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Stochastic Nonlinear Model Predictive Control with State Estimation by

Incorporation of the Unscented Kalman Filter

Eric Bradford1 and Lars Imsland2

Abstract— Nonlinear model predictive control has become
a popular approach to deal with highly nonlinear and un-
steady state systems, the performance of which can however
deteriorate due to unaccounted uncertainties. Model predictive
control is commonly used with states from a state estimator
in place of the exact states without consideration of the
error. In this paper an approach is proposed by incorporating
the unscented Kalman filter into the NMPC problem, which
propagates uncertainty introduced from both the state estimate
and additive noise from disturbances forward in time. The
feasibility is maintained through probabilistic constraints based
on the Gaussian approximations of the state distributions. The
concept of ”robust horizon” is introduced to limit the open-
loop covariances, which otherwise grow too large and lead to
conservativeness and infeasibility of the MPC problem. The
effectiveness of the approach was tested on a challenging semi-
batch reactor case study with an economic objective.

I. INTRODUCTION

Model predictive control (MPC) was developed in the

late seventies as a method to deal with system constraints

and strongly coupled, multivariable plants. MPC is the only

advanced control approach that has been applied in industry

in a large fashion [1]. MPC solves at each sampling instance

an open-loop, optimal control problem (OCP) based on an

explicit process model to determine a finite sequence of

control actions to take. The first of these control actions

is implemented, while discarding the rest [2]. Feedback is

implicitly introduced in this process by the state and bias

update using the measurements available at each sampling

time [3].

MPC methods based on linear models have found a

multitude of successful applications in industry, in particular

in the process industry [4]. Linear MPC (LMPC) theory

is relatively mature and well-established in practice. LMPC

however is inadequate to handle processes with strong non-

linearities or at unsteady state, such as batch processes. In

addition, higher productivity demands and tighter environ-

mental regulations require a more accurate description of the

plant and hence motivate the use of nonlinear models [5]. In

addition, nonlinear MPC (NMPC) allows optimization with

respect to economic criteria directly [6].

The introduction of uncertainty in the system can lead to

sub-optimal behaviour and failures of the MPC algorithm.

Key questions are the maintenance of stability, constraint
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satisfaction and recursive feasibility for the uncertainty in

question. The solution of MPC is often close to its constraints

and hence can easily lead to infeasibilities due to unac-

counted uncertainties. Therefore, the development of MPC

approaches that make use of an explicit description of the

uncertainties has been of major interest over the past two

decades [2].

Robust NMPC (RNMPC) describe a series of methods that

assume uncertainties to be given by bounded sets. Prominent

techniques include min-max [7], tube-based [8] and multi-

stage NMPC [9]. Min-max NMPC formulations focus on

minimizing cost while satisfying the constraints under the

worst-case realization. Open-loop min-max methods have

been shown to be inadequate to deal with the spread of

state trajectories, while closed-loop min-max approaches are

difficult to solve [10]. Tube-based NMPC was subsequently

devised to address the limitations of min-max techniques.

Tube-based NMPC aims to keep the trajectories in a tube

that is computed offline. The tube is centred around a

nominal trajectory, while the so-called ”ancillary” controller

determines a control policy that ensures that the trajectory of

the real uncertain system remains in the tube [8]. Lastly, a

multi-stage NMPC approach has been suggested in which

the uncertainty is modelled by a scenario tree approach

from stochastic programming. The method can explicitly take

into account information available through feedback at each

sampling time. However, the procedure quickly becomes

intractable, since the size of the optimization problem scales

exponentially with the time horizon, number of uncertainties

and uncertainty levels [9].

An alternative to RNMPC is stochastic NMPC (SNMPC)

in which uncertainties are given by known probability dis-

tributions. SNMPC allows to systematically trade-off the

conservativeness of a solution by addressing constraints

probabilistically and allowing an admissible level of con-

straint violation. The majority of work for stochastic MPC

has been carried out for linear MPC, while SNMPC has

not received much attention [3]. A simple solution to SN-

MPC can be found by [11], who linearises the nonlinear

system successively and then applies a probabilistic tube

method. A popular approach in SNMPC is given by the

use of polynomial chaos (PC) expansions, which is a com-

putationally efficient tool for accelerating sampling-based

techniques [12]. In this method, implicit mappings between

variables/parameters and the states are replaced by orthogo-

nal polynomials. A disadvantage of this approach is that the

computational cost scales exponentially with the number of

uncertainty parameters. Apart from PC, importance sampling
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methods have been put forward [13], which are generally

more efficient than standard Monte-Carlo methods, but do

not take gradient information into account. [14] uses the

multistage stochastic programming approach with a novel

scenario generation method to solve the SNMPC problem

taking imperfect feedback information into account, similar

to [9]. The approach does, however, quickly become in-

tractable due to the aforementioned scaling.

In this paper a method is proposed that yields a tractable

approximation to the SNMPC problem based on previous

work by [15], who incorporated the Kalman filter into

LMPC. Further, in [16] and [17] the unscented transfor-

mation is used to propagate additive disturbance error for

a nonlinear system, which is shown to perform well. In

[16] proofs are given for recursive feasibility. We propose to

incorporate the unscented Kalman filter (UKF) into the MPC

problem to estimate and propagate the mean and covariance

of the states along the time horizon, which takes into account

both error due to additive noise from disturbances and mea-

surement error and also error introduced due to the imperfect

knowledge of the states through the state estimation, which

was not covered in [16] or [17]. Further in [16] and [17]

the problem of growing covariances was not addressed. The

problem of growing covariances in this paper is addressed

by introduction of the ”robust-horizon”, which is a cheap

solution to the issue. The closest to the here proposed method

can be found in [18], in which the UKF is also incorporated

online for a specific control problem of mobile robots. In

[18] the covariances are kept limited by predicting future

measurements, which however is expensive compared to the

solution given here of the ”robust horizon”. The previous

work has focused solely on the application of the UKF in

MPC for regulatory problems. We test it on a challenging

economic MPC problem based on a semi-batch reactor.
The paper is structured as follows. In the second section

a general formulation is given of the SNMPC problem we

wish to solve. In the next section the UKF is introduced

and incorporated into the MPC problem to yield the algo-

rithm. Further, a simple solution is given to the problem of

increasing covariances. In the fourth section a challenging

case study is introduced to control a semi-batch reactor with

an economic objective. In the fifth section the results of the

case study are illustrated and discussed. Finally, in the last

section we draw some conclusions and propose future work

to be carried out.

II. NONLINEAR MODEL PREDICTIVE CONTROL

WITH CHANCE CONSTRAINTS

In this report we consider a general discrete-time stochas-

tic nonlinear system with additive noise, described by:

x(k+ 1) = f (x(k),u(k))+w(k) (1)

y(k) = h(x(k),u(k))+ν(k) (2)

where x ∈ R
nx denotes the system states, u ∈ R

nu represents

the control inputs and y ∈ R
ny denotes the system measure-

ments; the additive disturbance term w lies in R
nx and the

additive measurement noise ν lies in R
ny . The equations

f : Rnx × R
nu → R

nx and h : Rnx × R
nu → R

ny represent

the system dynamics of the states and the measurements

respectively.

It is assumed that {w(k)} and {v(k)} are sequences of zero

mean normal independent random variables with variances

Σw(k) and Σv(k) at stage k respectively. Furthermore, the

prior density of x(0) is assumed to be normal with mean

x̂0 and variance Σx0
. Let Yn represent the sequence of mea-

surements collected up to time n, Yn = {(u(i),y(i))}i=1,...,n.

Then, the notations EYn
(·) and PYn

(·) refer to the conditional

expectation and probability respectively conditioned on Yn

[15]. The aim of the SNMPC algorithm is to adjust the

probability distributions of the future states in the time

horizon to lie within predefined constraints and give an

optimum performance with respect to the objective with

imperfect information available through Yn at stage n. The

general chance constrained, finite-horizon SNMPC problem

at time n we consider is given by:

Finite-horizon SNMPC problem with chance con-

straints

minimize
uN

EYn
(J(N,x(n),uN))

subject to

x(n+ k+ 1) = f (x(n+ k),u(n+ k))+w(n+ k)

y(n+ k) = h(x(n+ k),u(n+ k))+ν(n+ k)

PYn
(x(n+ k) ∈ Xk)> pk ∀k ∈ {1, ...,N}

u(n+ k)∈ Uk ∀k ∈ {0, ...,N − 1}

(3)

where N represents the length of the time horizon, uN :=
{u(n), . . . ,u(n+N− 1)} denotes the decision variables over

the finite-horizon N from an initial stage n, Xk ⊂R
nx denotes

a compact set of state constraints, Uk ⊂R
nu are the compact

sets of input constraints and J(N,x(n),uN)) the probabilistic

objective function. The joint probability constraints can be

violated by only a specific rate, given by pk ∈ (0,1)⊂ R.

The finite-horizon OCP given in (3) is based on both

the dynamics of the states given in (1) and the dynamics

of the measurements given in (2). The problem considers

joint probability constraints on the states and deterministic

inequality constraints on the inputs.

III. INCORPORATION OF THE UNSCENTED

KALMAN FILTER

A. Unscented Kalman filter with additive noise

The complexity of the constrained stochastic optimization

problem in (3) is prohibitive, since it would require the full

determination and propagation of the entire conditional dis-

tribution of the states through nonlinear transformations [15].

To make progress we therefore need to make assumptions.

It is assumed that the states follow a Gaussian distribution

and hence we only need to predict and propagate the mean

and the covariance of the states.

Let x̂(n+k|n) be the mean and Σx(n+k|n) be the variance

of the state vector at time n+ k given data Yn. We require

a method to find x̂(n+ k|n) and Σx(n+ k|n) from an initial

time n up to time k = N. Bayesian recursive filtering deals



with the problem of propagating probability distributions

given a set of observations. For linear systems the finite-

dimensional Kalman filter can be used to directly propagate

the Gaussian distributions, while for nonlinear systems the

probability distributions need to be approximated at each

stage. In this report we use the UKF to approximate the

probability distributions of the states at each stage. The UKF

for the case of additive noise for (1) and (2) to approximate

x̂(n+ k|n) and Σx(n+ k|n) can be stated as follows [19]:

UKF with additive noise

Definition of Sigma-points

X (n+ k− 1|n) = [x̂(n+ k− 1|n)

x̂(n+ k− 1|n)+
√

L+λ Σ
1/2
x (n+ k− 1|n)

x̂(n+ k− 1|n)−
√

L+λ Σ
1/2
x (n+ k− 1|n)] (4)

Covariance and mean approximation of predictions

X
(i)(n+ k|n) = f (X (i)(n+ k− 1|n),u(n+ k−1)) (5a)

x̂(n+ k|n) =
2L

∑
i=0

ω
µ
i X

(i)(n+ k|n) (5b)

Σx(n+ k|n) =
2L

∑
i=0

ωc
i (X

(i)(n+ k|n)−

x̂(n+ k|n))(X (i)(n+ k|n)− x̂(n+ k|n))T +Σw(n+ k)

(5c)

Covariance and mean approximation of observations

φ (i)(n|n− 1) = h(X (i)(n|n− 1),u(n− 1)) (6a)

ŷ(n|n− 1) =
2L

∑
i=0

ω
µ
i φ (i)(n|n− 1) (6b)

Σyy(n|n− 1) = Σv(n− 1)+
2L

∑
i=0

ωc
i (φ

(i)(n|n− 1)−

ŷ(n|n− 1))(φ (i)(n|n− 1)− ŷ(n|n− 1))T

(6c)

Σxy(n|n− 1) =
2L

∑
i=0

ωc
i (X

(i)(n|n− 1)−

x̂(n|n− 1))(φ (i)(n|n− 1)− ŷ(n|n− 1))T

(6d)

Update of states from available measurements

K(n) = Σxy(n|n− 1)Σyy(n|n− 1)−1 (7a)

x̂(n|n) = x̂(n|n− 1)+K(n)(y(n)− ŷ(n|n− 1)) (7b)

Σx(n|n) = Σx(n|n− 1)−K(n)Σyy(n|n− 1)K(n)T (7c)

where X is a matrix of Sigma points with X (i) correspond-

ing to the rows of the matrix representing the Sigma points,

φ (i) are similarly the rows of transformed Sigma points of

matrix φ to estimate the measurement mean and covariance,

Σyy denotes the covariance matrix of y, Σxy represents the

covariance matrix between x and y, ŷ the mean of y, K the

Kalman filter gain. Lastly, there are parameters L, λ , ωm
i and

ωc
i that can be set as follows [19]:

L = 2nx + 1 (8a)

λ = α2(L+κ)−L (8b)

ωm
0 =

λ

L+λ
(8c)

ωc
0 =

λ

L+λ
+(1−α2+β ) (8d)

ωm
i = ωc

i =
1

2(L+λ )
∀i ∈ {1, . . . ,2L− 1} (8e)

where common values of α , β and κ are 1e− 3, 2 and 0

respectively.

B. Robust horizon

From (5c) we can see that the predicted conditional covari-

ance usually increases with k and hence the method becomes

increasingly conservative with respect to the length of the

time horizon. This can be seen by noting that the first part

of the equation propagates the previous covariance forward,

while the second part adds Σw(n+ k) on top each time. As

pointed out in [15] it is a conflict that larger time horizons

lead to more and more difficult to solve MPC problems,

while commonly large time horizons are associated with

improved dynamic properties. Eventually for longer time

horizons the MPC problem will become infeasible. In [20]

the control actions are replaced by parametrised feedback

control laws to overcome this problem, which is computa-

tionally expensive however. To solve this problem we instead

suggest introducing a so-called ”robust horizon”, similar

to [9], up to which the covariance matrix is propagated

according to (5c) and after which the covariance matrix is

kept the same. The rationale behind this step comes from

the fact that the actual MPC controller implemented online

has reduced covariances by the state and bias update through

the measurements available at each sampling instance, which

is otherwise not considered by the open-loop formulation.

Hence, the following equation is added to the MPC problem:

Σx(n+ k|n) = Σx(n+ k− 1|n) ∀k ∈ {tR + 1, . . . ,N} (9)

where tR is the time length of the robust horizon.

C. Formulation of UKF-SNMPC

Dealing with general nonlinear, joint chance constraints

with respect to the states is difficult. However, due to

the fact that the underlying distributions of the states are

Gaussian it is possible to give explicit expressions for linear

joint probability constraints of the states. Therefore, in the

proposed UKF-SNMPC algorithm the general probability

constraints in (3) are replaced by probability constraints in

the following form:

PYn
(HT

k x(n+ k|n)≤ gk)≥ pk (10)

where Hk ∈ R
nx×ng is a matrix representing the linear con-

straints and gk ∈R
ng is a vector denoting the corresponding

upper bounds.



It was shown by [21] using inscribed conic sets that the

constraint in (10) can be given by the following constraints:

Φ−1(pk)

√

h
( j)
k

T Σx(n+ k|n)h
( j)
k + h

( j)
k

T x̂(n+ k|n)≤ g
( j)
k

∀ j ∈ {1, . . . ,ngk
} (11)

where Φ−1(·) is the quantile function of the standard Gaus-

sian probability distribution, ngk
the number of rows of gk,

h
( j)
k the jth row of Hk and g

( j)
k the corresponding jth value

of g.

Considering linear constraints of the form in (10), we can

state the OCP for the SNMPC with incorporated UKF as

follows:

Finite-horizon SNMPC problem with incorporated

UKF and chance constraints

minimize
uN

EYn
(J(N,x(n),uN))

subject to

PYn
(HT

k x(n+ k|n)≤ gk)≥ pk ∀k ∈ {1, ...,N}

u(n+ k) ∈ Uk ∀k ∈ {0, ...,N − 1}

(4),(5),(6),(7),(8),(9)

(12)

where the probability constraints can be reformulated as

shown in the previous section.

We can see that the overall algorithm includes both equa-

tions for state estimation and uncertainty propagation. (5b) is

repeatedly used to propagate the mean of the states forward,

while (5c) propagates the covariances up to a fixed ”robust

horizon”, tR, before the covariances are fixed according to

(9). (6) and (7) are used only once in each open-loop problem

to estimate the state according to the measurements available

at time n and to update the prior mean and covariance matrix.

Therefore, to initialize the algorithm the previous mean,

covariance matrix, control action and current measurement

need to be supplied to the algorithm, the same as would be

required for state estimation. The assumed error of the state

estimate is given by the updated covariance matrix, which is

propagated forward. The problem in (12) can be implemented

in a receding-horizon fashion to yield a SNMPC controller.

IV. BATCH REACTOR CASE STUDY

A. Dynamic model equations

The use of the UKF-SNMPC algorithm is illustrated on

the operation of a semi-batch reactor, which was adopted

from [22]. The algorithm is applied to an economic MPC

formulation, which aims to maximize the desired product C.

The following series reactions take place inside the reactor,

catalyzed by H2SO4:

2A
k1A−−→
(1)

B
k2B−−→
(2)

3C

The reactions taking place are all first-order with respect to

the reactant concentration, however reaction (1) is exother-

mic, while reaction (2) is endothermic. The reactor is fitted

with a heat exchanger. The control variables are given by the

flow rate of pure A entering the reactor and the temperature

of the heat exchanger. The evolution of the concentrations

of A, B and C can be described by the following nonlinear

differential algebraic equation (DAE) system:

ĊA =−k1ACA +(CA0 −CA)
F

V
, (13a)

ĊB = 0.5k1ACA − k2BCB −CB
F

V
, (13b)

ĊC = 3k2BCB −CC

F

V
, (13c)

Ṫ =
(UA(Ta −T )−FCA0CPA

(T −T0)

(CACPA
+CBCPB

+CCCPC
)V +NH2SO4

CPH2SO4

+

(−∆HRx1Ak1ACA −∆HRx2Bk2BCB)V

(CACPA
+CBCPB

+CCCPC
)V +NH2SO4

CPH2SO4

,

(13d)

V̇ = F (13e)

k1A = A1 exp

(

−E1A

(

1

320
−

1

T

))

(13f)

k2B = A2 exp

(

−E2B

(

1

300
−

1

T

))

(13g)

where CA, CB, CC are the concentrations in moldm−3 of

species A, B and C respectively, T is the temperature in

K of the reactor and V is the liquid volume in dm−3. The

parameters were kept at their nominal values, which can be

found in [22].

In compact form we can write x = [CA,CB,CC,T,V ]T

and u = [F,Ta]
T . The continuous-time DAE system in (13)

can be transformed to discrete-time using any numerical

discretization, such as the Euler method. The discrete-time

equation system can then be given by:

x(k+ 1) = f (x(k),u(k))+w(k) (14)

where f (x(k),u(k)) describes the DAE system in (13) and

w(k) is additive Gaussian noise with a constant covariance

matrix Σw = diag(1e− 4,1e− 4,2e− 4,1,2).
Lastly, the measurement dynamics need to be defined,

which are given by the following simple equation:

y(k) =





1 0 0 0 0

0 1 0 0 0

0 0 0 0 1



x(k)+ν(k) (15)

where ν(k) is additive Gaussian noise with a constant

covariance matrix given by Σν = diag(1e−3,1e−3,1e−2).
The measurement equation tells us that the variables A, B

and V can be directly measured with additive noise, while

measurements of C and T are not available.

B. SNMPC problem

In this section an OCP problem is defined based on

an economic objective, which is subsequently solved in a

receding-horizon fashion to yield a valid SNMPC for the

system. The objective of the OCP problem given in (16)

is to maximize the expected amount of C with a penalty

term added for excessive control actions. The probability

constraints cover both path and terminal constraints. The

volume is constrained to lie below 750dm−3 and the tem-

perature of the reactor is set to a safety limit of 440K for



the entire time horizon. A terminal constraint was set for

the concentration of reactant A to lie below 0.5moldm−3.

For all constraints the probability of constraint violation

was set to 0.1. The flow rate is constrained to lie between

0dm−3h−1 and 250dm−3h−1, while the temperature of the

heat exchanger is set to lie between 200K and 500K. This

is given by the following OCP problem:

minimize
uN

−EYn
(x2(n+N|n)x4(n+N|n))+∆UTS∆U

subject to

PYn
(HT

k x(n+ k|n)≤ gk)≥ pk ∀k ∈ {1, ...,N}

u(n+ k) ∈ [0,250]× [200,500] ∀k ∈ {0, ...,N − 1}

(4),(5),(6),(7),(8),(9)
(16)

where ∆U = [u(n + k) − u(n + k − 1)]k∈{1,...,N−1},

S = diag(2e − 4,5e − 5), H1,...,N−1 = diag(0,0,0,1,1),
g1,...,N−1 = [0,0,0,440,750], HN = diag(1,0,0,1,1),
gN = [0.5,0,0,440,750], pk = p f = 0.9 and EYn

(x2(n +
N|n)x4(n+N|n)) = x̂2(n+N|n)x̂4(n+N|n)+Σx2,4(n+N|n).

C. Implementation

The problem given in (15) is a standard OCP that is

solved repeatedly at each new sampling time to yield an

SNMPC controller. Each time it needs as input the previous

control action, state estimate, covariance matrix and current

measurement due to the incorporation of the state estimator.

The OCP is solved using CasADi [23] by employing direct

Collocation. The Collocation points were placed according

to Radau quadrature rule and the degree of the polynomials

was set to 3. For each control interval the state trajectories

were approximated by two polynomials. The NLP problem

is solved utilising IPOPT [24], which applies first and second

order derivative information generated by automatic differen-

tiation of CasADi to solve the NLP problem efficiently. The

”real” nonlinear equation system was simulated using IDAS

[25], which uses a backward differentiation formula implicit

integration scheme. The random noise was generated pseudo-

randomly from a Gaussian distribution. The computational

work was carried out in Python on a Dell XPS 15 notebook

with a Quad-core 6th Generation Intel i-7 processor with up

to 3.5 GHZ and 16 GB of RAM.

To show the effectiveness of the approach the case study

was simulated 50 times, which leads each time to different

trajectories given the uncertainty introduced through the

disturbances and measurements. The parameters in (4-9)

for the UKF were set to the following values: α = 0.4,

β = 2, κ = 0.1. The length of the time horizon N was set

to 30 with a time-interval length of 4/30h. The complete

simulation time was set to 6h, which corresponds to 45

control inputs. At time n = 0 the algorithm needs to be

initiated by supplying it with the ”previous” covariance

matrix, mean and control action. These were set to x̂0 =
[0,0,0,290,100], Σx0

= diag(1e−4,1e−4,1e−4,0.5,1) and

u0 = 0. The corresponding measurement that is required is

obtained from (15). The variable x̂0 was perturbed by noise

according to Σx0
for each simulation. The robust horizon, tR

was set to 2.

V. SIMULATION RESULTS

In this section the semi-batch reactor simulation results are

given. The trajectories for the states are shown in Fig. 1 to

Fig. 5. Fig. 4 is of particular interest, since the temperature

was a difficult constraint to adhere to given the steepness

of the initial rise. As we can see however, the method is

able to effectively reduce the constraint violation to near

zero. In Fig. 5 the volume trajectories are shown, which are

kept well below the constraint at 750dm−3. This indicates

that the result is relatively conservative. The results could be

potentially improved by using a robust horizon of length 1

by allowing for more constraint violation.

Fig. 1. Concentration A trajectories for 50 realizations

Fig. 2. Concentration B trajectories for 50 realizations

Fig. 3. Concentration C trajectories for 50 realizations



Fig. 4. Temperature trajectories for 50 realizations, path constraint shown
as black dashed line

Fig. 5. Volume trajectories for 50 realizations, path constraint shown as
black dashed line

VI. CONCLUSIONS

In this paper, a SNMPC technique based on the

incorporation of the UKF into the MPC problem was

proposed. The approach uses the UKF to propagate both

state estimate error and general additive uncertainty from

disturbances forward in time. Linear joint chance constraints

of the states could be easily implemented, since the states

were assumed to follow a Gaussian distribution. The

resulting OCP ensures feasibility through the probabilistic

constraints. The concept of the ”robust horizon” was

introduced to handle the problem of growing covariances

as the time horizon grows, which otherwise would lead

to either a too conservative controller or infeasibilities in

the OCP. The proposed UKF-SNMPC algorithm was then

applied to a challenging semi-batch reactor case study with

economic objective. Overall the algorithm was able to deal

with the disturbances keeping the temperature of the reactor

below the safety limit.
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