
A machine learning approach for jaundice
detection using color corrected
smartphone images

Håvard Hagen Falk
Oliver Damsgaard Jensen

Master of Science in Computer Science

Supervisor: Frank Lindseth, IDI
Co-supervisor: Mahdi Amani, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Neonatal jaundice and the associated yellow skin discoloration is caused by hyper-
bilirubinemia, a condition in which there is too much bilirubin in the blood. In 2010,
the failure to treat jaundice resulted in 114,000 avoidable infant deaths and 75,000 chil-
dren with brain dysfunction worldwide. Studies have found hyperbilirubinemia to be
one of the top three causes of death among newborns in sub-Saharan Africa, and af-
fordable jaundice detection technologies are urgently needed.

Transcutaneous bilirubinometers are robust screening methods commonly used by the
medical community, but the price tag limits their widespread availability. Using smart-
phone cameras to capture skin induced color values, we create a low-cost alternative
to expensive bilirubinometers. Through computer vision and deep learning, the final
fully-connected feed-forward neural network achieves competitive results compared to
Dräger JM-103, a state-of-the-art bilirubinometer. In the critical cases where treatment
is required, the neural network even outperforms Dräger JM-103, resulting in 75%
fewer false negative predictions.

Contrary to the transcutaneous bilirubinometers, the proposed solution relies on im-
ages, where light sources and camera sensors drastically impact the skin information.
To make images illumination and camera independent, we propose a novel approach
for color correction, the Gaussian process regression (GPR), a machine learning model
that adapts to environmental variables. The results show that the GPR achieves equal
results to state-of-the-art color correction techniques, while also creating more general
models.

i

ii

Sammendrag

Spedbarns gulsott og den gule misfargingen av huden skyldes hyperbilirubinemi, en
tilstand der blodet inneholder økte mengder av fargestoffet bilirubin. I 2010 resulterte
manglende behandling av gulsott i 114 000 unødvendige spedbarns dødsfall og 75 000
barn med hjerneskader totalt i verden. Studier viser at hyperbilirubinemi er en av de tre
største dødsårsakene blant nyfødte i Afrika syd for Sahara, og at det er et akutt behov
for rimelige teknologier som kan oppdage gulsott.

Transkutane bilirubinometre er en pålitelig screening metode som ofte er brukt av det
medisinske miljøet, men som dessverre er lite tilgjengelige grunnet høy pris. Ved å
bruke smarttelefonkameraer til å ta bilder av hud, har vi laget et billig alternativ til de
dyre bilirubinometrene. Vi tar i bruk datasyn og maskinlæring i form av et dypt nevralt
nettverk og oppnår konkurransedyktige resultater sammenliknet med en Dräger JM-
103, et toppmoderne bilirubinometer. I kritiske tilfeller hvor behandling er nødvendig,
overgår det nevrale nettverket Dräger JM-103, noe som resulterer i 75% færre falskt
negative prediksjoner.

I motsetning til de transkutane bilirubinometrene, er den foreslåtte løsningen avhengig
av bilder, hvor lyskilder og kamerasensorer drastisk påvirker hudinformasjonen. For
å få lys og kamera uavhengige bilder, foreslår vi en ny tilnærming til fargekorriger-
ing Gaussian process regression (GPR), en maskininnlæringsmodell som tilpasser seg
bildetakningsforholdene. Resultatene viser at GPR oppnår like gode resultater som da-
gens beste fargekorrigeringsteknikker, samtidig som den lager mer generelle fargekor-
rigeringsmodeller.

iii

iv

Preface

This thesis was written over the course of the spring semester 2018, for the Department
of Computer Science (IDI) at the Norwegian University of Science and Technology
(NTNU).

Foremost, we would like to express our sincere gratitude to our supervisor, associate
professor Frank Lindseth, for giving us the opportunity to work on this exciting project.
His help and guidance over the past months gave us motivation to finish the thesis and
steered us in the right the direction.

We would also like to thank our co-supervisors Mahdi Amadi for all the encourage-
ment, insightful comments, and hard questions. Without his passionate participation
and input, the thesis would not be as detailed as it is today. It was a pleasure working
with you.

We thank Anders Aune and Gunnar Vartdal from Picterus AS for allowing us to use
their jaundice dataset and to work on this project. It has truly been a great experience
and a lot of fun. Thank you for providing us with all necessary information and letting
us tap into your medical expertise.

Lastly, we owe a deep thanks to Gunnar Vartdal from Picterus AS for the idea of using
the Gaussian process regression for color correction.

Trondheim, June 7. 2018

Håvard Hagen FALK and Oliver Damsgaard JENSEN

v

vi

Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xii

List of Figures xiv

Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Project Goals and Research Questions 2
1.3 Contribution . 3
1.4 Thesis Structure . 3

2 Background 5
2.1 Optical Properties of Human Skin 5

2.1.1 Light Absorption . 5
2.1.2 Human Skin Physiology . 6
2.1.3 Bilirubin . 6

vii

2.1.4 Melanin . 7
2.1.5 Blood . 7

2.2 Jaundice . 8
2.3 Measuring Bilirubin . 9

2.3.1 Transcutaneous Bilirubin . 10
2.3.2 BiliCam . 11

2.4 Color & Color Spaces . 13
2.4.1 XYZ 1931 Color Space . 13
2.4.2 CIE L*a*b* Color Space . 13
2.4.3 Standard RGB (sRGB) Color Space 14
2.4.4 Delta E (∆E) . 15
2.4.5 CIE Illuminant . 15

2.5 Color Checker . 16
2.5.1 General Color Checkers . 16
2.5.2 Skin Color Checker . 17

2.6 Color Correction . 18
2.6.1 Look-Up Tables . 19
2.6.2 Least-Squares Linear Regression 19
2.6.3 Artificial Neural Networks (Color Correction) 22
2.6.4 Gaussian Process Regression (Color Correction) 23

2.7 Machine Learning . 23
2.7.1 Gaussian Processes . 23
2.7.2 Support Vector Machine . 27
2.7.3 Deep Learning & Artificial Neural Networks 30

3 Methods 39
3.1 Jaundice Dataset . 40
3.2 Color Correction . 42

3.2.1 Color Correction Framework Solutions 42
3.2.2 Gaussian Process Regression Solution 45
3.2.3 Color Correction Evaluation Methods 46
3.2.4 Experiments . 47

3.3 Bilirubin Prediction . 49
3.3.1 Data Preprocessing . 50
3.3.2 Experimental Setup . 50
3.3.3 Solutions . 52

viii

4 Results 61
4.1 Color Correction . 61

4.1.1 Experiment I . 62
4.1.2 Experiment II . 65
4.1.3 Experiment III . 67

4.2 Bilirubin Prediction . 71
4.2.1 Support Vector Regression 71
4.2.2 Fully Connected Neural Networks 74
4.2.3 Convolutional Neural Networks 77

5 Discussion 81
5.1 Color Correction . 81

5.1.1 Linear Color Correction (LCC) 82
5.1.2 PCC and RPCC Frameworks 83
5.1.3 Gaussian Process Regression 85
5.1.4 Summary . 86

5.2 Bilirubin Prediction . 87
5.2.1 Dataset . 88
5.2.2 Evaluation of Dräger Performance 89
5.2.3 Support Vector Regression 90
5.2.4 Fully Connected Neural Networks 91
5.2.5 Convolutional Neural networks 92
5.2.6 Summary . 92

5.3 Project Reflection . 93

6 Conclusion and Future Work 95
6.1 Future Work . 96

6.1.1 Color Correction . 96
6.1.2 Bilirubin Prediction . 96
6.1.3 Convolution Neural Networks 97
6.1.4 Fully Automatic Mobile App 97

Bibliography 99

Appendix A Color Checkers 105

Appendix B Viewing Box Dataset Images 109

ix

x

List of Tables

2.1 Däger JM-103 measurements on Caucasian, Black and Hispanic neonates 11
2.2 Different CIE illuminants . 16

3.1 Illumination settings in experiment I and experiment II 48
3.2 Hyperparameters used in grid-search with SVR 54
3.3 Kernel’s applicable hyperparameter in the SVR grid-search 54
3.4 Hyperparameters used in the coarse grid-search with NN 56
3.5 Hyperparameters used in the fine tuning grid-search with NN 56
3.6 Possible hyperparameters for the CNN 59

4.1 Evaluation methods used in the color correction experiments 61
4.2 Color correction: Experiment I results 62
4.3 Color correction: Experiment I internal methods 63
4.4 Color correction: Experiment II results 66
4.5 Color correction: Experiment II internal methods 66
4.6 Color correction: Experiment III results 68
4.7 Color correction: Experiment III internal PCCF methods 69
4.8 Color correction: Experiment III internal RPCCF methods 69
4.9 Bilirubin prediction: SVR results . 72
4.10 Bilirubin prediction: NN best hyperparameters 74
4.11 Bilirubin prediction: NN results . 75
4.12 Bilirubin prediction: CNN best hyperparameters 77
4.13 Bilirubin prediction: CNN results 78

xi

A.1 The SpyderCHECKR 24 . 105
A.2 Values from the SpyderCHECKR 24 106
A.3 The SkinChecker by Picterus AS . 107
A.4 Values from SkinChecker by Picterus AS 108

xii

List of Figures

2.1 Diagram of human skin . 7
2.2 Extinction coefficients for hemoglobin, methemoglobin, and bilirubin 8
2.4 Dräger JM-103 performance, Bland-Altman and Linear regression plot 12
2.5 CIE xy Chromaticity diagram with sRGB 14
2.6 General and specific color checkers 17
2.7 CIE xy Chromaticity diagram with SpyderChecker and SkinChecker . 18
2.9 Gaussian process regression with prior and posterior 26
2.10 Support vector machine classification showing an optimal classification 28
2.11 Support Vector Machines in higher dimensionality 29
2.12 Nonlinear support vector regression with ε-insensitive loss function . 30
2.13 A simple mathematical model for a neuron 31
2.14 The most commonly used activation functions in an ANN 32
2.15 Stochastic gradient descent with momentum 33
2.16 A convolutional neural network architecture 35
2.18 Visual representation of how to split a dataset 38

3.1 Jaundice computer vision pipeline 40
3.2 Sample area of a color patch . 47
3.3 Before and after age and weight distribution of the jaundice dataset . . 51
3.4 An abstraction of the neural network model 55
3.5 An abstraction of the convolutional neural network model 57

4.1 Color correction: On SpyderCHECKR, evaluated SpyderCHECKR . . 64
4.3 Color correction: On SkinChecker, evaluated SpyderCHECKR 67

xiii

4.4 Color correction: Experiment III, EM 4 68
4.5 Color correction: On SkinChecker, evaluated SkinChecker 70
4.6 Color correction: Distribution of selected internal methods 71
4.7 Bilirubin prediction: SVR linear regression plot 73
4.8 Bilirubin prediction: SVR Bland-Altman (difference-plot) 73
4.9 Bilirubin prediction: NN linear regression plot 75
4.10 Bilirubin prediction: SVR Bland-Altman (difference-plot) 76
4.11 Bilirubin prediction: NN loss history-plot 76
4.12 Bilirubin prediction: CNN linear regression plot 78
4.13 Bilirubin prediction: CNN Bland-Altman (difference-plot) 79
4.14 Bilirubin prediction: CNN loss history-plot 79

B.1 SpyderCHECKR 24 dataset . 110
B.2 SpyderCHECKR 24 and SkinChecker dataset 111

xiv

Abbreviations

AI artificial intelligence. 23, 31, 34

ANN artificial neural network. 22, 23, 30, 31, 34, 54, 55

CNN convolutional neural network. 34, 35, 52, 57, 71, 77, 78, 87, 92, 93, 97

GP Gaussian process. 23–27, 45, 46

GPR Gaussian process regression. i, iii, 3, 42, 45, 46, 48, 50, 62, 65, 67–69, 81,
85–87, 95

LCC linear color correction. 20–22, 43, 44, 48, 62, 65, 67, 69, 81–83, 86

PCC polynomial color correction. 21, 22, 42–44, 85

PCCF polynomial color correction framework. 42, 48, 62, 65–70, 83, 84, 86, 87

RBF radial-basis function. 25, 27, 28, 53, 71, 85, 91

ReLu Rectified Linear Unit. 32, 35

RPCC root-polynomial color correction. 22, 43, 44, 83, 96

RPCCF root-polynomial color correction framework. 42, 44, 48, 62, 65, 67–70, 83–
87, 96

xv

RQ rational quadratic. 25, 27, 46

SGD Stochastic Gradient Decent. 32, 33

sRGB standard RGB. 14, 18

SVM Support Vector Machine. 22, 23, 27–29, 52, 90

SVR support vector regression. 29, 30, 52–54, 71, 72, 75, 87, 90–92

tanh The hyperbolic tangent. 32

TcB transcutaneous bilirubin. 2, 3, 10, 11, 41, 52, 72, 74, 93, 95

TSB total serum bilirubin. 2, 9–12, 40, 41, 49–52, 71, 72, 74, 87–90, 92, 93, 95, 96

xvi

Chapter 1
Introduction

1.1 Motivation

Neonatal jaundice refers to the yellow skin discoloration caused by bilirubin, a waste
product formed during the breakdown of heme (i.e., the oxygen-carrying components
in blood). The condition is developed by 60 - 80% of all newborns, usually within the
first 48 hours of birth. In most cases, jaundice does not require treatment and newborns
rid themselves of bilirubin after one or two weeks. If, however, the condition is severe
and goes untreated, permanent damage can be inflicted to the brain, and may result in
brain dysfunction or even death. To prevent this; systematic monitoring of all newborns
is employed during birth hospitalization in most industrialized countries.

A population study performed by K Bhutani et al. (2013), across 184 countries, es-
timated the scope and consequences of jaundice for 2010. They concluded that failure
to treat jaundice resulted in 114,000 avoidable infant deaths and 75,000 children grow-
ing up with brain dysfunction (kernicterus). Additionally, Slusher et al. (2011) have
found jaundice to be one of the top three leading causes of death among newborns in
sub-Saharan Africa. They state that appropriate jaundice detection technologies are ur-
gently needed and that health care providers worldwide recognize jaundice as a "silent"
cause of significant neonatal morbidity and mortality.

The yellow skin discoloration associated with jaundice is attributed to excess biliru-
bin. Visual examinations have, for a long time, been used to screen patients and are still
important in clinical situations. Visual features are, however, subjective to the observer,
and objectively quantifiable methods to support optical diagnosis are frequently used

1

Chapter 1. Introduction

in the medical community. A blood sample can be analyzed to precisely determine
the exact bilirubin concentration of a patient, total serum bilirubin (TSB) for short, but
requires equipment and is expensive.

Bilirubin has a yellow color due to its absorption of green and blue light. These
absorption properties are, today, used to estimate bilirubin concentration via skin-
reflectance measurements. The measurements, called transcutaneous bilirubin (TcB),
are performed by bilirubinometers, apparatus that emit light waves onto skin and, with
sensors, record the amount of reflected light. Studies show that TcB correlates linearly
with TSB and is therefore often used as a screening process, reducing the invasive
evaluation method of drawing blood.

Bilirubinometers are, unfortunately, very expensive and the high cost limits their
widespread use in outpatient settings in low- and middle-income countries. In this
thesis, we explore the use of computer vision and machine learning to create a low-cost
alternative to the expensive state-of-the-art transcutaneous measuring techniques. Our
approach requires only a smartphone and an inexpensive SkinChecker (color checker
optimized for skin) used for color correction purposes.

1.2 Project Goals and Research Questions
The primary goal of this thesis is to explore bilirubin prediction, using images captured
by smartphone cameras. Illumination and camera sensors are variables that add incon-
sistency to images, and color correction must be performed prior to the prediction. To
reach our goal; the following research questions are set forth:

RQ 1. What is the most accurate and robust technique to perform human skin color
correction for scientific use?

RQ 1.1. Which color correction technique is most robust to varying illumination?

RQ 1.2. Which CIE illuminant is most suitable for general color correction?

RQ 1.3. How well can a color correction technique (optimized on a color checker)
generalize its prediction capability to a more diverse range of colors?

RQ 1.4. Is there a single best color correction model regardless of CIE RGB color
subspaces1 CIE reproduced illumination?

RQ 1.5. Can the machine learning approach Gaussian Process Regression achieve
a more robust color correction than state-of-the-art least squares regression
approaches?

1Color subspace (or color sub model) describes a range of colors inside a subset of the CIE RGB color
model. See section 2.4 for more

2

1.3 Contribution

RQ 2. Is it possible to predict bilirubin concentration using skin color imaged by smart-
phone cameras?

RQ 2.1. Can computer vision and deep learning be used to achieve competitive re-
sults to state-of-the-art TcB measurement approaches (bilirubinometers)?

RQ 2.2. Given color correction, are image-based bilirubin prediction models flexi-
ble enough to be used in outpatient and home environments?

RQ 2.3. Can image-based bilirubin prediction serve as a standalone diagnostic tool
for severe hyperbilirubinemia?

RQ 2.4. Does spatially adjacent color features in human skin provide additional
information about the underlying bilirubin concentration?

1.3 Contribution
With an evident need for globally affordable jaundice detection technologies, our main
contribution is an inexpensive, smartphone-based bilirubin prediction model that en-
ables widespread jaundice screening in outpatient and home settings. Today, physi-
cians in low- and middle-income countries struggle to detect jaundice as subjective
visual examinations are the only form of medical evaluation. The idea is to provide a
solution that first and foremost caters to health care workers in clinics where advanced
equipment is unavailable due to cost. Additionally, we provide an easy-to-use tool for
parents to monitor their newborns at home. Overall we contribute with a solution that
can significantly reduce brain dysfunction and mortalities related to jaundice.

In the process of building the jaundice detection pipeline, problems related to im-
age inconsistencies were encountered. To overcome these issues, we propose a novel
color correction solution, using Gaussian process regression (GPR), a machine learn-
ing approach that adapts extremely well to unseen colors. A paper related to our novel
color correction approach is currently being written.

Lastly, for bilirubin prediction, we believe the deep learning based approach mer-
its a standalone paper. The paper will go into further detail on bilirubin prediction,
network architectures, and regression on images from smartphone cameras.

1.4 Thesis Structure
In Introduction the motivation behind the thesis, our contributions, and the thesis re-
search questions are presented. The background chapter provides the basic theory for
the methods used in this thesis and a literature review of related work. First jaundice,

3

Chapter 1. Introduction

its relation to human skin, and jaundice detection technologies are presented. An ex-
planation of color theory and color correction approaches are then covered. Lastly, a
brief introduction to machine learning used for regression is reviewed.

The proposed solutions are presented in Methods, a two-fold chapter. First the
correction solutions are introduced. Then, machine learning regression techniques are
described, along with the jaundice dataset used to build and evaluate the bilirubin pre-
diction models.

In Results the performance of color correction and bilirubin prediction models are
presented. Color correction solutions are evaluated in terms of ∆E∗a,b using color
checkers as ground truth, and bilirubin prediction models are compared to a Dräger
JM-103.

The Discussion chapter presents a discussion of the results and reflects upon the
strengths and weaknesses of the proposed solutions. Based on the results and the
following discussion, a final Conclusion for color correction and smartphone-based
bilirubin prediction is made. Lastly, future work is reviewed.

4

Chapter 2
Background

2.1 Optical Properties of Human Skin

To make an optical diagnosis; it is essential to understand how alterations in the infor-
mation source (e.g., skin) affect visual features. The visual properties of human skin
and its perceived color is attributed to underlying substances’ interaction with light. To
understand the cause of jaundice skin discoloration, we must first understand human
skin, and how each component’s concentration alters the perceived color of skin. This
section will summarize light absorption, the optical properties of human skin, and their
connection to jaundice.

2.1.1 Light Absorption
Light is electromagnetic radiation, and how it interacts with physical objects depend
on the frequency of light waves and the nature of the molecules constructing the object.
Electrons inside an atom have a natural frequency at which they tend to vibrate. If a
light wave of a given frequency hits electrons that have equal frequencies, the electrons
will absorb the energy of the wave.

The absorbed energy is often manifested as heat, but more importantly, light ab-
sorption prevents incoming light from being reflected. The intensity of absorption as
a function of frequency, is what we refer to as an absorption spectrum (Fig. 2.2).
Different material will absorb light at different wavelengths due to their underlying
molecular composition. The absorption spectrum can, therefore, be seen as a finger-

5

Chapter 2. Background

print for a molecule, uniquely identifying it. It is this property that allows us to estimate
concentrations based on reflected light.

We can use absorption spectrums to estimate the concentration of a given substance.
By emitting light onto a surface and recording the amount of reflected light, we learn
the aggregate absorption effect of the surface. The results can be cross-referenced with
the absorption spectrum of the target substance to find its concentration.

An equally important consequence of light absorption is the perceived color of
an object. An object is visible to an observer due to the light that is reflected off
the object. Because of light absorption, molecules only reflect a subset of incoming
frequencies. The residual light after absorption aggregates to the object’s perceived
color. The molecules constructing an object thus defines the object’s perceived color
and indicates its molecular composition.

2.1.2 Human Skin Physiology

Skin is a layered organ, protecting the human organism against environmental stress,
such as heat, radiation, and infections. It contains light-absorbing substances, and
skin’s visual appearance is attributed to both its reflection and absorption properties.

Skin consists of three main layers; epidermis, dermis, and the hypodermis (Fig.
2.1). The outermost layer (epidermis), is usually 50−80 µm thick and contains melanin,
the pigment responsible for human genetic skin coloration. The underlying layer (der-
mis), has a more complex structure, usually 1−4 mm thick, and consists of connective
tissue and blood vessels. At the deepest layer, the hypodermis, made of fat and con-
nective tissue, provides insulation and protection against mechanical injury.

2.1.3 Bilirubin

Bilirubin is a waste product formed during a natural process that breaks down the
oxygen-carrying components in blood, hemoglobin, and myoglobin. (McDonagh and
Lightner (1985)). The hemoglobin breakdown occurs mainly in the liver (Tenhunen
et al. (1969), and the resulting bilirubin waste product is toxic to certain neurons.
Bilirubin exhibits an absorption peak at 460 nm, giving the compound a yellow/orange
color (Anderson and Parrish (1981)), shown in figure 2.2.

1https://www.dreamstime.com/royalty-free-stock-image-layers-human-\
skin-melanocyte-melanin-epidermis-melanocytes-produce-pigment-which-\
can-then-transfer-to-other-image37423406

6

https://www.dreamstime.com/royalty-free-stock-image-layers-human-\skin-melanocyte-melanin-epidermis-melanocytes-produce-pigment-which-\can-then-transfer-to-other-image37423406
https://www.dreamstime.com/royalty-free-stock-image-layers-human-\skin-melanocyte-melanin-epidermis-melanocytes-produce-pigment-which-\can-then-transfer-to-other-image37423406
https://www.dreamstime.com/royalty-free-stock-image-layers-human-\skin-melanocyte-melanin-epidermis-melanocytes-produce-pigment-which-\can-then-transfer-to-other-image37423406

2.1 Optical Properties of Human Skin

Figure 2.1: A diagram of human skin. The diagram shows the three separate layers that construct
the skin organ; epdermis, dermis, and hypodermis. Adapted from Designua1.

2.1.4 Melanin

Melanin is a broad term for a group of natural pigments and is one of the most in-
fluential factors when it comes to human skin color. The amount, shape, and size of
melanin, found in the epidermis, is genetically determined and dictates skin colors as-
sociated with race (e.g., brown, white, yellow). Melanin affects how we perceive skin
color by absorbing light at various wavelengths, and has a broad absorption band rang-
ing from the ultraviolet into the near-infrared parts of the spectrum (Kollias and Baqer
(1987)). Its concentration, which alters skin’s perceived color, can be assessed by mea-
suring reflectance at 568, 660, and 880 nm (Masuda et al. (2009)), shown in figure
2.2.

2.1.5 Blood

The absorption properties of blood are mostly attributed to hemoglobin absorption.
Hemoglobin is a protein found in red blood cells, whose task is to carry oxygen from
the lungs to the rest of the body. Hemoglobin on its own, deoxyhemoglobin (Hb), has a
dark red color (Anderson and Parrish (1981)), but if bound to oxygen, oxyhemoglobin
(Hb02), becomes bright red (Zijlstra et al. (2000)). Within the range of visible light,
Hb exhibits two absorption maxima (400 nm and 550 nm), while Hb02 shows three
(400 nm, 548 nm, and 576 nm)(Fig. 2.2). The two substances contribute to the rosy
complexion associated with good health in light-skinned people.

7

Chapter 2. Background

Figure 2.2: Extinction coefficients for hemoglobin, methemoglobin, and bilirubin. Reprinted
from Randeberg (2005).

2.2 Jaundice

The concentration of bilirubin in human blood is usually restrained by the liver, whose
task is to filter out waste products from the bloodstream. In the liver bilirubin is con-
jugated by enzymes, making it soluble in water and removed from the body through
bile.

If the liver, for any reason, cannot conjugate bilirubin efficiently, unconjugated
bilirubin starts to accumulate in the blood. Hyperbilirubinemia is the term used to
describe a condition where bilirubin concentration exceeds normal levels (generally
below 25 µmol/L for an adult). If untreated, the excess bilirubin seeps out of the
blood vessels into fatty body tissue, often discoloring skin and the white part of the
eye (sclera). It is this discoloration, caused by pigments from bilirubin, that is referred
to as jaundice.

Starting from the chest; the bilirubin discoloration spreads and makes its way to
outer parts of the body (e.g., feet, hands, head). If hyperbilirubinemia reach a certain
level, unconjugated bilirubin breaches the blood-brain barrier and allows bilirubin to
accumulate inside the brain. The bilirubin breach can inflict permanent brain damage
and may result in cerebral palsy, deafness, brain damage or even death.

Infants are especially exposed to high concentrations of bilirubin. While growing
in the mother’s womb, the placenta removes unconjugated bilirubin from the fetus.
Because of this, the bilirubin conjugating enzymes are actively shut off during the
pregnancy. After the umbilical cord is cut, the task of filtering bilirubin from the blood
rests on the baby’s liver. The enzymes, however, need time to become fully active, and

8

2.3 Measuring Bilirubin

(a) (b)

Figure 2.3a: Shows the distribution of TSB at selected time intervals after birth. Reprinted from
(Maisels and Kring (2006)). Figure 2.3b: A jaundice treatment determination chart: The chart
shows weight and age dependent bounds for the treatment of hyperbilirubinemia. It is a guideline
for management of neonatal jaundice currently used in most pediatric departments in Norway.

unconjugated bilirubin starts to accumulate. The distribution of bilirubin concentration
at selected time intervals after birth is shown in figure 2.3a.

Of all newborns, 60 - 80% suffer from some degree of hyperbilirubinemia due
to low enzyme activities in the liver (Avery GB (1994)). Usually, the conjugating
enzymes become functional within a couple of days, and the neonate cures itself. In
cases where the enzymes slumber for too long, treatment of jaundice will commence
if the concentration of bilirubin (µmol/L) reaches a certain threshold, dependent on the
neonate’s age and body weight (Fig. 2.3b). 5 - 10% of neonates receive treatment
for jaundice, usually treated through light therapy (McDonagh and Lightner (1985)).
However, severe cases will require a blood transfusion.

2.3 Measuring Bilirubin

Hyperbilirubinemia is caused by high concentrations of bilirubin in the bloodstream,
and can, therefore, be precisely determined by a blood test. The blood test measures
the amount of µmol bilirubin per liter blood (µmol/L) and is the only way to know a
patient’s true bilirubin concentration. The resulting concentration found by the blood
test is called total serum bilirubin (TSB), and is today, used to determine whether a
patient should receive treatment. However, performing a blood test on all neonates

9

Chapter 2. Background

is too expensive, and there is a widespread consensus that invasive methods, such as
blood tests, are unnecessary.

2.3.1 Transcutaneous Bilirubin
The yellow discoloration caused by bilirubin is a good indicator of the underlying
bilirubin concentration and is used by doctors as a screening method2. Advancements
in technology have enabled physicians to exploit the light absorption properties of
bilirubin through transcutaneous3 methods quantitatively asses the severity of hyper-
bilirubinemia. The transcutaneous methods rely on absorption spectroscopy explained
in Section 2.1.1, and hardware that measure the reflection properties of a material as
a function of wavelengths. The transcutaneous apparatus referred to as transcutaneous
bilirubinometers, are expensive (the state-of-the-art Dräger JM-105 (newly replaced
JM-103) costs 49 900 NOK eks.mva4).

The result from a transcutaneous bilirubinometer is, however, not a precise mea-
surement of a patient’s bilirubin concentration. It is rather an estimated TSB value
based on differences in optical densities for light at different wavelengths and is called
transcutaneous bilirubin (TcB).

Since transcutaneous bilirubinometers measure the bilirubin in extravascular tissue
and not the blood, several studies have gone to great lengths in analyzing the correlation
between TcB and TSB. Researchers agree there is a linear correlation between TSB and
differences in light absorbance. However, literature disagrees as to how reliable these
estimations are. Rubaltelli et al. (2001) argue that transcutaneous measurements can be
used not only as a screening device but also as a reliable substitute, thereby replacing
invasive TSB sampling altogether. On the other hand, Maisels (2015) concludes that
TcB measurements are not good enough to substitute TSB, but that it does tell us (1)
when to worry about an infant and (2) when to obtain TSB from a blood sample.

Several bilirubinometers are being produced, and the available meters can be di-
vided into two categories:

1. Multi-wavelength Spectral Reflectance meters (Bilicheck)

2. Two-wavelength (460 nm, 540 nm) Spectral Reflectance meters (Dräger JM-103)

In a bilirubinometer comparison survey, Francesco Raimondi and Capasso (2012)
conclude that while targeting significantly more wavelengths, Bilicheck and JM-103

2Screening, in medicine, is a strategy used to identify the possible presence of an as-yet-undiagnosed
disease

3Transcutaneous - Applied, or measured across the depth of skin. [Oxford Dictionary]
4Price collected from the Dräger dealer in Norway

10

2.3 Measuring Bilirubin

Apparatus Caucasian Black Hispanic/Asian
(n = 503) (n = 253) (n = 93)

JM-103 0.949 0.822 0.926

Table 2.1: The Däger JM-103 TcB measurements on Caucasian, Black and Hispanic/Asian
neonates. The numerical values represent the Pearson correlation coefficient between TSB and
the JM-103’s measured TcB. The numbers are collected from Maisels et al. (2004).

are equally reliable screening tools for hyperbilirubinemia. Due to the negligible differ-
ence and for simplicity, this thesis will focus on the dual-wave JM-103 bilirubinometer.

Dräger JM-103

The Dräger JM-103 is a state-of-the-art transcutaneous bilirubinometer relying on a
two-wavelength (460 nm, 540 nm) spectral reflectance meter. In ’Hyperbilirubine-
mia and Transcutaneous Bilirubinometry’, El-Beshbishi et al. (2009) go into detail on
the measurement principle of JM-103. In short, the JM-103 determines TcB by mea-
suring the difference in optical density for light in the blue (450 nm) and green (550
nm) wavelength regions. Note that these wavelengths correspond to the bilirubin and
hemoglobin absorption peaks in figure 2.2.

When assessing the performance of a transcutaneous bilirubinometer, two metrics
are widely used; Pearson’s correlation coefficient and TSB - TcB difference. Table 2.1
shows results from a study conducted by Maisels et al. (2004) on 849 children, grouped
by skin color. Plotting the predicted TcB vs. measured TSB (Fig. 2.4a) visualizes
the correlation between the TSB and TcB. The plot highlights bilirubin concentration
intervals where the transcutaneous bilirubinometer performs poorly and vice versa.
The difference plot (Fig. 2.4b), often called a Bland-Altman plot, reveals trends in the
predictions, showcasing under- or over-estimations by the bilirubinometer. The dotted
line shows the 95% confidence interval from the mean prediction (bold dotted line).

2.3.2 BiliCam
Another way to predict bilirubin concentration is by assessing the outer skin layer, vis-
ible to the human eye. The visual features of skin can be captured by a camera, record-
ing the RGB values induced by the skin. The light absorbing properties of bilirubin
turns skin yellow, and the yellow intensity indicates the underlying bilirubin concen-
tration. Finding a direct relationship between skin color and bilirubin concentration
can be used to predict the bilirubin concentration.

11

Chapter 2. Background

(a) Linear regression plot of JM-103 TcB
versus TSB measurements. Bold line shows
the regression line and the dotted line is the
line of identity

(b) Difference plot (Bland-Altman) for the
total population, between measured JM-
103 TcB and TSB measurements. The dot-
ted line shows the 95% confidence interval
from the mean prediction (bold dotted line)

Figure 2.4: A study conducted by Dräger with 849 children. Reprinted from Maisels et al.
(2004).

Taylor et al. (2017) proposes BiliCam; a smartphone application that predicts a
neonate’s TSB using an embedded smartphone camera. The application captures six
images of a neonate, with a modified Macbeth color checker on its chest, and sends the
images to a server for processing. After the images have been analyzed, a predicted
bilirubin concentration value is returned to the user. The image analysis is done using
machine learning and regression techniques, where they claim to achieve an overall
prediction correlation of r = 0.91.

Their evaluation technique, however, is misleading and facilitates unrealistic re-
sults. Using supervised learning they forget to hold out a test set, implying the set used
to evaluate the final model, is also the validation set used to optimize hyperparameters.
Hence, every time they tune the model, based on validation results, some information
from the validation/test set is leaked to the model, often referred to as information leak-
age (Chollet, 2017, chapter 4), a fundamental principle to avoid in supervised learning.
Failing to do so leads to a model that performs artificially well since it is, to some
degree, optimized for the final evaluation. This is explained further in section 2.7.3.2.

The results they present are, therefore, from a research perspective, invalid and we
will not use their results for future comparison.

12

2.4 Color & Color Spaces

2.4 Color & Color Spaces
Color is the brains reaction to a specific visual stimulus, where the eye’s retina samples
color using three broad bands, roughly corresponding to red, green, and blue light (Ford
and Roberts (1998)). Specifically, the human visual system relies on three receptors,
called cones, that specialize in sensing short, medium and long wavelengths.

Terms used to describe color, such as hue (i.e., color’s position on a color wheel),
brightness, and intensity, are subjective and make color comparison difficult. The tri-
chromatic theory - that any color can be described by combining three linearly inde-
pendent colors (e.g., red, green and blue) - is the basis on which photography and
most computer color spaces operate. More formally, it is stated that any color can be
matched by a linear combination of three other colors, provided that none of those three
can be matched by a combination of the other two, and is Grassman’s first law of color
mixture (Grassmann (1853)).

A color space is a set all possible colors that can be made from a group of col-
orants (Nishad (2013)) (Fig. 2.5) with the purpose of easily describing colors. To
further simplify comparison and measurement of color, the International Commission
on Illumination (CIE) studied human color perception and, in 1931, developed a stan-
dard color space called the CIE XYZ color space. It was the first quantitatively defined
relationship between light frequencies and the human visual system. Instead of using
red, green and blue, the CIE XYZ 1931 color space defines a 3D coordinate system,
where the axes X, Y, and Z are extrapolations of RGB created mathematically to avoid
negative numbers.

2.4.1 XYZ 1931 Color Space
The XYZ 1931 color space was the first formally defined color space and is the root of
all colorimetry. The color space encompasses all color sensations visible to a person,
but are not real colors, and cannot be generated in any light spectrum. The color space
is based on experiments done on the human visual system, and the three cones that
sense light. Y corresponds to luminance (brightness), Z is an approximation to the
receptor capturing short wavelength light (blue light), and X is a linear combination of
the three receptor response curves (short, medium and long wavelengths). XYZ values
are often referred to as tristimulus values.

2.4.2 CIE L*a*b* Color Space
The CIE L*a*b* is a color space whose goal is to be ‘device-independent’. That is, it
defines colors independently of how they are created or displayed. This property makes

13

Chapter 2. Background

Figure 2.5: CIE xy Chromaticity diagram of all colors visible to the average human eye. The
triangle defines the sRGB color space. Any color within the triangle can be represented by
mixing the colors at its corners (Red, Green and Blue).

the CIE L*a*b color space very useful in research as results are comparable regardless
of the image capturing device. It was developed in 1976 by the CIE, and expresses
color as three numerical values; L* for lightness, a* for green-red color components
and b* for blue-yellow color components. The CIE L*a*b* color space allows us to
specify any color A in terms of its coordinates, and be confident that a defined color B
will be equal to A, given that B is defined with the same definition as A.

2.4.3 Standard RGB (sRGB) Color Space

The standard RGB (sRGB) color space (Anderson et al. (1996)), often referred to as
the sRGB color space, is a color space cooperatively created by Microsoft and HP.
The color space is a color sub-space of all colors visible to the average human eye
(Fig. fig:background:color:sRGB) and was developed in 1996 for the use in monitors,
printers, and the internet. If no other color space is specified, it is the default color
space for images.

14

2.4 Color & Color Spaces

2.4.4 Delta E (∆E)

A standard color space allows for equal comparison. However, a unified metric for
color difference is required to express the difference between two colors correctly.
Having studied human’s perception of color, the CIE constructed the concept of ∆E.
The idea is that a color difference of 1∆E is the smallest color difference a human eye
can detect (i.e., any color difference less than 1∆E is imperceptible to the human eye).
As with color spaces, several ∆E versions have been proposed over time. The first
∆E formula was presented alongside the CIE L*a*b* color space in 1976 (Sharma,
2002, chapter 1), and its formula is the Euclidean distance between two colors in the
CIE L*a*b* color space:

∆E∗ab =
√

(L ∗2 −L∗1)2 + (a ∗2 −a∗1)2 + (b ∗2 −b∗1)2 (2.1)

With this definition, it is estimated that a human will regard a ∆E∗ab ≈ 2.3 differ-
ence as ’just noticeable’.

2.4.5 CIE Illuminant

A light source is an object that emits light. The quality and energy of the light is,
however, not always consistent (e.g., sunlight varies throughout the day), and light
sources are often seen as unreliable, and cannot be technically reproduced. To create
light suited for colorimetric calculations, the CIE introduced the concept of standard
illuminants. A standard illuminant is a theoretical source of visible light where its
spectral power distribution is explicitly defined. Each illuminant has a color tempera-
ture that describes the relationship between the temperature of the source material, and
the energy distribution of its emitted light. In simpler terms, high temperatures give
a white glowing light, and colder temperatures give a more yellow/orange glowing
light. Illuminants are divided into series (e.g., D-series (daylight)) describing source
characteristics shown in Table 2.2.

15

Chapter 2. Background

Name Color glow Temperatur (K) Description

A 2856 Incandescent / Tungsten
B 4874 Direct sunlight at noon
C 6774 Average / North sky Daylight
D50 5003 Horizon Light
D65 6504 Noon Daylight
E 5454 Equal energy
F1 6430 Daylight, Fluorescent
F8 5000 D50 simulator, Fluorescent
F11 4000 Philips TL84, Fluorescent

Table 2.2: Different CIE illuminants, where the letter defines serial code. The colors are RGB
representations of each white point, calculated with luminance Y=0.54 and the standard observer.
All table values are collected from Pascale (2003) and HunterLab (2005).

2.5 Color Checker
A color checker, also known as a calibration card, is a physical set of colors defined in
the CIE L*a*b* color space. The colors are, thus, defined regardless of light source or
image capturing device. The device independent property makes the color checker a
perfect reference point when color correcting images (section 2.6). If a color checker is
included in an image, the RGB errors at each color patch can be calculated and provides
information about the RGB variations in the image, which again can be used to correct
the color errors.

2.5.1 General Color Checkers
The Macbeth ColorChecker Classic by McCamy et al. (1976) (Fig.2.6a) is one of the
most commonly used reference targets in photographic work. It consists of 4x6 color
patches, each 50mm2, characterized by different spectral responses. The checker is
designed to approximate colors found in nature and includes colors representing human
skin, flowers, water, and sky. Six patches are different neutral gray, from black to
white, where the spectral response of each patch is constant at all wavelengths and
differ only in intensity. We referred to these six patches as the grayscale of the color
checker. Other adaptations of McCamy’s color checker have since been produced (e.g.
Datacolor’s SpyderCHECKR 245).

5The SpyderCHECKR 24 is used in future experiments. All target values are given in Appendix A

16

2.5 Color Checker

(a) The Macbeth ColorChecker Classic 24 (b) The SkinChecker by Picterus AS

Figure 2.6: Figure a shows the Macbeth ColorChecker Classic, with 24 unique colors charac-
terized by different spectral responses. The colors are intended to mimic those of natural objects
such as human skin, foliage, and flowers. Figure b shows the SkinChecker with 31 unique colors.
The colors are related to skin pigmentations found in various racial groups.

2.5.2 Skin Color Checker

For the detection of Jaundice, Gunnar Vartdal from Picterus AS6 designed a custom
color checker (Fig. 2.6b). We will refer to this color checker as the SkinChecker, and
all target values are given in Appendix A. The colors on the SkinChecker are based
on simulated reflection spectra of neonate’s skin with varying skin parameters. These
reflection spectra have been printed using spectral printing, a technique which attempts
to recreate the whole reflection spectrum instead of just the RGB color values (Brito
(2016)). The effect of spectral printing, as opposed to normal printing, is that the
color checker colors are expected to change in the same way as the skin that is being
measured when they are subjected to different illumination sources.

The color patches on SkinChecker have been chosen from reflection spectra based
on numerical simulations spanning the whole range of possible skin parameters for
newborns. The color selection has been done to ensure that the color checker works for
neonates of all ethnicities, as well as covering cases where certain skin parameters of
the newborn, such as skin thickness, is very different from the mean of that parameter.
In addition, the color checker includes a plurality of gray patches. These patches can
be used to correct spatial illumination variation or to investigate the white balance
characteristics of the color correction.

6http://www.picterus.com/

17

http://www.picterus.com/

Chapter 2. Background

Figure 2.7: The CIE xy Chromaticity diagram with the SpyderChecker 24 and SkinChecker’s
colors individually positioned. The SkinChecker contains skin related colors and resides only in
the red-yellow part of the color space. The SpyderChecker 24 is a diverse color checker and its
colors are sparsely placed in the color space.

2.6 Color Correction

Cameras record three color responses (R G B). Variations in these color responses,
caused by inaccurate sensors and illumination, result in device dependent RGB val-
ues. The task of correcting errors in the captured RGB values is referred to as color
calibration or color correction. Without correcting the color information distorted by
vision system components, important color characteristics in images may be inaccu-
rately represented.

Color correction involves mapping device dependent RGBs to corresponding de-
vice independent color values (e.g., CIE L*a*b* or sRGB). To correct RGB errors, it
is common practice to use a color checker as a reference target, and calculate a mini-
mum error mapping between RGB and the color checker target values.

However finding this mapping is not always easy, and the problem of color correc-
tion arises from the fact that camera sensor sensitivities cannot always be represented
as a linear combination of CIE color matching functions (Wyszecki and Stiles (1982)).
This property results in camera-eye metamerism (Wandell (1995)) where certain sur-
faces, while clearly different to the human eye, will induce equal camera responses (i.e.,
the surfaces will look equal in an image). Color correction cannot resolve metamerism

18

2.6 Color Correction

but aims to find the best possible mapping from device RGBs to device independent
values.

Figure 2.7 shows the color diversity of a SpyderCHECKR 24 and a SkinChecker.
The figure highlights the difference between general and specialized color correction,
drawing triangles to visualize the RGB color sub-spaces defined by the two color
checkers. For general color correction, a model must be able to reproduce a wide range
of colors, as reflected by the SpyderCHECKR 24. The SkinChecker, on the other hand,
does not contain either dominant green or blue, but instead contains substantially more
data points in its focus area, allowing a model to optimize for more accurate color
correction of human skin.

Look-up tables, least-squares linear and polynomial regression, and neural net-
works are some of the methods described in literature when trying to perform both
general and specialized color correction.

Color correction can be done between any color spaces, but in the following section,
we transform RGB to the CIE L*a*b* color space to exemplify the theory behind color
correction.

2.6.1 Look-Up Tables

A trivial approach in color correction is the use of look-up tables. A look-up table
is a large collection of camera RGB examples and the corresponding target values,
manually created to define a mapping between the two color spaces. Color correction
is performed by finding the recorded RGB value in the table and merely swapping it
out with its corresponding target value. If a color value is not present in the table, an
interpolation technique is implemented to find the most appropriate correction value.
Look-up tables are typically used to perform color correction in color printers.

2.6.2 Least-Squares Linear Regression

A linear mapping from camera RGBs to CIE L*a*b* triplets can be achieved through
a 3×3 linear transform. If we let ρ define a three element vector representing the three
camera responses (R, G, B) and q define the three corresponding L*, a*, b* values, a
simple linear transform can be written as:

q = Mρ (2.2)

To clarify, M holds the coefficients (dij) of the transform that performs the actual
color correction.

19

Chapter 2. Background

L∗a∗
b∗

 =

d00 d01 d02
d10 d11 d12
d20 d21 d22

RG
B

 (2.3)

In the 3x3 case, each component of the CIE L*a*b* triplet is individually calculated
using the affiliated coefficients.

L∗ = fL∗(R,G,B) = d00 ∗R+ d01 ∗G+ d02 ∗B (2.4)
a∗ = fa∗(R,G,B) = d10 ∗R+ d11 ∗G+ d12 ∗B (2.5)
b∗ = fb∗(R,G,B) = d20 ∗R+ d21 ∗G+ d22 ∗B (2.6)

With only one equation to satisfy, the 3× 3 matrix (M), can perfectly map q→ ρ.
However, we want to incorporate all color patches in the color checker and so we
extend equation 2.2 to N color patches. If we let P be a N × 3 set of raw camera RGB
responses, and the set of N × 3 known target values be denoted as Q, mathematically,
the linear color correction (LCC) can be written as:

Q = MP (2.7)

where the best mapping M: RGB → L ∗ a ∗ b∗ can be found by minimizing the
least squares fitting :

ε = Σ(qi −Mρi)
2 (2.8)

Equation 2.7 is an over-determined system of equations, and the mapping M from
P to Q can be found through least-squares regression using the Moore-Penrose inverse
(Aster et al. (2011)):

M = QPT (PPT)−1 (2.9)

We refer to the 3 × 3 linear transform as a LCC, mapping RGB to L*a*b* (Eq.
2.10).

(R,G,B)T
M−→ (L∗, a∗, b∗) (2.10)

The LCC has proved to perform well in numerous studies, with the advantage of
being independent of camera exposure (Finlayson et al. (2015)). It has, however, also
been known to produce significant errors when mapping RGBs to CIE L*a*b* values.

20

2.6 Color Correction

Some studies show that LCC can, for some surfaces, generate errors up to 14∆E∗ab
7

(Guowei et al. (2001)). However, the same study shows that on average the 3× 3 LCC
transform yields an error of 2.47∆E∗ab on the 8-bit Professional Color Communicator
(Park and Park (1995)).

2.6.2.1 Least-Squares Polynomial Regression

A more modern approach for color correction is to assume the relationship between
RGB and target values is polynomial, not linear. This assumption has lead to a more
complex method for color correction, polynomial color correction (PCC), where the
R, G, and B values at a pixel are extended by adding additional polynomial terms of
increasing degree.

ρ = (R,G,B)T
θk−→ ρ̂k = (R,G,B, ...,m)T (2.11)

We denote the kth polynomial extension of an RGB-vector (ρ) as ρ̂k. The extension
operator θk transforms a three-element column vector to an m-element column vector
with a set of added polynomial terms. For a simple RGB case i.e. ρ = (R,G,B)T the
polynomial expansions of 2nd, 3rd and 4th degree are given below:

ρ̂1 = [r, g, b, rg, rb, gb, r2, g2, b2, 1] (2.12)

ρ̂3 = [r, g, b, rg, rb, gb, r2, g2, b2, rg2, rb2, gr2, gb2, br2, bg2,

r3, g3, b3, rgb, 1]
(2.13)

ρ̂4 = [r, g, b, rg, rb, gb, r2, g2, b2, rg2, rb2, gr2, gb2, br2, bg2, rgb,

r3, g3, b3, r3g, r3b, g3r, g3b, b3r, b3g, r2g2, r2b2, g2b2,

r2gb, g2rb, b2rg, r4, g4, b4]

(2.14)

Using the extension operator, the three RGB values recorded in a pixel are ex-
tended, represented by 9, 19, and 34 numbers respectively (if we strictly follow Equa-
tions (2.12) to (2.14)). As apposed to LCC’s 3 × 3 matrix, PCC color correction is
carried out by 9 × 3, 19 × 3, and 34 × 3 matrices (Eq. 2.3). If we let P̂ denote the
polynomial color response of N surfaces, then Eq. 2.9 can find the coefficients that
minimize M, the m× 3 PCC matrix.

In ’A study of digital camera colorimetric characterization based on polynomial
modeling’, Guowei et al. (2001) aim to discover the connection between modeling
accuracy and the number of terms used in the matrices. They show that a matrix with

72.3∆E∗
ab is regarded as ’just noticeably different’

21

Chapter 2. Background

11 × 3 terms (ρ̂ = [r, g, b, rg, rb, gb, r2, g2, b2, rgb, 1]) produces the best results for
their two experiments with an average colour difference of around 1∆E∗ab.

2.6.2.2 Root-Polynomial Color Correction

If the correct polynomial fit is chosen, PCC can significantly reduce the colorometric
error from LCC. However, the PCC fit depends on sensors and illumination, where ex-
posure alters the vector of polynomial components in a non-linear way. Hence, choos-
ing the right polynomial fit is very important in PCC. To solve the exposure sensitiv-
ity of PCC, (Finlayson et al. (2015)) present a polynomial-type regression related to
the idea of fractional polynomials. Their method, named root-polynomial color cor-
rection (RPCC), takes each term in a polynomial expansion to its kth root of each
k-degree term, and is designed to scale with exposure. The root-polynomial extensions
for k = 2, k = 3 and k = 4 are defined as:

ρ̄2 = [r, g, b,
√
rg,
√
rb,
√
gb, 1] (2.15)

ρ̄3 = [r, g, b,
√
rg,
√
rb,
√
gb, 3
√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb]

(2.16)

ρ̄4 = [r, g, b,
√
rg,
√
rb,
√
gb,

3
√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb,

4
√
r3g,

4
√
r3b, 4

√
g3r, 4

√
g3b,

4
√
b3r, 4

√
b3g,

4
√
r2gb, 4

√
g2rb,

4
√
b2rg]

(2.17)

We denote a root-polynomial extension of an RGB column vector ρ as ρ̄. As with
PCC, the RGB-extension naturally increases the size of the transform matrix M. Thus,
RPCC is performed by a 7 × 3, 13 × 3, and 22 × 3 matrices (Eq. 2.3), if we strictly
follow Equations (2.15) to (2.17)).

In their study, their root-polynomial solution outperforms PCC on average with
0.2∆E∗ab.

2.6.3 Artificial Neural Networks (Color Correction)
An alternative approach for color correction is the use of artificial neural network
(ANN). Although several network architectures are capable of performing color cor-
rection, the most used techniques are Support Vector Machines (SVMs) and fully-
connected feed-forward neural networks, both explained in section 2.7.

22

2.7 Machine Learning

ANN have shown to be robust when optimized correctly, and achieve equally good
results as a well fitted polynomial approach (Cheung et al. (2004)). However, both
SVMs and fully-connected neural networks require extensive hyperparameter-tuning, a
tedious process performed through trial and error, or using the computational expensive
grid-search with cross-validation (explained in section 2.7.3.2).

2.6.4 Gaussian Process Regression (Color Correction)

A Gaussian process (GP) is a machine learning approach, that has, as of today, not been
applied to the field of color correction. With no referable background story for color
correction, we present the general Gaussian process in section 2.7.1.

2.7 Machine Learning

Artificial intelligence (AI) is an area of computer science where intelligence is demon-
strated by machines, as opposed to humans or animals. The field of AI is divided into
hierarchical subsets, where AI is the super-set of all its subcategories (Fig. 2.8a). Ma-
chine learning is one of the fields encompassed by AI and revolves around data-driven
learning. That is, given data and corresponding answers, machines can find relation-
ships between data and answers, and learn the rules that define the relationships (Fig.
2.8b). These rules can later be applied to new data to produce original answers. This
process, of giving machines data with corresponding answers, is referred to as super-
vised learning. In this section we first present two statistic-based supervised learning
approaches; SVMs and GPs. Then, we introduce the concept of deep learning and the
fundamental theory behind ANN.

2.7.1 Gaussian Processes

GPs are widely recognized as a powerful, yet practical tool for solving both classifica-
tion and non-linear regression (Williams (1997)).

A GPs can be thought of as a generalization of the Gaussian probability distri-
bution over a finite vector space to a function space of infinite dimensions (MacKay
(1998)). The processes are probabilistic models of functions and are used for solving
both classification and non-linear regression problems.

To be more precise, a GP is used to describe a distribution over functions f(x)
such that any finite set of function values f(x1), f(x2), ..., f(xn) have a joint Gaussian
distribution (Rasmussen and Williams, 2006, Chapter 2).

23

Chapter 2. Background

(a)
(b)

Figure 2.8a: A Venn diagram showing the relationship between artificial intelligence, machine
learning, and deep learning. Figure 2.8b: The machine learning paradigm: The figure illustrates
the difference between classical (non-data driven) programming, and machine learning.

A GP is fully specified by its mean and covariance function (i.e. no explicit hyper-
parameters). We use Rasmussen and Williams (2006) definition, who defines the mean
function m(x) of a real process f(x) as,

m(x) = E[f(x)] (2.18)

The covariance function of f(x), commonly called ’the kernel’ k(x, x′) is given
by,

cov(f(x), f(x′)) = k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (2.19)

The GP, can therefore be denoted as,

f(x) ∼ GP(m(x), k(x, x′)) (2.20)

We often let the mean function be the zero function, m(X) = 0, as it can be
accounted for by extending the kernel with an extra term. In such a case, all possible
structures captured by a GP model is completely determined by the kernel and implies
that the kernel alone determines the GP’s ability to generalize and predict new data.

While no explicit hyperparameters are required, the kernel parameters need to be
optimized. The GP uses log marginal likelihood to adjusts its kernel parameters on the
assumption that the data follows a Gaussian (Normal) distribution. The log marginal
likelihood formula is given by:

24

2.7 Machine Learning

log p(y|X) = −1

2
(y −m(X))T (k + σ2

nI)−1(y −m(X))

− 1

2
log |K + σ2

nI| −
n

2
log 2π

(2.21)

where σ2
n is a noise variance. The first term, − 1

2 (y −m(X))T (k + σ2
nI)−1(y −

m(X)) measures the data-fit and is negative quadratic. It is the only term dependent
on the GP output y (derived from the GP’s response to its observations) and is the
core of the marginal likelihood function. The second term, 1

2 log |K + σ2
nI| measures

and penalizes the complexity of the model, hence, it is a complexity term. The last
term, n2 log 2π is independent of observations, and is a log normalization term. Given
m(X) = 0 (i.e. using the zero function as mean), the log marginal likelihood is reduced
to − 1

2y
T (k + σ2

nI)−1y
The prior of the GP (Fig. 2.9a) is only specified by the mean function and the

covariance function (i.e., the kernel). Given a dataset consisting of two observations
D = (x1, y1), (x2, y2), we can condition the joint Gaussian prior distribution on these
observations and graph a new joint posterior distribution (Fig. 2.9c), simply by evalu-
ating the mean and covariance matrix and generating new samples.

Although its drawback of computational expensiveness, O(n3). The GP is an ex-
tremely versatile supervised learning technique and can approximate almost any func-
tion regardless of complexity. This flexibility makes it robust to changing and unknown
environments, and its built-in Occam’s razor makes it highly suitable for a large prob-
lem space.

2.7.1.1 Kernels

Kernels are, as discusses above, a crucial part of GPs. We have two main categories of
kernels: Stationary and non-stationary kernels. Stationary kernels consider only the
relativity between two observations (data points), and disregard the data points them-
selves. This property results in the kernel being invariant to translations in the input
space. Non-stationary kernels are dependent on the specific values of the observa-
tions and are, thus, not invariant to translations. In the following paragraphs we discuss
the most important kernels; radial-basis function (RBF) kernel, matérn kernel, rational
quadratic (RQ) kernel, constant kernel, and the white kernel.

Constant kernel: Is the simplest kernel and is often used in combination with other
kernels. When multiplied with another kernel, it scales the magnitude of that kernel. If
however, combined with a kernel using the sum operator, it shifts the mean of the GP.

k(xi, xj) = C ∀ xi, xj (where C is a constant value) (2.22)

25

Chapter 2. Background

(a) Prior (b) Posterior, with one datapoint

(c) Posterior, with two datapoints (d) Posterior, with four datapoints

Figure 2.9: A visual representation of a GP model of a one-dimensional function. Subfig. a
shows three functions drawn at random from a GP prior. Subfig. b to d show the functions
conditioned on one to four observations. In all plots the shaded area represents the probabilistic
nature in the form of a pointwise 95% confidence interval. The bold line represents the mean of
the functions.

26

2.7 Machine Learning

Radial-basis function (RBF): Also known as the squared exponential kernel, is
probably the most used kernel and is stationary. It can be shown that the RBF corre-
sponds to a Bayesian linear regression model with an infinite number of basis functions
(Rasmussen and Williams, 2006, Chapter 2), implying that a GP with a RBF kernel has
a mean square derivative of all orders, resulting in a highly smooth model. The RBF
kernel is given by:

k(xi, xj) = exp
(
− 1

2d(xi

l ,
xj

l)2
)

(2.23)

Matérn kernel: Is a generalization of the RBF kernel. It uses an additional pa-
rameter ν to control the smoothness of the approximated function. When ν → ∞
the model becomes very smooth, and we obtain the RBF kernel. The matérn kernel
function is given by:

k(xi, xj) = σ2 1

Γ(ν)2ν−1
(
γ
√

2νd(xi

l ,
xj

l)
)ν
Kν

(
γ
√

2νd(xi

l ,
xj

l)
)

(2.24)

where Kν is a modified Bessel function (Abramowitz and Stegun, 1964, chapter 9),
and ν and l is a positive parameter.

Rational quadratic (RQ) kernel: Is the equivalent of summing together many
RBF kernels with different lengthscales. The parameter α determines the relative
weighting of the scale mixture. When α→∞, RQ is identical to the RBF.

k(xi, xj) =
(

1+d(xi,xj)
2

(2∗α∗l2)

)−α
(2.25)

White kernel: Also known as white noise, is combined with other kernels, to
explain the noise component of a signal. It has the form:

k(xi, xj) = N if xi == xj else 0 (where N is the level of noise) (2.26)

The white noise kernel is often added to prevent models from overfitting.

2.7.2 Support Vector Machine
The Support Vector Machine (SVM) is one of the most commonly used approaches for
low configuration supervised learning. The low configuration property makes SVMs
the go-to ’first try’ approach in problems where domain knowledge is low.

The theory behind SVMs originates from statistical learning theory, and was first
proposed and formally described by Cortes and Vapnik (1995). The SVM is a linear
classifier, diving an n-dimensional feature space into two parts, one for each class.
The SVM accepts n-dimensional data points (each belonging to one of two classes)

27

Chapter 2. Background

Figure 2.10: Support Vector Machine classification showing an optimal classification. The
support vectors, marked with dark red and blue squares, define the margin of largest separation
between the two classes. Reprinted from OpenCV8.

as input and attempts to find an (n-1) dimensional hyperplane that separates the input
data according to their corresponding classes. The hyperplane defines the classification
model and can classify new unlabeled data by placing an n-dimensional data point in
the feature space, and gauging its position relative to the hyperplane (e.g., above the
hyperplane→ class A, below the hyperplane→ class B).

The SVM tries to separate two classes using a linear hyperplane. There are, how-
ever, an infinite number of hyperplanes that can classify the data. The SVMs goal is
to find the hyperplane that divides the input data (based on classes) with the largest
possible margin (Fig. 2.10). It does so by adjusts the slope of the hyperplane, through
a process referred to as ’training the machine’. More formally, an optimizer function is
applied to maximize the distance between the hyperplane and the data points closest to
the hyperplane. These data points are referred to as support vectors and is where the
name Support Vector Machine originates from.

For non-linear classification, SVMs use what is known as ’the kernel trick’, where
a non-linear kernel maps data points to a higher dimensional feature space. By trans-
forming the input data into a different feature space, the data (previously not separable
by a linear function), may, in fact, be linearly separable (Fig. 2.11. The kernel trick
reduces the problem to a linear classification problem.

The most popular non-linear kernel functions are the RBF, Polynomial kernel, and
the Sigmoid kernel. Choosing the right kernel function is hard, and it often boils down
to trial and error.

8https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/
introduction_to_svm.html

28

https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

2.7 Machine Learning

(a) (b)

Figure 2.11: Subfig. a shows a two-dimensional training set. Positive examples is denoted as
black circles and negative as white. Subfig. b shows the same data after mapped into a three-
dimensional space, with (xi, xj)

2 as kernel function. Reprinted from (Russell and Norvig, 2016,
chapter 18).

Using a complex kernel that transforms data to a too high dimensionality may lead
to overfitting. It is desirable to find the dimensional space that facilitates data classifi-
cation without aggressively increasing the number of dimensions. To ensure a general
prediction model, we may have to allow for some misclassifications. Soft margin (i.e.,
a margin that allows for misclassification) was introduced in Cortes and Vapnik (1995),
and implements a tuning parameter C (cost). The cost defines the degree of violation
the soft margin accepts, where a low C permits few violations and vice versa.

Support Vector Regression

support vector regression (SVR) was first proposed by Drucker et al. (1996) and follows
the core principle of the SVM classification. Instead of defining a linear hyperplane
that best separates the input data into two classes, SVR outputs real-valued numbers.
However, performing regression (not classification) requires a more flexible model to
allow for some error. Thus, the SVR introduces a margin of tolerance, represented with
ε. The ε value defines the margin of tolerance where no penalty is given to the model
if an observation is within its bounds and vice versa. SVR tries to find a function, f(x),
that deviates from the input data by a value no greater than ε (Fig. 2.12). The loss
function is modified to include a distance measure (i.e., a distance between data points
and f(x)), penalizing the model if any data point is further away than the maximum

29

Chapter 2. Background

Figure 2.12: Nonlinear SVR with Vapnik’s ε-insensitive loss function. Reprinted from N and
Deka (2014).

margin of tolerance. In such a case, the model adjusts itself to include the outlying
data points within its tolerance margin. This concept is implemented as an epsilon-
insensitive loss function and was first proposed by Drucker et al. (1996).

The way the SVR’s loss function handles errors makes it robust against outliers
and noise, and it is a characteristic that leads to the SVR having a good generalization
performance.

2.7.3 Deep Learning & Artificial Neural Networks
When solving complex regression problems, it is often hard to fit classical models (i.e.,
non-data driven models) to the problem. With the ability to learn intricate features, deep
learning approaches can find hidden relationships in data and swiftly extract prominent
features. This property has, in recent times, lead to increased use of deep learning
where deep learning frequently outperforms classical computer algorithms.

Early artificial neural network (ANN) were directly based on our understanding of
the human brain, more specific nerve cells, or neurons. Inspired by the structure of neu-
rons, McCulloch and Pitts (1943) developed a simple mathematical model (Fig. 2.13),
that roughly speaking outputs zero until a certain threshold, decided by an activation
function, section 2.7.3, is reached. Their model is represented as a connected graph
where neurons constitute nodes, and synapses are modeled as weighted edges. More
specific a node (neuron) takes in weighted inputs(wi) from other node outputs(xi),
sums these inputs Σ(wi ∗xi) and finally adds a constant b from a bias unit, resulting in
a value in. In the last stage, an activation function is evaluated based on in and decides
whether the neuron should fire (i.e., output a non-zero value).

Since 1943 our understanding of the biological neuron has advanced, and today,

30

2.7 Machine Learning

Figure 2.13: A simple mathematical model for a neuron. Where the output activation is aj =
g(
∑n

i=0 wi,jai), ai is the output activation of neuron i and wi,j is the weight between neuron i
and this one. Reprinted from Russell and Norvig (2016).

we have more complex models of the human brain. The way we use artificial neurons
in computer science, however, has stayed almost unchanged, because AI researchers
early turned their focus away from the physical properties of neurons and dived into
their abstract properties instead. These abstract properties include their ability to learn,
resiliency to noisy input, and their properties for distributed computations. Today, neu-
roscience is regarded as an important source of inspiration for ANN and deep learning
research. However, it is no longer the predominant guide for the field.

ANN are often structured as a layered architecture, where inputs are fed through
the first layer, called the input layer. The input data is propagated through the network,
and altered by edge weights, biases, and activation function, before finally being eval-
uated to an output in the final layer, the output layer. A regularly used ANN is the
multilayered feed-forward neural network. Here, layers consist of one or more nodes,
where every node connects to both the preceding and successive layer. We refer to all
layers between the input and output layers as hidden layers. The connections between
layers are weighted directed edges in the model graph, pointing downstream (i.e., from
input to output). By adjusting the weights in the model as a response to inputs and
their corresponding ground truth, we say that the model is learning. Building these
models with many hidden layers (i.e., a deep network) and having it readjust weights
in response to input data, is the concept of deep learning.

Activation Functions

The output of every node, in a neural network, is decided by an activation function that
takes in, as parameters, a set of inputs. Although there is a great variety of activation
functions in use today, we only describe the most common implementations: Sigmoid,
ReLu, and tanh (Fig. 2.14).

31

Chapter 2. Background

(a) Sigmoid (b) Tanh (c) ReLU

Figure 2.14: The most commonly used activation functions in an ANN.

Sigmoid is defined as f(x) = 1
1+e−x and was one of the first activation functions

to be implemented. It outputs a value within a continuous range from zero to one
but saturates for inputs of large positive and negative magnitudes. This saturation,
and the fact that its derivative range from 0 to 0.25, implies that layers deep in the
neural network get a near-zero gradient, thus halting the learning process. Due to this,
sigmoid is often a poor choice for hidden nodes and is mainly used in the last layer
(output layer) of neural networks and networks without backpropagation (explained in
the next section).

Rectified Linear Unit (ReLu), given by: h(a) = max(0, a), has become highly
popular, and is the go-to activation function for hidden layers. It is non-saturating (i.e.,
its output continues to grow and does not converge) and has a tendency to speed up the
convergence of the learning compared to other activation functions. One of the main
drawbacks, however, is the possibility of certain nodes never being activated (dead
nodes), thus running the risk of getting stuck in a local minima.

The hyperbolic tangent (tanh) is similar to sigmoid in shape, but is shifted down
on the y-axis, letting it output negative values. Its output ranges from -1 to 1 (Fig.2.14),
and is zero centered, tanh(0) = 0, avoiding some of sigmoid’s learning problems.
Another feature is that its derivative is well defined over the entire value range, and,
therefore, preferred over ReLu in cases where ReLu halts due to non-defined deriva-
tives.

Optimization

Neural networks try to optimize an objective function. In the field of deep learning,
optimizing refers to the task of minimizing some function f(x) often referred to as the
cost function, loss function, or error function. When optimizing neural networks,
Stochastic Gradient Decent is one of the most frequently used algorithms.

Stochastic Gradient Decent (SGD) (LeCun et al. (1989a)) is a simple algorithm

32

2.7 Machine Learning

Figure 2.15: Stochastic Gradient Decent with momentum. The red line shows how momentum
gives the SGD algorithm a push over the top, thereby avoiding getting stuck in the local minima.
The grey arrow indicates the direction without momentum. Reprinted from Downing (2017).

that computes all gradients of a small batch of randomly selected cases and determines
their combined effect on the loss function. This effect is then used in backpropagation,
an algorithm that uses Jacobian matrices to propagates an error through the network
(from output to input). The backpropagation readjusts the network weights according
to their error contribution, updating all weights in the network.

A crucial parameter for the SGD is the learning rate, a hyperparameter that deter-
mines how large the weight updates are. It must, therefore, be chosen with care. If the
learning rate is too high, the algorithm may not find the global loss function optima.
On the other hand, a too small learning rate can cause the algorithm to get stuck in a
local minima.

Introducing Momentum leads the SGD algorithm to converge faster and avoid lo-
cal minima. Momentum can be seen as an evolution of the SGD algorithm and is a
strategy where the gradient descent is given momentum in the direction of its previ-
ous move. The momentum allows the gradient descent to avoid a directional change
towards a local minima, allowing it to diverge from sub-optimal solutions (Fig. 2.15).

Adaptive learning rate was introduced to further minimize the chance of getting
stuck in a local minima and to converge faster. It computes individual learning rates for
each parameter, as opposed to one unified, global learning rate. Today, one of the most
used methods for adaptive learning is Adam (Kingma and Ba (2014)), which includes
a way to maintain an exponentially decaying average, similar to that of momentum.

33

Chapter 2. Background

Generalization

A key attribute of a trained ANN is its ability to generalize. Generalization is the ability
to handle unseen data, based on knowledge gained from training data, recognizing
essential features, without memorizing the exact training data.

The opposite of generalization is overfitting (i.e., model is aggressively fitted to
the training data). Luckily, there are several strategies that can help the network avoid
overfitting, where regularization has, in recent years, been one of the most used meth-
ods to prevent this. This thesis will focus on two regularization strategies; dropout and
parameter norm penalties.

Dropout: Dropout is a regularization technique where a subset of randomly se-
lected neurons is deactivated during training. Dropout leads a more generalized model,
forcing multiple nodes to learn the same concepts.

Parameter Norm Penalties: Is a regularization techniques that only penalizes
the weight parameters of the model. A simple and common approach for parameter
norm penalty is L2 parameter norm penalty (L2-regularization), commonly known as
weight decay. L2-regularization is a technique where high absolute valued parameters
(weights) are penalized through the use of a regularization term in the cost function.
The idea is that lowering the weights, causes the distribution of importance to spread
out across the layer, as opposed to having some weights becoming very large, thus,
overruling the consensus of the layer.

2.7.3.1 Convolutional Neural Networks

The theory presented in this section is gathered from Goodfellow et al. (2016, chap-
ter 9) and Stanford CS class CS231n9, if not explicitly stated otherwise.

Convolutional neural networks (CNNs) (LeCun et al. (1989b)) are similar to multi-
layered feed-forward networks, with alterations specialized for image detection. With
the success of Krizhevsky et al. (2012) on the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al. (2015)), where they had considerably
better accuracy than previous state-of-the-art solutions, CNN’s got much attention from
researchers all over the world, and is today one of the hottest fields of study in the field
of AI. As the name indicates, CNNs are heavily reliant on the mathematical operation
convolution.

A typical CNN takes an image (represented as 3d tensor) as input and propagates
it through locally connected convolution and max-pooling layers. The final convolu-
tion/pooling layer outputs a feature map, which is propagated through one or more
fully connected layers, resulting in a final an output (Fig. 2.16).

9http://cs231n.github.io

34

http://cs231n.github.io

2.7 Machine Learning

Figure 2.16: A CNN architecture for a handwritten digit recognition task. Reprinted from Bart
and Eindhoven (2011).

Convolution

The convolutional layer (Fig. 2.17a) is the core building block in a CNN, and performs
the majority of the calculations in the neural network.

Its layer parameters consist of a set of learnable filters/kernels, where each output
node in a kernel is connected to a local region of the previous layer. With local regions,
every node is only receiving information for a subset of the nodes in the previous layer.
The size of the kernel decides the total amount of input values per output node (ie.e,
how many nodes from the prior layer a node is connected to). Every kernel output node
connects to one separate local region, a process called Sparse Connectivity. Sparse
connectivity is one of the main properties of the convolutional layer, where the outcome
is fewer mathematical operations, and a drastic performance boost compared to fully-
connected layers.

Another characteristic of the convolutional layer is Parameter Sharing, where
each set of weights (i.e., the kernel) in the layer is used multiple times. The combined
results of the parameter sharing are denoted as one feature map, of many feature maps,
in the layer. Parameter sharing results in fewer parameters and saves computations,
while also making features invariant to translation.

The convolution outputs a linear pattern and is propagated through a nonlinear
activation function, such as ReLu. This stage is often referred to as the detector stage,
and a pooling-layer often follows.

10https://developer.apple.com/library/content/documentation/
Performance/Conceptual/vImage/ConvolutionOperations/
ConvolutionOperations.html

35

https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

Chapter 2. Background

(a)

(b)

Figure 2.17a shows a convolutional layer. The red box in the input layer maps to one node in
one of the feature maps in the convolutional layer. Reprinted from Nameer Hirschkind and Khim
(2017). Figure 2.17b a numerical example of a 2D convolution. Reprinted from Apple10.

Pooling

The pooling operation is an additional step of translation invariance. This time the in-
variance is, however, local and reduces the effect of slight object off-sets. The pooling
operation runs a fixed size kernel across every feature map, sampling the desired at-
tributes within the kernel window. Hence, pooling reduces the complexity of the data
representation and also helps make the model less invariant to small translations of the
input.

A form of pooling is max-pooling, where the desired attribute sampled is the max-
imum value within the kernel window. As an example, when trying to determine if
an image contains a door, we do not need to know the doorknob’s position with pixel-
perfect accuracy, we only need to know that it is approximately in the vertical center.

2.7.3.2 Training, Validation, and Test Sets

A supervised learning model is trained, often referred to as fitting the model, by updat-
ing its internal parameter in response to training data and the corresponding labels.

To perform an unbiased evaluation of a model; all available data cannot be used
during training. It is, therefore, common practice to partition the dataset into a training
set and a testing set (Fig. 2.18). The model is trained on the training data, and when the
model is adequately tuned, the test set is used to evaluate the performance of the final
model. It is essential that observations from the testing set are not used, in any way, to
choose model structure and hyperparameters. Hence, we call this a held-out test set,

36

2.7 Machine Learning

not to be used until final evaluation.
However, if the test set cannot be used to evaluate the model iteratively, there is

no way of knowing how well an intermediate model is performing. For intermediate
evaluations, it is common practice to split the training set into two subsets; a smaller
training set, and a validation set (Fig. 2.18, Method 2). The validation set can now
be used to estimate the model’s generalization error (i.e., performance) during and
after training, allowing the user to update the model architecture and hyperparameters
accordingly.

If a validation set is not created from the initial training set, and instead, the test
set is used to alter the model hyperparameters, every time the model is tuned, some
information from the test set is leaked to the model. This leakage is often referred
to as information leakage (Chollet, 2017, chapter 4), a fundamental principle to avoid
in supervised learning. Tuning the model in response to the test set results leads to a
model that performs artificially well as it is, to some degree, optimized for the final
evaluation.

Cross-Validation

Dividing the dataset into fixed training, validation, and testing sets can be problematic
if the dataset is small. It often leads to the validation and test set containing too few
samples to be statistically representative of the data representation.

This problem can be solved using cross-validation. Following the held-out test set
convention, one part of the available data is held out as a test set.

With cross-validation, instead of having a training and validation set, the idea is to
repeatedly choose new, random training and validation subsets (or splits) of the dataset
and benchmark these splits.

The most common method is the k-fold cross-validation, in which we split the
data into k different subsets (also called folds), and use k-1 of the subsets for training,
leaving the last fold for validation (Fig. 2.18, Method 1). This procedure is repeated
until all fold have individually been validated. An often used split is the leave-one-
out cross-validation, where for each run, only one training example is held out for
validation (k = N − 1). The leave-one-out cross-validation maximizes the amount of
training data.

37

Chapter 2. Background

Figure 2.18: A visual representation of how to split a dataset. Method 1, shows the K-fold
cross-validation, using the holdout method. Method 2, shows the regular training, validation,
and testing split, also using the holdout method.

38

Chapter 3
Methods

The fundamental objective of the thesis is to assess the relationship between bilirubin
and the camera sensor responses induced by skin color. All images in the provided
dataset require post-processing color correction. This chapter is two-fold and presents
the methodology of color correction and bilirubin regression in two separate sections.
To give perspective, we first present the jaundice computer vision pipeline, from raw
image to prediction, and the dataset used in the thesis.

Jaundice Computer Vision Pipeline

The dataset, described in section 3.1, is a collection of 564 images. As discussed in
section 2.2, jaundice is caused by high concentrations of bilirubin, a compound that
gradually turns skin yellow.

We are interested in the relationship between RGB values captured by a camera
and bilirubin concentration. If any consistent relationship exists, a regression model
can predict a patient’s bilirubin concentration via skin color.

For each image (Fig. 3.1a) illumination varies, and inconsistently shifts RGB val-
ues. This shift, also called error, pollutes the perceived skin color and may distort any
possible RGB-to-bilirubin relationship. Having an illumination and hardware indepen-
dent color standard is thus imperative when building a prediction model.

A SkinChecker is placed on the chest of all neonates and allows for color correction
of human skin. Manual segmentation on the SkinChecker (Fig. 3.1b) is performed to
simplify the following steps. With the SkinChecker as the reference point for the color

39

Chapter 3. Methods

(a) Raw input image
(Image is censored)

(b) Raw segmented
SkinChecker

(c) Color corrected
SkinChecker

Figure 3.1: Illustrates the jaundice computer vision pipeline. From raw images, (Fig. 3.1a), the
SkinChecker is manually segmented. Gaussian Process Regression color correction is applied to
the image. Finally, the visible skin patch within the SkinChecker (highlighted by the red square
in Fig. 3.1c, is manually segmented and the average RGB color is sampled.

correction solutions, we apply pixelwise color correction (Fig. 3.1c), trying to restore
the original colors.

After color correction, the visible skin patch within the SkinChecker is manually
segmented (red square in Fig. 3.1c), and the mean RGB color value used by the regres-
sion model is calculated. To reiterate; two separate segmentations are performed. First,
the SkinChecker is segmented from the raw image, to perform color correction. Then
the small skin patch (within the SkinChecker) is segmented for the use in prediction
models.

3.1 Jaundice Dataset
For the prediction of bilirubin, a labeled dataset is acquired from St. Olav’s hospi-
tal. The dataset consists of 564 images depicting newborn babies. In each image,
a SkinChecker, as discussed in section 2.5.2, is placed on the chest of the neonate,
exposing the skin color within the SkinChecker. Furthermore, each image has corre-
sponding metadata containing external information about the neonate, including the
total serum bilirubin (TSB) blood value used as ground truth for bilirubin prediction.

The dataset is collected from 141 unique neonates, where four images were taken
at different ranges:

• close range (flash)

• medium range (flash)

• long range (flash)

40

3.1 Jaundice Dataset

• long range (without flash)

The SkinChecker is manually segmented using the annotation program RectLabel1.
All SkinCheckers are then cropped out and saved. The dataset is cleansed, removing all
neonates with missing TSB measurements (i.e., blood sample). In total eight neonates
were removed, leaving a new dataset with 133 newborns.

The images were taken by a Samsung Galaxy S7 with a 12 Mega Pixel camera,
yielding 4032x3024 resolution images. A tungsten light bulb (CIE A reproduced light)
was placed next to the neonates illuminating the SkinChecker in all images. Each
image is provided with the following corresponding metadata:

• Age (hours)

• Birth weight (grams)

• Ethnicity

• total serum bilirubin - Target value

• transcutaneous bilirubin (TcB)

Ethnicity: Since the collection of data was conducted at St. Olav’s Hospital, with-
out focusing on gathering a wide variety of ethical backgrounds, the dataset consists
of 92% Caucasian neonates. Additionally, the remaining 8% are annotated as non-
Caucasian, and can therefore not be assigned to any specific race. This study, therefore,
concentrates on the prediction of bilirubin on Caucasian neonates, disregarding the 8%
non-Caucasians.

Age & Weight: As discussed in background, due to the accumulation of bilirubin
over time, some of the metadata is vital for the prediction of bilirubin concentration. In
addition to the raw image, we use two a priori known features; Age (hours) and body
weight at birth (grams). The treatment chart given by Fig. 2.3b indicates that both
age and weight influence bilirubin concentration, thus implying the importance of the
features.

Total Serum Bilirubin: TSB is the measured concentration of bilirubin obtained
by a blood sample. It is seen as the gold standard and is used to determine if a patient
requires treatment. TSB is used as the target value in the prediction of bilirubin.

Transcutaneous Bilirubin: transcutaneous bilirubin (TcB) is the measured skin
reflectance given by a bilirubinometer. In this study, the Dräger JM-103 (section 2.3.1)
was used to measure neonates’ TcB, and the data is provided in the metadata file.
The TcB is used to compare the proposed solutions to the state-of-the-art bilirubin
prediction machines.

1https://rectlabel.com/

41

https://rectlabel.com/

Chapter 3. Methods

Due to the redefinition of the problem, focusing only on Caucasian neonates, non-
Caucasian data had to be discarded. In total 12 children were removed, giving a new
dataset of 121 children (484 images in total). We refer to this new dataset as the
Caucasian jaundice dataset.

3.2 Color Correction

The starting point of this thesis was to find an off-the-shelf color correction algorithm
to create standardized skin images for the jaundice detection algorithm. However, due
to related literature’s use of high-quality cameras (e.g., NIKON D70), we hesitate to
apply state-of-the-art color correction algorithms blindly and believe additional testing
on smartphone camera images is required.

Taking into consideration the end-goal - color correction used in fieldwork - we
require the color correction algorithm to be device independent and show high robust-
ness towards illumination. We hypothesize that the relationship between camera RGBs
and CIE L*a*b* triplets are dependent on the device used to capture the image and
the light source illuminating the target object. As part of the thesis, we propose two
separate color correction frameworks that combine previously well-established color
correction solutions, to create robust, device independent color corrected images. The
first framework is based on polynomial color correction (PCC), assembling widely used
polynomial extensions in a combination of internal methods. The second, is reliant on
the discoveries made by Finlayson et al. (2015)), mixing their root-polynomial (RPCC)
methods.

Finally, we test the novel Gaussian process regression (GPR) for color correction.
Due to its extreme modeling flexibility, and added noise kernels, we believe the GPR
may compete and even outperform state-of-the-art approaches, creating highly com-
plex models without overfitting.

3.2.1 Color Correction Framework Solutions
Literature describes a wide range of polynomial and root-polynomial fits to perform
color correction. We are, however, unaware of previous work that proposes a solution
as to which extension is to be applied in a given scenario. To overcome the prac-
tical issues related to color correction, we create two color correction frameworks.
The frameworks, polynomial color correction framework (PCCF) and root-polynomial
color correction framework (RPCCF), are implementations of widely used polynomial
and root-polynomial extensions. The goal of the frameworks is to find the most appro-
priate RGB-extension fit for any given camera and illumination setting.

42

3.2 Color Correction

The frameworks are defined by their set of extension operators that transform sensor
RGB values to m-element column vectors of an arbitrary combination or power. We
will refer to these extension operators as internal methods θk
(e.g. (r, g, b)T

θk−→ ρ̂2(r, g, b, r2, g2, b2)T).
A framework builds a color correction model for each of its internal methods (i.e.

polynomial expansion) using least-squares regression to solve Eq. 2.7, through Eq.
2.9, where P is replaced with the N ×m extended color response of N surfaces (P̂ or
P̄). Doing so, results in an m× 3 matrix M, mapping ρ̂ M−→ (L∗, a∗, b∗).

Each internal method is evaluated using leave-one-out cross-validation. That is, for
each internal method a color correction model is built using all but one of the color
patches from the color checker. The model is then tested on the remaining patch (i.e.,
predicting the CIE L*a*b* value and calculating error). This process is repeated for all
color patches on the color checker, and the ∆E∗ab is calculated for each pass.

We choose to separate PCC and root-polynomial color correction (RPCC) in case
one of them is, by a large margin, superior to the other. Additionally, having fewer
internal methods reduces the computational complexity of the frameworks. It is highly
expensive to calculate the average cross-validation error for all color patches and all
internal methods. The repeated cross-validation is one of the bigger drawbacks of the
framework approach. It is important to stress that these frameworks are only implemen-
tations of previously known methods and that the semi-novelty lies in the leave-one-out
comparison to select the scenario dependent best fitting RBG-extension.

Polynomial Color Correction Framework Solution (PCCF)

We hypothesize that the optimal polynomial RGB-extension is dependent on camera
sensors and illumination sources. However, there is no a priori knowledge that indicates
the relationship between device and light, and by extension, which polynomial fit yields
the best mapping.

To create the set of polynomial extension operators (i.e., the set of internal meth-
ods), we apply an iterative scaling approach, increasing the complexity of internal
methods for each iteration. We start off by adding a constant term to the linear color
correction (LCC):

ρ = (r, g, b)T
θ1−→ ρ̂1 = (r, g, b, 1)T (3.1)

While not a significant alteration, the added term gives the least-squares regression
some leeway when finding the best mapping. Some may argue the added constant is
in fact not a polynomial extension of the LCC. However, we believe the approach is
worth looking into, and define it as a polynomial extension of degree 1.

43

Chapter 3. Methods

Continuing, we follow the polynomial orders, and combinations of R, G, and B,
and create the following collection of RGB-extension operators. The first subscript
denotes the polynomial order, and the second subscript denotes the method id within
the polynomial order.

ρ̂1,1 = [r, g, b, 1] (3.2)

ρ̂2,1 = [r, g, b, rg, rb, gb, 1] (3.3)

ρ̂2,2 = [r, g, b, r2, g2, b2, 1] (3.4)

ρ̂3,1 = [r, g, b, rg, rb, gb, r2, g2, b2, rgb, 1] (3.5)

ρ̂3,2 = [r, g, b, r2g, r2b, g2r, g2b, b2r, b2g, rgb, 1] (3.6)

ρ̂3,3 = [r, g, b, rg, rb, gb, r2, g2, b2,

r3, g3, b3, rgb, 1]
(3.7)

ρ̂3,4 = [r, g, b, rg, rb, gb, r2, g2, b2,

r2g, r2b, g2r, g2b, b2r, b2g, rgb, 1]
(3.8)

ρ̂3,5 = [r, g, b, rg, rb, gb, r2, g2, b2,

r2g, r2b, g2r, g2b, b2r, b2g, r3, g3, b3, rgb, 1]
(3.9)

The best internal method, for an arbitrary image, is chosen using leave-one-out
cross-validation. The image is then color corrected using Eq. 2.7 with P̂ replacing P ,
the N ×m internal method polynomial color response of the N color surfaces.

Root-Polynomial Color Correction Framework Solution (RPCCF)

For a fixed exposure, PCC has shown significantly better results than a 3 × 3 LCC.
However, as pointed out by Finlayson et al. (2015), exposure changes the vector of
polynomial components in a nonlinear way, resulting in hue and saturation shifts. Their
solution, RPCC, claims to fix these issues by expanding the RGB terms with root-
polynomial extensions instead.

We adopt their idea and create the RPCCF. The framework includes the root-
polynomial extensions suggested in their paper, where the subscript of ρ̄ denotes the
root-polynomial order.

44

3.2 Color Correction

ρ̄2 = [r, g, b,
√
rg,
√
rb,
√
gb, 1] (3.10)

ρ̄3 = [r, g, b,
√
rg,
√
rb,
√
gb, 3
√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb]

(3.11)

ρ̄4 = [r, g, b,
√
rg,
√
rb,
√
gb,

3
√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb,

4
√
r3g,

4
√
r3b, 4

√
g3r, 4

√
g3b,

4
√
b3r, 4

√
b3g,

4
√
r2gb, 4

√
g2rb, 4

√
b2rg]

(3.12)

The best internal method, for an arbitrary image, is chosen using leave-one-out
cross-validation. The image is then color corrected using Eq. 2.7 with P̄ replacing P ,
the N ×m internal method root-polynomial color response of the N color surfaces.

3.2.2 Gaussian Process Regression Solution

GPR is a very flexible machine learning technique that requires no explicit tuning of
hyperparameters (other than the choice of kernel). Due to its flexibility and general-
ization capabilities (through the use of noise kernels), we hypothesize that GPR can be
used as a robust and accurate method for color correction.

For color correction, we train three separate Gaussian processes (GPs), one for each
color channel (R, G, B). To predict a new color, the three GPR models take the RGB
input color and predicts their respective CIE L*a*b* intensity value (e.g., L* or a* or
b*). The three individual results are combined to create the new CIE L*a*b* color
coordinate.

The GPR implementation is initiated with a prior’s covariance, specified by a kernel
object. The hyperparameters of the kernel are optimized using gradient-descent on
the marginal likelihood function during fitting, equivalent to maximizing the log of
the marginal likelihood (LML). This property makes GPR superior to other supervised
learning techniques, as it avoids heavy computational validation approaches, like cross-
validation, to tune its hyperparameters. The LML may have multiple local optima, and
trail and error testing is employed to verify that the optimal or close to the optimal
solution is found by starting the optimizer repeatedly.

45

Chapter 3. Methods

Choosing Kernel

GPR is a general method that can be extended to a wide range of problems. As dis-
cussed in background, to implement GPs for regression purposes, the prior of the GP
needs to be specified by passing a kernel.

Widely used kernels are empirically tested; RBF, Matérn, and rational quadratic
(RQ). Additionally, combinations of Constant- and White kernel are added to the kernel
function, to find the best performing kernel composition.

3.2.3 Color Correction Evaluation Methods
In every image a color checker is placed near-center of the camera frame. For each
individual color (on the in-scene color checker), we exclude 10% of the sample area on
all sides (Fig. 3.2), to eliminate noise from potentially faulty segmentation, and sample
the average RGB value. The resulting average RGBs and corresponding CIE L*a*b*
values (from the color checker) are used to create color correction models. To evaluate
the performance of a model, we use three different evaluation methods; EM 1, EM 2,
and EM 3. A common evaluation approach is to asses each model using leave-one-out
cross-validation. However, highlighting the performance of a model when invoking
different constraints may be valuable.

The following evaluation methods (EM) are:

• EM 1: All colors included

• EM 2: Semi-4-fold cross-validation

• EM 3: Leave-one-out cross-validation

EM 1: All Colors Included

The first evaluation method (EM 1) allows models to train on all colors. It gauges
each method’s ability to create color correction models that map all input colors to
corresponding target colors. The evaluation method rewards overfitting but is included
to expose methods that indeed overfit and to reveal methods’ performance when all
data is available for model fitting.

EM 2: Semi-4-Fold Cross-Validation

The semi-4-fold cross-validation (EM 2) is added to expose models that do not gener-
alize well. Four randomly selected color patches are removed, thereby eliminating a
considerable amount of ’known’ target colors in the CIE L*a*b* color space. The total

46

3.2 Color Correction

Figure 3.2: Sample area of a color patch: Each color is sampled, excluding 10% of the interest
area to eliminate noise from potentially faulty segmentation.

error is calculating by aggregating the prediction error on the four excluded colors, and
a generalized model should be able to predict unseen colors with minimal error.

We call it semi cross-validation as EM 2 does not exhaustively run through all se-
lection possibilities, seeing that

(
N
4

)
possibilities are too many. The evaluation method

is, thus, only meant to give supplementary results, and for the semi-4-fold cross-
validation, we perform the four random color selections 50 times, averaging out the
scores.

EM 3: Leave-One-Out Cross-Validation

The main evaluation method (EM3) performs leave-one-out cross-validation and is an
iterative approach where one color patch is withheld every run. For each iteration, the
remaining colors are used to build a color correction model, which predicts the CIE
L*a*b* value of the withheld color patch. By the end of the iteration, all color patches
have been withheld and the mean ∆E∗ab error is calculated.

It is worth noting that leave-one-out cross-validation (EM3) is, from a research per-
spective, the most reliable method of evaluation. It is both deterministic, and unbiased
and is, therefore, the primary evaluation metric. EM1 and EM2 are merely supple-
mentary evaluation methods that highlight different properties of the color correction
solutions.

3.2.4 Experiments

To measure the performance of the proposed solutions; three separate experiments are
set forth. For each experiment, all color correction models are evaluated according to
evaluation methods from section 3.2.3.

47

Chapter 3. Methods

3.2.4.1 Experiment I: Color Correction Using SpyderCHECKR,
Evaluated on SpyderCHECKR

The purpose of experiment I, is to evaluate the color correction methods in terms of
general color correction. That is, to assess each method’s performance when operating
on a diverse color checker displaying a wide range of colors. The experiment makes
use of a SpyderCHECKR 24, containing 24 of the most common spectrally engineered
colors, including a grayscale.

For a controlled environment, the SpyderCHECKR 24 is placed in a viewing box
(Raw images used, Fig. B.1). The viewing box is imaged with an iPhone 6s, in three
different light setting reproduced by CIE illuminants; CIE A, CIE D65 and CIE F11
(Table 3.1). Manual segmentation of the 24 color patches is performed, and the in-
scene color values are compared to CIE L*a*b* target values (appendix A).

For each image, LCC, PCCF, RPCCF, and GPR are evaluated in terms of EM 1,
EM 2, and EM 3. It is worth noting that both EM 1 and EM 3 are deterministic, while
EM 2 is dependent on the four randomly selected color patches that are removed.

ID CIE Illuminant Color glow Temperatur (K) Description

Image 1 A ∼ 2856 Incandescent / Tungsten
Image 2 D65 ∼ 6504 Noon Daylight
Image 3 F11 ∼ 4000 Philips TL84, Fluorescent

Table 3.1: Different illumination settings used in experiment I and experiment II. The light
sources reproduce CIE illuminants, and with the use of a viewing box provide controlled envi-
ronments.

3.2.4.2 Experiment II: Color Correction Using SkinChecker,
Evaluated on SpyderCHECKR

The SkinChecker has a low color diversity, containing colors in proximity to human
skin (mostly red-yellow) (Fig. 2.7). To see the color correction method’s ability to
predict unseen colors; the models are trained on a SkinChecker and evaluated on a
SpyderCHECKR 24. If a solution can build a color correction model from a small set
of colors, and still predict a diverse color sub-space, the model must be generalized.
The experiment is designed to expose overfitting, and award the methods that create
general color correction models when available color patches are scarce.

A SpyderCHECKR 24 and SkinChecker are placed, side by side, in a viewing box
(Raw images used, Fig. B.2). Again, an iPhone 6s is used to capture the images in CIE
A, CIE D65, and CIE F11 reproduced illumination (Fig. 3.1). Each method is only

48

3.3 Bilirubin Prediction

evaluated in terms of EM 1, where the errors are calculated on the SpyderCHECKR
24. Since models are trained on one color checker and evaluated on another, EM 2 and
EM 3 cannot be used.

Regarding the SkinChecker, it is important to note that only one gray color patch
(from the 20 equal grays) is used. Only using one of the gray patches, is to not skew
the entire color correction towards that particular gray color.

3.2.4.3 Experiment III: Color Correction Using SkinChecker,
Evaluated on SkinChecker

The experiment uses the jaundice dataset (section 3.1), containing images captured
in uncontrolled environments during fieldwork, and tends to be inconsistent. When
solving the jaundice detection problem, a solution cannot condition on controlled test
environments. To simulate real life, we evaluate the color correction methods on the
jaundice dataset, collected by fieldworkers for the intended use in jaundice prediction.

Based on the sampled data and the corresponding CIE L*a*b* triplets, each color
correction solution builds a model, evaluated according to EM 1, EM 2, and EM 3.
Additionally, a modification of EM 2 is introduced; Evaluation Metric 4 (EM 4).
EM 2 randomly excludes four color patches from the color checker where all color
patches are candidates in the selection. However, we are interested in the method’s
prediction ability on skin color. Therefore, when using EM 4, the selection candidates
are reduced to the set of skin related color patches (i.e., all non-gray colors). The EM
4 results should indicate which color correction solution is most appropriate for skin
color correction during fieldwork.

The set of the SkinChecker color patches is listed in appendix A.

3.3 Bilirubin Prediction

The overall goal of this thesis is to assess machine- and deep learning approaches in the
prediction of bilirubin concentration using human skin color, and available metadata
(age and weight). Using the Caucasians jaundice dataset; three regression models are
proposed to predict TSB. Since the solution only provides a prediction of TSB, based
on camera skin color measurements, we refer to the solution output as MobileCam-
estimated bilirubin concentration (MCB).

This section presents the data preprocessing applied to the Caucasians jaundice
dataset, the three proposed regression models, and the experiments conducted to eval-
uate them.

49

Chapter 3. Methods

3.3.1 Data Preprocessing
When available data is limited, machine learning algorithms often struggle to find ap-
propriate data distributions. With 484 images in the Caucasian jaundice dataset, pre-
processing becomes a necessity to fully utilize all available features. To ensure device
and illumination independent images, a SkinChecker, in combination with GPR, is
used to perform color correction on all images. The normalization and standardization
techniques are applied to aid the learning algorithms converge faster.

Weight: Having analyzed the dataset and talked to domain experts, the weight
distribution is transformed to a normal distribution around its mean, shifted to zero.
Following the 3-sigma rule, 68% of the weight values are, after transformation, within
one standard deviation σ and 95% are within 2σ, from the mean. Transforming to a nor-
mal distribution is reasoned on the fact that weight (at birth) is a natural phenomenon
and usually follows a normal distribution. Figure 3.3 shows the performed distribution
transformation of both age and weight.

Age: Using domain knowledge about bilirubin concentration and its accumulation
and decay over time, age is logarithmically (using the generalized logistic function,
also known as Richards’ curve (Richards (1959))) scaled between zero and one.

The logarithmic scaling is applied to approximate the naturally occurring relation-
ship between bilirubin concentration and time, following the treatment chart (Fig. 2.3b.
Values from 0 to 100 hours are spread out in the distribution, and any value above 100
is squeezed close to 1. The generalized logistic function is given by:

Y (t) = A+
K −A

(C +Q ∗ e−B(t−M))
1
v

(3.13)

whereA andK are its lower and upper asymptote, andB its growth rate. v decides
where the function’s maximum growth occurs, and Q, C, and M are constants. Figure
3.3 shows the performed distribution transformation of both age and weight.

Images: All skin patches from within the SkinChecker are manually segmented
after color correction (Fig. 3.1c). Pixel values are then min-max scaled from 0 - 255 to
0 - 1.

3.3.2 Experimental Setup
The Caucasians jaundice dataset is used to build prediction models through supervised
learning. All images are labeled with measured TSB (blood value), used as ground
truth during model fitting. Before training the regression models, a randomly chosen
test set, τ , is extracted from the Caucasian jaundice dataset, following the hold-out
test set principle discussed in section 2.7.3.2. After extraction, τ contains images and

50

3.3 Bilirubin Prediction

(a) Unscaled distribution (b) Scaled distribution

Figure 3.3: Before and after age and weight parameter distribution. Figure 3.3a: Unscaled dis-
tribution of the dataset, with respect to age (hours from birth) and weight (grams). Figure 3.3b:
The distribution of the dataset after scaling is applied. Weight (grams) is normal distributed, and
age (hours from birth) is logarithmically scaled.

corresponding metadata for 37 children (148 images) and accounts for 30% of the
available data. The test set is used to evaluate the final models using the following
evaluation metrics.

Evaluation Metrics

To evaluate the bilirubin regression models, two evaluation metrics are used; Pearson
correlation coefficient, and TSB - MCB2 difference.

The Pearson correlation coefficient (Rodgers and Nicewander (1988)) between
ground truth (TSB) and prediction (MCB), denoted r, measures the strength and direc-
tion of the linear relationship between two variables and is given by:

rx,y =

∑
((x− x̄) ∗ (y − ȳ))√∑
(x− x̄)2 ∗

∑
(y − ȳ)2

(3.14)

where X = x1, ..., xn is a set of n target values, Y = y1, ..., yn the set of predictions.
x̄ and ȳ are the sample means of X and Y respectively.

2MobileCam-estimated bilirubin (MCB) concentration is measured bilirubin concentration, predicted us-
ing mobile camera

51

Chapter 3. Methods

In a scatter plot, where TSB runs along the y-axis, and MCB the x-axis, any de-
viation from the identity line (i.e., y = x) indicates a prediction error. We create a
regression line based on the prediction vs. ground truth data points to show the linear
relationship between the model prediction (MCB) and TSB.

The TSB - MCB difference quantitatively measures the magnitude of the predic-
tion error. To visualize the difference; a Bland-Altman plot is implemented. The plot
reveals trends in the predictions, often highlighting under- or overestimation of the
target value.

Dräger JM-103 (section 2.3.1) is a state-of-the-art bilirubinometer, which as dis-
cussed in background, has achieved close to 95% correlation on Caucasian neonates.
In the jaundice dataset, each observation is accompanied with a JM-103 TcB measure-
ment, which all MCB results are compared to. While not an evaluation metric in self,
it gives an indication as to how well the machine learning solution performs.

Input Values

The theory of color correction indicates that the relationship between R, G, and B
(e.g., R*G, R*B, G*B) is valuable information. We denote the extension operator
that transforms an RGB-vector to an m-element column vector with added polynomial
terms as θk,i where k represents the polynomial degree, and i represents the method id
(Eq. 3.2)

Hypothesizing that extended RGB information might be valuable for bilirubin pre-
diction, different polynomial RGB-extensions are tried as input. Input varies from
r, g, b (i.e. k = 1, i = 1) to r, g, b, rg, rb, gb, r2, g2, b2, 1 (i.e. k = 3, i = 1). We
are uncertain as to how a neonate’s age and weight contribute to the concentration of
bilirubin, and thus try training each model both with and without these parameters.

3.3.3 Solutions
For the measurement of MobileCam-estimated bilirubin concentration (MCB), three
different solutions are proposed, each evaluated on the randomly selected test set τ .
The first solution is based on the expansion of Support Vector Machines (SVMs); sup-
port vector regression (SVR). A fully-connected feed-forward neural network is then
explored, using average RGB color values and their polynomial extensions. Lastly,
looking for spatial features in color corrected skin patches, a convolutional neural net-
work (CNN) is tested.

While each solution implements different regression techniques, all are evaluated
using the same test set and evaluation methods. In the following sections, we go into
detail on the individual solutions.

52

3.3 Bilirubin Prediction

3.3.3.1 Solution I: Support Vector Regression

When data is scarce, SVR is known to provide high-quality results and is generally ro-
bust against outliers. Since SVR is computationally fast, it is an efficient way to gauge
the possibility of success, when no prior domain knowledge is known. The purpose
of this experiment is to set a baseline for the jaundice prediction results and assess the
possibility of finding any relationship between skin color and bilirubin concentration.

As discussed in section 2.7.2, preprocessing/scaling input data is essential to en-
sure that features with high absolute values do not overpower numerically small fea-
tures. Also, the use of both stationary and non-stationary kernels requires the data to
be normalized, due to the translation issue a non-stationary kernel face. From the color
corrected skin patches, the average RGB values are extracted and normalized between
0 and 1. The neonates’ age are log distributed between 0 and 1, and the weights are
standardized to a normal distribution.

Implementation

We use the scikit-learn implementation of SVR3, based on Chang and Lin (2011). The
framework, written in Python, implements most state-of-the-art methods and kernels,
and is, thus, robust and flexible. The framework builds an optimal prediction model
using different input values and hyperparameters in a k-fold grid search. The final
model is fitted and used to generate predictions on the test set τ .

Hyperparameter-Tuning

Four common kernels are tested; Linear, polynomial, radial-basis function (RBF), and
sigmoid (Table 3.3). Additionally, the hyperparameters: C, γ, ε, degree, θk,i, and
A & W (Table 3.2), can be explicitly chosen. To find the best combination of hyperpa-
rameters and kernels, a grid-search with 5-fold cross-validation is employed, trying all
possible combinations. The goal is to identify the optimal hyperparameter set tuning
the SVR to accurately predict new/unknown data.

3http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.
html

53

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Chapter 3. Methods

Parameter O1 O2 O3 O4 O5 O6 O7 O8

C 1 10 100 1000 2000 5000 - -
γ 0.05 0.1 0.2 0.5 0.7 0.8 0.9 -
ε 0.005 0.01 0.05 0.1 0.2 0.3 - -
degree 2 3 4 - - - - -
θk,i 12 21 22 31 32 33 34 35

Table 3.2: Hyperparameters used in grid-search with SVR. See table 3.3 for kernel applicable
hyperparameter. Oi represents Optioni, as all parameters have several options.

θk,i is the hyperparameter for RGB-extensions, C is a penalizing parameter for
predictions outside the SVR margin of tolerance. ε specifies the epsilon-tube within
which no penalty is given to a false prediction. Lastly, the γ is the kernel polynomial
degree (only applicable for the polynomial kernel).

Kernel C γ ε degree θk,i

Linear True - - - True
Polynomial True - - True True
RBF True True True - True
Sigmoid True True True - True

Table 3.3: Kernel’s applicable hyperparameter in the SVR grid-search. See table 3.2 for hyper-
parameter notations.

3.3.3.2 Solution II: Fully Connected Neural Networks

There may be relationships between the features in the dataset that an SVR, with its
kernels, is unable to detect.

Artificial neural networks (ANNs) are robust machine learning techniques. With
their ability to learn complex features they can, as opposed to classical approaches,
swiftly extract prominent relationships between input data. Neural networks are im-
plemented to better understand the problem domain and to see if there are any higher
complexity relationships in the data. To ensure that each input parameter is equally
accounted for, all data is normalized as in Experiment I.

54

3.3 Bilirubin Prediction

Figure 3.4: An abstraction of the neural network model.

Implementation

The neural network solution relies on Tensorflow and Keras. Tensorflow4 is one of
the most used ANN frameworks today and is supported by one of the largest online
communities for deep learning. On top of Tensorflow, the high-level library Keras5

creates an easy-to-use interface. Keras is implemented in Python and is designed for
rapid experimentation with ANNs. Its focus is on user-friendliness, modularity, and
extensibility. Since Keras is an official part of Tensorflow, it additionally offers the full
low-level functionality of Tensorflow.

A grid-search with 5-fold cross-validation is used to find the optimal combination
of model architecture and hyperparameters. The resulting hyperparameters from the
grid-search are used to build and train the final neural network model on all available
training data (both training and validation set). It is important to note that the test set
τ is not used at this stage, and will not be used until the final model evaluation. To
verify that the final model is not under- or overfitted; a training process, using 30% of
the training data as the validation set, is initiated. The training process is recorded and
plotted in a loss/epoch graph.

To generate the actual results; the final model is applied to the held-out test set τ ,
where the model is evaluated in terms of the evaluation metric explained in section
3.3.2, Test Setup.

Architecture and Hyperparameter-Tuning

The grid-search is used to determine the following hyperparameters: number of lay-
ers, nodes per layer, activation function, batch normalization, dropout, L2 regularizer,
optimizer, batch size, and θk,i.

Two different grid-searches are performed: Coarse- and fine grid-search. The idea
behind the coarse grid-search (table 3.4) is to find the general area of interest for the net-
work architecture. When a rough network architecture is found, a finer grid-search (i.e.
smaller incremental steps between hyperparameter options) (table 3.5) is performed to
optimize the final model (Fig. 3.4).

4https://www.tensorflow.org/
5https://keras.io/

55

https://www.tensorflow.org/
https://keras.io/

Chapter 3. Methods

Parameter O1 O2 O3 O4 O5 O6 O7 O8

Number of layers 1 2 3 - - - - -
Nodes per layer 5 10 20 40 80 100 150 -
Activation func ReLU Tanh Sigmoid - - - - -
Batch norm 0 1 - - - - - -
Dropout 0 0.1 0.3 0.5 - - - -
L2 regularizer 0 0.01 0.001 - - - - -
Optimizer Adam RMSProp - - - - - -
Batch size 1 2 5 - - - - -
θk,i 12 21 22 31 32 33 34 35

Table 3.4: Hyperparameters used in the coarse grid-search with fully-connected neural net-
works. Batch norm is batch normalization and activation func is activation function. θk,i is the
hyperparameter for input values. Oi represents Optioni, as all parameters have several options.

Parameter O1 O2 O3 O4 O5 O6 O7 O8

Nodes first layer 65 70 75 80 85 90 - -
Nodes final layer 18 19 20 21 22 - - -
Activation func Tanh - - - - - - -
Dropout 0 0.3 0.4 - - - - -
L2 regularizer 0.005 0.01 0.015 0.02 0.025 0.03 - -
Optimizer Adam - - - - - - -
Batch size 1 - - - - - - -
θk,i 35 - - - - - - -

Table 3.5: Hyperparameters used in the fine tuning grid-search with fully-connected neural
networks. The choice of parameters is based on the coarse grid search. Oi represents Optioni,
as all parameters have several options.

Batch normalization is used between each hidden layer or not at all (only appli-
cable if batch size > 1). When used, batch normalization relieves the effects of the
internal covariate shift (Ioffe and Szegedy (2015)). The batches are normalized after
each hidden layer and applies a transformation maintaining the mean activation close

56

3.3 Bilirubin Prediction

Figure 3.5: An abstraction of the convolutional neural network model.

to 0 and the standard deviation close to 1. Batch normalization allows the use of higher
learning rates and weight initialization are less prominent.

Dropout: Dropout is a regularization technique where a subset of randomly se-
lected neurons are deactivated during training. Dropout leads a more generalized model
because it forces multiple nodes to learn the same concept.

L2-regularization is used to penalize large weights. 0.001, 0.01, and 0.02 regular-
ization factors are tried empirically.

Training is performed with the RMSProp optimizer or the Adam optimizer (section
2.7.3). RMSProp employs a learning rate at 1e − 4 and ρ at 0.9, while the Adam
optimizer uses the same learning rate, but beta1 at 0.9 and beta2 at 0.999.

The neural network weights are initialized by sampling uniform distribution within
a positive and negative limit:

V ar(W) =

√
6

nin + nout
(3.15)

where nin is the number of neurons feeding into the neuron in question, and nout is
the number of neurons the output is fed to. W is the initialization distribution for the
neuron. This method is called the Glorot uniform initialize (Glorot and Bengio (2010)).

3.3.3.3 Solution III: Convolutional Neural Networks

The CNN solution is designed to assess if any spatial features in the skin patch may be
valuable for bilirubin prediction accuracy. An example of a potentially relevant spatial
feature is the color along blood veins.

To search for spatial features; a CNN is built. As with the prior solutions, the
age and weight parameters are still relevant and added to the final fully-connected
regression head (together with features from the convolutional layers).

The network consists of two separate input layers. The first input accepts images
and is connected to a set of convolutional layers. The second input directly sends the
age and weight parameters to a concatenation layer, where they are combined with the
features from the convolutional layers. These aggregate features are then sent through
a fully-connected feed-forward network regression head (Fig. 3.5).

57

Chapter 3. Methods

Implementation

Using Tensorflow and Keras, 5-fold cross-validation is implemented, and different
model architectures and hyperparameters are empirical determined. To verify that the
final model is not under- or overfitted; a training process, using 30% of the training
data as the validation set, is initiated. The training process is recorded and plotted in a
loss/epoch graph. To generate the actual results; the final model is applied to the held-
out test set τ , where the model is evaluated in terms of the evaluation metric explained
in section 3.3.2, Test Setup.

Input-Values

The color corrected skin patch, resized to a 100 x 100 image array, is passed to the first
input layer. Regarding the age and weight parameters, trail and error showed that a
neonate’s weight did not provide any useful information, and is thus not used (not sent
to the network).

Architecture and Hyperparameter-Tuning

The grid-search implementation does not support multiple input layers, and thus all
proposed architecture and hyperparameters are empirically tested to find the best per-
forming model (verified through cross-validation).

The following paragraphs explain the hyperparameters and architectures of the two
sub-networks:

• A convolutional network, with color corrected skin-patch as input.

• A feed-forward network regression head

The convolutional network: Other than small color differences, skin does not
display many features. The convolutional part of the network does, therefore, not need
to be complex, and the number of layers are limited to one or two convolutional layers.
Additionally, the kernel size and number of kernels are adjustable parameters found
empirically. All convolutional layers use the ReLU activation function (section 2.7.3),
where max pooling- and dropout is optional.

The feed-forward network regression head concatenates the convolutional net-
work and the age input. It consists of one or two hidden layers before a final output
node provides the model prediction. The hidden layers follow the same principles as
in Experiment II.

Hyperparameters To summarize the paragraphs above, the following hyperparam-
eters are tuned through trail and error (table 3.6): Kernels per layer, Kernel size, num-
ber of final fully-connected layers, nodes per fully-connected layer, activation function

58

3.3 Bilirubin Prediction

fully-connected layers, batch normalization, dropout, L2 regularizer, optimizer, batch
size.

Parameter O1 O2 O3 O4 O5 O6 O7

Kernels per layer 2 4 8 - - - -
Kernel size (3,3) (5,5) - - - - -
Number of fcl 1 2 3 - - - -
Nodes per fcl 5 10 20 30 - - -
Activation func fcl ReLU Tanh - - - - -
Batch norm 0 1 - - - - -
Dropout 0 0.3 0.5 - - - -
L2 regularizer 0 0.01 0.001 - - - -
Optimizer Adam RMSProp - - - - -
Batch size 1 2 5 - - - -

Table 3.6: Possible hyperparameters for the convolutional neural network. fcl represents fully-
connected layer, func is short for function, and norm denotes normalization. Oi represents
Optioni, as all parameters have several options.

59

Chapter 3. Methods

60

Chapter 4
Results

This chapter presents the results from the conducted experiments explained in Chapter
3, and is divided into two sections; color correction and bilirubin prediction.

4.1 Color Correction

To answer the research questions; three separate experiments were performed, and the
results are presented individually. Note that all error values presented are given as
∆E∗ab in the CIE L*a*b* color space.

Table 4.1 is included to summarize the color correction evaluation methods (section
3.2.3) used in the experiments.

Evaluation method Description

EM 1 All colors included
EM 2 Semi-4-fold cross-validation
EM 3 Leave-one-out cross-validation

Table 4.1: Displays evaluation methods used in the color correction experiments, which are fully
described in section 3.2.3.

61

Chapter 4. Results

4.1.1 Experiment I: Color Correction Using SpyderCHECKR,
Evaluated on SpyderCHECKR

In experiment I, color correction models are trained on a SpyderCHECKR 24 and eval-
uated on the same image. Since the SpyderChecker 24 contains diverse colors, the
experiment tests the color correction methods in general color correction.

Table 4.2 shows the results from Experiment I, evaluating the linear color correction
(LCC), polynomial color correction framework (PCCF), root-polynomial color correc-
tion framework (RPCCF) and Gaussian process regression (GPR) according to EM 1,
EM 2, and EM 3. Three separate images were captured and color corrected in different
CIE illuminant reproduced light (Fig. 2.2); CIE D65, CIE F11, and CIE A, reflected in
the table by grouping results with corresponding illuminants. The results are derived
by comparing the color corrected RGB responses with the SpyderCHECKR’s ground
truth CIE L*a*b* triplets.

The table indicates that the RPCCF is the best solution for general color correction
in all light settings. Further, it shows that all solutions are struggeling to color correct
in CIE A reproduced light.

CIE D65 CIE F11 CIE A
solution EM 1 EM 2 EM 3 EM 1 EM 2 EM 3 EM 1 EM 2 EM 3 Avg. EM 3

LCC 6.93 8.22 8.04 6.99 8.58 8.09 9.35 12.0 10.83 8.99
PCCF 4.32 7.15 6.49 5.15 7.82 7.61 6.45 10.49 9.71 7.94
RPCCF 3.94 5.73 6.49 4.76 6.96 7.09 5.40 8.40 8.05 7.21
GPR 4.00 6.91 6.92 5.11 7.79 8.02 6.05 11.15 10.10 8.35

Table 4.2: Four color correction methods were trained on an imaged SpyderCHECKR 24 and
evaluated on the same image. For each evaluation method, the best performing (lowest ∆E∗

ab)
solution is highlighted in bold. The last column represents the average EM 3 ∆E∗

ab across all
illuminants.

Table 4.3 presents the best performing internal methods from the proposed color
correction frameworks (PCCF and RPCCF). The results indicate that regardless of il-
lumination, both frameworks solve the SyderCHECKR 24 color correction using one
preferred RGB-extension.

62

4.1 Color Correction

Framework D65 size F11 size A size

PCCF ρ̂2,1 4x3 ρ̂2,1 4x3 ρ̂2,1 4x3
RPCCF ρ̄2 7x3 ρ̄2 7x3 ρ̄2 7x3

Table 4.3: Best performing internal methods of the PCCF and RPCCF for each imaged Spy-
derCHECKR in CIE D65, CIE F11 and CIE A reproduced illumination. The methods are ranked
by their leave-one-out cross-validation results measured in ∆E∗

ab.

Figure 4.1 is a visualization of applied color correction in noon daylight (CIE D65).
The images are reconstructions from both color correction and ground truth color val-
ues. Each color patch is divided into two parts, where the left-hand side is the color
corrected color, and the right-hand side is the ground truth color. A color difference
between the left and right color indicates that the color correction is not perfect.

63

Chapter 4. Results

(a) Color correction: LCC (b) Color correction: PCCF

(c) Color correction: RPCCF (d) Color correction: GPR

Figure 4.1: Color correction models are trained on an imaged SpyderCHECKR 24 and evaluated
on the same image. The color checker is placed in a viewing box and captured in CIE D65
reproduced illumination. Each color patch, in the reconstructed image, is divided into two parts:
left shows the color corrected color, right shows the ground truth target color. All images are
recreated from CIE L*a*b* coordinates to RGB with CIE D65 illuminant.

Figure 4.2a illustrates the cross-validation (EM 3) ∆E∗ab results from experiment
I. The bar plot graphs are reiterations of the results given in table 4.2 and are only
supplementary figures to highlight the performance differences.

64

4.1 Color Correction

(a) (b).

Figure 4.2a: Bar plot visualization of leave-one-out cross-validation results (EM3) from Experi-
ment I. Figure 4.2b: Bar plot visualization of leave-one-out cross-validation results (EM3) from
Experiment II. Both bar plots are divided into three subsection, representing the results on each
image in the CIE illuminant reproduced light; D65, F11, and A, respectively.

4.1.2 Experiment II: Color Correction Using SkinChecker,
Evaluated on SpyderCHECKR

The LCC, PCCF, RPCCF, and GPR were tested by training color correction models
on a SkinChecker and evaluated on a SpyderCHECKR 24. Both color checkers were
imaged, side by side, in CIE D65, CIE F11, and CIE A reproduced illumination. Table
4.4 shows the results from Experiment II (visualized in Fig. 4.2b) for each CIE illu-
minant. The applied color corrections, for the noon daylight (D65) illuminated image,
are shown in figure 4.4.

From the table it is worth noting that the general color correction solutions LCC,
and GPR are performing well. Again we take note of the overall poor performance in
the CIE A reproduced light.

65

Chapter 4. Results

solution CIE D65 CIE F11 CIE A average

LCC 8.68 9.02 18.16 11.95
PCCF 12.09 25.57 21.50 19.72
RPCCF 15.67 11.41 25.24 17.44
GPR 7.58 9.77 18.21 11.85

Table 4.4: The LCC, PCCF, RPCCF, and GPR are trained on a SkinChecker and evaluated on
a SpyderCHECKR 24. The best performing (i.e. lowest ∆E∗

ab) solution in terms of EM 1 is
highlighted in bold. The last column represents the average EM 1 ∆E∗

ab across all illuminants.
All numerical values presented are results from EM 1.

Table 4.5 presents the best performing internal methods from the proposed color
correction frameworks. The key takeaway from these results is that the PCCF is using
a different internal method than in experiment I. Further, both frameworks are using
the same internal method regardless of illumination.

Framework D65 size F11 size A size

PCCF ρ̂2,2 7x3 ρ̂2,2 7x3 ρ̂2,2 4x3
RPCCF ρ̄2 7x3 ρ̄2 7x3 ρ̄2 7x3

Table 4.5: Best performing internal methods of the PCCF and RPCCF for each imaged Spy-
derCHECKR in CIE D65, CIE F11, and CIE A reproduced illumination. The methods are ranked
by their leave-one-out cross-validation results measured in ∆E∗

ab.

66

4.1 Color Correction

(a) Color correction: LCC (b) Color correction: PCCF

(c) Color correction: RPCCF (d) Color correction: GPR

Figure 4.3: Color correction models are trained on an imaged SkinChecker and evaluated on a
SpyderCHECKR 24. The color checkers are placed in a viewing box and captured in CIE D65
reproduced illumination. Each color patch, in the reconstructed image, is divided into two parts:
left shows the color corrected color, right shows the ground truth target color. All images are
recreated from CIE L*a*b* coordinates to RGB with CIE D65 illuminant.

4.1.3 Experiment III: Color Correction Using SkinChecker,
Evaluated on SkinChecker

In experiment III color correction models are trained on a SkinChecker and evaluated
on the same image. The models are evaluated on all images in the jaundice dataset,
thus testing each solution in terms of skin color correction.

Table 4.6 shows the results from Experiment III, evaluating the LCC, PCCF, RPCCF,
and GPR. The jaundice dataset is collected through fieldwork, and the light sources are
not reproducible in terms of a single CIE illuminant. The results of EM 3 and EM 4
are visualized in figure 4.4.

67

Chapter 4. Results

The table indicates that both the PCCF and GPR are viable solutions when color
correcting skin. Their results are approximately equal across all evaluation metrics.

solution EM 1 EM 2 EM 3 EM 4

LCC 7.86 8.30 8.42 6.54
PCCF 2.46 3.62 3.45 4.37
RPCCF 3.79 4.71 4.74 5.07
GPR 2.45 3.73 3.53 4.40

Table 4.6: The LCC, PCCF, RPCCF, and GPR are trained on a SkinChecker and evaluated on a
SkinChecker. The best performing (i.e. lowest ∆E∗

ab) solution is highlighted in bold.

Figure 4.4: Bar plot visualization of leave-one-out cross-validation results (EM3) and semi-4-
fold cross-validation on skin related candidates (EM 4) from Experiment III.

To give insight in the proposed color correction frameworks, we present the results
for each internal method. Table 4.7 shows the internal results for the PCCF, where
ρ̂3,1 is the best performing internal methods in terms of EM 3 (cross-validation). The
RPCCF results are more polarized, where ρ̄2 outperforms the rivaling internal methods
by a large margin. The distributions of selected internal methods are shown in figure
4.6 and highlight the success of ρ̂3,1 and ρ̄2. It is interesting to see that the center-most
methods of the PCCF are achieving the best results.

68

4.1 Color Correction

method size EM 1 EM 2 EM 3 EM 4

ρ̂11 4x3 4.28 4.61 4.84 4.20
ρ̂21 7x3 2.85 3.66 3.63 4.54
ρ̂22 7x3 2.94 3.68 3.69 4.63
ρ̂31 11x3 2.37 3.88 3.53 4.56
ρ̂32 11x3 2.40 3.75 3.77 4.74
ρ̂33 14x3 2.12 4.26 4.05 4.74
ρ̂34 17x3 1.98 5.51 5.04 8.03
ρ̂35 20x3 1.73 7.98 6.64 11.97

Table 4.7: All color correction evaluation method results for all internal PCCF methods. The
best performing (i.e. lowest ∆E∗

ab) internal method is highlighted in bold.

method size EM 1 EM 2 EM 3 EM 4

ρ̄2 4x3 3.79 4.71 4.74 5.06
ρ̄3 7x3 3.14 6.29 6.04 13.36
ρ̄4 7x3 1.54 23.85 13.73 63.57

Table 4.8: All color correction evaluation method results for all internal RPCCF methods. The
best performing (i.e. lowest ∆E∗

ab) internal method is highlighted in bold.

Four visualizations of color corrected SkinCheckers using LCC, PCCF, RPCCF,
and GPR respectively, are illustrated in Fig. 4.5. The color corrected image is randomly
selected from the jaundice dataset.

69

Chapter 4. Results

(a) Color correction: LCC (b) Color correction: PCCF

(c) Color correction: RPCCF (d) Color correction: GPR

Figure 4.5: Color correction models are trained on an imaged SkinChecker and evaluated on the
same image. Each color patch, in the reconstructed image, is divided into two parts: left shows
the color corrected color, right shows the ground truth target color. All images are recreated
from CIE L*a*b* coordinates to RGB with CIE D65 illuminant.

Figure 4.6 shows the two internal method distributions of the color correction
frameworks (PCCF, RPCCF) in bar plots. It is important to note that the PCCF is
alternating between three internal methods, while theRPCCF is only opting for one.

70

4.2 Bilirubin Prediction

(a) PCCF internal method distribution (b) RPCCF internal method distribution

Figure 4.6: The bar plot displays the distribution of selected internal methods. The plots show
that PCCF alternates between three polynomial extensions, while the RPCCF only uses one.

4.2 Bilirubin Prediction

To solve the bilirubin prediction problem, we propose three machine learning based
non-linear regression techniques; support vector regression (SVR), fully-connected
feed-forward neural networks, and convolutional neural networks (CNNs). The pre-
sented results are produced by evaluating each model on the held out test set, τ , com-
paring the predicted MobileCam Bilirubin (MCB) measurment to the ground truth total
serum bilirubin (TSB) value. Before conducting the experiments, all images are color
corrected.

4.2.1 Support Vector Regression

After the grid search using k-fold cross-validation (k = 5), the following parameters
were found to be optimal: C = 2000, ε = 0.3, γ = 0.9, kernel = radial-basis function
(RBF), RGB expansion = θ3,1. Only the log distributed age normalization adds value
to the bilirubin prediction, and the neonate weights were not used.

Table 4.9 shows the final result of the SVR model, alongside the Dräger JM-103
bilirubinometer. In the experiment, JM-103 outperforms the SVR implementation with
a 0.04 higher Pearson correlation coefficient.

71

Chapter 4. Results

Solution Mean difference (TSB - MCB/TcB) Std Corr

SVR 26.09 22.33 0.91
JM-103 21.41 25.68 0.95

Table 4.9: Result of the Support Vector Regression model and the Dräger JM-103 bilirubinome-
ter. Std represents the standard deviation from the mean difference (TSB - MCB/TcB), and the
correlation is calculated using the Pearson correlation coefficient.

Figure 4.7 visualizes the linear relationship between prediction (MCB/ transcuta-
neous bilirubin (TcB)) and ground truth (TSB) for both the SVR model and the JM-103
bilirubinometer. The Dräger JM-103, underestimates TSB in the higher concentration
ranges, indicated by the bold regression line and its divergence away from the identity
line (Fig. 4.7b). The SVR model, while on average closer to the identity line, wrongly
predicts target values by a larger margin on both sides (Fig. 4.7a).

The Bland-Altman plot (Fig. 4.8) further highlights these trends, where the Dräger
JM-103 has a mean difference of +20 (bold line in figure 4.7b). The plot indicates
that the JM-103 predictions, on average, are 20 µmol/L lower than the actual bilirubin
concentration. It is very important to note that the difference is defined as ground truth
minus prediction (TSB - prediction(MCB/TcB)). A difference larger than zero indicates
a prediction less than the ground truth and vice versa (diff > 0 =⇒ prediction <
TSB). Positive difference scores, therefore, lead to false negatives (i.e., stating that a
sick patient is healthy). Such predictions are not tolerated in the medical community.

Ideally, the axes should be flipped to give an intuitive understanding of the visual
representation (i.e., higher values indicate overestimations and vice versa). However,
since other medical publications place TSB along the y-axis, and predictions along the
x-axis, for comparison, we follow the same practice.

The SVR average mean difference is slightly below zero, illustrating overestima-
tions of TSB. The predictions are, however, volatile with prediction errors both below
and above ground truth.

72

4.2 Bilirubin Prediction

(a) Linear regression of SVR MCB measur-
ment

(b) Linear regression plot of Dräger JM-103
TcB measurment

Figure 4.7: Linear regression plot of MCB/TcB measured versus TSB measurements. The bold
line shows the regression line derived from the predictions, and the dotted line is the identity line
(y = x). The plot consist of data from evaluation of 37 children.

(a) Bland-Altman plot of SVR MCB measur-
ment

(b) Bland-Altman plot of Dräger JM-103 TcB
measurment

Figure 4.8: Bland-Altman (difference-plot) for the total population between measured
MCB/TcB and TSB measurements. The gray area shows the 95% confidence interval from
the mean prediction (bold line). Dotted outer lines shows margin of error1. The plot consist of
data from the evaluation of 37 children.

1The margin of error is a recommended safety margin set by the hospital to make sure all children in the
danger zone is correctly tested

73

Chapter 4. Results

4.2.2 Fully Connected Neural Networks

Finding the optimal neural network architecture requires rigorous trail and error ex-
perimentation. After a coarse grid search with 5-fold cross-validation, a more narrow
search (based on the results from the coarse search) was conducted. The second grid-
search, shown in table 3.5), deemed the following parameters to be prominent, and
defines the final neural network model (Table 4.10):

Parameter value

Epochs 500
Batch size 1
Optimizer Adam
Input parameters Median RGB & age
Input RBG extension ρ̂3,5

First layer
Nodes 70
Dropout 30%
Activation function tanh
L2 Regularization (weights) 0.02
Second layer
Nodes 19
Dropout 0%
Activation function tanh
L2 Regularization (weights) 0.02

Table 4.10: The hyperparameters of the fine tuned neural network used to create the final results
evaluated on τ .

Table 4.11 presents the results from the fine-tuned fully-connected neural network,
alongside the Dräger JM-103. The bilirubinometer still achieves higher correlation
than the neural network, having a 0.03 higher correlation coefficient. Additionally, the
JM-103 predicts to the lowest ’mean difference’ of the two (TSB - MCB/TcB), but is
outperformed by the neural network in terms of standard deviation.

74

4.2 Bilirubin Prediction

Solution Mean difference (TSB - MCB/TcB) Std Corr

Neural network 25.65 17.45 0.92
JM-103 21.41 25.68 0.95

Table 4.11: The results of the fitted neural network model and the Dräger JM-103 bilirubinome-
ter. Std represents the standard deviation from the mean difference (TSB - MCB/TcB), and the
correlation is calculated using the Pearson correlation coefficient.

The linear relationship between prediction and ground truth blood values is plotted
in figure 4.9. The fully-connected neural network is on average (regression line) close
to the identity line. As with the SVR, it wrongly predicts the target values on both sides.
These trends are further highlighted in the Bland-Altman plot (Fig. 4.10). Looking at
the Bland-Altman plot, Dräger JM-103 has four predictions above the upper dotted
line (+50), implying it evaluates a possibly sick patient to be healthy (false negative).
The neural network on the other hand, only predicts one false negative. Again. it is
important to remember the counter-intuitive axes, and that positive difference values
imply underestimations.

(a) Linear regression of neural network MCB
measurment

(b) Linear regression plot of JM-103

Figure 4.9: Linear regression plot of MCB/TcB measured versus TSB measurements. The bold
line shows the regression line derived from the predictions, and the dotted line is the line of
identity (y = x). The plot consist of data from evaluation of 37 children.

75

Chapter 4. Results

(a) Bland-Altman plot of neural network
MCB measurement

(b) Bland-Altman plot of JM-103 TcB mea-
surement

Figure 4.10: Bland-Altman (difference-plot), for the total population between measured
MCB/TcB and TSB measurements. The gray area shows the 95% confidence interval from
mean prediction (bold line). Dotted outer lines shows margin of error. The plot consist of data
from the evaluation 37 children.

Figure 4.11 shows the mean-squared error loss history on a training set (70%) and
a validation set (30%), where the tests set is still held out. The graph is generated from
a dummy-training process to verify that the model found through the 5-fold cross-
validation grid-search is adequately trained. The plot shows no indications of under-
or overfitting, as the training- and validation loss output close to equal values.

Figure 4.11: Loss history-plot, showing training vs. validation MSE loss. The validation set
consist of 30% of the training data.

76

4.2 Bilirubin Prediction

4.2.3 Convolutional Neural Networks

To look for spatially neighboring color features; a CNN was implemented. Empirical
testing of different models and architectures was performed to find the optimal config-
uration. The final CNN is presented in table 4.12:

Parameter value

Epochs 500
Batch size 1
Optimizer Adam
Input parameters RGB (100x100) & age
First convolution layer
Kernel size (3, 3)
Number of kernels 4
Dropout 10%
Activation function ReLU
L2 Regularization (weights) 0.02
Max-pooling size 2
First fully-connected layer
Nodes 25
Dropout 20%
Activation function tanh
L2 Regularization (weights) 0.02
Second fully-connected layer
Nodes 19
Dropout 0%
Activation function tanh
L2 Regularization (weights) 0.02

Table 4.12: The hyperparameters and architecture of the final convolutional neural network used
to create final results evaluated on the test set, τ .

The final result of the CNN, alongside the Dräger JM-103 is presented in table
4.13. In the experiment, the Dräger outperforms the network with 0.22 higher corre-
lation. Additionally, it outperforms the network on both mean difference and standard
deviation.

77

Chapter 4. Results

Solution Mean difference (TSB - MCB/TcB) Std Corr

Convolutional Neural network 47.55 33.55 0.73
JM-103 21.41 25.68 0.95

Table 4.13: The result of the fitted convolutional Neural Network model and the Dräger JM-
103 bilirubinometer. Std represents the standard deviation from the mean difference (TSB -
MCB/TcB), and the correlation is calculated using the Pearson correlation coefficient.

The linear regression plot in figure 4.12a indicates that the CNN is unable to predict
the entire range of bilirubin values. With so little information in images, it is hard to
train the convolutional layers and shows why the correlation is so low.

(a) Linear regression of CNN MCB measur-
ment

(b) Linear regression plot of JM-103

Figure 4.12: Linear regression plot of MCB/TcB measured versus TSB measurements. The
bold line shows the regression line derived from the predictions, and the dotted line is the line of
identity (y = x). The plot consist of data from evaluation of 37 children.

The Bland-Altman plot further highlights the poor performance of the CNN. Both
plots illustrate that the network is primarily predicting two values, with some predic-
tions in between.

78

4.2 Bilirubin Prediction

(a) Bland-Altman plot of CNN MCB mea-
surement

(b) Bland-Altman plot of JM-103

Figure 4.13: Bland-Altman (difference-plot), for the total population between measured
MCB/TcB and TSB measurements. The gray area shows the 95% confidence interval from
mean prediction (bold line). Dotted outer lines shows margin of error. The plot consist of data
from the evaluation of 37 children.

Regardless of the poor performance, the mean-squared error loss history plot, from
figure 4.14, shows no indication of under- or overfitting. Again, the history is generated
from a dummy-training process to verify that the model found through the 5-fold cross-
validation grid-search is adequately trained. The training process was conducted using
a 70% training set and a 30% validation set.

Figure 4.14: Loss history-plot, showing training vs validation MSE loss. The validation set
consist of 30% of the training data.

79

Chapter 4. Results

80

Chapter 5
Discussion

This chapter will discuss and evaluate the results presented in Chapter 5 and reflect
upon the strengths and weaknesses of the proposed solutions. To relate the findings
to the two main research questions, we divide the chapter into two sections; color
correction and bilirubin prediction.

5.1 Color Correction
In this thesis, we explore the use of computer vision and machine learning for the
prediction of jaundice using embedded smartphone cameras.

The use of smartphones promotes widespread availability but comes at a cost, in-
strumental inconsistency. Camera sensors vary from model to model, and the color
values captured are camera dependent. Additionally, controlling light, and the aggre-
gate effect of light sources has proven to be a difficult task.

We perform color correction to overcome these issues, creating standardized skin
images for the jaundice detection algorithm. Literature does not agree upon approaches
for human skin color correction, and set forth the primary color correction research
questions: What is the most accurate and robust technique to perform human skin
color correction for scientific use?

The following sections present a discussion on the linear color correction (LCC),
the proposed framework solutions, and the novel Gaussian process regression (GPR).
Note that the color correction errors used in the discussion refer to the leave-one-out
cross-validation results (EM3) unless otherwise specified.

81

Chapter 5. Discussion

5.1.1 Linear Color Correction (LCC)

To simplify the comparison of the proposed solutions, we use the simple 3x3 LCC
as an evaluation baseline. The LCC does not perform aggressive color correction and
should, from a theoretical standpoint, build general color correction models that per-
form adequately in any scenario.

In experiment I, a SpyderCHECKR 24 is used to evaluate color correction methods
on a diverse range of colors. The LCC achieves an average ∆E∗ab = 8.99. As men-
tioned in section 2.4.4, a ∆E∗ab = 2.3 color difference is regarded as ’just noticeable’
and anything less than 1∆E∗ab is imperceptible to the human eye. This implies that the
LCC results in a highly visible color difference (8.99 >> 2.3).

A key observation is that the lowest color correction error is achieved in CIE D65
reproduced light (∆E∗ab = 8.04), with close to identical results in fluorescent light
(CIE F11: ∆E∗ab = 8.09). Interestingly, when the light source is reproduced from a
CIE A tungsten light bulb, the model color corrects to a ∆E∗ab = 10.83 color error,
approximately 3∆E∗ab higher. A significant portion of this error is attributed to failed
color correction on the grayscale of the color checker.

The idea behind experiment II is to gauge color correction solutions in general color
correction (evaluated on a diverse range of colors) when models use a specialized color
checker (i.e., smaller color subspace) as a reference point. Building a color correction
model from the SkinChecker, evaluated on the SpyderCHECKR 24, the LCC achieves
an average ∆E∗ab = 11.95. As expected, we see an increase in average error compared
to Experiment I (8.99 < 11.95). The SkinChecker does not contain dominant blue or
green color patches, and thus, the model does not have any reference points for these
during prediction. Nevertheless, looking at figure 4.3a, we see the LCC can recreate
all colors in close proximity to the ground truth. From table 4.4 we, again, observe the
influence of illumination and the significant error increase caused by the tungsten light
bulb.

While being the least scientific in terms of execution, experiment III is arguably
the most important experiment. The results average out 564 color corrections (one
per image), targeted towards skin with the use of a SkinChecker. All SkinCheckers
were illuminated with CIE A reproduced light from a tungsten light bulb. However, no
viewing box was used at the time of photography, and image quality and light sources
are, thus, inconsistent.

From Table 4.6, the LCC achieves an average ∆E∗ab = 8.42. Considering that color
patches on the SkinChecker are clustered in the same color subspace (closely related
to human skin, Fig. 2.7), ∆E∗ab = 8.43 is very high. The LCC’s non-aggressive
color correction yields unsatisfactory results, and more sophisticated color correction
solutions are required to perform human skin color correction for scientific use.

82

5.1 Color Correction

5.1.2 PCC and RPCC Frameworks

Literature describes a wide range of color correction methods. However, there is no
consensus regarding a preferred unified solution. The relationship, between camera
RGBs and device independent CIE L*a*b triplets, is a function of light sources and
image capturing devices. However, finding it is not a trivial task. With least squares
polynomial and root-polynomial color correction (RPCC), a user needs to identify the
best dimensional fit (i.e., RGB-extension) and is only achieved through rigorous exper-
imentation.

To accommodate and simplify the search for this fit, we combine a collection of
low-to-high complexity models in a color correction framework. The proposed solu-
tions are attempts to give color correction flexibility without actually doing so. Having
created a baseline with the LCC, it is easier to assess the performance of each individ-
ual framework. Table 4.2 from Experiment I shows that, compared to each other, both
proposed solutions achieve next to equal results, outperforming the baseline with more
than 1∆E∗ab. We observe the same trend as when investigating the LCC; i.e., that error
varies when different CIE illuminants reproduce light. Again, the CIE A tungsten light
bulb creates conditions where both frameworks struggle to achieve good results.

One of the main reasons Finlayson et al. (2015) proposed the RPCC is that exposure
changes the vector of polynomial components in a nonlinear way, resulting in hue and
saturation shifts. Based on experiment I, the root-polynomial framework performs
more stable color correction, in different light settings, compared to the polynomial
framework.

In experiment II (training on one color checker, and evaluation on another), the
solutions do not know which color checker they are to be evaluated on and naturally
optimize for the reference checker (in this case, the SkinChecker). The frameworks,
therefore, choose internal methods (RGB-extensions) with dimensional fit best suited
for skin color correction; ρ̂2.2, ρ̄2.2. With no reference color for either green or blue,
both frameworks fail to build color correction models that can recreate green/blue re-
lated colors. Illustrated by figure 4.3c, the root-polynomial color correction framework
(RPCCF) solution creates a purple-brown color as its prediction for turquoise. The
polynomial color correction framework (PCCF) solution, on the other hand, does not
create any extreme predictions like the RPCCF but shows a notably visible color differ-
ence in a large subset of the colors. The results from the experiment indicate that both
solutions fail to generalize, and that the less complex LCC significantly outperforms
them (LCC: ∆E∗ab = 11.95 << RPCCF: ∆E∗ab = 17.33 < PCCF: ∆E∗ab = 19.72).

Experiment III highlights the importance of more aggressive color correction for
human skin. Compared to the LCC baseline, both solutions reduce the color correction
error by approximately 50%. The internal method distribution graph from experiment

83

Chapter 5. Discussion

III (Fig. 4.6) shows how often each internal method is picked across all 564 images.
Focusing on the PCCF solution; the figure shows that the framework alternates between
three internal methods, more specifically the center-most complexities (i.e., second and
third-degree polynomial extensions). The distribution may indicate that human skin
color correction is best performed using medium complexity RGB-extensions. The bar
plot (Fig. 4.6a) strengthens the hypothesis that no single color correction model is best
suited in all scenarios and that combining models of increased complexity lowers the
chance of under- and overfit.

When examining the internal method distribution for the RPCCF solution, only the
most simple approach (k=2) was applied. One way of looking at this is to assume that
the RPCCF favors low complexity models and that ρ̄2,1 is the best extension, regard-
less of the color correction case. However, and this is where we believe Finlayson
et al. (2015) come to short, when the root-polynomials increment in degrees, the ex-
tensions include all possible terms within that degree. The implemented RPCCF is
a pure implementation of the root-polynomial extensions presented in the paper, with
no experimental adaptations. Thus, the RPCCF only contains three internal methods,
where the extensions for k = 3 and k = 4 are too complex for skin color correction.

From Experiment III the results indicate that both frameworks perform good color
correction (PCCF: ∆E∗ab = 3.45, RPCCF: ∆E∗ab = 4.74), and by a large margin,
outperform the baseline (∆E∗ab = 8.42). However, the solutions are not perfect, and
the following paragraphs highlight the weaknesses of the framework solutions.

The first major drawback of a framework is that all possible relationship-functions
are not tested. To fix this; additional internal methods can be added, but the possibilities
would still be limited to the size of an incremental step. A natural incremental step is
to take one term and increase its dimensionality once (e.g., r → r2), and let that be a
new internal method. The idea can be taken even further, by scaling each term in the
extension vector with a coefficient (e.g., r → k∗r2). However, to find the absolute best
complexity fit, the step size between each internal method would have to be infinitely
small, resulting in an infinite amount of cross-validation runs.

The second drawback is that, as of now, the proposed frameworks are limited to
polynomial and root-polynomial extensions. Creating new frameworks of different
complexities (e.g., exponential) can, of course, solve this issue. However, both the
discussed solutions, are by no means scalable, and their pseudo-flexibility comes from
empirical trial and error using leave-one-out cross-validation, a computationally ex-
pensive evaluation method. The frameworks are, thus, in regards to time-complexity
not feasible.

84

5.1 Color Correction

5.1.3 Gaussian Process Regression

Assuming the best color correction mapping (i.e., the complexity-relationship between
camera RGBs and target values) is dependent on the specific color correction sce-
nario (image capturing device, and illumination), a flexible color correction algorithm
should, in theory, be beneficial.

To create a flexible and adapting color correction algorithm we look to machine
learning. The challenge with machine learning is that the algorithms often require
large amounts of data to learn relationships. In color correction, the available data
is limited to the number of color patches in the color checker, often resulting in a
small datasets. As mentioned in background, we are not pioneers when it comes to
this idea, and machine learning and particularly artificial neural networks have been
implemented to perform color correction, achieving approximately equal results to an
optimized polynomial color correction (PCC) (with optimized PCC we mean a PCC
model using the best polynomial fit for that image). As previously discussed, one of
the main issues with PCC is that the user needs to find the best polynomial fit through
trial and error. However, with neural networks, the user faces a similar problem where
the network’s hyperparameters (e.g., hidden layers, activation functions, learning rate)
need to be empirically determined.

To incorporate adaptiveness and flexibility without the related tuning issues, we
propose GPR color correction. While GPR already is a widely used tool for modeling
in industry, it is a novel approach to the problem of color correction. Using kernels and
the log marginal likelihood, GPR can perform color correction without any explicit
hyperparameter tuning. Additionally, the kernels can take on close to any complexity
(e.g., polynomial and exponential), making GPR models highly flexible. Being an in-
stance of machine learning, it can find the best mapping complexity for each individual
color correction case.

As with any other machine learning technique, a major concern for the GPR is
overfitting. This problem is circumvented by adding an aggressive noise kernel to the
kernel function, forcing the GPR to generalize. To make the GPR universal for all color
checkers; the radial-basis function (RBF) kernel (de-facto default GPR kernel) is used,
giving the regression model a high probability for generalization.

Looking at the results in experiment I, the color correction errors show that the
GPR, on average, has a 1∆E∗ab higher error than the best performing RPCCF. The
high average error is mostly attributed to its poor color correction capabilities in light
produced by the tungsten light bulb (CIE A). However, in CIE D65 reproduced illumi-
nation it achieves approximately the same results as both frameworks, indicating that
the GPR is capable of general color correction, but that it is sensitive to warm col-
ored light. Compared to the baseline, the GPR is superior in terms of performance and

85

Chapter 5. Discussion

improves on the LCC with ∆E∗ab = 0.5.
When training on the SkinChecker, and evaluated on the SpyderCHECKR 24, the

GPR is unmatched by the frameworks and outperforms the general LCC. Both the
results and the reconstructed color corrected image (Fig. 4.3d) indicate that the GPR
most likely employs less aggressive color correction than the frameworks and creates
general color correction models. Experiment II clearly shows that, even when diverse
color data is limited (no green or blue colors), the GPR is able to build color correction
models that can predict a wide range of colors.

Unlike the frameworks, GPR uses machine learning to adapt its model to each
image. When color correcting human skin, the results from experiment III show that
the GPR and PCCF perform equally (∆E∗ab = 0.08 difference is negligible). Further,
Table 4.6 shows that the performances of GPR and PCCF, in terms of EM 4 (evaluation
method highlighting skin color correction), are equal. Overall, the results indicate that
both the GPR and PCCF solutions are viable options when performing human skin
color correction.

5.1.4 Summary
The results from experiment I and II merit a small discussion related to light sources.
As with the LCC, both frameworks, and the GPR produce a substantially higher error
performing color correction in CIE A reproduced light than noon daylight (CIE D65).
The warmth and yellow glow from the tungsten light bulb (CIE A) alter the grayscale
to the extent that no color correction solution is able to fix them correctly. It is also
interesting to see that both frameworks stick to the same internal method regardless
of light. With only two examples a confident conclusion cannot be derived from this
observation but is nevertheless worth taking note of.

Based on the results we can with certainty state that the tungsten light bulb facil-
itates poor illuminations for research related experiments. We, therefore, recommend
that the continued data gathering for jaundice research is performed in cool white light
(high kelvin temperatures) [RQ 1.2](Which CIE illuminant is most suitable for general
color correction?). When gauging each method’s error difference across different il-
luminations, the RPCCF is, by a small margin, the most stable [RQ 1.1](Which color
correction technique is most robust to varying illumination?).

Experiment II was designed to answer RQ 1.3, and the results suggest that the
GPR, on average, is the color correction technique that best generalizes its prediction
capability to a more diverse color subspace. Due to its none aggressiveness, the LCC
also achieves respectable results. It is worth noting that answering RQ 1.3 does not
necessarily give any valuable information for skin color correction. When working
with specialized color correction it is not crucial that a model can generalize well to a

86

5.2 Bilirubin Prediction

diverse range of colors, and the property is regarded as a bonus rather than a require-
ment. Therefore, the high errors of PCCF and RPCCF in experiment II cannot really
be regarded as negative.

When reviewing all experiments, the results show that no single color correction
solution can, regardless of scenario, produce the lowest ∆E∗ab error [RQ 1.4](Is there
a single best color correction model regardless of CIE RGB color subspaces CIE re-
produced illumination?). Further, a comparison between the frameworks and GPR
does not justly describe the relationship between performance and individual solutions.
Frameworks are collections of internal methods, and the individual results show that
the correction error produced by the GPR and the optimal internal methods are close
to equal. We, therefore, answer RQ 1.4 by stating that the GPR solution is better than
stand-alone internal methods, but is not necessarily better than a unified framework
solution.

Confirming literature’s prior findings on machine learning, the GPR achieves com-
petitive results compared to state-of-the-art solutions, especially when considering hu-
man skin color correction. If least squares regression models are tuned to the optimal
dimensional complexity fit, they perform equally and sometimes better than our ma-
chine learning approach, GPR. In light of RQ 1.5, we cannot, based on the observa-
tions, claim that GPR produces more robust color corrections. However, we show that
the GPR is equally robust as state-of-the-art color correction solutions while relieving
users of tedious parameter tuning.

5.2 Bilirubin Prediction

Previous studies have shown there is a linear correlation between absorbed light at
specified wavelengths and total serum bilirubin (TSB). Since light absorption effects
visual features, the correlation should, at least to some degree, extend to the perceived
color of skin. Perceived skin color is, nevertheless, subjective to the observer, and
the human eye is not skilled at comparing colors. Cameras are, however, designed to
capture and represent visual features digitally, which allows machines to interpret them.
Additionally, digital cameras have in recent time become a commodity and are often
embedded in smartphones, where even the cheaper ones come with a reasonably good
camera. To create an affordable and readily available platform for jaundice detection,
we explore the possibility of bilirubin prediction, through the use of camera sensor
RGB values.

The following section presents a discussion on the jaundice dataset, and the pro-
posed bilirubin prediction solutions; support vector regression (SVR), fully-connected
neural networks, and convolutional neural networks (CNNs). Lastly, all findings are

87

Chapter 5. Discussion

summarized and related to the research questions.

5.2.1 Dataset
The jaundice dataset truly defines the boundaries and potential of this research. Con-
sisting of only 133 children (where all relevant metadata is intact), the dataset is, from
a machine learning perspective, incredibly small. Additionally, the distribution of the
target feature (TSB) is not uniform but normally distributed. The dataset, thus, contains
few instances of extreme TSB values, values that arguably are the most important. Few
extreme values complicate the use of machine learning as it impairs a model’s ability
to learn features related to severe hyperbilirubinemia thoroughly.

Another important dataset limitation to discuss is the distribution of race and eth-
nicity. 121 out of 133 children in the provided dataset are Caucasian (91%), and the
remaining non-Caucasian data is not enough to create general models for all races. It
is therefore natural to redefine the problem and specify that the prediction algorithm is
only to be evaluated on the Caucasian race. To accommodate the new problem defini-
tion; the 12 non-Caucasian children were removed. Unfortunately, the Caucasians-only
restriction inhibits solutions from producing results for the intended target group (sub-
Saharan Africa), a group that sorely needs jaundice detection technologies. However,
seeing that the proposed solutions are all based on machine learning, new models for
other races can quickly be generated if additional data is provided.

5.2.1.1 Metadata and Its Contribution

Preparing the metadata for machine learning algorithms; the neonates’ age and weights
are normalized. The reasoning behind the selected normalization is covered in section
3.1. Not explicitly covered by the results, the experiments revealed that no matter
normalization technique, the weight parameter did not give any increased prediction
accuracy. On the contrary, it functioned more like noise and reduced the prediction
score by a small margin.

We argue that the newborn’s weight would add value if the dataset contained preterm
babies. The treatment chart (Fig. 2.3b) indicates that bilirubin concentration, and by
extension, the threshold for treatment is dependent on body weight. The chart divides
neonates into treatment groups based on their body weight where the intervals between
groups are coarse (0.5 - 1 kg). In the jaundice dataset, all children are within the same
group (body weight > 2500) (Fig. 3.3a), and due to its noisy behavior, the weight
parameter was left out when building the prediction models.

Age, however, did significantly improve the bilirubin prediction, where the loga-
rithmic scaling (between 0-1) was the most appropriate data distribution. The logarith-

88

5.2 Bilirubin Prediction

mic scaling is consistent with the treatment chart and draws an approximated logarith-
mic function similar to the treatment determination line from the chart. The treatment
determination function is linear from t = 0 h to t = 72h and indicates that bilirubin
concentration is heavily dependent on time the first three days after birth, further sup-
ported by the graph in figure 2.3a. The treatment determination function is, however,
flat for any t > 72h, suggesting that age becomes insignificant over time. Since nearly
all data resides within the linear range of the treatment determination function, it is not
surprising that the age parameter is essential to the bilirubin prediction models.

5.2.2 Evaluation of Dräger Performance
Before building any regression model with machine learning techniques, a test set τ
is held out, not to be used until final evaluation. Since the entire jaundice dataset
is so limited in size, holding out 30% of all available data, amounts to a small and
sensitive test set. The test set consist of 37 children, and we worry all results may be
dependent on the seed used to randomly select it. It is, therefore, crucial to verify that
the test data contains both low and high TSB values, so that in broad strokes, all cases
are represented. Inspecting the Bland-Altman plots from the conducted experiments
verifies that the test set contains TSB values from 45 to 370 (treatment starts at TSB =
350).

To support the MobileCam-estimated bilirubin concentration (MCB) measurement
and its reliability, the Dräger JM-103 is used to create a baseline for the test set. Analyz-
ing the MCB measurements against the JM-103 enables a comparison demonstrating
the prediction behavior relative to a state-of-the-art, expensive bilirubinometer com-
monly used as a screening method by modern hospitals. Earlier studies have shown that
the Dräger JM-103 achieves approximately 0.95 correlation on Caucasian neonates.

Evaluating the Dräger JM-103 on the held out test set τ , the results substantiate pre-
vious studies as it achieves a 0.95 correlation. The linear regression plot (Fig. 4.7b),
shows that for small values (below 200 micromol/L) the Dräger JM-103 generates ac-
curate predictions, but that they become less precise in the higher TSB ranges. Not only
are they less precise, but the results reveal a trend where the large values are underesti-
mated. Underestimation of high TSB values is critical as it leaves patients vulnerable to
undetected hyperbilirubinemia. It is important to note that an under-estimated value is
elevated upwards in the Bland-Altman plot. We stress this detail because it is counter-
intuitive (TSB − prediction > 0 =⇒ prediction < TSB).

These observations are further strengthened by the Bland-Altman plot (Fig. 4.8b),
showing four underestimated values, outside the 50µmol/L margin of error1(know as

1The margin of error is a recommended safety margin set by the hospital to make sure all children in the

89

Chapter 5. Discussion

an outlier)2. Underestimating bilirubin concentrations is regarded as a false negative, a
result that is not acceptable within the medical community. The hyperbilirubinemia can
potentially go undetected if no other analyses are made, leaving the neonates untreated
and in the danger zone.

The Bland-Altman plot also shows that the JM-103 bilirubinometer, on average,
underestimates the TSB values with approximately 20µmol/L (bold line). However,
to be fair to the JM-103, the high mean difference is most likely attributed to the four
large outliers, shifting the mean to higher values. Looking at the confidence interval
(the light gray area); the plot shows that the Dräger JM-103 is overall very precise.

5.2.3 Support Vector Regression
Support Vector Machines (SVMs) are widely known for their prediction capabilities on
limited datasets. To get a grasp of the problem complexity the SVR is implemented, a
low-configuration regression tool.

Evaluated on the test set τ , the SVR achieves 0.91 correlation. Considering the low
complexity algorithm behind the prediction; these results are promising, and close to
the Dräger JM-103 (0.95 correlation). Of course, a 0.04 correlation difference cannot
be regarded as negligible, and admittedly the results are not equally good. The linear
regression plot (Fig. 4.7a) shows that, on average, the SVR slightly overestimates
low TSB values (values below 150µmol/L), but that its regression line is close to the
identity line3.

At first glance, having a regression line with the same slope as the identity line
would seem to indicate great predictions. It is, however, important to realize that the re-
sults merely implies that the SVR both over- and under-estimates equally much across
the entire range of bilirubin concentrations. The 95% confidence interval (light-gray
area)(Fig. 4.8a) in the Bland-Altman plot highlights these trends, as the confidence in-
terval is large (i.e., sparse predictions). Comparing the SVR to the JM-103, the Bland-
Altman plot shows that the bilirubinometer has a 20% smaller confidence interval.

The Bland-Altman plot further illustrates that the SVR has two fewer underesti-
mated outliers (predictions outside the margin of error). The underestimated outliers
are false negatives and may lead to sick children going untreated. On the other side
of the spectrum, the SVR has three overestimated outliers (false positives), where the
Dräger JM-103 has none. False positives are, however, much more desirable than false
negatives as it only leads to unnecessary follow-ups for wrongly predicted children
(i.e., more blood samples to analyze).

danger zone is correctly tested
2We define an outlier as a prediction that is 50µmol/L different from the true TSB value
3The identity line is the line defined as y = x, sometimes called the 1:1 line

90

5.2 Bilirubin Prediction

The grid-search, using 5-fold cross-validation, found the RBF kernel to be the best
performing kernel. Being the most complex kernel, one can argue that the required
function to perform bilirubin regression is of an even higher dimensionality than the
RBF kernel can represent.

5.2.4 Fully Connected Neural Networks
Neural networks can approximate close to any function by adding dimensional com-
plexity through deeper networks (i.e., more hidden layers). Seeing that the SVR might
not capture all essential features with the RBF kernel, the next natural step is to use
fully-connected neural networks.

With a 0.92 correlation, the fully-connected neural network achieves close to com-
petitive results compared to the expensive Dräger JM-103 (0.95 correlation). The neu-
ral network only improves by 0.01 correlation to the SVR, which statistically is not
much. However, looking at the standard deviation, and mean difference, the neural
network is arguably significantly more stable. Added to this, with the SVR being based
on a hyperplane, it is uncertain as to how much it will improve if more data becomes
available. We are, however, confident that a neural network will be more flexible and
adapt better to additional data.

Since the inputs are derived from a single RGB vector (one color), the network
has to be shallow. The amount of information between the three color channels is
limited, and a large network will most likely overfit. However, seeing that the input
dimensionality is scaled by extending the RGB vector, a somewhat broad network is
reasonable.

After the grid search, the resulting optimal configuration had two hidden layers;
70 nodes in layer one, and 19 nodes in layer two. The broad architecture allows the
network to find the best relationship between the polynomially extended color values.
Ideally, a good model would only require the three color values (R, G, B) as input
and discover the appropriate RGB-extension (i.e., complexity between the color val-
ues). However, the restrictive dataset does not provide enough data, and this workload
is relieved from the network by explicitly giving it the polynomially extended RBG
vector.

The regression line from the linear regression plot in figure 4.9a shows that the
neural network’s mean prediction is nearly equal to the identity line. As discussed, this
does not necessarily imply accurate predictions but indicates that there are no over- or
underestimation trends. The Bland-Altman plot illustrates that the network only has
one underestimated outlier, just ∼ 10µmol/L outside the margin of error. Compared
to the Dräger JM-103, the neural network is superior in the most critical areas of biliru-
bin concentration. In fact, the neural network predicts three less false negatives than

91

Chapter 5. Discussion

the Drager JM-103 bilirubinometer, a 75% improvement. While 75% improvement is
statistically misleading due to the low prediction count, the neural network arguably
outperforms the bilirubinometer concerning false-negative predictions.

The neural network solution does, however, overestimates TSB in several cases
(i.e., evaluates a patient to be sick, when they, in fact, are not), which corrupts the per-
formance metrics (e.g., correlation, standard deviation). We argue that the overestima-
tion of bilirubin concentration (false positive) is not harmful, merely an inconvenience.
The Bland-Altman plot further shows a decrease in the confidence interval compared
to the SVR (9% less). It is still 12% larger than Dräger JM-103’s confidence interval,
but given more training data, the neural network is likely to achieve better predictions.

5.2.5 Convolutional Neural networks
CNNs are powerful tools to find spatial features and are often used to classify and detect
objects in images. While the skin patches extracted after color correction exhibit little
to no features visible to the human eye, some properties like color relativity within a
neighborhood, or colors running along blood vessels may hold valuable information to
the prediction of bilirubin. As of today, domain experts do not use any spatial features
to visually assert if a patient has jaundice or not. However, this does not mean that the
features do not exist.

The reasoning behind the CNN is to put this idea, to the test. By running small
kernels (e.g., kernel size = 3x3) over the skin patch, the convolution layer looks for
any features that may be hidden in the skin patch. One of the main concerns when
using CNNs without transfer learning is that they require large amounts of data to
properly train. The jaundice dataset, as discussed, does not contain many images,
and the convolutional layers are struggling to train correctly. A dataset consisting of
100x100 images, where all pixels are approximately equal, is not enough information
to train the layers in a CNN.

If the convolution network is able to learn that it can use the kernels to simply
extract the mean RGB values, it should be able to achieve equal results as the feed-
forward fully-connected network. Unfortunately, we have not been successful in con-
figuring the CNN to do so. The results from both the linear regression and Bland-
Altman plot indicate that the network is guessing the two most frequently occurring
TSB values.

5.2.6 Summary
Having analyzed all solutions; the fully-connected network shows promising results.
Although reaching a lower correlation than the costly, state-of-the-art Dräger JM-103,

92

5.3 Project Reflection

the solution predicts fewer values below the margin of error, thereby producing 75%
fewer false negative predictions. This number is, of course, misleading as the number
of predictions are so small, but it does give a general idea of Dräger JM-103’s instability
and the network’s performance in the high TSB ranges.

Looking at the plots, and the correlation of 0.92, the neural network is close to the
Dräger JM-103 and achieves competitive results [RQ 2.1](Can computer vision and
deep learning be used to achieve competitive results to state-of-the-art transcutaneous
bilirubin (TcB) measurement approaches (bilirubinometers)?). However, as with TcB
measurements, the results also suggest that none of the solutions put forth are robust
or accurate enough to replace blood samples (TSB). The machine learning solutions
can, therefore, not serve as a standalone approach to assess neonatal jaundice [RQ
2.3](Can image-based bilirubin prediction serve as a standalone diagnostic tool for
severe hyperbilirubinemia?). Nevertheless, being so close to an apparatus that, as of
today, is widely distributed in modern hospitals, the neural network can function as
an affordable screening method and be a valuable alternative to the transcutaneous
bilirubinometers.

Seeing that the neural network achieves competitive results, even on images with
low quality, it is safe to say that the proposed solution is flexible enough to be used in
outpatient and home environments [RQ 2.2](Given color correction, are image-based
bilirubin prediction models flexible enough to be used in outpatient and home envi-
ronments?). Bilirubinometers are known to perform poorly in the higher ranges of
bilirubin concentration, and it is worrying to see it predict four false negatives on a test
set τ consisting of only 37 children (11%). Being more stable in the critical regions; the
neural network may, in fact, be a better option for detecting severe hyperbilirubinemia.

At this point, no evidence suggests there exist spatial adjacent color features in
human skin that provides any additional information about the underlying bilirubin
concentration [RQ 2.4](Does spatially adjacent color features in human skin provide
additional information about the underlying bilirubin concentration?). However, fail-
ing to train the CNN properly, further testing is required to fully answer this question.

5.3 Project Reflection

In the initial phase of the project, we were not sure as to which machine learning
approach would be best suited for jaundice detection. A common approach in deep
learning is to always build bigger and deeper networks for increased accuracy. How-
ever, with such limited data, we were convinced that simply throwing a state-of-the-art
CNN at the problem would not work. This hypothesis was further strengthened by the
failed training of the small convolutional network used to look for spatially neighboring

93

Chapter 5. Discussion

features.
With 484 images, we had to think outside the box and relieve the learning-based

models of a lot of the learning. An end-to-end approach was quickly disregarded, as
there was not enough data for the model to learn color correction, or even recognize
that the neonate’s skin is the region of interest. We feel like this project has given us
valuable insight when it comes to machine learning and the tools applied to different
problems. Deeper is not always better, and we are happy to see that the small feed-
forward fully-connected network is performing so well.

Looking back at the entire project; color correction became a considerably more
important part the thesis than initially intended. At first, we wanted to find an off-the-
shelf color correction algorithm to correct the color errors in the skin images. However,
seeing that color is the core information for jaundice detection, we had to be certain
that the applied algorithm is robust to varying illuminations and that it can perform
accurate skin color correction. It was very reassuring to conduct the color correction
experiments ourselves and compare the different solutions.

94

Chapter 6
Conclusion and Future Work

The yellow skin discoloration associated with jaundice is attributed to high concentra-
tions of bilirubin, a waste product formed during the break down of oxygen-carrying
components in blood. It is the light absorption properties of bilirubin, absorbing green
and blue light, that causes the skin to be perceived as yellow. Studies show there is
a linear correlation between skin absorbed light and total serum bilirubin (TSB), the
bilirubin concentration measured in blood samples. Skin reflectance measurements
can, therefore, be used to estimate bilirubin concentration, often referred to as transcu-
taneous bilirubin (TcB). TcB measurements are, today, regarded as reliable substitutes
for TSB and are used as non-invasive screening methods by the medical community.
The required apparatus, called bilirubinometer, is, unfortunately, expensive (50 000
NOK) and limits widespread availability.

Using smartphone cameras to capture skin induced color values, we create a low-
cost alternative to bilirubinometers through computer vision and deep learning. The
drastic impact light sources and camera sensors have on images, accentuate the need
for color correction. To create standardized skin images for the prediction of bilirubin,
we present Gaussian process regression (GPR) as a novel approach for color correction.
The results show that the proposed GPR achieves competitive results compared to state-
of-the-art color correction techniques.

The bilirubin predictions from camera captured skin color, MobileCam-estimated
bilirubin concentration (MCB) measurements, show promising results. Building a neu-
ral network-based regression model, we get 0.92 correlation on the held-out test set,
achieving competitive results to the expensive state-of-the-art Dräger JM-103. While

95

Chapter 6. Conclusion and Future Work

lower correlation, the neural network predictions are more accurate in the critical TSB
ranges, resulting in 75% fewer false negatives than the JM-103. Since our solution
requires no equipment other than a smartphone and an inexpensive SkinChecker, it has
large potential for monitoring neonates in outpatient and private settings. A camera-
based approach allows for widespread use, even in low- and middle-income countries,
as smartphones are starting to become a commodity. We conclude that our solution can
be implemented as a mobile application and is an affordable screening alternative to
expensive bilirubinometers.

6.1 Future Work

This thesis provides a foundation for a mobile camera bilirubin prediction framework,
but there is still room for improvement. We divide the discussion of future work into
the following subsections; color correction, bilirubin prediction, and fully automatic
mobile app.

6.1.1 Color Correction
When preparing images for machine learning, the actual resulting color does not mat-
ter. Unless transfer learning is applied, machine learning models, unlike humans, do
not compare colors to their prior belief of how colors should look. Machine learning
algorithms are only concerned about the relative relationship between the colors pre-
sented during training. Therefore, the most crucial part of color correction is to convert
all images to a single standard. It does not matter if there is an error, as long as the error
is equal for all cases. Future color correction will focus on error balance, and accen-
tuate the white-balance in images. Hopefully, emphasis on white-balance will result
in more standardized images and provide robustness to the overall jaundice detection
pipeline.

As mentioned in the root-polynomial color correction (RPCC) discussion section,
the dimensional increments to the RGB-extension vectors are too large. To create a
better root-polynomial framework we will experiment with added internal methods of
lower complexity and see if they improve the root-polynomial color correction frame-
work (RPCCF).

6.1.2 Bilirubin Prediction
For machine learning techniques to create robust, and generalized regression models,
large amounts of data are required. As discussed, the jaundice dataset is limited in size,

96

6.1 Future Work

and the models are most likely far from optimal.
Nevertheless, seeing that the proposed solutions are based on machine learning, the

models only require post-training on additional data to become better. For future work,
the task of collecting more jaundice related data becomes imperative.

Extensive jaundice data collection is already on-going at Akershus University Hos-
pital. As we discovered, cool-white illumination settings (high kelvin) result in lower
color correction errors. Therefore, all continued image capturing related to the gather-
ing of jaundice data will be performed in white light, and the tungsten light bulb (CIE
A) will be avoided.

Unfortunately, the provided jaundice dataset only contains 12 non-Caucasian neonates,
and we cannot infer the MCB correlation for non-Caucasian patients. More data is,
therefore, required to build racially independent prediction models. Luckily, additional
funding has already been granted, and jaundice data collection for non-Caucasians will
commence in Tanzania, Mexico, and Nepal. If a unified prediction model can be cre-
ated, or if ethnicity must be provided as input is yet to be seen.

6.1.3 Convolution Neural Networks
As discussed, we were not able to properly train the convolutional neural network
(CNN). For future work, we would first like to find a better CNN architecture and
improve the results. Secondly, the skin patches used from the raw images do not contain
a lot of information, and we want to look into the possibility of using the entire neonate
torso to train the CNN.

6.1.4 Fully Automatic Mobile App
The research presented in the thesis is mostly theoretical, and all experiments are con-
ducted on computers. For the bilirubin prediction solution to be readily available, all
correction algorithms and regression models must be implemented into a smartphone
application. The application will need to be easy to use, and limit the possibility of user
error. Automatic detection and image capturing of the SkinChecker when the light is
adequate will become an essential feature. A mobile application allows for widespread
availability, where even the average person has the technology to perform robust jaun-
dice screenings.

97

Chapter 6. Conclusion and Future Work

98

Bibliography

Abramowitz, M., Stegun, I. A., 1964. Handbook of mathematical functions: with for-
mulas, graphs, and mathematical tables. Vol. 55. Courier Corporation.

Anderson, M., Motta, R., Chandrasekar, S., Stokes, M., 1996. Proposal for a standard
default color space for the internet—srgb. Color and Imaging Conference 1996 (1),
238–245.

Anderson, R. R., Parrish, J. A., 1981. The optics of human skin. Journal of investigative
dermatology 77 (1), 13–19.

Aster, R. C., Borchers, B., Thurber, C. H., 2011. Parameter estimation and inverse
problems. Vol. 90. Academic Press.

Avery GB, Fletcher MA, M. M., 1994. In: Avery’s neonatology: Pathophysiology and
management of the newborn, 4th Edition. Lippincott Company, pp. 630–725.

Bart, C., Eindhoven, H., 2011. Speed sign detection and recognition by convolutional
neural networks. Proceedings of the 8th International Automotive Congress.

Brito, C. C., 2016. Spectral printing for monitoring jaundice in newborns, internal
article.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27, software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

99

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cheung, V., Westland, S., Connah, D., Ripamonti, C., 1 2004. A comparative study of
the characterisation of colour cameras by means of neural networks and polynomial
transforms. Coloration Technology 120 (1), 19–25.
URL http:https://doi.org/10.1111/j.1478-4408.2004.
tb00201.x

Chollet, F., 2017. Deep Learning with Python, 1st Edition. Manning Publications Co.,
Greenwich, CT, USA.

Cortes, C., Vapnik, V., Sep 1995. Support-vector networks. Machine Learning 20 (3),
273–297.
URL https://doi.org/10.1007/BF00994018

Downing, K. L., 2017. Regularization and Optimization of Backpropagation.
http://www.idi.ntnu.no/emner/it3105/tdt76/lectures/
deep-lecture-3.pdf, [Online; accessed 03-Dec-2017].

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., Vapnik, V., 1996. Support vector
regression machines. In: Proceedings of the 9th International Conference on Neural
Information Processing Systems. NIPS’96. MIT Press, Cambridge, MA, USA, pp.
155–161.
URL http://dl.acm.org/citation.cfm?id=2998981.2999003

El-Beshbishi, S. N., Shattuck, K. E., Mohammad, A. A., Petersen, J. R., 2009. Hyper-
bilirubinemia and transcutaneous bilirubinometry. Clinical Chemistry 55 (7), 1280–
1287.
URL http://clinchem.aaccjnls.org/content/55/7/1280

Finlayson, G. D., Mackiewicz, M., Hurlbert, A., May 2015. Color correction using
root-polynomial regression. IEEE Transactions on Image Processing 24 (5), 1460–
1470.

Ford, A., Roberts, A., 1998. Colour space conversions. Westminster University, Lon-
don 1998, 1–31.

Francesco Raimondi, Lama Silvia, F. L. M. S. A. C. B. R. M. P. M., Capasso, L., 2012.
Measuring transcutaneous bilirubin: a comparative analysis of three devices on a
multiracial population. BMC Pediatrics.
URL https://doi.org/10.1186/1471-2431-12-70

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedfor-
ward neural networks. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. pp. 249–256.

100

http:https://doi.org/10.1111/j.1478-4408.2004.tb00201.x
http:https://doi.org/10.1111/j.1478-4408.2004.tb00201.x
https://doi.org/10.1007/BF00994018
http://www.idi.ntnu.no/emner/it3105/tdt76/lectures/deep-lecture-3.pdf
http://www.idi.ntnu.no/emner/it3105/tdt76/lectures/deep-lecture-3.pdf
http://dl.acm.org/citation.cfm?id=2998981.2999003
http://clinchem.aaccjnls.org/content/55/7/1280
https://doi.org/10.1186/1471-2431-12-70

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, http:
//www.deeplearningbook.org.

Grassmann, H., 1853. Zur theorie der farbenmischung. Annalen der Physik 165 (5),
69–84.

Guowei, H., Ronnier, L. M., A., R. P., 2001. A study of digital camera colorimet-
ric characterization based on polynomial modeling. Color Research & Application
26 (1), 76–84.

HunterLab, 2005. Equivalent white light sources and cie illuminants, applications
note.
URL https://web.archive.org/web/20050523033826/http:
//www.hunterlab.com:80/appnotes/an05_05.pdf

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR abs/1502.03167.
URL http://arxiv.org/abs/1502.03167

K Bhutani, V., Zipursky, A., Blencowe, H., Khanna, R., Sgro, M., Ebbesen, F., Bell, J.,
Mori, R., Slusher, T., Fahmy, N., K Paul, V., Du, L., Okolo, A., de Almeida, M. F.,
Olusanya, B., Kumar, P., Cousens, S., E Lawn, J., 12 2013. Neonatal hyperbiliru-
binemia and rhesus disease of the newborn: incidence and impairment estimates for
2010 at regional and global levels. Pediatric research 74, 86.

Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization. CoRR
abs/1412.6980.
URL http://arxiv.org/abs/1412.6980

Kollias, N., Baqer, A. H., 1987. Absorption mechanisms of human melanin in the
visible, 400–720 nm. Journal of investigative dermatology 89 (4), 384–388.

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep
convolutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1. NIPS’12. Curran Associates
Inc., USA, pp. 1097–1105.
URL http://dl.acm.org/citation.cfm?id=2999134.2999257

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
Jackel, L. D., 1989a. Backpropagation applied to handwritten zip code recognition.
Neural Computation 1 (4), 541–551.
URL https://doi.org/10.1162/neco.1989.1.4.541

101

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://web.archive.org/web/20050523033826/http://www.hunterlab.com:80/appnotes/an05_05.pdf
https://web.archive.org/web/20050523033826/http://www.hunterlab.com:80/appnotes/an05_05.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1162/neco.1989.1.4.541

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
Jackel, L. D., 1989b. Backpropagation applied to handwritten zip code recognition.
Neural Computation 1 (4), 541–551.
URL https://doi.org/10.1162/neco.1989.1.4.541

MacKay, D. J., 1998. Introduction to gaussian processes. NATO ASI Series F Com-
puter and Systems Sciences 168, 133–166.

Maisels, M. J., 2015. Transcutaneous bilirubin measurement: Does it work in the real
world? Pediatrics 135 (2), 364–366.
URL http://pediatrics.aappublications.org/content/135/2/
364

Maisels, M. J., Kring, E., 2006. Transcutaneous bilirubin levels in the first 96 hours in
a normal newborn population of >=35 weeks’ gestation. Pediatrics 117 (4), 1169–
1173.
URL http://pediatrics.aappublications.org/content/117/4/
1169

Maisels, M. J., Ostrea, E. M., Touch, S., Clune, S. E., Cepeda, E., Kring, E., Gracey,
K., Jackson, C., Talbot, D., Huang, R., 2004. Evaluation of a new transcutaneous
bilirubinometer. Pediatrics 113 (6), 1628–1635.
URL http://pediatrics.aappublications.org/content/113/6/
1628

Masuda, Y., Yamashita, T., Hirao, T., Takahashi, M., 2009. An innovative method to
measure skin pigmentation. Skin research and technology 15 (2), 224–229.

McCamy, C. S., Marcus, H., Davidson, J., et al., 1976. A color-rendition chart. J. App.
Photog. Eng 2 (3), 95–99.

McCulloch, W. S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics 5 (4), 115–133.

McDonagh, A. F., Lightner, D. A., 1985. ‘like a shrivelled blood orange’—bilirubin,
jaundice, and phototherapy. Pediatrics 75 (3), 443–455.
URL http://pediatrics.aappublications.org/content/75/3/
443

N, S. R., Deka, P. C., 2014. Support vector machine applications in the field of
hydrology: A review. Applied Soft Computing 19, 372 – 386.
URL http://www.sciencedirect.com/science/article/pii/
S1568494614000611

102

https://doi.org/10.1162/neco.1989.1.4.541
http://pediatrics.aappublications.org/content/135/2/364
http://pediatrics.aappublications.org/content/135/2/364
http://pediatrics.aappublications.org/content/117/4/1169
http://pediatrics.aappublications.org/content/117/4/1169
http://pediatrics.aappublications.org/content/113/6/1628
http://pediatrics.aappublications.org/content/113/6/1628
http://pediatrics.aappublications.org/content/75/3/443
http://pediatrics.aappublications.org/content/75/3/443
http://www.sciencedirect.com/science/article/pii/S1568494614000611
http://www.sciencedirect.com/science/article/pii/S1568494614000611

Nameer Hirschkind, J. P., Khim, J., 2017. Convolutional Neural Network. https://
brilliant.org/wiki/convolutional-neural-network/, [Online;
accessed 03-Dec-2017].

Nishad, P., 2013. Various colour spaces and colour space conversion. International
Journal of Global Research in Computer Science (UGC Approved Journal) 4 (1),
44–48.

Park, J., Park, K., 1995. Professional colour communicator-the definitive colour selec-
tor. Coloration Technology 111 (3), 56–57.

Pascale, D., 2003. A review of rgb color spaces... from xyy to r’g’b’. Babel Color 18,
136–152.

Randeberg, L. L., 2005. Diagnostic applications of diffuse reflectance spectroscopy.
Ph.D. thesis, Norwegian University of Science and Technology.

Rasmussen, C. E., Williams, C. K., 2006. Gaussian process for machine learning. MIT
press.

Richards, F. J., 1959. A flexible growth function for empirical use. Journal of Experi-
mental Botany 10 (29), 290–300.
URL http://www.jstor.org/stable/23686557

Rodgers, J. L., Nicewander, W. A., 1988. Thirteen ways to look at the correlation
coefficient. The American Statistician 42 (1), 59–66.
URL https://doi.org/10.1080/00031305.1988.10475524

Rubaltelli, F. F., Gourley, G. R., Loskamp, N., Modi, N., Roth-Kleiner, M., Sender, A.,
Vert, P., 2001. Transcutaneous bilirubin measurement: A multicenter evaluation of a
new device. Pediatrics 107 (6), 1264–1271.
URL http://pediatrics.aappublications.org/content/107/6/
1264

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., Fei-Fei, L., 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115 (3), 211–252.

Russell, S. J., Norvig, P., 2016. Artificial intelligence: a modern approach. Pearson
Education Limited,.

103

https://brilliant.org/wiki/convolutional-neural-network/
https://brilliant.org/wiki/convolutional-neural-network/
http://www.jstor.org/stable/23686557
https://doi.org/10.1080/00031305.1988.10475524
http://pediatrics.aappublications.org/content/107/6/1264
http://pediatrics.aappublications.org/content/107/6/1264

Sharma, G., 2002. Digital Color Imaging Handbook. CRC Press, Inc., Boca Raton, FL,
USA.

Slusher, T. M., Zipursky, A., Bhutani, V. K., 2011. A global need for affordable
neonatal jaundice technologies. Seminars in Perinatology 35 (3), 185 – 191.
URL http://www.sciencedirect.com/science/article/pii/
S0146000511000437

Taylor, J. A., Stout, J. W., de Greef, L., Goel, M., Patel, S., Chung, E. K., Koduri,
A., McMahon, S., Dickerson, J., Simpson, E. A., Larson, E. C., 2017. Use of a
smartphone app to assess neonatal jaundice. Pediatrics 140 (3).
URL http://pediatrics.aappublications.org/content/140/3/
e20170312

Tenhunen, R., Marver, H. S., Schmid, R., 1969. Microsomal heme oxygenase charac-
terization of the enzyme. Journal of Biological Chemistry 244 (23), 6388–6394.

Wandell, B. A., 1995. Foundations of vision. Sinauer Associates.

Williams, C. K. I., 1997. Prediction with gaussian processes: From linear regression
to linear prediction and beyond. In: Learning and Inference in Graphical Models.
Kluwer, pp. 599–621.

Wyszecki, G., Stiles, W. S., 1982. Color science. Vol. 8. Wiley New York.

Zijlstra, W. G., Buursma, A., van Assendelft, O. W., 2000. Visible and near infrared ab-
sorption spectra of human and animal haemoglobin: determination and application.
VSP.

104

http://www.sciencedirect.com/science/article/pii/S0146000511000437
http://www.sciencedirect.com/science/article/pii/S0146000511000437
http://pediatrics.aappublications.org/content/140/3/e20170312
http://pediatrics.aappublications.org/content/140/3/e20170312

Appendix A
Color Checkers

1A 1B 1C 1D

2A 2B 2C 2D

3A 3B 3C 3D

4A 4B 4C 4D

5A 5B 5C 5D

6A 6B 6C 6D

Table A.1: The SpyderCHECKR 24 with 24 unique colors characterized by different spectral
responses

105

L*a*b* sRGB
Patch Name L* a* b* R G B

1A Card White 96.04 2.16 2.60 249 242 238
2A 20% Gray 80.44 1.17 2.05 202 198 195
3A 40% Gray 65.52 0.69 1.86 161 157 154
4A 60% Gray 49.62 0.58 1.56 122 118 116
5A 80% Gray 33.55 0.35 1.40 80 80 78
6A Card Black 16.91 1.43 -0.81 43 41 43
1B Primary Cyan 47.12 -32.52 -28.75 0 127 159
2B Primary Magenta 50.49 53.45 -13.55 192 75 145
3B Primary Yellow 83.61 3.36 87.02 245 205 0
4B Primary Red 41.05 60.75 31.17 186 26 51
5B Primary Green 54.14 -40.76 34.75 57 146 64
6B Primary Blue 24.75 13.78 -49.48 25 55 135
1C Primary Orange 60.94 38.21 61.31 222 118 32
2C Blueprint 37.80 7.30 -43.04 58 88 159
3C Pink 49.81 48.50 15.76 195 79 95
4C Violet 28.88 19.36 -24.48 83 58 106
5C Apple Green 72.45 -23.57 60.47 157 188 54
6C Sunflower 71.65 23.74 72.28 238 158 25
1C Aqua 70.19 -31.85 1.98 98 187 166
2D Lavender 54.38 8.84 -25.71 126 125 174
3D Evergreen 42.03 -15.78 22.93 82 106 60
4D Steel Blue 48.82 -5.11 -23.08 87 120 155
5D Classic Light Skin 65.10 18.14 18.68 197 145 125
6D Classic Dark Skin 36.13 14.15 15.78 112 76 60

Table A.2: Values from the SpyderCHECKR 241

1https://www.datacolor.com/wp-content/uploads/2018/01/SpyderCheckr_
Color_Data_V2.pdf

106

https://www.datacolor.com/wp-content/uploads/2018/01/SpyderCheckr_Color_Data_V2.pdf
https://www.datacolor.com/wp-content/uploads/2018/01/SpyderCheckr_Color_Data_V2.pdf

1A 1B 1C 1D 1E 1F 1G

2A 2B 2C 2D 2E 2F 2G

3A 3B 3C 3F 3G

4A 4B 4C 4F 4G

5A 5B 5C 5D 5E 5F 5G

6A 6B 6C 6D 6E 6F 6G

Table A.3: The SkinChecker by Picterus AS

107

L*a*b* sRGB
Patch L* a* b* R G B

1A 88.38 1.51 -3.32 221 221 228
2A 70.14 2.72 -0.74 175 169 172
3A 51.97 1.43 0.66 126 123 122
4A 38.53 -0.15 0.93 91 90 89
5A 30.25 -1.12 2.06 70 71 68
6A 26.02 -1.50 0.71 59 62 60
1B 48.32 1.82 1.49 119 113 112
2B 28.82 12.48 13.19 92 60 48
3B 74.93 8.10 45.14 223 177 100
4B 42.03 39.70 31.89 166 67 48
5B 86.81 2.21 3.52 224 215 210
6B 47.62 0.74 1.01 115 112 111
1C 67.77 15.92 20.13 205 153 129
2C 52.60 24.83 47.00 182 107 42
3C 47.52 2.17 1.81 117 111 109
4C 66.73 8.33 40.28 198 155 89
5C 51.02 32.66 35.69 185 97 61
6C 81.35 4.01 5.79 214 199 191
1D 75.98 5.20 26.58 214 182 138
2D 68.04 8.81 63.77 209 157 39
5D 46.63 1.55 1.91 114 109 107
6D 58.96 19.64 44.55 193 127 62
1E 76.70 16.15 22.70 232 177 148
2E 46.84 2.26 2.76 116 109 106
5E 75.25 20.00 13.09 229 171 162
6E 59.69 29.13 18.90 201 123 112
1F 36.42 24.92 17.63 129 68 58
2F 77.67 10.08 49.47 236 182 99
3F 64.09 31.40 6.45 211 133 145
4F 46.33 2.08 3.07 115 108 104
5F 72.85 15.48 70.20 234 165 35
6F 52.44 38.26 16.14 191 96 99
1G 48.53 2.43 2.41 121 113 111
2G 46.97 26.89 23.61 163 92 73
3G 68.04 26.16 12.62 218 147 144
4G 56.56 32.21 55.49 205 110 33
5G 73.81 14.00 64.45 234 169 55
6G 47.21 1.44 3.02 116 110 106

Table A.4: Values from SkinChecker by Picterus AS

108

Appendix B
Viewing Box Dataset Images

109

(a) Noon Daylight
(CIE D65 reproduced illumination)

(b) Tungsten light
(CIE A reproduced illumination)

(c) Fluorescent light
(CIE F11 reproduced illumination)

Figure B.1: Color correction experiment I: SpyderCHECKR 24 dataset.

110

(a) Noon Daylight
(CIE D65 reproduced illumination)

(b) Tungsten light
(CIE A reproduced illumination)

(c) Fluorescent light
(CIE F11 reproduced illumination)

Figure B.2: Color correction experiment II: SpyderCHECKR 24 and SkinChecker dataset.

111

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Project Goals and Research Questions
	Contribution
	Thesis Structure

	Background
	Optical Properties of Human Skin
	Light Absorption
	Human Skin Physiology
	Bilirubin
	Melanin
	Blood

	Jaundice
	Measuring Bilirubin
	Transcutaneous Bilirubin
	BiliCam

	Color & Color Spaces
	XYZ 1931 Color Space
	CIE L*a*b* Color Space
	Standard RGB (sRGB) Color Space
	Delta E Lg
	CIE Illuminant

	Color Checker
	General Color Checkers
	Skin Color Checker

	Color Correction
	Look-Up Tables
	Least-Squares Linear Regression
	Artificial Neural Networks (Color Correction)
	Gaussian Process Regression (Color Correction)

	Machine Learning
	Gaussian Processes
	Support Vector Machine
	Deep Learning & Artificial Neural Networks

	Methods
	Jaundice Dataset
	Color Correction
	Color Correction Framework Solutions
	Gaussian Process Regression Solution
	Color Correction Evaluation Methods
	Experiments

	Bilirubin Prediction
	Data Preprocessing
	Experimental Setup
	Solutions

	Results
	Color Correction
	Experiment I
	Experiment II
	Experiment III

	Bilirubin Prediction
	Support Vector Regression
	Fully Connected Neural Networks
	Convolutional Neural Networks

	Discussion
	Color Correction
	Linear Color Correction (LCC)
	PCC and RPCC Frameworks
	Gaussian Process Regression
	Summary

	Bilirubin Prediction
	Dataset
	Evaluation of Dräger Performance
	Support Vector Regression
	Fully Connected Neural Networks
	Convolutional Neural networks
	Summary

	Project Reflection

	Conclusion and Future Work
	Future Work
	Color Correction
	Bilirubin Prediction
	Convolution Neural Networks
	Fully Automatic Mobile App

	Bibliography
	Appendix Color Checkers
	Appendix Viewing Box Dataset Images

