
nologies, which is the fact that all current solutions are highly susceptible to interference
from the human body. This poses a significant problem for the scenario described by
Zedge as this will by its definition include a large number of people, and renders the
existing solutions unusable without modification.
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Searching for existing solutions, regardless of technology, revealed a few systems that
attempt to achieve a similar result to what was described by the client. However, only
two solutions provide positional awareness, and both are very limited. One only does so
under particular and limited circumstances and requires manual input of position, the
other requires significant setup costs and only provides coarse segmentation of sections.

7.2. Results

This section presents a brief summary of the objectives and the work that has been
done. It also discusses the results in the context of the research questions defined in
section 1.2.

7.2.1. Objective

The objective of this research was to determine whether it was at all possible to locate
devices at an indoor arena using a solution based on a stage-mounted camera, and if the
solution has the adequate precision for it to be used to orchestrate light shows using the
devices. The scenario described by the client was defined in section 1.2 as:

e Indoor concert hall or arena

e Crowd of 100 - 2500 people

e Low or no-light conditions

e Stage-mounted camera

e The participants have the required app pre-installed

e The participants are willing to participate in a setup procedure for a short duration,
announced over speakers

e One-time positioning is adequate, and the ability to continuously track locations
is not required

Furthermore, the following research questions were defined:

e RQ-1: Is it possible to locate devices at an indoor arena using a stage-mounted
camera, for the purpose of displaying light-shows across the devices?
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e RQ-1.1: Can a camera and a unique discrete-time light signal sent from each device
be utilized to uniquely identify the position of the devices under these conditions?

e RQ-1.2: How does the camera hardware specifications affect the performance of
the system, and what are the minimum requirements for the camera?

e RQ-2: Which methods and techniques are most appropriate for object detection
and object tracking under these conditions?

7.2.2. Research questions

RQ1

The client has stated that they are very satisfied with the research, and especially the
resulting outcome. They were hoping to gain some insight into whether the camera-
based approach was feasible and if so — how. This research question has been covered
in-depth in chapter 4, which provides a detailed description of one possible approach.
Combined with the results of chapter 5 and chapter 6 it is fair to say that a camera-based
solution for the described scenario is a feasible approach worth investigating further.

RQ1.1

Referring back to section 4.1 and the results of chapter 5 and chapter 6, it is likely that
a unique discrete-time light signal sent from the devices is one possible approach for
detecting and identifying devices using a camera.

RQ1.2

As described in chapter 4, the camera hardware has a significant impact on the system.
Some of the limitations imposed by the hardware can be accounted for to a certain degree,
such as the variable fps and lack of low-level camera control. However, as described in
chapter 6, there are some absolute minimum requirements for the camera that must be
met for the system to function reliably.

The camera must be able to record with a frame rate that is minimum three times
the symbol rate in order to provide enough samples for reliable detection and tracking.
The symbol rate can, in theory, be any value, but in practice, a minimum value of 5
is recommended to improve the participant experience. A lower value requires a longer
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initialization phase, which in turn also increases the chance of detection or tracking
failures. This imposes a minimum requirement of roughly 15 frames per second on the
camera, which is achievable even with low-end web cameras.

The resolution of the camera has less impact on the result, slightly depending on the
distance from the crowd, given that it is above some undefined minimum. Realistically,
any modern camera will have adequate resolution for small venues; larger venues might
benefit from at least 1080x720 resolution.

RQ2

Reviewing the literature for object detection (chapter 2) and object tracking (chapter 3)
revealed that most existing solutions are not suitable for detection and tracking under
the conditions defined by the client. However, some of the basic components described
in the literature are still applicable and can be utilized with some modifications, as
described in chapter 4.

7.3. Evaluation

This section provides an evaluation of the progress and the different phases of the project.
Is also includes a short evaluation of the chosen technologies and the impact they had
on the project.

7.3.1. Project phases

Research review

The initial phase of the project consisted mostly of literature reviews, and has resulted in
a comprehensive review of existing and relevant research in object detection and object
tracking. The results of this review can be seen in chapter 2 and chapter 3, respectively.

This phase was very long and thorough, perhaps even too much so. The majority of
the literature that was reviewed was not applicable to the project, mostly due to the
nature of the objects and the environment they will be detected and tracked in. The
basic methods for image segmentation and the components of multiple object tracking
have been instrumental, but the state-of-the-art feature descriptors are not applicable
without significant modifications.
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This phase could possibly have been shorter in order to leave more time for the other
phases.

Develop positioning approach

The next phase consisted of a combination of further research and experimental proto-
typing, in order to determine if the suggested approach was actually feasible at all. This
phase resulted in some very promising results, with preliminary tests suggesting that the
approach was viable. The results of this phase are described in chapter 4.

The first steps involved finding suitable photos and videos of people holding their devices
at large events on the internet. These were then used to create necessary components
for object detection and object tracking, which was able to detect and to some degree
track these devices reliably.

The next steps included creating a basic sequence and video generator which could
produce some simple videos with stationary, flashing dots, mimicking devices during the
initialization phase.

Then began the process of sampling the video to track the lights across multiple frames,
in order to detect the sequences they were emitting. Once the underlying algorithm was
working for stationary targets, emitting lights at pre-defined intervals, the test generator
was layered with additional complexity. This included movement, randomized sizes,
randomized intensities, randomized starts and more. For each layer that was added, the
algorithm was improved to handle the newly introduced element.

This phase was very experimental in nature, and involved a lot of trials an error. It
was by far the most complex and demanding part of the project, but also the most
interesting. It should possibly have started earlier than it did, on account of a shorter
research phase.

Once the algorithm could reliably track roughly 90% of the devices in a simulated test

with 2500 units and moderate movement, it was time to start looking at the other factors
of the system.

Implement prototype

After some preliminary testing using the above-mentioned approach, the next phase
consisted mostly of software implementation and testing. This resulted in a complete,
fully functional system based on a client/server architecture. The system includes a
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server, an Android client application, two administrator clients and a custom protocol
for TCP/IP based communication between the above components. It also includes a
comprehensive testing framework with complete support for simulated environments
and a desktop version of the client application. The system has been described in detail
in chapter 5.

This phase was not as complicated as the previous phase, but it was very time-consuming.
Most of the work, except for the positioning approach, has been researched and imple-
mented many times before. However, it still requires a lot of thought and effort to design
and implement a server, a mobile client, administrator clients and a custom TCP/IP
protocol for communication between all the above-mentioned components.

The required amount of thought and planning was magnified by the fact that it is difficult
and very time consuming to perform real, physical tests. This made it very important to
develop a good framework for testing early on, which could be used to test isolated parts
or the system as a whole. However, this also imposes some requirements and complexity
onto the prototype itself, as the test framework must be able to isolate test fixtures or
simulate components without affecting other parts of the system.

The implementation phase was a continuous cycle of developing components for the
system, developing testing features to exercise the component, and then refactoring the
system to allow seamless execution of the tests.

The testing framework proved immensely useful, and made it extremely simple and
quick to test different algorithms and changes in the system. The ability to quickly test
and isolate various components of the system has been invaluable and integral to the
development of the system. It has allowed rapid development and extensive testing of
the communication between the server and devices, without having to use actual devices
which can be very time consuming to work with. Using the framework alone, it was
possible to develop a prototype that required very few changes once testing with real
devices began.

This phase was very time consuming, but the effort was required in order to deliver a
prototype that would be of use to the client, and to be able to test the system in a
real-world scenario.

Real-world tests, experiments, and evaluation

Once the system was functional, some small-scale real-world tests and experiments were
performed. The first few experiments were done early, using only a single device. These
recordings were then stored, along with all relevant meta-data, so that they could be
used as input to the test framework later. This allowed the system to easily be tested
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against real recordings without having to go through the whole setup with physical
devices again.

These initial experiments revealed some unforeseen issues, that were not possible to
detect during the simulated test. Solving the problems required some changes in the
implementation of the server and mobile client. The exact nature of the problems was
unforeseen, but the fact that there would be some issues was expected. The prototype
was still surprisingly close to being functional considering it had only been tested against
generated videos in simulated environments during development.

The most significant difference was the variable frame rate of the camera, which required
the system to gather some additional metadata during the recording. The other issue
was related to the mobile client, and how unreliable the screen refresh rate is. Both
of these issues were solved, however, and required few or no modifications to the core
algorithm.

Once the system was able to detect and stream content to a few devices reliably, some
larger scale tests and experiments were conducted.

It would have been advantageous to arrange and perform a large-scale test, not only
to test the prototype itself, but also to test the concept and the idea. It would be
interesting to find out what potential participants think of the concept, the length of the
initialization phase, their willingness to participate and so on. However, in agreement
with the client, most of the user-oriented features and interaction has been left out in the
prototype. The focus of the project was to find out whether a solution was technically
possible, and any future user research, user interface and user interaction are left to
Zedge if they find that the concept is worth investigating further.

7.3.2. Technology

Programming language

The choice of programming language, Python 3.6, was mostly based on objective criteria
such as the excellent support for image processing, networking, and rapid development.
The fact that it is a high-level weakly typed language with a completely dynamic type
system makes it extremely easy to iterate and make changes quickly. This likely saved
a lot of time, especially during the initial stages of development, as it allowed rapid
changed to some parts of the system without having to worry about compilation issues
in other parts that were no longer important.

The nature of the type system also made it a lot easier to design and create the test
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framework, as it allows injecting, wrapping or replacing any function, method or property
from anywhere. In a statically typed language, this would require a lot more thought,
effort, and ceremony in order to create the necessary interfaces and extension points.

Python also makes it very easy to distribute and deploy the server software, both stan-
dalone and through docker, as it is supported on a large variety of platforms and has
sophisticated installation and setup tools.

However, as the system matured and the rate of significant changes decreased, some of
the disadvantages of a dynamically typed language slowly began to surface. The lack
of static types makes it more difficult to refactor without breaking anything, and also
decreases the correctness of refactoring tools. A newly introduced feature, type hints’,
does help alleviate this but it is rather verbose.

Another problem surfaced when attempting to utilize concurrency and parallel execution,
as the concurrency model in Python is somewhat complicated. It offers a lot of different
tools for concurrency, and requires selecting the right tool for the job. That is not to say
that the concurrency model is terrible, but it certainly is a bit complicated and requires
a lot of research and effort to work with.

Using Python for prototyping and experimental software development has been a success,
but it required some adjustment and time to get used to and fully utilize the power of
its dynamic nature. It is recommended for future development and prototyping, but
perhaps other options should be considered for a production system.

Image and video processing

OpenCV (Open Source Computer Vision Library) is one of the most popular computer
vision libraries available, and it has a mature Python interface.

The library has more than 2500 optimized algorithms, which includes a com-
prehensive set of both classic and state-of-the-art computer vision and ma-
chine learning algorithms.

It is written in C++, and uses the excellent NumPy package, which offers highly opti-
mized matrix operations among other things. Together, these libraries provide excellent
computer vision capabilities and performance, interfacing directly with highly optimized
CUDA?, OpenCL? and C/C++ functions.

Thttps://docs.python.org/3/library /typing.html
https://docs.nvidia.com/cuda/
Shttps://www.khronos.org/opencl/
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OpenCV has proven to be an excellent library during the development of the prototype,
and is the recommended choice for further development.

Networking

Twisted? is an excellent “event-driven networking engine written in Python and licensed
under the open source MIT License®“. It makes it fairly easy to implement custom
network applications and protocols, while still offering all the power of a low-level net-
working engine if needed. It is able to handle at least 2500 request per second with
2000 concurrent connections®, which is more than what is required for the Crowdstream
system.

While the essential features are simple to use, the low-level network features are still
complicated. Implementation of all the various clients, two administrator clients and
one basic client for testing, proved to be harder than expected.

Summary

The most compelling reasons for continuing with Python are the excellent libraries and
the simple deployment to a large variety of platforms. However, OpenCV is available
for many other languages, and most languages offer good networking libraries with ca-
pabilities similar to T'wisted.

7.4. Discussion

The approach used in this project has been a combination of literature reviews and
experimental software design. In this thesis, I propose a new and novel approach for
indoor positioning systems, and also present a basic prototype system that utilizes said
approach.

The system has proven reliable in small-scale tests and large-scale simulations. However,
it has not been tested in a real, practical scenario at an indoor venue with hundreds of
participants. It is unlikely that the system will fail to function entirely, but depending
on the surrounding environment the reliability of the detection, tracking and positioning
algorithms could be severely impacted.

“https://twistedmatrix.com/trac/
Shttps://programmingzen.com/benchmarking-tornado-vs-twisted-web-vs-tornado-on-twisted/
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The most significant threat is caused by surrounding light sources causing reflections in
the device frames themselves to be detected and mistaken for devices. Because of the
proximity between the false positives and the devices, the system will not be able to
separate the two, and the device will not be detected correctly. However, such high-
intensity reflections have only been observed when the devices are in close proximity to
the camera, and the device frame is exposed to direct light.

In general, the system does not seem to be impacted by false positive detections as long
as these detections are not within the search radius of an actual device. It is however
impacted by movements in the crowd, and large movements will cause the respective
devices to fail. However, as the participants will be asked to hold their devices still
during this short period, this will hopefully not pose a significant problem.

As mentioned in section 1.6, the system and particularly the detection and tracking
components, have been developed for a particular scenario. It is unlikely that this
project will contribute anything to the general problem of multiple-object tracking. The
most significant contribution is in the area of Indoor Positioning Systems, as it seems like
this approach has not been used or described before. The general approach can easily
be applied in other areas which require indoor positioning, as long as the underlying
conditions described in section 7.4 hold true.

The experimental results and the implemented prototype indicates that the suggested

approach, which utilizes a camera to detect devices in a crowd, is able to produce reliable
results for the intended scenario.
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8. Future

This section provides some recommendations for possible extensions, improvements, and
further research. Section 8.1 contains an overview of the current state of the research
and the prototype, while section 8.2 provides some ideas, pointer, and suggestions for
future development, research, and improvements for the system and the prototype.

8.1. Current state

8.1.1. Research

The preliminary research was thorough, and there does not seem to be any existing
research that directly relates to this project. However, the possibility of using colors
instead of the current on/off scheme was not tested thoroughly enough, and should be
revisited.

8.1.2. Server

The current state of prototype bears clear indications that it is still a prototype. It is
lacking in documentation, and could use some refactoring of the code. Overall, however,
the quality of the code is good, and the separation of concerns between the various
components is also good.

The test framework is working well, but could also use some refactoring and documen-
tation. It could also be extended to generate even more realistic tests, which account,
e.g., perspective distortion, motion patterns and colored symbols.

Detection

The implementation details of the object detection algorithm are hidden behind a well-
defined interface, and can easily be replaced or modified if required.
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Tracking

The tracking algorithm is also hidden behind a well-defined interface, but it should
perhaps be integrated more with the rest of the server implementation to utilize more
domain knowledge. This includes knowledge about the sequences in particular. Im-
provements in the tracking component would likely provide the most short-term benefit
to the system, as described in section 8.2.

8.1.3. Mobile client

The implementation of the mobile client is very rudimentary. It provides the required
functionality to function properly, but does not offer a very good user experience. The
implementation of the network protocol is also very basic, and should be refactored or
rewritten to be more robust. However, the implementation of the surface view, which
displays the colors, and the logic which synchronizes the display of the sequences, is
working well.

8.1.4. Administrator clients

The two administrator clients work well, but should likely be extended to provide ad-
ditional functionality, e.g., the ability to manually disconnect devices or retrieve more
information about the current state of the server.

8.1.5. Protocol

The protocol functions well enough to serve a few hundred clients, but a linefeed protocol
might be unnecessarily verbose for a production system. It could be replaced with a much
more compact protocol based on raw bytes, in particular for streaming data. The color
values could easily be compressed to 3 bytes, RGB. The streaming protocol could also
be replaced with a UDP protocol as it does not need the extra features, and overhead,
provided by TCP.
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8.2. Future Development

8.2.1. Multiple cameras

Occlusion and articulated motion are two of the most detrimental factors of the current
system. Ome possible solution to overcome this problem could be to utilize multiple
cameras mounted at different positions. This does add considerable complexity, but

has shown noticeable improvements over single camera approaches for general object
tracking[14].

8.2.2. Perspective distortion

Because the camera will be mounted near or above the stage, at some distance from the
crowd and at an angle, there will be perspective distortion. Because of this distortion, as
seen in Figure 8.1, participants closer to the camera require a large search distance than
participants farther away, as their movement will be more significant in the captured

video. It also affects the mapping of content onto the participant devices, which should
be corrected for this distortion.
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Figure 8.1.: Example of perspective distortion
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8.2.3. Interaction model

An interaction model, as mentioned in section 3.5, could increase the accuracy of the
tracking algorithm. It could, for example, include the interaction of people moving
together as a crowd, perhaps in motion with the music. It could also include devices
"bumping” off each other, modeling how the participants cannot physically occupy the
same space, and their hands or bodies are likely to bump off each other if they get too
close.

8.2.4. Inference

The current inference method utilizes a basic greedy nearest neighbor approach, and
could possibly be improved. As mentioned in section 3.8, two general approaches exist;
probabilistic inference and deterministic optimization. Methods based on Kalman filter,
Extended Kalman Filter or any of the methods based on deterministic optimization,
particularly a min-cost max-flow network, could potentially provide better results at the
cost of some complexity and speed.

8.2.5. Feature descriptors

Modern feature detection and extraction algorithms will likely introduce much complex-
ity to this prototype of Crowdstream, and given the time constraints of the project, it
is not feasible to attempt to implement any such algorithms as this point. However, it
could be considered again in the future if the performance of the current object detection
scheme proves to be insufficient.

8.2.6. Colored symbols

At the initial stages of the project, the possibility of using colored symbols instead of the
current on/off implementation, was investigated and researched. The conclusion at the
time was that it would be difficult to distinguish the different colors at longer distances,
partly based on existing images of large crowds holding their devices. However, it is
possible that careful selection of the possible color values, for example, one carefully
selected hue of red, green and blue respectively, for a total of 3 colors, could be viable.
This would most likely reduce the amount of failed tracks, as there is more information
available to the tracking algorithm which can be utilized to associate a detection to a
track.
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There are two possible approaches that utilize colors:

Assign one color to each sequence or device Using this scheme, each device would
receive a single color that should be used for the whole sequence. This would let the
tracking algorithm discard any detections that do not match the color of the existing
track.

Assign one color to each symbol In this scheme, each symbol in all the sequences
is assigned a specific color. The algorithm would then utilize its knowledge of all the
generated sequences in order to determine if a considered association would result in an
invalid sequence.

The first approach is the easiest to implement and would require very little modification
the algorithm itself. The second approach requires slightly more modification, but is still
reasonably easy to implement. The second scheme is most likely more robust, as the
first scheme would still fail when devices assigned the same color are near each other.

8.2.7. Motion model

The motion model could be improved to model the motion pattern of devices when held
by humans. There are motion bounds for the range of movement, bounded by the length
of a humans arms. The device will also most likely move more or less horizontally within
these bounds, and abruptly change directions near these bounds. This could be modeled
explicitly to increase the accuracy of the predicted position of a device.

8.2.8. Android Instant App

In order to lower the barrier for participation, it is possible to implement the Android
application as an ”Instant App”!. These applications do not require installation, and
can be launched directly from, e.g., a link. This could potentially increase the number
of participants. This application is a good candidate for an instant app as it is minimal
in size and has a limited number of screens.

"https://developer.android.com/topic/google-play-instant /

112



CHAPTER 8. FUTURE

8.2.9. General tracking

There are many general improvements that could be made to the tracking component
of the system. These include improvements to the existing algorithm, or replacing with
another algorithm altogether. Some possible alternatives are methods based on Joint
Probabilistic Data Association Filter, Kalman filters, or Multi-Hypothesis Tracking,
possibly with Murty’s K-best method.

8.2.10. Admin panel

The administrator interface leaves a lot to be desired. One possible solution is to add
an HTTP interface to the server, and build a web front-end for it. Python and Twisted
offer excellent HT'TP support, and it would be fairly easy to implement the API for it.

8.2.11. Security

The security of the system has not been prioritized, but should be improved before
using it in production. The administrator password is sent in clear-text on every login
or request in the case of Admin client and Admin CLI, respectively. If an HT'TP interface
as suggested above is created, one possible solution would be to use standard HTTPS
for administrator access.
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Bhattacharyya distance A measure of the similarity of two probability distributions.
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blob A region of an image in which some properties are constant or approximately

constant; all the points in a blob can be considered in some sense to be similar to
each other. 20, 123

centroid The arithmetic mean position of all the points in a shape. 63, 81, 87, 123

contour A curve joining all the continuous points (along the boundary), having same
color or intensity. 62, 63, 123

Euclidean distance The straight line distance between two points. 81, 123

image moment A certain particular weighted average (moment) of the image pixels’
intensities, or a function of such moments, usually chosen to have some attractive
property or interpretation. 63, 123

multimodal A continuous probability distribution with two or more modes (peaks). 15,
123

symbol A state of the communication channel that persists for a fixed period of time.
39, 66, 123

symbol rate The number of symbol changes, waveform changes, or signaling events,

across the transmission medium per time unit using a digitally modulated signal
or a line code. Also known as baud rate and modulation rate. 38, 123

tracklet A fragment of the track followed by a moving object, as constructed by an
image recognition system. 26, 123
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Glossary

unimodal A continuous probability distribution with exactly one mode (peak). 15, 123

unit interval The minimum time interval between condition changes of a data transmis-
sion signal. Also known as pulse time and symbol duration time. 38, 39, 123
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NN Neural Network. 14, 123
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RFID Radio Frequency Identification. 1, 123
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TCP Transport Connection Protocol. 51, 123
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Ul User Interface. 68, 123
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Test Plan for Crowdstream Server

Purpose

This document describes the plan for testing the prototype of the Crowdstream system. This test
plan supports the following objectives:

Identify existing project information and the software that should be tested
List the recommended test requirements

Describe the testing methods to be employed

Identify the required resources and provide an estimate of the test efforts
List the deliverable elements of the test activities

Scope

The test plan describes the integration, usability and system tests that will be conducted on the
crowdstream prototype. It it assumed that unit testing has already been provided through unit
tests and simulated tests.
The interfaces between the following components will be tested:

e Crowdstream server

e Crowdstream mobile app

e Crowdstream admin CLI

The most critical performance measures to test are:

Response time for admin CLI

Response time for device connections and disconnects
Network delay during streaming

App performance during streaming on older devices

Tests

Device positioning

The system should be able to position 90% of participating devices under normal circumstances

Objectives

Determine how well the system can detect, track and position devices under varying conditions
130



Cases

Stationary devices

Low random movement

Medium random movement

High random movement

Partial short-term (0.2s) obstruction of device
Complete short-term (0.2s) obstruction of device
Partial medium-term(2s) obstruction of device
Complete medium-term(2s) obstruction of device
Low light conditions

Medium light conditions

High light conditions

Short distance from camera, < 5m

Medium distance from camera, 5-10m

Long distance from camera, > 10m

Method

A number of real devices will be placed at the floor or held by assistants in one half of a hall. A
camera will be placed near the roof at the other end of the hall, which will be used by the system
to record the devices.

Analysis

The system will be evaluated based on it's detection performance during testing. The input from
the camera as well as frame timing data will be stored so that it can be used for further
evaluation, analysis and development.

System streaming performance

The system can successfully handle 2500 devices in simulated tests. Due to practical
constraints it is not possible to test with 2500 real devices.

Objective

Determine how well the system performs during streaming with real devices.

Cases

Stream from video
Stream from single image
Stream from webcam
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Method

The system will be set up with roughly 10 devices. The system will then be used to stream
different content to all devices.

Analysis

The output from the devices during streaming will be recorded and analysed. Should also look
at number of dropped frames, latency and other metrics.

Usability

The system should be simple to set up and use for the client

Objective

Determine if the system can be used by someone with general technical knowledge but no
system specific knowledge, using a written guide.

Method

The client will be provided with a written explanation of how to set up and use the system

Analysis

Feedback from the client will be reviewed.
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B. Results from experiments
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APPENDIX B. RESULTS FROM EXPERIMENTS

Movement | Light Distance | GT | TP | FP | FN | Recall | Precision
Close 2 2 0 0 100% | 100%
Dark Medium | 2 2 0 0 100% | 100%
Far 3 3 0 0 100% | 100%
Close 2 2 0 0 100% | 100%
Stationary | Medium | Medium | 2 2 2 0 100% | 50%
Far 3 3 3 0 100% | 50%
Close 2 2 3 0 100% | 40%
Bright | Medium | 2 2 11 |0 100% | 15.4%
Far 3 3 16 | 0 100% | 15.8%
Close 2 2 0 0 100% | 100%
Dark Medium | 2 2 0 0 100% | 100%
Far 2 2 0 0 100% | 100%
Close 2 2 1 0 100% | 66.7%
Low Medium | Medium | 2 2 3 0 100% | 40%
Far 2 2 5 0 100% | 28.6%
Close 2 1 4 1 50% 20%
Bright | Medium | 2 2 11 |0 100% | 15.4%
Far 2 2 14 10 100% | 12.5%
Close 2 2 0 0 100% | 100%
Dark Medium | 2 2 0 0 100% | 100%
Far 2 2 0 0 100% | 100%
Close 2 1 2 1 50% 33.3%
Moderate | Medium | Medium | 2 2 3 0 100% | 40%
Far 2 2 5 0 100% | 28.6%
Close 2 1 3 1 50% 25%
Bright Medium | 2 1 9 1 50% 10%
Far 2 0 14 | 2 0% 0%
Close 2 0 0 2 0% 0%
Dark Medium | 2 0 0 2 0% 0%
Far 2 0 0 2 0% 0%
Close 2 0 3 2 0% 0%
High Medium | Medium | 2 0 4 2 0% 0%
Far 2 0 7 2 0% 0%
Close 2 0 4 2 0% 0%
Bright Medium | 2 0 11 |2 0% 0%
Far 2 0 17 | 2 0% 0%

Table B.1.: Experiment results
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C. Setup

C.1. Installation

The system offers simple installation through python pip' or easy install>. It requires
an existing Python 3.6 environment and an internet connection, but any additional
dependencies will be downloaded and installed automatically. Using either installation
method will result in two new tools being available on the command-line:

cws This tool is the actual server, and can be used to configure and start an instance
of the server.

cws-cli This tool is the administrator CLI, which provides access to and control of an
already running server instance.

Both tools provide documentation and help regarding available commands and their
arguments.

C.2. Deployment

C.2.1. Local machine

In order to run the system on a local machine, simply install and run ‘cws‘ from the
command-line, optionally specifying a port and administrator password.

The server can then be manged by executing commands with ‘cws-cli¢ or the CLI client.

"https://pypi.org/project/pip/
http://setuptools.readthedocs.io/en /latest /easy_install.html
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APPENDIX C. SETUP

C.2.2. Docker

The server comes with a complete Dockerfile, which can be used to run the server in a
Docker? container. It it based on an existing image? to provide OpenCV support, but
has no other dependencies.

C.2.3. Packaging

The server can be run locally from a terminal or remotely in a docker container, which
makes it easy to launch the server at remote locations closer to the venue it is intended
for.

C.3. Development

The source code for the server, test framework and admin clients can be downloaded
from:

https://github.com/ezet/crowdstream-server
The source code for the mobile application can be downloaded from:

https://github.com/ezet/crowdstream-client

3https://www.docker.com/
*https://hub.docker.com/r /jjanzic/docker-python3-opencv/
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D. Configuration

The server offers several configurable parameters, some of which are described in the
sections below.

D.1. Server Configuration

Sequence length The length of the sequence, excluding the prefix. Must be long
enough to assign each connected device a unique sequence, following the rules described
in subsection 4.1.2.

Symbol frequency The symbol frequency, symbols per second, that devices will be
asked to broadcast at. Must be minimumcapturefps/3 or less.

Camera Dimensions The resolution of the camera used for recording

Extend Capture Seconds How many additional seconds to extend to the recording
duration, to compensate for network delay

Sample rectangle size The size of each rectangle, a device, used to map the source
image onto the target devices. The average RGB value of all pixels within each rectangle
will be sent to each device.

Sequence prefix The sequence prefix that is prepended to all sequences.

Max Init Rounds The maximum number of times to run the init sequence in an attempt
to successfully map all connected devices
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Warmup frames Number of frames used to warm up the camera. These frames will
not be included in the stored recording.

Map Visible First When true, the algorithm will attempt to associate all currently
visible devices with their tracks first, before attempting to associate previously occluded
devices. Recommended setting is ‘True’.

Max Symbol Streak The maximum number of times a given symbol can appear in
succession in a sequence. Used to avoid long streaks of ‘0° or ‘1°. A lower setting is
preferable, but drastically reduces the entropy of any given sequence length. Recom-
mended setting is ‘2° or ‘3°.

Detection Threshold The global threshold value for object detection. Should be tuned
specifically for the environment and lightning conditions. A lower value will detect more
devices, but may also produce more false positives. A higher setting will produce less false
positives, but will also increase the amount of false negatives. A very dark arena can use
values closer to 200, where a bright venue should use values close to 250. Recommended
setting is 200-250.

password The administrator password

D.1.1. Location settings

position acceptance radius The radius, in gps coordinates, for which to restrict device
participation.

restrict device location Whether devices should be restricted by their location or not.

auto detect location Whether the server should attempt to auto detect its own location
or not.

longitude Manually override longitude for server position
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latitude Manually override latitude for server position

Detection parameters, detection.py

Tracking parameters, tracking.py
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