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Abstract

This thesis investigates the extent of which deep learning methods can be used for au-

tomatic detection of salmon in images. It also investigates the extent of which a module

with deep learning functionality can be integrated into an already existing program.

To solve these tasks, a comparison of state-of-the-art object detectors using convolutional

neural networks is conducted. A dataset consisting of underwater images of salmon is

annotated, then used to train a model based on the YOLOv2 (You Only Look Once

version 2) object detection method. A module using the Darknet software framework is

created for use with the image processing program Dynamic Imager. Finally, the trained

models are evaluated based on their accuracy and speed.

The best performing model achieve an average precision score of 80.2%. Models tested

using a graphical processing unit achieves a prediction time of 0.8 frames per second.

Models tested in Dynamic Imager without access to a graphical processing unit achieve

a prediction time of 0.1 frames per second.
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Chapter 1

Introduction

This chapter will introduce the reader to the the main subject of the thesis and the

reasons for why this work is important. It will also list the thesis’ research questions,

describe its contribution, and describe its structure.

1.1 Deep Learning

Deep learning (DL) is a field of research which has gained a lot of attention the last years.

According to Web of Science, the number of published articles on the subject has grown

rapidly from 3 publications in 2014, to 23, 78, and 71 publications in the following three

years respectively [1]. DL is a subset of machine learning (ML) containing methods that

are able to learn high level abstraction of data using computational models composed of

multiple processing layers [2] [3]. The term deep or depth refers to the number of layers

in a model, and a model is usually referred to as deep if it contains two or more layers

[1]. DL methods can be used to process data such as images, video, audio, speech, and

text, and have successfully been used for problems such as image classification, object

detection, semantic segmentation, image retrieval, human pose estimation, video analy-

sis, and speech recognition [3] [2] [4]. DL methods can be split into the four categories:

convolutional neural networks (CNN), restricted boltzmann machines (RBM), autoen-

coders, and sparse coding [2]. However, CNN methods are the most utilized and most

suitable for processing images [2].

1
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1.2 Motivation

This thesis will explore automatic detection of salmon in images from fish farms, in-

vestigating the generality of object detection using CNNs. The motivation is to help

Trollhetta AS to integrate CNNs to their solutions, and help the fish farm industry to

estimate biomass in farms.

Because DL methods such as CNNs can be used to solve a large variety of problems, it

is important for a company focusing on machine vision and artificial intelligence (AI)

such as Trollhetta, to be able to readily utilize such methods in their work [5]. A CNN

module implemented for one of their image processing programs, Dynamic Imager, will

help them to do so.

Being able to identify and measure salmon in images could help the fish farming indus-

try with estimations of biomass. Estimation of biomass in fish farms is important for

several reasons and bad estimates has consequences throughout the production pipeline

[6]. These consequences include misfeeding and mismedicating the fish, and not being

able to tell whether the amount of fish has surpassed the legal maximum [6]. In a farm

with a yearly production of 900 000 ton, a five percent overestimation of biomass can

lead to a loss of 870 million Norwegian kroner (NOK) per year [6]. While a five per-

cent underestimation of biomass can lead to a loss of 126 million NOK per year [6].

Mismedication of the fish could also result in the development of vaccine resistance in

lice [6].

1.3 Research Questions

The goals of this thesis is to achieve automatic detection of salmon in images from

fish farms using DL, and to implement a module capable of this task into the program

Dynamic Imager. Sub-questions were created for each of the main research questions to

be able to easier answer these. The research questions are the following:

RQ 1: To what extent can deep learning methods be used to detect salmon in images?

(a) Which deep learning methods are suitable for detecting salmon in images?

(b) How accurate are these deep learning methods?
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(c) How fast are these deep learning methods?

RQ 2: To what extent can a deep learning module be integrated into an existing

program?

(a) Which software frameworks and libraries are suitable for implementing such

a module for DynamicImager?

(b) How accurate is such a module integrated into DynamicImager?

(c) How fast is such a module integrated into DynamicImager?

1.4 Contribution

This thesis provides the following contributions:

• Evaluations of state of the art CNN object detectors;

• Annotations of a dataset containing 632 images of salmon;

• Examples and results of high performing YOLOv2 models;

• Implementation of a DL module for Dynamic Imager, capable of testing images,

training models, and validating models.

1.5 Thesis Structure

This thesis is structured into six parts as recommended by NTNU Centre for Academic

and Professional Communication (SEKOM). The introduction chapter contains an in-

troduction to the field of study, and the details surrounding the project and thesis. The

background chapter contains descriptions to the various research, topics, and terms used

in the thesis. The method chapter contains the details about the literature review con-

ducted, and how the various project tasks were performed. The results chapter contains

project results and their explanations. The discussion chapter contains my thoughts

about the results and their ability to answer the research questions. And finally the

conclusion chapter contains the answers to the research questions, thoughts about the

importance of the work, and ideas for further work.



Chapter 2

Background

This chapter will introduce the reader to the research used to answer the research ques-

tions. It will also explain why these studies are relevant for this thesis. This chapter

will aim to only discuss theory which is utilized in later chapters.

2.1 Artificial Neural Networks

A CNN is a type of a artificial neural network (ANN). ANNs are a DL method that is

inspired by the biological neural networks in the brains of animals [7]. ANNs consists

of a network of neurons connected together with adjustable weights [8]. Each neuron

is also connected to a bias weight [8]. The neurons are divided into layers. The first

layer of neurons is called the input layer, the last layer is called the output layer, and

the layers in between are called hidden layers [9]. The neurons in these layers connected

together in order from input layer to output layer.

2.1.1 Types of Learning

ML can be divided into supervised and unsupervised learning [9]. In supervised learning,

a model is trained to find structure in data using additional information about the

data [9]. This information is in the form of a training set with input/output pairs

(labeled data), or in the form of a performance function in reinforcement learning [9]

4
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[7]. In unsupervised learning, a model is trained to find structure in data without using

additional information about the data [9].

There are two kinds of supervised learning problems using labeled data, classification

and regression [8]. In classification problems, the goal is to classify the input as correct

class out of a finite set of classes [8]. In regression problems, the goal is to approximate

the correct continuous value based on the input [8]. To reach these goals, a model is

trained for its task. Training a ANN model consists of giving the model an input from

the training set, calculating the output, measuring the error of the output based on the

correct output, and finally adjusting the weights [8].

2.1.2 Activation Functions

y = f(
n∑

i=1

wixi + b) (2.1)

When a neuron receives a set of inputs, it can calculate its output based on an acti-

vation function [8]. In equation 2.1, y represents the output of a neuron, f represents

the activation function, n represents the number of iterations, i represents the current

iteration, wi represents the current weight, xi represents the current input signal, and b

represents the bias [8]. This allows the ANN to calculate (propagate) the values from

the neurons in the input layer, through the hidden layers, to the output layer. An

activation function defines the output of a neuron given a set of inputs, and could be

compared to a switch turning on or off [10]. Linear activation functions can be used,

but non-linear activation functions are required to be able to learn non-convex struc-

tures [10]. Activation functions can also make sure that neuron output values are in

specific ranges [9]. Examples of activation functions include the sigmoid function, the

hyperbolic tangent (tanh) function, the rectified linear unit (ReLU), the leaky ReLU,

and the softmax function [8] [10] [11]. Equation 2.2 shows the sigmoid function with

range is (0, 1) [12] [8]. Equation 2.3 shows the tanh function with range is (−1, 1) [8].

Equation 2.4 shows the ReLU function with range is [0, inf) [8]. Equation 2.5 shows the

leaky ReLU function with range (− inf, inf), a is a positive number lower than one [10].

Using the softmax function on a layer returns the categorical probability distribution

[11]. It has a range of (0, 1) and the total sum of the neurons in the layer is set to one

[11]. The ReLU function is the most used activation function in ANNs [7].
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f(x) =
1

1 + e−x
(2.2)

f(x) =
2

1 + e2x
− 1 (2.3)

f(x) = max(x, 0) (2.4)

f(x) = max(ax, x) (2.5)

2.1.3 Loss Functions

A loss function is used to measure the error of an output (prediction) based on the correct

label [9]. The goal of training is to minimize this error, and it is often normalized to

a score between 0 and 1 [8] [10]. The most commonly used loss functions are the cross

entropy function and mean squared error function (MSE) for classification and regression

problems, respectively [10]. Equation 2.6 shows the cross entropy function. W represents

a weight matrix, N represents the number of training examples, i represents the current

training example, ti represents the correct values for training example i, and yi represents

the output values for i [13] [10]. Equation 2.7 shows the MSE function [10]. Its notation

is similar to equation 2.6. ||ti − yi|| represents the magnitude of the matrix ti − yi [10].

E(W ) = − 1

N

N∑
i=1

ti log yi + (1− ti) log(1− yi)) (2.6)

E(W ) =
1

N

N∑
i=1

||ti − yi||2 (2.7)

2.1.4 Optimization Algorithms

To adjust the weights, different optimization algorithms such as stochastic gradient de-

scent (SGD), RMSProp, Adamax, or Adam are utilized [7] [14] [15]. If the network has



Chapter 2 - Theory 7

more than two layers, a method called backpropagation is also used [10]. Backpropa-

gation calculates partial derivatives (gradients) of the loss function with respect to the

neurons in the network [8]. The values are calculated layerwise from the output layer

backwards through the hidden layers. Optimization algorithms use these gradients to

decide how much the neurons weights should change. The gradients can be multiplied

with a learning rate to control the rate of change in the weights [10]. The weights in the

earlier layers takes more time to train than the weights in the late layers because of the

vanishing gradient problem [12]. The vanishing gradient problem describes the effect of

the gradients decreasing in size as they are backpropagated [12]. Smaller gradients lead

to smaller changes in the weights.

2.1.5 Training

During the training of a model, the same training data is often passed through the

network several times [8]. For every time the model has trained on the entire training

set, an epoch is completed [8]. These epochs are usually split into batches, and weights

are adjusted after each batch [8]. However, the model can become overfit if it trains too

much on the training data [8]. Overfitting is when the model learns something that was

specific to the training data, but which is not a trend in other data [9]. When a model

is overfit it will perform very well on the training data, but it is not able to generalize

[9].

2.2 Convolutional Neural Networks

CNN assumes that its inputs are images [15]. Instead of processing the input pixel

by pixel, it processes the image using two dimensional patches of the image [15]. Two

problems CNNs can be created and trained to solve are image classification and object

detection. In image classification, the goal is to identify one or more objects in an image

[9]. In object detection, the goal is to identify and also locate the objects in an image [9].

Locations are usually represented using axis aligned bounding boxes, which are simply

rectangles containing the object [9]. The labels in a object detection training set consists

of bounding boxes called ground truth boxes [9]. The location of an object in an image

is usually represented as four numbers, and can be posed as a regression problem [16].
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There are three main kinds of layers in CNNs: convolutional layers, pooling layers, and

fully connected layers [8].

2.2.1 Convolutional Layers

Convolutional layers are composed of multiple two dimensional arrays of neurons called

feature maps, and are connected through multiple two dimensional patches of weights

called filters or kernels [8] [7]. It is called convolutional because it uses a form of math-

ematical convolution instead of matrix multiplication to calculate its output [7]. In

equation 2.8, s is the convoluted function of t, and x and w are functions [17]. The

asterix between x and w does not represent multiplication nor dot product. Equation

2.9 is a discrete convolution with steps from negative infinity to positive infinity [17].

Equation 2.10 is a two-dimensional discrete convolution with steps from (0,0) to (m,n)

[17]. Here, (i, j) represents coordinates in the output feature map S, (i−m, j − n) rep-

resents the coordinates in input I, and (m,n) represents the coordinates in the kernel K

[17]. However, many convolutional neural network libraries uses a function called cross-

correlation rather than a convolution [17]. Equation 2.11 is a two-dimensional discrete

cross-correlation with steps from (0,0) to (m,n) [17]. One of the reason convolutional

layers perform well is because of sparse connectivity [7] [18]. Sparse connectivity means

that not every neuron in two neighbouring layers are connected [7] [18]. This results in

a lower amount of operations to compute [7] [18]. In a convolutional layer, the kernel

is shared for every input image from the previous layers [7]. Because the kernels are

smaller than the input images, this reduces the amount of weights in the network [7].

A network with fewer weights requires less memory to store, and is less likely to be

overfitted [7] [10].

s(t) = (x ∗ w)(t) (2.8)

s(t) = (x ∗ w)(t) =

∞∑
a=−∞

x(a)w(t− a) (2.9)

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.10)
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S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i + m, j + n)K(m,n) (2.11)

2.2.2 Pooling and Fully Connected Layers

Pooling layers are used to reduce the size of the feature maps, which also reduces the

number of parameters in a network [8]. The most common pooling method is maxpooling

using a kernel with size 2x2 and a stride of two [8]. The stride refers to the distance

between each utilized patch in the input image. Maxpooling outputs the maximum value

in each patch [9]. In fully connected layers, every input neuron is connected to every

output neuron [8]. A common way to organize the layers in a CNN is to use a couple

of convoluational layers followed by a pooling layer, then repeat this pattern until the

feature maps are quite small [10]. In the final layers it is common to use fully connected

layers [10]. In the early layers of a CNN, features such as edges and corners are detected

[7] [3]. Then, for each layer in the network the representations are more abstracted [7]

[3]. In the later layers more specific patterns can be detected [7] [3].

2.2.3 Measuring Performance

Precision =
True positives

Number of ground truth boxes
(2.12)

Recall =
True positives

True positives + False positives
(2.13)

IoU =
Area of intersect between prediction and label

Area of union between prediction and label
(2.14)

To measure the accuracy of a object detection system, it is common to use average pre-

cision (AP) [9]. AP is calculated using a precision score and a recall score [9]. Precision

represents how correct the predictions are, and recall represents how many of the ground

truth boxes were included in the output [9]. These two scores can be calculated using

the number of true positives, false positives, and the number ground truth boxes from

a prediction and label of an image [9]. Equation 2.12 shows how to calculate precision

[9]. Equation 2.13 shows how to calculate recall [9]. True positives are often defined as
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a bounding box having an intersection over union (IoU) of 0.5 or larger with a ground

truth box of the same class [9] [19]. Equation 2.14 shows how to calculate IoU [20]. Each

prediction also has a confidence score [9]. By adjusting the threshold of the minimum

amount of confidence a predicted box must have to be included in the output, it is pos-

sible to calibrate the balance between having a high precision and a high recall [9]. The

precision-recall curve is the plot of average precision at every value of recall [21]. This

plot can be approximated using the values of precision and recall at every confidence

threshold between zero and one [21]. AP is defined as the area under the precision-recall

curve [21]. Equation 2.15 is the definition of AP [21]. p(r) represents precision p at a

given recall value r [21]. Equation 2.16 shows the approximated AP [21]. k represents

a set of confidence threshold values, p(k) represents precision p at a given confidence

value k, and ∆r(k) represents the change in recall r at a given confidence value k [21].

Some authors uses the interpolated average precision instead [21]. The interpolated AP

doesn’t use the precision at each confidence threshold, but instead uses the maximum

precision found with the same recall for each confidence threshold [21].

AP =

∫ 1

0
p(r)dr (2.15)

AP ≈
∑
k

p(k)∆r(k) (2.16)

2.3 ANN Design Patterns

These are some of the frequently discussed ANN design patterns from my literature

review. They are relevant because of their use in CNN methods.

2.3.1 Momentum

Momentum helps the optimization algorithm to not get stuck in a sub optimal minima

[10]. It is a value set between zero and one, and it controls how much the weights should

consider their last adjustment when updating [10]. If the momentum is set to zero, the

update in weights is only dependant on the gradient of the loss function [10]. If the
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momentum is set to one, the update in weights is only dependant on the last weight

adjustment [10]. A commonly used momentum value is 0.9 [10] [22] [23] [24].

2.3.2 Learning Rate Annealing

Learning rate annealing helps the optimization algorithm to reach minimas [25]. If the

learning rate is too large the optimization algorithm might fluctuate near a minima

without being able to reach it [25]. Therefore, it is generally a good practice to reduce

the learning rate over time [25]. This can be done by slowly lowering the learning rate

after each weight update, which is called exponential annealing [25]. It can also be done

by updating the learning rate by a large amount after a set amount of weight updates,

this is called step learning annealing [25].

2.3.3 Weight Decay

Weight decay can help the model to generalize better and avoid overfitting [10]. Weight

decay decreases the weights over time [10]. The decrease is proportional to the weights,

therefore, large weights are decreased more than small weights [10]. This forces the

network to find a solution using small weights [10]. L2 regularization is a weight decay

method. It adds an additional term to the loss function [25]. The term is a set fraction

of the sum of the weights squared [25]. This causes larger weights to have larger errors

which leads to smaller weights [25]. Weight decay factors ranging from 0.0005 to 0.002

are the most common [10] [22] [23].

2.3.4 Dropout

Dropout can also help the model generalize better and avoid overfitting [9]. Dropout

works by dropping random neurons and all their connections during a training step [9].

The weights in these connections are not updated during the training step [10]. Neurons

that can be affected by dropout are usually placed in a type of layer called a dropout

layer [25]. The neurons are dropped with a probability of 1 − p, where p is a number

between zero and one [10].
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2.3.5 Batch Normalization

Batch normalization helps speed up the training process by normalizing the inputs to

a network layer [10]. This solves the internal covariate shift problem [10]. The internal

covariate shift problem describes an issue with value distribution in network layers [10].

When the weights in one layer changes, it also changes the distribution of values in the

next layer [10]. This shifts all the values in the network, reducing the difference between

the weights which slows down training [10].

2.3.6 Transfer Learning

Transfer learning is a commonly used design method to mitigate the effects of too few

training images or the lack of processing power [15] [26] [27]. It works by reusing weight

configuration from a pre-trained network in a new network [15] [26] [27]. Transfer learn-

ing works because the early layers of a CNN typically learns basic features such as edges

and corners, which many objects have in common [15] [28]. There are two types of trans-

fer learning [15] [29]. With frozen layers, the imported weights do not change during

further training, but with fine tuning, the imported weights are further trained [15] [29].

2.3.7 Data Augmentation

Data augmentation is used to avoid overfitting by increasing the size of the training set

[10]. It does this by adding modified versions of the training set images to the training

set. Ways to modify an image include: scaling the image, shifting the image, stretching

the image, flipping the image, cropping the image, changing brightness, changing color

saturation, changing color hue, changing the colors, and adding noise [14] [9] [10].

2.3.8 Dataset Splitting

Dataset splitting is used to increase the testability of a model [15] [30]. It is essential to

test the model on data it has not seen during training, therefore the dataset is often split

[9]. It is common to split the data into either a training set and a test set, or a training

set, a test set, and a validation set [15] [30] [8]. The training set is used for training,

the validation set is used for model comparison, and the test set is used for evaluating
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the model [15] [30]. If a validation set is included, it is common to use a distribution of

60% data in the training set, 20% data in the validation set, and 20% data in the test

set [15]. Otherwise, it is common to use distributions of 90%, 80%, or 70% data in the

training set, and 10%, 20%, or 30% data in the test set, respectively [8]. By tracking the

accuracy of these datasets during training, it is possible to determine when the model

has reached peak performance [8]. If the training set error is decreasing over time, while

the validation or test set error is not, the model is overfit to the training set [15] [30].

2.4 CNN Datasets

These are some of the frequently discussed datasets from my literature review. They

are relevant because of their ability to benchmark solutions.

2.4.1 MNIST

MNIST is a dataset of handwritten digits with dimensions 28x28 pixels [31] [32]. It has

60 000 training examples and 10 000 testing examples [31] [32]. The dataset is labeled

with the correct digits for each image, thus it is a classification problem. The MNIST

website has a list of example solutions and their test error scores [32]. The example

solution with the lowest error is a CNN with and error of 0.23% [32].

2.4.2 COCO

Common Objects in Context (COCO) is a dataset with images labeled for several com-

puter vision problems [33]. The COCO object detection dataset has over 200 000 images

with 80 different classes [34] [35]. They include 80 000 training images, 40 000 validation

images, and 80 000 testing images [34] [35]. The COCO website hosts a leaderboard

with the most successful solutions to their computer vision challenges [36]. The top

rated object detection solution from the 2017 COCO challenge has an AP of 0.526 [36].
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2.4.3 PASCAL VOC

The Pattern Analysis, Statistical Modelling and Computational Learning Visual Object

Classes (PASCAL VOC) is a computer vision challenge that ran from 2005 to 2012 [37]

[9] [19]. The datasets from the challenges in 2007, 2010, and 2012 are still being used

to benchmark object detection solutions [9] [19]. The datasets from these challenges

can be combined to form a dataset of 27 090 images with 20 different classes [9] [19].

The PASCAL VOC website hosts a leaderboard with the most successful solutions to

their challenges [38]. This leaderboard is split into solutions that has only trained on

the PASCAL VOC training data, and solutions that has pre-trained on additional data

[38]. The top rated object detection solution from the 2012 PASCAL VOC challenge

has 74.1% mean AP (MAP) and 88.8% MAP, for solutions only trained on PASCAL

VOC data and solutions pre-trained on additional data, respectively [38]. The MAP

represents the mean of the APs of every type of object (class).

2.4.4 ImageNet

ImageNet is a dataset that has more than 14 million images covering more than 20

000 classes [39]. There are over a million images with object detection labels [39]. Ima-

geNet hosts a yearly computer vision challenge called the Large Scale Visual Recognition

Challenge (ILSVRC) [40]. Their website hosts a leaderboard with the most success-

ful solutions to their challenges [41]. This leaderboard is split into solutions that has

only trained the ImageNet training data, and solutions that has pre-trained on addi-

tional data [41]. The top performing object detection solutions for ILSVRC 2017 have

0.732227 MAP and 0.731613 MAP, for solutions only trained on ImageNet training data

and solutions pre-trained on additional data, respectively [41].

2.5 CNN Classification Methods

These are some of the frequently discussed CNN classification methods from my lit-

erature review. They are relevant because of their ability identify and locate objects

in images. Although classification methods cannot be used for object detection, their

network structures may be reused in object detection methods.
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2.5.1 AlexNet

AlexNet is a CNN method that won the classification and the localization challenge in

the ILSVRC 2012 [42]. The network has 60 million parameters and 650 000 neurons

[22]. AlexNet uses convolutional, maxpooling, and fully connected layers [22]. It uses

ReLU activations and the SGD optimization algorithm with a batch size of 128 [22].

AlexNet implements several design patterns, such as: momentum of 0.9, step learning

annealing starting at 0.01 and reduced three times, weight decay of 0.0005, dropout

layers with p = 0.5, and data augmentation including cropping, flipping, and changing

color intensity [22]. The model was trained for five to six days on a Nvidia GTX 580 3GB

graphical processing unit (GPU) [22]. Table 2.1 shows the AlexNet layer architecture.

The number next to the network name is the depth of the network [22] [30] [43]. The

number before the layer names is short for several layers of the same type in sequence.

The number next to the layer names is the size of the kernels in that layer. The numbers

following the layer names are the size and dimension of the output of that layer. Code

is available at https://code.google.com/archive/p/cuda-convnet/ [22].

AlexNet-8

input 227x227x3

conv-11 55x55x96

maxpool-3 27x27x96

conv-5 27x27x256

maxpool-3 13x13x256

2 x conv-3 13x13x384

conv-3 13x13x256

maxpool-3 6x6x256

2 x fully connected 4096

fully connected 1000

softmax

Table 2.1: AlexNet

2.5.2 VGGNet

VGGNet is a CNN method that won the localization challenge and came in second on

the classification challenge for solutions only trained on provided training data in the

ILSVRC 2014 [44]. The two most commonly used versions of VGGNet are the VGG-

16 and VGG-19 networks [12]. The VGG-16 architecture has 138 million parameters

and the VGG-19 architecture has 144 million parameters [45]. It uses convolutional,

https://code.google.com/archive/p/cuda-convnet/


Chapter 2 - Theory 16

maxpooling, and fully connected layers, but it is also popularly used without its fully

connected layers [45] [12]. Without its fully connected layers it only has about 15

million parameters [12]. VGGNet uses ReLU activations and the SGD optimization

algorithm with a batch size of 256 [45]. It implements several design patterns, such

as: momentum of 0.9, step learning annealing starting at 0.01 and reduced three times,

weight decay of 0.0005, dropout layers with p = 0.5, and data augmentation including

cropping, rescaling, flipping, and color shifting [45]. The model was trained for 370

000 iterations [45]. Table 2.2 shows the VGGNet layer architectures [45] [46]. The

notation is similar to table 2.1. Weights and layer configurations are available at http:

//www.robots.ox.ac.uk/~vgg/research/very_deep/ [45].

VGG-16 VGG-19

input 224x224x3 input 224x224x3

2 x conv-3 224x224x64 2 x conv-3 224x224x64

maxpool-2 112x112x128 maxpool-2 112x112x128

2 x conv-3 112x112x128 2 x conv-3 112x112x128

maxpool-2 56x56x256 maxpool-2 56x56x256

3 x conv-3 56x56x256 4 x conv-3 56x56x256

maxpool-2 28x28x512 maxpool-2 28x28x512

3 x conv-3 28x28x512 4 x conv-3 28x28x512

maxpool-2 14x14x512 maxpool-2 14x14x512

3 x conv-3 14x14x512 4 x conv-3 14x14x512

maxpool-2 7x7x512 maxpool-2 7x7x512

2 x fully connected 4096 2 x fully connected 4096

fully connected 1000 fully connected 1000

softmax softmax

Table 2.2: VGGNet

2.5.3 GoogLeNet

GoogLeNet is a CNN method that won the object detection challenge for solutions

pre-trained on additional data in the ILSVRC 2014 [44]. It also won the classification

challenge and came in second on the localization challenge for solutions only trained

on provided training data in the ILSVRC 2014 [44]. GoogLeNet has been improved

since and the newest version is called Inception v4 [12]. GoogLenet has about 6.8

million parameters, and it uses convolutional, maxpooling, averagepooling, and fully

connected layers [23]. In addition, GoogLeNet uses a layer module called an inception

module [23]. The inception module runs the same input through four separate pipelines

before joining their inputs [23]. Table 2.3 shows the inception module layer architecture

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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[23]. GoogLeNet uses ReLU activations and a SGD variant called asynchronous SGD

[23]. It implements several design patterns such as: momentum of 0.9, step learning

annealing decreasing with 4% every eight epoch, a dropout layer with p = 0.7, and

data augmentation including cropping, flipping, and resizing [23]. Table 2.4 shows the

GoogLeNet layer architecture [23]. The notation is similar to table 2.1.

Inception Module

input

↓ ↓ ↓ ↓
conv-1 conv-1 conv-1 maxpool-3

↓ ↓ ↓ ↓
↓ conv-3 conv-5 conv-1
↓ ↓ ↓ ↓

filter concatenation

Table 2.3: Inception Module

GoogLeNet-22

input 224x224x3

conv-7 112x112x64

maxpool-3 56x56x64

conv-3 56x56x192

maxpool-3 28x28x192

inception 28x28x256

inception 28x28x480

maxpool-3 14x14x480

3 x inception 14x14x512

inception 14x14x528

inception 14x14x832

maxpool-3 7x7x832

inception 7x7x832

inception 7x7x1024

averagepool 1x1x1024

fully connected 1000

softmax

Table 2.4: GoogLeNet

2.5.4 ResNet

ResNet is a CNN method that won the classification challenge using only provided

training data in the ILSVRC 2015 [47]. Together with a method called R-CNN it

also won the object detection and localization challenge using only provided training

data in the ILSVRC 2015, and the object detection challenge in COCO 2015 [47] [36].
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ResNet uses a shortcut connection between layers which enables backpropagation to be

calculated more efficiently [14]. This allows the ResNet to be very deep and still very fast

[14]. ResNet created five networks using depth of 18, 50, 101, and 152 layers [48]. Very

roughly, these networks have 35, 35, 35, 65, and 65 million parameters respectively [49].

ResNet uses convolutional, maxpooling, averagepooling, and fully connected layers [48].

ResNet uses ReLU activations and the SGD optimization algorithm with a batch size of

256 [48]. It implements several design patters such as: momentum of 0.9, step learning

annealing starting at 0.1 and reduced by a factor of ten every time the rate of change

in error stagnates, weight decay of 0.0001, batch normalization, and data augmentation

including cropping, rescaling, and color changes [48]. Their model was trained for 600

000 iterations [48]. Table 2.6 shows ResNet 18, 34, and 50, while table 2.7 shows ResNet

101 and 152 [48] [50]. The notation is similar to table 2.1.

ResNet-18 ResNet-34 ResNet-50

input 224x224x3 input 224x224x3 input 224x224x3

conv-7 112x112x64 conv-7 112x112x64 conv-7 112x112x64

maxpool-3 56x56x64 maxpool-3 56x56x64 maxpool-3 56x56x64

4 x conv-3 56x56x64 6 x conv-3 56x56x64 3 x

conv-1 56x56x64
conv-3 56x56x64
conv-1 56x56x256


4 x conv-3 28x28x384 8 x conv-3 28x28x128 4 x

conv-1 28x28x128
conv-3 28x28x128
conv-1 28x28x512


4 x conv-3 14x14x256 12 x conv-3 14x14x256 6 x

conv-1 14x14x256
conv-3 14x14x256
conv-1 14x14x1024


4 x conv-3 7x7x512 6 x conv-3 7x7x512 3 x

conv-1 7x7x512
conv-3 7x7x512
conv-1 7x7x2048


averagepool 1x1x512 averagepool 1x1x512 averagepool 1x1x2048

fully connected 1000 fully connected 1000 fully connected 1000

softmax softmax softmax

Table 2.5: ResNet 18, 34, and 50

2.6 CNN Detection Methods

These are some of the frequently discussed CNN detection methods from my literature

review. They are relevant because of their ability identify and locate objects in images.
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ResNet-101 ResNet-152

input 224x224x3 input 224x224x3

conv-7 112x112x64 conv-7 112x112x64

maxpool-3 56x56x64 maxpool-3 56x56x64

3 x

conv1 56x56x64
conv3 56x56x64
conv1 56x56x256

 3 x

conv1 56x56x64
conv3 56x56x64
conv1 56x56x256


4 x

conv1 28x28x128
conv3 28x28x128
conv1 28x28x512

 8 x

conv1 28x28x128
conv3 28x28x128
conv1 28x28x512


23 x

conv1 14x14x256
conv3 14x14x256
conv1 14x14x1024

 36 x

conv1 14x14x256
conv3 14x14x256
conv1 14x14x1024


3 x

conv1 7x7x512
conv3 7x7x512
conv1 7x7x2048

 3 x

conv1 7x7x512
conv3 7x7x512
conv1 7x7x2048


averagepool 1x1x2048 averagepool 1x1x2048

fully connected 1000 fully connected 1000

softmax softmax

Table 2.6: ResNet 101 and 152

2.6.1 Faster R-CNN

Faster R-CNN is a CNN method that has been a part of solutions winning many com-

puter vision challenges between 2015 and 2017. Such methods won the object detection

with and without additional training data in the ILSVRC 2015 and ILSVRC 2016 [47]

[51]. They also won the object detection challenge in COCO 2015 and COCO 2016 [36].

In addition, the third highest ranking solution in the PASCAL VOC 2012 object detec-

tion challenge also uses a Faster R-CNN variant [38]. Faster R-CNN uses a modified

version of the VGG-16 network [52]. It uses the network to find about 2000 regional

proposals which are run through separate sub networks trained for classification and

bounding box regression [9] [52] [53]. The region proposals are found using kernels of

different sizes (anchors) often shaped as rectangles [52]. Faster R-CNN uses SGD with

a batch size of 256, and implements several design patterns such as: momentum of 0.9,

step learning annealing starting at 0.001 and dropping to 0.0001 after 60 000 batches,

weight decay of 0.0005, transfer learning with a model pre-trained on imagenet, and

data augmentation including rescaling [52]. Faster R-CNN also uses non-maximum sup-

pression (NMS) to choose only one of several bounding boxes when there are bounding

boxes with a large overlap from the same class [12] [52]. The method has a test run

time of 0.2 seconds per image, or 5 frames per second (FPS) [52]. Code is available
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for Python and Matlab at https://github.com/rbgirshick/py-faster-rcnn, and

https://github.com/shaoqingren/faster_rcnn respectively [52].

2.6.2 SSD

The single shot multibox detector (SSD) is a CNN method that uses a modified version

of the VGG-16 network [54]. The network does not include fully connected layers, and

does instead have a pipeline of convolutional layers each outputting prediction scores

at the end of the VGGNet [12] [54]. It uses this network to find a fixed size collection

of predictions per image which it runs regression on [54]. The prediction boxes are

found using kernels of different sizes (default boxes) often shaped as rectangles [54].

SSD uses SGD with a batch size of 32, and implements several design patterns such

as: momentum of 0.9, step learning annealing, weight decay of 0.0005, transfer learning

with a model pre-trained on imagenet, NMS, and data augmentation including cropping,

rescaling, flipping, and distortions [54]. The method has different step learning annealing

parameters and training time depending on the task, and uses batch normalization in

some cases [54]. SSD also uses hard negative mining, which removes some of the negative

training examples / prediction boxes during training [54]. This is done to adjust the ratio

between positive and negative training examples [54]. SSD has two versions, SSD300

uses input images with dimensions 300x300 pixels, and SSD512 uses input images with

dimensions 512x512 pixels [54]. SSD300 reaches 59 FPS while SSD512 reaches 22 FPS

[54]. Code is available at https://github.com/weiliu89/caffe/tree/ssd [54].

2.6.3 R-FCN

Region-based fully connected network (R-FCN) is a CNN method used in the solutions

that has first and third place in the object detection challenge using additional training

data in PASCAL VOC 2012 [55]. It uses a modified version of ResNet-101, without

the last averagepool and fully connected layer [55]. It uses the network to find regional

proposals which it runs classification and bounding box regression on [55] [53]. R-FCN

is fully convolutional and shares all its layers with the entire image instead of using sub

networks [55]. The method uses a batch size of 8, and implements several design patterns

such as: momentum of 0.9, step learning annealing starting at 0.001 and dropping to

0.0001 after 20 000 batches, transfer learning with a model pre-trained on imagenet, and

https://github.com/rbgirshick/ py-faster-rcnn
https://github.com/shaoqingren/faster_rcnn
https://github.com/weiliu89/caffe/tree/ssd
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NMS with a threshold of 0.3 IoU [55]. R-FCN has a test run time of 170 milliseconds per

image, or 5.9 FPS [55]. Code is available at https://github.com/daijifeng001/r-fcn

[55].

2.6.4 YOLOv2

You only look once version two (YOLOv2) is a CNN method that uses its own network

architecture called Darknet-19 [56]. Darknet has about 21 million parameters and uses

convolutional and maxpool layers [56]. It uses the network to find a fixes size collection

of predictions per image which it runs regression on [56]. The prediction boxes are found

using kernels of different sizes (anchors) [56]. In YOLOv2, the anchor shapes are based

on a k-means clustering algorithm run on the ground truth boxes from the training

set [56]. The method implements several design patterns such as: momentum of 0.9,

step learning annealing starting at 0.001 and reduced by a factor of 10 after 60 and 90

epochs, weight decay of 0.0005, batch normalization, and data augmentation including

cropping and color shifting [56]. YOLOv2 also uses multi-scale training in which it

rescales images during training to make the model more robust to different resolutions

[56]. The authors train the model for 160 epochs [56]. YOLOv2 has several versions using

different input image dimensions, which include 288x288, 352x352, 416x416, 480x480,

and 544x544 pixels [56]. These models reaches 91, 81, 67, 59, and 40 FPS, respectively

[56]. Table 2.7 shows the Darknet-19 224 layer architecture [56]. When this model is

used for classification or regression, a couple of task specific layers are appended to the

end of the architecture [56]. The notation is similar to table 2.1. Code, models, and

weights are available at http://pjreddie.com/yolo9000/ [56].

2.7 Software Frameworks and Libraries

These are some of the frequently discussed software frameworks and libraries from my

literature review. They are relevant because of their ability to implement CNN methods.

https://github.com/daijifeng001/r-fcn
http://pjreddie.com/yolo9000/
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Darknet-19 224

input 224x224x3

conv-3 224x224x32

maxpool-2 112x112x32

conv-3 112x112x64

maxpool-2 56x56x64

conv-3 56x56x128

conv-1 56x56x64

conv-3 56x56x128

maxpool-2 28x28x128

conv-3 28x28x256

conv-1 28x28x128

conv-3 28x28x256

maxpool-2 14x14x256

conv-3 14x14x512

conv-1 14x14x256

conv-3 14x14x512

conv-1 14x14x256

conv-3 14x14x512

maxpool-2 7x7x512

conv-3 7x7x1024

conv-1 7x7x512

conv-3 7x7x1024

conv-1 7x7x512

conv-3 7x7x1024

Table 2.7: Darknet

2.7.1 Theano

Theano is a open-source library written in Python and C, created for use with Python

[57] [58]. The library is used for efficient computing with multi-dimensional arrays [58].

Theano can run on the central processing unit (CPU) but can also produce instructions

for the GPU using Nvidia CUDA [58]. Theano is released under the Berkeley software

distribution (BSD) licence, and can be distributed freely as long as the licence, copyright

notices, and disclaimer are provided together with the source code and binaries [57] [58].

2.7.2 DL4J

Deep dearning for Java (DL4J) is a open-source library written in Java, JavaScript,

and Scala, created for use with Python, Java, and Scala [59]. The library is used for

creating DL programs and running them on distributed systems [59]. It can also import

neural network models from many large frameworks via Keras [59]. DL4J can run on the
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CPU but can also produce instructions for the GPU using CUDA [59]. DL4J is released

under the Apache 2.0 licence, and can be distributed freely as long any modifications are

marked, and any derivated work contains the proper copyrights, patents, trademarks,

and attributions [59] [60].

2.7.3 Caffe2

Caffe2 is a open-source library written in C++, Python, and C, created for use with

C++, Python, and Matlab [61]. The library is used for creating DL programs and

offers pre-trained models through Caffe Model Zoo [61]. Caffe2 can run on the CPU

but can also produce instructions for the GPU using CUDA [61] [62]. Caffe2 is released

under the Apache 2.0 licence, and can be distributed freely as long any modifications are

marked, and any derivated work contains the proper copyrights, patents, trademarks,

and attributions [61] [60].

2.7.4 TensorFlow

TensorFlow is a open-source framework written in C++, Python, Go, and Java, created

for use with C++, Python, Go, and Java [63]. The framework is used for creating

ML programs and offers pre-trained models through the TensorFlow Model Zoo [63].

TensorFlow can run on the CPU but can also produce instructions for the GPU using

CUDA [63]. TensorFlow is released under the Apache 2.0 licence, and can be distributed

freely as long any modifications are marked, and any derivated work contains the proper

copyrights, patents, trademarks, and attributions [63] [60].

2.7.5 Darknet

Darknet is a open-source framework written in C, created for use with C [64]. The frame-

work is used for creating and running neural networks, especially using the YOLOv2

method, and offers pre-trained models [64]. Darknet can run on the CPU but can also

produce instructions for the GPU using CUDA [64]. Darknet is released under many

licences, but it seems that they all state that the software is completely free for any use

[64].
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2.7.6 Torch

Torch is a open-source framework written in C, Lua, and C++, created for use with

LuaJIT [65]. The framework is used for creating programs that uses ML algorithms

[65]. Torch can run on the CPU but can also produce instructions for the GPU using

CUDA [65]. Theano is released under the BSD licence, and can be distributed freely

as long as the licence, copyright notices, and disclaimer are provided together with the

source code and binaries [65].

2.7.7 MXNet

Apache MXNet is a open-source library written in Python, C++, Perl, and Scala, created

for use with Python, Scala, R, Julia, C++, Perl, Go, and JavaScript [66]. The library is

used for creating DL programs and offers pre-trained models through Gluon Model Zoo

[66]. MXNet can run on the CPU but can also produce instructions for the GPU using

CUDA [66]. MXNet is released under the Apache 2.0 licence, and can be distributed

freely as long any modifications are marked, and any derivated work contains the proper

copyrights, patents, trademarks, and attributions [66] [60].

2.7.8 Microsoft Cognitive Toolkit

Microsoft Cognitive Toolkit is a open-source toolkit written in C++, Python, and C#,

created for use with C++, Python, and C# [67]. The toolkit is used for creating

programs that can train DL algorithms and it offers pre-trained models [67]. Microsoft

Cognitive Toolkit can run on the CPU but can also produce instructions for the GPU

using CUDA [67]. Microsoft Cognitive Toolkit is released under the Massachusetts

Institute of Technology (MIT) licence, and can be distributed freely as long as any

derivated work contains the proper copyright notice, permission notice, and disclaimer

[67].

2.7.9 Keras

Keras is a high-level open-source library written in Python, created for use with Python

[68]. The library can run on top of TensorFlow, Microsoft Cognitive Toolkit, or Theano,
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and is used for creating DL programs [68]. Keras can run on the CPU but can also

produce instructions for the GPU using CUDA [68]. Keras is released under the MIT

licence, and can be distributed freely as long as any derivated work contains the proper

copyright notice, permission notice, and disclaimer [68].
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Method

This chapter will introduce the reader to the methods used to to answer the research

questions. It will describe the process used to find relevant literature and the process of

producing measurable results.

3.1 Literature Review

To be thorough and non biased towards the current state of the art research on DL, I

decided to design and perform a structured literature review. I started from NTNU’s

homepage, and through SEKOM, I found NTNU Viko. NTNU Viko provides informa-

tion about how and where to search for source material. The strength of structured

literature reviews is that it provides access to a diverse collection of research, however,

it is extremely time consuming.

3.1.1 Keywords

I chose to only use a few central fields of research as keywords in my literature review.

I did this because the amount of research on DL is very large and fairly complex. The

keywords I used were:

1. Deep Learning;

2. Convolutional Neural Networks;

26
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3. Object Detection.

However, these keywords by themselves would not necessarily provide any useful mate-

rial. CNN’s are used for other tasks than object detection, and object detection is not

always performed using DL methods. Therefore I chose to use the following combination

of keywords:

1. ”Deep Learning” AND ”Object Detection”;

2. ”Convolutional Neural Networks”;

3. ”Convolutional Neural Networks” AND ”Object Detection”.

3.1.2 Libraries

Using NTNU Viko, I found five online research collections. These web pages typically

provided sorting search results on date, usage, and relevance. I found that sorting on

usage usually provided the most interesting results, however, I chose to use results from

all three sorts in my literature review so I would not miss very new or very relevant

research. Using this method I would end up with about five collections times three

search sorts times three search keywords, which is 45 lists of search results. This lead

me to choose the fairly low number of ten results per search to investigate. I used the

following research collections:

1. NTNU Open;

2. Web of Science;

3. Scopus;

4. NTNU Oria University Library ;

5. NTNU Oria Norwegian Academic Library ;

6. Google Scholar.
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3.1.3 Filtering Process

Using this method would leave me with about 450 sources of material to investigate,

which is a lot to read. Therefore I chose to use a filtering process to divide useful

from useless research. I would begin by finding interesting titles and reading their

abstracts. In the abstracts I would look for interesting topics, such as precise definitions,

information about the keywords, or implementations and discussion of results. If an

interesting abstract was found, I would download the material, read it, and make a note

of why the material was of interest. This way I would keep the content locally, and know

for what purpose I had stored it.

3.2 DL Method Comparison

Reviewing the literature on DL, there seemed to be a consensus on the fact that CNN

methods are the most suitable DL method for working with images. The fact that

the highest performing computer vision methods in several large competitions are all

CNN methods, supports this idea. These reasons lead me to choose to work with CNN

methods.

The problem of finding and identifying salmon in images, should not be posed as a

classification problem because of the necessity to describe the location of the objects.

Neither should the it be posed as a localization problem, as localization methods only

predicts the location of a single object. The problem could be posed as a semantic

segmentation problem, but this would most certainly increase the complexity of any

solution. The problem should instead be posed as a object detection problem, since

methods solving these problems can predict both multiple classes and locations. The

bounding boxes produced by a object detection system could also provide information

such as the length and height of the salmons.

Because the salmon detection problem should not be posed as a classification, local-

ization, or semantic segmentation problem, I will regard the CNN methods focusing on

these types of problems as unsuitable. These CNN methods include: AlexNet, VGGNet,

GoogleNet, and ResNet. The other CNN methods from Chapter 2 should all be suitable

for the task of detecting salmon in images as they have previously been used to solve
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object detection problems quite successfully. These methods include: Faster R-CNN,

SSD, R-FCN, and YOLOv2.

3.2.1 CNN Method Accuracies

The papers describing Faster R-CNN, SSD, R-FCN, and YOLOv2 do all include perfor-

mance measures using their respective method. However, they are not all tested with

the same sort of configuration.

The papers describing Faster R-CNN, SSD, R-FCN, and YOLOv2 all present results on

the PASCAL VOC 2007, PASCAL VOC 2012, and COCO 2015 challenges. They do

however experiment with which training data they use for each task. While R-CNN,

SSD, and R-FCN all show results for the PASCAL VOC challenges using training and

validation (trainval) data for all three challenges, YOLOv2 only shows results on the

PASCAL VOC challenges using PASCAL VOC trainval data. This lead me to compare

the four methods using results from PASCAL VOC 2007 and 2012 using only PASCAL

VOC trainval data, and from COCO 2015 using only COCO trainval data. Table 4.1

shows the accuracy in MAP for the compared methods in these challenges using the

same training data. According to this comparison, R-FCN is the most accurate method.

PASCAL VOC 2007 PASCAL VOC 2012 COCO 2015 Mean

Faster R-CNN 73.2% 70.4% 42.7% 62.1%

SSD512 79.8% 78.5% 48.5% 68.9%

R-FCN 80.5% 77.6% 53.2% 70.4%

YOLOv2 544 78.6% 73.4% 44.0% 65.3%

Table 3.1: Method Accuracy Comparison

3.2.2 CNN Method Speeds

Many of the papers describing the suitable methods contain information about how fast

the network runs at test time, and some of them contain information about how long

their model needs to be trained. However, this information is not given using the same

metrics or harware through the source material.

The methods are trained and tested using different hardware. Faster R-CNN and R-

FCN uses Nvidia K40 GPUs, while SSD and YOLOv2 uses Nvidia Titan X GPUs. These

GPUs are not equally fast, but comparing the speeds of these methods with respect to
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the speed of the hardware in use is beyond the scope of this thesis. However, because

of the parallel computing capabilities of these processors, they will greatly benefit work

such as training and testing CNNs. Any CPU implementation will lack this parallel

computing benefit and will thus run much slower.

The papers describing the suitable methods do provide information about their speed

at test time, but only SSD and YOLOv2 specifies the batch size used during testing. I

will compare the methods using a batch size of one at test time, and and presume that

this is the test time batch size used by Faster R-CNN and R-FCN as well. The test time

speeds of these methods are the following:

• Faster R-CNN: 5 FPS

• SSD512: 19 FPS

• R-FCN: 5.9 FPS

• YOLOv2 544: 40 FPS

Comparing the time it takes to train a model is a tough task. This is mostly due to the

amount of factors that affect this value. These factors include: amount of adjustable

model parameters, performance of pre-trained model or luck in initialization of weights,

amount of training data, the presence of shortcut connection such as in ResNet, and the

efficiency of the hardware. Some of the papers include interesting information about the

training speed. The R-FCN paper writes that the method uses 0.45 secnods to process

an image during training, and the YOLOv2 paper writes that their model is usually

trained for 160 epochs. The other papers do however not provide similar information.

The suitable methods all use fairly well known network architectures, which leads me

to believe that pre-trained models exists for all of them. Faster R-CNN and SSD uses

variants of the VGGNet-16 network, R-FCN uses a variant of the ResNet-101 network,

and YOLOv2 uses the Darknet-19 network. These architectures contain roughly the

following amounts of parameters:

• Faster R-CNN: 15 million

• SSD512: 15 million
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• R-FCN: 63 million

• YOLOv2 544: 21 million

3.2.3 CNN Method Choice

Ketil Bø informed me that the Dynamic Imager module was expected to run as a 32 bit

dynamic link library (DLL) on a Microsoft Windows computer, not necessarily having a

GPU compatible for CUDA. Either training or testing a CNN on a CPU is much slower

than on a GPU. This lead me to prioritize fast methods. Because the training time of

the methods were hard to estimate, I decided to use the test time comparison instead.

In this comparison the YOLOv2 544 method is clearly faster than the others, therefore

I chose to use YOLOv2 in my Dynamic Imager module.

3.3 Software Framework and Library Comparison

The software frameworks and libraries reviewed in Chapter 2 all give the impression that

they contain functionality for implementataion of DL methods such as CNN. However,

not all them are equally suitable to use for implementing a Dynamic Imager module.

Dynamic Imager is written in C++, which makes frameworks and libraries written in

or for C++ or C more suitable for the module implementation. These frameworks

and libraries include: Caffe2, TensorFlow, Darknet, MXNet, and Microsoft Cognitive

Toolkit. The Darknet framework does however stand out as it is created by the authors

of YOLOv2, for training and testing purposes on the YOLOv2 architecture, containing

easily attainable network configurations and pre-trained weights. This lead the me to

choose the Darknet framework for implementation of the Dynamic Imager module.

3.4 Salmon Dataset

Trollhetta provided me with a image dataset of salmons from fish farms. The dataset

consisted of 3253 images in three different formats of size and image quality. These

images were of the sizes 801x532, 1626x1236, and 704x576 pixels. After inspecting the

images, I found that the image sets were taken from video streams with different time
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intervals in between images. The image sets also included several duplicates. Because

I knew I had to annotate the dataset, I decided to reduce the amount of images by

removing images visibly in short intervals from each other and duplicate images. From

the image sets with a low time interval in between images, I decided to use one in every

20 images. After reducing the number of images, I was left with a dataset with 632

images of a higher visual variety than the original dataset.

3.4.1 Dataset Annotation

My supervisor from Trollhetta, Ketil Bø, informed me that the detections from a system

such as the one I was making, could be used to estimate biomass in fish farms by using

the length of the fish. Therefore I decided to only annotate fish where the length was

visually obvious, usually by being able to identify both the head and tail fin of the fish.

Fish far from the camera, swimming in a vertical direction, or towards or against the

camera were not annotated because it would not be possible to determine their lengths.

By only annotating clearly identifiable fish, I was also more confident that a DL system

would be able to identify them as well.

I wanted to annotate the the dataset on my Apple Mac computer, and found the Mac

program RectLabel which allowed me to draw bounding boxes around fish and save

labels and coordinates to JavaScript object notation (JSON) files. The program stored

the box coordinates as x position, y position, width, and height.

3.5 Virtual Machine Setup

I decided to find an efficient operating environment in order to run some tests and

produce some preliminary results using the Darknet framework with the salmon dataset.

As I did not already have access to any such operating environments for prolonged

periods of time, I decided to create a virtual machine (VM) in the cloud, with a decent

amount of hardware associated with it. There are several services providing cloud VMs,

but I did not think it would matter much which provider I choosed. They do however

cost money to rent, so I based my choice on the Google Cloud Platform (glcoud) on the

fact that they gave me 2322 NOK in promotion credit. I created a gcloud VM instance

in their gcloud europe-west1-b region, because it is close to Norway, and because it



Chapter 3 - Method 33

provides access to GPUs. I chose Ubuntu 16.04 as the operating system (OS) because

Linux computers provide good terminal functionality, and Ubuntu 16.04 is a stable Linux

version. Then I applied to Google for the use of a Nvidia Telsa K80 GPU for the use of

CNN training and testing, which was approved. I wanted to use the VM from my Mac

latop, and found that gcloud provides a command line interface (CLI) usable from Mac

terminals. I downloaded the gcloud software development kit (SDK) and configured the

VM for secure shell (SSH) access. The SSH access to the server allowed to me to use a

terminal on the VM from my laptop.

Using Git, I cloned the official Darknet Github project from https://github.com/

pjreddie/darknet (pjreddie/darknet) to my VM. The project is dependant on having

CUDA installed and greatly benefits from having access to a GPU. Optionally, you can

compile it with the Nvidia CUDA deep neural network library (cuDNN) to accelerate

training, or the open source computer vision library (OpenCV) for increasing the number

of image formats supported. I installed drivers for the GPU, then installed CUDA and

cuDNN, before I compiled the Darknet project on the VM.

3.5.1 YOLOv2 Configuration

To be able to able to train a model in Darknet with your own training data, you have

to provide the framework with some configuration files. This includes a file describing

the location of training and test data, a file describing the structure of the network, and

a file containing model weights. In addition, the location of training and test data must

reference to a single file containing a list of images, and these images must be placed

in directories with an annotation file for each image. Appendix A and Appendix B

contains examples for such configuration files. Appendix A contains examples of various

files including a data configuration file. Appendix B contains a network configuration

example, namely yolo-voc.2.0.cfg from pjreddie/darknet. This network configuration

can not be found in the current pjreddie/darknet Github version, you may find it in git

commit 1e729804f61c8627eb257fba8b83f74e04945db7.

I wrote a Python script that took the annotations from RectLabel, rearranged them to

fit the Darknet annotation style, and saved them in the same directory as the images.

Then I had to split the dataset into subsets for training, validation, and testing. I chose

to use a 80% / 10% / 10% dataset split because I did not have a very large dataset,

https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
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and wanted to make sure I had enough data for training. I wrote another Python script

saving the paths for every four out of five images to a text file for training, every tenth

file starting with the fifth image to a file for validation, and every tenth file starting

with the tenth image to a file for testing. The pjreddie/darknet repository contains

many network configuration examples, and I chose to start testing using a network

configuration created for use the the PASCAL VOC dataset called yolo-voc.2.0.cfg. This

configuration contained the Darknet19 architecture with output layers for detection, it

used input images of 416x416 pixels, but was configured for 20 classes instead of 1. By

changing the filter of the final layer, and the classes value in the configuration, I was able

to configure the network for a single class. Finally, I downloaded weights pre-trained on

ImageNet from the YOLO website at https://pjreddie.com/darknet/yolo/, namely

darknet19 448.conv.23. This allowed me to train and test a model with the Darknet19

architecture for detection of salmon on the VM.

3.6 Dynamic Imager Module Implementation

From Trollhetta, I was given a copy of 32 bit Dynamic Imager version 3.0.3.4 for Win-

dows, as well as a development tutorial, documentation, and programming SDK for use

during the integration of the DL module. Dynamic Imager is well suited for module

integration, and contains functionality to import and use DLLs. These DLLs must con-

tain the Dynamic Imager SDK, and contain two DLL entry point functions for use when

importing and running modules. These modules can be written in either C++ or C.

3.6.1 Development Environment

Since Dynamic Imager is a Windows program, I chose to work on a Windows computer

during development. The pjreddie/darknet project is however only tested on Linux and

Mac computers, so to ease the development of the DL module, I decided to search for

forks of Darknet more suited for use on Windows. Through this search I found the

very well documented Github project AlexeyAB/darknet from https://github.com/

AlexeyAB/darknet. It is a Github fork of pjreddie/darknet repository, but it is created

for use with Visual Studio (VS) on Windows. Additionally, it contains several VS project

https://pjreddie.com/darknet/yolo/
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
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configurations, including configurations for use with CPU only, and for compiling to

DLL.

I decided to use AlexeyAB/darknet in my DL module, and cloned the repository to my

computer. I decided not to keep the repository’s commit history, so I deleted the original

.git file and re initiated git. Then I created a private repository on Github, and set this

repository as the local repository’s remote. This would allow me to push my changes to

the AlexeyAB/darknet project to my own private repository, making it simpler to share

the project with Trollhetta. Appendix C contains my Github repository’s readme. I de-

cided to use AlexeyAB/darknet’s VS project configuration called yolo cpp dll no gpu.sln

as basis for the DL module. This VS project configuration was created for use with CPU

only, and for compiling to DLL. It was originally created for compiling 64 bit DLLs, but

by compiling it without OpenCV and using an older version of CUDA, I was able to

compile it as a 32 bit DLL. CUDA seems to have stopped development on 32 bit libraries

in version 7.0, so I had to use version 6.5. The project contained a set of DLL entry

points providing access to the projects functionality, such as training or testing models.

However, Dynamic Imager only uses two DLL entry points, one for importing and one

for running. Therefore I removed the original entry points entirely and created a file

just called main.cpp that would contain the new entry points. Then I imported the

Dynamic Imager SDK into the project. Using the header files and libraries contained in

this SDK, I was able to use the Dynamic Imager functionality in my main file, allowing

me to create modules usable by the program.

Studying the source code in the AlexeyAB/darknet repository, I was able to identify a

couple of functions that I would like to use in the module. I knew that functionality

for training and testing a module was necessary for the module to be useful, but I also

wanted the module to somehow be able to indicate when a training process was com-

plete. This can be done using the error of the loss function for the training and validation

set. However, Darknet does not calculate the loss of the validation set during training,

and I was not able to efficiently append it to the functionality. Fortunately, developers

of AlexeyAB/darknet had added the function validate detector map in the detector.c

file. This function calculates the MAP for a model on a dataset. Validate detector map

could have been used to check the MAPs for the training and test dataset thoughout the

training process, providing an alternative evaluation metric to the loss function error.

Calculating the MAP for a model does however take a fair amount of time because it
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works by testing every image in the dataset at several levels of confidence. Because the

module was anticipated to run slowly as a result of it running on a CPU, I did not see it

fit to use MAP checks for the task of indicating when the training process was complete.

I decided to use the functions train detector, test detector, and validate detector map

all found in detector.c, for use during training, testing, and validation of a model, re-

spectively. Declarations of these C functions where added to the main file, which allowed

me to use them through the Dynamic Imager entry points.

3.6.2 User Story

The main use story for the module would be to first train a model for the amount of

time you had available, having the module save intermediate weights at a chosen interval

during training. Then validating a number of weights from the end of the training on

both the training and validation set to determine which of them had the highest perfor-

mance. Before finally using the highest performing model to test images, which would

produce both a visual and textual representation of the results. The intermediately

saved weights would be usable for further training of the model.

3.6.3 Dynamic Imager

Dynamic Imager is a image processing tool for stepwise modification of images using a

network layout. This generally means that every Dynamic Imager module has input and

output ports for connecting them to other modules. As an example one could import

an image using a Import Image module, send it on to some sort of image modification

module, before sending it on to a Save Image module saving the image in a chosen

format. These three connected modules would then represent a network in the program.

The original idea for the DL module was to use a network layout for both training and

testing. During training one could use a Import Images module to send several training

images on to the training module, which would use these images for training and save

output weights to file. During testing, one could use a similar Import Images module to

send images through whatever modification modules before entering the testing module.

This module could then either present the images containing predictions, pass them

on to other modules, or save them to file. I did however have some issues with image

formats, and the way they were stored as data in Dynamic Imager SDK and Darknet.
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I was given access to a Import Image module, and investigated how it represented an

image, then compared this to the way Darknet would represent the same image, and

they were not the same. This issue was not resolved, and I decided to make the module

work without any connections. This would make the module less user friendly, but the

functionality of modifying an image before use in the DL module was still possible. By

running a image modification network ending with saving the image to file would mean

that you could later use this modified image just as any other with the DL module.

3.6.4 Darknet Modification

By including the Darknet source files in the DL module project, and then placing declara-

tions for Darknet functions in the main file, I was able to call the functions train detector,

test detector, and validate detector map from main. They were however not functioning

exactly the way I needed them to, so I modified them. When modifying the Darknet

code base I changed some larger functions that I knew only I would be calling from

main, but I did also need to modify some smaller more frequently used functions. In-

stead of changing these functions, I decided to create and use slight copies of them. This

way I would not affect other code using the original functions. All modified and added

functions were commented as such in the source code. The modifications provided the

following features:

• Being able to set the save location for intermediate weights during training;

• Being able to decide the frequency of weight saving during training;

• Automatically setting the filter size of the final output layer to a valid value based

on the classes parameter from the data configuration.

• Automatically setting the classes parameter in the network to the same value as

the classes parameter in the data configuration;

• Being able to test several images as a batch job;

• Being able to choose whether to validate a model using the training or validation

dataset.
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3.6.5 User Input

I did not want to hardcode any of the Darknet functionality into the module, and

decided to use the same amount of user input in the DL module as in the original

Darknet terminal program described in detector.c. This choice was based on the fact

that I believed I could make even a highly configurable module user friendly. The user

input would include data configuration, network configuration, and weight file. By using

the Dynamic Imager SDK I was able to create input fields on the modules for training,

testing, and validation of models. To train a model using the DL module you would

need to input the following:

• A data configuration file containing: the number of classes, the path to the training

data, and the path to a names file containing the names of each detectable class;

• A network configuration file containing the structure of the network and hyperpa-

rameters;

• A weights file containing trained or untrained weights for the model;

• A chosen frequency for saving intermediate weights;

• A directory to save the output files.

This would produce trained weight files with batch interval equal to the chosen frequency,

to the chosen output directory. To test a model using the DL module you would need

to input the following:

• An images file containing paths to the images to be tested;

• A data configuration file containing: the number of classes, the path to a names

file containing the names of each detectable class, and the path to a labels folder

containing a font;

• A network configuration file containing the structure of the network and hyperpa-

rameters;

• A weights file containing trained weights for the model;

• A chosen confidence level;
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• A directory to save the output files.

This would produce both visually labeled images and annotation files in YOLOv2 format

to the chosen output directory. To validate a model using the DL module you would

need to input the following:

• A data configuration file containing: the number of classes, the path to the training

data, the path to the validation data, and the path to a names file containing the

names of each detectable class;

• A network configuration file containing the structure of the network and hyperpa-

rameters;

• A weights file containing trained weights for the model;

• A chosen confidence level;

This would produce a Dynamic Imager message describing the MAP of the model, as

well as the precision, recall, true positives, false positives, false negatives, and average

IoU of the chosen confidence level.

3.7 Solutions Testing

Integration testing of the earlier versions of the module revealed some issues with the

implementation. This testing was performed running Dynamic Imager as the VS debug-

ging command, and using VS interfaces such as callstack, breakpoints, and immediate

window. Darknet is written in C where there is no automatic garbage collection, this

can cause memory leaks. The Darknet terminal program is also created in a way such

that it terminates after each action, such as testing an image or validating a model.

This makes this program largely unaffected by possible memory leaks during execution.

In contrast, the DL module would need to be usable several times before termination of

Dynamic Imager. By using the performance profiler in VS, I was able to detect several

memory leaks in the Darknet framework. To fix this issue I modified some Darknet

functions to release their allocated memory upon completion. During testing of resource

use, I discovered that the CPU and memory use of the DL module was much lower than
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the Darknet terminal program. This would result in the DL module needing more time

to complete tasks. I attempted to provide the module with more resources, but this

issue was not resolved. Because of the limitation in memory the module was able to use,

I had to reduce the training batch size substantially. By reducing the batch value in the

network configuration from 64 to 10, the module was able to run without issues. During

testing of the module’s usability, I discovered the need for user feedback, as well as error

handling and error messaging. Attempting to provide a solid error handling using try

catch functionality was not successful. C does not provide try catch functionality, and I

was not able to wrap the C functionality in C++ try catch statements. The best solution

available was then to preemptively check if the input parameters existed, and that the

program had access to them. This solution provides the user with specific information

about errors in the input, such as that the path to training data is unavailable. This

solution would however fail if the file exists but has the wrong format. The user feedback

provides the user with information about errors in the input, feedback if the input check

is successful, and feedback when a job is complete.

3.7.1 Accuracy Testing

To evaluate the detection accuracy of YOLOv2 on the salmon dataset, I trained a model

using my modified yolo-voc.2.0.cfg network configuration both on the VM and using the

DL module. As the programs did not provide the loss function error of the valida-

tion set during training, I decided to use MAP score to identify the highest performing

model. The intermediate weights produced during training would be used after training

to graph the development of performance on both the training and validation set. Then

I would pick the best weights and calculate their MAP on the test set. The DL module

was however very slow, so I decided to investigated how similar it operated in compari-

son with the AlexeyAB/darknet terminal program. I discovered that the train detector

functionality contained some randomization, thus it was not possible to determine if the

two programs executed this job identical. The test detector and validate detector map

functionality did however not contain any randomization, and compiling the AlexeyAB/-

darknet terminal project without OpenCV proved to provide the exact same results as

the DL module. This lead me to believe that the test detector functionality was also

similar in the two programs, and I decided to do the last half of the DL module training

in the terminal program using GPU instead of in Dynamic Imager.
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3.7.2 Configuration Testing

After producing valid models using the rather standard yolo-voc.2.0.cfg network con-

figuration, I decided to search for a more optimal configuration for the salmon dataset

in order better evaluate the accuracy of YOLOv2 on the task. Possible ways to re-

configure the network and hyperparameters includes: changing the output layers of the

network, changing the learning rate and learning rate annealing, changing the bounding

box anchors, and toggling multi-scale training. The preddie/darknet and AlexeyAB/-

darknet repositories contains more recent network configurations than yolo-voc.2.0.cfg,

and many of these configurations describing the Darknet19 architectures uses a different

structure of output layers than yolo-voc.2.0.cfg. These network configurations include

yolov2-voc.cfg from preddie/darknet, which uses one more convolutional layer in the

output layers than yolo-voc.2.0.cfg. By closer investigation of the YOLOv2 research

paper, it seems that the authors are actually describing the network structure found in

yolov2-voc.cfg rather than the one found in yolo-voc.2.0.cfg. The YOLOv2 paper states

that a learning rate of 0,001 and a step learning rate annealing with a factor of ten

after 60 and 90 epochs was used. The yolo-voc.2.0.cfg configuration does instead use a

leaning rate of 0,0001, which it increases to 0,001 after 100 iterations. After this point

it seems that it reduced the learning rate by a factor of ten for the equivalent of 60

and 90 epochs on the PASCAL VOC training set. Because the salmon dataset contains

632 images, 60 and 90 epochs of the salmon dataset would amount to processing 37920

and 56880 images, respectively. This would be achieved after 593 and 889, or 3792 and

5688 iterations, depending on whether a batch size of 64 of 10 is used The anchors in

the mentioned configurations are undoubtedly created for the PASCAL VOC training

set. According to the YOLOv2 research paper, the authors created these anchors using

a five cluster k-means with IoU as the distance metric. The AlexeyAB/darknet repos-

itory contains a Python script for generating new anchors. In the search for a good

configuration, I decided to test several combination of hyperparameters. I prioritized a

configuration as similar as possible to what is described in the YOLOv2 research pa-

per. This meant starting with a modified version of yolov2-voc.cfg, containing modified

learning rate, learning rate annealing, anchors generated from the salmon dataset, and

using multi-scale training.
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3.7.3 Speed Testing

To evaluate the speed of Darknet YOLOv2 on the salmon dataset, I decided to inves-

tigate how much time the different Darknet solutions used for a set of tasks. I also

wanted to test how much speed was gained by using better or more suitable hardware.

The computers I had available for testing was the Linux VM, a Windows desktop com-

puter, and a Mac laptop. On the VM and the Mac, I was able to compile and run

the pjreddie/darknet terminal program, while on the Windows computer, I was able to

compile and run the AlexeyAB/darknet terminal program for CPU and GPU, as well

as the DL module in Dynamic Imager. As I had been most concerned with the ability

to train, test, and validate models during the development of the DL module, I decided

to test the speeds of these functions. I split the test cases into: loading network and

weights, testing model on one image, validate model on four images, and training for

one iteration with a batch size of ten. All tests would use the same configuration, and

the same images from the image set with dimensions 1626x1236 pixels. The tests on the

pjreddie/darknet and AlexeyAB/darknet terminal programs were done by modifying

the source code to print the time difference between certain stages of execution, while

the tests on the DL module was done by using breakpoints in VS.

3.7.4 Usability Testing

To evaluate the usability of the DL module in Dynamic Imager, I decided to plan a

user test. The DL module contains functionality for training, testing, and validating

models, therefore I created a user test simply containing these three tasks. The user

would be given access to configuration files and the Dynamic Imager program during

the test. Before the test I would do an introduction of the module, configuration files,

the tasks. After this the user would perform the tasks with as little communication

with me as possible. At the end of the last task, I would ask the participant to fill in a

system usability scale (SUS) form. The SUS form is a standardized usability test, and

produces a usability score between 0 and 100. Typically, a score below 51 is bad, a score

in between 51 and 80 is OK, while a score of 80 or above is great. As the people at

Trollhetta were the only people I knew with access to Dynamic Imager, I did the user

testing with them. Unfortunately, only one person was able to test the module. The

test was scheduled to last for about one hour.
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Results

This chapter will introduce the reader to the results produced to be able to answer the

research questions. It will also aim to analyze these results.

4.1 Salmon Dataset

Figure 4.1 shows an example of the short interval between images before reducing the

dataset. Figure 4.2 shows how this interval has changed after reducing the dataset.

These are images from image set 3, with dimensions 704x576 pixels. The job of anno-

tating the 632 image set took approximately 2 minutes per image, which is just over 21

hours. There are 5666 annotations, which means there are about 9 annotated salmon

per image. Figure 4.3 shows examples of annotated images. These are the same images

as in Figure 4.2.

4.2 Virtual Machine Training Results

Training a model using a modified version yolo-voc.2.0.cfg network configuration and

the salmon dataset for 1600 iterations with a batch size of 64 took approximately 5.3

hours on the VM. Figure 4.4 shows how the MAP developed through training. The

weights saved at iteration 900 were the highest performing, and the following iterations

show signs of overfitting. This model scored a MAP of 82.4% on the training set, 80.9%

on the validation set, and 79.5% on the test set. These are fairly good results. Figure

43



Chapter 4 - Analysis 44

4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 contains examples of annotations compared to good and

bad results on the three different image sets predicted with this model. All of these

images are from the image test set. In many cases, the erroneous predictions made by

the model does contain salmons, but salmons that have not been annotated. This is a

sign of generalization by the model, which is good. It is however hard to determine the

actual length of some of these predicted fish, due to the fish being partly out of frame

or behind other fish. The images presented as good predictions are very similar to the

annotations, and additional detections in these images, which are not contained in the

annotation, does typically contain either a whole salmon or large portions of one. The

images presented as bad predictions are not very similar to the annotations, and several

of these contain detections which only contains small portions of one or more salmon.

4.3 Dynamic Imager Module Results

The DL module was completed with functionality for training, testing, and validation

of models. It did however not appear to have a high usability as the user have to plug

in a high amount of input. The return for the poor usability is a high configurability

as the user can pretty much use any network described using the Darknet configuration

notation. Figure 4.11 shows the Dynamic Imager graphical user interface (GUI). In this

image, the module Test Model is currently open and the user input fields are visible in

the bottom left corner. Training a model using a modified version of the yolo-voc.2.0.cfg

network configuration and the salmon dataset for 700 iterations with a batch size of

10 took approximately 58.3 hours in the DL module. Figure 4.12 shows how the MAP

developed through training with the DL module. This training was continued using the

AlexeyAB/darknet terminal program on Windows using GPU. Training the exact same

model from iteration 700 to 1600 took approximately 18 minutes using this program.

This is a huge difference! Figure 4.13 shows how the MAP developed through training

with the AlexeyAB/darknet terminal program. I could unfortunately not determine

why the MAP values crashed during the last two hundred iterations. The weights saved

at iteration 1300 were the highest performing, scoring a MAP of 83.4% on the training

set, 80% on the validation set, and 80.2% on the test set. This is better than the

results from the VM, but only by 0.7%. It is interesting that the DL module needed

to process a lot fewer images than the VM during training to reach good MAP values.
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It is likely that this is partly due to the fact that the learning rate is very low in

yolo-voc.2.0.cfg until iteration 100. While the DL module reaches iteration 100 after

processing 1000 images, the VM reaches iteration 100 after 6400 images. I am however

not certain that this is the only reason for the difference. Figure 4.14, 4.15, 4.16, 4.17,

4.18, and 4.19 contains examples of annotations compared to good and bad results on

the three different image sets predicted with this model. All of these images are from

the image test set. The images presented as good predictions are very similar to the

annotations, and additional detections in these images, which are not contained in the

annotation, does typically contain either a whole salmon or large portions of one. The

images presented as bad predictions are not very similar to the annotations, and several

of these contain detections which only contains small portions of one or more salmon.

4.4 Configuration Testing Results

To find a well suited network configuration for the salmon dataset, I did a fairly extensive

search of the hyperparameter space, with over a dozen models trained using the VM.

Models trained with the yolov2-voc.cfg did very poorly. Some of the models suddenly

crashed such as in Figure 4.13, some never passed 1% MAP, while others produced

mediocre results such as MAP values below 70%. Using a low learning rate during

the first iterations such as in yolo-voc.2.0.cfg helped stabilize the models, but did not

provide any good results. Neither did turning off the multi-scale training or adding

anchors generated for salmon dataset. Figure 4.20 shows YOLOv2 output grids with

the anchors for yolo-voc.2.0.cfg and the anchors generated for the salmon dataset. By

comparing the anchors of yolo-voc.2.0.cfg and the generated anchors with the shapes of

the bounding boxes from the annotated images, it is clear that the generated anchors are

more similar in shape to the salmon. However, the bounding boxes from yolo-voc.2.0.cfg

are clearly more suited for general purposes, as it contains a higher variety of shapes.

Models trained with yolo-voc.2.0.cfg did better than those trained with yolov2-voc.cfg.

I identified that this was largely due to its anchors working well. Reducing the learning

rate after 60 and 90 epochs had virtually no effect on the results, and it seemed that just

using the standard learning rate of 0,001 worked best. In all cases, using the multi-scale

training resulted in unstable training. While increasing the input dimensions would

most likely increase the accuracy, it would also definitely reduce efficiency. Therefore, I
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did not include this parameter in the optimization process. In the end, I was not able

to improve on the yolo-voc.2.0.cfg configuration.

4.5 Speed Testing Results

Table 4.1 shows the results of the speed testing. The three computers used for the

testing had the following specifications: Linux VM running on 2 virtual CPUs and a

Nvidia Tesla K80 GPU; Windows desktop computer running on a Intel Core i5 3570K

CPU and a Micro-Star International (MSI) Geforce GTX 1050 Ti GPU; Mac laptop

running on a Intel Core i7 4650U CPU. The labels DL Module, Win CPU, Win GPU,

VM GPU, and Mac CPU refers to Windows running the DL module, Windows running

AlexeyAB/darknet with CPU, Windows running AlexeyAB/darknet with GPU, Linux

running pjreddie/darknet using GPU, and Mac running pjreddie/darknet on CPU, re-

spectively. The VM GPU and Mac CPU does not have results for validation, this is

because pjreddie/darknet does not provide this functionality. The results presented in

Table 4.1 describes the speed of: loading the network and weights, testing prediction

on one image, validating the MAP of a validation set of four images, and training one

model one iteration with a batch size of ten images. The validate 1 and train 1 fields in

the table simply describe the times for validate 4 and train 10 divided by four and ten,

respectively. As one might expect, the GPU solutions runs much faster than the CPU

versions. The VM did however use strangely long to load the network and weights. This

might be caused by limitations of its disk, random access memory (RAM), or CPU. It is

also strange that the GPU solutions performs much worse than 40 FPS, which is what

the authors of the method achieved. Why the time to test an image in these solutions

is slower than training one is also a good question. By further investigation of the code,

it seems that actions such as printing to terminal and saving results to file is to blame

for these large values, and the isolated detection time of an image on the VM GPU is

closer to 0.05 seconds, which is 20 FPS. The Win CPU and Mac CPU test times are

fairly similar, so are the Win GPU and VM GPU test times. This implies that the two

Darknet projects are not very different. I also suggests that the Darknet framework

doesn’t require a high-end GPU to perform well. The DL module is the slowest of the

solutions. It trains and validates models more than twice as slow as Win CPU, and uses

30% more time to test an image than Win CPU and Mac CPU. The speed test results
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for the DL module might be slightly off because of overhead caused by VS, but not by

a lot. A retest of load and training with the DL module outside VS resulted in a time

311 seconds.

4.6 Usability Testing Results

One usability test of just over an hour was conducted. The test candidate was familiar

with Dynamic Imager, but did struggle a bit with the DL module. The amount of time

the computer required to run the tasks did not ease the test process. At one point I

had to intervene with the test to help the candidate with Windows file paths. However,

all the three tasks were completed successfully. After the test, the candidate filled a

SUS form. The score result of the SUS form was 60. This is a low score, which means

that the module probably has a lot of room for improvement. The result of this test

is however not a very good indicator of usability as the test was only conducted on a

single user.
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Figure 4.1: Original set 3, image 1 (left) Original set 3, image 2 (right)

Figure 4.2: New set 3, image 1 (left) New set 3, image 2 (right)

Figure 4.3: Annotation of set 3, image 1 (left) Annotation of set 3, image 2 (right)
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DL Module Win CPU Win GPU VM GPU Mac CPU

Load 1.4 s 1.1 s 1.9 s 13.7 s 1 s

Test Image 9 s 6.2 s 1.5 s 1.18 s 6.1 s

Validate 4 32.8 s 12.5 s 1.1 s - -

∼Validate 1 8.2 s 3.1 s 0.3 s - -

Train 10 316.8 s 131.1 s 1.9 s 1.4 s 180 s

∼Train 1 32.7 s 13.1 s 0.2 s 0.1 s 18 s

Table 4.1: Speed Testing Results
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Figure 4.4: Training results of yolo-voc.2.0.cfg using pjreddie/darknet

Figure 4.5: Annotation from set 1 (left) Good prediction from set 1 (right)

Figure 4.6: Annotation from set 1 (left) Bad prediction from set 1 (right)
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Figure 4.7: Annotation from set 2 (left) Good prediction from set 2 (right)

Figure 4.8: Annotation from set 2 (left) Bad prediction from set 2 (right)

Figure 4.9: Annotation from set 3 (left) Good prediction from set 3 (right)
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Figure 4.10: Annotation from set 3 (left) Bad prediction from set 3 (right)

Figure 4.11: Dynamic Imager GUI
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Figure 4.12: Training results of yolo-voc.2.0.cfg using DL module in Dynamic Imager

0 300 600 900 1,600
0

10

20

30

40

50

60

70

80

90

100

1,300

Iteration

M
A

P

valid dataset
train dataset

0 3 6 9 16
0

10

20

30

40

50

60

70

80

90

100

13

Thousand images processed

M
A

P

valid dataset
train dataset

Figure 4.13: Training results of yolo-voc.2.0.cfg using AlexeyAB/darknet

Figure 4.14: Annotation from set 1 (left) Good prediction from set 1 (right)
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Figure 4.15: Annotation from set 1 (left) Bad prediction from set 1 (right)

Figure 4.16: Annotation from set 2 (left) Good prediction from set 2 (right)

Figure 4.17: Annotation from set 2 (left) Bad prediction from set 2 (right)
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Figure 4.18: Annotation from set 3 (left) Good prediction from set 3 (right)

Figure 4.19: Annotation from set 3 (left) Bad prediction from set 3 (right)

Figure 4.20: Yolo-voc.2.0.cfg anchors (left) Custom salmon anchors (right)
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Discussion

This chapter will discuss the strengths and weaknesses of the methods used, and the

results they have produced. It will also discuss how the results can be used to answer

the research questions.

5.1 Literature Review

The literature review took a lot of time, and I believe it could have been more efficient

with less structure. As an example I could probably have saved time by not going through

obviously uninteresting search results, and instead prioritizing to read the sources used

by interesting papers and theses. A structured literature review does however seem

more reliable, as it guarantees that a certain number of papers from a certain number

of research collections are reviewed.

5.2 DL Method Comparison

The DL methods presented in this thesis includes state-of-the-art object detectors. I

did make the choice to only focus on CNN object detection methods. Although the

reasoning for this choice is rather solid, as there seems to be evidence that CNN are the

most suitable DL method for processing images, and object detection CNNs are the most

suitable CNN methods for the task of predicting bounding boxes for objects, the DL

method comparison would have been more comprehensive if other type of DL methods

55
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had also been evaluated. The comparison could for instance have included DL methods

using semantic segmentation or unsupervised learning. The method used to compare

DL methods compares them based on accuracy on popular datasets, and test time

prediction speeds. Although these are sensible metrics for evaluation, the comparison

conducted is only based on what their authors have stated in the respective research

papers. As the results provided in these papers are produced on different hardware

and with different configurations, the comparison is less reliable. It would have been

more interesting to test the suitable methods using the provided salmon dataset in a

single computer environment. Even though the DL method comparison could have been

more comprehensive and reliable, I believe this thesis has provided a good insight into

suitable methods, and a reasonable comparison of these methods. The suitable methods

identified can be used in the answer of RQ 1a. The accuracies and speeds of the suitable

methods can be used in the answer of RQ 1b and 1c, respectively.

5.3 Software Framework and Library Comparison

The DL software frameworks and libraries presented in this thesis includes the state

of the art in DL software. This software was found through mentions of their use in

papers found during the literature review. The choice of using the Darknet framework

was largely due to the fact that I chose to use the YOLOv2 method. These are highly

compatible. The choice of software could have made based on a more comprehensive

evaluation. The suitable software frameworks and libraries can be used in the answer of

RQ 2a.

5.4 Dataset Annotation

The annotation task was done with the focus on being able to identify the length of the

each fish. This was done because I was informed that the length of the fish would be

valuable for the task of calculating biomass in fish farms. By only annotating some of the

fish, leaving ones that had visually unidentifiable horizontal lengths out, the problem of

only seeking to identifying a portion of the presented objects in images was introduced.

Neither the task of annotating fish or only identifying a portion of presented objects

in an image were thoroughly research passed the point of a couple of unstructured web
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searches. Doing a review of the research on these areas could have been valuable for the

thesis. Although the annotation process was done in a rather ad-hoc fashion, I believe

that the choice of only annotating fish with visually identifiable horizontal lengths was

advantageous. This is because the CNN would then be trained on identification of the

fish head and tail fin for every fish example.

5.5 Detection of Salmon

Research question 1 asks ”To what extent can deep learning methods be used to detect

salmon in images”. The sub-questions ask which methods could be used for the task,

and how accurate and fast these methods are.

To answer this research question, work on reviewing DL methods and evaluating their

performance was done. This thesis presents the performance results of two YOLOv2

models on the salmon dataset. These results include achieving an MAP score of as high

as 80.2%, and test times, including overhead, of as low as 1.5 seconds per image on a

desktop computer with an off-the-shelf GPU. By detecting salmon in images not used

for training and salmon not contained in the annotations, the models show their ability

to generalize. I regard these results as very good. There is however a good chance

that even better MAP scores are achievable. Looking at the prediction results in Figure

4.18 and 4.19, there seems to be several non-annotated salmon detected that should

arguably have been annotated. Such examples include the large fish in the bottom left

corner in Figure 4.18, and the small fish in the bottom right corner in Figure 4.19. By

being more consistent during annotation I could have improved the trained models. The

configuration of these models also seem to be improvable. I find it very strange that even

after over a dozen models trained with a seemingly more optimized configuration, the

initial configuration yolo-voc.2.0.cfg still produced the highest performing models. Based

on the fact that this configuration was optimized for PASCAL VOC, I deem it likely

that a configuration could be optimized for the salmon dataset as well. Additionally, I

could have conducted experiments with various confidence thresholds at prediction time.

Such experiments would not have affected the MAP score, but would have affected the

IoU scores, which could have produced better predictions. The verification of the fact

that YOLOv2 can be used for detecting salmon in images can be used in the answer of
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RQ 1a. The results of testing accuracy and speed with YOLOv2 on the salmon dataset

can be used in the answer of RQ 1b and 1c, respectively.

5.6 Module Implementation

Research question 2 asks ”To what extent can a deep learning module be integrated into

an existing program”. The sub-questions ask which software frameworks and libraries

are suitable for a Dynamic Imager module, and how accurate and fast such a module is.

To answer this research question, work on reviewing software, implementing a DL module

for use with 32 bit Dynamic Imager, and evaluating its performance was done. This

thesis presents the performance on results on a YOLOv2 model partially trained with

the DL module. This model achieved a MAP score of 80.2%, and a test time, including

overhead, of 9 seconds per image on a desktop computer with an off-the-shelf CPU. I

regard these results are fairly good. The training time per image did however require a

lot of time, using 32.7 seconds per image. This is almost twice the amount of time used

to train an image using the same framework with CPU, on the same computer, not run

through Dynamic Imager. 32.7 seconds per image is also almost 164 times slower than

the same framework with GPU, on the same computer, not run through Dynamic Imager.

I regard this result as poor. During development of the DL module, I discovered an

important distinction between ways of integrating DL into an already existing program.

This distinction is between modules providing functionality for either: just prediction;

prediction and training; and prediction, training, and network configuration. A module

just doing prediction would only need access to test images, one network configuration,

and one set of trained weights. Because such a module would only require a single

network configuration, and set of weights, these parameters could be hidden from the

user, thus leaving the input images as the only user input. A module doing prediction

and training, could consequently hide the network configuration from the user. However,

a module doing prediction, training, and network configuration would not be able to

hide any of the mentioned input from the user, and would require an interface for the

task of modifying the configuration. This seems to demonstrate a compromise between

configurability and usability. The DL module implemented attempted to be suited

for prediction, training, and network configuration. Lacking a proper interface for the

large amount of input required from the user resulted in a solution where some of the



Chapter 6 - Conclusion 59

configuration has to be done via a text editor. This is definetly sub-optimal. I believe

a better solution to the user interface would have been to hide some of the inputs, for

instance hardcoding initial weights, standard network, and output directory into the

module. The result of the usability testing was a SUS score of 60. I regard this as a

fairly poor result. The results of testing accuracy and speed with the DL module on the

salmon dataset can be used in the answer of RQ 2b and 2c, respectively.



Chapter 6

Conclusion

This chapter will provide answers to the research questions. It will also briefly discuss

the importance of this work, and suggest further work.

6.1 Research Questions

Research question 1 asks ”To what extent can deep learning methods be used to detect

salmon in images”. To answer this question I will first answer its sub-questions. The DL

methods suitable for detecting salmon in images include: Faster R-CNN, SDD, R-FCN,

and YOLOv2. The accuracies of these methods, caluclated from a mean MAP score

from PASCAL VOC 2007, PASCAL VOC 2012, and COCO 2015, are 64.1%, 68.9%,

70.4%, and 65.3% for Faster R-CNN, SSD512, R-FCN, and YOLOv2 544, respectively.

The YOLOv2 method has achieved a MAP of 80.2% using the salmon dataset. The

prediction speeds of the suitable methods are 5 FPS, 19 FPS, 5.9 FPS, and 40 FPS for

Faster R-CNN, SSD512, R-FCN, and YOLOv2 544, respectively. The YOLOv2 method

achieves a speed of 0.8 FPS including overhead, or 20 FPS excluding overhead, on

prediction of large images from the salmon dataset. Because there are several accurate

and fast object detection methods, one of which has been demonstrated to produce good

reults on the salmon dataset, I conclude that DL methods can be used to detect salmon

in images to a large extent.

Research question 2 asks ”To what extent can a deep learning module be integrated into

an existing program”. To answer this question I will first answer its sub-questions. The

60
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software frameworks and libraries suitable for implementing a DL module for Dynamic

Imager include: Caffe2, TensorFlow, Darknet, MXNet, and Microsoft Cognitive Toolkit.

The DL module integrated into Dynamic Imager achieved a MAP of 80.2% on the salmon

dataset. The DL module achieved a prediction speed of 0.1 FPS on large images from

the salmon dataset. In addition to the answers to the sub-questions, it is important to

address that the DL module trains models very slowly, and has poor usability. On one

hand there are several software frameworks and libraries capable of implement a DL

module and the implemented DL module achieved a high accuracy. On the other hand

the DL module achieved a somewhat slow prediction time, a poor training time, and

has poor usability. To be able to create a fast and user friendly DL module, suitable

hardware and an extensive user interface is required. Based on these factors I conclude

that DL methods can be integrated into an existing program to a moderate extent.

6.2 Importance of Work

The importance of the work done in this thesis is largely rooted in the project motiva-

tions described in Chapter 1. By developing a DL module capable of prediction, training,

and network configuring for use with Dynamic Imager, I have helped Trollhetta AS in

development of CNN solutions. The work on the DL module has also revealed inter-

esting obstacles one could face during the implementation of CNN functionality. The

discussion of these obstacles could aid others in similar projects. By annotating the

salmon dataset and using it to train high performing CNN models, I have demonstrated

that automatic detection of salmon in images is possible. This conclusion can aid the

fish farm industry in salmon biomass estimation, possibly even using the same training

set, network configuration, and trained weights created for this project. Improving the

salmon biomass estimation in fish farms could lead to less misfeeding and mismedication

of the fish, which could also halt the development of vaccine resistance in lice.

6.3 Further Work

Beneficial further work on this project includes:
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• Assessing the quality of the annotations, possibly adding or removing some anno-

tated fish;

• Testing the prediction quality of either the model I have trained, or a similar

model, in a real world scenario;

• Investigating the performance of other CNN methods using the salmon dataset;

• Further investigating the possibilities of hyperparameter optimization on the net-

work configuration used in this work.

• Creating a GPU version of the Dynamic Imager module;

• Adding network connections for the modules Test Model, Train Model, and Validate

Model in Dynamic Imager;

• Increasing the DL module usability by reducing user input and adding more user

feedback;

• Implementing functionality to automatically determine when training is complete

in the DL module;

• Testing the network configuration with other datasets, investigating how generally

applicable it is.
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Various File Examples

Data Configuration File (.data)

classes = 1

train = /path/to/training set.txt

valid = /path/to/validation set.txt

names = /path/to/name file.txt

backup = /path/to/output directory

labels = /path/to/font directory # Line added for DL module

Training Dataset File (.txt)

/path/to/image1.jpg

/path/to/image2.jpg

/path/to/image3.jpg

/path/to/image4.jpg

/path/to/image6.jpg

/path/to/image7.jpg

/path/to/image8.jpg

/path/to/image9.jpg

/path/to/image11.jpg

/path/to/image12.jpg

Validation Dataset File (.txt)

/path/to/image5.jpg

/path/to/image15.jpg

/path/to/image25.jpg

/path/to/image35.jpg

/path/to/image45.jpg

/path/to/image55.jpg

/path/to/image65.jpg

/path/to/image75.jpg

/path/to/image85.jpg

/path/to/image95.jpg

Test Dataset File (.txt)

/path/to/image10.jpg

/path/to/image20.jpg

/path/to/image30.jpg

/path/to/image40.jpg

/path/to/image50.jpg

/path/to/image60.jpg

/path/to/image70.jpg

/path/to/image80.jpg

/path/to/image90.jpg

/path/to/image100.jpg

Names File (.names)

salmon

person

bicycle

car

motorbike

aeroplane

bus

train

truck

boat

traffic light
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Network Configuration

Yolo-voc.2.0.cfg

[net]

batch=64 #value of 10 used in DL module

subdivisions=8 #value of 10 used in DL module

height=416

width=416

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning rate=0.0001

max batches = 45000

policy=steps

steps=100,25000,35000

scales=10,.1,.1

[convolutional]

batch normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=128

size=1

stride=1

64



Chapter 6 - Conclusion 65

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

#######

[convolutional]

batch normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

batch normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[route]

layers=-9

[reorg]

stride=2

[route]

layers=-1,-3

[convolutional]

batch normalize=1

size=3

stride=1
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pad=1

filters=1024

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=125 #Commented out in DL module

activation=linear

[region]

anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52

bias match=1

classes=20 #Commented out in DL module

coords=4

num=5

softmax=1

jitter=.2

rescore=1

object scale=5

noobject scale=1

class scale=1

coord scale=1

absolute=1

thresh = .6

random=0
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Github Readme
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