
Skull stripping MRI images of the brain
using deep learning

Øystein Aas Eide

Master of Science in Computer Science

Supervisor: Frank Lindseth, IDI
Co-supervisor: Ingerid Reinertsen, SINTEF

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Problem Description

Name Øystein Aas Eide
Faculty Faculty of Information Technology and Electrical Engineering
Department Department of Computer Science
Study program Computer Science (Master, five years)
Specialization Artificial intelligence
Start date 31.01.2018
Due date 27.06.2018
Supervisor Professor Frank Lindseth
Co-supervisor Ingerid Reinertsen

Title

Skull stripping MRI images of the brain using deep learning

Task Description

By using deep learning this master thesis will try to perform skull stripping on MRI images
of the brain. The thesis will try different deep learning architectures and see how well they
perform compared to each other. This thesis will also try to provide a working skull stripping
solution for the St. Olavs hospital.

Data were provided in part by OASIS: Cross-Sectional: Principal Investigators: D. Marcus, R,
Buckner, J, Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01

AG021910, P20 MH071616, U24 RR021382

Abstract

Skull stripping is the task of finding pixels or voxels that establishes where the brain is in a
medical image. It is an important step for many medical applications that analysis the brain.
Today manual skull stripping is still the best way to get good and accurate results. Manual skull
stripping is a laborious process since it can take between 6 and 8 hours (Eskildsen et al., 2012).
There exist many tools for performing skull stripping automatically. Some of these tools are
very good, but they can struggle on Magnetic Resonance Imaging (MRI) scans with different
modalities (Kleesiek et al., 2016). In this decade deep learning has become very popular in
various fields including medical image analysis, which includes tasks such as medical image
segmentation. According to Litjens et al. (2017) the amount of published papers on this subject
have gone from close to 0 in 2012 to over 200 papers published in 2017. In this thesis three
different deep learning architectures will be used to do skull stripping. Also, an experiment on
liver segmentation will be done to see if the methods will work on other medical imaging tasks.

The deep learning architectures will be tested on three different data sets containing MRI scans
of the brain. One of these data sets contains only patients with tumors. The architectures were
trained on different data sets to test how well they will perform when they are faced with MRI
scans from different sources. Various experiments will be done to see how training and testing
on different compositions of these data sets will make the architectures perform.

Deep learning methods take a long time to train. In this thesis, the deep learning architectures
will be tested on different hardware configurations to see how long they take to train on the
different set ups. In total four different configurations will be tested with different Central
Processing Units (CPUs) and different Graphics Processing Units (GPUs).

i

Sammendrag

Hjernesegmentering er oppgaven med å finne hvilke piksler eller voxler som tilhører hjernen i
et medisinsk bilde. Det er en viktig fase for mange medisinske applikasjoner som er avhengig
av å studere hjernen. Manuell hjernesegmentering er fortsatt den beste måten for å få gode og
nøyaktige resultater. Dette er en krevende prosess, det kan ta 6 til 8 timer å for å segmentere én
hjerne (Eskildsen et al., 2012). Det er mange eksisterende løsninger som gjør hjernesegmenter-
ing automatisk. Noen av disse er veldige gode, men de kan slite med MRI bilder som har andre
modaliteter (Kleesiek et al., 2016). I det siste tiåret så har dyp læring blitt veldig populært i
forskjellig felter. Dette inkluderer felter som handler om å analysere medisinske bilder, og også
oppgaver som gjør segmentering av medisinske bilder. I følge Litjens et al. (2017) så har meng-
den av publiserte artikler på dette feltet gått fra omtrent 0 i 2012 til over 200 i 2017. I denne
masteroppgaven så vil tre forskjellige dyp lærings arkitekturer bli brukt til å gjøre hjerneseg-
mentering. Disse arkitekturene vil også bli brukt til å gjøre leversegmentering. Dette ble gjort
for å teste om disse arkitekturene også vil fungere på andre medisinske bilde problemer.

Dyp lærings arkitekturene vil bli testet på tre forskjellige datasett som inneholder MRI bilder
av hjernen. Et av disse datasettene inneholder bare MRI bilder av pasienter med hjernesvulster.
Arkitekturene ble testet på forskjellige datasett for å teste hvordan de vil prestere når de møter
MRI bilder fra forskjellige kilder. Forskjellige eksperimenter med forskjellige sammensetninger
av datasettene vil bli gjort for å se hvordan dyp lærings arkitekturene vil prestere.

Det tar lang tid å trene en dyp lærings metode. I denne masteroppgaven så vil dyp lærings
arkitekturene bli testet på forskjellige maskinvare konfigurasjoner for å se hvor lang tid de tar
å trene på de forskjellige oppsettene. Totalt vil 4 forskjellige konfigurasjoner bli testet med
forskjellige prosessorer og grafikkprosessorer

ii

Table of Contents

Problem Description 1

Abstract i

Sammendrag ii

Table of Contents vi

List of Tables viii

List of Figures xi

Abbreviations xiii

1 Introduction 1
1.1 Motivation and problem description . 1
1.2 Project goals and Research Questions . 3
1.3 Contributions . 3
1.4 Thesis structure . 4

2 Background 5
2.1 Skull stripping . 5
2.2 Liver segmentation . 6
2.3 Imaging modalities . 7

2.3.1 MRI . 7
2.3.2 Computed Tomography . 7
2.3.3 Storing of medical image data and image formats 8

2.4 Deep neural networks . 8
2.4.1 Neural network . 8
2.4.2 Neuron . 9
2.4.3 Activation function . 9

iii

2.4.4 Loss function . 11
2.4.5 Training . 11
2.4.6 Convolutional neural networks . 13
2.4.7 Skip connections . 15
2.4.8 GPU training . 15

2.5 Generalization, overfitting and underfitting . 15
2.5.1 Regularization . 16

2.6 Training, test and validation data . 17
2.7 Literature study . 18

2.7.1 Previous methods used for skull stripping 18
2.7.2 Deep learning architectures used for analyzing brain images 19
2.7.3 Deep learning for liver segmentation 21
2.7.4 Capsule networks . 21

3 Method 23
3.1 Data sets . 23

3.1.1 OASIS . 23
3.1.2 LBPA40 . 24
3.1.3 St. Olavs data . 25
3.1.4 LiTS data . 27

3.2 Deep learning architectures . 27
3.2.1 3D CNN . 27
3.2.2 U-Net . 29
3.2.3 Training . 30
3.2.4 Prediction . 30
3.2.5 DeepMedic . 31

3.3 Data preprocessing . 33
3.3.1 Resampling . 33
3.3.2 Normalization . 34

3.4 Multi GPU model . 34
3.5 Evaluation metrics . 34

3.5.1 Dice score . 34
3.5.2 Error maps . 35
3.5.3 Other metrics . 35

3.6 Dice coefficient loss . 36
3.7 Set up . 36
3.8 Experiments . 37

3.8.1 Experiments with hyperparameters . 37
3.8.2 Experiments with data sets and models 37
3.8.3 Testing CNN and the U-Net on different hardware configurations . . . 39
3.8.4 Experiment on liver data . 40

iv

4 Results 43
4.1 Experiments with hyperparameters . 43

4.1.1 Experiment with patch size . 43
4.1.2 Experiment with different a loss function 44

4.2 Experiments with data sets . 45
4.2.1 Architectures trained and tested on one data set 46
4.2.2 Architectures trained on two data sets and tested on the third 47
4.2.3 Architectures trained and tested on data from all three data sets 48
4.2.4 Architectures trained on equal amounts of data from each data set . . . 54
4.2.5 Architectures trained on not resampled data 55

4.3 Testing CNN and the U-Net on different hardware configurations 57
4.3.1 CNN . 57
4.3.2 U-Net . 58

4.4 Experiment on liver segmentation . 60

5 Discussion 63
5.1 Experiments with hyperparameters . 63

5.1.1 Experiment with patch size . 63
5.1.2 Experiment with a different loss function 64

5.2 Experiments with data sets and models . 64
5.2.1 Architectures trained and tested on one data set 64
5.2.2 Architectures trained on two data sets tested on the third 65
5.2.3 Architectures trained and tested on data from all three data sets 66
5.2.4 Architectures trained on equal amounts of data from each data set . . . 68
5.2.5 Architectures trained on not resampled data 68
5.2.6 General . 69

5.3 Testing U-Net and the CNN on different configurations 70
5.4 Experiment on liver segmentation . 71
5.5 Reflection . 72

6 Conclusion and future work 75
6.1 Conclusion . 75
6.2 Future work . 76

Bibliography 76

Appendix 83

A Experiments with data sets and models 85
A.1 Networks trained and tested on one data set 85

A.1.1 CNN . 85
A.1.2 U-Net . 87

v

A.1.3 DeepMedic . 88
A.2 Networks trained on two data sets tested on remaining 89

A.2.1 CNN . 89
A.2.2 U-Net . 91
A.2.3 DeepMedic . 92

A.3 Networks trained on all the data . 93
A.4 Networks trained on equal amounts of data from each data set 95

A.4.1 CNN . 95
A.4.2 U-Net . 95
A.4.3 DeepMedic . 96

A.5 Network trained on not resampled data . 96
A.5.1 CNN . 96
A.5.2 U-Net . 97
A.5.3 DeepMedic . 97

B Feature maps 99
B.1 U-Net . 99
B.2 CNN . 101
B.3 DeepMedic . 102

vi

List of Tables

3.1 Dimension and voxel size for the OASIS data set 24
3.2 Dimensions and voxel size for the LBPA40 data set 24
3.3 Dimensions and voxel sizes for the St. Olavs data 26
3.4 CNN architecture from Kleesiek et al. (2016) 28
3.5 Results for Kleesiek et al. (2016) using 2-fold cross validation 28
3.6 Different configurations for testing training time for U-Net and the CNN 39
3.7 Comparison of the different GPUs . 40

4.1 Dice score, sensitivity score and specificity score for CNN and U-Net different
patch sizes . 43

4.2 Scores U-Net different loss function . 45
4.3 Dice score for architectures trained and tested on the same data set 46
4.4 Sensitivity for architectures trained and tested on the same data sets 46
4.5 Specificity for architectures trained and tested on the same data set 46
4.6 Dice score for architectures trained on two data sets and third 47
4.7 Sensitivity for architectures trained on two data sets and tested on the third . . . 47
4.8 Specificity for architectures trained on two data sets and tested on the third . . . 48
4.9 Dice score for architectures trained and tested on all data from all three data sets 48
4.10 Sensitivity for architectures trained and tested on all data from all three data sets 49
4.11 Specificity for architectures trained and tested on all data from all three data sets 49
4.12 Dice score for architectures trained and tested on equal amounts of data from

each data set . 54
4.13 Sensitivity for architectures trained and tested on equal amounts of data from

each data set . 54
4.14 Specificity for architectures trained and tested on equal amounts of data from

each data set . 55
4.15 Dice score for architectures trained and tested on not resampled data 56
4.16 Sensitivity for architectures trained and tested on not resampled data 56
4.17 Specificity for architectures trained and tested on not resampled data 56

vii

4.18 Average time for each update on the different configuration for the CNN with
batch size 4 . 58

4.19 Average time for each update on the different configuration for the CNN with
batch size 16 . 58

4.20 Average time for each update on the different configuration for the U-Net with
batch size 4 . 59

4.21 Average time for each update on the different configuration for the U-Net with
batch size 8 . 60

4.22 Dice, sensitivity and specificity scores on the LiTS data set 60

viii

List of Figures

2.1 Skull stripping example . 5
2.2 Skull stripped brain example . 6
2.3 Liver segmentation example . 6
2.4 Example of a simple neural network with three layers 9
2.5 Caption . 10
2.6 Convolutional neural network (CNN) example from Nielsen (2015) 13

3.1 OASIS data example . 24
3.2 S01.native.mri from LBPA40 data set . 25
3.3 3/coreg_T1 from St. Olavs data set . 26
3.4 volume-0 from LITS data set . 27
3.5 Figure depicting the U-Net architecture . 31
3.6 Figure depicting the DeepMedic architecture 33

4.1 Loss and validation loss for the CNN with different patch sizes 44
4.2 Loss and validation loss for U-Net with different patch sizes 44
4.3 Dice coefficient loss on training data and validation data for the CNN and U-Net 45
4.4 Box plot of the dice scores for all the data when the architecture is trained and

tested on the same data set . 47
4.5 Box plot of the dice scores for all the data when the architecture is trained on

two data sets and tested on the remaining data set 48
4.6 Box plot of the dice scores for architectures trained and tested on all three data

sets . 49
4.7 237/coreg_T1.nii U-Net worst prediction . 50
4.8 97/coreg_T1.nii U-Net best prediction . 50
4.9 237/coreg_T1.nii CNN worst prediction . 50
4.10 OAS1_0012_MR1_mpr_n4_anon_111_t88_gfc CNN best prediction 51
4.11 237/coreg_T1.nii DeepMedic worst prediction 51
4.12 17/coreg_T1.nii DeepMedic best prediction 51
4.13 Error map for U-Net predicting the OASIS data 52

ix

4.14 Error map for U-Net predicting the LBPA40 data 52
4.15 Error map for U-Net predicting the St. Olavs data 52
4.16 Error map for the CNN predicting the OASIS data 53
4.17 Error map for the CNN predicting the LBPA40 data 53
4.18 Error map for the CNN predicting the St. Olavs data 53
4.19 Error map for DeepMedic predicting the OASIS data 53
4.20 Error map for DeepMedic predicting the LBPA40 data 54
4.21 Error map for DeepMedic predicting the St. Olavs data 54
4.22 Box plot of the dice scores when the architecture are trained on equal amounts

of data from each data set . 55
4.23 Box plot of the dice scores when the architecture are trained on data that was

not resampled . 57
4.24 The CNN with batch size 4 . 57
4.25 The CNN with batch size 16 . 58
4.26 3D U-net with batch size 4 . 59
4.27 3D U-net with batch size 8 . 60
4.28 Best prediction of LiTS data set from DeepMedic 61
4.29 Best prediction on LiTS data set from CNN 61

A.1 Accuracy graph CNN only OASIS . 85
A.2 Accuracy graph CNN only St. Olavs . 86
A.3 Accuracy graph CNN only LBPA40 . 86
A.4 Accuracy graph U-Net only OASIS . 87
A.5 Accuracy graph U-Net only St. Olavs . 87
A.6 Accuracy graph U-Net only LBPA40 . 88
A.7 Accuracy graph DeepMedic only OASIS . 88
A.8 Accuracy graph DeepMedic only St. Olavs 88
A.9 Accuracy graph DeepMedic only LBPA40 . 89
A.10 Accuracy graph CNN trained on LBPA40 and St. Olavs validated on OASIS . . 89
A.11 Accuracy graph CNN trained on LBPA40 and OASIS validated on St. Olavs . . 90
A.12 Accuracy graph CNN trained on OASIS and St. Olavs validated on LBPA40 . . 90
A.13 Accuracy graph U-Net trained on LBPA40 and St. Olavs validated on OASIS . 91
A.14 Accuracy graph U-Net trained on LBPA40 and OASIS validated on St. Olavs . 91
A.15 Accuracy graph U-Net trained on OASIS and St. Olavs validated on LBPA40 . 92
A.16 Accuracy graph DeepMedic trained on LBPA40 and St. Olavs validated on

OASIS . 92
A.17 Accuracy graph DeepMedic trained on LBPA40 and OASIS validated on St.

Olavs . 93
A.18 Accuracy graph DeepMedic trained on OASIS and St. Olavs validated on LBPA40 93
A.19 Accuracy and validation accuracy for U-Net trained on all data 93
A.20 Accuracy and validation accuracy for the CNN trained on all data 94

x

A.21 Accuracy and validation accuracy for the CNN trained on all data 94
A.22 Accuracy graph CNN trained on equal amounts of data 95
A.23 Accuracy graph U-Net trained on equal amounts of data 95
A.24 Accuracy graph DeepMedic trained on equal amounts of data 96
A.25 Accuracy graph CNN trained on not resampled data 96
A.26 Accuracy graph U-Net trained on not resampled data 97
A.27 Accuracy graph DeepMedic trained on not resampled data 97

B.1 First convolutional layer of U-Net . 99
B.2 Second convolutional layer of U-Net . 100
B.3 First max-pooling layer of U-Net . 100
B.4 Third convolutional layer of U-Net . 101
B.5 First convolutional layer of the CNN . 101
B.6 First max pooling layer of the CNN . 101
B.7 Second convolutional layer of the CNN . 102
B.8 Third convolutional layer of the CNN . 102
B.9 Pathway 0 DeepMedic convolutional layer 1 102
B.10 Pathway 0 DeepMedic convolutional layer 2 102
B.11 Pathway 0 DeepMedic convolutional layer 3 103
B.12 Pathway 0 DeepMedic convolutional layer 4 103
B.13 Pathway 1 DeepMedic convolutional layer 1 103
B.14 Pathway 1 DeepMedic convolutional layer 2 103
B.15 Pathway 1 DeepMedic convolutional layer 3 104
B.16 Pathway 1 DeepMedic convolutional layer 4 104

xi

xii

Abbreviations

CNN Convolutional neural network. ix, 2, 3, 8, 13–15, 19–22, 40, 72
CPU Central Processing Unit. i, 15, 39, 40
CRF Conditional Random Field. 33, 76
CT Computed Tomography. 3, 7, 21, 27

FM Feature Map. 14, 15, 22, 31, 32

GPU Graphics Processing Unit. i, iv, vii, 15, 23, 34, 36, 39, 40, 70, 71

KLD Kullback-Leibler divergence. 11, 28, 37, 44, 45

MRI Magnetic Resonance Imaging. i, ii, 2, 3, 5–8, 18–20, 65, 67–69, 71

RQ Research Question. 3, 66, 68, 71, 72

xiii

xiv

Chapter 1
Introduction

1.1 Motivation and problem description

Brain extraction or skull stripping is the task of producing a brain mask that marks pixels or
voxels that constitutes the brain in a medical image. Voxel being an image element in 3D space
unlike a pixel which is an image element in 2D space. There are many reasons for why skull
stripping is an important task in medical imaging segmentation, Kleesiek et al. (2016) lists some
these: cortical structure analysis (Thompson et al., 2001), cortical reconstruction (Tosun et al.,
2006), thickness estimation (MacDonald et al., 2000), image registration (Klein et al., 2010)
and tissue segmentation (de Boer et al., 2010). This is why there have been developed many
methods that perform skull stripping over the years (Eskildsen et al., 2012). Many of these
methods use complex algorithms to determine the brain mask and some of them require a lot of
tuning to use. Additionally, these methods struggle when faced with tumors and other medical
imaging modalities.

Deep learning is a machine learning method that solves problems in a similar manner to how a
human brain solves problems. This past decade it has become a very powerful instrument for
solving various tasks such as speech recognition, language processing and numerous imaging
tasks. It has also opened up many possibilities for more accurate tools for tasks such as predic-
tion, segmentation and analysis of medical images. Deep learning methods are also relatively
easy to deploy and a deep learning architecture that is built for one task can be trained to work
on an entirely different problem. Another advantage that deep learning methods have is that
they require little tuning for them to work well. Deep learning can therefore be used to make
more accurate and unbiased tools that perform skull stripping.

Skull stripping methods based on deep learning will learn how to determine the brain masks
based on a training set of already segmented brain masks with little tuning required. The paper
Kleesiek et al. (2016) introduces a method for skull stripping that uses a fully Convolutional
neural network. Their method is compared with six existing skull stripping methods on three

1

Chapter 1. Introduction

different data sets. It performs better than all of the conventional methods in some metrics and
Kleesiek et al. (2016) also says that their method should work well on other medical image
modalities in contrast to the existing methods.

In the precursor to this master thesis (Eide, 2017) a reimplementation of the CNN from Kleesiek
et al. (2016) was used to do skull stripping experiments. This architecture was tested on data
from LBPA40 (Shattuck et al., 2008) and data from OASIS (Marcus et al., 2007). One research
question in Eide (2017) was:

“How good are brain extraction predictions when you train a model on data from one source
and test the model on data from another source?”

This master thesis aims to further expand upon this research by using three different deep learn-
ing architectures and three different data sets.

In this master thesis, the CNN used in Kleesiek et al. (2016), the 3D U-Net introduced in Çiçek
et al. (2016) and DeepMedic introduced in Kamnitsas et al. (2016) will be used to perform skull
stripping. As mentioned earlier, the CNN was reimplemented in Eide (2017), reimplemented
in Eide (2017), the 3D U-Net was reimplemented for this thesis and the DeepMedic was tested
using the existing implementation1. The architectures will be trained and tested on MRI images
from the OASIS data set, LBPA40 data set and data from the St. Olavs hospital in Trondheim,
Norway.

All of the patients in the St. Olavs data set have brain tumors. The existing solutions that are
not based on deep learning do not handle this well. Therefore, it would be interesting to see
if deep learning can be used to tackle this problem. In Kleesiek et al. (2016) they showed that
their deep learning method was better compared to existing skull stripping methods at handling
images of patients with tumors in their data set. Consequently, one purpose of this thesis is to
explore if deep learning methods can handle the tumor data from St. Olavs adequately.

There are Varying amounts of data in the three data sets used in this thesis. There are many
more MRI images in the data from the St. Olavs hospital compared to the other two data sets.
This unbalanced composition of the data sets can cause problems for deep learning methods. It
can cause problems such as the deep learning methods being very good at predicting on data
from the largest data set, but poorer on data sets with the fewest amount of images. Also, the
MRI images in OASIS, LBPA40 and the St. Olavs data set all have different voxel sizes. This
enhances the variation between the data sets causing the deep learning methods to have more
complications with finding a way to relate the data from each data set with each other. Kleesiek
et al. (2016) also mentioned that a significantly different resolution can have a notable impact
on the predictions for their implementation. This thesis will explore how the different deep
learning architectures cope with this variability in the data sets.

Deep learning methods usually take a long time to train for them to produce adequate results.

1https://github.com/Kamnitsask/deepmedic

2

https://github.com/Kamnitsask/deepmedic

1.2 Project goals and Research Questions

Faster training usually requires more expensive hardware. In this thesis, the U-Net and the CNN
will be trained on different hardware configurations to see how long their training times are. The
different hardware configurations will then be assessed to get an idea why some configurations
where faster than others.

Finally, the architectures will be used to do liver segmentation. The data for this experiment are
Computed Tomography (CT) scans from the LiTS 2017 data set2. This was done to see if the
architectures used for skull stripping can also be used on another medical imaging segmentation
problem.

1.2 Project goals and Research Questions

The overall goal for this thesis is to further explore deep learning applied to skull stripping,
especially on data from the St. Olavs hospital. Another goal for this thesis is to examine how
different hardware configurations impact the training time of different CNNs. Also, this thesis
will test if these deep learning methods can be used to solve liver segmentation. Based on the
problem description in the previous section and the goals, the following Research Question
(RQ) have been defined and will be addressed in this thesis:

RQ 1 How important is it for different deep learning architectures to train on data from
the same source before performing skull stripping?

RQ 2 How important is the balance between the amount of data in each data set for
deep learning architectures when doing skull stripping?

RQ 3 Is it important for deep learning architectures to have MRI scans with the same
voxel size when performing skull stripping?

RQ 4 How will different hardware configurations impact the time it takes to train a deep
learning method?

RQ 5 Can these deep learning architectures also be used to do liver segmentation?

1.3 Contributions

The contribution of this thesis is a comprehensive analysis of deep learning applied to skull
stripping. Three different deep learning architectures were tested on various compositions of
three different data sets containing MRI scans of the head. One of the data sets used in thesis
contains highly variable structures, tumors, making the data set extra difficult to do skull strip-
ping on. The experiments conducted in this thesis show that the deep learning architectures are
able to produce good results on this data set, if they were first trained on the data set. Exper-
iments also show that some of the deep learning architectures were also able to perform liver

2https://competitions.codalab.org/competitions/17094

3

https://competitions.codalab.org/competitions/17094

Chapter 1. Introduction

segmentation on a data set containing CT scans of the abdominal region. This shows that the
architectures were able to perform other segmentation tasks on other anatomical structures and
on other imaging modalities.

1.4 Thesis structure

This master thesis is divided into seven chapters. The first chapter gives an introduction to the
project and lists the research questions for this thesis. The second chapter gives an introduction
to the theory used in this master thesis. The third chapter presents the methods and the exper-
iments performed. In the fourth chapter the results are presented and in the fifth chapter the
results are discussed in light of the background theory. The sixth chapter is the conclusion and
it also presents future work that can be done to improve upon the methods used in this thesis.

4

Chapter 2
Background

This chapter introduces some of the underlying theory used in this thesis. It also contains a
review on methods used for skull stripping and a review on deep learning methods that are used
for analyzing medical images.

2.1 Skull stripping

Skull stripping is the process of removing non-brain tissue from a medical image of the brain,
such as an MRI scan. It is a segmentation task where pixels or voxels in the image are labeled
either as brain or as non-brain. As previously mentioned in the introduction skull stripping is
an essential part for many medical image analysis applications that study the brain. Many of
these applications rely on accurate segmentations of the brain to produce good results. Also,
the skull stripped images are easier to do further analysis on for applications that are dependent
on studying just the brain. A good and non-biased segmentation method for skull stripping is
therefore a very valuable tool.

Figure 2.1 shows the coronal, sagittal and axial slices, respectively, of a MRI scan. The voxels
that constitute the brain are colored in blue.

Blue marks where the brain is in the MRI scan

Figure 2.1: Skull stripping example.

5

Chapter 2. Background

There are some disagreements in the field on what exactly a brain mask should include and what
it should not include. The two major different camps are illustrated in figure 2.2.

(a) Full slice of a MRI scan. (b) Skull stripped brain including the cerebellum and the
brainstem. (c) Skull stripped brain without the cerebellum and the brainstem. Iglesias et al.

(2011)

Figure 2.2: Skull stripped brain example.

2.2 Liver segmentation

Liver segmentation is the task of finding the liver pixels or voxels in an image. Usually the
liver image is a MRI scan or CT scan. Liver segmentation can be an important pre-step for
many applications such as diagnosing hepatic diseases (Ling et al., 2008) and surgical planning
(Yang et al., 2017). Liver segmentation is a challenging task, especially on 3D data, because of
the broad variations in liver shapes (Ling et al., 2008). Figure 2.3 shows a liver segmentation
example of a CT scan.

Blue marks where the liver is in this CT scan of the abdominal region

Figure 2.3: Liver segmentation example.

6

2.3 Imaging modalities

2.3 Imaging modalities

2.3.1 MRI

Magnetic Resonance Imaging (MRI) is an imaging technique that is regularly used for taking
images used for medical analysis (Preston, 2006). The images are obtained by using a strong
magnetic field to align hydrogen atoms inside the body. Radio frequency energy from the
machine is then used to excite the hydrogen atoms. After the machine stops emitting radio
frequency energy, the hydrogen atoms return to their resting state causing the atoms to emit
energy. The energy is then read by antennas inside the MRI machine. Based on the energy that
the atoms emit, a grayscale image is produced. The different shades in the image correspond
to different energy levels that the MRI machine has read. Different shades correlate to different
tissue types in the image.

Different tissue types can be highlighted in a MRI image by varying the time between each
pulse of radio frequency, i.e. the repetition time (TR), and when the energy that the atoms emit
are read, i.e. the time to echo (TE). Usually the images are weighted in three different ways:

• T1- short TR and TE
• T2- long TR and TE
• FLAIR- very long TR and TE

For analyzing the brain, MRI scans are the most used modality (Akkus et al., 2017). Though
other methods like CT and PET exist, MRI images are often preferred because it offers high
resolution images with a high contrast between soft tissues.

2.3.2 Computed Tomography

Computed Tomography (CT) scans are obtained by using X-Rays to build an image of a patient1.
Conventional X-ray scans are produced by firing electrons onto a target made of a specific
material. When the electrons hit the target, they release energy in the form of X-rays. The
generated X-rays are targeted at a patient with a film placed on the opposite side of the X-ray
generator. When the X-rays reach the film, the film is darkened. Different structures inside the
patient are then highlighted on the film. Bones are white since they absorb almost all of the
X-rays passed through the patient, while soft tissues are dark since almost all of the X-rays pass
through.

CT scans can produce 3D images by using X-rays on different angles of the object. This is
done by having X-ray beams go through the object and X-ray detectors on the opposite side of
the beam. These X-ray detectors replace the film used in conventional X-Ray scans. Multiple

1https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct

7

https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct

Chapter 2. Background

images from multiple angles are taken by rotating the beam and the detectors around the object.
A 3D image can then be constructed by stacking the different 2D images together.

2.3.3 Storing of medical image data and image formats

There exist different ways of storing medical images. One of the most popular formats is
storing them as NIfTI files. This format was created by Neuroimaging Informatics Technology
Initiative (NIfTI)2. The files then contain the data itself as a 3D or 4D tensor and a standardized
way of storing the metadata of the image including resolution, dimension and the position of
the image relative to the MRI machine3. The information related to the position and dimensions
of the image is stored in a matrix called the affine matrix.

2.4 Deep neural networks

This section describes some of the basic theory behind deep learning. A general overview of
artificial neural networks is presented first and CNNs are presented later in this section. The
book Goodfellow et al. (2016) presents a more thorough review on deep learning methods and
their applications. The theory for this section is also based on the book Nielsen (2015).

2.4.1 Neural network

Simply explained, a neural network is a machine learning method that learns how to solve a
given problem by tuning its parameters to fit the problem’s underlying function. Its parameters
are tuned by training it with examples of the problem and its corresponding solutions. When
the network is fed examples it has not seen before it can make predictions on what the output
should be. Usually neural networks have many parameters, this gives them a very a high repre-
sentational capacity. In fact, a neural network can represent every existing function given that
it has enough parameters. This gives them the ability to learn many of features of the problem
they are supposed to solve.

An artificial neural network consists of an input layer, an output layer and most of the time it also
has hidden layers. Figure 2.4 gives an example of a fully connected neural network with three
layers. Each layer is connected to a layer “upstream” and a layer “downstream” by modifiable
weighted connections, except the input layer which is not connected to a layer upstream and the
output layer which is not connected to a layer downstream. Each layer consists of neurons that
computes one output based on outputs from the neurons in the previous layer. If the network

2https://nifti.nimh.nih.gov/
3http://nipy.org/nibabel/coordinate_systems.html

8

https://nifti.nimh.nih.gov/
http://nipy.org/nibabel/coordinate_systems.html

2.4 Deep neural networks

Figure 2.4: Example of a simple neural network with three layers.

is fully connected the neurons compute the output based on all the outputs from neurons in the
previous layer.

2.4.2 Neuron

Equation 2.1 shows how a neuron computes its output based on input from a layer upstream.
In the function σ is the activation function, w is the weights going in to the neuron from the
previous layer, a is the output from a neuron in the previous layer and b is the bias of the neuron.
This means that the output of a neuron is a function of the sum of all outputs from neurons in
the previous layer times their weighted connections plus a bias.

alj = σ(
∑
k

wljka
l−1
k + blj) (2.1)

2.4.3 Activation function

The activation function of neurons gives a restriction on the values that the neuron can output.
Different activation functions can be beneficial for different tasks and they can have certain
problems on other tasks.

Rectified Linear Unit

ReLU is one of the most popular activation function in use today. It is defined by this equation:

9

Chapter 2. Background

Figure 2.5: Caption.

σ(z) = max(0, z) (2.2)

With this equation the neuron outputs its computed value if it is over zero, otherwise it outputs
zero.

PReLU

He et al. (2015) introduced the PReLU activation function. It is defined as follows:

aix for x ≤ 0

x for x > 0

Where ai is a learned parameter which is tuned during the training of the network. If the term
ai is 0, PReLU becomes equal to ReLU.

Softmax

Softmax is an activation function often used in the last layer of a neural network. It outputs the
probability of zj given all other z. This is very useful when the network is supposed to do a
classification on the inputs. The network can then output a probability vector where each value
in the vector is the networks calculated probability that the input belongs to that class. The
formula for softmax is given by:

σ(~z)j =
ezj∑K
k=1 e

zk
for j = 1, ..., K (2.3)

Were zj is the output from neuron j and K is the number of neurons in the layer.

10

2.4 Deep neural networks

2.4.4 Loss function

The loss function measures how well a network is predicting. It is calculated based on the
prediction the network makes and the corresponding truth or label for the data. Mean squared
error is one of the simplest. It is given by this function:

MSE =
1

n

∑
x

(y(x)− a)2 (2.4)

y(x) is the vector of desired labels for case x and a is the vector of the actual outputs from the
network. n is the number of cases that the error is calculated for. The larger the error in the
output from the network, the larger MSE is.

Kullback-Leibler divergence

The formula for Kullback-Leibler divergence (KLD) is:

DKL(P ||Q) = −
∑
i

P (i)log(
Q(i)

P (i)
) (2.5)

P and Q are both probability distributions. KLD measures the distance between the two prob-
ability distributions. If P and Q are equal the formula outputs 1 and if they are not equal the
formula will output a value between 0 and 1.

2.4.5 Training

A neural network is trained by giving it example cases and their corresponding solutions. The
network computes the prediction and the loss for the example cases. The parameters in the
network are then updated using gradient descent with backpropagation. This algorithm basically
computes how much each parameter contributes to the loss function. The parameters are then
updated so that the loss decreases.

Each parameter’s contribution to the loss function is estimated to be the gradient loss with
regards to the parameter. So given parameter θ its gradient with regards to loss function C

is ∂C
∂θ

. Each parameter is updated by their negative gradient multiplied by a given learning
rate: θn+1 = θn − η ∂C

∂θ
where η is the learning rate. To compute all the gradients for each

parameter the learning method uses an algorithm called backpropagation. Briefly explained,
backpropagation works by computing the gradients for the output layer. These gradients are
then used to compute the gradients for the previous layer. This continues until it has computed
the gradients for all the parameters.

11

Chapter 2. Background

This training process where parameters are updated is continued until the network produces
satisfactory results on the training data or it is stopped after a predetermined number of updates
of the parameters. The amount of training a network must do is generally problem specific. The
training is usually divided into epochs. One epoch is defined as one cycle where the network
has seen all the data in the training set.

The learning rate regulates how fast a network learns. It is a value between 0 and 1. If the
learning rate is too low the network will not learn fast enough. If the learning rate is too big the
network may never learn the problem’s underlying function and instead the loss will jump up
and down and gradient descent will never find the parameters that gives the minima of the loss
function. When the network is doing this, it is said that the training is diverging.

Batch training

The network can update its parameter after seeing more than one example. This is called batch
training. When batch training is used the network is fed a batch of example cases, the loss is
computed and averaged for the batch. The amount of examples fed into the network is called
the batch size. Since the loss is averaged over a set of example cases, instead of just one
example case, it becomes a more accurate estimation of how close the network’s function is
to the problem’s underlying function. The updates to the parameters are therefore more stable.
Consequently, the network can learn more smoothly. A larger learning rate can also be used
when a larger batch size is used.

Batch normalization

Batch normalization works by normalizing the outputs of the previous activation layer (Ioffe
and Szegedy, 2015). This reduces the networks internal covariate shift. Covariate shift means
that the small changes to the networks parameters gets exaggerated in the layers downstream.
By reducing the covariate shift the network can learn faster.

Optimizers

There are different alternatives to plain backpropagation for training neural networks. Sebastian
(2016) provides an overview of some of the alternatives. By using momentum, the updates can
be estimated to be larger or lower for the parameters for each update step. It does this by adding
a fraction of the last update to the current update value. Nesterov accelerated gradient is an
expansion on this. It approximates future values of the parameters to be updated. Then it uses
this to update the parameters.

Optimizers can also work by adjusting the learning rate for individual parameters. One of the
first optimizers that used this is called Adagrad. This optimizer makes larger updates to features

12

2.4 Deep neural networks

that are sparser in the data. This makes it suitable to use when the data set is small. It does this
by scaling the learning rate for each parameter by the sum of its past gradients. RMSProp is
another optimizer. It is similar to Adagrad, but instead of using the sum of its gradient history
to scale the learning rate it scales the learning rate by a running average of the recent gradients
for the parameter. Adam is one of the most recently introduced optimizers. This optimizer uses
both a first order momentum and a second order momentum to scale the learning rate for each
parameter.

When using optimizers, such as Adam, the initial learning rate of the network becomes a less
important factor. This is because the adaptive scaling of the learning rates for each parameter is
often better than setting a fixed learning rate for the entire model.

2.4.6 Convolutional neural networks

A Convolutional neural network (CNN) is a deep learning method that is very well suited for
tasks related to analyzing images. CNNs are much better suited for these kinds of tasks in
part because its layers are not fully connected. Because of this every neuron does not have to
calculate values from every part of the image. Instead, it only needs to process parts of the
image. This is favorable because not all parts of the image contains useful information when
looking for a specific feature. A CNN usually has three types of layers: convolutional layers,
pooling layers and fully connected layers.

Figure 2.6: CNN example from Nielsen (2015).

Convolutional layers

A 2D convolutional layer computes its output given this formula called a convolution:

aj,k = σ(b+
∑
l

∑
m

wl,maj+l,k+m) (2.6)

13

Chapter 2. Background

σ is the activation function, b is the bias, wl,m is the weight and aj+l,k+m is the output from a
previous layer. The size of l and m gives the number of neurons used to calculate a neuron in
the next layer. Figure 2.6 illustrates this. In the picture the lines are the weights and the dots
to the left constitutes the activations from the previous layer. The weights and bias constitute a
kernel. l and m gives the size of the kernel and is said to be the kernel size.

Equation 2.6 is slided across the image according to the size of the stride. If the stride is 1 the
kernel goes over the image one step at a time.

The output of this operation is called a Feature Map (FM). It is dubbed this because the kernel
detects features in the image. For example if the CNN was trained to detect if an image contains
a human face one kernel could be used to detect if eyes are present and another kernel could be
used to detect if a mouth is present. A convolutional layer can produce many FMs by having
many kernels. Consequently, CNNs can be trained to detect many different features in an image.

A convolutional layer downstream from another convolutional layer uses all of the previous
layer’s FMs to produce a set amount of FMs. If the input was a 2D image and the first convolu-
tional layer outputs 3 FMs, the kernel in the next layer will be of size l ∗m ∗ 3.

Transposed convolution

In contrast to a normal convolutional layer a transposed convolutional layer produces an output
larger than its input. It does this by performing a normal convolution, but it pads its input.
The padding is done so that the output size is the same as if the convolution was performed on
the output it would produce an FM the same size as the input to the transposed convolutional
layer. Transposed convolutional layers, in contrast to simply up sampling the FM, also contains
parameters that can be changed to minimize the loss function. A more detailed explanation can
be found in Dumoulin and Visin (2016) and Zeiler et al. (2010).

Pooling

Pooling layers are layers in a CNN that take each FM produced by a convolutional layer and
produces a condensed version of them. One of the most used version of this is max-pooling.
Max-pooling outputs the largest value in each segment of a given size in the image. The size
of the segment is decided by a pool size. Stride is used to denote how the operation is slided
across the image. F. ex. given a 2D max-pooling layer which has stride that equals 1 and a pool
size that equals (2, 2), the max-pooling layer outputs the largest value in every (2, 2) segment
of its input. If the stride was 2 the pooling operation would be moved 2 pixels to the right or 2
pixels down for each operation.

When max-pooling is used it is said that the network only keeps the features that it deems to be
most important. One drawback of using pooling layers is that the CNN loses information about

14

2.5 Generalization, overfitting and underfitting

the exact location of features.

Padding

To make the output of a convolution equal in size to the input the image can be padded before the
convolution. Equal in size meaning the size of the FMs and not how many FMs are produced.
This is also useful for making sure the convolution processes all the values in its input equally
since normally the inputs at the edge of a tensor are only used for one convolution operation.

Patch training

When patch training is used the network is fed parts of the image instead of feeding it whole
images. For example, if the image is (100, 100, 100) the network can be fed patches of size
(20, 20, 20) for training and predicting. This is done because of memory constraints on the
machine that the network is running on, or that it is not useful for the network to operate on the
whole image.

2.4.7 Skip connections

A connection from a layer in a neural network to a layer downstream in the network, except the
layer immediately downstream from the layer, is called a skip connection. In this case the layer
in the deeper part has inputs from both the previous layer and a layer that is further back in the
network. This can be useful for ensuring that information is kept when data is passed through
the layers of a neural network. For very deep neural networks this can especially be the case.

2.4.8 GPU training

The computations done for a CNN are heavily parallelizable (Kim et al., 2017). Many compu-
tations do not have to be computed in series, but instead they can be computed in parallel. For
example to compute a FM, kernel computations are done that are not dependent on one another
in the same layer. Because of this GPUs are generally much faster for training CNNs compared
to CPUs. CPUs are more designed to do fast processing on data in sequence while a GPU is
designed to do many parallel computations at once.

2.5 Generalization, overfitting and underfitting

A network generalizes well when it makes good predictions on data it has not seen before. This
is a very important measure of how well a network performs. Overfitting is when a network

15

Chapter 2. Background

makes accurate predictions on data it has already seen before, but it makes bad predictions on
data it has not seen. Overfitting can be expressed as:

Two machine learning models H and H ′ are trained on the same training data and tested on the
same testing data.

Errortrain(H) < Errortrain(H
′) (2.7)

Errortesting(H) > Errortesting(H
′) (2.8)

If equation 2.7 and 2.8 holds then H overfits on the training data compared to H ′ because it has
a smaller error on the training data, but a larger error on the testing data.

A network underfits the data when it does a bad job at approximating the underlying function of
the data. This can happen if the network is not large enough. If it is not large enough it may not
have the representational capacity to express the problem’s underlying function. Underfitting
can also happen if the network is not trained long enough on the data.

Overfitting can occur when a model does not have enough data to train on. The network can then
learn to represent the data as well as noise contained in the data. Good methods for preventing
this kind of behavior in machine learning exists and some of the methods are discussed in the
next subsection.

2.5.1 Regularization

Regularization techniques are a set of methods developed to avoid overfitting and produce mod-
els that generalize better to the problem’s underlying function.

L1 and L2 regularization

These regularization techniques work by adding to the cost function a value determined by how
large the weights in the network are.

L1:
C = C0 +

λ

n

∑
w

|w| (2.9)

L2:
C = C0 +

λ

2n

∑
w

w2 (2.10)

16

2.6 Training, test and validation data

λ here is the regularization parameter. L1 and L2 regularization works by making the network
learn smaller weights. With smaller weights the behavior of the network will be less volatile to
small changes in the input. This makes the network better at handling noise that the data may
have.

Dropout

Dropout is a regularization technique that works by deleting a percentage of the neurons in a
network in a given layer. The percentage of deleted neurons is called the dropout rate. The input
is then propagated through the network and the weights are updated. In the next update step
the deleted neurons are restored and a new set of neurons are deleted. The process of updating
the weights based on a new input is then repeated. These steps are repeated for as long as the
network is training.

When the network is used for predicting, the weights are scaled down according to how large
the dropout rate is. This is done because the weights are tuned to the problem when less weights
are present.

Dropout works because, essentially, it trains many different networks with different neurons. It
then uses the average of these networks to do predictions. The "individual networks" may then
have overfitted different parts of the data, but most likely the averaging works so that the final
network does not overfit the data.

Artificially expanding the training data

Artificially expanding the training data or data augmentation works by modifying the data a
little, but the modification must be so that it still is possible to classify the data the same in the
real world. This can improve the machine learning method’s ability to classify inputs partially
because the available amount of data to train on becomes greater. If the machine learning
method is supposed to classify images, the images could be rotated. For speech, background
noise could be added. It is however important that the changes to the data mimics real world
modifications that can happen to the data.

Expanding the training data also has a regularizing effect on the model because the model should
be more robust to changes in the data and it should be more difficult for the model to overfit the
training data because there is much more of it.

2.6 Training, test and validation data

To avoid a model overfitting the data and to get good generalization the available data is often
split into three sets. The training data is used for training the model and the test data is used to

17

Chapter 2. Background

score how well the final model is performing. Validation data is used for tuning the hyperpa-
rameters. It can also be used to determine when to stop the training of a neural network by for
example, ending the training when the error on the validation data is under a threshold. When a
model has a low error on the training data, but a high error on the test data, the model is said to
overfit the training data.

2.7 Literature study

In this section previous work that has been done on medical imaging segmentation will be de-
scribed. This section will first provide an overview of previous methods used for skull stripping,
then a general exploration on where deep learning has been used for analyzing brain images.
The third part will look at deep learning methods that have been used for liver segmentation.
The last section will describe a novel deep learning architecture called capsule networks.

2.7.1 Previous methods used for skull stripping

Many programs that perform skull stripping have been developed. According to Kleesiek et al.
(2016) some of the most popular ones include:

• BET (Smith, 2002)
• 3DSkullstrip
• Hybrid watershed algorithm (HWA) (Ségonne et al., 2004)
• Brain surface extractor (BSE) (Perona and Malik, 1990)
• ROBEX (Iglesias et al., 2011)
• BEaST (Eskildsen et al., 2012)

BET is one of the most widely used since it is a quick and easy skull stripping tool to use.
The solution works by having a deformable model at the center of gravity for the image. The
deformable model is then grown until it fits the supposed borders of the brain. This program
works most of the time, but it can struggle when it is faced with tumors because it hinders the
growth of the deformable model (Speier et al., 2011). 3DSkullStrip is similar to BET, but it
also uses points outside the center of gravity to grow the deformable model. 3DSkullStrip is
part of AFNI which is a tool for analyzing MRI images (COX, 1996). HWA uses a watershed
algorithm combined with a deformable surface model to create the brain mask. BSE uses a
region proposal algorithm to find the brain mask. ROBEX uses random forests and a point
distribution model. BEaST uses a library of data and the sum of squared differences to estimate
the brain mask. BEaST will perform better if its library contains data from the data set it is
supposed to do skull stripping on.

All of these methods reportedly perform unsatisfactory when faced with brain tumors (Speier
et al. (2011), Kleesiek et al. (2016), Eskildsen et al. (2012)). What’s more is that all of them,

18

2.7 Literature study

except BEaST and ROBEX, require the user to tune parameters to get a satisfactory result. This
can cause problems since the brain masks are often used for further analysis. Unreliable tools
can hinder the reproducibility of these analyses. Further, all these methods, except BET, were
developed to only work on T1-weighted scans.

2.7.2 Deep learning architectures used for analyzing brain images

According to Ker et al. (2018) the advance of deep learning has produced many benefits for the
medical field. They also state that it has the potential to alter how the field is practiced in the
coming years. This is also backed by Litjens et al. (2017) who also remarked that the amount
of papers published on this subject has exploded in the recent years. Ker et al. (2018) also
mentions several papers that apply deep learning to medical imaging applications. Of these,
there are many papers that cover segmentation of medical images and most are concerned with
doing segmentation on images of the brain. Ker et al. (2018) also recommends the review paper
by Akkus et al. (2017) which provides a survey on different architectures used for analyzing
brain MRI scans. According to Akkus et al. (2017) some of the most popular types of CNN
architectures used for brain MRI segmentations are:

• Patch-Wise CNN Architectures
• Semantic-Wise CNN Architectures
• Cascaded CNN Architectures

The patch-wise approach feeds the architecture with patches of the image and makes predictions
on them. This is currently the most popular approach for analyzing brain MRI images. A twist
on this is using multiple inputs for the patches where each patch is processed by a different
pathway of the CNN. The CNN’s pathways process patches of different size, but the patches
are used for predicting the same pixels or voxels. These types of CNNs are called multiscale
CNNs. Cascaded CNN architectures are two CNNs combined where one is used for predictions
and one is used to tweak the results to make them better. Semantic-wise CNN predicts a class
for each pixel or voxel on the whole input image. The architectures include one encoder part
and one decoder part. The encoder part uses convolutions and pooling to extract features from
the image. The decoder part uses upsampling and transposed convolutions on the higher-level
features from the encoder part. The encoder and the decoder path can be connected with skip
connections so that the decoder part can also extract lower level features from the encoder part.

Akkus et al. (2017) also divide the architectures based on which problems they solve. One
for segmentation of normal brain structure and one for segmentation of brain lesions. Most
of the architectures presented for the former are 2D CNNs with patch-wise predictions. One
architecture used a semantic-wise CNN architecture (Nie et al., 2016). The architectures used
for segmenting brain lesions were also mostly patch-wise. Six architectures were 2D CNNs and
three architectures were 3D CNNs. One of the proposed architectures is Zhao and Jia (2016)
which predicts brain tumors based on 2D slices of sagittal, coronal and axial planes of MRI

19

Chapter 2. Background

scans. The network is trained on 2D images from the different planes. When the network is
used for segmentation it predicts 2D images which are then combined to make a 3D image
of the proposed tumor location. Because the architecture is a 2D CNN the network is much
faster compared to a 3D CNN, since 3D CNNs are generally much more resource heavy to run.
Their results were comparable to other machine learning algorithms on BRATS 2013, which is
a brain tumor segmentation challenge. Kamnitsas et al. (2017) presents a multiscale CNN. The
CNN uses two pathways where one stream of the architecture operates on a normal resolution
patch, while the other stream operates on a lower resolution patch. The architecture had the
top-ranking performance on BRATS 2015.

In the end, Akkus et al. (2017) state that even though deep learning is relatively new in its
usage on MRI scans it outperforms most of the conventional machine learning methods that
are used. This is explained by deep learning architectures’ ability to handle complex structures
without much manual tuning. Some of the challenges ahead for deep learning applications in
the medical imaging field is the availability of data that the networks can train on. This can be
somewhat mitigated by using data augmentation. Transfer learning is also proposed. This is
when a network is first trained on data that is not related to the data it is going to predict on.
Afterwards the network is trained on the data which it is supposed to predict on. This can help
the network do better predictions because the network’s parameters are more tuned for doing
predictions when the network starts training on the real data.

Ker et al. (2018) also mentions some CNN architectures used for MRI segmentations. One
of them is an architecture called V-Net proposed by Milletari et al. (2016) that is inspired by
U-Net introduced in Ronneberger et al. (2015). This architecture is a 3D CNN compared to the
original U-Net which is a 2D CNN. The architecture was used to segment MRI prostate images
and got a score similar to other top scoring architectures on the data set. Milletari et al. (2016)
also introduced a new type of loss function based on the dice score. The architecture is trained
by trying to maximize the dice score for its predictions.

Ker et al. (2018) also mentions a study by Casamitjana et al. (2016). Casamitjana et al. (2016)
compare three different 3D CNN architectures. One architecture is a single scale 11 layer
CNN inspired by VGG-16 (Simonyan and Zisserman, 2014) with skip connections. The other
architecture is inspired by U-Net. It uses 3D convolutions instead of 2D. The third and final
architecture is inspired by DeepMedic and uses a multi scale CNN that aims to gather both the
high and the low-resolution features of the image. All architectures were designed so that they
could do full predictions in one forward pass during test-time. The architectures were tested on
the BRATS 2015 data set. The architecture inspired by DeepMedic performed best.

Ker et al. (2018) also lists another architecture inspired the original U-Net. The implementation
is presented in a paper by Çiçek et al. (2016). Like the original 2D U-Net this implementation
also has one path that uses max-pooling and one part that uses up convolutions. These are
respectively called the analysis path and the synthesis path. The architecture works by doing
full processing on the images in one forward pass. The implementation was tested on Xenopus

20

2.7 Literature study

kidney data. The paper states that they achieved accurate results on the data, even though the
data was very variable.

2.7.3 Deep learning for liver segmentation

SLIVER074 is a liver segmentation challenge that has been running since 2007. Before 2016
the entries were mostly traditional image analysis methods, but in recent years deep learning
methods have also placed high in the rankings (Litjens et al., 2017). The top spot in SLIVER07,
however, still seems to be traditional image analysis methods5.

Litjens et al. (2017) presents some methods used for liver segmentation. Most of the methods
are 2D CNNs. Ben-Cohen et al. (2016) presents a 2D CNN based on the CNN presented in
Simonyan and Zisserman (2014) also known as the VGG-16 architecture. Some modifications
are made to the network such as discarding the final classification layer and using convolutions
instead of fully connected layers. Also, the architecture is appended with two up-sampling
layers so that the prediction size is equal to the input size. Before each up-sampling layer skip
connections are used to connect to pooling layers upstream in the architecture. The input to
the architecture are axial slices of CT images. The input images are modified to be three CT
slices, one slice above and below the input image, where the slices were interpolated using
linear interpolation. According to Litjens et al. (2017) the architecture received good results on
SLIVER07.

Another architecture mentioned in Litjens et al. (2017) is an architecture presented in Lu et al.
(2017). This architecture is a 3D CNN with 11 convolutional layers with mostly small kernel
sizes, two pooling layers and three upsampling layers. After the first convolutional layer a local
response normalization scheme is used. All layers use the ReLU activation function except the
last layer where a log-regression activation function is used. This activation function estimates
the probability of a voxel being part of a class. The prediction of the CNN is refined using
graph cut based segmentation. Lu et al. (2017) say that the method “demonstrated superior
segmentation accuracy” compared to other liver segmentation methods. According to Litjens
et al. (2017) this implementation achieved “competitive results” on SLIVER07.

2.7.4 Capsule networks

A new type of deep learning architecture used for analyzing images was introduced by Sabour
et al. (2017), it is called capsule networks. The type of network was an idea by Geoffrey Hinton
who was also the first to introduce backpropagation in deep learning. Capsule networks try to
solve problems CNNs’ have when they are faced with rotations of images that they have not
trained on yet. Capsule networks are based on the idea that the human brain contains something

4http://www.sliver07.org/
5http://www.sliver07.org/results.php

21

http://www.sliver07.org/
http://www.sliver07.org/results.php

Chapter 2. Background

called capsules which are responsible for handling detection of objects with different rotations,
size, position, shape etc.

In a capsule network neurons are replaced by “capsules”. The capsule will output a vector
instead of the scalar that a neuron outputs. The length of the output vector represents the prob-
ability that a given object exists. The capsules are used to compose layers, where much like a
CNN, the lower layers try to detect lower layer features and capsules in the higher levels detect
more complex features. In the paper the first capsule layer is composed of two convolutional
layers which output 256 FMs. The outputs of the CNN are then squashed to output vectors in-
stead of scalars. The paper also introduces an algorithm called routing by agreement. In short,
the algorithm is used for sending the output from capsules in the lower level to a specific capsule
in a higher level based on the likelihood that it belongs to the class that the capsule is supposed
to detect.

The network was tested on MNIST data, which is a data set of handwritten digits, and it achieved
state of the art performance. It was also tested on MultiMNIST, which contains overlapping
digits, where it achieved superior results compared to existing deep learning architectures.

LaLonde and Bagci (2018) presents a use of capsule networks for object segmentation. The
implementation has 95 % less parameters compared to 2D U-Net and has a slightly higher
DICE score on segmentation of pathological lungs from the LUNA16 subset of the LIDC-IDRI
database compared to existing architectures such as U-Net.

22

Chapter 3
Method

This chapter presents the chosen methods to answer the research questions. First an explanation
of the different data sets is presented. This is followed by a presentation of the three deep learn-
ing architectures used in this thesis. Next the data preprocessing steps are presented followed
by a description of how a model is trained using multiple GPUs. In section five the different
evaluation metrics are described. The final section details how the experiments were conducted
in this thesis.

3.1 Data sets

This section first describes the three different data sets used for training and testing the different
skull stripping methods used in this thesis. The data sets are: OASIS, LBPA40 and data pro-
vided by the St. Olavs hospital. Lastly, the LiTS data set, which is used for liver segmentation,
is presented.

3.1.1 OASIS

The Open Access Series of Imaging Studies (OASIS) is a project for making medical images
of the brain freely available. In this thesis the “OASIS-1: Cross-sectional MRI Data in Young,
Middle Aged, Nondemented and Demented Older Adults” data set was used. The images con-
tained in the OASIS data set have been bias field corrected (Buckner et al., 2004). The brain
masks were produced by using hidden Markov fields (Zhang et al., 2001) and then verified by
experts. Therefore, the brain masks may not be perfect.

The OASIS scans are T1-weighted and contain people of ages between 18 and 96. The data set
also contains scans from people who have Alzheimer’s disease in early stages. Brain voxels in

23

Chapter 3. Method

the brain mask are assigned values between 1 and 4, and non-brain voxels are either 0 or 5. The
brain masks include both the cerebellum and the brainstem.

For these experiments disk 1 and disk 2 in the OASIS data set were used instead of using the
whole data set. This was done in part to not have an overweight of OASIS data and also so that
the results were more comparable to the results in Kleesiek et al. (2016). They also only used
the first two disks.

Table 3.1: Dimension and voxel size for the OASIS data set.

Dimensions Vox. size Count

176x208x176 1x1x1 76

Image OAS1_0001_MR1_mpr_n4_anon_111_t88_masked_gfc_fseg from the OASIS data set

Figure 3.1: OASIS data example.

3.1.2 LBPA40

The LONI Probabilistic Brain Atlas (LBPA40) data set contains 40 T1-weighted scans (Shat-
tuck et al., 2008). The data set also includes the corresponding brain mask which includes both
the cerebellum and the brainstem. The brain masks were produced manually and the brain tissue
voxels have been assigned value 255 and non-brain voxels are assigned value 0.

Table 3.2: Dimensions and voxel size for the LBPA40 data set.

Dimensions Vox. size Count

256x124x256 0.859375x1.5x0.859375 38
256x120x256 0.859375x1.5x0.859375 2

24

3.1 Data sets

Figure 3.2: S01.native.mri from LBPA40 data set.

3.1.3 St. Olavs data

The data from St. Olavs contains 131 T1-weighted scans and their corresponding brain masks.
In contrast to the other data sets the St. Olavs data set varies considerably in voxel size and
dimensions. Also, every patient in the data set have brain tumors. This makes the data even
more variable as the tumors can vary considerably in size and they can be found in different
places in the brain. In figure 3.3 a tumor can be seen center-left in the axial slice. Table 3.3
shows the different dimensions and voxel sizes for the data set.

25

Chapter 3. Method

Table 3.3: Dimensions and voxel sizes for the St. Olavs data.

Dimensions Vox. size Count

496, 512, 176 0.5x0.5x1 18
256, 256, 192 1x1x1 42
512, 512, 176 0.5x0.5x1 10
512, 512, 160 0.5x0.5x1 8
256, 256, 160 0.97656x0.97656x0.99999 1
256, 256, 104 0.85940x0.85940x1.80071 1
256, 256, 180 1x1x1 16
256, 256, 189 1x1x1 1
512, 512, 167 0.5x0.5x1 1
256, 224, 128 1x1x1.33 1
512, 512, 160 0.5x0.5x1.15 2
256, 256, 184 1x1x1] 1
256, 256, 186 1x1x1.00006 1
496, 512, 164 0.5x0.5x1 1
512, 512, 133 0.5x0.5x1.1 1
512, 512, 170 0.5x0.5x1.1 1
496, 512, 168 0.5x0.5x1 1
256, 256, 174 1x1x0.99948 1
512, 512, 164 0.5x0.5x1 1
256, 256, 180 0.93750x0.93750x1 5
384, 512, 128 0.5x0.5x1.33 9
256, 256, 180 0.93750x0.93750x0.99999 1
256, 256, 180 0.93750x0.93750x1.00001 1
256, 256, 128 0.93750x0.93750x1.33000 1
256, 256, 160 0.97656x0.97656x1 2
512, 512, 192 0.5x0.5x1 1
256, 256, 150 0.97656x0.97656x1 1
480, 512, 176 0.5x0.5x1 1

Figure 3.3: 3/coreg_T1 from St. Olavs data set.

26

3.2 Deep learning architectures

3.1.4 LiTS data

LiTS 20171 data set contains 3D CT images of the abdominal region. The data set was first
used for a medical image segmentation challenge and organized for the conferences ISBI 20172

and MICCAI 20173. The abdominal images contain a corresponding label image with three
classes: background, liver and liver tumors. In this thesis the tumors were ignored, and they
were instead classified as liver voxels.

Figure 3.4: volume-0 from LITS data set.

3.2 Deep learning architectures

Three different deep learning architectures were used in this thesis. These architectures were
chosen based on the literature review and how they differ in their implementation details.
DeepMedic was chosen because of its patch based multi scale architecture. The 3D U-net
was chosen because of its encoder-decoder architecture. The CNN from Kleesiek et al. (2016)
was chosen because of its fully convolutional patch based approach and also because it had
already been reimplemented in the precursor to this master thesis (Eide, 2017). The CNN from
Kleesiek et al. (2016) will be referred to as “the CNN” for the rest of this thesis.

3.2.1 3D CNN

Kleesiek et al. (2016) introduced a fully convolutional neural network used for skull stripping.
Their architecture has 11 layers with a max-pooling layer after the first convolutional layer. The
implementation uses a patch based approach for training and predicting. Table 3.4 shows the
implementation details. The architecture has a receptive field of size 533. This means that for
every patch of size 533 it predicts 13 voxel. The number of predicted voxels (P) as a function
of the patch size n is expressed in this equation:

1https://competitions.codalab.org/competitions/17094
2http://biomedicalimaging.org/2017/challenges/
3http://www.miccai2017.org/satellite-events

27

https://competitions.codalab.org/competitions/17094
http://biomedicalimaging.org/2017/challenges/
http://www.miccai2017.org/satellite-events

Chapter 3. Method

P =
n− 53

2
+ 1 (3.1)

Table 3.4: CNN architecture from Kleesiek et al. (2016).

Layer 1 2 3 4 5 6 7 8

Kernel size 4 5 5 5 5 5 5 1
n feature maps 16 24 28 34 42 50 50 2
Input size n3 65 31 27 23 19 15 11 7

Layer output size n3 31 27 23 19 15 11 7 7

Their architecture was evaluated on three different data sets: OASIS, LBPA40 and IBSR (Rohlf-
ing, 2012). The results for the experiment where the CNN was evaluated using 2-fold cross
validation on all the data as one pool can be seen in table 3.5.

Table 3.5: Results for Kleesiek et al. (2016) using 2-fold cross validation.

Dice score Sensitivity Specificity

95.77(±0.01)) 94.25(±0.03) 99.36(±0.003)

Training

The network is trained by feeding it random patches of data. In Eide (2017) patches of size 593

and a mini batch size of 4 was used. A corresponding label for the patch of size 43 is computed.
This label are the central voxels for the patch that is fed into the network. The network starts
with 0.00001 as learning rate. The learning rate is decreased if the loss has not been lowered in
over 5000 update steps and the learning rate has not been decreased in 4000 steps. The training
is ended after the learning rate has been decreased 10 times.

Before each batch is fed into the network the implementation adds a random value between
[−0, 05, 0.05] and then multiplies it with a random value between [0.85, 1.3]. This is done so
that the implementation focuses less on the values themselves, but more on how the values differ
compared to each other.

The network uses the ReLU activation for every layer, except the last layer where the softmax
activation function is used. For training the network uses the Adam optimizer and the KLD as
loss function.

28

3.2 Deep learning architectures

Prediction

When predicting the network is fed patches of size 843. The network predicts a tensor of
size 163 per patch. Using a technique called max-fragment-pooling Masci et al. (2013) the
implementation’s prediction is used to predict 323 voxels of the brain mask. Before the image
is segmented into patches the whole image is padded with grey values. This is done so that the
network can predict the voxels on the edges of the image.

The brain mask is built by combining all the predicted voxels. The prediction is stripped of
predicted positive voxels that are not part of the largest components of predicted positive voxels.
Positive voxels here means predicted brain-tissue or liver-tissue. Finally, all voxels with a value
less than the threshold 0.5 are set to 0 and the rest of the voxels are set to 1.

3.2.2 U-Net

U-Net is a 2D CNN introduced by Ronneberger et al. (2015). The network is characterized by
having normal convolutional layers and max-pooling layers followed by an equal number of up
convolutional layers. The convolutional layers and the up convolutional layers are connected
with skip connections.

The architecture was changed by Çiçek et al. (2016) to account for 3D images. This was done by
using 3 dimensional kernels instead of 2 dimensional. The architecture was tested on “complex,
highly variable 3D structure, the Xenopus kidney”. Because of the up convolutional layers
the architecture produces an output that has equal size input and output. This means that the
architecture can train and predict on whole images. When the network processes 3D images it
requires a large amount of memory to train and predict. Therefore, this implementation trains
and predict using patches.

The path that uses max-pooling is dubbed the analysis path. This path does two convolutions
per max-pooling operation. The kernel size for all convolutions are 33, the stride is 1 and the
data is also padded before the convolutions so that the output is equal in size to the input.
Figure 3.5 illustrates how many filters each convolution produces with the number on top of
each blue box. In this implementation the data has only one channel, therefore the first number
is supposed to be 1, not 3. In total 6 convolutions and 3 max-pooling operations are used. The
max-pooling layers have a stride of 2 and a pool size of 22.

The other part that uses up-convolutions is called the synthesis part. This part consists of 6
convolutional layers and 3 transposed convolutional layers. After each transposed convolution
the data is concatenated with data of equal size from the analysis path, also called skip connec-
tions. This is represented with the green arrows in figure 3.5. The skip connections enable the
synthesis part to observe higher resolution features of the image. The kernels in the synthesis
part are the same size as the kernels in the analysis part. Padding is also utilized in the same

29

Chapter 3. Method

way. The last convolutional layer uses a 13 kernel and produces two feature maps for the two
classes it is supposed to predict.

Every convolution in this implementation uses the ReLU activation function except the last
layer where the softmax activation function is used.

3.2.3 Training

The model is trained by feeding it random patches from the data using a batch size of 4. The
training for this implementation of U-Net is equivalent to how the CNN presented in the previ-
ous section is trained. The input is processed the same way and the training is ended following
the same rules. The two implementations also use the same optimizer, the only difference is
that the initial learning rate was set to 0.0005 instead of 0.00001.

3.2.4 Prediction

For predictions the implementation first calculates where the patches it should predict are lo-
cated according to their sizes and how much the patches should overlap with each other in the 3
dimensions. The overlap is set as half the size of the input patch. This way of doing the predic-
tions was found on the GitHub page https://github.com/ellisdg/3DUnetCNN and their approach
was rewritten for use in this implementation.

The pseudocode in algorithm 1 shows how the indices for the patches are computed. The
computed indices are the starting points for the patches relative to the data tensor.

Algorithm 1 Compute patch indices
1: procedure COMPUTEPATCHINDICES(data_shape, patch_shape, overflow)
2: n_patches_in_each_dim← ceiling(data_shape/(patch_size− overlap))
3: overflow ← (patch_size − overlap) ∗ n_patches_in_each_dim − data_shape +
overlap

4: start← −ceiling(overflow/2)
5: step← patch_size− overlap
6: patch_indices← {}
7: for i = 0 to n_patches_in_each_dim[0] do
8: for j = 0 to n_patches_in_each_dim[1] do
9: for k = 0 to n_patches_in_each_dim[2] do

10: patch_indices.add([start[0] + step[0] ∗ i, start[1] + step[1] ∗ j,
11: start[2] + step[2] ∗ k])
12: return patch_indices

Patches that have overflowed the size of the image are padded with average values from the
image before prediction to ensure that they are of the correct size. When the model has predicted

30

https://github.com/ellisdg/3DUnetCNN

3.2 Deep learning architectures

all of the patches the prediction is built by combining all the predicted patches. Patches that are
out of bounds with the data shape are clipped so that the predicted image is of the appropriate
size. When the predictions overlap the final prediction uses the average of the overlapping parts
of the predictions.

The brain mask is produced by keeping every value above a threshold of 0.5 and setting all other
values to 0 in the tensor.

Çiçek et al. (2016)

Figure 3.5: Figure depicting the U-Net architecture.

3.2.5 DeepMedic

DeepMedic is an 11-layers deep 3D CNN introduced in Kamnitsas et al. (2017). The network
uses two convolutional pathways where one pathway processes a sample that is downscaled
by a factor of 3 and the other pathway processes a normal resolution sample. Both samples
are centered around the same voxel. The downscaled sample contains a larger context of the
image compared to the normal resolution sample as can be seen with the blue lines for the lower
resolution sample and the green line for the normal resolution sample in figure 3.6.

The configuration for DeepMedic used in this thesis uses a patch size of 253 for the normal
resolution sample and 193 patch size for the downscaled sample. The dual pathways make it
possible for the network to have a larger context for the sample it trains on while keeping the
computational cost low. The number of FMs and the size of the FMs can be seen in figure
3.6 as numbers under each box where the first number is the number of FMs and the second
number is the size of the FM. The first box shows the input where four channels are used, in
this implementation only one channel was used for all the input data. Note also the “Up” in the
pathway that processes the low-resolution image. This represents an upsampling that is done
on the input. All the kernels are of size 33 in the two pathways. The final voxel classification is

31

Chapter 3. Method

done by concatenating the pathways and processing them first through a layer with 33 kernels
with padding to keep the FMs the same size, and then through two layers with 13 kernels. The
number of FMs in the last layer is dependent on how many classes it is supposed to predict.
For this task the final layer produces 2 FMs in the final layer because this implementation only
classifies two classes. Each layer uses the PReLU activation function, except for the last layer
which uses the softmax activation function.

DeepMedic was improved in Kamnitsas et al. (2016) by introducing residual connections be-
tween every second layer. Figure 3.6 shows this as

⊕
.

The implementation of DeepMedic offers an easy set up for using it on other problems. A few
configuration files have to be edited in order to use it. The configuration files specify the name
of the session, some of the hyperparameters for the model and what training, validation and
testing data the model is going to use.

Training

The training is divided into 35 epochs. Each epoch is comprised of 20 subepochs. For each
subepoch a maximum of 50 cases are loaded from the data set. 1000 patches of size 253 are
extracted from this set. The patches are sampled from the image so that there is a 50% chance
that the central predicted voxels of the patch are foreground, i.e. brain, liver, or background.
The batch size of the model is 10. This means that the weights of the model is updated 100
times per subepoch. For validation, this implementation extracts n patches of size 173 with a
batch size of 48. To ensure that the network is trained on every parts of the image the whole
image is padded before it is processed.

The model starts with an initial learning rate of 0.001 and uses the RMSProp as optimizer.
The learning rate is halved at predefined epochs 12, 16, 19, 22 and 25. The parameters for
RMSProp is ρRMS = 0.9 and εRMS = 10−4. The network also uses the Nesterov momentum
with a momentum value of 0.6.

The network uses both L1 and L2 regularization with L1reg = 0.000001 and L2reg = 0.0001.
Further the network uses dropout in the last two layers for further regularization. The dropout
rate is set to 50%.

The weights of the model are initialized according to He et al. (2015). Specifically the weights
are initialized by sampling from a normal distribution with a standard deviation of

√
2
nin
l

.

Where:

ninl = Cl−1
∏

i=x,y,z

k
(i)
l (3.2)

C is the number of FM in layer l − 1. k is the size of the kernel in dimension (x, y, z). The

32

3.3 Data preprocessing

formula calculates the number of weights from the input that a neuron from layer l is connected
to.

Batch normalization is used. The average of the standard deviation for the normalization is
calculated over the last 60 processed batches.

Predicting

Since there are only convolutions in DeepMedic, the number of predicted voxels per patch is
small. The receptive field of the architecture is 173 so for an input patch of size 253 the network
will predict 93 voxels. For predicting, the input images are also padded.

In the implementation of Kamnitsas et al. (2016) Conditional Random Field (CRF) (Zhao et al.,
2016) was used for post-processing the prediction. This was not used in this implementation,
since the purpose of this thesis is the study of the different deep learning architectures and how
they predict.

Kamnitsas et al. (2016)

Figure 3.6: Figure depicting the DeepMedic architecture.

3.3 Data preprocessing

3.3.1 Resampling

The St. Olavs, LBPA40 and the LiTS data were resampled to voxel size (1mm, 1mm, 1mm)

using continuous interpolation for the scans and linear interpolation for the labels. Interpolation
was used to fill gaps that arise in the images during the resampling. The scans used continuous
interpolation because the values are real numbers and the labels used linear interpolation be-
cause the labels are whole numbers. The resampling was done with Nilearn using the function
image.resample_img4 from the python module Nilearn. The function resamples the image to a
target affine, so the image will not have its original affine anymore.

4http://nilearn.github.io/modules/generated/nilearn.image.resample_img.html

33

http://nilearn.github.io/modules/generated/nilearn.image.resample_img.html

Chapter 3. Method

3.3.2 Normalization

All data will be pre-processed in the same way for all models. The images are normalized
according to this equation:

I =
I −mean(I)

4std(I)
(3.3)

This was also the same normalization scheme used in Kleesiek et al. (2016). The corresponding
labels are also processed so that every voxel is either 1 or 0 where 1 is brain or liver tissue and
0 is non-brain or non-liver tissue. This was done because the OASIS and the LBPA40 data sets
had assigned different values for brain voxels and the LiTS data set had values for both liver
and liver tumors.

3.4 Multi GPU model

Keras with a TensorFlow backend supports the training of a model on multiple GPUs5. This is
done by copying the model on the specified number of GPUs. During training or prediction, the
input batch will be split and then processed on different GPUs. F. ex. with a batch size of 4 and
2 GPUs, each GPU will process 2 samples. This means that a multi GPU model will not work
for batch sizes smaller than the number of GPUs specified.

3.5 Evaluation metrics

3.5.1 Dice score

The predicted voxels can be classified into these four categories:

• TP (True positive) correctly predicted voxels
• FP (False positive) falsely predicted positive voxels
• TN (True negative) correctly predicted negative voxels
• FN (False negative) falsely predicted negative voxels

F. ex. in a predicted brain mask TP voxels mean that the model has correctly predicted brain
tissue, with FP voxels the model has predicted the voxel to be brain while it should have been
non-brain, TN voxels are voxels that the model has predicted to be non-brain correctly and FN
voxels means that the model has predicted non-brain voxels when the voxel should have been
classified as brain.

5https://keras.io/utils/#multi_gpu_model

34

https://keras.io/utils/#multi_gpu_model

3.5 Evaluation metrics

To evaluate the performance of the different models, three different evaluation metrics are used:

DiceScore =
2TP

2TP + FP + FN
(3.4)

Specificity =
TN

TN + FP
(3.5)

Sensitivity =
TP

TP + FN
(3.6)

Sensitivity measures the proportion of true positives that was predicted correctly, and specificity
measures the proportion of true negatives that was predicted correctly. The Dice score gives a
score on how well the model predicts overall.

3.5.2 Error maps

Error maps are shown for one experiment. These will give an indication of where the architec-
tures are predicting badly. The error maps were plotted using nilearn.plotting.plot_stat_map.
Every image was first resampled to the same size using nilearn.image.resample_to_img where
the first image read was used as the target image for the resampled image’s dimensions. Lin-
ear interpolation was used to fill in any gaps. The error map was produced by counting every
wrongly predicted voxel for every image. The error maps will not give a perfect picture of
where the architectures predict wrongly, partly because the images are positioned differently in
3D space. Despite this, the error maps will give an indication of where the different architec-
tures’ predictions are bad.

3.5.3 Other metrics

The implementation of U-Net and the CNN logs loss value and accuracy on the training data
as well as on the validation data. The logger also logs the time between each update step.
DeepMedic logs training and validation accuracy during training.

For some of the experiments box plots will also be shown. The box plots were made with
matplotlib6. The median score is shown with an orange line in the box and the box extends
from the lower to the upper quartile of the scores. Outliers are shown as dots and the lines
extending from the box shows the range of the scores.

6https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html

35

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.boxplot.html

Chapter 3. Method

3.6 Dice coefficient loss

Milletari et al. (2016) introduced a loss function based on the dice score. Their loss function
was also used for a medical image segmentation task. The dice coefficient loss function is given
by:

− 2 ∗ P ∩ L+ s∑
P +

∑
L

(3.7)

Where P is the predicted voxels and L is the corresponding ground truth, s is a smoothing factor,
it is set to 1 in this implementation. Note the negative sign since the goal during training is to
minimize this function.

In this thesis dice score is used to score how the different architectures perform. Therefore, this
loss function may be well suited for this task.

3.7 Set up

The U-Net and the CNN were trained and tested on one node on NTNU’s EPIC supercomputer7

using one Tesla P100 GPU from Nvidia with 16 GB of video memory. Jobs were submitted
using the Slurm job scheduler8. EPIC made it possible to train and test many models at the
same time. DeepMedic was trained and tested on the visual computing lab using Nvidia’s Titan
X GPU with 12 GB of video memory. Docker9 had to be used to train and test on this computer.

The CNN and U-Net were implemented using Keras with a TensorFlow backend and the code
can be found on GitHub10. Some of the functions used in this implementation have been copied
from the original implementation of the CNN used in Kleesiek et al. (2016). These functions
have been highlighted with comments. Kleesiek et al. (2016)’s solution was implemented with
Theano11 and it can be found on https://github.com/GUR9000/Deep_MRI_brain_extraction.

The images were produced using Nilearn12. The images with the brain mask and the raw MRI
scan were produced with nilearn.plotting.plot_roi. The code for the statistics done in this master
thesis can also be found on GitHub13.

7https://www.hpc.ntnu.no/pages/viewpage.action?pageId=21037127
8https://slurm.schedmd.com/
9https://www.docker.com/

10https://github.com/oysteiae/BrainSegmentationStOlavs/
11http://deeplearning.net/software/theano/
12https://nilearn.github.io/
13https://github.com/oysteiae/StatisticsMaster

36

https://github.com/GUR9000/Deep_MRI_brain_extraction
https://www.hpc.ntnu.no/pages/viewpage.action?pageId=21037127
https://slurm.schedmd.com/
https://www.docker.com/
https://github.com/oysteiae/BrainSegmentationStOlavs/
http://deeplearning.net/software/theano/
https://nilearn.github.io/
https://github.com/oysteiae/StatisticsMaster

3.8 Experiments

3.8 Experiments

3.8.1 Experiments with hyperparameters

These tests were done to see if some changes to the configurations of the CNN will make it
perform better. Also, these experiments were done to test what configuration should be used
for the U-Net. The configuration with the highest dice score was used for the rest of the ex-
periments. All of these experiments were done with the OASIS data set with 60 % of the data
used for training 20 % of the data used for validation and 20 % of the data used for testing. The
evaluation of the configuration was done on the validation data and the testing data withheld for
the other experiments.

Experiment with patch size

Increasing the CNN’s patch size can lead to better results. With a bigger patch size, the network
will have a greater context when predicting voxels. This experiment increased the patch size of
the CNN to 1193 for predictions and when training. Also, the CNN was tested with the original
patch size of 593 for training and a patch size of 843 for prediction.

For the U-Net three different patch sizes was tried out: 323, 483 and 643.

Both architectures will use KLD as loss function.

Experiment with a different loss function

The dice score loss function introduced in Milletari et al. (2016) was tested on the CNN from
Kleesiek et al. (2016) and the 3D U-net. The dice score loss function will be compared against
the KLD loss function for both architectures. The U-Net used a patch size of (643) and the
CNN used a patch size of (593).

3.8.2 Experiments with data sets and models

These experiments were done to test how each architecture behaves when they were trained
and tested on data from different sources. The different deep learning architectures and the
3 different data sets presented earlier in this chapter were used for all of these experiments.
For the first experiment DeepMedic extracted 5000 patches of size 173 per subepoch from the
validation data, while in the rest of the experiments DeepMedic instead extracted 500 patches
per subepoch for validation, this was done because of the increased time it would take to train
DeepMedic when using 5000 patches instead of 500 patches. This has no effect on the results
since the validation data was only used for logging during training. The CNN and U-Net extracts

37

Chapter 3. Method

1 sample from the validation set each update steps and calculates loss and accuracy on that
sample.

The OASIS, LBPA40 and St. Olavs data sets were used for these experiments.

The accuracy graphs for training and validation data are presented in appendix A. Additionally,
the feature maps for the first four layers of the different architectures are presented in appendix
B.

Architectures trained and tested on one data set

Each architecture was trained on one data set and then tested on the same data set. 60 % of
the data set was used for training, 20 % for validation and 20 % was used for testing. This was
repeated so that every architecture is trained and tested on every data set.

Architectures trained on two data sets tested on the third

Each architecture was trained on two data sets and then tested on the remaining data set. The
data set used for testing was also used to log validation data during training of the network. This
experiment will highlight which architectures are better at generalizing to other data sets they
have not seen before.

Architectures trained and tested on data from all three data sets

Each architecture was trained on all data from all three data sets. 60 % of the data set was used
for training, 20 % for validation and 20 % was used for testing.

Architectures trained on equal amounts of data from each data set

To see if the ratio of the number cases in each data sets have an impact on the architectures’
performance, this experiment trained and tested every architecture on 40 cases randomly chosen
from each data set. The results will then be compared to the results in the previous experiment.
60 % of the data set was used for training, 20 % for validation and 20 % was used for testing.

Architectures trained on not resampled data

Each architecture was trained on all images in the different data sets. Data from LBPA40 and
St. Olavs were not resampled for this experiment, while the OASIS data was unchanged since
it was not resampled for the other experiments. In other words, the St. Olavs data set and the

38

3.8 Experiments

LBPA40 data set will be used with their original voxel size. 60 % of the data set was used for
training, 20 % for validation and 20 % was used for testing.

3.8.3 Testing CNN and the U-Net on different hardware configurations

The U-Net and the CNN were tested on different configuration to test how their training times
vary with respect to the hardware configuration they were trained on. Two different batch sizes
for the architectures were also tested to see what impact the increased load on the GPU will have
on the training time. Only the OASIS data set was used for this experiment and no validation
was used during training and no testing was done afterwards. Also, a patch size of 643 was used
for the U-Net. This was done to further increase the load on the GPU. Table 3.6 details the tests
that were done.

Table 3.6: Different configurations for testing training time for U-Net and the CNN.

Model GPU CPU Batch size

CNN 1 Tesla P100 E5-2650 v4 12 cores 2.20GHz 4
CNN 2 Tesla P100 E5-2650 v4 12 cores 2.20GHz 4
CNN 1 Titan X i7-6800K 6 cores 3.40GHz 4
CNN 1 GTX 1080 i7-6700 4 cores 3.40GHz 4
CNN 1 Tesla P100 E5-2650 v4 12 cores 2.20GHz 16
CNN 2 Tesla P100 E5-2650 v4 12 cores 2.20GHz 16
CNN 1 Titan X i7-6800K 6 cores 3.40GHz 16
CNN 1 GTX 1080 i7-6700 4 cores 3.40GHz 16
U-Net 1 Tesla P100 E5-2650 v4 12 cores 2.20GHz 4
U-Net 2 Tesla P100 E5-2650 v4 12 cores 2.20GHz 4
U-Net 1 Titan X i7-6800K 6 cores 3.40GHz 4
U-Net 1 GTX 1080 i7-6700 4 cores 3.40Hz 4
U-Net 1 Tesla P100 E5-2650 v4 12 cores 2.20GHz 8
U-Net 2 Tesla P100 E5-2650 v4 12 cores 2.20GHz 8
U-Net 1 Titan X i7-6800K 6 cores 3.40GHz 8
U-Net 1 GTX 1080 i7-6700 4 cores 3.40GHz 8

Nvidia’s Tesla P10014, Nvidia’s Titan X15 and Nvidia’s GTX 108016 used in this experiment
are all based on Nvidia’s Pascal architecture17. The Tesla P100 uses PCIe to connect to the
motherboard instead of using NVlink. Using NVlink would have increased the clock speed of
the GPU. Table 3.7 shows the specifications for the different GPUs.

14https://devblogs.nvidia.com/inside-pascal/
15https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
16https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
17https://developer.nvidia.com/pascal

39

https://devblogs.nvidia.com/inside-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
https://developer.nvidia.com/pascal

Chapter 3. Method

Table 3.7: Comparison of the different GPUs.

GPU CUDA cores Base clock Boost clock Memory Memory bandwidth

P100 3584 1126 MHz 1303 MHz 16 GB 732 GB/s
Titan X 3584 1417 MHz 1531 MHz 12 GB 336.5 GB/s

GTX 1080 2560 1607 MHz 1733 MHz 8 GB 320 GB/s

The amount of CUDA cores in each GPU indicates how many computations the Nvidia GPU can
do in parallel 18. This is the case as long as the Nvidia GPUs are the same generation. Nvidia’s
GTX 1080 and the Titan X have compute capability 6.1 and Nvidia’s Tesla P100 have compute
capability 6.0. Compute capability is Nvidia’s way of specifying their GPUs specifications and
available features. This means that the amount of CUDA cores between the Titan X and the
Tesla P100 cannot be directly compared while the amount of CUDA cores can be compared
between the GTX 1080 and the Titan X.

There is much more science behind how different Nvidia GPUs process data and how they are
designed. However, this is beyond the scope of this thesis.

The i7-6700 CPU have a clock speed of up to 4.00 GHz when demanding tasks are running,
while the 6800K is capable of producing a clock speed of 3.60 GHz. However, on the computer
which the 6800K is situated in lists the max clock speed as 3.8 GHz. It should also be noted that
Intel’s i7 6700 is not capable of overclocking while Intel’s i7 6800K is. How much the 6800K
is able to overclock differs from every unit produced. This should not be a big problem because
the difference should be small, and the point of this experiment is to highlight the difference in
training time for the different configurations not the absolute training time. Also, it is the GPU
that has the most impact on the training times when training CNNs.

The configurations using the Titan X and the GTX 1080 GPU were trained on computers where
more people can use them at the same time. Therefore, the training time for these can be
influenced by other people using it while the model is training. However, this should not be a
big problem since in this implementation TensorFlow, which is the computing backend used for
the implementation of U-Net and the CNN, will allocate all of the GPUs memory19 making it
very hard to train other deep learning models at the same time.

3.8.4 Experiment on liver data

Only 11 CT images were used from the LiTS data set. This was done because this is only a
feasibility study for investigating if the deep learning architectures used in this thesis are also

18https://developer.nvidia.com/cuda-faq
19https://www.tensorflow.org/programmers_guide/using_gpu

40

https://developer.nvidia.com/cuda-faq
https://www.tensorflow.org/programmers_guide/using_gpu

3.8 Experiments

able to do liver segmentation. The data was resampled to voxel size (1mm, 1mm, 1mm) and it
was also normalized. The architectures were trained and tested on the same data.

41

Chapter 3. Method

42

Chapter 4
Results

This chapter presents the results from the experiments. First, the experiment where a different
loss function and patch size was used for the CNN and the U-Net is presented. Next, the
experiments with different data sets are presented. Then, the experiment showing the different
training times when using different configurations is presented. Lastly, the experiment done
with liver segmentation is presented.

4.1 Experiments with hyperparameters

4.1.1 Experiment with patch size

Table 4.1 shows the scores for the CNN and the U-Net when different patch sizes were tested.
The table shows that the CNN with patch size 593 and the U-Net with patch size 323 had the
highest dice score.

Table 4.1: Dice score, sensitivity score and specificity score for CNN and U-Net different
patch sizes.

Architecture Patch size Dice score Sensitivity Specificity

CNN (59, 59, 59) 0.94668± 0.017 0.96877± 0.013 0.97262± 0.013

CNN (119, 119, 119) 0.90797± 0.021 0.97337± 0.010 0.94009± 0.016

U-Net (32, 32, 32) 0.96376± 0.006 0.95824± 0.014 0.98941± 0.005

U-Net (48, 48, 48) 0.95745± 0.005 0.94158± 0.011 0.99117± 0.005

U-Net (64, 64, 64) 0.93782± 0.004 0.91888± 0.011 0.98578± 0.004

Figure 4.1 shows the loss and validation loss for the CNN with different patch sizes and figure
4.2 shows the loss and validation loss for the U-Net with different patch sizes. The x-axis

43

Chapter 4. Results

numbers the update steps during training. In figure 4.2 it can be seen that with a bigger patch
size for the U-Net the training loss decreases while the validation loss increases.

(a) Loss and validation loss for the CNN with
different patch size (593).

(b) Loss and validation loss for the CNN with
different patch size (1193).

Figure 4.1: Loss and validation loss for the CNN with different patch sizes.

(a) Loss and validation loss with patch size 32. (b) Loss and validation loss with patch size 48.

(c) Loss and validation loss with patch size 64.

Figure 4.2: Loss and validation loss for U-Net with different patch sizes.

4.1.2 Experiment with different a loss function

Table 4.2 shows the scores for the CNN and the U-Net when they used the dice loss function
and when they used the KLD loss function. Both architectures have a higher score when the

44

4.2 Experiments with data sets

KLD loss function was used. The scores for the U-Net with the dice loss function shows that
the loss function did not work for this implementation. The sensitivity score and the specificity
score reveal that the U-Net predicts almost only brain voxels when using the dice loss function.

Table 4.2: Scores U-Net different loss function.

Dice score, sensitivity score and specificity score for the CNN and U-Net with different loss
functions

Architecture Loss function Dice score Sensitivity Specificity

CNN Dice loss 0.92302± 0.015 0.96729± 0.014 0.95494± 0.012

CNN KLD 0.94668± 0.017 0.96877± 0.013 0.97262± 0.013

U-Net Dice loss 0.41115± 0.000 1.00000± 0.000 0.00000± 0.000

U-Net KLD 0.93782± 0.004 0.91888± 0.011 0.98578± 0.004

Figure 4.3 shows the loss and validation loss for the CNN and the U-Net. The x-axis numbers
the update steps for the architectures. Figure 4.3b shows that the loss for the U-Net goes down
until about the 1000th update step. After the 1000th update step the loss jumps up.

(a) CNN with dice coefficient loss function. (b) U-Net with dice coefficient loss function.

Figure 4.3: Dice coefficient loss on training data and validation data for the CNN and
U-Net.

The U-Net with the KLD loss function and patch size 323 had the highest dice score. Therefore,
the U-Net with patch size 323 and the KLD as loss function will be used for the rest of the
experiments. The CNN had the highest dice score when patch size 593 was used and KLD was
used as loss function. The CNN will therefore use these hyperparameters for the rest of the
experiments.

4.2 Experiments with data sets

For easier reading the highest score for each data set have been marked in bold for all of these
experiments.

45

Chapter 4. Results

4.2.1 Architectures trained and tested on one data set

Tables 4.3, 4.4 and 4.5 show the dice, sensitivity and specificity scores for when the architectures
were trained and tested on the same data set. The tables show that DeepMedic performed best
in all metrics, except for the specificity score on the OASIS data set. The CNN had the highest
score there.

Table 4.3: Dice score for architectures trained and tested on the same data set.

Data set CNN 3D U-Net DeepMedic

OASIS 0.94542± 0.016 0.96346± 0.005 0.96709± 0.005

St. Olavs 0.95075± 0.014 0.88826± 0.026 0.97432± 0.006

LBPA40 0.95823± 0.011 0.98124± 0.001 0.98503± 0.001

Table 4.4: Sensitivity for architectures trained and tested on the same data sets.

Data set CNN 3D U-Net DeepMedic

OASIS 0.96924± 0.015 0.96295± 0.012 0.97386± 0.010

St. Olavs 0.95956± 0.027 0.86211± 0.055 0.97684± 0.011

LBPA40 0.96778± 0.006 0.97804± 0.003 0.98529± 0.001

Table 4.5: Specificity for architectures trained and tested on the same data set.

Data set CNN 3D U-Net DeepMedic

OASIS 0.97144± 0.014 0.98745± 0.004 0.98598± 0.005

St. Olavs 0.99351± 0.005 0.99155± 0.006 0.99693± 0.002

LBPA40 0.99014± 0.004 0.99708± 0.000 0.99714± 0.000

Figure 4.4 shows the box plot of the dice score for the architectures in this experiment. The box
plot for each architecture shows the combined scores for when the architectures were trained
and tested on the individual data sets. The U-Net box plot shows that it has the highest variance
while the CNN and DeepMedic have less fluctuations in their scores.

46

4.2 Experiments with data sets

Figure 4.4: Box plot of the dice scores for all the data when the architecture is trained
and tested on the same data set.

4.2.2 Architectures trained on two data sets and tested on the third

The tables here show the scores for the data that the architectures were not trained on. Table 4.6
shows that DeepMedic had the highest dice scores for all the data sets. Tables 4.7 and 4.8 show
that the CNN and U-Net scored the highest in sensitivity and specificity on some data sets.

Table 4.6: Dice score for architectures trained on two data sets and third.

Data set CNN 3D U-Net DeepMedic

OASIS 0.74791± 0.118 0.82923± 0.048 0.93954± 0.021

St. Olavs 0.75247± 0.131 0.77107± 0.117 0.83920± 0.091

LBPA40 0.81357± 0.039 0.81812± 0.028 0.91370± 0.022

Table 4.7: Sensitivity for architectures trained on two data sets and tested on the third.

Data set CNN 3D U-Net DeepMedic

OASIS 0.61955± 0.144 0.75037± 0.071 0.92864± 0.045

St. Olavs 0.62907± 0.151 0.64820± 0.130 0.74153± 0.102

LBPA40 0.99266± 0.004 0.97709± 0.008 0.98613± 0.004

47

Chapter 4. Results

Table 4.8: Specificity for architectures trained on two data sets and tested on the third.

Data set CNN 3D U-Net DeepMedic

OASIS 0.99519± 0.003 0.98055± 0.008 0.98356± 0.006

St. Olavs 0.99804± 0.004 0.99844± 0.003 0.99827± 0.002

LBPA40 0.91618± 0.022 0.92329± 0.015 0.96783± 0.009

Figure 4.5 show the box plot of the dice scores for when the architectures were trained on two
data sets and tested on the third. Note that for this box plot the values for the y-axis are between
0 and 1. The box plot show that DeepMedic had less variance compared to the CNN and the
U-Net. The CNN had most the variance according to the box plot.

Figure 4.5: Box plot of the dice scores for all the data when the architecture is trained
on two data sets and tested on the remaining data set.

4.2.3 Architectures trained and tested on data from all three data sets

The tables shown here show that DeepMedic had the highest dice score for all the data set and
that it also had a high sensitivity and specificity score. Table 4.11 reveal that U-Net had the
highest specificity score on two data sets.

Table 4.9: Dice score for architectures trained and tested on all data from all three data
sets.

Data set CNN 3D U-Net DeepMedic

OASIS 0.95754± 0.006 0.95999± 0.011 0.96324± 0.008

St. Olavs 0.94381± 0.0305 0.95715± 0.024 0.96696± 0.021

LBPA40 0.91892± 0.025 0.96447± 0.011 0.97102± 0.004

48

4.2 Experiments with data sets

Table 4.10: Sensitivity for architectures trained and tested on all data from all three data
sets.

Data set CNN 3D U-Net DeepMedic

OASIS 0.96252± 0.018 0.95252± 0.027 0.96043± 0.022

St. Olavs 0.94635± 0.025 0.95597± 0.024 0.97702± 0.013

LBPA40 0.98034± 0.007 0.97472± 0.009 0.98384± 0.004

Table 4.11: Specificity for architectures trained and tested on all data from all three data
sets.

Data set CNN 3D U-Net DeepMedic

OASIS 0.98327± 0.008 0.98897± 0.005 0.98827± 0.006

St. Olavs 0.99385± 0.007 0.99567± 0.004 0.99556± 0.004

LBPA40 0.97215± 0.009 0.99166± 0.003 0.99212± 0.002

Figure 4.6 presents the box plot for when the architectures were trained and tested on all three
data sets. In the box plot the U-Net and DeepMedic have less variance compared to the CNN.

Figure 4.6: Box plot of the dice scores for architectures trained and tested on all three
data sets.

49

Chapter 4. Results

Worst and best predictions for the architectures

The images show the best and worst predictions for the architectures when they were trained
and tested on all the data. Green is correctly predicted brain voxels, red is falsely predicted
brain voxels and cyan is falsely predicted non-brain voxels.

Figure 4.7: 237/coreg_T1.nii U-Net worst prediction.

Figure 4.8: 97/coreg_T1.nii U-Net best prediction.

Figure 4.9: 237/coreg_T1.nii CNN worst prediction.

50

4.2 Experiments with data sets

Figure 4.10: OAS1_0012_MR1_mpr_n4_anon_111_t88_gfc CNN best prediction.

Figure 4.11: 237/coreg_T1.nii DeepMedic worst prediction.

Figure 4.12: 17/coreg_T1.nii DeepMedic best prediction.

51

Chapter 4. Results

Error maps

The figures in this section are the error maps for the architectures’ predictions of the testing data
from the experiment when all the data sets were used for training. Note that the original images
are positioned differently in 3D space causing for example the amount wrongly predicted voxels
at the edges of the brain to seem off. The colors in the image detail the amount of wrongly
predicted voxels, the scale on the right of the image specifies what number the different colors
correspond to.

Figure 4.13: Error map for U-Net predicting the OASIS data.

Figure 4.14: Error map for U-Net predicting the LBPA40 data.

Figure 4.15: Error map for U-Net predicting the St. Olavs data.

52

4.2 Experiments with data sets

Figure 4.16: Error map for the CNN predicting the OASIS data.

Figure 4.17: Error map for the CNN predicting the LBPA40 data.

Figure 4.18: Error map for the CNN predicting the St. Olavs data.

Figure 4.19: Error map for DeepMedic predicting the OASIS data.

53

Chapter 4. Results

Figure 4.20: Error map for DeepMedic predicting the LBPA40 data.

Figure 4.21: Error map for DeepMedic predicting the St. Olavs data.

4.2.4 Architectures trained on equal amounts of data from each data set

In tables 4.12, 4.13 and 4.14 DeepMedic has the highest scores on almost every data set. The
architectures scored lower on the St. Olavs data in this experiment compared to the last experi-
ment when the architectures were trained on all data from all three data sets.

Table 4.12: Dice score for architectures trained and tested on equal amounts of data
from each data set.

Data set CNN 3D U-Net DeepMedic

OASIS 0.95531± 0.007 0.92728± 0.012 0.96510± 0.003

St. Olavs 0.85565± 0.136 0.73717± 0.105 0.94761± 0.037

LBPA40 0.95237± 0.007 0.93699± 0.008 0.97963± 0.003

Table 4.13: Sensitivity for architectures trained and tested on equal amounts of data
from each data set.

Data set CNN 3D U-Net DeepMedic

OASIS 0.97176± 0.010 0.92074± 0.037 0.96937± 0.012

St. Olavs 0.78969± 0.201 0.62618± 0.149 0.92737± 0.076

LBPA40 0.97242± 0.006 0.95930± 0.018 0.98326± 0.006

54

4.2 Experiments with data sets

Table 4.14: Specificity for architectures trained and tested on equal amounts of data
from each data set.

Data set CNN 3D U-Net DeepMedic

OASIS 0.97806± 0.008 0.97748± 0.008 0.98622± 0.004

St. Olavs 0.99760± 0.002 0.99456± 0.005 0.99705± 0.001

LBPA40 0.98652± 0.003 0.98292± 0.004 0.99530± 0.002

Figure 4.22 shows the box plot for when the architecture were trained on equal amounts of data
from each data set. Note that for this box plot the values for the y-axis are between 0.5 and 1.
The box plot shows that the U-Net had the highest variance for its scores in this experiment.

Figure 4.22: Box plot of the dice scores when the architecture are trained on equal
amounts of data from each data set.

4.2.5 Architectures trained on not resampled data

Table 4.15 shows that DeepMedic had the highest dice score for all the data sets when the St.
Olavs data set and the LBPA40 data set were not resampled. The architectures had lower dice
scores for the St. Olavs data set in this experiment compared to the experiment where every
architecture was trained and tested on all three data set, and the St. Olavs data set and the
LBPA40 data set were resampled.

55

Chapter 4. Results

Table 4.15: Dice score for architectures trained and tested on not resampled data.

Data set CNN 3D U-Net DeepMedic

OASIS 0.95829± 0.007 0.95344± 0.010 0.96201± 0.006

St. Olavs 0.93686± 0.033 0.92975± 0.036 0.95446± 0.021

LBPA40 0.92615± 0.008 0.95587± 0.014 0.97210± 0.003

Table 4.16: Sensitivity for architectures trained and tested on not resampled data.

Data set CNN 3D U-Net DeepMedic

OASIS 0.96452± 0.018 0.95737± 0.023 0.96934± 0.016

St. Olavs 0.92709± 0.059 0.91307± 0.058 0.96834± 0.031

LBPA40 0.94091± 0.027 0.96692± 0.016 0.97886± 0.008

Table 4.17: Specificity for architectures trained and tested on not resampled data.

Data set CNN 3D U-Net DeepMedic

OASIS 0.98302± 0.009 0.98222± 0.010 0.98397± 0.006

St. Olavs 0.99142± 0.006 0.99165± 0.005 0.98974± 0.005

LBPA40 0.98471± 0.004 0.99058± 0.004 0.99382± 0.002

Figure 4.23 shows the box plot for when the architectures were trained and tested on all the data
sets and the St. Olavs data set and the LBPA40 data were not resampled. Every architecture
had more variance in this box plot compared to the box plot in figure 4.6 which shows the box
plot for when the architectures were trained and tested on all three data sets and the data from
St. Olavs and the data from LBPA40 were resampled.

56

4.3 Testing CNN and the U-Net on different hardware configurations

Figure 4.23: Box plot of the dice scores when the architecture are trained on data that
was not resampled.

4.3 Testing CNN and the U-Net on different hardware con-
figurations

4.3.1 CNN

Figure 4.24 and table 4.18 show that when training the CNN with batch size 4 the configuration
using the Titan X was the fastest followed by the configuration using the GTX 1080.

Figure 4.24: The CNN with batch size 4.

57

Chapter 4. Results

Table 4.18: Average time for each update on the different configuration for the CNN with
batch size 4.

Configuration Average time in seconds per update

1 Tesla P100 0.05708
2 Tesla P100 0.05554

Titan X 0.03999
GTX 1080 0.04354

The following graph and table show that the Titan X was the fastest configuration when training
the CNN with batch size 16. The configuration using 2 Tesla P100 was the second fastest.

Figure 4.25: The CNN with batch size 16.

Table 4.19: Average time for each update on the different configuration for the CNN with
batch size 16.

Configuration Average time in seconds per update

1 Tesla P100 0.11689
2 Tesla P100 0.10520

Titan X 0.09270
GTX 1080 0.11991

4.3.2 U-Net

This figure and table presents the training time for when the U-Net was trained on different
configuration using batch size 4. They show that using the configuration using the Titan X was

58

4.3 Testing CNN and the U-Net on different hardware configurations

the fastest configuration.

Figure 4.26: 3D U-net with batch size 4.

Table 4.20: Average time for each update on the different configuration for the U-Net
with batch size 4.

Configuration Average time in seconds per update

1 Tesla P100 1.05999
2 Tesla P100 1.03612

Titan X 0.96948
GTX 1080 1.30704

The GTX 1080 could not run the U-Net with batch size 8 because it does not have a sufficient
amount of memory. The result for this configuration is therefore not presented here. Figure 4.27
and table 4.21 show that the configuration using 2 Tesla P100 was the fastest configuration. This
was the only test where the Titan X was not the fastest configuration.

59

Chapter 4. Results

Figure 4.27: 3D U-net with batch size 8.

Table 4.21: Average time for each update on the different configuration for the U-Net
with batch size 8.

Configuration Average time in seconds per update

1 Tesla P100 1.89850
2 Tesla P100 1.76553

Titan X 1.81191

4.4 Experiment on liver segmentation

Table 4.22: Dice, sensitivity and specificity scores on the LiTS data set.

Metric CNN 3D U-Net DeepMedic

Dice score 0.60768± 0.123 0.00007± 0.000 0.81087± 0.051

Sensitivity 0.60470± 0.155 0.00003± 0.000 0.98697± 0.004

Specificity 0.99234± 0.002 1.00000± 0.000 0.98958± 0.004

The following figures show the best predictions for the CNN and DeepMedic on the LITS data.
The U-Net prediction is omitted here since it predicted only non-liver voxels for all the CT
images. Green is correctly predicted liver voxels, red is falsely predicted liver voxels and cyan
is falsely predicted non-liver voxels.

60

4.4 Experiment on liver segmentation

Figure 4.28: Best prediction of LiTS data set from DeepMedic.

Figure 4.29: Best prediction on LiTS data set from CNN.

61

Chapter 4. Results

62

Chapter 5
Discussion

This chapter discusses the results of the different experiments. The different deep learning
architectures will be compared, and their good and bad sides will be discussed. The first section
will discuss the parameter experiments for the U-Net and the CNN. The second section will
discuss how the different deep learning architectures performed skull stripping on the data sets.
The next section will look at how the different architectures performed on different hardware
configurations. The fourth section will discuss how the architectures performed when doing
liver segmentation. The final section is the reflection.

5.1 Experiments with hyperparameters

5.1.1 Experiment with patch size

It seemed that increasing the patch size for the CNN did not improve its scores much. The loss
graphs in figure 4.1 suggests that the bigger patch size made the network overfit the data because
the validation loss seems to be a bit higher compared to the training loss. The loss also seems
to be much more stable with the bigger patch size. The CNN with the bigger patch had a higher
sensitivity compared to the CNN with the smaller patch size, but a much lower specificity. This
indicated that the larger patch size made the CNN produce more false positive. With a smaller
patch size the CNN is more accurate in its predictions since it predicts fewer voxels in each
forward pass. Apparently, the lower patch size is large enough so that the architecture can get
enough context for its predictions when doing skull stripping.

The U-Net benefited from having a smaller patch. The sensitivity and specificity scores in table
4.1 show that the U-Net with a smaller patch size got a higher sensitivity score compared to
U-Net with bigger patches, but the specificity scores seemed to be close. This indicates that the
smaller patch size made U-Net better at predicting true positive brain voxels. The loss graphs in

63

Chapter 5. Discussion

figure 4.2 shows that U-Net with a patch size of 643 is clearly overtraining on the data since it
has an increasingly better loss for the training data, but the loss for the validation data becomes
increasingly worse. The overtraining is also apparent in the loss graph for U-Net with patch
size 483.

The reason why a bigger patch size makes the U-Net overtrain could be because the network
will see a higher portion of the data earlier in the training session. With a smaller patch size it
takes a longer time for the network to see patches of the data multiple times making it harder
to overtrain. The training of the U-Net was the same as the training scheme used in Kleesiek
et al. (2016). Maybe this was not the best choice and instead other ways of training should
be explored for the U-Net. There were also no regularization methods implemented except
for artificially expanding the training data by adding and multiplying the input with random
values. If some simple regularization methods such as L1 or L2 regularization were added, this
implementation of U-Net would perhaps not overtrain as much with bigger patch sizes.

5.1.2 Experiment with a different loss function

The CNN did not get a better dice score with the dice coefficient loss function. There could be
many reasons for this. The first one is that the training implementation was not suited for the
use of the dice coefficient loss function or that KLD is a loss function that is better suited for
doing skull stripping.

The dice coefficient loss function did not work for this implementation of U-Net. The scores in
table 4.2 shows that the U-Net only predicts brain-voxels. Figure 4.3b shows that the U-Net is
not learning at all. At approximately the 1000th update step the loss jumps up and it stays there
for the rest of the training session. One reason for this could be that the learning rate was too
high.

5.2 Experiments with data sets and models

5.2.1 Architectures trained and tested on one data set

For the first set of experiments where each model was trained and tested on the same data set
the DeepMedic architecture got the highest dice score on all experiments as table 4.3 shows.
The U-Net architecture was relatively close on the OASIS data set and the LBPA40 data set.
On the St. Olavs data set the U-Net got a dice score of 0.88 which was much lower compared
to the other architectures scores on the data set. This could be due to the U-Net overfitting on
the training data set. The accuracy graph in figure A.5 shows some indication of this since the
accuracy on the validation data seems to be a tad lower compared to the training data. The CNN

64

5.2 Experiments with data sets and models

had the lowest score on the OASIS data set and the LBPA40 data, but it had a higher score on
the St. Olavs data set compared to U-Net by a fair margin.

The DeepMedic architecture also had the best sensitivity score on all the different data sets as
can be seen in table 4.4. The CNN had better sensitivity scores compared to the U-Net except
on the LBPA40 data set. The sensitivity scores for U-Net also gives an indication of why it
had a low dice score on the St. Olavs data. It seems that it had problems with predicting true
positive brain voxels on this data set. This seems to be a problem on most of the data sets for
U-Net since it had on average the worst sensitivity scores.

The specificity scores in table 4.5 suggests that all the architectures are very good at predicting
true negatives. Every architectures had a score of 0.99 + except for on the OASIS data set where
every architecture had a somewhat lower score with the CNN having the lowest score. Overall,
the DeepMedic again had the best specificity scores other than on the OASIS data set where the
U-Net had the highest score. Since the U-Net also had a high specificity score on the St. Olavs
data set, this confirms that the reason for the low dice score on the St. Olavs data set is because
of its problems with predicting true positive brain voxels.

The dice score box plot in figure 4.4 shows that DeepMedic not only had the highest score, but
its scores also fluctuated less compared to the other architectures’ score. It had no outliers and
all of its scores were between 0.95 and 0.99. The CNN also had good consistency while the
dice scores for the U-Net were very inconsistent because of its performance on the St. Olavs
data set.

5.2.2 Architectures trained on two data sets tested on the third

In the experiment were the architectures were trained on two data sets and tested on the remain-
ing data set, the DeepMedic architecture again seemed to be the best architecture. Table 4.6
shows that DeepMedic achieved a dice score higher than the other architectures on all data sets.
The CNN had the worst dice scores overall. DeepMedic struggled most on the St. Olavs data
set. The reason for this is most likely because the St. Olavs data is the the data set with the most
variability and also the data set that is, probably, the most different from the other two data sets
considering that all of the patients have tumors.

Table 4.7 shows that, interestingly, all the architectures had a high sensitivity score for the
LBPA40 data set compared to the other data sets, with the CNN scoring the highest. As they
still had a low dice score on the LBPA40 data set, this shows that the architectures predicted
many false positive brain voxels. The reason for this is most likely because the MRI scan in the
LBPA40 data set contain image slices all the way down to the neck, in contrast to the OASIS
scans and many of the scans in the St. Olavs data set where the slices go down to the start of the
neck. The architectures were not trained to cope with this extra region of the MRI scan causing
them to predict brain voxels where there should not be any.

65

Chapter 5. Discussion

Generally, the architectures were good at predicting true negative voxels for the OASIS and the
St. Olavs data set. The low dice scores on these data sets can then mostly be attributed to the
architectures not being good at predicting true positive brain voxels for these data sets.

The results for DeepMedic in this experiment further highlights that it is the best architecture
used in this thesis. It had a higher dice score by a fair margin compared to the other architec-
tures. Furthermore, the disparity for the dice scores increased a lot compared to the previous
experiment. The reason for this can be that the DeepMedic uses L1 and L2 regularization as
well as dropout. This should hinder the DeepMedic from overfitting the data it is training on.
Lastly, it could be because of the the larger context of the image that the DeepMedic can infer
for each patch it predicts.

Even though the architectures were not trained on the data set, they performed better than
chance. This shows that some skull stripping insight is transferable when doing predictions
on other data sets. However, the markedly lower scores compared to the previous experiment
shows the importance of having the networks trained on the data sets that they are supposed
to do skull stripping on. Further, because of the low training scores on the St. Olavs data set,
training on data sets with tumors also seem to be very important for the different architectures.

The answer to RQ 1 is then that it is important for architectures to train on data from the
same source, or at least similar data, before performing skull stripping. This was the case for
every architecture. For DeepMedic this was less important, but its dice scores were still not
satisfactory. Not surprisingly, regularization may be the reason for why DeepMedic was better
at predicting data from an unseen source. Regularization could have helped the architecture
overfit its training data less compared to the other architectures.

5.2.3 Architectures trained and tested on data from all three data sets

The experiment where the architectures were trained and tested on all the data again showed
that the DeepMedic was the best architecture at predicting brain masks. Its scores got somewhat
worse compared to when it was trained and tested on each data set individually, but it is not very
notable. The dice scores for the CNN got worse, except on the OASIS data set, as table 4.3 and
table 4.9 shows. The CNN got a much worse result on the LBPA40 data set with the dice score
decreasing 0.39 on average. Since the CNN got a higher sensitivity and a lower specificity, this
can be attributed to the CNN being worse at predicting non-brain voxels. On the OASIS data
set, however, it seems that the CNN got a higher dice score because of the increase in specificity.
Training the CNN on more data sets made it better at predicting non-brain voxels on the OASIS
data set while it was the opposite for the LBPA40 data set.

The U-Net got a much better score on the St. Olavs data set when it was trained on all the data
sets compared to when it was just trained on just the St. Olavs data set. Having more data to
train on could have caused the architecture not to overtrain on the data set as much, which again

66

5.2 Experiments with data sets and models

led to the higher scores.

The Box plot 4.6 shows again that DeepMedic had the most stable scores. The architecture
had only two outliers. The dice scores for the U-Net architecture were also much more stable
compared to its scores in the first box plot in figure 4.4. This can be attributed to it getting
higher scores on the St. Olavs data set. The CNN had the worst scores with the lowest average
and median. It also had the most inconsistency in its dice scores.

The figures 4.7, 4.9 and 4.11, which shows the worst predictions for each architecture, show
that every architecture struggled with MRI scan number 237 from the St. Olavs data set. One
explanation for this is that on the image there seems to be a growth on the patient’s neck. In
figure 4.8, which shows the best prediction for U-Net, the patient does not seem to have this
growth on his or her neck. The architecture struggles with the growth because they have not seen
this type of image during training, making them unprepared when faced with the image during
testing. This demonstrates that it is very important for the architectures to have training sets
which contains “unusual” examples if they are to do good predictions on data that is atypical.
Apart from the spurious predictions in the neck region of the patient the brain mask seems to be
mostly fine.

One problem that is apparent for the U-Net in figures 4.7 and 4.8 is that it has falsely predicted
non brain voxels in some center regions of the brain. This does not seem to be a problem for
the CNN or the DeepMedic. One reason for this could be that the U-Net does predictions on all
the voxels in the input. In contrast, the CNN and DeepMedic predict the central voxels for the
input. This leads to the DeepMedic and the CNN having more context for each predicted voxel
causing them to have less of a problem with false negative holes in the predicted brain mask.
Of course, this implementation of U-Net also predicts on overlapping patches of the image to
rectify this, but it seems that this does not work every time.

The error maps in section 4.2.3 shows which region of the MRI scans that the architectures
struggle the most on when they are trained and tested on all three data sets. The figures show
how the data sets are different and how the architectures encounter different problems in the
different data sets. The images demonstrate that, for all the architectures, the borders of the
brain mask is the most difficult to predict. This is no surprise since this should be the hardest
region considering that there are more complex lines and structures there.

For the OASIS data, the U-Net and DeepMedic seem to have almost only wrongly predicted
voxels on the border of the brain. The CNN, however, seems to also have some false positives
in the lower right-hand corner of the sagittal slice. On the LBPA40 data, every architecture
had problems with wrongly predicted brain voxels for this region, with the CNN seemingly
struggling the most with this region. For the St. Olavs data, every architecture seemed to have
problems with regions in the neck and the mouth.

67

Chapter 5. Discussion

5.2.4 Architectures trained on equal amounts of data from each data set

Training and testing on equal amounts of data from each data set made the U-Net worse at
predicting on all data sets as table 4.12 shows. The CNN got worse results on the St. Olavs
data set, but it got similar scores for the OASIS data set and much better scores on the LBPA40
data set. DeepMedic had similar results on the OASIS data set, got a bit higher score on the
LBPA40 data set and it also got worse results on the St. Olavs data. One reason that explains
why every architecture got a worse score on the St. Olavs data set is again that this data set
is more variable compared to the other data sets. Also, the architectures were trained less on
the tumors in the MRI scans from St. Olavs. When less of the St. Olavs data set was used for
training, the architectures were less equipped for predicting uncommon structures in the MRI
scans.

The U-Net scores are, as mentioned, worse across the board compared to the experiment when
it was trained on all the data. Table 4.13 shows that the reason for this is because it was bad
at predicting true positive brain voxels. This could be because of the reason mentioned earlier
when discussing why the U-Net had random falsely predicted negative voxels in its predicted
brain masks. This effect could have been magnified when predicting on less data from each data
set.

RQ 2 asked if the balance between the amount of data in each data set was important for deep
learning architectures when doing skull stripping. The answer to this is that there could be some
improvements for the smallest data set if the amount of data in the other data set was the same.
This is because both DeepMedic and the CNN got a higher score on the LBPA40 data set, which
had the lowest number of images in it in the previous experiment. However, since the U-Net
got a worse score on this data set this might not always be the case. As for the for the largest
data set, the data from St. Olavs, the scores got worse indicating that for large data sets with
brain tumors or other factors that causes high variability in the scans, it is best to train on all
the available data. The highest scores for each data set was mostly obtained when training and
testing on only one data set, indicating that the architectures should train on only one data set
for best performance.

5.2.5 Architectures trained on not resampled data

The experiment where the networks where trained and tested on data that was not resampled
showed a decline in performance for the U-Net on every data set except for the OASIS data
set, as can be seen in table 4.15. The DeepMedic architecture only seemed to be worse at
predicting on data from the St. Olavs data set, while the CNN had a slight improvement on the
LBPA40 data set and the OASIS data set. It is expected that the architectures would be worse
at predicting data from the St. Olavs data set because when the data is not resampled, the data
is even more variable.

68

5.2 Experiments with data sets and models

The answer to RQ 3 is then that for data sets that are very variable it is important to resample the
MRI scans to the same voxel size for optimal performance of the deep learning architectures.
The scores for the LBPA40 and the OASIS data set indicates that for less variable data sets
resampling is not as important, but for the scores for the St. Olavs data set were worse showing
that resampling is an important preprocessing step when doing skull stripping.

5.2.6 General

These experiments have shown that it is important for the models to be trained on data sets
it is supposed to predict on. Even though all the data sets were resampled to voxel size
(1mm, 1mm, 1mm). One of the reasons for this can be seen in figure 3.4 and 3.2. The LBPA40
data set contains images where more of the patient’s neck is part of the image. When the models
have not seen these parts of the MRI scan it can cause them to produce bad predictions. This is
especially the case for the patch based architectures used in this thesis. Since they cannot infer
context from other parts of the image if the input is only neck voxels. This error is also seen
in the architectures’ error maps for the LBPA40 data. All the architectures struggle somewhat
with regions in the neck, especially the CNN.

It should also be noted that the training configuration for the DeepMedic is different from the
training configuration of the other two architectures. DeepMedic includes regularization tech-
niques such as L1 and L2 regularization and dropout so that the model is less prone to overfitting
the data. This is most likely the reason for why DeepMedic had the most stable scores. U-Net
on the other hand was erratic indicating that more regularization techniques should be added to
this implementation. It had high scores when it was tested on the St. Olavs data when it was
trained on all data set, but when it was only trained on the St. Olavs data set it had a very low
score.

These results coincide with the results that Casamitjana et al. (2016) got in their work where
they compared a fully convolutional network, a U-Net architecture and a DeepMedic like archi-
tecture on brain tumor data. Although, it should be noted that their architectures were designed
to do full predictions in one forward pass. Their DeepMedic like architecture also got the best
results in their experiments. However, the experiment done in this master thesis was not perfect
because DeepMedic, which is the multi scale architecture, includes more sophisticated elements
such as different regularization methods which both the CNN and the U-Net lacks.

Furthermore, the U-Net was originally designed to do full predictions in one forward pass.
Because of hardware limitations and time limitations this was not done for this implementation
of U-Net.

The dice scores in tables 4.9 and 3.5 indicates that DeepMedic might be a better method for
performing skull stripping compared to the implementation in Kleesiek et al. (2016). The ex-
periments done in this thesis and Kleesiek et al. (2016) are, however, different and also these

69

Chapter 5. Discussion

experiments used different data sets, which means that this is not certain and more testing have
to be done to conclude on anything.

The CNN is by far the fastest for training and predicting. Training can take only 1− 2 hours on
a Nvidia TitanX, no matter how large the data set is and predicting one brain mask takes a few
seconds depending on how large the image is. Training DeepMedic takes much longer time.
For example, when DeepMedic was used to train on all the data sets, it took 50 hours to train
on a Nvidia TitanX. However, predicting one brain mask for DeepMedic takes only under one
minute. The U-Net takes approximately 3− 4 hours to train on a Nvidia TitanX. The prediction
takes much longer compared to the other architectures because it uses the overlapping technique
to do predictions. The prediction time really depends on the data, but it takes approximately 2
minutes to predict one brain mask.

Based on these experiment DeepMedic seems to be the best skull stripping solution for the St.
Olavs hospital. Again, this can be due the U-Net not having a optimal training configuration or
that it is not used as intended where the input size equals the output size. Also, the CNN could
be worse due to differences in this implementation of the CNN and the original implementation
from Kleesiek et al. (2016).

5.3 Testing U-Net and the CNN on different configurations

Testing the U-Net and the CNN on different configurations showed that choosing the right
configuration for the right task can speed up the training. The first run with a batch size of 4 for
the CNN showed that the configuration using the Titan X was the fastest followed closely by
the configuration using the GTX 1080. Using 1 or 2 Tesla P100 GPUs was the slowest, though
using 2 Tesla GPUs was slightly faster compared to using 1. When the batch size was increased
to 16 the Titan X configuration was still the fastest, but this time the GTX 1080 was the slowest
configuration. The difference between using 1 or 2 Tesla P100 also became more prominent
when using a bigger batch size with the configuration using 2 Tesla P100 being the fastest.

The reason for why the Titan X performed better than the Tesla P100 is most likely because
of the higher clock speed of the GPU. It was faster compared to the GTX 1080 because of its
much higher amount of CUDA cores. When the batch size was increased to 16 the amount
of CUDA cores became more important because many more computations had to be done in
parallel. Therefore, the GTX 1080 became the slowest configuration and the gap between using
1 and 2 Tesla P100 GPUs became much larger.

Training the U-Net with a batch size of 4 the configuration using the GTX 1080 was the slowest.
The Titan X configuration was still the fastest, but the training time for the configurations using
the Tesla P100’s was closer compared to when the CNN was used. When the batch size of the
U-Net was increased to 8 the configuration using 2 Tesla P100 was the fastest as figure 4.27
and table 4.21 shows. The GTX 1080 GPU could not handle a batch size of 8 for the U-Net

70

5.4 Experiment on liver segmentation

configuration as it ran out of memory when training. The P100 configuration and the Titan X
configuration were able to train the U-Net because the GPUs have more memory available.

The reason for why the GTX 1080 was the slowest training the U-Net with batch size 4, but the
second fastest when training the CNN with the same batch size, is because the U-Net has many
more parameters. More parameters indicate more parallel computations and the clock speed of
the GPU becomes less important compared to the amount of CUDA cores. Using 2 Tesla P100
was the fastest when training U-Net with batch size 8 because more parallel computations are
done. This is the reason for why the configuration using 2 Tesla P100 was the fastest.

One thing to note is that the Nvidia P100 GPU is designed to be used with heavy load over
time. If the GPU is used under heavy load for a long time the consumer options, such as the
GTX 1080 and the Titan X, might break much earlier compared to high end GPUs like the Tesla
P100.

This experiment demonstrates that choosing the right hardware configuration when training
can speed up the process. The GPU is the most important since much of the processing is
done on it. It is also the deciding factor if the deep learning architecture can be trained on the
configuration. Since the architecture is loaded onto GPU and therefore the amount of memory a
GPU has decides if the architecture can be trained on the configuration at all. The GPU memory
also decides how big the batch size can be when training a network. Furthermore, the number
of parameters in an architecture decides if the number of cores or the clock speed is the most
important. This answers RQ 4.

5.4 Experiment on liver segmentation

With a dice score of 0.81 DeepMedic seems to be the only architecture capable of doing liver
segmentation. The CNN got a dice score of 0.61 while the U-Net only predicted non-liver voxels
for the whole image. The reason for the architecture having a high sensitivity and specificity is
that only approximately 3% of the voxels in the CT image are liver compared to the brain MRI
scans where the brain accounts for approximately 25% of the voxels. The very low amount of
liver voxels present compared to non-liver voxels could also have caused this implementation
of U-Net to perform badly when doing predictions. During training the U-Net tried to minimize
the loss by predicting only non-liver voxels. A solution to this could be to sample input patches
during training so that the majority of the patches are centered around the liver instead of the
randomized approach that this implementation uses.

Figure 4.28 shows that one of the reasons for the low dice scores for the DeepMedic is false
positive predictions in the lower part of the image. The predictions around the liver seems to be
somewhat accurate with a few false positives and a few false negatives. As for the CNN it also
had some false positives in the lower part of the image. In addition, it had many false negatives
around the liver, further contributing to a lower dice score.

71

Chapter 5. Discussion

This experiment shows, at least for the CNN and DeepMedic, that the architectures have no
problems on other medical image modalities. The bad scores in this experiment are most likely
a result of liver segmentation being a harder task compared to skull stripping.

If some post-processing was done on the DeepMedic prediction to cut away some false positives
the DeepMedic architecture could maybe get a fairly high dice score. This should not be overly
difficult either, for example one solution could be to post-process the prediction so that only the
largest connection of predicted positive voxels are kept. Since much of the image is essentially
useless for the network when doing liver prediction, another solution would be to cut out parts
of the image so that only the part where the liver is located is kept. This could also maybe help
the CNN and the U-Net.

Finally, it should be added that the models were trained and tested on the same data for this
experiment. The scores are therefore not really significant since the models could simply have
overtrained on the data. However, this experiment also shows that liver segmentation is possible,
at least with DeepMedic. Other 3D CNNs used for liver segmentation, like Lu et al. (2017), used
post-processing to get better results. Figure 4.28, which shows DeepMedic’s best prediction on
the LiTS data, indicates that simple post-processing like cutting away irregularly placed falsely
predicted liver voxels might make the final segmentation better. If this is done the scores for
DeepMedic might become much better. RQ 5 asked if the deep learning architectures could
also be used to do liver segmentation. The answer to this is that it seems possible to do this with
the CNN and DeepMedic, but not this implementation of U-Net.

5.5 Reflection

When implementing the U-Net in Keras a lot of mistakes were made at the start. Deep learn-
ing can be very hard to debug since the program will show no errors, but it can still produce
unpredictable results because of mistakes in the code. Also, deep learning usually needs very
good hardware to run. This was the case for all the architectures used in this thesis causing
it to be impossible to do debugging on the laptop. For example during the implementation of
U-Net one error in one line used for building the model lead to weeks spent on trying to figure
out if the U-Net could do skull stripping at all. U-Net would train and predict just fine, but the
predictions were useless. At one point another implementation of U-Net found on GitHub was
tested to see if U-Net could do skull stripping. That implementation could do skull stripping
which lead to debugging of the code in this implementation and the error was eventually found.
The lesson in this is that it is important to search the code for errors and not only spend time on
trying new things. Less time could have been wasted if time was first spent on looking at the
code instead of trying other things.

At first it was assumed that a larger patch size for the U-Net would produce the best results.
Every experiment was first done using patch size 643 for the U-Net which was the largest patch

72

5.5 Reflection

size that could be used, any larger and the training time would be too long. A smaller patch size
was tried with the U-Net and it lead to better results. Consequently, all of the experiments had
to be repeated for the U-Net. Lesson learned is that it is very important to set up experiments
were different configurations of the architecture are tried out.

In this master thesis the CNN and the U-Net was implemented in the same solution. This was
not necessarily a bad, but it would have been cleaner to start from scratch with the implemen-
tation of U-Net. Using the skills learned when reimplementing the CNN from Kleesiek et al.
(2016) in Keras the code for U-Net could have been better and perhaps less time would have
been used debugging it at the start.

Using NTNU’s EPIC was very easy after getting used to it. EPIC enables the user to train many
models at the same time, which is perfect if the user wants to explore new deep learning methods
or test modifications on existing implementations. If learning how to use EPIC happened sooner
many more experiments could have been done and perhaps the CNN and U-Net could produce
better results.

Another point is that no regularization methods were explored for the U-Net, or for that matter
the CNN. It is trivial to add regularization in Keras, but it did not seem necessary since this was
not used in the CNN from Kleesiek et al. (2016). The data augmentation used in Kleesiek et al.
(2016) should have a mitigating effect on overfitting, but other regularization methods should
perhaps have been tried out as well. If this was done a larger patch size for the U-Net could
perhaps have been used since the problem with the larger patch sizes was overfitting.

73

Chapter 5. Discussion

74

Chapter 6
Conclusion and future work

6.1 Conclusion

In this thesis various experiments with different deep learning architectures have been com-
pleted. The CNN from Kleesiek et al. (2016), U-Net from Çiçek et al. (2016) and DeepMedic
from Kamnitsas et al. (2016) was used to train on data from OASIS, LBPA40 and data from the
St. Olavs hospital. The first research question asked how important it was for different deep
learning architectures to train on data from the same source before performing skull stripping.
This was shown to be very important for all the architectures used in this thesis. No architecture
could provide satisfactory results on any data set that they had not been trained on.

An experiment where the architectures were trained and tested on the same number of images
from each data set was done to answer the second research question. This was shown to be
detrimental when testing on the data set that was most variable and that originally had the most
data. For the data set with the least amount of data a small improvement could be seen on two
architectures: the CNN and DeepMedic.

The third research question asked if training on images with the same voxel size is important
when performing skull stripping. This was shown to be important for the St. Olavs data set
since it was the most irregular data set. The CNN and the U-Net had the most problems with
not resampled data, while DeepMedic had less problems. For the LBPA40 and the OASIS data
set this was shown to not be as an important factor because they were not as irregular.

Furthermore, this thesis has explored different deep learning solutions that the St. Olavs hospital
can use for skull stripping. DeepMedic was found to be the best solution that was tested.

Research question four asked how different hardware configurations impact the training time of
deep learning methods. The experiments done showed that choosing the right configuration can
speed up the training time. If an architecture has many parameter and uses a large batch size the
amount of CUDA cores becomes more important when training, but if the architecture has less

75

parameters and uses a smaller batch size the clock speed of the GPU becomes more important.

Lastly the architectures were tested on liver segmentation data. DeepMedic showed promising
results, but it produced many spurious false positives. The CNN also had spurious false positive
and it also had many false negatives in its prediction. This implementation of U-Net was shown
to not be able to do liver segmentation.

6.2 Future work

CRF can be used to make better predictions. Originally, DeepMedic (Kamnitsas et al., 2017)
used CFR to do post-processing on its tumor predictions. Using CRF could lead to better brain
mask predictions.

The training scheme for this implementation of U-Net was the same as the one used for the
CNN. The training scheme should be reimplemented so that it is tailored to the U-Net. Also, a
larger patch size for the U-Net could be used if more regularization techniques are added to the
implementation. This should not be difficult to investigate.

Some results could be improved if some post-processing steps were added. For example to
fill in holes in U-Net’s predictions and cutting away falsely predicted brain voxels in some
predictions.

The capsule network by Sabour et al. (2017) should perhaps be looked more into. As of now,
there has not been published much work on this architecture since it is so new, but LaLonde
and Bagci (2018) showed that the architecture can successfully be used for medical imaging
segmentation. The paper did not extend the capsule network to handle 3D data, but this could
be explored further.

76

Bibliography

Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., Erickson, B. J., 2017. Deep Learning for
Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging
30 (4), 449–459.

Ben-Cohen, A., Diamant, I., Klang, E., Amitai, M., Greenspan, H., 2016. Fully Convolutional
Network for Liver Segmentation and Lesions Detection. In: Carneiro, G., Mateus, D., Peter,
L., Bradley, A., Tavares, J. M. R. S., Belagiannis, V., Papa, J. P., Nascimento, J. C., Loog, M.,
Lu, Z., Cardoso, J. S., Cornebise, J. (Eds.), Deep Learning and Data Labeling for Medical
Applications. Springer International Publishing, Cham, pp. 77–85.

Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., Snyder, A. Z.,
2004. A unified approach for morphometric and functional data analysis in young, old, and
demented adults using automated atlas-based head size normalization: Reliability and valida-
tion against manual measurement of total intracranial volume. NeuroImage 23 (2), 724–738.

Casamitjana, A., Puch, S., Aduriz, A., Vilaplana, V., 2016. 3D Convolutional Neural Networks
for Brain Tumor Segmentation: A Comparison of Multi-resolution Architectures. In: Crimi,
A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (Eds.), Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing,
Cham, pp. 150–161.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O., 2016. 3D U-net: Learn-
ing dense volumetric segmentation from sparse annotation. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 9901 LNCS, 424–432.

COX, R. W., 1996. AFNI : Software for Analysis and Visualization of Functional Magnetic
Resonance Neuroimages. COMPUTERS AND BIOMEDICAL RESEARCH 173 (29), 162–
173.

de Boer, R., Vrooman, H. A., Ikram, M. A., Vernooij, M. W., Breteler, M. M. B., van der Lugt,
A., Niessen, W. J., 2010. Accuracy and reproducibility study of automatic MRI brain tissue

77

segmentation methods. NeuroImage 51 (3), 1047–1056.
URL http://dx.doi.org/10.1016/j.neuroimage.2010.03.012

Dumoulin, V., Visin, F., 2016. A guide to convolution arithmetic for deep learning, 1–28.
URL http://arxiv.org/abs/1603.07285

Eide, Ø. A., 2017. Skull stripping using deep neural networks. Ph.D. thesis, NTNU.
URL https://github.com/oysteiae/FordypningsProsjekt

Eskildsen, S. F., Coupé, P., Fonov, V., Manjón, J. V., Leung, K. K., Guizard, N., Wassef, S. N.,
Østergaard, L. R., Collins, D. L., 2012. BEaST: Brain extraction based on nonlocal segmen-
tation technique. NeuroImage 59 (3), 2362–2373.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. Proceedings of the IEEE International Conference
on Computer Vision 2015 Inter, 1026–1034.

Iglesias, J. E., Liu, C. Y., Thompson, P. M., Tu, Z., 2011. Robust brain extraction across datasets
and comparison with publicly available methods. IEEE Transactions on Medical Imaging
30 (9), 1617–1634.

Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. CoRR abs/1502.0.
URL http://arxiv.org/abs/1502.03167

Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A. V., Criminisi, A., Rueckert, D.,
Glocker, B., 2016. DeepMedic for Brain Tumor Segmentation, 138–149.
URL http://link.springer.com/10.1007/978-3-319-55524-9{_}14

Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueck-
ert, D., Glocker, B., 2017. Efficient multi-scale 3D CNN with fully connected CRF for accu-
rate brain lesion segmentation. Medical Image Analysis 36, 61–78.
URL http://dx.doi.org/10.1016/j.media.2016.10.004

Ker, J., Wang, L., Rao, J., Lim, T., 2018. Deep Learning Applications in Medical Image Anal-
ysis. IEEE Access, 1–1.
URL http://ieeexplore.ieee.org/document/8241753/

Kim, H., Nam, H., Jung, W., Lee, J., apr 2017. Performance analysis of CNN frameworks for
GPUs. In: 2017 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). pp. 55–64.

Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., Biller, A.,
2016. Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.

78

http://dx.doi.org/10.1016/j.neuroimage.2010.03.012
http://arxiv.org/abs/1603.07285
https://github.com/oysteiae/FordypningsProsjekt
http://arxiv.org/abs/1502.03167
http://link.springer.com/10.1007/978-3-319-55524-9{_}14
http://dx.doi.org/10.1016/j.media.2016.10.004
http://ieeexplore.ieee.org/document/8241753/

NeuroImage 129, 460–469.
URL bi

Klein, A., Ghosh, S. S., Avants, B., Yeo, B. T., Fischl, B., Ardekani, B., Gee, J. C., Mann, J. J.,
Parsey, R. V., 2010. Evaluation of volume-based and surface-based brain image registration
methods. NeuroImage 51 (1), 214–220.
URL http://dx.doi.org/10.1016/j.neuroimage.2010.01.091

LaLonde, R., Bagci, U., 2018. Capsules for Object Segmentation (Midl), 1–9.
URL http://arxiv.org/abs/1804.04241

Ling, H., Kevin Zhou, S., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D., 2008. Hier-
archical, learning-based automatic liver segmentation. 26th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak,
J. A. W. M., van Ginneken, B., Sánchez, C. I., 2017. A Survey on Deep Learning in Medical
Image Analysis. CoRR (1995).
URL http://arxiv.org/abs/1702.05747{%}0Ahttp://dx.doi.org/10.1016/j.media.2017.07.005

Lu, F., Wu, F., Hu, P., Peng, Z., Kong, D., feb 2017. Automatic 3D liver location and seg-
mentation via convolutional neural network and graph cut. International Journal of Computer
Assisted Radiology and Surgery 12 (2), 171–182.
URL https://doi.org/10.1007/s11548-016-1467-3

MacDonald, D., Kabani, N., Avis, D., Evans, A. C., 2000. Automated 3-D extraction of inner
and outer surfaces of cerebral cortex from MRI. NeuroImage 12 (3), 340–356.

Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., Buckner, R. L., 2007.
Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle
aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience 19 (9),
1498–1507.

Masci, J., Giusti, A., Ciresan, D. C., Fricout, G., Schmidhuber, J., 2013. A Fast Learn-
ing Algorithm for Image Segmentation with Max-Pooling Convolutional Networks. CoRR
abs/1302.1.
URL http://arxiv.org/abs/1302.1690

Milletari, F., Navab, N., Ahmadi, S. A., 2016. V-Net: Fully convolutional neural networks for
volumetric medical image segmentation. Proceedings - 2016 4th International Conference on
3D Vision, 3DV 2016, 565–571.

Nie, D., Wang, L., Gao, Y., Sken, D., 2016. Fully convolutional networks for multi-modality
isointense infant brain image segmentation. Proceedings - International Symposium on
Biomedical Imaging 2016-June, 1342–1345.

79

bi
http://dx.doi.org/10.1016/j.neuroimage.2010.01.091
http://arxiv.org/abs/1804.04241
http://arxiv.org/abs/1702.05747{%}0Ahttp://dx.doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1007/s11548-016-1467-3
http://arxiv.org/abs/1302.1690

Nielsen, M., 2015. Neural Networks and Deep Learning. Determination press.
URL http://neuralnetworksanddeeplearning.com/index.html

Perona, P., Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12 (7), 629–639.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=56205

Preston, D. C., 2006. Magnetic Resonance Imaging (MRI) of the Brain and Spine: Basics.
URL http://casemed.case.edu/clerkships/neurology/WebNeurorad/MRIBasics.htm

Rohlfing, T., feb 2012. Image Similarity and Tissue Overlaps as Surrogates for Image Registra-
tion Accuracy: Widely Used but Unreliable. IEEE Transactions on Medical Imaging 31 (2),
153–163.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical
Image Segmentation. CoRR abs/1505.0.
URL http://arxiv.org/abs/1505.04597

Sabour, S., Frosst, N., Hinton, G. E., 2017. Dynamic Routing Between Capsules (Nips).
URL http://arxiv.org/abs/1710.09829

Sebastian, R., 2016. Monte carlo EM for missing covariates in parametric regression models.
CoRR.
URL http://arxiv.org/abs/1609.04747

Ségonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., Fischl, B., 2004. A
hybrid approach to the skull stripping problem in MRI. NeuroImage 22 (3), 1060–1075.

Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., Poldrack,
R. A., Bilder, R. M., Toga, A. W., 2008. Construction of a 3D probabilistic atlas of human
cortical structures. NeuroImage 39 (3), 1064–1080.

Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image
Recognition, 1–14.
URL http://arxiv.org/abs/1409.1556

Smith, S. M., 2002. Fast robust automated brain extraction. Human Brain Mapping 17 (3),
143–155.

Speier, W., Iglesias, J. E., El-Kara, L., Tu, Z., Arnold, C., 2011. Robust skull stripping of clinical
glioblastoma multiforme data. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6893 LNCS (PART
3), 659–666.

Thompson, P. M., Mega, M. S., Woods, R. P., Zoumalan, C. I., Lindshield, C. J., Blanton,
R. E., Moussai, J., Holmes, C. J., Cummings, J. L., Toga, A. W., 2001. Cortical Change in

80

http://neuralnetworksanddeeplearning.com/index.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=56205
http://casemed.case.edu/clerkships/neurology/Web Neurorad/MRI Basics.htm
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1409.1556

Alzheimer’s Disease Detected with a Disease-specific Population-based Brain Atlas. Cerebral
Cortex 11 (1), 1–16.
URL http://dx.doi.org/10.1093/cercor/11.1.1

Tosun, D., Rettmann, M. E., Naiman, D. Q., Resnick, S. M., Kraut, M. A., Prince, J. L., 2006.
Cortical reconstruction using implicit surface evolution: Accuracy and precision analysis.
NeuroImage 29 (3), 838–852.

Yang, D., Xu, D., Zhou, S. K., Georgescu, B., Chen, M., Grbic, S., Metaxas, D., Comaniciu, D.,
2017. Automatic liver segmentation using an adversarial image-to-image network. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 10435 LNCS, 507–515.

Zeiler, M. D., Krishnan, D., Taylor, G. W., Fergus, R., 2010. Deconvolutional networks. Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2528–2535.

Zhang, Y., Brady, M., Smith, S., jan 2001. Segmentation of brain MR images through a hidden
Markov random field model and the expectation-maximization algorithm. IEEE Transactions
on Medical Imaging 20 (1), 45–57.

Zhao, L., Jia, K., 2016. Deep Feature Learning with Discrimination Mechanism for Brain Tu-
mor Segmentation and Diagnosis. Proceedings - 2015 International Conference on Intelligent
Information Hiding and Multimedia Signal Processing, IIH-MSP 2015, 306–309.

Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y., 2016. Brain tumor segmentation using a
fully convolutional neural network with conditional random fields. Vol. 10154 LNCS.

81

http://dx.doi.org/10.1093/cercor/11.1.1

82

Appendix

83

84

Appendix A
Experiments with data sets and models

The accuracy graph presented for the U-Net and the CNN show averaged accuracies after 100
update steps. For DeepMedic the accuracy is plotted using a function that is included in the
DeepMedic implementation.

A.1 Networks trained and tested on one data set

A.1.1 CNN

Figure A.1: Accuracy graph CNN only OASIS.

85

Figure A.2: Accuracy graph CNN only St. Olavs.

Figure A.3: Accuracy graph CNN only LBPA40.

86

A.1.2 U-Net

Figure A.4: Accuracy graph U-Net only OASIS.

Figure A.5: Accuracy graph U-Net only St. Olavs.

87

Figure A.6: Accuracy graph U-Net only LBPA40.

A.1.3 DeepMedic

Figure A.7: Accuracy graph DeepMedic only OASIS.

Figure A.8: Accuracy graph DeepMedic only St. Olavs.

88

Figure A.9: Accuracy graph DeepMedic only LBPA40.

A.2 Networks trained on two data sets tested on remaining

A.2.1 CNN

Figure A.10: Accuracy graph CNN trained on LBPA40 and St. Olavs validated on
OASIS.

89

Figure A.11: Accuracy graph CNN trained on LBPA40 and OASIS validated on St.
Olavs.

Figure A.12: Accuracy graph CNN trained on OASIS and St. Olavs validated on
LBPA40.

90

A.2.2 U-Net

Figure A.13: Accuracy graph U-Net trained on LBPA40 and St. Olavs validated on
OASIS.

Figure A.14: Accuracy graph U-Net trained on LBPA40 and OASIS validated on St.
Olavs.

91

Figure A.15: Accuracy graph U-Net trained on OASIS and St. Olavs validated on
LBPA40.

A.2.3 DeepMedic

Figure A.16: Accuracy graph DeepMedic trained on LBPA40 and St. Olavs validated on
OASIS.

92

Figure A.17: Accuracy graph DeepMedic trained on LBPA40 and OASIS validated on
St. Olavs.

Figure A.18: Accuracy graph DeepMedic trained on OASIS and St. Olavs validated on
LBPA40.

A.3 Networks trained on all the data

Figure A.19: Accuracy and validation accuracy for U-Net trained on all data.

93

Figure A.20: Accuracy and validation accuracy for the CNN trained on all data.

Figure A.21: Accuracy and validation accuracy for the CNN trained on all data.

94

A.4 Networks trained on equal amounts of data from each
data set

A.4.1 CNN

Figure A.22: Accuracy graph CNN trained on equal amounts of data.

A.4.2 U-Net

Figure A.23: Accuracy graph U-Net trained on equal amounts of data.

95

A.4.3 DeepMedic

Figure A.24: Accuracy graph DeepMedic trained on equal amounts of data.

A.5 Network trained on not resampled data

A.5.1 CNN

Figure A.25: Accuracy graph CNN trained on not resampled data.

96

A.5.2 U-Net

Figure A.26: Accuracy graph U-Net trained on not resampled data.

A.5.3 DeepMedic

Figure A.27: Accuracy graph DeepMedic trained on not resampled data.

97

98

Appendix B
Feature maps

This appendix chapter shows feature maps for the first 4 layers of the different architectures.
The feature maps where produced from models trained and tested on data from OASIS and
LBPA40 as well as data from the St. Olavs hospital.

B.1 U-Net

Figure B.1: First convolutional layer of U-Net.

99

Figure B.2: Second convolutional layer of U-Net.

Figure B.3: First max-pooling layer of U-Net.

100

Figure B.4: Third convolutional layer of U-Net.

B.2 CNN

Figure B.5: First convolutional layer of the CNN.

Figure B.6: First max pooling layer of the CNN.

101

Figure B.7: Second convolutional layer of the CNN.

Figure B.8: Third convolutional layer of the CNN.

B.3 DeepMedic

Figure B.9: Pathway 0 DeepMedic convolutional layer 1.

Figure B.10: Pathway 0 DeepMedic convolutional layer 2.

102

Figure B.11: Pathway 0 DeepMedic convolutional layer 3.

Figure B.12: Pathway 0 DeepMedic convolutional layer 4.

Figure B.13: Pathway 1 DeepMedic convolutional layer 1.

Figure B.14: Pathway 1 DeepMedic convolutional layer 2.

103

Figure B.15: Pathway 1 DeepMedic convolutional layer 3.

Figure B.16: Pathway 1 DeepMedic convolutional layer 4.

104

	Problem Description
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation and problem description
	Project goals and Research Questions
	Contributions
	Thesis structure

	Background
	Skull stripping
	Liver segmentation
	Imaging modalities
	MRI
	Computed Tomography
	Storing of medical image data and image formats

	Deep neural networks
	Neural network
	Neuron
	Activation function
	Loss function
	Training
	Convolutional neural networks
	Skip connections
	GPU training

	Generalization, overfitting and underfitting
	Regularization

	Training, test and validation data
	Literature study
	Previous methods used for skull stripping
	Deep learning architectures used for analyzing brain images
	Deep learning for liver segmentation
	Capsule networks

	Method
	Data sets
	OASIS
	LBPA40
	St. Olavs data
	LiTS data

	Deep learning architectures
	3D CNN
	U-Net
	Training
	Prediction
	DeepMedic

	Data preprocessing
	Resampling
	Normalization

	Multi GPU model
	Evaluation metrics
	Dice score
	Error maps
	Other metrics

	Dice coefficient loss
	Set up
	Experiments
	Experiments with hyperparameters
	Experiments with data sets and models
	Testing CNN and the U-Net on different hardware configurations
	Experiment on liver data

	Results
	Experiments with hyperparameters
	Experiment with patch size
	Experiment with different a loss function

	Experiments with data sets
	Architectures trained and tested on one data set
	Architectures trained on two data sets and tested on the third
	Architectures trained and tested on data from all three data sets
	Architectures trained on equal amounts of data from each data set
	Architectures trained on not resampled data

	Testing CNN and the U-Net on different hardware configurations
	CNN
	U-Net

	Experiment on liver segmentation

	Discussion
	Experiments with hyperparameters
	Experiment with patch size
	Experiment with a different loss function

	Experiments with data sets and models
	Architectures trained and tested on one data set
	Architectures trained on two data sets tested on the third
	Architectures trained and tested on data from all three data sets
	Architectures trained on equal amounts of data from each data set
	Architectures trained on not resampled data
	General

	Testing U-Net and the CNN on different configurations
	Experiment on liver segmentation
	Reflection

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Appendix
	Experiments with data sets and models
	Networks trained and tested on one data set
	CNN
	U-Net
	DeepMedic

	Networks trained on two data sets tested on remaining
	CNN
	U-Net
	DeepMedic

	Networks trained on all the data
	Networks trained on equal amounts of data from each data set
	CNN
	U-Net
	DeepMedic

	Network trained on not resampled data
	CNN
	U-Net
	DeepMedic

	Feature maps
	U-Net
	CNN
	DeepMedic

