
A mobile application for booking
autonomous vehicles
Combining the sharing economy and self-

driving cars

Hanne Mathisen

Master of Science in Computer Science

Supervisor: Frank Lindseth, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology



 



Abstract

Fully autonomous vehicles eliminate the human driver of cars by taking care of all driving tasks.

The cars can view 360 degrees of their surroundings and make decisions based on them, which

can optimize traffic and fuel usage, and also contribute to safer traffic and improve mobility in

the society. These cars can be combined with the sharing economy, which enables the sharing

of assets and resources among people to optimize usage, by offering a pool of autonomous

vehicles as an on-demand service to members. For such a product to be used, the public must

have a positive attitude towards it, and it must also be able to satisfy the needs of the society to

replace personal vehicles and public transport.

This thesis evaluates how the combination of autonomous vehicles and the sharing economy

can affect the society, and if a mobile application can take care of the communication between

the cars and the end users. A mobile application to handle all car booking functionality was de-

veloped, including car distribution and route planning. The application is only an initial version,

so more and expanded functionalities are needed for the application to fulfill all requirements.

Two user tests were conducted on the application, with two different sets of users. The first

and qualitative test resulted in some suggestions for usability improvements to the application

and a preliminary usability score. The second and quantitative test was conducted after fixing

usability problems and adding functionality, and resulted in a final usability score and some

indications of the public attitude. The results indicate that the application has potential and

is easy to use, but with some room for improvement, and the general attitude of the public is

positive, but an attitude change is needed for people to change from personal vehicles to shared

autonomous vehicles.

i



ii



Sammendrag

Autonome kjøretøy eliminerer den menneskelige sjåføren av biler ved å ta hånd om alle kjøre-

oppgaver. Bilene kan se 360 grader av omgivelsene og tar beslutninger basert på dem, noe som

kan optimalisere trafikk og drivstoffbruk, og også bidra til tryggere trafikk og bedre mobilitet

i samfunnet. Disse bilene kan kombineres med delingsøkonomien, som gjør det mulig å dele

ressurser blant mennesker for å oppnå optimal bruk, ved å tilby et utvalg av autonome kjøretøyer

som en on-demand biltjeneste til medlemmer. For at et slikt produkt skal bli brukt, må publikum

ha en positiv holdning til det, og det må også kunne tilfredsstille samfunnets behov for å erstatte

private personbiler og offentlig transport.

Denne oppgaven evaluerer hvordan kombinasjonen av autonome kjøretøyer og delingsøko-

nomien kan påvirke samfunnet, og om en mobilapplikasjon kan ta hånd om kommunikasjonen

mellom bilene og sluttbrukerne. En mobilapplikasjon for å håndtere all funksjonalitet for bil-

reservasjoner ble utviklet, og inkluderer både bildistribusjon og ruteplanlegging. Applikasjonen

er en første versjon, så det er behov for flere og utvidede funksjoner for at applikasjonen skal

kunne oppfylle alle krav.

To brukertester av applikasjonen ble utført, med to forskjellige sett av brukere. Den første

kvalitative testen resulterte i flere forslag til forbedringer av brukervennlighet og en foreløpig

brukbarhetsscore. Den andre kvantitative testen ble utført etter å ha fikset noen brukervenn-

lighetsproblemer og lagt til ny funksjonalitet, og resulterte i en endelig brukbarhetsscore og

noen indikasjoner på den offentlige holdningen. Resultatene indikerer at applikasjonen har

potensial og er lett å bruke, men med noe rom for forbedring, og den generelle holdningen til

publikum er positiv, men en holdningsendring er nødvendig for at folk skal bytte ut personbiler

med delte autonome biler.

iii



iv



Preface

This is the Master’s thesis as the final part of the study programme Computer Science at the

Norwegian University of Science and Technology (NTNU). The work was carried out during

the spring semester of 2018.

I would like to thank my supervisor, Frank Lindseth, for his guidance throughout the project.

I would also like to express my gratitude to everyone who participated in the user testing, and

finally, I would like to thank my mother, both for her support during these years, and also for

her help by making her coworkers test my application.

Hanne Mathisen

Trondheim, June 2018

v



vi



Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents x

List of Tables xi

List of Figures xiv

Abbreviations xv

1 Introduction 1

1.1 Motivation and project description . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project goals and research questions . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5

2.1 Car usage and road safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Sharing economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

vii



2.2.1 Shared mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Autonomous vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 System Usability Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Shared mobility and autonomous vehicles: Existing solutions . . . . . . . . . . 17

2.5.1 Waymo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Uber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 BlaBlaCar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.4 ZipCar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.5 Bilkollektivet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.6 Nabobil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Mobile app development: Platform and technologies . . . . . . . . . . . . . . 22

2.6.1 Mobile application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 Web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 Choosing the best tools . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Methodology and implementation 27

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 React Native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 React-Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



3.5.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.3 NAP App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 Number of testers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 First test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.3 Second test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Results 49

4.1 NAP App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Mobile devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 First iteration views . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.3 Second iteration improvements . . . . . . . . . . . . . . . . . . . . . . 52

4.1.4 User flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 First user test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Second user test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Discussion 63

5.1 RQ1: How can autonomous cars and the sharing economy satisfy the needs of

the society? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 RQ2: To what extent is a mobile application perceived as a usable tool for

booking cars? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 RQ3: To what extent is it feasible to develop a mobile application for simulation

of car booking? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and future work 69

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.3 Ridesharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.4 Car distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.5 User profiles and login . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.6 Pricing and payments . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.7 Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.8 Rides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.9 Web service for admins . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

A GitHub repositories 83

A.1 REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 NAP App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B Get rides REST API 85

C MapComponent 87

D User test tasks 89

E Questionnaire for user test 1 91

F Questionnaire for user test 2 97

G Demonstration video 103

H Responses to user tests 105

H.1 User test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

H.2 User test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



List of Tables

2.1 SAE’s six levels of automation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Tested mobile devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 SUS score by discipline, first user test . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Participants by discipline, second user test . . . . . . . . . . . . . . . . . . . . 58

4.4 SUS score per question, second user test . . . . . . . . . . . . . . . . . . . . . 59

4.5 SUS score per discipline, second user test . . . . . . . . . . . . . . . . . . . . 59

4.6 Average and median for product questions, per car owner status . . . . . . . . . 60

xi



xii



List of Figures

2.1 Registered private cars in Norway since 1951 . . . . . . . . . . . . . . . . . . 6

2.2 Total vehicle-kilometres in Norway since 2005 . . . . . . . . . . . . . . . . . 7

2.3 Registered private cars and average vehicle-kilometres per car in Norway since

2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Fatalities and severe injuries in Norwegian road traffic accidents from 1991 to

2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Waymo’s FireFly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Car booking use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 React Native bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 React Native component on iOS . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 React-Redux architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Three-tier client-server architecture . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Entity-relationship diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Requesting ride views, iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Editing destination views, iteration 1 . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Ride simulation views, iteration 1 . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Requesting ride views, iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Ride simulation views, iteration 2 . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



4.6 User flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Answers regarding easier life, first user test . . . . . . . . . . . . . . . . . . . 57

4.8 Answers regarding potential signup, first user test . . . . . . . . . . . . . . . . 57

4.9 Participant car usage, user test 2 . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiv



Abbreviations

ADAS = Advanced Driver Assistance System

ADS = Automated Driving System

API = Application Programming Interface

AV = Autonomous Vehicle

CSS = Cascading Style Sheets

DBMS = Database Management System

DOM = Document Object Model

FR = Functional Requirement

HTML = HyperText Markup Language

HTTP = HyperText Transfer Protocol

ICT = Information and Communication Technology

IDE = Integrated Development Environment

JSON = JavaScript Object Notation

JSX = JavaScript XML

NAP = NTNU Autonomous Perception

NFR = Non-Functional Requirement

NHTSA = National Highway Traffic Safety Administration

REST API = Representational State Transfer Application Programming Interface

SQL = Structured Query Language

SUS = System Usability Scale

UI = User Interface

UN = United Nations

URI = Uniform Resource Identifier

XAML = eXtensible Application Markup Language

XML = eXtensible Markup Language

xv



xvi



Chapter 1
Introduction

1.1 Motivation and project description

People all over the world are driving more and more, and the number of cars in the world

continues to increase (World Health Organization 2015). However, the average distance driven

yearly by each car decreases, and cars are on average parked more than 90% of the time (Bates

& Leibling 2012, Barter 2013, Statistics Norway 2018d). The sharing economy, which enables

the sharing of assets and resources to optimize usage, has huge potential in decreasing the

number of cars needed, and can also be economically beneficial for people choosing to share

cars rather than own a private car (Hamari et al. 2016, Schor 2016).

Developments in technology and communications have led to advances in the car industry,

with tools to help the driver with some of the driving tasks, such as automatic transmission,

cruise control and parking assistants (Rödel et al. 2014, NHTSA 2018). Several companies and

researchers are working on the next advancement, the fully autonomous vehicle, which takes

care of all driving tasks and enables the occupants to spend commuting and traveling time doing

other things. Self-driving cars can also eliminate human error and choice made in traffic, which

is the cause of most serious accidents, and thereby significantly reduce the number of people

killed in traffic (Fagnant & Kockelman 2015, World Health Organization 2015, NHTSA 2018).

Combining autonomous cars with the sharing economy can lead to significant benefits for

the society and can change the way cars are used and owned, by being able to share a pool of

cars that can pick up and drop off the user when and where needed. This business model can

1



Chapter 1. Introduction

increase mobility in the society, improve traffic and decrease congestion, reduce the need for

parking spaces and have positive effects in communities and for the environment (Bertoncello

& Wee 2015, Fagnant & Kockelman 2015, NHTSA 2018). A mobile app to handle the com-

munication between end users and cars can make the realization of this more manageable, and

could potentially also make people’s life easier. This project will try to develop such an app and

investigate how people’s attitudes to both the app and the product is.

1.2 Project goals and research questions

The goal of this thesis is to research how autonomous vehicles and the sharing economy can

be combined, the effect this could have for people’s life and the society in general, as well as

to develop and test an app for booking autonomous cars, to investigate how people’s attitude

towards this business model is.

The following research questions (RQs) are defined for the project:

RQ1: How can autonomous cars and the sharing economy satisfy the needs of the society?

RQ2: To what extent is a mobile application perceived as a usable tool for booking cars?

RQ3: To what extent is it feasible to develop a mobile application for simulation of car booking?

1.3 Contributions

The contributions from this project include a first version of a mobile application to handle

ride booking for autonomous cars, as well as suggestions to how to further implement this app.

Further, this thesis also provides some insights about how the product of sharing a pool of

on-demand autonomous vehicles is perceived by the public, and how this product could help

change the way the society solves transportation.

1.4 Thesis outline

This thesis contains six chapters, where the remaining five are structured as follows:

2



1.4 Thesis outline

Chapter 2 - Background introduces the theory and initial research for the material used in the

project.

Chapter 3 - Methodology and implementation presents the technology, implementation de-

tails, and methodology used for the development of the app and the execution of the user testing.

Chapter 4 - Results presents the results of the development and the user tests.

Chapter 5 - Discussion discusses the results presented and the research questions.

Chapter 6 - Conclusions and future work presents the conclusion of the project as well as

recommendations and suggestions for future work.

3



Chapter 1. Introduction

4



Chapter 2
Background

This chapter presents the background information needed to design and develop a mobile appli-

cation to implement the sharing economy for an autonomous vehicle. The first section presents

some statistics about car usage in Norway today. The next section describes the sharing econ-

omy, especially the concept of shared mobility, before the third section briefly explores au-

tonomous vehicles and the potential benefits and challenges related to these new technologies.

The fourth section presents the concept of usability. Further, the fifth section presents some

existing solutions, before some popular platforms and technologies used for mobile application

development are considered in the sixth section of this chapter.

2.1 Car usage and road safety

People are very dependent of their cars, and in Norway, with big distances and limited access

to public transportation outside the big cities, as much as 88% have access to at least one car

in their household (Hjorthol et al. 2014, p. 7). The amount of registered private vehicles in

Norway has experienced a linear growth the past 60 years, shown in figure 2.1, and reached

more than 2.7 million cars by the end of 2017 (Statistics Norway 2018b). Many people use cars

often, but mostly as the driver of the car; 55% of all travelling in 2014 was done as the driver of

a car, whereas only 8% was travelled as a passenger in a car (Hjorthol et al. 2014, p. 25). The

car occupancy rate is therefore low, with an average of 1.55 people in each car (Nordbakke et al.

2014, p. 9). This of course varies depending on what the purpose of the travelling is, and is

significantly lower on car rides associated with work, with a car occupancy rate of 1.15. Work

5



Chapter 2. Background

travelling is also the most predictable type of travelling; 31% of work trips starts between 7:00

and 9:00 in the morning, and 25% starts between 15:00 and 17:00 (Hjorthol et al. 2014, p. 39).

Figure 2.1: Registered private cars in Norway since 1951
Source: Statistics Norway (2018b)

More kilometres are also driven each year, but this trend is slowing down, which can be seen

in figure 2.2. A vehicle-kilometer is a kilometre driven, with or without load, by a car, and in

2017, a total of 35.3 billion vehicle-kilometres were driven by private cars in Norway (Statistics

Norway 2018d). Although the total number of vehicle-kilometres have increased slightly each

year, the number of cars have increased even more, resulting in a constant decrease of average

vehicle-kilometres per car, which can be seen in figure 2.3. The average distance driven by a

private car in Norway in 2017 was 12 228 km. (Statistics Norway 2018d). This can be used to

find the average amount of time each car is used, and consequently, the average amount of time

each car is parked.

To find the average car usage, the average speed is also needed. Speed limits in Norway are

usually 30 km/h within residential areas, 50 km/h on roads in urban areas and 80 km/h in more

sparsely populated areas (Høye et al. 2012, chap. 3.11). As it is challenging to find a correct

number for the average speed of all cars, the calculations will be done for 30 km/h, but the

average speed of all car rides could be higher than this. Assuming an average speed of 30 km/h,

6



2.1 Car usage and road safety

Figure 2.2: Total vehicle-kilometres in Norway since 2005
Source: Statistics Norway (2018d)

Figure 2.3: Registered private cars and average vehicle-kilometres per car in Norway since 2005
Source: Statistics Norway (2018b,d)

this gives a total time of 12228km
30km/h

= 407.60 hours of car usage in 2017. Since a year has 8760

hours, a personal car in Norway is used 407.60h
8760h

= 4.65% of the time on average. Usually, private

cars are not used during the night, so for a more realistic view, one can assume that a normal

car will be used between the hours of 7:00 and 21:00, in total 14 hours each day. This means

that there are 5110 active hours each year, which gives a new percentage of 407.60h
5110h

= 7.98%,

with an average speed of 30 km/h. Even with a low average speed, this indicates that a private

7



Chapter 2. Background

car in Norway is parked for more than 90% of the day (in addition to 10 hours each night).

This confirms international research on the topic, which found that cars are, on average, parked

around 95% of the time (Bates & Leibling 2012, Barter 2013).

Although people in Norway drive more than earlier, the number of people killed and se-

riously injured in traffic is decreasing (Statistics Norway 2018c). The decrease can be seen

in figure 2.4, going from 304 killed and 1148 severely injured in 1999 to 106 killed and 665

severely injured in 2017. In 2001, Vision Zero was adopted by the Norwegian government and

the Norwegian Public Roads Administration, with the goal of no fatalities or severe injuries in

traffic (Elvebakk & Steiro 2007). This has led to more legislation and focus on safer roads, cars

and traffic behavior, as well as a higher awareness of traffic safety among the population.

Figure 2.4: Fatalities and severe injuries in Norwegian road traffic accidents from 1991 to 2017
Source: Statistics Norway (2018c)

Globally, traffic accidents are a leading cause of death, in fact it is the most common cause

of death for people aged 15-29 (World Health Organization 2015, p. x). The average for the

world is 17.4 road traffic fatalities per 100 000 population (World Health Organization 2015,

p. 6), and Norway is therefore one of the safest countries to drive in, with a rate of 2.1 per

100 000 population, based on the 109 traffic fatalities and a population of 5.3 million in 2017

(Statistics Norway 2018a). In many countries, such as Norway, the number of traffic-related

fatalities has decreased, but in total, global deaths have plateaued the past ten years (World

Health Organization 2015, p. 2). Since there has been a global population and motorization

8



2.2 Sharing economy

increase, lives have probably been saved the past few years, but the number of traffic-related

deaths is still rising, especially in low-income countries.

The World Health Organization further identifies five key behavioral risk factors in traffic:

speed, drunk-driving, lack of usage of motorcycle helmets, lack of seat belt usage, and child re-

straints, and they also talk about distracted driving, from, e.g., mobile phones, and safety of cars

and roads as risks (World Health Organization 2015). Out of the 17 Sustainable Development

Goals and 169 targets set by the United Nations (UN) in 2015, two targets are related to road

safety and mobility (World Health Organization 2015, p. 3). Target 3.6 aims to ”halve the num-

ber of global deaths and injuries from road traffic accidents” (The Global Goals 2018b) by 2020,

and target 11.2 aims to ”provide access to safe, affordable, accessible and sustainable transport

systems for all, improving road safety, notably by expanding public transport, with special at-

tention to the needs of those in vulnerable situations, women, children, persons with disabilities

and older persons” (The Global Goals 2018a) by 2030. Road and traffic safety are therefore

recognized as important factors when it comes to achieving a better world for everyone.

2.2 Sharing economy

During the past few years, general views on consumerism have changed, leading to alterna-

tive ways to consume goods and services. Drivers of this attitude change include the global

financial crisis of 2008, increasing awareness of climate changes, as well as a greater desire for

social embeddedness and public consumption (Heinrichs 2013, Hamari et al. 2016). The shar-

ing economy has emerged as a result of both the aforementioned as well as developments in

information and communications technologies (ICT). As people also are becoming more con-

cerned about the ecological, societal and developmental consequences of the market society,

the sharing economy has become a more attractive alternative for many consumers.

The sharing economy includes several very different activities, so finding one accurate def-

inition is difficult. Hamari et al. (2016) looks at the sharing economy as an umbrella concept

that covers all ICT technologies and developments supporting the sharing of consumption of

goods and services through online platforms. Heinrichs (2013) further elaborates that the shar-

ing economy is referring to the economic and social systems that use information technology

to give both individuals, corporations, non-profits and government information that enables the

9



Chapter 2. Background

distribution, sharing and reuse of excess goods and services. The sharing economy uses market

intelligence to create a more collaborative and sustainable society, which could disrupt the main-

stream consumerism while also optimizing resource use and improving social embeddedness.

Examples of sharing economy activities include bike- and car sharing schemes and peer-to-peer

activities like swapping clothes or renting rooms.

This new economic system has attracted much attention, and people are divided on how they

feel about it. Boosters mention several benefits, such as empowerment of ordinary people, more

efficiency in the society and a lower carbon footprint, while critics talk about how sharing econ-

omy technologies are exploitative and more about economic self-interest than sharing (Schor

2016). The sharing economy could mitigate problems such as poverty, hyperconsumerism, and

pollution in today’s capitalist society, but as long as new products are on the market with a

low price, some people might not be interested in sharing and rather own products themselves.

(Hamari et al. 2016).

Historically, people have chosen not to consume ethically because of economic and insti-

tutional reasons; the price for ethical products have been significantly higher, and legislators

have not tried to control the consumption, manufacturing or imports of unethical products, with

for example regulations or taxes (Hamari et al. 2016). The sharing economy could overcome

these problems, and economic gain could be a potential motivation to participate in sharing.

Some platforms can distribute the value across the supply chain, which would give less profit

to middlemen, and services such as Airbnb, where people can rent out a spare bedroom or their

entire home for a short period, usually requires fewer fees than a hotel would (Schor 2016). The

sharing economy is also a way for people to earn money by renting out their property, which

could be a strong motivational factor for some. Another motivational factor is the enjoyment of

the activity (Schor 2016). The sharing economy can contribute to better social connections in

the community by people getting to know their neighbors, and can also be a way to make new

friends. Couchsurfers have reported that they grew close friendships with the people whose

couch they borrowed, and co-riding is also a way to get to know new people. The commit-

ment to social transformation can also be a motivational factor, many highlight the value of

collaboration and sharing as they are critical of capitalism and how the market works.

10



2.2 Sharing economy

2.2.1 Shared mobility

Shared mobility covers all the sharing economy activities carsharing, ridesharing and bike shar-

ing. Co-owning properties have been widely accepted for decades, but sharing cars have not

been popular until recent years (Cohen & Kietzmann 2014). In big cities, with a high and

growing population density, sharing vehicles and riding together is especially interesting, as

this could reduce traffic, congestion and pollution problems. Traditional transportation policies

have focused on reducing commute times, but emerging technologies challenge this perspec-

tive. Decreasing the commute time can result in increased use of private vehicles, which leads

to an escalated need for parking and road maintenance, as well as more air pollution in the city.

Carsharing in general means that many people share one or more cars, and several different

business models for how this is solved exists (Cohen & Kietzmann 2014). A common for-profit

model is a business-to-consumer model, where a company owns several vehicles and distributes

them at appropriate parking spots around a city. Members often pay a monthly or yearly fee

and can locate the most convenient car on their smartphone, book it and unlock it with their

membership card. They drive it only for the time they need it, and usually pay a sum based

on how long they use the car, the distance driven, or a combination of both. Some companies

use a roundtrip model, where the car must be parked at the same spot it was picked up, while

others employ a one-way model, where the car can be parked somewhere close to the user’s

destination. This carsharing model has two goals in general; the company wants to generate

and maximize profits while also supporting sustainable mobility. The idle time of the vehicles is

minimized, and the economic costs and benefits of the cars are distributed among all members,

making it potentially cheaper to always have access to a car compared to owning a personal

vehicle. Since the companies support more sustainable mobility, they often make deals with the

city to get better parking spaces for a cheaper price, and other privileges such as reduced tolls.

A non-profit version of the same model also exists, where the members all contribute resources

to manage the carsharing without anyone expecting a financial gain. A third business model is

a peer-to-peer carsharing scheme, where private individuals own cars they rent to other private

individuals. Some intermediary using the web or mobile technology is used to connect owners

with potential renters.

Ridesharing is not about renting or borrowing a car, but rather a seat in a car. Carpooling

11



Chapter 2. Background

is a popular activity, where vehicle owners allow people going to and from the same or similar

locations at the same time to ride in the same vehicle (Cohen & Kietzmann 2014). The owners

are in general not seeking profit here, but the passengers often pay a small sum to help the

driver with expenses such as fuel and other costs associated with owning a car. Carpooling also

contributes to reduced traffic congestion, as a standard car potentially can replace five cars if

people are carpooling to and from work during rush hours. Historically, carpooling had to be

arranged either personally with people the driver knew, or through designated meeting places,

but with recent ICT developments, this process has become easier. New carpooling schemes

use social networks and mobile geolocation to find both drivers and potential riders, and this

can enable real-time co-riding with strangers, potentially making carpooling more attractive and

thereby reducing traffic and pollution.

Sharing vehicles could potentially reduce one’s carbon footprint compared to owning a per-

sonal vehicle. Owning a car which is always available might result in more driving than neces-

sary, whereas participating in carsharing could mean that one only uses a car when it is needed

and might use a bike or public transport for shorter trips when possible. However, a study has

shown conflicting results on the effect of carsharing on greenhouse gas emissions (Martin &

Shaheen 2011). Some of the households in the study had significant reductions in such emis-

sions, but the majority participating in the carsharing scheme ended up with slightly increased

emissions. The carsharing led to an expanded availability of cars for people who usually would

not own a personal vehicle, and the possibility to get cheap rides were shifting people away from

public transport. Even though the average greenhouse gas emission per household decreased,

carsharing might work against one of its purposes.

2.3 Autonomous vehicles

Historically, vehicles have been entirely dependent on a human driver, only responding to the

driver’s commands and unable to make decisions (Gerla et al. 2014). The past years’ devel-

opments in technology, communications and software have introduced Advanced Driver As-

sistance Systems (ADAS) and Automated Driving Systems (ADS), designed to help the driver

with parts or all of the driving (Rödel et al. 2014, NHTSA 2018). Existing ADAS include

helping tools such as automatic transmission, parking assistants, and navigation systems, which

12



2.3 Autonomous vehicles

already are well-used, while ADS can be autonomous vehicles (AV) capable of doing all the

driving, but these are still being researched, developed and tested. The extent to which ADAS

or ADS are used in vehicles differ, and the National Highway Traffic Safety Administration

(NHTSA) in the US use six levels of automation when classifying vehicles, described in table

2.1.

Automation
level

Who drives Description

Level 0
Human
driver

The human does all the driving.

Level 1
Human
driver, assist
from system

An ADAS can sometimes assist with either steering or
braking/accelerating, but not simultaneously.

Level 2
Human
driver, assist
from system

An ADAS can control steering and brak-
ing/accelerating simultaneously under some cir-
cumstances. The driver pays full attention and
performs the rest of the driving task.

Level 3
Human
driver and
system

An ADS can do all of the driving task under some cir-
cumstances. The driver must be ready to take control at
any time when requested. In other circumstances, the
driver performs the driving task.

Level 4
System
and human
driver

An ADS can do all the driving in certain circumstances.
The driver need not pay attention in those circum-
stances.

Level 5 System
An ADS can do all the driving in all circumstances.
The occupants are just passengers and need never be
involved in driving.

Table 2.1: SAE’s six levels of automation
Source: NHTSA (2018)

This thesis focuses on fully autonomous vehicles (level 5), which can disrupt the whole

car industry, and potentially bring with it huge benefits within road safety, traffic and mobility,

among others (Bertoncello & Wee 2015, Fagnant & Kockelman 2015, NHTSA 2018). Despite

all these benefits for both individuals and society, there are also many challenges and obstacles

to overcome before fully autonomous cars are available to the public.

Almost all traffic accidents today are caused or contributed to by human error or choice

(Fagnant & Kockelman 2015, World Health Organization 2015, NHTSA 2018). Self-driving

cars can mitigate the human factor; they can be programmed to follow all speed limits and traffic

rules, they will not be affected by drinking or drugs, and they can react faster than humans can,

13



Chapter 2. Background

which could significantly decrease the number of people killed or injured in traffic (Fagnant &

Kockelman 2015). The fatalities and injuries resulting from traffic accidents are very expensive

for the society, both regarding loss of life and decreased quality of life, but also concerning

lost workplace productivity, so reducing accidents will also incur an economic benefit (NHTSA

2018).

Roads containing AVs can also lead to better flow in traffic, and reduce congestion, fuel

usage, and emissions (NHTSA 2018). By anticipating other vehicles’ braking and accelera-

tion, AVs can achieve smoother speed adjustments, and they can also decrease the gap between

cars, causing a more efficient road and intersection usage (Fagnant & Kockelman 2015). How-

ever, for these benefits to be maximized, a high percentage of AVs in traffic is required, along

with some vehicle-to-vehicle or vehicle-to-infrastructure communication. By reducing traffic

congestion and optimizing driving patterns, commuting can take shorter time, and with fully

automated vehicles, the time spent on the road can also be used more productively (Bertoncello

& Wee 2015, NHTSA 2018).

The mobility in the society will potentially increase with fully autonomous vehicles, by

providing everyone with the possibility to use a car (Fagnant & Kockelman 2015, NHTSA

2018). Elderly, people with disabilities or people too young to drive can use the cars the same

way other people can, which can make independent living possible for more people, and also

allow more people to work, improving their quality of life. Combined with car sharing and/or

ride sharing, AVs as an on-demand service could also replace the need for a personal car for

many households, and Fagnant & Kockelman (2018) found that with an optimized fleet size,

each shared AV could replace ten privately owned cars in cities. The number of parking spaces

can then be reduced, both because there are fewer cars, but also because each car will be used

for a higher percentage of the day. Additionally, AVs will not need a parking space with room

to open the doors, which also reduces the size of the parking lots (Bertoncello & Wee 2015).

Several challenges are related to the technology used. Fully automated vehicles rely on

a variety of sensors, cameras, radars and more to observe the environment and identify all

objects and their speed, which is very critical to do correctly and can also be very difficult

(Gerla et al. 2014, NHTSA 2018). People around the car can be of all shapes and sizes, moving

at different speeds, or sitting, standing or laying on the ground, while other objects can be

difficult to separate from one another; a square-shaped object in the road could be a box made

14



2.3 Autonomous vehicles

of cardboard, or a block of concrete, which lead to very different consequences if crashed into

(Fagnant & Kockelman 2015). In addition to this, the weather conditions around the car could

lead to sensor noise, making it more difficult to see the surroundings and thus challenging to

make the correct decisions in traffic. The technology used is also costly, making the cars not

affordable for most people without a significant decrease in price.

Another problem people are worried about with autonomous vehicles is the security of the

software and the privacy of the data (Gerla et al. 2014, NHTSA 2018). Malicious attacks must

be prevented, as they could be fatal if human passengers have no chance to take control over the

software in the vehicle. Attacks on an entire vehicle fleet or terrorist attacks could have severe

consequences, but security breaches are more commonly used for espionage and not sabotage

(Fagnant & Kockelman 2015, p. 177). With security measures, like those used in, e.g., air traffic

control systems, the risk of attacks can be significantly reduced. Much data is gathered from

the rides taken, and how this data is stored, shared and used is a big concern for many. Data

about a person’s routes, destinations and travel times can be used for tracking, surveillance or

targeted advertising, but it could also be used to improve traffic and reduce prices (Fagnant &

Kockelman 2015, p. 178).

For autonomous vehicles to be used, it requires people to trust the cars enough to accept

handing all control over to the car, and for people to keep using the cars, it is essential that

their attitude and experiences are positive. Rödel et al. (2014) studied people’s general attitude

and experiences with all levels of autonomous vehicles to find out what factors affected their

attitudes and how the potential for autonomous cars was. They found that people’s acceptance

decreased as the autonomy level increased, but in general people were very positive and had

good experiences with familiar cars. People who had experience with different ADAS also

tended to have a higher acceptance for more autonomous functions. This could mean that the

general acceptance for autonomous vehicles will increase as people get more familiar with

vehicles that include higher levels of autonomy.

Not only does the public have to be positive, but governments must also change laws for

autonomous cars to become publicly available and be a part of the traffic (Fagnant & Kockelman

2015). Insurance companies will have to change their policies based on who should be held

liable if an accident occurs (Bertoncello & Wee 2015, Fagnant & Kockelman 2015). As humans

no longer control the cars, they can probably not be held liable if an accident occurs, and it might

15



Chapter 2. Background

be the car manufacturers that need insurance in case of a technical error. The ethics behind the

choices the car should make is also a challenge; the car might act differently if an animal jumps

in front of the car than if it is a human, and it might not prioritize its passengers over people

outside the car (Fagnant & Kockelman 2015). These algorithms are also something lawmakers

must take into account when designing regulations.

Research is still needed on the subject, and although some manufacturers have come a long

way and the possible benefits are huge, there are still many challenges to overcome and regula-

tions to be changed before automated vehicles will be publicly available (NHTSA 2018).

2.4 Usability

Usability is the ”extent to which a system, product or service can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of

use”, as defined by the International Organization for Standardization (2010), and is an impor-

tant element in any application today. Poor usability, meaning that the application is challenging

to use or that controls are difficult to master, for example, negatively affects the user’s overall

experience and interaction with the app, and can in the worst case lead to the user refraining

from using the system.

The usability of a mobile application depends upon its user interface (UI), which is the part

of the system the user can see and interact with. It is therefore essential to have a good UI design

that increases the user’s confidence to keep using the app. The effectiveness of a UI refers to

how accurate and complete users can achieve specified goals, while the efficiency is about the

resources needed to achieve those goals, and the satisfaction is decided by how comfortable and

positive the users are towards using the product (International Organization for Standardization

2010). For the UI to achieve this, it should be organized logically and consistently, so that

it does not require much of the user. Nielsen (1995) defined ten heuristics to design usable

UIs, including recognition over recall (users should understand, not remember, how to use the

system), minimalist design, error prevention and help to recognize, diagnose and recover from

errors, and user control and freedom, among others.

16



2.5 Shared mobility and autonomous vehicles: Existing solutions

2.4.1 System Usability Scale

Since usability depends upon the specified users and context of use, the testing of it is also

dependent on this, so it is difficult to compare the usability of different systems (Brooke 1996).

A huge variety of scales to measure usability exists, and one of the most used scales is the

system usability scale (SUS). SUS is a standardized, simple scale aiming to give a global view

of the usability of a system. It consists of 10 statements, where the participants, after testing the

system, rate how much they agree to each, ranging from strongly disagree to strongly agree. A

SUS score can then be calculated based on the responses, where all answers are given a score

between 0 and 4, where 4 is the best. For the odd-numbered questions, strongly disagree is

given a score of 0, while strongly agree is given a score of 4, and the even-numbered questions

are scored oppositely: strongly agree is given a score of 0, while strongly disagree is given a

score of 4. The score is summed up and multiplied by 2.5, to provide an overall score between

0 and 100. This score is not a percentage, in fact, 68 is considered an average SUS score.

This means that a system scoring above 68 (on average across all test participants) have above

average usability. The SUS score only implies how usable a system is, it is not diagnostic and

does not mean where potential problems might be. It is, however, a reliable tool for measuring

usability, and can be used to test a variety of systems, including both hardware and software.

2.5 Shared mobility and autonomous vehicles: Existing solu-

tions

This section presents some of the many existing solutions for products and applications working

on autonomous vehicles or offering shared mobility.

2.5.1 Waymo

Waymo is a company working with self-driving technology, initially started as a Google project

in 2009, but became an independent company in 2016 (Waymo 2018a). The name originates

from their goal, which is to develop a new way forward in mobility. They aim to improve

mobility for people around the world with their fully autonomous vehicles, by making it easier

17



Chapter 2. Background

and safer for everyone to move around. Waymo’s cars contain several sensors and computers to

see the world around it, all 360 degrees (Waymo 2018d). The data from these are combined and

used with artificial intelligence and machine learning, based on more than 5 million miles of test

driving in different surroundings, to make predictions and tell the car how to navigate through

traffic (Waymo 2018e). When making decisions, Waymo emphasizes that not only the safety of

the passenger(s) is taken into account; the car is programmed to make sure that everyone in and

around the car feels secure.

In addition to cars from big car manufacturers such as Lexus and Chrysler, Waymo has also

designed their own vehicle, named Firefly, which is a complete self-driving vehicle containing

custom sensors and computers, but no steering wheel or pedals, and can be seen in figure 2.5

(Waymo 2018c). Firefly completed the world’s first fully autonomous ride on public roads in

2015, done in the busy streets of Austin, Texas. Waymo continues to work on cars driving

in regular traffic, and has since 2017 had an early rider programme, where the public in and

around Phoenix, Arizona can sign up to test the cars in their everyday life, driving on public

roads without anyone in the driver seat, and they also plan to expand to other cities eventually

(Waymo 2018b).

Figure 2.5: Waymo’s FireFly
Source: Waymo

18



2.5 Shared mobility and autonomous vehicles: Existing solutions

2.5.2 Uber

Uber is a ride service company aiming to make transportation easier, safer and more affordable,

while also reducing traffic congestion in cities (Uber 2018d). Since its beginning in 2009, the

company has grown worldwide and has 3 million drivers and 75 million riders spread in over

600 cities in 65 countries, resulting in 15 million trips each day. Uber itself does not own any

vehicles or hire any drivers, but is a social networking platform in the form of a mobile app,

used as an intermediary to connect drivers with potential passengers in real-time, based on their

location (Cohen & Kietzmann 2014). This is a way for the private drivers to earn extra revenue

using their private vehicle, where Uber takes up to 20% of the transaction.

The rider enters a destination in the app and chooses wanted ride option (Uber 2018b). The

different options offered are in different price ranges, from economy class uberX for up to four

people, to uberXL with affordable SUVs for up to 6 riders, to premium uberLUX with luxury

cars and professional drivers. One has to book the entire car for all these options, no matter how

many passengers are riding. A ridesharing option also exists, uberPOOL, which matches the

passenger with other riders heading the same direction. Ridesharing saves costs as the price is

shared, helps reduce traffic since fewer cars are needed, but might take longer time as one has

to pick up and drop off other passengers on the way.

The rider is then matched with a driver and can see info such as the driver’s picture and

ratings, vehicle details and estimated price, which is set by Uber and not the driver, for the

ride (Uber 2018c). The rider can then track the car’s arrival on the map, and the app also

handles payment, so no money is given directly to the driver. When the ride is finished, one can

rate the driver, which helps make Uber safe, reliable and enjoyable for everyone. Initially, the

matching between rider and driver was based on ridesharing, where the driver was going the

same direction as the rider (Cohen & Kietzmann 2014), but now, most drivers operate more like

taxi drivers, and some have quit their job to become full-time Uber drivers. Uber is therefore

now more similar to a taxi service, but many would say that their product is better than a typical

taxi company; one can book a ride with a few taps on a smartphone, the payment is more

convenient, the price is often lower than for a taxi, and one rates the driver and ride afterwards,

which ensures high standards (Christensen et al. 2015).

In addition to the services offered now, Uber is also working with self-driving technologies

19



Chapter 2. Background

to implement in their products in the future (Uber 2018a). They are planning to use this both

for trucks to move goods safely and cost-effective, and in their cars, to transport people more

efficiently and reduce traffic congestion, to make rides more affordable and accessible, as well

as making traffic safer and reduce the number of accidents and lives lost in traffic.

2.5.3 BlaBlaCar

BlaBlaCar is the world’s biggest long-distance carpooling platform and serves as an interme-

diary connecting drivers with passengers (BlaBlaCar 2018). The company does not own any

vehicles, but is an online platform for web and mobile where drivers can post available seats

in their private car, and passengers can look for available seats to their destination. BlaBlaCar

suggests a fixed price per available seat, which takes distance, fuel, tolls and other expenses,

such as insurance and maintenance, into account, but the driver can adjust this price within cer-

tain limits. This is done to ensure that the driver does not make a profit from the ride, since the

general goal of carpooling is to split the costs between all passengers. Because of this, it is also

not possible to rent out more than three seats per ride. All payment is made online, making it

safer for both driver and passenger, as the passenger pays before the ride and the driver receives

the payment after the ride. BlaBlaCar also receives a 12% commission for each transaction,

but it is considered a non-profit company as drivers are not generating any revenue. Both the

driver and the passenger have to use their real name in their profile, and they often also include a

picture and short description of themselves and their car. In addition to this, they also develop a

reputation based on previous ratings. After a ride has ended, the driver can rate the passenger(s),

and opposite, making it a safer platform, as the user can read previous ratings before booking a

ride.

In addition to the economic motivation, as the cost in general is cheaper than the corre-

sponding train or bus ticket, and the ride also is cheaper for the driver compared to driving

alone, users are motivated to choose carpooling from ecological and social reasons (Farajallah

et al. 2016). Carpooling reduces road congestion and greenhouse gas emissions as it minimizes

the amount of cars on the roads, but it is also a social venue to meet and get to know new people.

The name BlaBlaCar actually comes from how talkative the driver wants the ride to be, ranging

from ”bla” and not very talkative, via ”blabla” if they would like to talk a little, to ”blablabla” if

20



2.5 Shared mobility and autonomous vehicles: Existing solutions

they are very talkative (BlaBlaCar 2018). As the driver and passenger(s) will share a small car

for possibly several hours, the social aspect is an important factor when booking a ride.

2.5.4 ZipCar

ZipCar was one of the world’s first successful carsharing companies, and is said to be the inno-

vator of the concept of carsharing (Schor 2016). It started as an independent company who had

cars placed around cities for members to use on an hourly basis, but has now become a subbrand

of the car leasing company Avis. ZipCar has a for-profit business-to-consumer roundtrip busi-

ness model (Cohen & Kietzmann 2014, p. 284), where people pay a monthly or yearly fee to be

a member, and can reserve cars online, pick it up and rent it for a few hours or days, before they

park in the its reserved spot, and pay online for the time they used the car (ZipCar 2018a). This

business model provides a more affordable access to cars, since all maintenance, insurance, gas

and parking prices are taken care of by ZipCar, and members only pay for using the car when

they need it, not the whole year around (ZipCar 2018b). Several similar companies exist around

the world, for example DriveNow, a German-started carsharing company owned by the BMW

group in Europe (DriveNow 2018).

2.5.5 Bilkollektivet

Bilkollektivet is a Norwegian business-to-consumer carsharing company, owning vehicles in

several of the big cities (Bilkollektivet n.d.). It works similarly to ZipCar, with a membership

fee covering expenses such as insurance, maintenance, fuel, toll and parking, and other than that,

members only pay for the time they use the car and the distance they drive. The big difference

from ZipCar, however, is that Bilkollektivet is non-profit and owned by only the members,

meaning that the price each member pays, goes directly to the car park and the service, no

company is trying to earn a profit from its members.

2.5.6 Nabobil

Nabobil is a Norwegian peer-to-peer carsharing company, where people can rent out their pri-

vate vehicle to people in need of a car for a short period (Nabobil n.d.). Its business model is

21



Chapter 2. Background

built upon the philosophy of the sharing economy of using resources more efficiently. People

who own a car, but don’t need it all the time, can rent out their car for some fee, which will then

help them cover expenses such as insurance and maintenance. At the same time, people who

do not own a car, but need one once in a while, can borrow their neighbor’s car and pay a small

sum, which will be much cheaper than owning a car themselves. The renter has to pay before

he receives the car, and the owner receives the payment after the car is returned, making it safer

for both parts. The renter also has to register a credit card in case extra expenses are incurred

during the rental period.

2.6 Mobile app development: Platform and technologies

One of the goals of this project is to develop an app to handle car bookings, and this can be

done in multiple ways with different technologies. This section therefore compares native apps

for Android and iOS to web applications and presents some advantages and drawbacks of each.

Some popular technologies for the development of these are also described. This is followed by

an evaluation of these, resulting in a decision on what platform and technology to use for the

development of the app.

2.6.1 Mobile application

Mobile applications are programs developed to be installed and used on a particular mobile

device. Developing a mobile app have several advantages, including access to built-in hardware,

such as camera and GPS, functionality and application programming interfaces (API) offered

by the platforms, as well as third-party libraries (Budiu 2013). Since the app runs directly on

the device, the performance of native apps is usually better than other alternatives, and they can

often also be accessible when the device is offline. A drawback of native apps is the distribution

and updating of mobile applications. They must be installed via application stores such as App

Store and Google Play, and changes made to the app must be packaged in a new version which

each user must update to. Several programming languages, frameworks and recommended

Integrated Development Environments (IDEs) to develop mobile applications exists, mainly

separated into native and cross-platform development.

22



2.6 Mobile app development: Platform and technologies

Native development

One option is to develop native, platform-specific apps for the two most popular mobile plat-

forms, iOS and Android (Gartner 2017), by using tools and technologies as recommended by

the individual vendors.

Native iOS applications can be developed using the Xcode IDE with Swift (or Objective-

C) as the programming language (Apple 2018a). Swift is a powerful programming language,

aiming to make it easy to write and maintain correct programs, and to be the best language for

several different use cases (Apple 2018b). It is said to be easy to learn, and is developed to be

safe, fast and expressive. A disadvantage of developing native iOS applications is that Xcode is

only available for Mac, making it impossible to do with e.g., a Windows computer.

Android Studio is the official IDE for Android development, using Kotlin as its official

programming language, but it is also possible to use Java, or a combination of both (Android

2018a,b). Kotlin is, similarly to Swift, developed to be a modern, expressive and safe program-

ming language to improve performance and make faster apps. Contrary to iOS development,

there is no restriction on the tools or machine, one does not have to use Android Studio but can

use the IDE the developer prefers, where popular choices include IntelliJ or Eclipse.

Both native apps for iOS and Android have the advantage that functionality and APIs for the

platform, as well as third-party libraries, can be used directly in the code, they have the highest

performance as they do not require any abstraction level, and also the smallest footprint since

the app package only contains the code and some configuration (Friberg 2017, Apple 2018a,

Android 2018b). However, developing for both iOS and Android requires two separate projects

with no code reuse for the two platforms. It also requires knowledge of different programming

languages, frameworks, and classes and components that can be used.

Cross-platform development

Another option is to use a cross-platform framework, enabling the sharing of code between the

apps. Two promising frameworks are React Native by Facebook and Xamarin by Microsoft.

React Native uses only JavaScript to develop mobile apps for Android and iOS, and one

can use any IDE of choice (Facebook 2018c). Small, reusable and declarative components

are written in JavaScript and rendered to higher-level, platform-specific components on each

23



Chapter 2. Background

platform (Occhino 2015). This results in an app looking and behaving like any native app,

because the same native components are used, only wrapped with JavaScript. One can also

write modules in native code when needed to optimize the app, and since React Native is open

source, the whole community can contribute to new modules, making it a richer framework

(Witte & von Weitershausen 2015).

Xamarin uses .NET and C# to develop apps for iOS, Android and Windows, and one has to

use Visual Studio as the IDE (Xamarin 2018). One can choose to develop the UI native for each

platform, or use Xamarin.Forms to share as much code as possible for the UI as well (Microsoft

2018). This can be done with XAML (eXtensible Application Markup Language) to define the

UI, binded to a C# code-behind-file, and renders to native UI components. It is also possible to

define custom renderers for Android and iOS where needed, also done in C#, which means that

the developers do not have to learn several technologies and programming languages.

Both frameworks use a shared codebase for both platforms, and they also offer the opportu-

nity to build some of the app native when needed, to optimize the application. This means that

one could need to write parts of the code in the native language to access all functionality or

to follow design guidelines for the OS (Friberg 2017). Thus, the amount of code sharing might

not be as helpful as anticipated before the project starts, but compared to having two separate

projects, it is considered a huge advantage of choosing cross-platform frameworks to develop

mobile applications that feel and look like native applications. A disadvantage for the cross-

platform apps is that even though there is no need for a Mac to write code, one still needs a Mac

to build the iOS app.

2.6.2 Web application

Web applications are websites that can look like native apps, but are accessible through a web

browser when the device is connected to the Internet (Budiu 2013). HTML (HyperText Markup

Language) is the standard language for the development of web pages, often used together

with JavaScript for the logic and CSS (Cascading Style Sheets) for styling, but multiple new

technologies and frameworks exist, enabling a faster development of more complex web apps.

Since they are accessible through browsers on all devices, web apps only require one code

base, and they are also easily distributed and updated as there is no need to install the apps on

24



2.6 Mobile app development: Platform and technologies

the devices. However, they lack the use of platform-specific UI elements, and the native mobile

gesture recognizers are challenging to achieve (Occhino 2015). The performance is also usually

poorer on web apps than native apps, as it is difficult to parallelize work on different threads.

Angular is an open-source JavaScript framework, developed by Google and designed for the

development of apps for both web, mobile and desktop (Google 2017). It extends the static data

of HTML, which allows creating dynamic and interactive applications by using components that

describe what should be displayed where, and how, in the app (Sidorenko 2017). It is considered

easy to learn, but also powerful enough to use when developing complex single-page web apps.

Since Angular is just a frontend framework, other frameworks and technologies are needed to

build a full web app, and although the components allow for code of high quality, much code is

needed for a single component (The Good and the Bad of Angular Development 2017).

React is a JavaScript library, developed by Facebook to build user interfaces for web applica-

tions (Facebook 2017), and is the predecessor of React Native. React uses reusable components,

which are JavaScript functions that take some input and return a React element to appear on the

screen (Components and Props n.d.). The components manage their own state and express what

the application should look like, rather than what Document Object Model (DOM) operations

are needed. A virtual DOM compares the previous state with the desired state and updates the

DOM in the most efficient way, which means that React only updates the parts where changes

are made, making the app very fast. Since React is a small solution to build the UI, additional

frameworks, libraries and tools are needed to build complete web applications.

Elm is a functional programming language that compiles to JavaScript (Czaplicki 2017a).

It has the same conceptual model as React and also uses a virtual DOM, but requires less setup

and does not depend on JavaScript. Elm focuses on performance, robustness and usability

for the developer, and aims to simplify the creation of responsive graphical user interfaces

(GUI) and improve maintainability for web applications (Czaplicki & Chong 2013). HTML is

described in a declarative way, making the creation and combination of text, images and videos

to a multimedia display easier (Czaplicki 2017b). Since Elm is a relatively new programming

language, there is a chance of incompatible changes requiring rewriting of code, and although

Elm offers high-quality libraries and the amount of third-party libraries is growing, the Elm

community is still small.

25



Chapter 2. Background

2.6.3 Choosing the best tools

Several good technology alternatives to develop an app for booking autonomous vehicles exists,

and both mobile and web applications have good potential to fulfill the requirements of the app.

However, since the geolocation of the device is essential for the app, and good performance

also is very important, a mobile application would suit better than a web application. The

app should be available for at least the two dominating mobile operating systems, iOS and

Android, and because of limited time and resources, it would therefore be beneficial to develop

a cross-platform app where the two apps could share all code logic. Looking at React Native

and Xamarin, both technologies can accomplish this, and React Native was chosen due to its

component-based architecture, which is well suited for the car booking app’s requirements.

React Native is further described in section 3.2.1.

26



Chapter 3
Methodology and implementation

This chapter presents the methodology used for the development of the mobile application.

This includes a presentation of the intended product, a description of the chosen technologies,

the requirements for the application, the architecture and implementation details, as well as a

description of how the user tests were executed.

3.1 Overview

Combining the sharing economy and fully autonomous vehicles as a product for the public has

enormous potential, and can be facilitated by a mobile application. The idea is that people be-

come members and share a pool of self-driving cars by paying a yearly fee, and they can use an

app to book cars whenever needed. Members download the app and create user profiles contain-

ing information, such as payment details and pre-defined addresses like their home and work

addresses. Once signed in, users can see a map containing their location as well as available

cars nearby, with the opportunity to book a ride.

This project is a part of the NTNU Autonomous Perception (NAP) project and focuses on

developing the car booking application for this project, called NAP App. The application is the

only part of the system the users communicate with and takes care of all communication with

the database and cars. To book a car, the user enters the address of the wanted destination or

place a pin on the map, and the system will assign the best available car and calculate the route,

both based upon the user’s current location. It is also possible to change the pickup location and

27



Chapter 3. Methodology and implementation

time, and this will result in a re-calculation of the route and car distribution. Cars are distributed

among users in the most optimal way for both traffic, environment and the user itself. It will

also be possible to share a car if several users are traveling the same direction at the same time.

In addition to the annual membership fee, users pay a fee for each ride, depending on the

route traveled and whether or not the car was shared for parts of the journey. This happens when

the ride ends as the user exits the car, and all payment is also taken care of by the application.

The ride booking is the most critical use case for the mobile application, and a use case diagram

for how a single user books a ride can be seen in figure 3.1.

Figure 3.1: Car booking use case

3.2 Technology

This section presents the technologies used to develop the mobile app.

28



3.2 Technology

3.2.1 React Native

It was chosen to develop mobile applications for Android and iOS with React Native, to have

one main code base for both apps and still achieve high performance. React Native is a cross-

platform framework based on React for the web, where one can develop mobile applications

identical to native developed apps, but using JavaScript (Facebook 2018c). One uses similar

declarative components representing single views as with React, but instead of rendering to a

virtual DOM, the React Native ”bridge” invokes the Objective-C APIs for iOS and Java APIs for

Android, resulting in components rendered as the real, native UI components for each platform

(Eisenman 2015). React Native also supports all native APIs, which means that the application

can access features like the geolocation of the device or the camera.

Using the host platform API’s makes React Native able to achieve 60 frames per second

and therefore a significantly better performance than frameworks using web views (Facebook

2018b). The logic runs on the JavaScript thread, separate from the main UI thread, so the appli-

cation can achieve both high performance and capability without affecting the user experience.

This is an advantage for this project, as lots of re-rendering is necessary, at the same time as

API calls and calculations must be done. However, complex calculations and re-rendering of

expensive component subtrees can lead to several frames being dropped, resulting in the app

appearing to freeze, and this should be avoided as much as possible to ensure a good user

experience.

React Native functions like an abstraction layer between the code and the rendering, with the

bridge providing an interface to the native UI elements (Eisenman 2015). A React component

returns some markup describing what it should look like, which is translated to fit its host

platform. For example, a <View> in a React Native component will be translated to an UIView

on iOS and an android.view on Android. Some components can, however, be specified for each

platform if React Native does not offer the interface to translate it, or some parts of the app

need to be optimized (Facebook 2018c). By being forced to break the application into discrete

components, it becomes easier to maintain and iterate on the product, and the applications are

also easier to scale (Occhino 2015).

An example of the code for a simple React Native component can be seen in listing 1. The

constructor sets the initial state for the component, in this case, ”greeting” is set to an empty

29



Chapter 3. Methodology and implementation

Figure 3.2: React Native bridge

string in line 7. The render function in line 14 to 24 is what returns the markup being trans-

lated into native UI components. The code for this is not plain JavaScript, but JSX (JavaScript

XML), an extension for JavaScript which embeds XML (eXtensible Markup Language) (Face-

book 2018a). This is due to React’s focus on separation of concerns instead of separation of

technologies, so the markup, style, and behavior of each component are in the same file (Eisen-

man 2015). This component contains a view with a text input field and a text field for displaying

a greeting to the user. The initial output for this on iOS is shown in figure 3.3a. The function

onTextChange() in line 10-12 is called when the user has entered some text in the text input

field and submitted it, and updates state. When the state changes, the component is re-rendered,

shown in figure 3.3b after the user has submitted ”World”.

The styling of components can also be seen in this example, for the <View> component,

and is also done with JavaScript. The names and values for different style attributes typically

match styling done with CSS (Facebook 2018d). It does not contain all CSS rules, as React

Native instead focuses on simplicity and consistent support (Eisenman 2015).

3.2.2 Redux

Redux is a state container for JavaScript apps, designed to assist with development of appli-

cations that should behave consistently, run across varying environments and be easy to test

(Redux 2018a). React already contains some state management, but Redux also introduces

predictable data flow and a more consistent architecture, simplifying the development. Addi-

tionally, Redux comes with functions to make the developer experience better, such as time

travel debugging and logging of all updates, live code editing, and much more.

30



3.2 Technology

1 import React, { Component } from 'react';
2 import { View, TextInput, Text, StyleSheet } from 'react-native';
3

4 export default class Hello extends Component {
5 constructor() {
6 super();
7 this.state = { greeting: '' };
8 }
9

10 onTextChange(name) {
11 this.setState({ greeting: 'Hello ' + name })
12 }
13

14 render() {
15 return (
16 <View style={styles.container}>
17 <TextInput
18 placeholder="Write your name here"
19 onSubmitEditing={event => this.onTextChange(event.nativeEvent.text)}
20 />
21 <Text>{this.state.greeting}</Text>
22 </View>
23 );
24 }
25 }
26

27 const styles = StyleSheet.create({
28 container: {
29 flex: 1,
30 justifyContent: 'center',
31 alignItems: 'flex-start',
32 padding: 20,
33 }
34 })

Listing 1: React Native component

A store is introduced to the application, where the entire state is stored as an object tree

(Redux 2018e). This state can only be changed by actions being dispatched, which is then

processed by a reducer function handling how every possible action will alter the application

state. The rest of the application can only read the state, not modify it. Since the car booking

application will contain a significant amount of data changing rapidly, and it will be inefficient

to store the entire state in a top-level component, Redux is a good choice to make the data

flow simpler and thereby improve performance. Several components must use the same data in

different ways, and by allowing them to subscribe to the Redux store, all components can use

precisely the parts of the state it needs, and ignore the rest.

A code snippet of a simplified Redux application for a Todo-list (where the only possible

31



Chapter 3. Methodology and implementation

(a) View before text submission (b) View after text submission

Figure 3.3: React Native component on iOS

interaction is to add a new todo) can be seen in listing 2. This application is so simple that

Redux would not be necessary, but it illustrates the concept well. The state of the application

is stored in objects, combined in a tree, but in this case, the state only consists of a list with

todos (line 2). Since the user only can add new todos, this is the only action necessary for the

application. Actions are plain JavaScript objects with a type field and a payload, as in line 5-10,

and this is what the reducer looks at to update the state (Redux 2018b). For more complex cases,

it is common to use action creators. One can also include some middleware, which makes it

possible to run code after dispatching an action, but before it reaches the reducer.

Actions are dispatched in components, through their container. The component itself is not

included in this example as it will be similar to the component in listing 1. The container can be

seen in line 13-23 and uses the React-Redux connect function to wrap the AddTodoComponent

and connect it to the store. The function mapStateToProps is called every time the state changes

and returns an object with props for the component, in this case, the list of todos in the state. To

be able to dispatch the addTodo-action, mapDispatchToProps is used and is only called when

the component is created. This function returns an object with functions that use dispatch, here

onSubmit(task), so when this function is called in the component, the addTodo-action will be

dispatched.

32



3.2 Technology

Since there only is one component and one action, only one reducer is needed, but for bigger

apps, several reducers would be necessary, usually combined to a rootReducer. A reducer is a

pure function only relying on the input it receives and contains all state logic for the app (Redux

2018d). The reducer in this example, in line 26-39, looks at the type of action, and if it is of

type ”ADD TODO”, it makes a copy of the current state, adds the action payload to the list of

todos, and this new state is then returned. The current state is stored in the Redux store, which

is created with the createStore-function, as in line 45, taking the rootReducer as an argument.

The store then notifies subscribers, which is the components wrapped with connect(), and they

can then retrieve the new state and re-render.

3.2.3 MySQL

A MySQL database was chosen to store data about the cars, users, and rides booked by users.

MySQL is an open source SQL (Structured Query Language) database management system

(DBMS) by Oracle Corporation (Oracle 2018b). The relational MySQL databases stores the

data in different tables instead of in one place and this model allows for a flexible programming

environment. A DBMS such as MySQL is needed to add, access and process data stored in a

computer database.

There are several ways to access the data stored in a MySQL server. Depending on the need,

one option is to use SQL and either enter the statements directly or embed them into code in

another language (Oracle 2018b). Another option is to use language-specific APIs that hide

the SQL syntax, with language options including C++, Java, PHP, Python, Ruby and others

(Oracle 2018a). Since the MySQL database software supports multiple back ends, many client

programs and administrative tools, as well as a variety of APIs, it is a highly usable solution for

database handling and works in both client-server and embedded systems.

MySQL servers can run in several different environments, such as a web server, or a local

desktop or laptop computer (Oracle 2018b). It is designed to be able to handle huge databases

faster than other solutions and has become the most popular SQL DBMS, used with success in

big and demanding environments. It is fast, reliable, scalable and easy to use, and this along

with its connectivity and security makes it a popular and well-suited alternative for accessing

databases on the Internet, and also a good fit for NAP App.

33



Chapter 3. Methodology and implementation

1 // State:
2 { todos: ["Write thesis", "Buy groceries"] };
3

4 // Actions:
5 export const addTodo = (task) => (
6 {
7 type: ADD_TODO,
8 payload: { task },
9 }

10 );
11

12 // Container:
13 import { connect } from 'react-redux';
14 import { addTodo } from './actions';
15 import AddTodoComponent from './components';
16

17 const mapStateToProps = (state) => ({ todos = state.todos });
18

19 const mapDispatchToProps = (dispatch) => ({
20 onSubmit: task => dispatch(addTodo(task))
21 });
22

23 export default connect(mapStateToProps, mapDispatchToProps)(AddTodoComponent);
24

25 // Reducer:
26 export const reducer = (state, action) => {
27 switch (action.type) {
28 case ADD_TODO:
29 return {
30 ...state,
31 todos: [
32 ...state.todos,
33 action.payload.task,
34 ]
35 };
36 default:
37 return state;
38 }
39 };
40

41 // Store:
42 import { createStore } from 'redux';
43 import reducer from './reducers';
44

45 const Store = createStore(reducer);

Listing 2: React-Redux application
Source: Redux (2018a)

3.2.4 PHP

To add, retrieve and modify data stored in the MySQL server, it was chosen to develop a

REST API (Representational State Transfer Application Programming Interface) for the back-

34



3.3 Requirements

end. REST is an architectural description containing some constraints and guidelines for the

web, and a web API conforming to this architectural style is a REST API (Masse 2011). APIs

are used by client programs to communicate with web services, so the API facilitates this infor-

mation exchange by exposing a set of data and functionality from the web service, and is in that

way an interface to a database for other programs to use. The client sends a request, identifying

which resource it wants with a Uniform Resource Identifier (URI), and what operation it wants

to perform with an HTTP (HyperText Transfer Protocol) verb such as GET or POST, and the

REST API performs the operation on the resource and sends a response to the client.

This can be done using multiple technologies and programming languages, one of which is

PHP, an open source general-purpose scripting language suited for web development (Achour

et al. 2018). It is commonly used for server-side scripting, meaning that all code is executed on

the server, which generates HTML, JSON (JavaScript Object Notation) or some other file and

sends it to the client. The client will therefore not see the underlying code for the file generated,

making PHP a suited alternative for writing REST APIs. The REST APIs are hosted on a web

server, accessible using HTTP requests.

3.3 Requirements

This section presents the functional and non-functional requirements of the application, as de-

fined for this project. A functional requirement is any required or desired feature, and non-

functional requirements are quality goals of the application. Each requirement includes a pri-

ority level, where a high priority is used for features considered a necessity, and a low priority

implies only a desired, but not critical feature. The functional requirements (FR) are presented

in table 3.1, and the non-functional requirements (NFR) are displayed in table 3.2.

3.4 Architecture

This section describes the architectures of the application.

35



Chapter 3. Methodology and implementation

ID Functional requirement Priority

FR1 The user should be able to see its own position on the map High

FR2 The user should be able to see the position of available cars on the map High

FR3 The user should be able to request a ride to a specified address High

FR4
The user should be able to request a ride to a specified location on the
map

High

FR5 The application should locate the nearest car to the user High

FR6 The application should calculate the best directions for the specified ride High

FR7 The application should display directions and time estimates to the user High

FR8 The user should be able to change the pickup location before booking Medium

FR9 The user should be able to modify the drop-off location before booking Medium

FR10 The user should be able to change the pickup location after booking Low

FR11 The user should be able to change the drop-off location after booking Low

FR12 The user should be able to decide the pickup time Medium

FR13 The user should be able to track the booked car High

FR14 The application should manage multiple bookings simultaneously Medium

FR15
The application should distribute cars in a traffic and environmentally
optimal way

Medium

Table 3.1: Functional requirements

ID Non-functional requirement Priority

NFR1 The application should be easy to use High

NFR2 The application should be able to run on most devices High

NFR3 The application should have a simple and consistent design High

NFR4 The application should support several users simultaneously High

NFR5 The application should display the booked car’s location in real time High

NFR6 The application should display all cars’ locations in real time Medium

Table 3.2: Non-functional requirements

36



3.4 Architecture

3.4.1 React-Redux

Since the app uses Redux for state management and data flow, it is written in a React-Redux

architecture pattern, as shown in figure 3.4. This pattern describes the data flow in the applica-

tion and contains a store, containers with associated components, actions, and reducers (Redux

2018c). The store contains the current state of the application at all times, which is passed to

all React components through their containers. User interaction with components can through

the container dispatch actions or action creators, which can handle API calls and dispatch new

actions based on their response. Reducers compare the current state with the type of the dis-

patched action to update the state in the store.

Figure 3.4: React-Redux architecture

3.4.2 Client-Server

The software for the application is structured in a three-tier client-server architecture, illustrated

in figure 3.5. Three-tier architectures enable separating the functionality of the application into

three layers (IBM 2018). They often consist of a client layer, an application logic layer, and

a data layer. The data layer stores data for the application, typically in some database. The

application logic layer can access the database based on requests from the clients and is where

most of the logic and processing happens. Finally, the clients are responsible for presentation

and interaction with the user, and allows the user to interact with the application logic layer,

but not directly with the data layer. Using three tiers with an intermediary between clients and

37



Chapter 3. Methodology and implementation

database can reduce the load on databases and improve performance.

Figure 3.5: Three-tier client-server architecture

The database layer in this application consists of the MySQL server and contains all data

about cars, users, and rides. The REST API, written in PHP, is part of the application logic and

provides the data from the database to the client mobile applications. The rest of the application

logic, like the calculation of rides, is implemented in the front-end application and is written

in JavaScript. The clients, in this case, are the mobile apps, developed using React Native and

JavaScript, and is only responsible for rendering the data received from the logic layer to the

user, as well as handling all user interaction. Based on these user interactions, a client sends

a request to the REST API to access or modify some data. The database waits for requests

in forms of queries from the REST API and responds accordingly, and the REST API further

handles the response before a new response is sent to the client. After receiving the response,

the client updates the presentation to the user by re-rendering the data.

3.5 Implementation

This section describes the implementation details for the application. The implementation was

done in two iterations, where the first one focused on the car booking functionality, and the

second one focused more on the database and connecting the app to the REST API, as well

as correcting bugs and usability problems from iteration one. The first part of this section will

38



3.5 Implementation

describe the implementation of the database, while the next presents the REST API and how it

is used to access data from the database. Finally, the third part discusses the implementation

details of the mobile application.

3.5.1 Database

The first table needed in the database was a table to store information about the cars. Since

not much information about each car was needed in the first stage of the development, the car

entities stored in the database only contains a few attributes. The most important ones are its

ID, coordinates of its current position and a boolean value storing whether the car is booked

or available. The registration number of the car is also added, and although this is a unique

attribute, a separate ID-field was used as the primary key. The database also contains some

physical information about the car, such as the car brand and type, color and registration year.

More attributes can be added to expand the functionality of the application.

For several users to be able to book cars simultaneously, there was also a need to create a

user profile, and therefore a user table was added to the database. Similarly to the cars, the

users only contain a few attributes in the database. The email is used as the username and has

to be unique for every user. The database also stores a password for each user, encrypted with

MySQL’s password-function 1. In addition to this, each user also has the opportunity to store

their home address, to enable them to tell the application to go home instead of having to type

their address manually every time. This could be expanded so that users could have several

pre-defined addresses to book rides to and from.

It was also decided to store all booked and completed rides in the database. Each ride is

booked by a user and driven by a car, so the table includes foreign keys to the other two tables.

Both the user and car entities have unique attributes such as the registration number and email

address, but they use separate ID-values, as this leads to faster joins, can be more efficient and is

not subject to change. If for example, a user changes his or her email address, this would need

to be updated in both the user table and in every ride the user has booked, but a separate ID-field

will never need to change. In addition to the primary key and foreign keys, the table contains

information about the start, pickup and end coordinates, as well as the start, pickup and end

1https://dev.mysql.com/doc/refman/5.6/en/password-hashing.html

39



Chapter 3. Methodology and implementation

times for the ride. The final entity-relationship diagram for the database can be seen in figure

3.6. As the name implies, this diagram also says something about the relationship between the

entities. In this case, every ride is booked by exactly one user and driven by exactly one car,

whereas any user can book none or many rides, and every car can drive none or many rides.

Figure 3.6: Entity-relationship diagram

3.5.2 REST API

The REST API implemented in PHP contains functionality to retrieve, add, and modify all

objects in the database. During the development and testing of the application, it was hosted on

an NTNU web server2, available for students to host simple web applications. An API for the

cars was first implemented. The most important part for the first functionalities implemented in

the application was to retrieve information about all or one specific available car(s), as well as

update a single car’s booked-status and position. The API also includes functionality to add and

delete cars, as this may be needed in the future. The code for the entire REST API is included

in the GitHub repository linked to in appendix A.1.

When users and rides were added to the database, APIs to retrieve, add, update and delete

these were also implemented. The user API is very similar to the car API, as the only functions

needed is to add and delete a user, modify some attributes of an existing user, or retrieve data

about one specific or all user(s). The API for a ride also contain these functions, but in addition,

it contains functionality to retrieve all rides within a specific time period, for a specific user or

by a specific car, or a combination of these. The code to retrieve rides can be seen in appendix

B, where the query includes a join on all three tables, so the API returns data about the user
2http://folk.ntnu.no/

40



3.5 Implementation

booking the ride and the car driving it, in addition to data about the ride itself. The JSON

response for a single ride is shown in listing 3.

1 [
2 {
3 ride_id: "24",
4 car_id: "1",
5 reg_number: "AB12345",
6 user_id: "1",
7 name: "Test Testesen",
8 start_latitude: "63.435230",
9 start_longitude: "10.412560",

10 start_time: "2018-06-07 10:55:52",
11 via_latitude: "63.430550",
12 via_longitude: "10.419922",
13 via_time: "2018-06-07 10:59:57",
14 end_latitude: "63.430134",
15 end_longitude: "10.393510",
16 end_time: "2018-06-07 11:08:38"
17 }
18 ]

Listing 3: JSON response for rides API

3.5.3 NAP App

The first step of the development process focused on implementing the core of the ride-booking,

which is the most critical functionality needed for the app. This included adding a user at one

location, a car at another location and enabling the user to book the car to drive to a third

location. This was later expanded to include several cars, where the closest car to the user is

chosen. This section describes the implementation of the essential components needed for this

functionality. Because a Mac is needed to run the iOS-app, the focus was on the Android app,

but the app should also work in iOS with some minor adjustments to the code. The code for the

entire application can be seen in the GitHub repository linked to in appendix A.2.

Map

A module called React Native Maps3 was used for the map in the application. This is an

additional package that needs to be installed to React Native and renders to Google Maps on

Android and Apple Maps on iOS. Using this makes the app more familiar for the users, as

3https://github.com/react-community/react-native-maps

41



Chapter 3. Methodology and implementation

it is the native map of the device they are using, and the module supports all known gestures

to zoom and move around the map. The coordinates for the region displayed on the screen

can be set in code, so the initial region of the map is set to the user’s position. Markers can

easily be placed on specified coordinates on the map. The UI components for the route and

all cars are implemented as separate components, but they are subcomponents of the map and

therefore included under the MapView. An excerpt of code for the map component is included

in appendix C.

Destination and pickup locations

The functionality for setting wanted destination and pickup locations are implemented in two

ways. If the user wants to type the address of the location, this is solved with text input com-

ponents, but it is also possible to choose the location by placing a marker on the map. This is

implemented by placing a marker in the middle of the screen, and the user has to zoom and/or

move the map around until the marker is placed over the wanted location. This was chosen to

enable the user to be more precise, as simply pressing the map can result in the map registering

the wrong address. By default, the pickup location is set to the user’s current location and is

displayed with a blue dot, implemented as a marker with an image. When editing the pickup

location, the blue dot is therefore moved to the new pickup location. The destination location is

displayed on the map with a default red marker. Both these markers are also subcomponents of

the map component, but the address input field and button to choose the location on the map is

implemented as a separate component.

Directions

To get directions for the rides, Google’s Directions API 4 was used, where one can search

for directions between two end destinations with several via-locations. The locations can be

submitted as coordinates, string addresses or places IDs. Google’s Geocoding API5 was also

used to translate between coordinates and textual addresses for a more accurate and informative

experience for the user. These APIs use HTTP requests and returns a JSON response containing

information about distance, time, waypoints, HTML instructions for each step of each leg on the

4https://developers.google.com/maps/documentation/directions/intro
5https://developers.google.com/maps/documentation/geocoding/intro

42



3.5 Implementation

route and a polyline for the route, among others. The HTTP request is sent every time the user

submits a new end or pickup location. The polyline returned for each booking request from

the user is encoded to latitude, longitude-pairs in JavaScript by using the additional package

Mapbox Polyline6. The coordinates are then displayed using the built-in Polyline from React

Native Maps, and the directions component with this polyline is included in the map component.

The function to retrieve directions is included in listing 4.

1 export function fetchDirections(startCoordinates, endCoordinates, address) {
2 return function (dispatch) {
3 dispatch(fetchDirectionsRequest());
4 const start = `${startCoordinates.latitude},${startCoordinates.longitude}`;
5 const end = `${endCoordinates.latitude},${endCoordinates.longitude}`;
6 return fetch(`https://maps.googleapis.com/maps/api/directions/
7 json?origin=${start}&destination=${end}&key=${API_KEY}`)
8 .then(
9 response => response.json(),

10 )
11 .then((myJson) => {
12 const dir = getPoints(myJson.routes[0]);
13 const duration = myJson.routes[0].legs[0].duration.value;
14 dispatch(fetchDirectionsSuccess(endCoordinates, address, dir, duration));
15 });
16 };
17 }

Listing 4: JavaScript code to retrieve directions

Cars

The cars are vital elements in the application, but as fully autonomous vehicles licensed to drive

on the road not yet are available, the cars in the application have to be simulated. As described

earlier, the cars used in the application are fake cars stored in the database, accessible through

the REST API. When the application is loaded, the cars are retrieved from the database and

mapped to car components through the car list component, which is added as a sub-component

of the map.

The distribution of the cars is essential functionality for the application. For this first version

of the application, this is solved by finding the car with the shortest route to the pickup location,

in terms of duration. To improve performance, this is only calculated the first time the user

requests a ride, and every time the user updates the pickup position, or when the location of a

6https://github.com/mapbox/polyline

43



Chapter 3. Methodology and implementation

car has changed. The code for how this is solved can be seen in listing 5. This function returns

both the car object, the direction and the duration, and this is later stored in state, so when the

user requests a ride, only the directions from the pickup location to the destination has to be

calculated.

1 export async function fetchBestCar(available, pickup) {
2 let duration = Infinity;
3 let bestCar = null;
4 let directions = [];
5 const destination = `${pickup.latitude},${pickup.longitude}`;
6 await Promise.all(available.map(async (car) => {
7 const start = `${car.coordinate.latitude},${car.coordinate.longitude}`;
8 const resp = await fetch(`https://maps.googleapis.com/maps/api/directions/
9 json?origin=${start}&destination=${destination}&key=${API_KEY}`);

10 const respJson = await resp.json();
11 const thisDuration = respJson.routes[0].legs[0].duration.value;
12 if (thisDuration < duration) {
13 duration = thisDuration;
14 bestCar = car;
15 directions = getPoints(respJson.routes[0]);
16 }
17 }));
18 return [bestCar, directions, duration];
19 }

Listing 5: JavaScript code to assign car

Rides

The ride is another significant part of the application, as the primary goal is to book and com-

plete rides. The ride is not stored as a separate component in the application, but all information

about it is stored in the state, mostly under directions and car. The ride starts when the user

presses the ”Book ride”-button, after requesting a ride from a pickup to a drop-off location. The

best car is then reserved and simulates to drive to the pickup location, following the specified

directions shown in the direction component. The car continues to drive from the pickup to the

destination after the user has pressed the ”Continue ride”-button.

In the final app, the car driving should be based upon the actual movement of the car, but

since this is not possible yet, the car is coded to move one step of the route at a time. The code

for how this simulation is implemented is included in listing 6. The function receives a list

containing all coordinates of the directions for the leg it is simulating, where the first coordinate

is extracted for the car to move to, and the function is called recursively with the rest of the list

44



3.5 Implementation

after a timeout. This is done for the user to see that the car is moving. The timeout is set to

only 200 ms for the testing, so the user does not have to wait for the entire time the ride actually

would have taken.

1 export function driveCar(directions, car, i, type, places) {
2 return (dispatch: Function) => {
3 if (directions.length === 0) {
4 if (type === 'Destination') {
5 dispatch(addRideToDatabase(car, places));
6 dispatch(setCarPosition(car, 0));
7 } else {
8 dispatch(setCarPosition(car, 1));
9 }

10 return;
11 }
12 const dir = [...directions];
13 const next = dir.shift();
14

15 let newi = i;
16 setTimeout(() => {
17 const newCar = {
18 id: car.id,
19 coordinate: {
20 latitude: next.latitude,
21 longitude: next.longitude,
22 },
23 regNr: car.regNr,
24 };
25 dispatch(moveCar(newCar));
26 dispatch(driveCar(dir, newCar, newi += 1, type, places));
27 }, 200);
28 };
29 }

Listing 6: JavaScript code to simulate ride

When all coordinates in the list have been removed, the simulation is over, and depending

on if the car arrived at the pickup or destination location, different database calls are made. If

the car is at the pickup location, the car position will be updated in the database, and the car

status will also be set to ”booked” (line 8). Ideally, the car position should be updated at every

step of the way, and the booking status should be updated once the ride is booked, but it was

solved this way to improve the performance of the application when testing it, as continuous

calls to the database would negatively affect the performance of the app. When real cars are

added to the application, their position will have to be continuously updated in the app, and this

simulation will not be needed.

When the car arrives at the destination, the car position is again updated, and the booking

45



Chapter 3. Methodology and implementation

status is now set to ”available”. In addition to this, the ride is here stored in the database, by

dispatching the addRideToDatabase-function in line 5. The addRide-function called is included

in listing 7. It takes the car used as well as an object containing all locations from the ride as

arguments and creates a POST-request to send to the database. The start and pickup times are

not stored in the app state, so they are calculated based on the estimated durations from Google

since the simulated drive only takes a fraction of the actual duration. The user taking the ride is

also stored in the database, but as no user profiles or login functionality is implemented in the

app, this is hardcoded to be the user with ID 1.

1 export async function addRide(car, places) {
2 const request = new Request(`http://${HOST}/rides.php`, {
3 method: 'POST',
4 headers: {
5 Accept: 'application/json',
6 'Content-Type': 'application/json',
7 },
8 body: JSON.stringify({
9 car_id: car.id,

10 user_id: 1,
11 start_latitude: places.startCoordinates.latitude,
12 start_longitude: places.startCoordinates.longitude,
13 start_time: (Date.now() / 1000) - places.startTime,
14 via_latitude: places.pickupCoordinates.latitude,
15 via_longitude: places.pickupCoordinates.longitude,
16 via_time: (Date.now() / 1000) - places.pickupTime,
17 end_latitude: places.destinationCoordinates.latitude,
18 end_longitude: places.destinationCoordinates.longitude,
19 end_time: Date.now() / 1000,
20 }),
21 });
22 const response = await fetch(request);
23 }

Listing 7: JavaScript code to add ride to database

Known bugs

Addresses that exist in several cities have been a problem during testing. Street names like

”Kongens gate” and ”Prinsens gate” are common in many Norwegian cities, and the first result

from the Google API is for the street in Oslo. Adding Trondheim in the text input field was a

quick fix used during testing, but this is not implemented in the application.

46



3.6 Evaluation

3.6 Evaluation

After the development of the application, a user test was conducted to investigate how usable

the app is, and to identify any problems with the graphical user interface. The user test was

executed in two rounds, first a qualitative test to identify initial problems with the design or

functionality, and secondly, a quantitative test to find a usability score after fixing problems and

adding new functionality. After testing the app, the testers were asked to answer a questionnaire

with questions both regarding their background and their experience with the application.

3.6.1 Number of testers

The number of testers needed to get significant results differ based on the type of test conducted.

For a quantitative study, Nielsen (2012) recommends a minimum of 20 users to achieve statisti-

cally significant results, while a qualitative test aimed at identifying usability problems should

have a group of 5 testers. Users tend to do very similar things, so for every new tester, less and

less new problems will be identified (Nielsen 2000). With five testers, approximately 85% of

problems will be found, which is a good amount for iterative design with several test phases.

A second user test after fixing problems found in the first can both serve as quality assurance

to verify that problems were solved, as well as identify new issues or problems not found in

the first test. In addition to this, it could also provide more in-depth insights about the app,

regarding things such as task flow or information architecture.

3.6.2 First test

The first user test was conducted on a small number of users, as the goal was to identify usability

problems and investigate the potential to use the app. The testers were given a task sheet,

which included a summary of the product as it is intended to be, as well as some tasks to

complete using the app. These tasks were chosen so the users would have to try the different

functionalities added, and they had to be executed on a mobile device given to them while being

observed. They were not allowed to ask questions on how to complete the tasks. The task sheet

is included in appendix D.

After completing the tasks, participants were asked to answer an online questionnaire, which

47



Chapter 3. Methodology and implementation

first surveys their background to see if different age groups or professions were more inclined

to be positive towards the product. Further, they were asked to answer the SUS form. Although

this test was qualitative, it was interesting to see how usable the first version of the app was,

and to see if the SUS score was improved in the later test phase. Finally, the participants were

asked some questions regarding the product and the functionality of the application, to identify

possible problems they had executing the tasks. The questionnaire is included in appendix E.

3.6.3 Second test

The second test focused on finding how usable the application is, and the primary goal here

was to find a SUS score, as well as further investigate people’s attitude towards the product.

Since this was a quantitative test, more participants were needed. The same task sheet, included

in appendix D, were used for the second user test, but the testers were not observed while

executing the tasks, meaning that they had no opportunity to ask questions or receive guidance.

The implementation of the rides API was done before the execution of this test, so it was also

possible to see if the testers were able to do all tasks based on the rides stored in the database.

The participants for this test were also asked to answer an online questionnaire after com-

pletion of the tasks. The first part of this questionnaire is similar to the first test questionnaire,

asking about the participants’ background and normal car usage. Further, they were also asked

to fill out the SUS form. The final part of the questionnaire also here contains some questions

about their attitude towards the product, but in more detail than in the first test, and they were

also asked to identify why or why not they would like to use the product. This questionnaire is

included in appendix F.

48



Chapter 4
Results

This chapter presents the results of the project. The first section focuses on the result of the

development of the application, while the second section presents the results from the user

tests. Since the development of the app was divided into two iterations, the results will also be

displayed for each iteration.

4.1 NAP App

4.1.1 Mobile devices

The application has been tested on a selection of Android devices, both physical devices and

emulators, shown in table 4.1. These devices cover some common Android devices, with differ-

ent screen sizes and resolutions, and different versions of the Android operating system. Since

the development was done on a Windows computer, the app has not been tested on any iOS

devices.

4.1.2 First iteration views

The main functionality of the application is the ability for users to book a ride to a specific

destination, from a specific pickup location. The views for how to achieve this after the first

iteration of the development are presented in this section. The start screen of the app is displayed

in figure 4.1a. It consists of a map with all available cars and the user’s current location as a

49



Chapter 4. Results

Phone Operating system Physical/emulator
Huawei P9 Android 6.0 Physical

Huawei P9 Lite Android 7.0 Physical

Google Pixel XL Android 6.0 Emulator

Nexus 5X Android 6.0 Emulator

Samsung Galaxy S8 Plus Android 8.0 Physical

Samsung Galaxy XCover 4 Android 7.0 Physical

Table 4.1: Tested mobile devices

blue dot. The user is presented with two alternatives: he can type the destination address in the

text field, or tap the button to set the destination with a pin on the map. If pressing this button,

a view with the pin in the middle of the screen is displayed, and the user can then zoom and

move the map, and press ”OK” when the pin is over the wanted destination (figure 4.1b). After

choosing the destination, either way, the route from the closest car via the user’s position to

the destination is calculated and displayed, along with two infoboxes with pick-up and drop-

off addresses and time estimates, as well as buttons to change either locations, and to book or

cancel the ride (figure 4.1c). Canceling the ride will result in the start screen being displayed

again.

If the user chooses to edit the destination, the view in figure 4.2a is displayed, and a similar

view will be shown if he chooses to edit the pickup location. Also here, the user has the choice

between typing the address or placing a pin on the map. When tapping the text input field, the

keyboard is displayed as shown in figure 4.2b. After updating either the destination or pickup

location, the new route is calculated and displayed with updated info about the destination or

pickup address and time estimate, as in figure 4.2c.

Finally, when the user is happy with both the pickup and drop-off locations, the ride can be

booked by pressing the ”Book car now”-button. The car in the app will then simulate driving

according to the directions given, and a new infobox with estimated pickup and drop-off times

are displayed, as in figure 4.3a. It is not possible to zoom or move around the map when

the car is driving. When the car arrives at the pickup location, the user is notified and has to

manually continue the ride from the app, with the button displayed in the view in figure 4.3b.

After continuing the ride, only the estimated arrival time is shown while the car continues the

50



4.1 NAP App

(a) Start screen (b) Set destination with marker (c) Directions screen

Figure 4.1: Requesting ride views, iteration 1

(a) Edit destination (b) Typing address (c) Updated directions screen

Figure 4.2: Editing destination views, iteration 1

51



Chapter 4. Results

simulation drive towards the final destination. Finally, the car and user arrives at the destination,

and the user can choose to book a new ride in the app, with the button in the view in figure 4.3c.

If the button is pressed, the app returns to the start screen, but with an updated position of the

car. Since the app does not communicate with the database, closing the app and opening it will

result in the cars being set at their original positions.

(a) Drive to pickup (b) Pickup screen (c) User arrived at destination

Figure 4.3: Ride simulation views, iteration 1

4.1.3 Second iteration improvements

Based on feedback from the user test after the first iteration, some design adjustments were

made to the application in the second iteration. The database and all communication with it

were also added in this step and implemented in the app. First, the design has changed a little,

to make it more universal and clean. For example, all orange elements are removed, and the

address input component is moved to the bottom of the screen also for the start screen, as shown

in figure 4.4a. The placement of pins on the map works the same way as described for iteration

one, but an ”OK”-button is added next to the text input field for the address (figure 4.4b), as

feedback from the testing after iteration one revealed that several users mistook the other button

for an ”OK”-button. The view containing the best car and directions can be seen in figure 4.4c,

52



4.1 NAP App

with some design changes from the same view after iteration one (figure 4.1c). It is also now

possible to tap the entire infobox to change either the pickup or drop-off location instead of just

a button.

(a) Start screen (b) Typing address (c) Directions screen

Figure 4.4: Requesting ride views, iteration 2

The ride itself does not appear very different to the user, except for a couple of small

changes. The route the car already has driven is not removed, both to improve the perfor-

mance a bit and for the user to keep track of how far the car has driven. The most significant

change, however, is that the bug in iteration one, where it was not possible to move or zoom the

map once the ride has started, is fixed. The simulation apart from this is solved in the same way,

and the same information is given to the user. A couple of views from the new drive simulation

and notifications can be seen in figure 4.5. Finally, when the ride is over, the app immediately

changes to the start screen with the updated position of the car. A demonstration video can be

seen in the YouTube video linked to in appendix G.

The biggest improvement of the second iteration is the communication with the REST API

and therefore also the database. For simplicity in this version of the app, the car’s position is

set when the user is picked up and when the ride is over, not at every single step of the ride.

The ride is also saved to the database when it is finished. This means that if the user closes the

53



Chapter 4. Results

(a) Drive to pickup (b) Pickup screen (c) Drive to destination

Figure 4.5: Ride simulation views, iteration 2

app during the ride, it will not be saved to the database. As no signup or login functionality has

been implemented, the user part of the ride is hardcoded, so all rides in the database are taken

by the user with ID 1.

4.1.4 User flow diagram

The diagram in figure 4.6 describes the flow a user can take to book and complete a ride in the

final system.

4.2 Evaluation

This section presents the feedback given from the users in the two user tests.

4.2.1 First user test

The test was conducted as an online questionnaire after the user was given a set of tasks he

or she performed. The questionnaire for the first user test is included in appendix E, and the

54



4.2 Evaluation

Figure 4.6: User flow diagram

responses are linked to in appendix H.1.

Participants

In total nine people tested the application in the first user test. Since this was a qualitative

test, more testers were not needed to identify problems with the UI. 7 of the participants were

students between ages 20 and 29, while one was between 40 and 49 years old, and one under the

age of 20. When it comes to their line of study or profession, five was in the field of computer

science, and the remaining four in different occupations. It was also asked whether or not the

participants owned a personal car, where three did, three were planning on purchasing a car in

the future, and the remaining three did not own a car. Out of the participants owning a car, one

commonly use it once or twice each day, one usually use the car a few times each month, and

one participant almost never uses their car.

55



Chapter 4. Results

Identified problems

Multiple problems with the UI was identified by the participants. Five of the participants mis-

took the ”Choose destination on map” for an OK-button when entering the address, and re-

quested a separate and more visible OK-button to choose the address of their destination or

pickup location. A couple of participants were not able to change the pick-up location because

of this. Another problem with the application that a couple of participants mentioned was the

ability to zoom or move the map while the car is driving, as this was not possible. One of the

tasks was to specify the drop-off location to the east entrance of a building (while the main

entrance is at the west side), and three users were not able to figure out how to do so, while

some others did not try. One user also mentioned that the design of the app could be improved.

SUS score

A SUS score was calculated to find the potential usability of the app. The resulting SUS score

for the computer scientists and the others, as well as the total score, is presented in table 4.2.

Discipline SUS Score
Computer Science 84.50

Other 68.75

Total score 77.50

Table 4.2: SUS score by discipline, first user test

Attitude towards product

The participants were asked about their attitude towards the product, particularly if they believed

it would make their life easier and if they think they would have signed up for it when it becomes

available. The answer distribution for this can be seen in figure 4.7 and 4.8.

In addition to these questions, the participants were also asked to identify anything that

could be added or removed to make the product more attractive to use. Regarding the cars,

one participant requested more information about the cars, such as its color, type and size, and

another suggested the opportunity to choose what car size to book, as one sometimes might need

a bigger car with more luggage room or car seats. The price of the ride was also mentioned,

56



4.2 Evaluation

Figure 4.7: Answers regarding easier life, first user test

Figure 4.8: Answers regarding potential signup, first user test

as the current version does not include any information about this, so it was suggested that

including some calculations would improve the product. A fourth suggestion was the ability to

plan a ride in the future, not just exactly when the car is booked.

4.2.2 Second user test

The second test was also conducted as an online questionnaire after the user had completed a

set of tasks. The questionnaire is included in appendix F, and the responses are linked to in

57



Chapter 4. Results

appendix H.2.

Participants and background

To evaluate the usability of the system, people from several different disciplines tested the

application. The majority of the in total 18 participants were in the field of computer science

or IT, including both students and software and system developers, and table 4.3 shows the

distribution among respondants of the user test. As in the first user test, the participants were

asked about their usual car habits. 61.1% of the respondents own a personal car, and their

normal car usage can be seen in figure 4.9.

Discipline Participants
Computer science/IT 3

Computer science/IT (student) 6

Other profession 5

Other profession (student) 1

Retired 3

Table 4.3: Participants by discipline, second user test

Figure 4.9: Participant car usage, user test 2

58



4.2 Evaluation

SUS Score

The questionnaire contained the standard SUS questions focusing on the usability of the appli-

cation. The resulting scores per item in the questionnaire can be seen in table 4.4, where each

item has received a score between 0 and 4 and 4 is the most positive for the application, and the

total SUS scores per discipline are displayed in table 4.5.

Question Score

I think that I would like to use this system frequently 2.72

I found the system unnecessarily complex 3.55

I thought the system was easy to use 3.44

I think that I would need the support of a technical person to be able to
use this system

3.44

I found the various functions in this system were well integrated 2.94

I thought there was too much inconsistency in this system 3.61

I would imagine that most people would learn to use this system very
quickly

3.55

I found the system very cumbersome to use 3.83

I felt very confident using the system 3.00

I needed to learn a lot of things before I could get going with this
system

3.55

Total SUS score 84.16

Table 4.4: SUS score per question, second user test

Discipline Score
Computer science/IT 91.95

Other profession 79.58

Retired 70.00

Total SUS score 84.16

Table 4.5: SUS score per discipline, second user test

59



Chapter 4. Results

Attitude towards product

The second test contained more detailed questions about the product and how it could impact

the participants’ everyday life as well as their community. The answers to these questions, both

divided by the car owner status of the participants and for all participants combined, can be seen

in table 4.6, where each statement received a score between 1 and 5, 5 being the best possible

score.

Average Median

Question Total Car No car Total Car No car

This product will make my everyday life eas-
ier

3.39 2.91 4.14 3 3 4

I will sign up for such a product when it be-
comes available

3.61 3.00 4.57 4 3 5

This product will remove my need for a per-
sonal vehicle

2.78 2.20 3.71 3 2 4

My community will benefit from this product 4.06 3.82 4.43 4 4 5

Table 4.6: Average and median for product questions, per car owner status

Textual feedback

The participants were also asked to list reasons for using or not using the product, as well as pro-

viding suggestions for functionality to add or remove to both the product itself and the mobile

application, to make it more attractive to use. They could also write down any problems they

had with completing the tasks, and as the rides were stored in the database, it could be checked

whether or not they were able to complete the tasks as intended. Finally, the participants also

had the opportunity to provide additional comments, if they had any.

Multiple participants mentioned the ease of use as a good reason to use the product. En-

vironmental reasons and the opportunity to carpool was also mentioned by several, and some

mentioned that it could be both cheaper and less work than owning a personal car. Other reasons

mentioned was that it could be practical and flexible to use, for example when doing errands in

the city or for elderly living in rural areas with minimal access to public transport.

Those participants who were negative to signing up for such a product all owned a car

60



4.2 Evaluation

themselves, and some mentioned that they would rather use public transport or their car. One

participant mentioned that it could be used as an alternative to taxis if the price is right, but that

it would not replace the need for a private car. The security factors of the product were also

mentioned as a possible downside with such a product, and the feeling of being watched as the

app would know the user’s position at any time as well as their travel patterns.

Most participants did not have any problems completing the tasks, but some said that they

struggled a bit at first to figure out how to book a car, and tried to press the map where they

wanted to go. Some also mentioned that they did not figure out how to specify a particular

side of a building as the drop-off destination. The latter was also confirmed by the rides in the

database, where most of the testers were dropped off at the main entrance of Lerkendal Stadium,

instead of the east entrance as specified in the tasks.

Some participants also made suggestions for functionalities and possible additions to the

product and app to make it more interesting to sign up. More information about the car, such as

the type and amount of seats, was mentioned by several. Because of the problems mentioned,

several users also suggested to include some user manual with demonstration and instructions

the first time one uses the app. The security aspect was mentioned here as well, as a user wanted

more information about the privacy and security of the application. It was also mentioned to add

auto-complete functionality in the address fields as a potential improvement that would make it

easier for users to use the app.

61



Chapter 4. Results

62



Chapter 5
Discussion

This chapter discusses the research questions defined in chapter 1.2, based on the results pre-

sented in chapter 4 as well as some of the background research presented in chapter 2.

5.1 RQ1: How can autonomous cars and the sharing econ-

omy satisfy the needs of the society?

The background research and answers from the user tests regarding the respondents’ attitude

towards the product were evaluated to answer the first research question. The results show

promise, and the combination of autonomous cars and the sharing economy can lead to several

benefits for the society, but an attitude change is required for people to be willing to give up

their personal vehicles.

Accessible transportation is an important need for people, but the amount and quality of

public transportation vary, and few ridesharing platforms for daily trips exists, so private vehi-

cles are often used. The number of cars on the roads thus keeps increasing, resulting in more

traffic congestion and time spent in traffic. The cars are however not used efficiently, as they

are parked more than 90% of the time on average, which means that fewer cars are needed in

total in communities, and sharing a pool of cars could therefore be a good solution to satisfy

the transportation needs of the society and even improve the current situation. Combined with

autonomous cars, an on-demand service can be offered, which could further enhance mobility

as these cars can communicate and optimize their driving and the total flow of traffic, reducing

63



Chapter 5. Discussion

congestion.

The safety of people is another major need in today’s society, and both the UN and several

individual countries have defined goals to reduce the number of people killed in traffic. Al-

though this number already is decreasing, a lot of people are still killed or seriously injured in

traffic accidents, often because of human error or choice in traffic. Autonomous vehicles can

eliminate these factors and thereby help to achieve these goals and contribute to safer overall

traffic. This does require a high rate of autonomous vehicles on the roads, as the benefits are

higher if all human errors can be eliminated and the cars can communicate.

The environment and a sustainable planet is an essential need of today’s society, and fuel

emissions are a big problem in many parts of the world, contributing to poor air quality and

increased climate changes. Autonomous vehicles can contribute to reducing emissions with

their optimized driving and road usage, and combined with ridesharing fewer cars are needed,

further reducing fuel emissions. As most commute trips happen in single occupant vehicles in

the morning and afternoon, carpooling has especially huge potential here. Several participants

of the user test mentioned the environmental factor as a reason to use the product, indicating

that it is important to people when choosing transportation method, and autonomous carsharing

could, therefore, satisfy the environmental need of the society.

The car owners among the respondents to the user test were negative towards giving up their

private vehicle and replacing it with shared autonomous cars, even though most of them used

their car less than daily. They mentioned the convenience of owning a car and did not think that

the product would make their lives easier, whereas the participants who did not own vehicles

believed their lives would become more comfortable with such a product. This indicates that

an attitude change is needed in society for such a product to become a success, but the fact that

those who do not own cars are positive shows promise, and could mean that the next generations

believe that this product can satisfy their transportation needs.

Although some of the respondents were negative towards using the product themselves,

there was a consensus that it would benefit their communities, where the score of 4.06 out of 5

indicates that the public believes that there is a need for the product in most communities. Some

mentioned the mobility of everyone as an advantage, which is backed up by research and can

contribute to a society with fewer differences between people. Other factors mentioned were

the ease of use and price, which could have been highlighted more to the participants of the user

64



5.2 RQ2: To what extent is a mobile application perceived as a usable tool for booking cars?

tests, as being a part of a carsharing scheme can reduce car-related costs significantly, especially

if the car only is used a few times each week.

All in all, there are many needs of the society when it comes to transportation, mobility, and

safety. This combination of the sharing economy and autonomous vehicles as an on-demand

service, with the help of the public and governments, as changes in laws and regulations are

required for the cars to become publicly available, could potentially replace private vehicles in

the future and satisfy all such needs, but the convenience of owning a car is an essential factor

for people and needs to be addressed in this product as well.

5.2 RQ2: To what extent is a mobile application perceived as

a usable tool for booking cars?

To answer this question, a first version of a mobile application to handle all communication

between end users and cars was developed from scratch. The application was tested through

two separate user tests, to evaluate if it is usable for booking rides. For the product to become

a success, it is important that the cars can be booked easily, so it was interesting to investigate

whether a mobile app could handle this functionality and if all users were able to book rides

without problems. To measure the usability, a usability test using the System Usability Scale

was carried out, presented in sections 4.2.1 and 4.2.2.

The first user test aimed at identifying usability problems, but a SUS score was also calcu-

lated. This gave a result of 77.5, which is an above average score, but there was a significant

difference between the score for the participants in the field of computer science (84.5) and the

rest of the participants (68.75). A score of 68.75 is an average usability score, and this implies

that the application was not that usable for the entire target group, but that it had potential. Be-

cause there only was 9 participants for this user test, the numbers are not considered significant,

but gives an indication on how usable the system is. The comment section supported this indi-

cation, as the comments were positive, but with some suggestions for possible improvements.

The second user test, after some improvements had been made to the app, aimed at finding

the final usability score, and resulted in a total score of 84.16. The number of participants

for this test was 18, with some distribution among age groups and professions, giving a more

65



Chapter 5. Discussion

representative usability result than the first test. The application should, however, have been

tested on an even bigger range of people to cover more of the intended target group. The

usability score is a definite improvement from the first test, and indicates an application with

good usability, but still with room for improvement. The computer scientists gave the app a

total score of 91.95, which is considered very good, whereas the group of retired participants

only gave a score of 70, slightly above average. The rest of the participants resulted in a score of

79.58, which is also considered good usability. The app shows potential even for the older part

of the society, but their answers indicate that they could need some more guidance to be able to

use the application. As one of the benefits of this business model is to improve mobility also

for older people who cannot drive, it is important that they too are able to use the application

without problems.

The scores for the separate statements in the SUS questionnaire were also analyzed, to

evaluate if they could say something about how usable the app is. Each statement receives

a score between 0 and 4, where 4 is the best and indicates a close to perfect system. Only

two statements received scores lower than 3, including ”I think that I would like to use this

system frequently” and ”I found the various functions in the system well integrated”. The first

statement receiving a lower score does not necessarily mean that the application is not usable for

its purpose, it could also imply that the whole product is not attractive to the user, as discussed

in section 5.1. The second statement indicates that better integration of functionalities in the

application could make it more usable for car booking. The statement receiving the significantly

highest score was ”I found the system very cumbersome to use”, with a score of 3.83, which

means that most people did not find the system cumbersome, but rather easy to use with the

purpose of booking cars.

The textual responses to the user tests also indicated that most users were able to complete

the different car booking tasks without significant problems, but several users reported difficul-

ties with specifying a particular side of the building to be dropped off at. This indicates that the

functionality to place a pin on the map for a more specific location was either challenging to find

or difficult to master, and is a clear subject for improvement. Some participants in the tests also

had problems finding out how to start requesting a ride, but once they figured it out, they found

it easy to manage. One of the usability heuristics is that systems should prefer recognition over

recall, and this problem indicates that the recognition is not perfect for this app, and should be

66



5.3 RQ3: To what extent is it feasible to develop a mobile application for simulation of car
booking?

improved, so the users understand what to do instead of having to remember it.

Apart from these two problems, most users reported that they found it easy to complete the

tasks. Their answers imply that the app achieves both high effectiveness as most users were able

to accomplish the goal of booking a ride, high efficiency as they do not require many resources

to do so, and relatively high satisfaction as their comments about the application was positive.

Some participants also mentioned that the application was practical and easy to use, which

confirms these indications. The good usability score of 84.16 also supports that the application

is a usable tool to book rides, but that there is some room for improvement.

5.3 RQ3: To what extent is it feasible to develop a mobile

application for simulation of car booking?

The third question is answered based on the development process and the resulting application.

The app development was done using the cross-platform framework React Native, to save time

and resources by having a common codebase for both iOS and Android. Since the app only

was tested on Android, it is unknown if this was an advantage, or if it would have been better

to use the native IDEs and languages. The Android application achieved a good usability score,

but some requirements were not prioritized to implement as getting to know the frameworks

and technologies took more time than anticipated. Especially Redux was not familiar, and it

could have been better to use technologies already well-known to the developer. Ideally, more

technologies should have been tested in more detail, to be sure that the right decision was made.

However, the final result received positive feedback, indicating that the technologies used were

well-suited for this purpose.

Most of the requirements defined in section 3.3 were fulfilled, but some were as mentioned

not prioritized in this first version of the app. Out of the functional requirements, all with high

priority were met, but some of the medium and low priority requirements were not implemented.

More specifically, FR10, FR11, FR12, FR14, and FR15 were not accomplished in this version

of the app. A couple of the non-functional requirements were also not met, particularly NFR4

and NFR6. Several of the less prioritized requirements were regarding the functionality for

several users to use the app and book cars simultaneously, and none was explicitly about the

67



Chapter 5. Discussion

main car booking functionality. An application for only car booking is therefore achievable to

develop and simulate using the chosen technologies.

From the feedback given in the user tests, the application worked well for its purpose, and

although most participants only were a little positive to use the app, this was probably more

due to the entire product and not because the application did not work to book cars. This

indicates that it is feasible to use an app for this purpose, and as the application received positive

feedback, it is likely that the solution for the development was well-chosen. When it comes to

the simulation part of the application, this worked well for this version, but it should have been

tested to continuously update the cars’ position in the database and refresh the application, to

see if the performance of the application was still good.

5.4 Limitations

As the project was started from scratch with no previous work done, a lot of time was spent

getting up to speed, resulting in less time for the development. Also, the technology research

to find the best choices for the requirements was time demanding, and as both React Native,

Redux and PHP were unfamiliar to the developer, some time was spent getting to know these,

instead of time spent focusing on the development of the application.

For the user tests, the participants were found in and around the developer’s network. Ide-

ally, a more diverse group of users should have tested the app, and they should have been

unknown to the developer to get rid of any bias that could occur. Additionally, the participants

only received a short description of the product without many details. If they had known more

about the product and the benefits of it, they could might have been more positive towards it.

68



Chapter 6
Conclusions and future work

This chapter presents the conclusion for this project as well as recommendations for future

work.

6.1 Conclusion

In this thesis, the concept of combining fully autonomous vehicles with the sharing economy

has been researched, and a product where people become members to share a pool of self-

driving cars has been introduced. A mobile application is needed for members to book rides

with the autonomous cars, and the goal of this project was to investigate how such an application

could best be developed, as well as studying how usable a car booking application is as a tool

to organize transportation, and examine people’s attitudes towards the product. Three research

questions were defined to address these goals.

• RQ1: How can autonomous cars and the sharing economy satisfy the needs of the society?

• RQ2: To what extent is the mobile application perceived as a usable tool for booking

cars?

• RQ3: To what extent is it feasible to develop a mobile application for simulation of car

booking?

To answer these questions, the first version of this application was developed using state-

of-the-art technologies. The application was named NAP App, based on the parent project

69



Chapter 6. Conclusions and future work

NTNU Autonomous Perception for autonomous vehicles. The technologies used include React

Native as a cross-platform framework to develop native applications, Redux to handle state

management and data flow, MySQL to implement the database, and PHP to develop REST APIs

for communication between the application and the database. The application was developed

with a focus on being easy to use for the users, and this was tested through two rounds of user

tests, with a short development phase in between to fix usability problems.

The results show that the combination of autonomous cars and the sharing economy can lead

to huge benefits and satisfy the needs of the public both as individuals and a community, but

an attitude change among people is required for the benefits to be maximized. The application

received positive feedback and was given a good usability score, and this along with the fact

that all participants in the user test managed to book cars indicates that the mobile application

is a usable tool for booking cars. Some users did, however, struggle with some tasks and had a

little trouble figuring out how to start, so although the application is easy to use, both the UI and

the functionalities can be improved and expanded. As the app received positive feedback and

was able to handle the main feature to book and simulate a ride with an autonomous car, as well

as store and update information in the database, it can be concluded that it is highly feasible to

develop and use a mobile application for this purpose.

6.2 Future work

In this section, future work for NAP App is recommended.

6.2.1 iOS

As the application only has been tested on Android devices, it should be prioritized to get it

running on an iOS device and test both all functionality and the UI before adding any more

functionality.

6.2.2 Cars

Many users requested more information about the cars before they booked them, as different

trips require different types of cars. This could be implemented as an option when requesting a

70



6.2 Future work

ride, so the user could specify if there is a need for a particular type of car for that ride. More

information about the physical appearance of the car could also help the user identify the car

when being picked up. Additionally, the cars’ position should be updated continuously, so the

user can see the cars moving at all times when using the application.

6.2.3 Ridesharing

For the community to gain maximum benefits and for rides to be cheaper, the possibility for

ridesharing or carpooling should be researched further and implemented in the app. This could

include both several members sharing a vehicle from the same pickup location to the same

destination, or an algorithm for picking up several members who are going the same direction

at the same time, but from different starting points.

6.2.4 Car distribution

The current car distribution algorithm only takes the distance between the cars and the user

booking a ride into account. When several users are added, and there is a possibility that several

users are requesting rides at the same time, or even sharing a ride from multiple pickup and

drop-off locations, the algorithm should be expanded to take this into account as well. This

needs to be researched in more detail and tested, but looking at it as a flow network and using

an adapted maximum flow algorithm might be a good place to start. It is possible that machine

learning could be beneficial to use here.

6.2.5 User profiles and login

To facilitate for several users booking cars at once and possibly also share cars, they need to

be able to create a personal user profile and log in to the application. Some functionality for

users are added to the database, but this is not implemented in the application and is considered

a necessary step to increase the functionality and potential for the application to be used. The

login functionality should be secure, and the privacy of the members should be considered.

71



Chapter 6. Conclusions and future work

6.2.6 Pricing and payments

The pricing of the product needs to be researched further, to find a reasonable price for both

the general membership and a pricing model for rides. This should also be included in the app,

as several of the testers mentioned that they would like to see details about this before booking

a ride. Some also said that the price of the service was an essential factor when it comes to

deciding whether to sign up or not. Payment opportunities should also be included in the app

for each user, all payment must happen directly in the application since there are no drivers to

pay directly.

6.2.7 Addresses

Several users requested suggestions when searching for addresses, similar to what is offered

by Google, to improve the usability and accuracy. This could also solve the problem of some

addresses giving results in other cities than intended, as the user could choose the correct address

from the proposals. Some restrictions on where rides users should be able to book rides to could

also be implemented here, only allowing, for example, booking to addresses within the same

city or a certain radius.

6.2.8 Rides

In the current version of the application, it is only possible to cancel or edit a ride before it

is booked, the user cannot change any details once the car has started driving. Adding more

functionality here could improve the usability, with for example enabling the user to change his

mind and cancel the ride at any time, or editing the pickup or drop-off location after the ride has

started. Additionally, the user should be able to book a ride for a later point in time and to book

recurring rides, e.g., every morning at 7:30 from home to work.

6.2.9 Web service for admins

A web service for administrators to add, remove or edit cars, retrieve statistics about rides, users,

and cars, as well as being able to add, edit or remove users manually should also be considered

to be implemented and connected to the REST API, in order to make the system more usable

72



6.2 Future work

for everyone, not just the end user. The REST API could also be expanded to retrieve more

information or combination of information if needed.

73



Chapter 6. Conclusions and future work

74



Bibliography

Achour, M. et al. (2018), ‘PHP Manual’. Online; accessed Apr. 25, 2018.

URL: http://php.net/manual/en/

Android (2018a). Online; accessed Feb. 13, 2018.

URL: https://developer.android.com/studio/intro/

Android (2018b). Online; accessed Feb. 13, 2018.

URL: https://developer.android.com/kotlin/

Apple (2018a). Online; accessed Feb. 13, 2018.

URL: https://developer.apple.com/develop/

Apple (2018b), ‘About swift’. Online; accessed Feb. 13, 2018.

URL: https://swift.org/about/

Barter, P. (2013), ‘”Cars are parked 95% of the time”. Let’s check!’. Online; accessed Apr. 21,

2018.

URL: https://www.reinventingparking.org/2013/02/cars-are-parked-95-of-time-lets-

check.html

Bates, J. & Leibling, D. (2012), ‘Spaced out: Perspectives on parking policy’, Royal Automobile

Club Foundation .

Bertoncello, M. & Wee, D. (2015), ‘Ten ways autonomous driving could re-

define the automotive world’, Retrieved from McKinsey & Company website:

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-

autonomous-driving-could-redefine-the-automotive-world . Accessed Mar. 8, 2018.

75



Bilkollektivet (n.d.). Online; accessed Apr. 24, 2018.

URL: https://bilkollektivet.no/en/

BlaBlaCar (2018), ‘Blablacar’. Online; accessed Apr. 03, 2018.

URL: https://www.blablacar.com

Brooke, J. (1996), Sus: A ’quick and dirty’ usability scale, in P. W. Jordan, B. Thomas, B. A.

Weerdmeester & I. L. McClelland, eds, ‘Usability evaluation in industry’, Taylor & Francis,

chapter 21, pp. 189–194.

Budiu, R. (2013), ‘Mobile: Native apps, web apps, and hybrid apps’. Online; accessed Feb. 10,

2018.

URL: https://www.nngroup.com/articles/mobile-native-apps/

Christensen, C. M., Raynor, M. E. & McDonald, R. (2015), ‘What is disruptive innovation’,

Harvard Business Review 93(12), 44–53.

Cohen, B. & Kietzmann, J. (2014), ‘Ride on! Mobility business models for the sharing econ-

omy’, Organization & Environment 27(3), 279–296.

Components and Props (n.d.). Online; accessed Feb. 11, 2018.

URL: (https://reactjs.org/docs/components-and-props.html

Czaplicki, E. (2017a), ‘elm’. Online; accessed Feb. 9, 2018.

URL: http://elm-lang.org/

Czaplicki, E. (2017b), ‘An introduction to elm’. Online; accessed Feb. 9, 2018.

URL: https://guide.elm-lang.org/

Czaplicki, E. & Chong, S. (2013), Asynchronous functional reactive programming for GUIs,

in ‘Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation’, Vol. 48, pp. 411–422.

DriveNow (2018), ‘About drivenow’. Online; accessed Apr. 24, 2018.

URL: https://www.drive-now.com/de/en/about

Eisenman, B. (2015), Learning React Native: Building Native Mobile Apps with JavaScript,

O’Reilly Media, Inc.

76



Elvebakk, B. & Steiro, T. (2007), Nullvisjonen - i teori og praksis, Transportøkonomisk institutt.

Facebook (2017), ‘React’. Online; accessed Feb. 11, 2018.

URL: https://reactjs.org/

Facebook (2018a), ‘Learn the basics’. Online; accessed Feb. 13, 2018.

URL: https://facebook.github.io/react-native/docs/tutorial.html

Facebook (2018b), ‘Performance’. Online; accessed Feb. 13, 2018.

URL: https://facebook.github.io/react-native/docs/performance.html

Facebook (2018c), ‘React native’. Online; accessed Feb. 13, 2018.

URL: https://facebook.github.io/react-native/

Facebook (2018d), ‘Style’. Online; accesssed Feb. 13, 2018.

URL: https://facebook.github.io/react-native/docs/style.html

Fagnant, D. J. & Kockelman, K. (2015), ‘Preparing a nation for autonomous vehicles: oppor-

tunities, barriers and policy recommendations’, Transportation Research Part A: Policy and

Practice 77, 167–181.

Fagnant, D. J. & Kockelman, K. M. (2018), ‘Dynamic ride-sharing and fleet sizing for a system

of shared autonomous vehicles in austin, texas’, Transportation 45(1), 143–158.

Farajallah, M., Hammond, R. G. & Pénard, T. (2016), ‘What drives pricing behavior in peer-to-

peer markets? Evidence from the carsharing platform BlaBlaCar’.

Friberg, J. (2017), ‘React native vs native in mobile app development’. Online; accessed Feb.

16, 2018.

URL: https://www.varvet.com/blog/react-native-vs-native-in-mobile-app-development/

Gartner (2017), ‘Gartner says worldwide sales of smartphones grew 7 percent in the fourth

quarter of 2016’. Online; accessed Oct. 15, 2017.

URL: https://www.gartner.com/newsroom/id/3609817

Gerla, M., Lee, E.-K., Pau, G. & Lee, U. (2014), Internet of vehicles: From intelligent grid to

autonomous cars and vehicular clouds, in ‘Internet of Things (WF-IoT), 2014 IEEE World

Forum on’, IEEE, pp. 241–246.

77



Google (2017). Online; accessed Feb. 11, 2018.

URL: https://angular.io/

Hamari, J., Sjöklint, M. & Ukkonen, A. (2016), ‘The sharing economy: Why people partici-

pate in collaborative consumption’, Journal of the Association for Information Science and

Technology 67(9), 2047–2059.

Heinrichs, H. (2013), ‘Sharing economy: a potential new pathway to sustainability’, GAIA-

Ecological Perspectives for Science and Society 22(4), 228–231.

Hjorthol, R., Engebretsen, Ø. & Uteng, T. P. (2014), Den nasjonale reisevaneundersøkelsen

2013/14: nøkkelrapport, Transportøkonomisk institutt.

Høye, A., Elvik, R., Sørensen, M. W. J. & Vaa, T. (2012), Trafikksikkerhetshåndboken, Trans-

portøkonomisk institutt.

IBM (2018), ‘Three-tier architectures’. Online; accessed May 12, 2018.

URL: https://www.ibm.com/support/knowledgecenter/SSAW57 8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/covr 3-

tier.html

International Organization for Standardization (2010), ‘ISO 9241: Ergonomics of human sys-

tem interaction-part 210: Human-centred design for interactive systems’.

Martin, E. W. & Shaheen, S. A. (2011), ‘Greenhouse gas emission impacts of carsharing in

north america’, IEEE Transactions on Intelligent Transportation Systems 12(4), 1074–1086.

Masse, M. (2011), REST API Design Rulebook: Designing Consistent RESTful Web Service

Interfaces, O’Reilly Media, Inc.

Microsoft (2018), ‘Xamarin.forms’. Online; accessed Feb. 17, 2018.

URL: https://docs.microsoft.com/en-us/xamarin/xamarin-forms/

Nabobil (n.d.). Online; accessed Apr. 24, 2018.

URL: https://nabobil.no/en

NHTSA (2018), ‘Automated vehicles for safety’. Online: accessed Mar. 8, 2018.

URL: https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

78



Nielsen, J. (1995), ‘10 usability heuristics for user interface design’, Nielsen Norman Group .

Nielsen, J. (2000), ‘Why you only need to test with 5 users’. Online; accessed Apr 2, 2018.

URL: https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Nielsen, J. (2012), ‘How many test users in a usability study’. Online; accessed Apr. 2, 2018.

URL: https://www.nngroup.com/articles/how-many-test-users/

Nordbakke, S., Uteng, T. P. & Hjorthol, R. (2014), Reisevaneundersøkelsen 2013/14: Samling

av faktaark, Transportøkonomisk institutt.

Occhino, T. (2015), ‘React native: Bringing modern web techniques to mobile’. Online; ac-

cessed Feb. 15, 2018.

URL: https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-

web-techniques-to-mobile/

Oracle (2018a), ‘The main features of MySQL’. Online; accessed Apr. 19, 2018.

URL: https://dev.mysql.com/doc/refman/8.0/en/features.html

Oracle (2018b), ‘What is MySQL?’. Online; accessed Apr. 19, 2018.

URL: https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

Redux (2018a). Online; accessed Mar. 6, 2018.

URL: https://redux.js.org/

Redux (2018b), ‘Actions’. Online; accessed Mar. 6, 2018.

URL: https://redux.js.org/basics/actions

Redux (2018c), ‘Basics’. Online; accessed Mar. 6, 2018.

URL: https://redux.js.org/basics/

Redux (2018d), ‘Reducers’. Online; accessed Mar. 6, 2018.

URL: https://redux.js.org/basics/reducers

Redux (2018e), ‘Store’. Online; accessed Mar. 6, 2018.

URL: https://redux.js.org/basics/store

79



Rödel, C., Stadler, S., Meschtscherjakov, A. & Tscheligi, M. (2014), Towards autonomous

cars: the effect of autonomy levels on acceptance and user experience, in ‘Proceedings of

the 6th International Conference on Automotive User Interfaces and Interactive Vehicular

Applications’, ACM, pp. 1–8.

Schor, J. (2016), ‘Debating the sharing economy.’, Journal of Self-Governance & Management

Economics 4(3), 7–22.

Sidorenko, V. (2017), ‘7 best frameworks for web development in 2017’. Online; accessed Feb.

12, 2018.

URL: https://gearheart.io/blog/7-best-frameworks-for-web-development-in-2017/

Statistics Norway (2018a), ‘Key figures for the population’. Online; accessed Apr. 20, 2018.

URL: https://www.ssb.no/en/befolkning/nokkeltall/population

Statistics Norway (2018b), ‘Registered vehicles statbank’. Online; accessed Apr. 20, 2018.

URL: https://www.ssb.no/en/statbank/list/bilreg

Statistics Norway (2018c), ‘Road traffic accidents involving personal injuries’. Online; accessed

Apr. 20, 2018.

URL: https://www.ssb.no/en/statbank/list/vtu

Statistics Norway (2018d), ‘Road traffic volumes statbank’. Online; accessed Apr. 20, 2018.

URL: https://www.ssb.no/en/statbank/list/klreg

The Global Goals (2018a), ‘11 sustainable cities and communities’. Online; accessed Apr. 21,

2018.

URL: https://www.globalgoals.org/11-sustainable-cities-and-communities

The Global Goals (2018b), ‘3 good health and well-being’. Online; accessed Apr. 21, 2018.

URL: https://www.globalgoals.org/3-good-health-and-well-being

The Good and the Bad of Angular Development (2017). Online; accessed Feb. 10, 2018.

URL: https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-angular-

development/

Uber (2018a), ‘Advanced Technologies Group’. Online; accessed Mar. 22, 2018.

URL: https://www.uber.com/info/atg/

80



Uber (2018b), ‘Always the ride you want’. Online; accessed Mar. 22, 2018.

URL: https://www.uber.com/ride/

Uber (2018c), ‘How Uber works’. Online; accessed Mar. 22, 2018.

URL: https://www.uber.com/ride/how-uber-works/

Uber (2018d), ‘Our story’. Online; accessed Mar. 22, 2018.

URL: https://www.uber.com/about/

Waymo (2018a). Online: accessed Mar. 21, 2018.

URL: https://waymo.com/

Waymo (2018b), ‘Be an early rider’. Online: accessed Mar. 21, 2018.

URL: https://waymo.com/apply/

Waymo (2018c), ‘Journey’. Online: accessed Mar. 21, 2018.

URL: https://waymo.com/journey/

Waymo (2018d), ‘Technology’. Online: accessed Mar. 21, 2018.

URL: https://waymo.com/tech/

Waymo (2018e), ‘Waymo safety report - on the road to fully self-driving’. Online: accessed

Mar. 22, 2018.

URL: https://waymo.com/safety/

Witte, D. & von Weitershausen, P. (2015), ‘React native for android: How we built the first

cross-platform react native app’, Facebook Code . Online; accessed Feb. 15, 2018.

World Health Organization (2015), Global status report on road safety 2015, World Health

Organization.

Xamarin (2018). Online; accessed Feb. 16, 2018.

URL: https://www.xamarin.com

ZipCar (2018a). Online; accessed Mar. 22, 2018.

URL: https://www.zipcar.com/

ZipCar (2018b), ‘The genius of car sharing’. Online; accessed Mar. 22, 2018.

URL: https://www.zipcar.com/carsharing

81



82



Appendix A
GitHub repositories

A.1 REST API

https://github.com/hannemathisen/napapp-rest-api

A.2 NAP App

https://github.com/hannemathisen/NapApp

83

https://github.com/hannemathisen/napapp-rest-api
https://github.com/hannemathisen/NapApp


84



Appendix B
Get rides REST API

1 <?php

2 function get_rides($id, $car_id, $user_id, $start_time, $end_time) {

3 global $connection;

4 $query = "SELECT * FROM rides as r INNER JOIN cars as c ON r.car_id = c.car_id

5 INNER JOIN users as u ON r.user_id = u.user_id";

6 if ($id != 0) {

7 $query .= " WHERE r.ride_id=".$id." LIMIT 1";

8 } else if ($car_id != 0 $user_id != 0 $start_time != 0 $end_time != 0) {

9 $where = false;

10 if ($car_id != 0) {

11 $query .= " WHERE r.car_id=".$car_id;

12 $where = true;

13 }

14 if ($user_id != 0) {

15 if ($where) $query .= " AND r.user_id=".$user_id;

16 else {

17 $query .= " WHERE r.user_id=".$user_id;

18 $where = true;

19 }

20 }

21 if ($start_time != 0) {

22 if ($where) $query .= " AND start_time>=FROM_UNIXTIME(".$start_time.")";

23 else {

24 $query .= " WHERE start_time>=FROM_UNIXTIME(".$start_time.")";

25 $where = true;

85



26 }

27 }

28 if ($end_time != 0) {

29 if ($where) $query .= " AND end_time<=FROM_UNIXTIME(".$end_time.")";

30 else {

31 $query .= " WHERE end_time<=FROM_UNIXTIME(".$end_time.")";

32 }

33 }

34 }

35

36 $response = array();

37 $result = mysqli_query($connection, $query);

38 foreach ($result as $row) {

39 extract($row);

40 $ride_item = array(

41 "ride_id" => $ride_id,

42 "car_id" => $car_id,

43 "reg_number" => $reg_number,

44 "user_id" => $user_id,

45 "name" => $name,

46 "start_latitude" => $start_latitude,

47 "start_longitude" => $start_longitude,

48 "start_time" => $start_time,

49 "via_latitude" => $via_latitude,

50 "via_longitude" => $via_longitude,

51 "via_time" => $via_time,

52 "end_latitude" => $end_latitude,

53 "end_longitude" => $end_longitude,

54 "end_time" => $end_time,

55 );

56 array_push($response, $ride_item);

57 }

58 header('Content-Type: application/json');

59 echo json_encode($response);

60 }

61 ?>

86



Appendix C
MapComponent

1 class MapComponent extends React.Component {

2 componentWillMount() {

3 this.props.getCars();

4 this.props.getLocation();

5 }

6

7 render() {

8 return (

9 <MapView

10 region={this.props.region}

11 style={styles.map}

12 onRegionChangeComplete={reg => this.props.onRegionChange(reg)}

13 >

14 {this.props.destination &&

15 <Marker

16 coordinate={this.props.destination}

17 />

18 }

19 {this.props.pickup &&

20 <Marker

21 coordinate={this.props.pickup}

22 title="Pickup location"

23 >

24 <Image

25 style={{ width: 7, height: 7 }}

87



26 source={require('./location.png')}

27 />

28 </Marker>

29 }

30 <DirectionsContainer />

31 <CarListContainer />

32 </MapView>

33 );

34 }

35 }

88



Appendix D
User test tasks

About the product
The system you are about to test is a mobile application meant to facilitate for the integration

of the sharing economy with autonomous vehicles. The idea is that many people are sharing a

pool of self-driving cars, and they use this app when they need a ride somewhere. The user can

book cars through the app by saying where one needs to go, and the app will then allocate and

book a specific car to pick the user up. This can eliminate the need for a personal car, and can

have huge impacts on traffic, the environment and the need for parking spaces, among others.

As this is a first draft for the app, it only contains some simple functionality, but in the future it

could also be interesting to include the possibility to book a car for a specific time in the future,

as well as to share a car if, for example, two users are going the same direction at the same time.

Tasks
Do the following tasks as well as you can, and answer the questionnaire afterwards. If you

have any problems with performing the tasks, please write them in the comments section of

the questionnaire. If your current location is outside of Trondheim, it will be sat to NTNU, for

testing purposes. Your position will not be updated when ”driving”. We are not testing you, but

the app, the goal is to test how easy it is to use the system, so you cannot do anything wrong.

• You want to go to Nidarosdomen. Book a car to take you there.

• You have an appointment at Munkegata 23. Book a car to take you there, but you do not

want to be picked up from your current location. If you live in Trondheim, you want to be

89



picked up from your home. If not, you want to be picked up at Trondheim Sentralstasjon.

• You are going to Lerkendal Stadion, which you know has the address Klæbuveien 125.

You are meeting some friends there, so you want to be dropped off at the east entrance of

the stadium (to the right on the map). Book a car to take you there.

• Play around as much as you want to!

Well done! Now, please answer the questionnaire.

90



Appendix E
Questionnaire for user test 1

91



92



93



94



95



96



Appendix F
Questionnaire for user test 2

97



98



99



100



101



102



Appendix G
Demonstration video

A demonstration of the final mobile app is found here: https://youtu.be/uNe6r05u

gMQ

103

https://youtu.be/uNe6r05ugMQ
https://youtu.be/uNe6r05ugMQ


104



Appendix H
Responses to user tests

H.1 User test 1

https://docs.google.com/spreadsheets/d/1VD79a6Lq_NkZ3-q4K5B-XAp5k

854nuLJ2ywtuoF1eKQ/edit?usp=sharing

H.2 User test 2

https://docs.google.com/spreadsheets/d/15Zi4talLRgCvYs9m-BypJ0myZ

DvW7oar_hoAO4oFnhU/edit?usp=sharing

105

https://docs.google.com/spreadsheets/d/1VD79a6Lq_NkZ3-q4K5B-XAp5k854nuLJ2ywtuoF1eKQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1VD79a6Lq_NkZ3-q4K5B-XAp5k854nuLJ2ywtuoF1eKQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15Zi4talLRgCvYs9m-BypJ0myZDvW7oar_hoAO4oFnhU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15Zi4talLRgCvYs9m-BypJ0myZDvW7oar_hoAO4oFnhU/edit?usp=sharing

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation and project description
	Project goals and research questions
	Contributions
	Thesis outline

	Background
	Car usage and road safety
	Sharing economy
	Shared mobility

	Autonomous vehicles
	Usability
	System Usability Scale

	Shared mobility and autonomous vehicles: Existing solutions
	Waymo
	Uber
	BlaBlaCar
	ZipCar
	Bilkollektivet
	Nabobil

	Mobile app development: Platform and technologies
	Mobile application
	Web application
	Choosing the best tools


	Methodology and implementation
	Overview
	Technology
	React Native
	Redux
	MySQL
	PHP

	Requirements
	Architecture
	React-Redux
	Client-Server

	Implementation
	Database
	REST API
	NAP App

	Evaluation
	Number of testers
	First test
	Second test


	Results
	NAP App
	Mobile devices
	First iteration views
	Second iteration improvements
	User flow diagram

	Evaluation
	First user test
	Second user test


	Discussion
	RQ1: How can autonomous cars and the sharing economy satisfy the needs of the society?
	RQ2: To what extent is a mobile application perceived as a usable tool for booking cars?
	RQ3: To what extent is it feasible to develop a mobile application for simulation of car booking?
	Limitations

	Conclusions and future work
	Conclusion
	Future work
	iOS
	Cars
	Ridesharing
	Car distribution
	User profiles and login
	Pricing and payments
	Addresses
	Rides
	Web service for admins


	Bibliography
	GitHub repositories
	REST API
	NAP App

	Get rides REST API
	MapComponent
	User test tasks
	Questionnaire for user test 1
	Questionnaire for user test 2
	Demonstration video
	Responses to user tests
	User test 1
	User test 2


