
Nonsmooth Modelling of Multiphase
Multicomponent Heat Exchangers with
Phase Changes

Marius Reed

Chemical Engineering and Biotechnology

Supervisor: Johannes Jäschke, IKP

Department of Chemical Engineering

Submission date: June 2018

Norwegian University of Science and Technology

Summary

Developing proper and consistent dynamic models of processes with phase changes can
be challenging. Appearance and disappearance of phases result in changes in the system
equations and is not known a priori. Dynamic models of such processes have to detect
and adapt to these changes. In this thesis, a nonsmooth dynamic model, formulated as
a DAE of index 1, of a multi-component heat exchanger is presented. The nonsmooth
formulation both detects and adapts to phase changes by including a continuous extension
of the phase mole fractions into the phase regime where the corresponding phase does
not exist. In addition, the model is formulated in a way which allows reversal flow inside
the heat exchanger. Similar to the handling of phase changes, this is done by using the
nonsmooth functions min and max . The heat exchanger is modeled as a number of flash
tanks with constant volume in series.

This thesis presents the development of a multiphase multicomponent flash tank model.
Further a single-sided heat exchanger with given heat transfer as well as a countercurrent
heat exchanger is modeled as flash tanks in series. Results from dynamic simulations of a
single flash tank, one side of a heat exchanger with given heat and a countercurrent heat
exchanger are presented. During the simulations the heat exchanged, the inlet flow rates
and the inlet temperatures are varied. By doing so, the phases both appears and disappears
during the simulations. The results show that the proposed model is both able to detect
and handle phase changes. Further, a shutdown of a heat exchanger has been performed,
showing the models abilities to allow reversal flow.

For simulation purposes, the model is written and implemented in MATLAB®. To simulate
the model, an implicit Euler integrator with fixed time step is used. At the nonsmooth
points, the Jacobian is not defined. As a result, the generalized derivatives are calcu-
lated through automatic differentiation and is used as a replacement for the Jacobian. The
generalized derivatives are computed by using a user-defined MATLAB®-object. These
derivatives are supplied to the MATLAB®-solver fsolve which is used in the Euler integra-
tor.

i

ii

Sammendrag
Utvikling av dynamiske modeller for prosesser med faseendringer kan være utfordrende.
Når en fase forsvinner eller oppstår vil det medføre endringer i ligningene som beskriver
systemet. Problemet med slike faseendringer er at det ikke er kjent når disse skjer a pri-
ori. Dynamiske modeller av slike prosesser må oppdage og tilpasse seg disse endringene.
I denne oppgaven presenteres en ikke-glatt dynamisk model, formulert som en DAE av
indeks 1, av en mulitkomponentvarmeveksler. Den ikke-glatte formuleringen både op-
pdager og tilpasser seg til faseendringer ved å inkludere en kontinuerlig forlengelse av
fasemolfraksjonene inn i faseområdet der den tilsvarende fasen ikke eksisterer. I tillegg er
modellen formulert på en måte som tillater tilbakestrømning i varmeveksleren. På samme
måte som håndtering av faseendringer, gjøres dette ved å bruke de ikke-glatte funksjonene
min og max . Varmeveksleren er modellert som en rekke flashtanker med konstant volum
i serie.

Denne oppgaven presenterer utviklingen av en model av en multifase multikomponent
flash tank. Videre er en enkeltsidig varmeveksler med gitt varmeoverføring, samt en
motstrømsvarmeveksler modellert som flash tanker i serie. Resultatene fra dynamiske
simulering av en enkelt flash-tank, en side av en varmeveksler med gitt varmeoverføring
og en motstrømsvarmeveksler presenteres. Under simuleringene blir varmeoverføringen,
innløpsstrømningsraten og innløpstemperaturene variert. Slik vil både faser oppstå og
forsvinne i løpet av simuleringene. Resultatene viser at den foreslåtte modellen både kan
oppdage og håndtere faseendringer. Videre er avstengning av en varmeveksler utført, og
viser modellens evner til å tillate tilbakestrømning.

Modellen er skrevet og implementert i MATLAB®. For å simulere modellen, brukes en
implisitt Euler integreringsmetode med konstant tidsteg. I ikke-glatte punkter er Jacobian
ikke definert. På grunn av dette beregnes de generaliserte deriverte gjennom automatisk
differensiering og brukes som en erstatning for Jacobian. De generaliserte deriverte bereg-
nes ved å bruke et brukerdefinert MATLAB®-objekt. Disse deriverte sendes til MATLAB®-
løseren fsolve som brukes i Euler integreringsmetoden.

iii

iv

Preface

This master thesis was written in the spring of 2018. The thesis concludes the 5-year
master’s degree programme Chemical Engineering and Biotechnology at the Norwegian
University and Technology. The thesis is written at the Department of Chemical Engineer-
ing, more specifically in the Process Systems Engineering group.

I would like to thank my supervisor Associate Professor Johannes Jäschke for all the guid-
ance and good discussions during the last year. I am really grateful for the opportunity to
work with this exciting project. I would also like to thank Marlene L. Lund for helping me
during the introduction to nonsmooth analysis as part of my specialization project. It has
been very helpful during this master thesis.

Further, I would like to thank all of my friends here in Trondheim for all the good memo-
ries, both in and outside of the study halls. Finally, I want to express my gratitude for all
the encouragement from my family and Monica.

Declaration of Compliance

I hereby declare that this is an independent work according to the exam regulations of the
Norwegian University of Technology.

Trondheim, June 2018
Marius Reed

v

vi

Table of Contents

Summary i

Sammendrag iii

Preface v

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Scope of Work . 2
1.2 Previous Work . 2
1.3 Outline . 3

2 Mathematical Preliminaries 5
2.1 Piecewise Differentiable (PC1) Functions and Convexity 6
2.2 B-subdifferential & Clarke Generalized Jacobian 8
2.3 Lexicographic Derivatives . 11
2.4 Automatic Differentiation . 14

2.4.1 AD of PC1-functions . 15
2.5 Differential-Algebraic Equations (DAEs) 16

2.5.1 DAE Formulations . 17
2.5.2 Index of DAEs . 17
2.5.3 Nonsmooth DAEs . 20

2.6 Solving Semi-Explicit Index 1 DAE . 22

3 Thermodynamic Theory 25
3.1 Vapor-liquid Equilibrium . 25

vii

3.1.1 K-value Method . 26
3.2 Enthalpy Calculations . 28

4 Model Development 31
4.1 Flash Tank . 31

4.1.1 Differential Equations . 32
4.1.2 Algebraic Equations . 33

4.2 Heat Exchanger Model . 40
4.2.1 Heat Exchanger - One Side Model 40
4.2.2 Countercurrent Heat Exchanger 46

5 Simulation Methods 49
5.1 Solvers . 49

5.1.1 The Implicit Euler Integrator . 51
5.2 Initialization Methods . 53

5.2.1 Flash tank . 54
5.2.2 Heat Exchanger . 54

6 Results and Discussion 55
6.1 Two Component Flash Tank . 55
6.2 Two Component HEX . 59

6.2.1 Shutdown of HEX . 62
6.3 Single Component Countercurrent HEX 65
6.4 Performance of Solver . 70
6.5 Further Discussion . 73

7 Concluding Remarks 75
7.1 Suggestion for Further Work . 76

Bibliography 77

A Units Used in Simulations 81

B Summary: Model Equations 83
B.1 Total Flash Tank Model Equations . 83
B.2 One Side of Heat Exchanger . 84
B.3 Counter-Current Heat Exchanger . 86

C Rate of Convergence 89
C.1 The Local Analysis Approach . 89
C.2 The Effect of the Condition Number . 90

D MATLAB® code 91
D.1 valder.m . 91
D.2 Shutdown of one-sided Heat Exchanger 98

D.2.1 Documentation of MATLAB®-files 98
D.2.2 main.m . 100

viii

D.2.3 Flash.m . 102
D.2.4 HEX.m . 104
D.2.5 HEX implicit.m . 108
D.2.6 implicitSolverFull.m . 111
D.2.7 initialGuesses gases.m . 112
D.2.8 parameters.m . 114

D.3 Counter-Current Heat Exchanger . 115
D.3.1 Documentation of MATLAB®-files 115
D.3.2 main.m . 119
D.3.3 Flash.m . 121
D.3.4 HEX.m . 123
D.3.5 HEX CC.m . 125
D.3.6 HEX CC implicit.m . 130
D.3.7 implicitSolverFull CC.m . 135
D.3.8 initialGuesses gases.m . 136
D.3.9 initialGuesses liquid.m . 137
D.3.10 parameters Methanol.m . 139
D.3.11 parameters water.m . 140
D.3.12 parameters CC.m . 140

ix

x

List of Tables

2.1 Forward AD of the function f(x,y) = x2y + ysin(x) at (x,y) = (1,2) 15

6.1 Parameters used in the two component flash simulation. 56

A.1 State variables in the flash tank model 81

xi

xii

List of Figures

2.1 Graph of max{0,x} . 6
2.2 Convex and non-convex sets . 7
2.3 Non convex set and the corresponding convex hull 8
2.4 Graph of f(x) = mid(-x,x,0.5) . 9
2.5 The graphs of f(x) = max(x,1), g(x) = min(x,1) and h(x) = f(x) · g(x) . . . 11
2.6 Graph of f(x,y) = min{x,y} . 14
2.7 A balloon heated by the environment. 21

3.1 Illustration of vapor-liquid equilibrium in a tank. 26

4.1 Sketch of the flash tank modeled in this thesis. 32
4.2 A sketch of the flash tank with the outflows highlighted. 35
4.3 Graph of the nonsmooth formulation using the mid-function 40
4.4 Sketch of a heat exchanger as a set of flash tanks in series 41
4.5 Illustration of connected tanks with multiple flows going in or out of the

tanks. 41
4.6 The flow direction in and out of the different flash tanks which the heat

exchanger consist of. 43
4.7 A sketch of the countercurrent heat exchanger as it is modeled with flash

tanks in series exchanging heat with one another. 46

5.1 A scheme of a implicit Euler integration step from time t to time t+ ∆t . 52
5.2 Example of implicit integration of a nonsmooth DAE system 53

6.1 T , p, ML, MV and Q in dynamic simulation of two component flash. . . 56
6.2 FV , FL, VV , VL, M1 and M2 in dynamic simulation of two component

flash. 57
6.3 Phase mole fractions in dynamic simulation of two component flash. . . . 58
6.4 Illustration of the one-sided HEX modeled as three flash tanks in series. . 59

xiii

6.5 T , p, ML, MV and Q in dynamic simulation of two component one side
of HEX. 60

6.6 FV , FL, VV , VL, M1 and M2 in dynamic simulation of two component
one side of HEX. 61

6.7 Phase mole fractions in dynamic simulation of two component one side of
HEX. 61

6.8 The inlet flow rate, Fin, into the HEX. 62
6.9 The heat, Q, into the HEX. 63
6.10 The pressure, p, temperature, T , in the different parts of the heat exchanger

from shutdown simulation. 63
6.11 Flow rate out of the different parts of the HEX from shutdown simulation. 64
6.12 The component holdups, Mi, phase volumes, VL and VV , and the phase

holdups, MV and ML in the different parts of the HEX. 64
6.13 Illustration of countercurrent HEX with M = 3. 65
6.14 The temperature in the inlet flow on the cold side of the heat exchanger, TCin. 66
6.15 The inlet flow rate on the cold side of the heat exchanger, FCin. 66
6.16 The total heat transferred from the hot to the cold side of the heat ex-

changer, Qtot. 67
6.17 Temperature and heat transfer at the cold side inlet and the hot side outlet

in the countercurrent HEX. 67
6.18 Liquid molar holdup at the cold side inlet and the hot side outlet in the

countercurrent HEX . 68
6.19 Temperature and heat transfer at the middle of the countercurrent HEX. . 68
6.20 Temperature and heat transfer at the hot side inlet and the cold side outlet

of the countercurrent HEX. 69
6.21 The pressure and liquid flow rate on the cold side of the countercurrent HEX. 69
6.22 The amount of iterations used to solve the HEX model at different values

of Q. 70
6.23 The amount of iterations used to solve the HEX model with some parts in

the vapor-only region and other in the vapor-liquid region. 71
6.24 The amount of iterations used to solve the HEX model with some parts in

the liquid-only and others in the vapor-liquid region. 71
6.25 The residuals, ‖f(x)‖1, at each iteration and the condition numbers κ(G(x)

at the steady state solutions. 72

xiv

Nomenclature

Abbreviations

DAE Differential algebraic equation

HEX Heat exchanger

LD Lexicographic directional

NC Number of components

OOP Object-oriented programming

VLE Vapor-liquid equilibrium

Mathematical notation

(f ◦ g) Composite function, f(g(x)

≡ Equivalent to

∃ Exists

∀ For all

∈ Element of

κ Condition number of a matrix.

N Space of natural numbers

Rn Eucledian space of dimension n

A Bold upper case letter denotes a matrix

a Bold lower case letter denotes a vector

AT Transpose of matrix A

A−1 Inverse of matrix A

xv

a(i) Column i of a matrix A

f ′(x) Derivative of f at x

f ′(x;M) Lexicographic directional derivative of f at x in direction M

Jf(x) Jacobian of f at x

Jf(x;M) Lexicographic derivative of f at x in direction M

C1 Continuous differentiable

PC1 Piecewise differentiable

PL Piecewise linear

detM Determinant of M

‖·‖ Unspecified norm

def
= Defined as

∂f Clarke Jacobian of f at x

∂Bf(x) B-subdifferential of f at x

∂Lf(x) Lexicographic subdifferential of f at x

∂P f(x) The plenary Jacobian

π Projection

⊂ Subset of

sup Supremum of

⊃ Superset of

A→ B Mapping from A to B

A Upper case letter denotes a set

a Lower case letter denotes a scalar

a(i) Order of directional derivative or iteration i

aij Element in row i, column j in matrix A

conv(S) Convex hull of the set S

Symbols

γ Activity coefficient -

z Mole fraction in stream -

µ Chemical potential mol

Φ A general quantity -

xvi

φ Fugacity coefficient -

ρ Molar density mol m−3

A Antoine parameter -

B Antoine parameter -

C Antoine parameter -

C Heat capacity J mol−1 K−1

c Vapor valve coefficient mol s−1 Pa−0.5

C0 Compressability factor mol m−3 Pa−1

F Flow rate mol·s−1

G Gibbs energy J

H Enthalpy J

h Molar enthalpy J mol−1

K Phase equilibrium constant -

M Molar hold up mol

m Mass kg

N Mole mol

p Pressure Pa

Q Heat J s−1

R Gas constant J mol−1 K−1

S Entropy J K−1

T Temperature K

U Internal Energy J

UA Heat transfer coefficient times the surface area J s−1 K−1

V Volume m3

v Molar volume m3 mol−1

x Mole fraction in liquid phase -

y Mole fraction in vapor phase -

Superscripts

α Phase α

β Phase β

xvii

C Cold side of a HEX

H Cold side of a HEX

j Cell j of a HEX

Raoult Using Raoults law

sat At saturation

Subscripts

0 Outlet

n Constant composition

D Discretized function

i Component i

in Inlet

L Liquid phase

max Maximum

out Outlet

p Constant pressure

ref Reference value

T Constant temperature

t At time t

tot Total

V Vapor phase

v Constant volume

vap Vaporization

xviii

Chapter 1
Introduction

Heat exchangers are a very common unit within process systems. Processes like refrig-
eration cycles, petroleum refining, and wastewater treatment are only a few examples of
where heat exchangers are used. As they are very common they are present in many mod-
els of parts of a process and entire plants. Therefore, making a good model of a heat
exchanger can increase the overall quality of many process models. Dynamic models are
used both in process operations and -design. The dynamic models can be used to study the
behavior of processes during startup and shutdown, perform optimization, train operators
in addition to other applications[1]. In specific, models of heat exchangers are important
as they can be used to minimize the energy consumption of refrigeration cycles, thereby
reducing the operational costs[2].

Within modeling of heat exchangers, there are several discrete phenomena that can take
place. The stream can be susceptible to phase transition moving into another phase region
and reversal of the flow is something that has to be taken into consideration. Refrigeration
cycles, which are used in a wide range of industrial processes such as liquefaction of
natural gas, are examples of where phase transition should be modeled. There are two
major challenges with including these phenomena in a heat exchanger. First of all, where
and when a phase transition or a flow reversal takes place is not known beforehand. In
addition, when a phase appears or disappears the topology of the heat exchangers changes.
This results in a change in the number of equations needed to describe the system.

A model of a heat exchanger includes solving phase equilibrium between coexisting phases.
These calculations are commonly referred to as flash calculations[3]. Flash calculations
are of big importance as they are not only present in a mathematical model of a heat ex-
changer. Condensers, evaporators and distillation columns are other process units where
flash calculations are included when developing dynamic models. Therefore, the flash cal-
culations included in a dynamic model of a heat exchanger can be reused when developing
a model for these other units.

1

Chapter 1. Introduction

1.1 Scope of Work

The main goal of this thesis is to develop a model of a heat exchanger which is valid for all
the different phase regions (liquid-only, vapor-liquid, vapor-only). In addition, the model
should allow reversal flow inside the heat exchanger. First, a model of single flash tank is
to be developed. The reason for this is that the heat exchanger will be modeled as several
flash tanks, with constant volume, in series. Secondly a single side of a heat exchanger
with given heat transfer is to be developed by reusing the flash tank model. After this is
accomplished, the model is to be extended to include both sides of a countercurrent heat
exchanger which is the final objective.

As the main objective is to simulate the phase transition and handling changes in the equa-
tion set a specific heat exchanger is not considered nor is nonideal gases and liquids. There
are several approaches that can be chosen to achieve the objective. In this thesis, it is de-
sired to formulate nonsmooth DAEs of index 1, where the phase region detection is han-
dled by a nonsmooth equation. This decision is taken as the author has experience using
nonsmooth formulations to detect flow reversal in previous work done in a specialization
project[4]. As there are nonsmooth functions in the model, the generalized derivatives are
to be computed by automatic differentiation. This is done by implementing a MATLAB®-
object using object-oriented programming (OOP) where the operators are overloaded.

1.2 Previous Work

In the last decades, solving phase equilibrium between coexisting phases has been dis-
cussed[3]. Such phase equilibrium is present in a heat exchanger. A well-established way
of developing a heat exchanger model is to add the algebraic phase equilibrium equations
to the differential equations of the conserved quantities in a differential algebraic equation
(DAE) formulation. This was done for a multiphase heat exchanger already in 1989 by
Pingaud[5]. However, this formulation is only valid in the vapor-liquid regime and not for
the single phase regimes. During the last recent years there has been a development where
the discrete phenomena of appearing and disappearing phases have been incorporated in
the HEX models.

Kamath et al.[6] presented an equation-oriented framework using the information about
the roots of a cubic equation of state to determine which phase region the system is in and
to handle the phase transitions. The model is formulated as a mathematical program with
complementarity constraints. To be valid in all the phase regions a relaxation variable, β,
and two slack variables, sV and sL, are introduced. To find a solution of the model, an
optimization problem has to be solved to determine these variables. The drawback with
this formulation is that it is only a steady state model, as well as solving the optimization
problem gets computational demanding with an increase in the number of variables.

Wilhelmsen et al.[3] presented a framework for solving flash calculations called the Ther-
modynamic Differential Algebraic Equation (TDAE) method which handles phase changes.
They proposed using a hybrid model, using different sets of equations for the different

2

1.3 Outline

phases, and using an event detection routine to stop the integrator at different roots. The
suggested roots are the following,

0 =

{
w(1− w) for changes from two-phase to single-phase
T − Tinc for changes from single-phase to two-phase (1.1)

Here w is the vapor fraction, T is temperature and Tinc is the incipient temperature. The
drawback of this formulation is that the integrator has to be stopped when the system
moves into another phase region before the model is initialized with the end conditions
using another set of equations. The issue with this is that the there is a limited theory on
the existence, sensitivity, and uniqueness of their solutions[1].

Sahlodin et al.[1] presented a dynamic extension of a steady state formulation for handling
phase changes proposed by Watson and Barton[7]. In their nonsmooth formulation, they
introduce a modification, defining a continuous extension of the phase mole fraction into
the regimes where they are normally not defined. The reason for introducing this extension
is that the disappearance and appearance of a phase will not lead to discontinuities in the
corresponding phase mole fractions. In the paper, it is described how the complementarity
conditions, in the model proposed by Kamath et al.[6], can be reformulated as nonsmooth
equations. In contrast to the hybrid formulation proposed by Wilhemlsen et al.[3], there are
available theory on the sensitivity analysis, existence and uniqueness presented by Khan
and Barton[8, 9].

1.3 Outline

Chapter 2 starts with the mathematical theory of nonsmooth analysis, covering lexico-
graphic differentiation and how this can be included in automatic differentiation. The
chapter ends with the theory of differential algebraic equations (DAEs), including different
types and index of DAEs as well as how they can be solved. In Chapter 3 the thermody-
namic model of the heat exchanger is presented. Chapter 4 covers the development of the
dynamic model of a single flash tank, a single-sided HEX, and a countercurrent HEX. Fol-
lowing this, the simulation methods used in this thesis are introduced in Chapter 5. Then,
Chapter 6 presents the results from dynamic simulations of the models. This chapter also
discusses these results and their validity. Lastly, Chapter 7 concludes the thesis before
recommendations for further work are given.

3

Chapter 1. Introduction

4

Chapter 2
Mathematical Preliminaries

In this chapter mathematical theory regarding the calculation of the generalized deriva-
tives needed to solve the heat exchanger model, described in Chapter 4, is presented. This
chapter is important as it explains how the derivatives of the nonsmooth functions are
computed, which is essential to this thesis. The heat exchanger is modeled by using non-
smooth functions (in the form of piecewise differentiable functions), meaning that some
equations in the model are not differentiable at certain points. For such functions, gen-
eralized derivative information is required as a replacement for the ordinary derivative of
continuously differentiable functions. This information can be obtained from elements of
the Clarke Jacobian or the B-subdifferential[10]. The problem with these subdifferentials
is that they do not obey strict calculus rules, meaning that it is not possible to calculate
them automatically[10]. During the last recent years, it has been proven that piecewise
differentiable functions are lexicographically smooth, as well as that lexicographic deriva-
tives of the same type of functions are a superset of the Clarke Jacobian[11]. These lexico-
graphic derivatives are possible to compute through the lexicographic-directional deriva-
tives, which obeys strict calculus rules. This development makes it possible to obtain an
element of the Clarke Jacobian by automatic differentiation.

This chapter will define piecewise differentiable functions, convex functions, sets and hulls
before the B-subdifferential and Clarke Jacobian are introduced. After this introduction,
the lexicographic and lexicographic directional derivative will be defined. Further, the
automatic differentiation, with the extension to the computation of lexicographic derivative
of the absolute value function, will be covered. The part introducing nonsmooth analysis
and automatic differentiation in this chapter is adapted from the specialization project
written by the author in the autumn of 2017[4].

After the nonsmooth analysis is covered, the chapter will introduce differential algebraic
equations (DAEs). This is relevant to the thesis as the heat exchanger is model as DAEs.
First, DAE formulations are introduced, including different types of DAEs. This part will
also define the index of a DAE, and an example of how specifications of different variables

5

Chapter 2. Mathematical Preliminaries

in a system can affect the index will be given. Finally, a way of solving a Semi-Explicit
index 1 DAE is presented.

2.1 Piecewise Differentiable (PC1) Functions and Convex-
ity

In the heat exchanger model given in Chapter 4 the valve equations as well as the differ-
ential equations of the conserved quantities includes the PC1-functions min and max. In
addition, the equation which both handles and detects the phase changes uses the PC1-
function mid. PC1-functions are defined in Definition 2.1.

Definition 2.1. (From [10]) Consider an open set X ⊂ Rn and a function f : X→ Rm.
As defined by Scholtes[12], f is piecewise differentiable (PC1) at x ∈ X if there exists a
neighborhood N⊂ X of x and a finite collection of continuous differentiable (C1) functions
f(1),...,f(q) : N→ Rm such that f is continuous on N and such that

f(y) ∈ {f(i)(y) : i ∈ {1, ..., q}}, ∀y ∈ N. (2.1)

If, in addition, each f(i) is linear, then f is piecewise linear (PL) at x.

Example 2.1. The function

f(x) : R→ R : x→ max{0, x}

consists of two linear (and thereby also C1) functions at x = 0:

f(1)(x) = 0, ∀x ∈ (−∞, 0]

f(2)(x) = x, ∀x ∈ [0,∞)

f(x) is therefore PL (and thereby also PC1) on R.

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 2.1: Graph of max{0,x}. The circle marks the nonsmooth point.

6

2.1 Piecewise Differentiable (PC1) Functions and Convexity

To define the B-subdifferential and Clarke Jacobian, and express the relationship between
them, the convex hull is needed. Before defining the convex hull, convex sets and func-
tions are defined.

Definition 2.2. (From [13]) A set S ∈ Rn is a convex set, if for any two point x ∈ S and y
∈ S, the following relation holds,

αx + (1− α)y ∈ S, ∀α ∈ [0, 1]. (2.2)

In other words, for a set to be convex, any straight line between two points within the
set cannot cross the boundary of the set. In Figure 2.2 an example of both a convex and
non-convex set is illustrated.

x2

x1 x1

x2

S N

Figure 2.2: Illustration of a convex set, S, and a non-convex set N. The figure is adapted from
Lund[14] and Vikse[15].

Definition 2.3. (From [13]) The function f is a convex function if its domain S is a convex
set and if for any to points x ∈ S and y ∈ S, the following property is satisfied:

f(αx + (1− α)y) ≤ αf(x)(1− α)f(y), ∀α ∈ [0, 1]. (2.3)

Definition 2.4. (From [13]) A convex combination of a finite set of vectors {x1,x2,...,xm}
∈ Rm is any vector x of the form

x =

m∑
i=1

αixi, where
m∑
i=1

αi = 1, and α ≥ 0 ∀i = 1, 2, ...,m (2.4)

The convex hull of {x1,x2, . . . ,xm} is the set of all convex combinations of these vectors.

Definition 2.4 states that a convex hull of a non-convex set, is the smallest convex superset
of S. This means that a convex hull of a set will always be larger than the original set
unless the original set is convex, then the two will be equal. A non-convex set, S, and its
corresponding convex hull is presented in Figure 2.3.

7

Chapter 2. Mathematical Preliminaries

x2

x1 x1

x2

S conv(S)

Figure 2.3: Illustration of a non-convex set (S) and its corresponding convex hull (conv(S)). The
figure is adapted from Lund[14] and Vikse[15].

2.2 B-subdifferential & Clarke Generalized Jacobian

Set-valued generalized derivatives are as mentioned a replacement of the ordinary deriva-
tive of continuously differentiable functions for nonsmooth functions. However, both the
B-subdifferential and the Clarke generalized Jacobian requires some continuity, namely
local Lipschitz continuity.

Definition 2.5. (From [13]) Given an open set X ⊂ Rn and a function f : X→ Rm. The
function f is said to be Lipschitz continuous at x ∈ X if there exists a L > 0 such that.

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x,y ∈ N. (2.5)

Further, if property 2.5 only holds for a x, y in a neighborhood N ⊂ X of x, the function
is locally Lipschitz continuous.

Definition 2.5 states that the derivatives of a function needs to be bounded from above for
it to be Lipschitz continuous. An example of a function that often appears in physical sys-
tems that is not Lipshitz continuous is f(x) =

√
x. This is because as x→ 0, f ′(x)→∞.

However, Lipschitz continuity can be established for f(x) =
√
|x| by introducing a small

value 0 < ε � 1, f(x) =
√
|x|+ ε. This property is used in the valve equation in the

heat exchanger model introduced in Chapter 4.

Definition 2.6. (From [10]) Given an open set X ⊂ Rn and a locally Lipschitz contin-
uous function f : X → Rm, let S ⊂ X be the set on which f is differentiable. The B-
subdifferential of f at x ∈ X is then

∂Bf(x) :=
{
H ∈ Rm×n : H = lim

n→∞
Jf(x(i)), x = lim

n→∞
x(i), x(i) ∈ S, ∀i ∈ N

}
.

(2.6)

The Clarke (generalized) Jacobian of f at x is ∂f(x) := conv(∂Bf(x))

In other words, the B-subdifferential is a set which consists of all Jacobians that arises
when x is approached from every possible direction. The Clarke Jacobian is, from Def-

8

2.2 B-subdifferential & Clarke Generalized Jacobian

inition 2.6, a larger set than the B-subdifferential as it is the convex hull of it. However,
both the B-subdifferential and the Clarke Jacobian reduces to the singleton of the Jacobian
when f is continuously differentiable at x.

Example 2.2. (Adapted from Lund[14]) Let f(x) = mid(-x, x, 0.5), which is aPC1-function
on R, and therefore also Lipschitz continuous. The graph of f(x) is shown in Figure 2.4.
The nonsmooth points are marked with a circle.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

Figure 2.4: The figure shows the graph of f(x) = mid(-x, x, 0.5). The circles marks the nonsmooth
points.

f(x) has three nondifferentiable points, x = -0.5, x = 0 and x = 0.5. In these points the Ja-
cobian depends on from which direction the nondifferentiable point is approach. Consider
the points x = {-1, -0.25, 0.25, 1}, the B-subdifferentiable of f at these points are:

∂Bf(−1) = 0

∂Bf(−0.25) = −1

∂Bf(0.25) = 1

∂Bf(1) = 0

The B-subdifferentiable at these points is a single-valued set as the slope of f(x) does
not change depending on from which direction the point is approached. In contrast, at
the nondifferentiable, the Jacobian of f(x) changes depending on whether the function is
approached from left or right. The B-subdifferential at these three points are as following:

∂Bf(−0.5) = {0,−1}
∂Bf(0) = {−1, 1}

∂Bf(0.5) = {1, 0}.

9

Chapter 2. Mathematical Preliminaries

The corresponding Clarke generalized Jacobian is:

∂f(−0.5) = [0,−1]

∂f(0) = [−1, 1]

∂f(0.5) = [1, 0].

The shortcoming of B-subdifferentials is that they do not obey the general calculus rules,
and there is no general approach on how to calculate them[14]. A disadvantage with the
Clarke Jacobian is that it only satisfies some classical calculus rules as inclusion and not
equality. One of these, the chain rule, has to be satisfied as equality to be used in automatic
vector forward differentiation[10], which is used in this thesis. In calculus, the chain rule
is the formula for calculating the derivative of the composition of two or more functions,

(f ◦ g)′ = (f ′ ◦ g) · g′, (2.7)

with (f ◦ g) being f(g(x)).

Example 2.3. (Adapted from Lund[14]) Consider two functions, f(x) = max{x,1} and
g(x) = min{x,1}, that are both PC1 on R. The functions are both nondifferentiable at x =
1, and has the following Clarke Jacobians at this point:

∂f(1) = [0, 1]

∂g(1) = [0, 1]

To show that the Clarke Jacobian only satisfies the chain rule by inclusion, consider the
function h(x) = f(x) · g(x) = x, which is smooth and its Clarke Jacobian at x = 1 is ∂h(1) =
1. This shows that the Clarke Jacobian only satisfies the chain rule by inclusions as

∂h(1) ⊂ ∂(f(1) · g(1))

= ∂f(1) · g(1) + ∂g(1) · f(1)

= [0, 1] · 1 + [0, 1] · 1
= [0, 2]

∂h(1) 6= ∂(f(1) · g(1)).

10

2.3 Lexicographic Derivatives

0 1 2
0

0.5

1

1.5

2

(a) f(x) = max(x,1)

0 1 2
0

0.5

1

1.5

2

(b) g(x) = min(x,1)

0 1 2
0

0.5

1

1.5

2

(c) h(x) = f(x) · g(x)

Figure 2.5: The graphs of f(x) = max(x,1), g(x) = min(x,1) and h(x) = f(x) · g(x)

Due to the lack of strict calculus rules for the Clarke Jacobian, another type of general-
ized derivatives has to be used. Lexicographic derivatives can be obtained through the
calculation of Lexicographic directional derivatives (LD-derivatives), which follow strict
calculus rules. It has been proved, by Khan and Barton[11], that the Lexicographic deriva-
tive are elements of the plenary hull of the Clarke Jacobian, meaning that such elements
are equally useful as elements from the Clarke Jacobian.

Definition 2.7. (From [16]) A set A ⊂ Rm×n is plenary if it includes every A ∈ Rm×n
satisfying Au ∈ Au for all u ∈ Rn. Further, the plenary hull, denoted plen A, is the
smallest plenary set containing A.

Definition 2.8. (From [10]) The plenary Jacobian ∂P f(x) is the plenary hull of the Clarke
Jacobian, and satisfies:

∂P f(x) = {M ∈ Rm×n : ∀v ∈ Rn, ∃H ∈ ∂f(x) s.tMv = Hv} ⊇ ∂f(x)

This means that the lexicographic derivatives can be used in nonsmooth Newton-type
solvers on the form,

G(xk)
(
x(k+1) − xk

)
= −f(xk), (2.8)

where G is a generalized derivative element [17].

2.3 Lexicographic Derivatives

The lexicographic derivatives were first proposed and developed by Nesterov[18], and, as
mentioned earlier, proved to be a part of the plenary hull of the Clarke generalized Jacobian
by Khan and Barton[11]. For a function to have a well defined lexicographic derivative at
a point x, it must be lexicographically smooth (L-smooth) at x. The lexicographic deriva-
tive is calculated through the lexicographic directional derivatives (LD-derivatives) as they
obey strict calculus rules, meaning that it is possible to compute them automatically. These
LD-derivatives are the lexicographic analogues to the directional derivative of continuous

11

Chapter 2. Mathematical Preliminaries

differentiable functions (C).

Definition 2.9. (From [13]) The directional derivative of a function f(x): Rn → Rm in
the direction d ∈ Rn is given by,

f ′(x) ≡ lim
h→0

f(x + hd)− f(x)

h
(2.9)

Definition 2.10. (From [10]) Given an open set X⊂ Rn and a locally continuous function
f : X→ Rm, f is lexicographically smooth at x ∈ X if it is directionally differentiable at
x and if, for any k ∈ N and M ∈ Rn×p, the following functions are well-defined:

f
(0)
x,M : Rn → Rm : d 7→ f ′(x;d),

f
(1)
x,M : Rn → Rm : d 7→ [f

(0)
x,M]′(m(1);d),

f
(2)
x,M : Rn → Rm : d 7→ [f

(1)
x,M]′(m(2);d),

...

f
(k)
x,M : Rn → Rm : d 7→ [f

(k−1)
x,M]′(m(k);d).

There are many types of functions that are L-smooth. Some of these groups of functions
are C1 functions, convex functions and, most importantly for this project work, PC1 func-
tions[10].

Definition 2.11. (From [10]) Given the function f : X→ Rm, with X ⊂ Rn and f lexico-
graphically smooth at x. The lexicographic derivative of f at x is defined as

JLf(x;M) ≡ Jf
(n)
x,M(0) (2.10)

for any nonsingular M ∈ Rnxn. Further, the lexicographic subdifferential of f at x is
given by

∂Lf(x) = {JLf(x;M) : M ∈ Rnxn, detM 6= 0} (2.11)

Definition 2.12. (From [10]) Given an open set X ⊂ Rn, a locally Lipschitz continuous
function f : X→ Rm that is lexicographically smooth at x ∈ X, and a matrix M ≡ [m(1)

. . . m(k)] ∈ Rn×k, the LD-derivative of f at x in the directions M is

f ′(x;M) ≡
[
f

(0)
x,M(m(1))f

(1)
x,M(m(2)) . . . f

(k−1)
x,M (m(k))

]
(2.12)

=
[
f

(k)
x,M(m(1)) . . . f

(k)
x,M(m(k))

]
(2.13)

12

2.3 Lexicographic Derivatives

Example 2.4. (Adapted from Lund[14]) Let f(x) : R2 → R be thePC1 function: f(x1,x2)
= min{x1,x2}. The function is not differentiable at any point where x1 = x2. However
the function is PC1, meaning that it is L-smooth, and therefore, the LD-derivative is well
defined. In this example the lexicographic derivative of f is computed using Definition 2.10
at (x1,x2) = (0,0).

Given the direction matrix

M =

[
m11 m12

m21 m22

]
=

[
1 0
0 1

]
(2.14)

which is square and nonsingular. The first order directional derivative is computed as
defined in Definition 2.10:

f
(0)
0,M(d) = f ′(0;d)

= lim
h→0

f(x1 + hd1, x2 + hd2)− f(x1, x2)

h

= lim
h→0

min{x1 + hd1, x2 + hd2} −min{x1, x2}
h

= lim
h→0

min{0 + hd1, 0 + hd2} −min{0, 0}
h

= lim
h→0

hmin{d1, d2}
h

= min{d1, d2}.

The second order directional derivative is further calculated by using Definition 2.10:

f
(1)
x,M(d) =

[
f

(0)
0,M

]′ (
m(1);d

)
= lim
h→0

f0
x,M (m11 + hd1,m21 + hd2)− f0

x,M (m11,m21)

h

= lim
h→0

min{m11 + hd1,m21 + hd2} −min{m11,m21}
h

= lim
h→0

min{1 + hd1, 0 + hd2} −min{1, 0}
h

= lim
h→0

hd2

h

= d2.

The third order directional derivative is calculated in the same way. Equation

13

Chapter 2. Mathematical Preliminaries

f
(2)
x,M(d) =

[
f

(1)
0,M

]′ (
m(2);d

)
= lim
h→0

f1
x,M (m12 + hd1,m22 + hd2)− f1

x,M (m12,m22)

h

= lim
h→0

m22 + hd2 −m22

h

= d2.

Using Definition 2.12, the LD-derivative can be calculated in the two presented alterna-
tives. Equation 2.12 gives

f ′ (0;M) =
[
f0
0,M

(
m(1)

)
f1
0,M

(
m(2)

)]
= [min{m11,m21} m22] = [0 1] .

Alternative 2, Equation 2.13 gives the same generalized derivative:

f ′ (0;M) =
[
f2
0,M

(
m(1)

)
f2
0,M

(
m(2)

)]
= [m21 m22] = [0 1] .

The graph of f(x,y) = min{x,y} is presented in Figure 2.6.

-10
10

10

0

f(
x
,y
)
=

m
in
{x

,y
}

5

y

0

x

0

10

-5
-10 -10

Figure 2.6: Graph of f(x,y) = min{x,y}

2.4 Automatic Differentiation

In this section, an introduction to automatic differentiation (AD) of smooth and L-smooth
functions, with additional focus on PC1 functions, will be given. The AD of PC1 uses
the theory of generalized derivatives presented in the previous sections, as well as further
work done by Khan and Burton[10].

14

2.4 Automatic Differentiation

Automatic differentiation is an alternative to calculating the derivatives through symbolic
or numerical differentiation. There are two different kinds of AD, forward automatic dif-
ferentiation and reverse automatic differentiation. In this thesis, only the forward mode
will be introduced as it is how the AD used in this project is implemented. The thought of
AD is that strict calculus rules such as the chain rule, Equation 2.7, can be implemented
in a numerical environment[19]. This is done by exploiting the procedural operations
that a computer performs when evaluating functions. When a computer evaluates a func-
tion, elemental operations are executed in a sequence. After each execution, a temporary
variable is returned which is then used in the next operation. The elemental operations
referred to are simple operations such as subtraction, addition, multiplication, division as
well as simple functions (trigonometric functions, exponential function etc.). Similar to
calculating the function value, the derivative of a function is possible to calculate by using
this stepwise evaluation. In this thesis, this has been implemented using object-oriented
programming (OOP) in MATLAB®. The objects have both a value and a derivative. By
overwriting the elemental functions, both the value and derivative is updated after each
elemental operation. The AD-class valder.m is presented in Appendix D.1. The forward
AD is illustrated in Table 2.1.

Table 2.1: Forward AD of the function f(x,y) = x2y + ysin(x) at (x,y) = (1,2)

Function Value Derivate expression Derivative
u1 = x = 1 Ju1 = [1 0]
u2 = y = 2 Ju2 = [0 1]
u3 = u2

1 = 1 Ju3 = 2u1Ju1 = [2 0]
u4 = u3 · u2 = 2 Ju4 = u2 · Ju3 + u3 · Ju2 = [4 1]
u5 = sin(u1) ≈ 0.8415 Ju5 = cos(u5) · Ju1 ≈ [0.5403 0]
u6 = u2 · u5 ≈ 1.6829 Ju6 = u5 · Ju2 + u2 · Ju5 ≈ [1.0806 0.8415]
u7 = u4 + u6 ≈ 3.6829 Ju7 = Ju4 + Ju6 ≈ [5.0806 1.8415]

2.4.1 AD of PC1-functions

The example of AD presented in Table 2.1 was done using a C1 functions. It is also possi-
ble to apply the same principle to a nonsmooth function, given that they are L-factorable.

Definition 2.13. (From [10]) A factorable function f is L-factorable if the elemental li-
braryL contains only lexicographically smooth functions whose LD-derivatives are known
or computable.

In Definition 2.13 the library L refers to the elemental functions that the function f can
be broken down to. Important to this project, PC1-functions are L-factorable. In this
project, only the abs-function is differentiated by exploiting the strict calculus rules of the
lexicographic directional derivatives. Also the PC1-functions min, max and mid are used
in the model formulation presented in Chapter 4, but these are expressed as a function of
the absolute function in the AD-class. This means that it is actually the abs-function that
is evaluated when the min, max and mid functions are called. min{x, y} and max{x, y}

15

Chapter 2. Mathematical Preliminaries

can be expressed as a function of abs. mid{x, y, z} can be expressed by the use of min
and max, making it a function of the absolute value function,

min{x, y} =
x+ y − |x− y|

2
, (2.15)

max{x, y} =
x+ y + |x− y|

2
, (2.16)

mid{x, y, z} = min{max{x, y},max{x, z},max{y, z}}. (2.17)

Algorithm 1 Computes the LD-derivative, u′(x;M) for the absolute value function u =
|x| [10]

Require: Function f : R→ R : |x| that admits a scalar argument.
1: if x 6= 0 then
2: Set V̇← (signx)M
3: else
4: Set s1 ← 1
5: for k = 1 to p do
6: if m(k) 6= 0 then
7: Set s1 ← signmk

8: Break out of for-loop
9: end if

10: end for
11: V̇← s1M
12: end if
13: return V̇

In Algorithm 1 the procedure of calculating the LD-derivative of the absolute function. If
x is not equal to 0, the procedure reduces to returning the well-defined derivative of abs(x).
With x = 0, the LD-derivative is determined by the sign of the first non-zero direction.

2.5 Differential-Algebraic Equations (DAEs)

Many dynamic process models consist of differential- and algebraic equations (DAEs).
This is also the case for the heat exchanger model presented in this thesis. In this section,
an introduction to DAEs and the solution of such equation systems is given. First the
theory for smooth DAE systems will be covered. After, some theory for nonsmooth DAE
systems will be introduced.

16

2.5 Differential-Algebraic Equations (DAEs)

2.5.1 DAE Formulations

The most general type of differential-algebraic equations is the fully-implicit nonlinear
DAE[20]:

f(z′, z, t) = 0 z(t0) = z0. (2.18)

Here f is a vector of nonlinear functions, z is the vector of unknown variables, z′ is the time
derivative of z, and t is time. For a system with n differential- and m algebraic variables
the dimensions are as follow:

f = [f1 . . . fn . . . fn+m]
T

z = [z1 . . . zn . . . zn+m]
T

z′ = [z′1 . . . z
′
n . . . 0 . . . 0]

T

(2.19)

All types of DAEs can be represented by Equation 2.18, but less theory exists for this for-
mulation compared to other DAE formulations[20]. Within process modeling the models
are mostly formulated as semi-explicit DAEs which are on the following form:

x′ = f(x,y, t), x(t0) = x0, (2.20)
0 = g(x,y, t). (2.21)

Here the z-vector has been divided into two vectors x and y, where x and y is the
differential- and algebraic variables respectively. f(x,y, t) is the differential equations,
while g(x,y, t) is the algebraic equations. This formulation of DAEs is called semi-
explicit as it is not possible to express y explicitly from the algebraic equations. In a case
where this is possible (y = g(x, t)) the DAE formulation in Equation 2.20 is reduced into
a set of ordinary differential equations[20],

x′ = f(x, t) x(t0) = x0 (2.22)

2.5.2 Index of DAEs

For a steady state model to be numerically well-behaved it must be nonsingular and have
small condition numbers[20]. For a system of equations to be nonsingular, it must have
full rank, meaning that the number of variables and linearly independent equations is equal.
Further, the condition (κ) number is defined as,

κ(A) = ‖A‖
∥∥A−1∥∥ (2.23)

If κ(A) � 1 the matrix is ill-conditioned[21]. To find the condition number of a model
the A-matrix in Equation 2.23 is substituted with the Jacobian or, in the nonsmooth case,

17

Chapter 2. Mathematical Preliminaries

the generalized derivative matrix. Solving a system of equation on the form Ax = b,
the numerical solution will not be exact. This is due to the rounding errors during the
calculation. The numerical solution can be written as x + δx, and normally this will be
the solution of equation A(x + δx) = b + δb. Here the elements of δb is very small. In
the case where κ(A) is large this might not be the case for δx, leading to that the solution
of the model is highly affected by the numerical rounding errors[21].

For a dynamic model, nonsingularity and small conditions numbers do not guarantee that
it is numerically well-behaved. In addition, the DAE must have a low index. The index is a
measure of the problems related to initialization and integration of dynamic process mod-
els[20]. Dynamic models are divided into low index (0 or 1) and high index (2 or larger).
Most commercial solvers, such as ode15s in MATLAB®, only handle low index problems.
Because of this, it is advantageous to develop a low index model whenever possible. The
index of a model can be found by investigating how many differentiations have to be done
to express the algebraic variables as a function of the specified variables[20]. Which vari-
ables that are specified can affect the index of the model. An example of how the index of
a model is calculated, and how a specification of a variable can affect the index of a model
is given in Example 2.5.

Example 2.5. (This example is based on an example in [20]). Consider a ideal gas system
with one inlet and outlet stream where heat is transferred to the system. Assume a reference
temperature Tref = 0 K and constant heat capacity. The inlet flows F0, inlet enthalpy h0

and heat transfer Q are specified and are functions of time, t.

dM

dt
= F0(t)− F1(t) (2.24)

dU

dt
= Q(t) + F0(t)h0(t)− F1(t)h1 (2.25)

pV = MRT (2.26)
U = MCvT (2.27)
h1 = CpT (2.28)

M is the number of moles, h1 is enthalpy in the outlet flow, p is pressure, T is temperature
and U is internal energy. In the model, there are balance equations for M and U , and
algebraic equations for pressure, temperature, and enthalpy. The given model is of index
1 and is semi-explicit. That the model is of index 1 can be shown by differentiating the
algebraic equations,

p′V = M ′RT +MRT ′ (2.29)
U ′ = M ′CvT +MCvT

′ (2.30)
h′1 = CpT

′ (2.31)

18

2.5 Differential-Algebraic Equations (DAEs)

By solving Equation 2.29 for p′, 2.30 for T ′ and 2.31 forh′1 and inserting Equation 2.24
and 2.25, the following ordinary differential equations are obtained,

dp

dt
=
R

V

(
(F0(t)− F1(t))(T − 1) +

Q(t) + F0(t)h0(t)− F1(t)h1

Cv

)
, (2.32)

dT

dt
=
Q(t) + F0(t)h0(t)− F1(t)h1 − F0 + F1

MCv
, (2.33)

h1

dt
=
Cp
M

(
Q(t) + F0(t)h0(t)− F1(t)h1

Cv
− F0 + F1

)
. (2.34)

As only one differentiation of the algebraic is needed to convert the DAE into a set of
ordinary differential equations the DAE is of index 1.

Now consider the same system but instead of specifying Q, the temperature T is speci-
fied. The specification of the temperature will impose constraints on the two differential
variables M and U and will lead to a higher index DAE. This can be shown in the same
manner as for the index 1 model. Differentiating the algebraic equations,

p′V = M ′RT, (2.35)
U ′ = M ′CvT, (2.36)

h′1 = 0. (2.37)

Inserting Equation 2.25 and 2.24 into Equation 2.36 the following equation is obtained,

Q = [CvT − h0(t)]F0(t) + [h1 − CvT]F1(t). (2.38)

To express Q′ as a function of the other variables Equation 2.38 has to be differentiated.
This means that two differentiations are needed to obtain a system of ODEs when T is
constant. The index of the system is therefore 2. The same will be the case if the pressure,
p, is specified.

A semi-explicit DAE is of index 1 if the following holds,

det

(
∂g

∂y

)
6= 0 (2.39)

.

To show this the system in Example 2.5 can be used. First the algebraic variable set y =
[p, M, T] is considered. As shown in the example, using this variable set, the DAE is of
index 1. The Jacobian of the algebraic function g is given as,

19

Chapter 2. Mathematical Preliminaries

∂g

∂y
=

V −RT −MR
0 −CvT −MCv
0 0 −Cp

 , (2.40)

and the determinant is,

det

(
∂g

∂y

)
= det

V −RT −MR
0 −CvT −MCv
0 0 −Cp

 = V TCV Cp 6= 0, (2.41)

which is true as V > 0, T > 0, CV > 0, and Cp > 0.

Now considering the other algebraic variable set, y = [p, M, Q]. The Jacobian is given as,

∂g

∂y
=

V −RT −MR
0 −CvT −MCv
0 0 0

 , (2.42)

and the determinant is,

det

(
∂g

∂y

)
= det

V −RT −MR
0 −CvT −MCv
0 0 0

 = 0. (2.43)

Thereby, the index of the DAE system is not of index 1 if the temperature is specified.

2.5.3 Nonsmooth DAEs

The mathematical theory behind nonsmooth DAEs has not been investigated thoroughly
in this work as it is considered to be out of scope. However, a brief introduction on how
it is possible to verify that a nonsmooth DAE system has a generalized differentiation
index of 1 is presented. The theory in this section assumes that the nonsmooth functions
are PC1. During the last recent years there has been a development on computationally
relevant theory of nonsmooth DAEs. Stechlinski, Patrascu and Barton have established
theory on the well-posedness and sensitivity analysis of nonsmooth DAEs[22, 23]. A
nonsmooth DAE system has generalized differentiation index of 1 if the projection of the
Clarke Jacobian of the algebraic equation g has full rank for all x ∈ Rn and y ∈ Rm at all
times t. This projection is the nonsmooth analogue of ∂g/∂y, in the smooth case[23]. That
the system is of index 1 means that it admits a unique regular solution[23]. How to verify
this index will be illustrated by using an example from Stechlinski et al.(2017)[23]. This
example is based on simple flash calculations and includes the mid-function which is also
present in the heat exchanger model presented in Chapter 4.

20

2.5 Differential-Algebraic Equations (DAEs)

ML

MV

T

Tout p

Figure 2.7: Sketch of a balloon with one species distributed between a liquid and a vapor phase.
The content exchange heat with the environment. The balloon can either be in the vapor-only, vapor-
liquid or liquid-only phase region.

Example 2.6. Consider a balloon, illustrated in Figure 2.7, where a single species is held
at a constant pressure. The balloon system can be described by a simple dynamic model
formulated as a nonsmooth DAE,

dH

dt
= UA(Tout − T (t)), (2.44)

H(t) = MCp(T (t)− T0)−ML(t)∆vaph, (2.45)

0 = mid

(
1− ML(t)

M
, 1− aT (t) + b

p
,
−ML(t)

M

)
, (2.46)

T (0) = T0. (2.47)

Here UA is the overall heat transfer coefficient times the surface area, H is enthalpy, Tout
is the outside temperature, T is the temperature inside the balloon, M is the total molar
holdup,ML is the liquid molar holdup,Cp is the heat capacity, ∆vaph is the heat of vapor-
ization, and the expression aT(t) + b is the saturation pressure, psat. The nonsmoothness of
the DAE arises in the mid-function. The three terms are active in different phase regimes.
The first term is active in the liquid phase only (ML = M), the second term is active in the
two-phase regime (psat = p), while the third term is active in the vapor-only (ML = 0).
The terms are formulated such that one of the nonactive is non-negative, while the other
nonactive term is non-positive. Each of the three terms are C-functions. To verify that the
system is of generalized differentiation index 1, the projection of the Clarke Jacobian is
calculated. The function g can be divided into three selection functions. At most two of
these can be active as the first and third term in the mid-function cannot be equal,

21

Chapter 2. Mathematical Preliminaries

g1 =

[
−H(t) +MCp(T (t)− T0)−ML(t)∆vaph

1−ML/M

]
(2.48)

g2 =

[
−H(t) +MCp(T (t)− T0)−ML(t)∆vaph

1− aT (t)+b
p

]
(2.49)

g3 =

[
−H(t) +MCp(T (t)− T0)−ML(t)∆vaph

−ML(t)/M

]
(2.50)

As Jg1 = Jg3 for any points in the domain of the function, the Clarke Jacobian of g at
any point is given by,

∂g(H,T,ML) =

{[
−1 MCp −∆vaph

0 (λ−1)a
p −λ/M

]
: λ ∈ [0, 1]

}
(2.51)

If the determinant of the projection of the Clarke Jacobian of g, ∂g, with respect to y,
πy∂g(H,T,ML) is non zero the nonsmooth DAE system has index 1. πy∂g(H,T,ML) is
given as,

πy∂g(H,T,ML) =

{[
MCp −∆vaph
(λ−1)a

p −λ/M

]
: λ ∈ [0, 1]

}
, (2.52)

which is the nonsmooth analogue of ∂g/∂y, in the smooth case. The determinant of πy∂g(H,T,ML)
is,

det

([
MCp −∆vapH
(λ−1)a

p −λ/M

])
= −λCp + (λ− 1)

a∆vaph

p
6= 0, ∀λ ∈ [0, 1], (2.53)

as Cp > 0 and a∆vaph/p > 0.

For a nonsmooth DAE system where the nonsmooth functions are PC1, and each of the
selection functions of g is of index 1, than the index of the nonsmooth DAE will be 1.

2.6 Solving Semi-Explicit Index 1 DAE

Given a semi-explicit index 1 DAE system, on the form as presented in Equation 2.20,
it can be integrated using an explicit integration code. The algorithm for doing such an
integration is given in Algorithm 2[20].

22

2.6 Solving Semi-Explicit Index 1 DAE

Algorithm 2 Explicit Euler integration algorithm for a semi-explicit index 1 DAE sys-
tem.[20]

1: Specify initial values at t0 : x0 = x(t0)
2: while t =< tend do
3: Calculate algebraic variables, g(xn,yn, tn) = 0: yn = G(xn, tn)
4: Calculate xn+1 from xn and yn: xn+1 = xn + ∆t · f(xn,yn, tn)
5: end while

In this algorithm, a Euler integration is used, but it is also possible to use other explicit
integration algorithms, such as Runge Kutta methods[20].

For stiff models, the explicit integration method must be replaced by an implicit one[20].
An implicit integration requires the algebraic equations to be solved repeated times. This
will make the algorithm more computational expensive but is necessary if the model is
stiff. The implicit algorithm is given below.

Algorithm 3 Implicit Euler integration algorithm for a semi-explicit index 1 DAE sys-
tem.[20]

1: Specify initial values at t0 : x0 = x(t0)
2: while t =< tend do
3: while error > ε do
4: error = yn+1 - yn + ∆t· f (yn+1,xn+1, tn+1)
5: g(yn+1,xn+1, tn+1) = 0
6: end while
7: end while

23

Chapter 2. Mathematical Preliminaries

24

Chapter 3
Thermodynamic Theory

In this chapter, the thermodynamic model used in this thesis is presented. It covers the
derivation of the thermodynamic equations used in the HEX model. First, the definition
of thermodynamic phase equilibrium is presented before the K-value method is discussed.
Afterward, the equations used for enthalpy calculations are derived.

3.1 Vapor-liquid Equilibrium

To any thermodynamic equilibrium system an energy function is minimized[24]. For a
closed system where temperature and pressure are kept constant, the Gibbs energy is min-
imized at equilibrium. As the Gibbs energy is minimized at equilibrium the following are
a necessary condition for a two phase equilibrium[24],

(dG)T,p,n =

NC∑
i=1

µαi dn
α
i +

NC∑
i=1

µβi dn
β
i , (3.1)

dnαi + dnβi = 0. (3.2)

Here (dG)T,p,n is the differential of Gibbs energy at constant temperature, T , pressure, p,
and total amount of each component. µαi and µβi is the chemical potential of component i
in phase α and β respectively. dnαi and dnβi is the change in the molar holdup of compo-
nent i in phase α/β. NC is the number of components in the system. Equation 3.2 comes
from the total mass balance as the total amount of each component is conserved assuming
no reactions. Eliminating dnβi from Equation 3.1 gives,

25

Chapter 3. Thermodynamic Theory

(dG)T,p,n =

NC∑
i=1

(µαi − µ
β
i)dnαi = 0. (3.3)

Close to the equilibrium point, all dnαi is independent leading to that the equilibrium
condition can be written as[24],

µαi = µβi , ∀i ∈ [1, NC] (3.4)

In addition, both the pressure and temperature is equal in the two phases at equilibrium,

Tα = T β , (3.5)

pα = pβ . (3.6)

In Figure 3.1 an illustration of equilibrium in a tank containing a liquid and a vapor phase
is presented. In the tank the intensive properties will be equal in both phases for all the
components. The arrows indicate mass transfer which maintain the equilibrium.

µ
V
i ; p

V ; T V

µ
L
i ; p

L; TL

Liquid

Vapor

Figure 3.1: Illustration of vapor-liquid equilibrium in a tank. Thermodynamic equilibrium is defined
by equal intensive properties in both phases for all the components. The arrows indicates mass
transfer to maintain the equilibrium.

3.1.1 K-value Method

Vapor-liquid equilibriums are traditionally solved by the Rashford-Rice method[25]. This
method is also referred to as the K-value method as the equilibrium equations are solved
as a set of K-value problems on the form[24],

26

3.1 Vapor-liquid Equilibrium

yi
def
= Kixi. (3.7)

Here yi and xi is the molar fraction of component i in the vapor and liquid phase respec-
tively. Ki is the equilibrium constant for component i. Referring to Ki as a constant
is actually misguiding as Ki is a function of temperature, pressure and the composition
of both phases, Ki(T, p,x,y)[24]. As the necessary condition of thermodynamic equi-
librium is expressed in the terms of chemical potential and not by K-values and molar
fractions, it is important to know the relation between them.

The K-value and the chemical potential is related through the component fugacity coeffi-
cient, φi and/or activity coefficient, γi. In this thesis, the vapor phase is assumed to behave
as an ideal gas, while the liquid is assumed to be an ideal mixture. With these assumptions,
the K-value for component i can be calculated from Raoult’s law[24]. Raoult’s law can
be derived by using a fugacity model for the chemical potential of the vapor phase and an
activity model for the chemical potential of the vapor phase. By doing so the K-value can
be expressed as[24],

Kvle
i =

φsati psati γi
φip

exp

[
vsati (p− psati)

RT

]
. (3.8)

φsati , psati and vsati is the fugacity coefficient, pressure and molar volume of component
i at saturation. φi and γi is the fugacity and activity coefficient of component i at the
current condition and R is the gas constant. Assuming a pure ideal liquid component the
following relations hold,

φi = φsati , (3.9)
γi = 1, (3.10)

p = psati . (3.11)

By doing so the mixture is per definition behaving ideal[24]. Equation 3.8 reduces to
Raoult’s law,

KRaoult
i =

psati

p
, (3.12)

which is used for the VLE calculations in this thesis.

The saturation pressure for a component i can be calculated in different ways, one of them
being the integrated Clausius-Clapeyron equation[25],

psat(T) = psat(Tref) exp

[
−∆vaph

R

(
1

T
− 1

Tref

)]
. (3.13)

27

Chapter 3. Thermodynamic Theory

Tref is the reference temperature and ∆vaph is the molar enthalpy of vaporization. How-
ever, in practical calculations, Equation 3.13 is not sufficiently accurate and an empirical
relationship is used[25]. One of these is the Antoine equation,

log10

(
psat(T)

)
= A− B

T + C
. (3.14)

Here A, B, and C are empirical coefficients which are component specific and can be found
in the literature. The Antoine equation is used for calculating the saturation pressure of a
component in this thesis.

3.2 Enthalpy Calculations

There are several different methods for calculating the enthalpy of a stream, holdup or
phase. In this thesis, the molar enthalpy, h, is calculated as a function of the ideal molar
enthalpy of each components, hi, weighted with the molar fractions, zi.

hα =

NC∑
i

zαi h
α
i . (3.15)

The calculation of the molar enthalpy for a component used in this thesis can be derived
from the total differential of molar internal energy U(S, V,n). This is done as equilibrium
calculations in the flash tank model is based on minimization of the Gibbs energy which
is a function of temperature and pressure. In the derivation below it is shown how to go
from U(S, V,n)→ U(T, p,n)[24].

(dU)n = −pdV + TdS (3.16)

(dV)n =

(
∂V

∂T

)
p,n

dT +

(
∂V

∂p

)
T,n

dp (3.17)

(dS)n =

(
∂S

∂T

)
p,n

dT +

(
∂S

∂p

)
T,n

dp (3.18)

(dU)n = −p

[(
∂V

∂T

)
p,n

dT +

(
∂V

∂p

)
T,n

dp

]
+ T

[(
∂S

∂T

)
p,n

dT +

(
∂S

∂p

)
T,n

dp

]
(3.19)

=

[
T

(
∂S

∂T

)
p,n

− p
(
∂V

∂T

)
p,n

]
dT +

[
T

(
∂S

∂p

)
T,n

− p
(
∂V

∂p

)
T,n

]
dp

(3.20)

=

[
Cp − p

(
∂V

∂T

)
p,n

]
dT −

[
T

(
∂V

∂T

)
p,n

+ p

(
∂V

∂p

)
T,n

]
dp (3.21)

28

3.2 Enthalpy Calculations

Here S is the entropy, V is volume and Cp is the heat capacity at constant pressure. The
subscripts related to the differentials denotes which variables that are kept constant. To go
from Equation 3.20 to 3.21 the following definition and Maxwell relation is used[24],

(
∂S

∂T

)
p,n

def
=
Cp
T(

∂S

∂p

)
T,n

=

(
∂V

∂T

)
p,n

.

From the expression of internal energy with pressure and temperature as free variables,
Equation 3.21, the differential of enthalpy, H , can be derived. Starting with the definition
of enthalpy[24],

H
def
= U + pV, (3.22)

The total differential of H can be expressed as,

(dH)n = (dU)n + p(dV)n + V (dp)n. (3.23)

(dU)n is known from Equation 3.21, and V (dp)n is already a function of p as is desired.
The total differential of V , (dV)n, is given in Equation 3.17. Inserting Equation 3.21 and
3.17 into 3.23 the differential of H , (dH)n can be expressed as,

(dH)n =

[
Cp − p

(
∂V

∂T

)
p,n

+ p

(
∂V

∂T

)
p,n

]
dT

−

[
T

(
∂V

∂T

)
p,n

+ p

(
∂V

∂p

)
T,n

− p
(
∂V

∂p

)
T,n

− V

]
dp

= CpdT −

[
T

(
∂V

∂T

)
p,n

− V

]
dp. (3.24)

Assuming ideal gas Equation 3.24 reduces to,

(dH)n = CpdT. (3.25)

Similarly, for the liquid phase, the change in volume as a function of change in the tem-
perature and/or pressure is assumed to be negligible, resulting in the same equation for the
change in enthalpy, Equation 3.25.

Further, in the calculation of enthalpy, a reference condition has to be chosen[24]. In
this thesis a pure component in liquid phase at Tref = 298.15 K is chosen. In addition,

29

Chapter 3. Thermodynamic Theory

it is assumed that the heat capacity at constant pressure, Cp, is constant. By setting this
reference the calculation of the enthalpy in the vapor and liquid phase is done by the use
of the following equations,

hL =

NC∑
i

xiCp,L,i · (T − Tref) (3.26)

hV =

NC∑
i

yi(∆hvap,i + Cp,V,i · (T − Tref)). (3.27)

30

Chapter 4
Model Development

In this chapter, the development of the heat exchanger (HEX) model is presented. First,
the model of a flash tank is described before the full heat exchanger model, consisting of
several flash tanks in series, is introduced. In the end, an extension to a countercurrent
heat exchanger is presented. The main challenges when developing the model is to make a
set of equations that are fulfilled in all the different phase regions. The three phase regions
are liquid-only, vapor-liquid and vapor-only. The model developed in this thesis is a semi-
explicit index 1 DAE (see Section 2.5.1) which consists of differential equations for the
internal energy and the component molar holdup and algebraic equations for the algebraic
variables. A summary of the model equations for both the single flash tank and the HEX
can be found in Appendix B.

4.1 Flash Tank

The flash tank presented in this section is modeled as a UV-flash, meaning that the internal
energy U , molar holdups, M, and total volume of the flash tank, VT are given. With these
values known, a flash calculation can be done to find the composition in the liquid and
vapor phase (x, y), the temperature, T , the pressure, p, and vapor fraction, f [26].

(U, V,M)→ (x,y, T, p, f) (4.1)

The model is based on the evaporator model proposed by Sahlodin et al.[1]. Figure 4.1
shows a sketch of the flash tank as it is modeled in this thesis. The total molar inlet
flow, Fin, its composition, zin, and the molar enthalpy, hin, in the inlet flow is given. In
addition, the total volume of the tank and the heat flow is defined. The flash tank has one
liquid and one vapor outlet. Both outlets flow towards a given outlet pressure, p0.

31

Chapter 4. Model Development

Fin; hin; zin

_Q

VT

p0

p0

Figure 4.1: Sketch of the flash tank modeled in this thesis.

4.1.1 Differential Equations

To perform the flash calculations the internal energy, U , as well as the molar holdups,
M, needs to be known. At the initial condition these variables are given, but as they will
change in time they are expressed as differential equations. The differential equations are
developed through the general balance equation for a quantity Φ,

dΦ

dt
= Φin − Φout + Φgenerated − Φloss. (4.2)

Assuming that there are no reactions taking place in the flash tank and that the tank is
adiabatic, the generation and the loss term can be neglected. Therefore, the simplified
balance equation used in the flash tank model can be written as,

dΦ

dt
= Φin − Φout. (4.3)

The flash tank model includes dynamic component molar holdup and energy balance equa-
tion. The component molar holdup equation can be derived from the component mass con-
servation equation. The dynamic component mass balance equation is formulated from
Equation 4.3,

dmi

dt
= min −mout i = 1, ..., NC, (4.4)

where m is the mass holdup in the flash tank. As it is assumed that no reactions are taking
place, the mass balance can be substituted with a molar balance,

32

4.1 Flash Tank

dMi

dt
= Min −Mout i = 1, ..., NC. (4.5)

Here Mi is molar holdup of component i. The molar feed flow rate and the composition
is given as an input to the model. In addition, the vapor and liquid outlet flow rate are
modeled as separate flows. By deciding to use these input and state variables the molar
balance equation is written as:

dMi

dt
= ziFin − xiFL − yiFV i = 1, ..., NC, (4.6)

where zi, xi and yi is the molar fraction of component i in the feed, liquid and vapor outlet
flow respectively. Fin is the total molar flow rate into the flash tank, while FL and FV is
the liquid and vapor outlet flow rates.

In addition to the dynamic mass balance, a dynamic energy balance is included in the
flash tank model. The kinetic and potential energy is neglected, meaning that only the
internal energy is balanced. The same strategy is used for the internal energy as for the
mass balance, starting with Equation 4.3.

dU

dt
= Uin − Uout. (4.7)

Same as for the mass balance equation, the inlet/outlet internal energy are not system
variables in the flash tank model. To include only input and system variables in the internal
energy balance Equation 4.7 is rewritten,

dU

dt
= Finhin − FLhL − FV hV +Q. (4.8)

In Equation 4.8 hin, hL and hV is the molar enthalpy in the inlet and liquid/vapor outlet
flow. Q is the heat transferred to the system. The inlet enthalpy is given as a input by
calculating the enthalpy through the temperature and composition in the inlet.

4.1.2 Algebraic Equations

All of the other system variables are calculated through algebraic equations. Given the
value of the input variables and the differential variables, the value of the algebraic vari-
ables can be calculated through these algebraic equations. Even though some of the al-
gebraic variables, such as vapor and liquid fractions, do not have a physical interpretation
in all the three different phase regions, all equations have to be satisfied for any given
condition.

33

Chapter 4. Model Development

Enthalpy Calculations

The enthalpy calculations in the flash tank model are performed by use of the equations
derived in Section 3.2. The equations used to calculate the molar enthalpies in the liquid
and vapor is Equation 3.26 and 3.27. To include all the model equation in this section the
equation is restated below,

hL =

NC∑
i

xiCp,L,i · (T − Tref), (4.9)

hV =

NC∑
i

yi(∆Hvap,i + Cp,V,i · (T − Tref)). (4.10)

It is assumed that the phases are perfectly mixed, meaning that the temperature and com-
position are the same in the entire phase. Further, the total enthalpy holdup, H , in the flash
tank is calculated by,

H = MLhL +MV hV . (4.11)

Here ML and MV is the molar holdup of vapor and liquid respectively. In addition to
these equations the enthalpy, H and internal energy, U , needs to be related as the enthalpy
is relative to the selected reference state[24]. This relation is given by the definition of
enthalpy, stated in Equation 3.22 as,

H
def
= U + pV. (4.12)

Vapor-Liquid Equilibrium

The vapor-liquid equilibrium (VLE) equations used in this section is thoroughly derived
and discussed in Section 3.1. For sake of completeness, the equations used for the VLE
calculations is restated below,

yi = Kixi i = 1, ..., NC, (4.13)

Ki =
psati

p
i = 1, ..., NC, (4.14)

log10(psati) = Ai −
Bi

T − Ci
i = 1, ..., NC. (4.15)

As already mentioned, the proposed flash tank model should be valid for all the phase
regions, meaning that there is not necessarily a vapor-liquid equilibrium present in the

34

4.1 Flash Tank

flash tank. Even though, the VLE equation is continuously a part of the model equations.
This will result in non-physical values for either the vapor, yi, or liquid, xi molar fractions
at conditions resulting in a single phase being present in the flash tank. How this is handled
is described in the section Nonsmooth Formulation Approach.

Flow Rates

The liquid and vapor flow rates are modeled as two separate flows. This is to make the flow
rate of each phase to be dependent on the fraction of the volume holdup of each phase. It
can be argued, that the outflow should be a function of the cross-sectional area that the
phase covers, rather than the volume. However, it is assumed that using the volume is a
good enough approximation to reduce the nonlinearity of the model.

FV

FL

Figure 4.2: A sketch of the flash tank with the outflows highlighted.

The proposed nonsmooth equations for the flow rates are,

FV = cV ·
VV
Vtot

max

(
0,

p− p0√
|p− p0|+ ε

)
, (4.16)

FL = cL ·
VL
Vtot

max

(
0,

p− p0√
|p− p0|+ ε

)
. (4.17)

Here cV and cL is the valve coefficients for the vapor and liquid flow. VV , VL and Vtot
is the vapor volume, liquid volume and total volume of the flash tank. p0 is the outlet
pressure. In addition to adjusting the flow rate for each phase, the volume of each phase
are used to trigger a liquid-blocking and vapor-blocking valve when the corresponding
phase volume goes to zero. The max -function is used to model a check valve to prevent
reverse flow. When the pressure, p, inside the tank is less than the outflow pressure, p0,

35

Chapter 4. Model Development

both the outflows are shut down. Further a small value ε > 0 is used to establish Lipschitz
continuity at p = p0[1]. This is important as it is a requirement to calculate the generalized
derivative which is discussed in Chapter 2.

Volume, Density and Pressure Calculations

The total volume of the flash tank is fixed, and all of the volume is occupied by either a
mixture of liquid and vapor or just one of the phases. This is incorporated in the model by
the following equation,

Vtot = VV + VL. (4.18)

As already mentioned in the derivation of the enthalpy calculation in Section 3.2, the vapor
phase is assumed to behave as an ideal gas. Therefore the ideal gas law is included in the
model to relate the pressure, temperature, vapor holdup, and vapor volume,

pVV = MVRT. (4.19)

The liquid volume holdup in the tank is calculated by the relation of the liquid molar
holdup and the density of the liquid, ρL,

VL =
ML

ρL
. (4.20)

To calculate the density a modification of the equation proposed by Sahlodin et al. is
used[1],

1

ρL
=

NC∑
i

xi
ρi(p)

, (4.21)

where ρi is the density of component i. The modification is that the liquid density of
component i is a function of the pressure, making the liquid compressible. The density, as
a function of pressure, is given by,

ρi(p) = ρi(pref) · (1 + C0(p− pref)), (4.22)

where ρi(pref) is the density of component i at the reference pressure pref and C0 is a
compressibility factor. This leads to the following model for the liquid density,

1

ρL
=

NC∑
i

xi
ρi(pref) (1 + C0(p− pref))

. (4.23)

36

4.1 Flash Tank

By introducing this modification the index of the flash tank model is reduced from 2 to 1
for the liquid-only phase region. Thereby the DAE system is of index one in all the three
phase regions. If incompressible liquid was to be assumed, information about the pressure
is lost when there is no vapor present and the derivative of the algebraic equations would
become rank deficient. The reason for this is that MV = 0 and VV = 0, leading to a trivial
solution of Equation 4.19.

Molar Holdup

In addition to the differential equation for the component molar holdups, Equation 4.6, the
component molar holdups need to be related to the vapor and liquid holdups as well as
the composition in the different phases. These relations are included in the model by the
following equations,

Mi = xiML + yiMV , i = 1, ..., NC, (4.24)
NC∑
i

Mi = ML +MV . (4.25)

Nonsmooth Formulation Approach

The main objective of this master thesis has been to develop a single model that is valid
for all the three different phase regions. To achieve this all the system equations has to
be satisfied at any point in the domain of the system. In this suggested model formulation
this has been done by using a nonsmooth formulation suggested by Sahlodin et al[1]. This
formulation includes the mid-function, described in Example 2.2. The mid-function is
used to coop with the fact the VLE calculations is not physically satisfied when there is
only one existing phase. This is done by extending the phase molar fraction into the phase
region where they physically do not exists. The suggested formulation is as follows,

0 = mid

(
MV (t)

MV (t) +ML(t)
,

NC∑
i

xi(t)−
NC∑
i

yi(t),
MV (t)

MV (t) +ML(t)
− 1

)
(4.26)

Here, the first term is valid for the liquid-only regime as the term will set the vapor holdup
to be zero. The second term is valid when there is both vapor and liquid present in the flash
tank, while the last term is for the vapor-only regime as it will only be satisfied as long as
the liquid holdup is zero. The second term can be replaced by a dynamic extension of the
Rashford-Rice equation,

0 = −
NC∑
i=1

Mi(ki − 1)(∑NC
j=1Mj

)
+MV (ki − 1)

. (4.27)

37

Chapter 4. Model Development

The proof of the nonsmooth formulation is based on minimization of Gibbs energy at
constant temperature and pressure and can be found in Sahlodin et al[1]. In this thesis,
the formulation will be justified by showing the behavior of the three equations and how
the mid-function chooses the correct term given the condition of the system. To do so, a
single component flash tank system will be considered.

Liquid-Only Region

When the system is below the bubble point, there will only be liquid in the flash tank.
When this is the case solving the system equation should result in that the vapor holdup,
MV , is equal to zero. This means that mid-function in Equation 4.26 should select the first
term. For this to be the case one of the two other terms has to be non-positive, whilst the
other term should be non-negative. Looking at the third term, when MV is zero, the term
is equal to -1, meaning that it is less than zero. For the nonsmooth formulation to choose
the correct the term, the second term should be greater than zero below the bubble point.

As the system is below the bubble point the saturation pressure calculated by Equation 4.15
will be less than the pressure of the system. Further, the K-value calculated by Equation
4.14 is less than 1. This will result in that the calculated vapor fraction, y, will be less
than 1. Inserting this into the expression in the middle of Equation 4.26, gives that the
expression is larger than zero. To sum up the values for the three different expressions for
temperatures and pressures below the bubble point,

MV (t)

MV (t) +ML(t)
= 0,

NC∑
i

xi(t)−
NC∑
i

yi(t) > 0,

MV (t)

MV (t) +ML(t)
− 1 < 0.

This will result in that the first term will active, forcing the vapor holdup to be zero when
the system conditions are below the bubble point. Note that the vapor fraction, y, calcu-
lated at such conditions is not 1. For a multicomponent system, the molar fraction in the
non-existing phase will neither sum up to 1. This is physically incorrect as per definition
the sum of molar fractions in a phase should add up to 1. Therefore it should not be called
a molar fraction but rather a pseudo molar fraction y′. But to simplify the notation in
this thesis the molar fraction of the non-existing phase will still be referred to as a molar
fraction and will be denoted as x and y.

Vapor-Liquid Equilibrium

When the system is above the bubble point and below the dew point, both phases will
exist. For a single component system, the pressure and temperature of the system will be

38

4.1 Flash Tank

such that the saturation pressure of the component is equal to the pressure of the system.
Both the vapor and liquid holdup, will be greater than 0 but less than 1, 0 < MV < 1 and
0 < ML < 1. This results in the following values for the three terms in the mid-function
in Equation 4.26,

MV (t)

MV (t) +ML(t)
> 0,

NC∑
i

xi(t)−
NC∑
i

yi(t) = 0,

MV (t)

MV (t) +ML(t)
− 1 < 0.

Vapor-Only Region

The last remaining phase region is the vapor-only phase region. At this point, the liq-
uid holdup, ML, is zero and the vapor fraction, y, is 1. Further, the system conditions
are above the dew point, meaning that for the given temperature and pressure, the corre-
sponding saturation pressure, psat, is greater than the system pressure. The K-value at
this conditions will be greater than 1, leading to a liquid fraction, x, that is less than one.
Here, the same applies for the liquid fraction as mentioned earlier for the vapor fraction,
meaning that this calculated liquid molar fraction is a pseudo fraction, x′, which do not
have a physical interpretation. The three terms in Equation 4.26 will have the following
values for conditions above the dew point,

MV (t)

MV (t) +ML(t)
> 0,

NC∑
i

xi(t)−
NC∑
i

yi(t) < 0,

MV (t)

MV (t) +ML(t)
− 1 = 0.

Example of the Nonsmooth Formulation

The behavior of Equation 4.26 can be illustrated by an example. In this example, only the
VLE calculations are included and the results shown are steady state values. Suppose a
flash tank where the feed consists of water and methanol. By changing the temperature,
while keeping the pressure constant, in the tank the system will move through the different
phase regimes. Figure 4.3 shows the value of each of the three terms in Equation 4.3. The
continuous parts of the lines are where the corresponding part is active, while the line is

39

Chapter 4. Model Development

dotted where it is not active. As the figure shows, the first term is active at low tempera-
ture (liquid-only regime), while the third term is active for high temperature (vapor-only
regime). The second term is active for the temperature in between (vapor-liquid regime).
This corresponds to the behavior which is desired and what has been explained is the most
recent sections.

330 340 350 360 370 380
-1

-0.5

0

0.5

1

Figure 4.3: The graph shows which of the three terms in the nonsmooth mid-function is active as a
function of the temperature T, with the pressure kept constant.

4.2 Heat Exchanger Model

The heat exchanger is modeled as flash tanks in series, with some modification. In this
section, the HEX model, developed from the flash tank model, is presented. First, the
model of one side of the HEX where the heat, Q, is considered to be fixed is presented.
Secondly, a model where both sides of a countercurrent heat exchanger are included will
be introduced.

4.2.1 Heat Exchanger - One Side Model

In this section, the development of one side of a heat exchanger is given. In this model, it is
assumed that a given heat flow, Q, is exchanged from another thought flow. In Figure 4.4
the one-sided heat exchanger is shown. The heat exchanger is divided into M flash tanks,
and it is assumed that the same amountQcell = Q/M is exchanged to each of the different
cells. Similar to the flash tank in Section 4.1, the inlet flow, Fin, inlet molar enthalpy, hin
as well as the composition in the inlet flow, zin is given. In addition, the outlet pressure,
p0 is an input to the model. The flash tanks will be numbered from j = 1, 2...M − 1,M ,
with j = 1 being the flash tank where the inlet goes into, and M is the last tank.

40

4.2 Heat Exchanger Model

j = 1 j = 2 j = M-1 j = M
Q̂ Q̂ Q̂ Q̂

p0

Fin
hin
zin

Figure 4.4: The figure shows how the heat exchanger is modeled as a set of flash tanks in series.

Differential Equations

The differential equations for the HEX is based on the differential equations for the flash
tank presented in Section 4.1.1. However, to allow reversal flow inside the heat exchanger
the differential equations has to be changed accordingly. If the flow reverses the compo-
sition and the molar enthalpy of the flow will be that of the cell where it normally would
flow to. To include this in the model, the nonsmooth functions max and min are used
to detect the direction of the flow. The formulations used in this thesis is based on the
formulation proposed by Stechlinski et al.[27].

Consider a system consisting of several tanks. Each of the tanks has multiple flows enter-
ing/leaving, depending on the pressure difference. The system is presented in Figure 4.5.
The accumulation of a quantity in the center tank, Φ0, is dependent on the flow direction
as well as the molar quantity of Φ, ξ, in the tank where it flows from. The accumulation
of Φ over time can be expressed as the following differential equation,

Φ
1; p1 Φ

2; p2

Φ
i; pi

F i

F 1

F 2

Φ
0

j ; p
0

+

−

Figure 4.5: Illustration of connected tanks with multiple flows going in or out of the tanks. The
flow rates are either positive or negative dependent on the pressure difference between the tanks,
pi − p0. In this sketch, the flow rates are defined to be positive when going into tank 0. Φ is a
general quantity. The figure is adapted from Stechlinski et al.[27].

41

Chapter 4. Model Development

dΦ0

dt
=

n∑
i=1

max
(
F i, 0

)
ξi +

n∑
i=1

min
(
F i, 0

)
ξ0 (4.28)

The first sum in Equation 4.28 includes only the flows going into the center tank in Figure
4.5. The amount of Φ going into the tank is the positive flow rates multiplied with the
molar quantity in the tank it comes from, ξi. The second sum covers the flows which are
going out of the tank. This amount is equal to the flow rate of the flows leaving the tank
multiplied by the molar quantity/composition in the given tank, ξ0.

As Figure 4.4 shows, each of the tanks in the heat exchanger model has two flows entering
(one vapor, one liquid) and two flows (one vapor, one liquid) leaving, except for the first
tank which only has one inlet flow which is fixed. The flow directions indicated in Figure
4.4 is the positive directions, but reversal flow is possible. There are three different cases
to consider. The first tank which has one fixed inlet flow. The last tank which has a check
valve in the outlet flows, meaning that no reversal flow is allowed. The last case is all the
other tanks. In the next illustrations and equations, only one flow in and out of the tank is
considered as the vapor and liquid flow going from one tank to another will have the same
direction.

Figure 4.6 shows the different flow directions for the three different cases. In Figure 4.6a
the flow directions for the first tank is presented. The inlet flow, Fin, is given and is
unidirectional. Based on Equation 4.28 the balance equation for the quantity Φ1 can be
formulated as,

dΦ1

dt
= Finξin −max

(
0, F 1

)
ξ1 −min

(
0, F 1

)
ξ2. (4.29)

The max -term in Equation 4.29 corresponds to when the flow goes from tank 1 to 2. In
this case, the flow, F 1, is positive and the amount of quantity Φ leaving tank 1 is F 1ξ1.
The min -term is non-zero when the flow direction is opposite, meaning that F 1 is below
zero. When this is the case, an amount of quantity Φ equal to −F 1ξ2 is arriving tank 1
from tank 2.

In Figure 4.6b, the flow directions for tank j 6= {1,M} is illustrated. For these tanks,
the direction of neither flows are fixed. The differential equation for quantity Φj can be
written as,

dΦj

dt
= max

(
0, F j−1

)
ξj−1 −max

(
0, F j

)
ξj + min

(
0, F j−1

)
ξj −min

(
0, F j

)
ξj+1.

(4.30)

In Equation 4.30, the max -terms are non-zero when the flows are positive, meaning that
the flow is going from j − 1 → j → j + 1, whilst the min -terms are non-zero when the
directions are reversed. Note that only two of the terms are non-zero at the same time.
This is the desired behavior as a specific flow cannot go both in and out of a tank at the
same time.

42

4.2 Heat Exchanger Model

+ Φ
2; p2

F 1

Φ
1; p1

∆p1 = p1 − p2

F in

ξin

−

(a) Flow directions into the first flash tank in the heat exchanger model.

+

−

Φ
j+1; pj+1

F j

Φ
j; pj

∆pj = pj − pj+1

+

−

F j−1

∆pj−1
= pj−1

− pj

Φ
j−1; pj−1

(b) Flow directions into flash tank number j 6= {1,M} in the heat exchanger model.

+ p0

FM

Φ
M ; pM

∆pM = p0 − pM

+

−

F j−1

∆pM−1
= pM−1

− pM

Φ
M−1; pM−1

(c) Flow directions into the last flash tank, j = M, in the heat exchanger model.

Figure 4.6: The flow direction in and out of the different flash tanks which the heat exchanger
consist of.

The last case is the last flash tank in the heat exchanger, j = M . The flow directions
for this part of the HEX is presented in Figure 4.6c. The outlet from this tank FM has a
check valve meaning that no reverse flow is allowed. This is not handled in the differential
equations but is included in the valve equations, Equation 4.52 and 4.53. The balance of
quantity ΦM is formulated as,

dΦM

dt
= max

(
0, FM−1

)
ξM−1 − FMξM + min

(
0, FM−1

)
ξM . (4.31)

The differential equation for the dynamic variables in the HEX model can be formulated
using the balance equations for the general quantity, Φ. The differential equations for the
internal energy in each part of the HEX, U j is given as,

43

Chapter 4. Model Development

dU

dt

1

= Finhin −
(
max

(
0, F 1

L

)
h1
L + max

(
0, F 1

V

)
h1
V

)
(4.32)

−
(
min

(
0, F 1

L

)
h2
L + min

(
0, F 1

V

)
h2
V

)
+Qcell,

dU

dt

j

=
(

max
(

0, F j−1
L

)
hj−1
L + max

(
0, F j−1

V

)
hj−1
V

)
−
(

max
(

0, F jL

)
hjL + max

(
0, F jV

)
hjV

)
(4.33)

+
(

min
(

0, F j−1
L

)
hjL + min

(
0, F j−1

V

)
hjV

)
−
(

min
(

0, F jL

)
hj+1
L + min

(
0, F jV

)
hj+1
V

)
+Qcell, j = 2...M − 1,

dU

dt

M

=
(
max

(
0, FM−1

L

)
hM−1
L + max

(
0, FM−1

V

)
hM−1
V

)
(4.34)

−
(
FML hML + FMV hMV

)
+
(
min

(
0, FM−1

L

)
hML + min

(
0, FM−1

V

)
hMV
)

+Qcell.

Similarly, the differential of the component holdup is given as,

dMi

dt

1

= Finzin,i −
(
max

(
0, F 1

L

)
x1
i + max

(
0, F 1

V

)
y1
i

)
(4.35)

−
(
min

(
0, F 1

L

)
x2
i + min

(
0, F 1

V

)
y2
i

)
, i = 1...NC

dMi

dt

j

=
(

max
(

0, F j−1
L

)
xj−1
i + max

(
0, F j−1

V

)
yj−1
i

)
−
(

max
(

0, F jL

)
xji + max

(
0, F jV

)
yji

)
(4.36)

+
(

min
(

0, F j−1
L

)
xji + min

(
0, F j−1

V

)
yji

)
−
(

min
(

0, F jL

)
xj+1
i + min

(
0, F jV

)
yj+1
i

)
, i = 1...NC, j = 2...M − 1,

dMi

dt

M

=
(
max

(
0, FM−1

L

)
xM−1
i + max

(
0, FM−1

V

)
yM−1
i

)
−
(
FML xMi + FMV yMi

)
+
(
min

(
0, FM−1

L

)
xMi + min

(
0, FM−1

V

)
yMi
)
, i = 1...NC (4.37)

Algebraic Equations

In every flash tank, which is part of the HEX model, the algebraic equations presented
in Section 4.1.2 is solved. For the outflows, the equation is changed for all flash tanks
except for the last tank to allow bi-directional flow. The equations for all the flash tanks
are presented below.

44

4.2 Heat Exchanger Model

M j
i = M j

Lx
j
i +M j

V y
j
i , i = 1, ..., NC, j = 1...M, (4.38)

NC∑
i

M j
i = M j

L +M j
V , j = 1...M, (4.39)

Hj = M j
Lh

j
L +M j

V h
j
V , j = 1...M, (4.40)

Hj = U j + pjVT , j = 1...M, (4.41)

yji = kjix
j
i , i = 1, ..., NC, j = 1...M, (4.42)

VT = V jL + V jV , j = 1...M, (4.43)

ρjL =

NC∑
i

xji
ρi (1 + C0(pj − pref))

, j = 1...M, (4.44)

hjL =

NC∑
i

xji cp,L,i(T
j − T0), j = 1...M, (4.45)

hjV =

NC∑
i

yji (∆vaphi + cp,V,i)(T
j − T0), j = 1...M, (4.46)

kji =
pjsat,i
pj

, j = 1...M, (4.47)

log10(pjsat,i) = Ai −
Bi

T j − Ci
, j = 1...M, (4.48)

0 = mid

(
M j
V

M j
V +M j

L

,

NC∑
i

xji −
NC∑
i

yji ,
M j
V

M j
V +M j

L

− 1

)
, j = 1...M. (4.49)

As mentioned, only the last tank has a reverse flow blocking valve. This leads to a different
flow equation formulation for the different flash tanks. For the last tank, the flow equation
is the same as in Section 4.1.2. For the other tanks, the nonsmooth max function is
excluded to allow bi-directional flow, and the pressure gradient is the difference between
the given tank and the next. For the last tank, j = M , the outlet flows towards the defined
outlet pressure, p0. To make the total pressure drop through the HEX independent on the
number of cells it is divided into the valve coefficients are multiplied with

√
M .

F jV = cV
√
M ·

V jV
VT

(
pj − pj+1√
|pj − pj+1|+ ε

)
j = 1...M − 1 (4.50)

F jL = cL
√
M ·

V jL
VT

(
pj − pj+1√
|pj − pj+1|+ ε

)
j = 1...M − 1 (4.51)

45

Chapter 4. Model Development

FMV = cV
√
M · V

M
V

VT
max

(
0,

pM − p0√
|pM − p0|+ ε

)
(4.52)

FML = cL
√
M · V

M
L

VT
max

(
0,

pM − p0√
|pM − p0|+ ε

)
(4.53)

4.2.2 Countercurrent Heat Exchanger

The model of one side of a heat exchanger can be extended to a countercurrent heat ex-
changer. Both sides, cold and hot side, of the HEX is divided into M parts, which is
modeled as flash tanks in series like it was in the previous section. In Figure 4.7, the coun-
tercurrent HEX, as it is modeled, is illustrated. F jin, hjin, zjin are the input variables for
one side, while F kin, hkin, zkin denotes the input variables for the second side. In addition,
the outlet pressure is defined for both sides, pj0 and pk0 .

j = 1 j = 2 j = M-1 j = M

p0

F
j
in

h
j
in

zin
j

p0

k = M k = M - 1 k = 2 k = 1

Q̂1;M Q̂2;M−1 Q̂M−1;2 Q̂M;1 F k
in

hk
in

zin
k

Figure 4.7: A sketch of the countercurrent heat exchanger as it is modeled with flash tanks in series
exchanging heat with one another.

All equations presented in Section 4.2.1 are included for both sides. The two sides are
connected by substituting the defined heat, Q, with the following equation,

Q = UA∆T. (4.54)

Here U is the heat transfer coefficient, A is the surface area where the heat is transferred
and ∆T is the temperature difference between the two flash tanks that exchange heat.

The heat transferred from one cell on one side of the HEX to the corresponding cell on the
other side can be expressed by a general equation of Equation 4.54, using the indices in
Figure 4.7.

46

4.2 Heat Exchanger Model

Qj,k = UA
(
T kM−j+1 − T

j
j

)
, (4.55)

Qk,j = −Qj,k (4.56)

Here Qj,k is the heat transferred from cell k on one side of the HEX to cell j on the other
side. T jj is cell number j on side j, while T kM−j+1 is cell number M − j + 1 on side k.
The index number M − j + 1 will be the cell which transfer heat with cell j on side j.
Equation 4.56 states that the heat transferred the other way is the same amount but with
different sign.

47

Chapter 4. Model Development

48

Chapter 5
Simulation Methods

In this chapter, the simulation methods used for dynamic simulation of the models de-
scribed in Chapter 4 are presented. The chapter will cover which program and solvers are
used. In addition, how the simulations are initialized is described. Using SI units for the
parameters and system variables makes the system ill-conditioned. Due to this, other units
have been used in the simulations. The units used for the different variables can be found
in Appendix A.

5.1 Solvers

The model, which is to be simulated, is formulated as a semi-explicit index 1 DAE. There
are several commercial DAE solvers that can be used to simulate such systems[20], one
of them being the ode15s solver in MATLAB®. ode15s is a solver that is well suited
for stiff systems, something the flash tank and HEX model is due to the fast changes
connected to the phase changes. However, to the best of the author’s knowledge, there
is no documentation that this solver can handle nonsmooth models. During simulation
work done in relation to this thesis, problems using the ode15s-solver has occurred. The
solver return an error message that it is not able to find a solution without reducing the
time step below the limit at the nonsmooth points. A reason for this can be that ode15s
uses variable time-stepping. This means that when the system changes rapidly, the time
step is reduced. At a nonsmooth point, the gradient depends on which direction the system
moves, as discussed in Chapter 2. Even if the time step is reduced to a very small value, the
derivative will change discretely at the nonsmooth point. Therefore, using the numerically
calculated derivative at the previous point will not move the system towards the correct
solution at the next time which leads to the error message. It has also been tried to supply
the generalized derivatives calculated by using AD-objects, see Appendix D.1. Still, the
ode15s-solver returns the same error message. Due to these problems, a simple integrator

49

Chapter 5. Simulation Methods

with a constant time step has been used to solve the system.

In this thesis, the model is simulated by using the implicit Euler integration algorithm
presented in Algorithm 3. To do this, the differential equations are discretized using back-
ward differentiation. This results in the following discrete functions for the differential
equations for the single flash tank model,

Ut+∆t = Ut + (Finhin − FL,t+∆thL,t+∆t − FV,t+∆thV,t+∆t +Q)∆t, (5.1)
Mi,t+∆t = Mi,t + (ziFin − xi,t+∆tFL,t+∆t − yi,t+∆tFV,t+∆t)∆t, (5.2)

i = 1, ..., NC.

Here, the value of the differential variables at the previous time, t, is known, while the
variables denoted with t+ ∆t is the variables that should be solved for to find the solution
of the system at the next time. By rearranging Equation 5.1 and 5.2 so that they are equal
to zero they can be solved as an algebraic equation. Combining these equations with the
algebraic equations included in the model, a system of nonlinear algebraic equations is
obtained. To simulate a time step, this system of equations can be solved by a nonlinear
equation solver. In this thesis the Levenberg-Marquardt algorithm (LMA) in fsolve in
MATLAB® has been used.

The LMA is used to solve non-linear least squares problems and can be thought of as a
combination of steepest descent and the Gauss-Newton method[28]. The steepest descent
is described in Equation 5.3[13], and the search direction in the Gauss-Newton method is
the solution of Equation 5.5[13].

xk+1 = xk − (pkSD)TJf(xk) (5.3)

pkSD = −Jf(xk)/
∥∥Jf(xk)

∥∥ (5.4)

Jf(xk)TJf(xk)pkGN = −Jf(xk)Tf(xk) (5.5)

xk+1 = xk −
(
Jf(xk)TJf(xk)

)−1
Jf(xk)Tf(xk) (5.6)

In the Gauss-Newton method, Jf(xk)TJf(xk), is an approximation of the Hessian of
f(xk),∇2f(xk). The difference between Gauss-Newton and the LMA is that LMA uses a
trust-region strategy[13]. By doing so, the weakness of Gauss-Newton, which is its behav-
ior when the Jacobian Jf is or is close to being rank-deficient is avoided[13]. The search
direction in the LMA, pLM is stated in Lemma 5.1,

Lemma 5.1. (From [13]). The vector pLM is a solution of the trust region subproblem

min
p

∥∥Jf(xk)pk + f(xk)
∥∥2
, subject to

∥∥pk∥∥ ≤ ∆k,

50

5.1 Solvers

if and only if pLM is feasible and there is a scalar λ ≥ 0 such that

(
Jf(xk)TJf(xk) + λkI

)
pkLM = −Jf(xk)Tf(xk), (5.7)

λk
(
∆k −

∥∥pkLM∥∥) = 0. (5.8)

In Lemma 5.1, ∆k ≥ 0 is the trust-region radius[13]. If the Gauss-Newton direction, pkGN
strictly lies inside the trust region,

∥∥pkGN∥∥ < ∆k, and is a solution of the minimization
problem in Lemma 5.1[13]. In such a case λk = 0. Otherwise, there exists a λk ≥ 0 such
that pk is a solution of the same minimization problem. Far away from the solution, the
LMA will behave as the steepest descent method, which is slow, but guarantees conver-
gence[28]. Closer to the correct solution, it becomes Gauss-Newton method. The impor-
tant difference between these two methods is that the steepest descent has a local linear
convergence, while the Gauss-Newton has, or close to, local quadratic convergence[13].
For an explanation of rate of convergence see Appendix C.

In this thesis, the generalized derivative G, calculated by the AD-objects, has been used as
a replacement for the Jacobian in Equation 5.3 and 5.5. The

(
Jf(xk)TJf(xk)

)−1
Jf(xk)T

part is the pseudo inverse of the Jacobian, meaning that the Gauss Newton method is the
same as the Newton-type method proposed in Equation 2.8. This is due to the fact that(
Jf(xk)TJf(xk)

)−1
Jf(xk)T = Jf(xk)−1 if the Jacobian is square and has full rank.

A drawback of using LMA is that it does not support boundaries on the system variables.
As the system equations are non-convex, this can lead to the solver finding alternative,
non-physical solutions. However, using the solution at the previous time step as an initial
guess makes the solver starting close to the physical solution as long as the time step ∆t
is sufficiently small. For the system solved in this thesis, this has been sufficient for the
solver to converge to the correct solution. In addition, it is possible to include additional
equations that can set a boundary on some variables that should be positive. This can be
done by adding the following equation,

0 = a− |a|. (5.9)

Here a is the variable that is to be constrained to be positive.

5.1.1 The Implicit Euler Integrator

The implicit Euler integrator is written in MATLAB® and can be found in Appendix D.3.
All the system models are implemented as MATLAB® functions, all returning the resid-
uals and the generalized derivative at each iteration. The calculation of the generalized
derivative is done by automatic differentiation using AD-objects, see Section 2.4. By do-
ing so the derivative can be supplied to fsolve and it will not be necessary to calculate the
approximated derivatives by numerical differentiation which is the default approach. This
reduces the amount of the function evaluation. However, creating the AD-objects at each

51

Chapter 5. Simulation Methods

function call is computational demanding which increases the run time for one function
evaluation.

At each time step, the following equations are solved,

0 = fD (xt+∆t,yt+∆t, t+ ∆t,xt) , (5.10)
0 = g (xt+∆t,yt+∆t, t+ ∆t) . (5.11)

Here fD is the discretized differential equations, presented in Equation 5.1 and 5.2, and g
is the algebraic equations. In fD, xt is the values of the differential variables at time t and
is an input parameter in Equation 5.1 and 5.2. In figure 5.1 a scheme of a implicit Euler
integration step is presented. The figure shows how the system variables are calculated at
the next time t+∆t using the values of the differential variables at the previous time t.

t t +∆t

∆t

xt

0 = fD(xt+∆t;yt+∆t; t +∆t;xt)
0 = g(xt+∆t;yt+∆t; t +∆t)

Figure 5.1: A scheme of a implicit Euler integration step from time t to time t+ ∆t. The function
indicated at time t+ ∆t is the equations solved at each time step.

To the best of the author’s knowledge, there is no literature supporting that the LMA han-
dles nonsmooth systems of equations. However, the author has good experience using this
algorithm to solve systems of nonsmooth equations from previous work[4]. In addition,
the solver has performed sufficiently in this thesis work. As there is little literature that
supports this, a simple example can be used to illustrate that the LMA, at least in some
cases, handles the nonsmooth equations. Further, the implicit Euler integration method is
demonstrated in the example.
Example 5.1. Consider the following DAE system,

dx1

dt
= x2, (5.12)

x2 = max (1.1, t). (5.13)

Performing a backward differentiation the DAE can be rewritten as a set of algebraic
equations,

0 = x1,t+∆t − (x1,t + x2,t+∆t∆t) , (5.14)
0 = x2,t+∆t −max (1.1, t+ ∆t). (5.15)

52

5.2 Initialization Methods

The system is simulated using a implicit Euler integrator with an initial condition x1 =
10, x2 = 1.1. The generalized derivative is calculated using AD-objects and is supplied
to fsolve. In Figure 5.2 the values of x2 as a function of t as a result of simulating the
equation system with different time steps are shown. As the graph shows, the LMA does
not have any problems moving through the nonsmooth point. Nevertheless, the correctness
of the results is sensitive to the time step. With a time step of ∆t = 0.2 and ∆t = 0.3 the
implicit Euler integrator skips the nonsmooth point due to a too large step size. This leads
to an inaccurate solution close to the nonsmooth points. However, the solver is able to find
the correct solution at the next time, t. Simulating the system with a time step of ∆t = 0.1
is efficiently small to capture the nonsmoothness of the system. With this step size, the
solver ends up in the nonsmooth point at t = 1.1 s. Still it has no problems finding the
solution at this point and move further to the next solution at t = 1.2 s. This is not a proof
that the LMA handles all nonsmooth system, but in this example it has no problems moving
through or ending up in nonsmooth points when provided with the generalized derivatives.

0 0.5 1 1.5
1.1

1.2

1.3

1.4

1.5
dt = 0.1

dt = 0.2

dt = 0.3

Figure 5.2: The graphs shows the values of x2 when the DAE system is simulated with different
time steps, ∆t.

5.2 Initialization Methods

To start a dynamic simulation an initial condition of the system has to be provided to the
solver. For semi-explicit DAEs it is possible to provide only the initial values of the dif-
ferential variables and then calculate the corresponding values for the algebraic variables,
see Equation 2.20. However, in this thesis the system is initialized at steady state. The
steady state solution is found by setting the differential equations equal to zero, and then
solve the set of algebraic equations,

0 = f(x,y, t), (5.16)
0 = g(x,y, t). (5.17)

53

Chapter 5. Simulation Methods

In this section, the initialization process for the single flash, the single-sided HEX and
countercurrent HEX model is described.

5.2.1 Flash tank

The flash tank model is the fundamental part of all the models in this thesis. Therefore
the initialization of the other models is based on the initialization of the flash tank. Every
initialization processes start with initialization of a flash tank in the vapor-only or liquid-
only regime with no heating, Q = 0. With these conditions it is easier to give an initial
guess for the steady state values. With no heating/cooling, the temperature, mole fractions,
outlet flow and enthalpy of/in the existing phase are equal to the inlet values. In addition,
the volume of the existing phase is equal to the total tank volume whilst the other phase
volume is 0. Using nonlinlsq in MATLAB®, these variables can be constrained to be equal
to these known values. By doing so, nonlinlsq is able to find the steady state solution.

If the system is to be initialized with another amount of heating/cooling the heating/cooling
is increased/decreased step-wise using the previous solution as the initial guess. At this
point, the LMA in fsolve is used as it has proven to have a better performance in solving
the nonsmooth system.

5.2.2 Heat Exchanger

Initialization of a single side of the heat exchanger starts with initializing a single flash
tank. Afterward, all the flash tanks that the HEX consists of is guessed to have the same
steady state solution. As the pressure in each tank will be different due to the valve equa-
tions this will not be a correct solution for the HEX. To find the correct solution fsolve is
used with the mentioned steady state solution of the single flash tank as an initial guess.

For the countercurrent HEX a steady state solution for both sides is first found separately.
Afterward, the steady state solution for the total countercurrent HEX model is found with
the heat transfer coefficient, U , equal to zero. This is done as the steady state solution of
both sides of the HEX is found with no heating/cooling. Lastly, U is gradually increased
finding a new steady state solution for each value of U until the steady state solution with
the desired value of U is found.

54

Chapter 6
Results and Discussion

In this section, the results from simulating the flash tank and the HEX models, developed
in Chapter 4, are presented. First, results from a dynamic simulation of a single flash tank
with two components will be presented. Afterward, results from dynamic simulations of a
two-component one-sided HEX will be shown and discussed. This part will also include
results from a shutdown of a single-sided HEX. At the end of this chapter simulation
results of a countercurrent HEX are presented.

6.1 Two Component Flash Tank

In this section the results from the dynamic simulation of a single flash tank with two
components are presented. The flash tank is initialized at a steady state with zero heat
flow, Q = 0. Component 1 is methanol, denoted with subscript 1, and component 2 is
water, denoted with subscript 2. The inlet flow, Fin = 0.1 kmol/s, zin = [0.5 0.5] and
the inlet temperature, Tin = 410 K. At the initial state, the flash tank consists of vapor
only. During the simulation the heat removal, Q, is increased to Qmax = -4 MW using the
following algorithm,

Algorithm 4 Algorithm for varying the heat duty in the flash tank.

if t < 5 then
Q = 0 MW

else if 5 < t < 100 then
Q = −4

(100−5) · (t− 5) MW
else
Q = −4 MW

end if

55

Chapter 6. Results and Discussion

All other model parameters are given in table 6.1,

Parameter Value Parameter Value
cp,V,1 44.06 kJ kmol−1 K−1 cp,L,1 81.08 kJ kmol−1 K−1

cp,V,2 35 kJ kmol−1 K−1 cp,L,2 75 kJ kmol−1 K−1

hvap,1 35210 KJ kmol−1 cV 1 kmol s−1 MPa−0.5

hvap,2 40660 KJ kmol−1 cL 5 kmol s−1 MPa−0.5

ρ1 24.72 kmol m−3 VT 0.2 m3

ρ2 55.51 kmol m−3 C0 4.35e-4 MPa−1

A1 5.1585 A2 4.6543
B1 1569.613 B2 1435.264
C1 -34.846 C2 -64.848

Table 6.1: Parameters used in the two component flash simulation. The Antoine parameter is taken
from NIST[29]. Heat of vaporization is taken from Skogestad[25]. Density from PubChem[30].

The temperature, pressure, molar phase holdups, and the heat is presented in Figure 6.1.
Initially, the system is in the vapor-only regime due to the high temperature and low pres-
sure. At the initial condition the third term of the nonsmooth Equation 4.26 is active. At
t = 5 s, when the heat removal is starting to gradually increase, the temperature starts de-
creasing, whilst the pressure increases. This, together with a slight increase in the molar

0 50 100 150 200
320

340

360

380

400

420

(a) T [K]

0 50 100 150 200
0.6

0.8

1

1.2

(b) p [bar]

0 50 100 150 200
0

2

4

6

8
10

-3

0

2

4

6

8
M

V

M
L

(c) Phase holdup [kmol]

0 50 100 150 200
-4

-3

-2

-1

0

(d) Q [MW]

Figure 6.1: Temperature, pressure, molar phase holdups and the heat in the dynamic simulation of
two component flash. The black dashed lines indicate where the heat removal starts to increase and
where it stops increasing.

56

6.1 Two Component Flash Tank

vapor holdup, happens as the total volume has to be maintained. At t ≈ 9.5 s, the rate at
which the temperature decreases changes, and the pressure start to decrease. This change
occurs as the vapor starts to condensate as the pressure is equal to the saturation pressure
of water at the given temperature. This can also be seen in Figure 6.1c, as the liquid molar
holdup starts to increase from 0. The system is now in the vapor-liquid equilibrium regime,
meaning that the second term of Equation 4.26 is active. Further, at t ≈ 99 s, the temper-
ature starts to decrease more rapidly. At the same time, the pressure goes below the outlet
pressure, p0. The reason for this is that only a small amount of vapor is present in the flash
tank and therefore the temperature decreases. In addition, as the liquid has a lower density
than the vapor, the pressure decreases to maintain the total volume in the tank, VT . With
a pressure in the tank below p0, the nonsmooth formulation of the outflows, see Equation
4.16, sets the flows to be zero. This is illustrated in Figure 6.2a.

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1
F

V

F
L

(a) Outlet flow [kmol/s]

0 50 100 150 200
0

0.05

0.1

0.15

0.2
V

V

V
L

(b) Volume [m3

0 50 100 150 200
0

1

2

3

4
M

1

M
2

(c) Component molar holdup [kmol]

Figure 6.2: Outlet flows, FV and FL, phase volume, VV and VL, and molar component holdup, M1

and M2 in the dynamic simulation of two component flash. The black dashed lines indicate where
the heat removal starts to increase and where it stops increasing.

The heat removal stops increasing at t = 100 s, but the system is not yet at a steady state.
After t ≈ 135 the system enters the liquid-only regime. This can be seen both from the
phase holdup in Figure 6.1c and the phase volume in 6.2b. Notice that MV = 0. This is ob-
tained by that the first term in the nonsmooth Equation 4.26 gets active. At the same time,
the pressure increases and reestablishes a liquid outlet flow. Figure 6.2c shows the molar
holdup of the two components. As the figure illustrates, the component molar holdup in-
creases as the heat removal is increased. Which is, as earlier mentioned, because of the big
difference in density between the two phases. The molar holdup of water is higher than of
methanol for major parts of the simulation. This is explained by the higher fraction of wa-

57

Chapter 6. Results and Discussion

ter in the liquid holdup (see Figure 6.3b) when the liquid phase starts to appear. This is due
to the fact that water condensates at higher temperatures than methanol. Since the vapor
outflow is larger than the liquid outflow at low heat duties, there is a higher accumulation
of water in the tank than of methanol during this period. Close to the end of the simulation
the component holdups are starting to approach each other, and when the system reaches
its steady state they will be equal as the component inlet flow is equal (zin = [0.5 0.5]).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
y

1

y
2

(a) y []

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
x

1

x
2

(b) x []

Figure 6.3: Vapor composition, y1 and y2, and liquid composition, x1 and x2, in the dynamic
simulation of two component flash. The black dashed lines indicate where the heat removal starts to
increase and where it stops increasing.

In Figure 6.3 the composition in the vapor and liquid phase is presented. An important re-
mark is that the molar fractions are only meaningful with the corresponding phase present
in the flash tank. At the initial, condition there is no liquid present, and the flash tank model
only calculates pseudo molar fraction in the liquid phase (discussed in Section 4.1.2). The
mole fractions are called pseudo mole fractions as the sum of the fractions do not add up
to 1, which is the definition of molar fractions. At this point the liquid mole fractions are
nonphysical. Further, the system is in the vapor-only regime and therefore the two vapor
molar fractions are equal and sums to 1. When the system enters the vapor-liquid regime
(t ≈ 9.5) the liquid molar fraction adds up to 1 and are now meaningful. From this point,
the fraction of water is highest in the liquid phase, while there is a higher mole fraction of
methanol in the vapor phase. At the point where the last vapor disappears and the system
reaches the liquid-only regime, the vapor molar fraction stops being meaningful as it was
for the liquid molar fraction in the vapor-only regime.

The profile of the mole fractions reflects the nonsmooth behavior of the system. This
nonsmooth behavior comes from the nonsmooth formulation given in Section 4.1.2. Even
though not all variables are included in a nonsmooth equation, the nonsmoothness influ-
ences all variables as the entire system is connected. This is noticeable in the tempera-
ture profile as the gradient is dependent on which of the terms in Equation 4.26 is active.
Which term is active implies whether vapor is cooled down, vapor is condensing or liquid
is cooled down. Another nonsmooth formulation in the model is the outlet flow due to the
max -function. This nonsmoothness is illustrated by the profile of the outlet flows in Fig-
ure 6.2a. It is also important to notice that even though the outlet flows are nonsmooth at a
point in time, this is not reflected by any kinks in the values of the other system variables.

58

6.2 Two Component HEX

6.2 Two Component HEX

In this section the results from dynamic simulation(s) of a single side of a HEX, as it is
described in Section 4.2.1, are presented. The parameters used in this section are the same
as for the single flash simulation, see Table 6.1. The input variables is also the same as
in Section 6.1, but the simulation is initialized at a steady state with Q = −0.08MW .
In the results presented in this section the number of flash tanks in series is set to M = 3.
This number should be higher to get more exact results. However, simulating the HEX
model is computational demanding. As the main objective is to show that phase changes
are handled by the model, this number is assumed to be sufficient. At the end of the
section simulation results of a shutdown of the HEX will be presented and discussed. An
illustration of the HEX with M = 3 is presented in Figure 6.4. The variables which appear
in the graphs in this section are included in the figure. The heat is changed during the
simulations as described in Algorithm 4.

j = 1 j = 2 j = 3
Q̂ Q̂ Q̂

Fin

hin

zin

y1i ; V
1

V ;M
1

V

x1i ; V
1

L ;M
1

L

T 1; p1

F 1

L

F 1

V

y2i ; V
2

V ;M
2

V

T 2; p2

x2i ; V
2

L ;M
2

L

F 2

L

F 2

V

y3i ; V
3

V ;M
3

V

T 3; p3

x3i ; V
3

L ;M
3

L

F 3

L

F 3

V

p0

Figure 6.4: Illustration of the one-sided HEX modeled as three flash tanks in series. Variables and
indices are included for each of the tanks and flows.

Figure 6.5 presents the temperature, pressure and molar holdup of liquid and vapor in each
of the flash tanks in series. In addition, the total heat duty at time t is shown in Figure
6.5d. This means that at time t, the heat duty to each tank is a third of what the graph
shows. At the initial condition, all the tanks are in the vapor-only regime. At t = 5 s the
heat removal is starting to increase. Similar as for the single flash tank, the temperature
in each cell decreases linearly the first period. This is due to the assumption of constant
heat capacities and that there is only vapor present in the tanks. This means that all the
heat removal only decrease the temperature of the vapor. At time t ≈ 8 s, vapor starts to
condensate at the end of the HEX (j = 3). As the heat removal further increases vapor also
starts to condensate in the middle of the HEX (j = 2, t ≈ 10 s), and even later at the first
part of the HEX (j = 1, t ≈ 17 s). That condensation occurs can be seen both in that the
rate of the temperature decreases and that the liquid molar holdup (see Figure 6.5c) starts
to increase.

When the vapor starts to condensate the pressure decreases. The reason for this is that the
pressure drop through the valves is lower with larger liquid flows as cL > cV . Up until t

59

Chapter 6. Results and Discussion

0 50 100 150 200
320

340

360

380

400

420
T

1

T
2

T
3

(a) T [K]

0 50 100 150 200
0.8

0.9

1

1.1

1.2
p

1

p
2

p
3

(b) p [bar]

0 50 100 150 200
0

1

2

3
10

-3

0

1

2

3
M

V

1

M
V

2

M
V

3

M
L

1

M
L

2

M
L

3

(c) Phase holdup [kmol]

0 50 100 150 200
-4

-3

-2

-1

0

(d) Q [MW]

Figure 6.5: Temperature, pressure, molar phase holdups and the heat in the dynamic simulation of
two component HEX one side. The black dashed lines indicate where the heat removal starts to
increase and where it stops increasing.

≈ 105 s the entire HEX is within the vapor-liquid equilibrium regime. At this point, the
end of the HEX moves into the liquid-only regime. Prior to this, the temperature in all
part of the HEX decreases significantly. This is due to the pressure drop, meaning that
the temperature at which there still is vapor also decreases. When the pressure drops, the
outlet flow is choked but there is still flow from the beginning of the HEX towards the end
of the HEX, see Figure 6.6a. As mentioned in Section 4.1, this happens because of the
big density difference between vapor and liquid. As the inlet flow does not increase at any
point, it will take some time before the volume at the end of the HEX is completely filled
with liquid, see Figure 6.6b. When this is achieved the pressure increases and the outlet
flow is reestablished.

The outlet of the HEX is liquid only, and the temperature of the outlet keeps decreasing
towards a steady state temperature as the heat duty stops changing at t = 100 s. The rest
of the HEX stays within the vapor-liquid equilibrium regime for the rest of the simulation.
As Figure 6.6b and 6.5c shows, there is more liquid present in the middle of the HEX than
in the first part. This is the expected behavior for the same reasons as for the temperature
difference at the beginning of the simulation. Figure 6.6c presents the component molar
holdup in each part of the HEX. It can be seen that the differences in the component holdup
are largest in the first part of the HEX. This due to a higher molar holdup of the liquid phase
(see Figure 6.5c) compared to the vapor phase, and that the mole fraction of water is higher
in the liquid. That this is the case is explained by the higher saturation pressure of water
than for methanol at a given temperature, meaning that more water will condensate at

60

6.2 Two Component HEX

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1 F
V

1

F
V

2

F
V

3

F
L

1

F
L

2

F
L

3

(a) Outlet flow [kmol/s]

0 50 100 150 200
0

0.02

0.04

0.06 V
V

1

V
V

2

V
V

3

V
L

1

V
L

2

V
L

3

(b) Volume [m3

0 50 100 150 200
0

0.5

1

1.5
M

1

1

M
1

2

M
1

3

M
2

1

M
2

2

M
2

3

(c) Component molar holdup [kmol]

Figure 6.6: Outlet flows, FV and FL, phase volume, VV and VL, and molar component holdup, M1

andM2 in the dynamic simulation of two component HEX one side. The black dashed lines indicate
where the heat removal starts to increase and where it stops increasing.

the beginning of the HEX where the pressure is equal to the saturation pressure of water.
Looking at the end of the HEX, the two component molar holdups are almost equal at
the end of the simulation. When approaching steady state, the molar balance has to be
satisfied. As there are equal amounts of the two components flowing into the system, the
same amounts have to flow out at steady state. Since there is only liquid flowing out of the
HEX the mole fractions must be equal to satisfy the molar balance, something they are,
see Figure 6.7b.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
y

1

1

y
1

2

y
1

3

y
2

1

y
2

2

y
2

3

(a) y []

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
x

1

1

x
1

2

x
1

3

x
2

1

x
2

2

x
2

3

(b) x []

Figure 6.7: Vapor composition, y1 and y2, and liquid composition, x1 and x2, in the dynamic
simulation of two component HEX one side. The black dashed lines indicate where the heat removal
starts to increase and where it stops increasing.

61

Chapter 6. Results and Discussion

Figure 6.7 shows the composition in the vapor and liquid phase for the three parts of the
HEX. As it was for the single flash tank in section 4.1, the mole fractions in the liquid
phase are nonphysical at the initial condition as there is no liquid present in any part of
the HEX. At t ≈ 8 s, when the vapor starts to condensate at the end of the HEX, the liquid
fractions is meaningful in this part of the HEX. As more heat is removed and liquid starts
to form in the other parts as well, the liquid mole fractions also get physical for the other
parts. Both plots in Figure 6.7 illustrates the nonsmoothness of the model. The nonsmooth
change in the liquid mole fractions appears when the liquid phase appears in the given cell,
leading to a change in which term is active in Equation 4.26. The vapor mole fractions
only have a nonsmooth behavior in the last part of the HEX. The reason for this is that this
is the only part where the vapor phase disappears during the simulation.

6.2.1 Shutdown of HEX

As mentioned in Chapter 1 dynamic simulation is of specific interests when it comes to
start-up and shut-down of process units. In this section, a simulation of a shutdown of a
HEX is presented. The parameter values used in this section is the same as in Table 6.1.
At the beginning of the simulation the heat exchanger is at steady state conditions with
a inlet flow, F 0

in = 0.1 kmol/s, inlet temperature, Tin = 410 K and a heat duty of Q = -2
MW. The HEX is divided into 3 flash tanks in series. With the initial conditions, all the
parts of the HEX are in the vapor-liquid regime. The HEX is illustrated in Figure 6.4.
During the shutdown the inlet flow is gradually decreased until it is completely shut down.
The algorithm for doing so is presented in Algorithm 5, and the graph of Fin from the
simulation results is illustrated in Figure 6.8.

Algorithm 5 Algorithm for gradually de-
creasing the inlet flow rate, Fin, into the
HEX.

if t < 5 then
Fin = 0.1 kmol/s

else if 5 < t < 50 then
Fin = 0.1 - 0.1/45 · (t - 5) kmol/s

else
Fin = 0 kmol/s

end if

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

Figure 6.8: The inlet flow rate, Fin, into the
HEX.

In addition to decreasing the inlet flow, the heat is gradually decreased. The heat is com-
pletely shut down 20 s after the inlet flow is shut. Algorithm 6 describes how the heat is
decreased during the simulation, while Figure 6.9 shows the value of Q as a function of
time, t.

62

6.2 Two Component HEX

Algorithm 6 Algorithm for gradually de-
creasing the heat, Q, into the HEX.

if t < 5 then
Q = -2 MW

else if 5 < t < 70 then
Q = -2 + 2/65 · (t - 5) MW

else
Q = 0 MW

end if

0 20 40 60 80 100
-2

-1.5

-1

-0.5

0

Figure 6.9: The heat, Q, into the HEX.

Figure 6.10a, 6.10b and 6.11 shows the pressure, temperature and the flow rates out of the 3
parts of the HEX. As the inlet flow rate decreases so do the pressure in the heat exchanger,
leading to a decrease in the outlet flow rates. With a decrease in pressure, the temperature
also decreases slightly. The reason for this is that the saturation pressure of the mixture
is equal to the pressure in the vapor-liquid region. At approximately t = 39 s the pressure
at the end of the HEX falls below the outlet pressure, p0. This triggers the check valve
and the outlet flow is shut. The pressure keeps falling, and so do the temperature. This
can be explained by that the total volume of the tank needs to be filled with substance. As
there is still some cooling, more vapor will condensate into liquid, see Figure 6.12c. With
less vapor in the system, the pressure is reduced to meet the volume constraint. At the end
there is almost a vacuum in the HEX with a steady state pressure of p = 426 Pa.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
p

1

p
2

p
3

(a) Pressure in the different parts of the HEX
from shutdown simulation.

0 20 40 60 80 100

260

280

300

320

340

360 T
1

T
2

T
3

(b) Temperature in the different parts of the
HEX from shutdown simulation.

Figure 6.10: The pressure, p, temperature, T , in the different parts of the heat exchanger from
shutdown simulation. The black and red dashed line indicates where the heat removal and the inlet
flow rate starts decreasing and when it is completely shut down.

When the outlet flow is closed, there is still flow from the other parts of the HEX towards
the end of the HEX. As this continues, the molar holdup increases in this part of the HEX.
This leads to a higher pressure in this part of the HEX. Eventually, at t ≈ 47 s, the flow
between the middle (j=2) and end part (j=3) of the HEX reverses, see Figure 6.11. First,
the flow starts to flow from the third part of the HEX towards the middle part, while it still
flows from the first part (j=1) to the middle part. But, at t ≈ 49 s, the pressure in the first
part get lower than the middle part, making the flow between the first and the middle part

63

Chapter 6. Results and Discussion

Figure 6.11: Flow rate out of the different parts of the HEX from shutdown simulation. The black
and red dashed line indicates where the heat removal and the inlet flow rate starts decreasing and
when it is completely shut down.

of the HEX to reverse as well. At t = 70 s the heat duty is zero, and the system reaches a
steady state.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4
M

1

1

M
1

2

M
1

3

M
2

1

M
2

2

M
2

3

(a) Component holdups in the different parts of
the HEX.

0 20 40 60 80 100
0

0.02

0.04

0.06 V
V

1

V
V

2

V
V

3

V
L

1

V
L

2

V
L

3

(b) Phase volume in the different parts of the
HEX.

0 50 100
0

0.5

1

1.5

2

2.5
10

-3

0

0.2

0.4

0.6

0.8
M

V

1

M
V

2

M
V

3

M
L

1

M
L

2

M
L

3

(c) Phase holdups in the different parts of the HEX.

Figure 6.12: The component holdups, Mi, phase volumes, VL and VV , and the phase holdups, MV

and ML in the different parts of the HEX. The black and red dashed line indicates where the heat
removal and the inlet flow rate starts decreasing and when it is completely shut down.

64

6.3 Single Component Countercurrent HEX

This case study shows that the model is able to simulate a shutdown. In addition, it shows
that the model allows flow reversal. However, the numerical values obtained in this sim-
ulation can be questioned. The reason for this is that some of the assumption done in the
development can affect the results. For example, the temperature in the HEX is lower
than the region where the Antoine parameters, used in the simulation, is stated to be valid.
This will affect the numerical value of the saturation pressure, and thereby the pressure
and temperature in the HEX. Further, a linear approximation of the compressibility of the
liquid phase is used. As the difference between the reference pressure (the pressure where
the reference density is correct) and the pressure in the tank is significant, the assumption
of a linear relation can be rather poor. However, the overall behavior of the system is
not expected to change if these assumptions were to be changed. That the pressure and
temperature will decrease, as well as reversal flow will occur is still the expected behavior.

6.3 Single Component Countercurrent HEX

This section will cover the results from simulating a countercurrent heat exchanger with
one component on each side. In this section a superscript of C and H indicates that the
variable is part of the cold or hot side respectively. The hot side is methanol with the
following inlet conditions, FHin = 0.1 kmol/s and THin = 410 K meaning that the inlet is
vapor only. The cold side is water and has inlet conditions of FCin = 0.1 kmol/s and TCin =
300 K and is pure liquid. The heat transfer coefficient multiplied with the transfer area is
set to be UA = 4 MW/kK. All other parameters have the same values as in Table 6.1.
The countercurrent heat exchanger is illustrated in Figure 6.13.

FH
in

hH
in

zin
H

p0

Q̂1;3 Q̂2;2 Q̂3;1 FC
in

hC
in

zin
C

TH
3
;MH

L;3

TC
1TC

2
TC
3

TH
1

TH
2

p0

Figure 6.13: Illustration of countercurrent HEX with M = 3.

During the simulation the temperature in the inlet on the cold side changes by using Algo-
rithm 7 and the value of the inlet temperature during the simulation are shown in Figure
6.14.

65

Chapter 6. Results and Discussion

Algorithm 7 Algorithm for varying the
temperature of the inlet in the cold side of
the countercurrent heat exchanger.

if t < 5 then
TCin = 300 K

else if 5 < t < 70 then
TCin = 300− 0.3(t− 5) K

else
TCin = 280.5 K

end if

0 50 100 150 200
280

285

290

295

300

Figure 6.14: The temperature in the inlet flow
on the cold side of the heat exchanger, TC

in.

In addition to the temperature changes, the inlet flow rate on the cold side increases. The
inlet flow rate does not change during the period where the temperature changes. This is to
make it simpler to investigate which effect the two changes have individually. Algorithm
8 shows how the inlet flow rate is changed and Figure 6.15 presents the value during the
simulation as a graph.

Algorithm 8 Algorithm for varying the inlet
flow rate on the cold side of the countercur-
rent heat exchanger.

if t < 100 then
FCin = 0.1 kmol/s

else if 100 < t < 150 then
FCin = 0.1− 0.001(t− 100) kmol/s

else
FCin = 0.15 kmol/s

end if

0 50 100 150 200
0.1

0.11

0.12

0.13

0.14

Figure 6.15: The inlet flow rate on the cold side
of the heat exchanger, FC

in.

Both when decreasing the inlet temperature and increasing the inlet flow rate on the cold
side it is expected that the total heat transferred in the HEX should increase. In Figure
6.16 the total heat transferred from the cold to the hot side is presented. The values in the
graph are negative, meaning that heat is removed from the hot side of the HEX during the
simulation. As the graph shows, the total heat transfer has the expected behaviour. It is
also interesting to inspect in which part the heat transfer increases most. As the different
parts of the HEX can be in different phase regions during the simulation, it is expected that
the amount of heat transferred in each part will be different.

66

6.3 Single Component Countercurrent HEX

0 50 100 150 200
-0.5

-0.45

-0.4

-0.35

-0.3

Figure 6.16: The total heat transferred from the hot to the cold side of the heat exchanger, Qtot.

Figure 6.17a shows the temperature in the first part of the cold side and the end of the
hot side, while Figure 6.17b shows the heat transfer from the two sides. Notice how the
temperature of on the hot side is the same during the entire simulation. This is because
it is in the vapor-liquid regime and all the cooling is used to condensate the methanol,
increasing the molar holdup in the liquid phase, see Figure 6.18. As the temperature in the
inlet on the cold side reduced, see Figure 6.14, the temperature in the first cell of the cold
also decreases. This leads to that there is more heat transferred between the two cells as the
temperature difference increases. The temperature in the cold side and the heat transfer is
moving towards a steady state around t = 100 s, but at this point the inlet flow on the cold
side starts to increase. The increase in the inlet flow makes the temperature decrease even
further. The reason for this is that the residence time of the cold liquid is reduced as the
flow out of the cells increases with the inlet flow, which allows more heat to be removed.
When the inlet flow rate stops changing both the temperature and the heat transfer reaches
a steady state.

In Figure 6.19a and 6.19b the temperature in middle of the HEX and the heat transfer
between the sides are presented. In this part of the HEX the hot side is in the vapor-only

0 50 100 150 200

300

320

340
T

H

3

T
C

1

(a) Temperature at the cold side inlet and hot
side outlet.

0 50 100 150 200
-0.2

-0.15

-0.1

(b) Heat transfer at the cold side inlet and hot
side outlet.

Figure 6.17: Temperature and heat transfer at the cold side inlet and the hot side outlet in the
countercurrent HEX. The black and green dashed lines indicates where the temperature (black) in
the inlet and the inlet flow rate (green) on the cold side starts and stops changing.

67

Chapter 6. Results and Discussion

0 50 100 150 200
0

0.005

0.01

0.015

0.02

Figure 6.18: Liquid molar holdup at the cold side inlet and the hot side outlet in the countercurrent
HEX. The black and green dashed lines indicates where the temperature (black) in the inlet and the
inlet flow rate (green) on the cold side starts and stops changing.

regime whilst the cold side is in the liquid-only regime. From the previously described
parts of the HEX it is known that the temperature of the cold side into the middle part of
HEX reduces during the simulation due to the changes in the inlet temperature and flow
rate. This also affects the heat transfer in the middle part. Both when the inlet temperature
is reduced and the flow rate is increased the heat transfer in the middle part increases. The
lower temperature in the inlet to the middle part of the HEX increases the temperature
difference and thereby the heat transfer. The reduction in the temperature with increasing
inlet flow rate is the same as previously discussed.

0 50 100 150 200
300

320

340

360
T

H

2

T
C

2

(a) Temperature of the cold and hot side at the
middle of the HEX.

0 50 100 150 200
-0.2

-0.15

-0.1

(b) Heat transfer between the middle part of the
cold and hot side of the HEX.

Figure 6.19: Temperature and heat transfer at the middle of the countercurrent HEX. The black and
green dashed lines indicates where the temperature (black) in the inlet and the inlet flow rate (green)
on the cold side starts and stops changing.

The temperature and heat flow in the remaining part of the HEX are shown in Figure 6.20a
and 6.20b. In this part the heat transfer increases less compared to the other parts when the
inlet temperature on the cold side is decreased. The reason for this is that the temperature
difference at the inlet on the cold side is increasing due to the constant temperature in the
corresponding part on the hot side. As Figure 6.17b, this increase the heat transfer a lot in
this part of the HEX. Therefore, the temperature difference between the two sides at the
outlet on the cold side does not increase that much, leading to only a small increase in the
heat transfer at this part. At t = 100 s, the flow rate on the cold side increases leading to a

68

6.3 Single Component Countercurrent HEX

0 50 100 150 200
320

340

360

380
T

H

1

T
C

3

(a) Temperature at the hot side inlet and cold
side outlet.

0 50 100 150 200
-0.2

-0.15

-0.1

(b) Heat transfer at the hot side inlet and cold
side outlet.

Figure 6.20: Temperature and heat transfer at the hot side inlet and the cold side outlet of the
countercurrent HEX. The black and green dashed lines indicates where the temperature (black) in
the inlet and the inlet flow rate (green) on the cold side starts and stops changing.

larger heat transfer in the heat exchanger. This is of the same reason as discussed for the
other parts of the HEX. That an increase in the flow rate affects the heat transfer more in
this part of the HEX is explained by that there is more substance to remove heat on the
cold side throughout the HEX. This leads to a smaller increase in the temperature on the
cold side of the HEX, resulting to a higher temperature difference at this part.

In addition to investigating the temperatures and the heat transfer in the HEX it also of
interest to look at how the model of the HEX behave to a change in the inlet flow rate.
Figure 6.21a and 6.21b shows the pressure and the outlet flow of each part of the HEX on
the cold side. As the figures show, the flow rate throughout the HEX increases instantly
as the inlet flow rate increases. The reason for this is that the dynamics of pressure is very
fast, meaning that also the dynamics of the flow rate will be very fast. This is because the
flow rates are only a function of the pressures as long as the HEX stays inside the same
phase regime.

0 50 100 150 200
1

1.005

1.01

(a) Pressure in the different parts on the cold
side of the HEX.

0 50 100 150 200

0.1

0.12

0.14

0.16
F

L,1

C

F
L,2

C

F
L,3

C

(b) Flow rate out of the different parts on the
cold side of the HEX.

Figure 6.21: The pressure and liquid flow rate on the cold side of the countercurrent HEX. The
black and green dashed lines indicates where the temperature (black) in the inlet and the inlet flow
rate (green) on the cold side starts and stops changing.

69

Chapter 6. Results and Discussion

6.4 Performance of Solver

In this thesis the results shown are based on lumping the heat exchanger into 3 cells. To
obtain more exact results, this number should be higher. However, this number is chosen
as the simulation run-time is rather long. This is mainly due to that MATLAB® solvers do
not support other data types than doubles as initial guesses. Even if this was supported,
MATLAB® is based on call-by-value, meaning that a copy of the inputs is created at each
function evaluation. This is a problem as the creation of the AD-objects is computational
demanding, leading to a longer run-time.

Since the AD-objects is relatively inefficient, the amount of iterations needed to find a
solution is very important. To investigate the number of iterations that are needed for the
solver to converge the model of one side of a heat exchanger is used. The parameters and
inputs are the same as in Section 6.2. First a steady state solution of the model with no
heat transfer,Q = 0 MW, is found. Afterwards the heat transfer is reduced with -0.01 MW
and a new steady state solution is found. The number of iterations to find the steady state
solution with the new value for Q is registered. In Figure 6.22 the number of iterations
needed for the solver to converge as a function of the heat transfer is presented.

-4 -3 -2 -1 0
10

1

10
2

10
3

Figure 6.22: The amount of iterations used to solve the HEX model at different values of Q.

In Figure 6.22 it can be seen that the amount of iterations needed varies with the amount
of heat transferred. There are 3 significant peaks from Q = 0...-0.7 MW, and the amount
of iterations increases again around Q = -3.8 MW. In between only a small amount of
iterations is needed. For these values of Q all the parts of the HEX are in the vapor-liquid
region. The three peaks is due to the nonsmoothness which arises when a phase appears or
disappears. In Figure 6.23 it shows the details for a heat transfer betweenQ = 0...-0.8 MW.
It is also stated how many of the parts of the HEX which are in a given phase region. NV
is the number of parts in vapor-only region, NVL is the number of parts in the vapor-liquid
region and NL is number of parts in the liquid-only region. The dotted lines indicate where
a phase appears or disappears. The graph shows quite clearly that the number of iterations
needed to find the solution increases close to, and at the nonsmooth points (where there is
a phase change).

70

6.4 Performance of Solver

-0.8 -0.6 -0.4 -0.2 0
0

500

1000

N
V

 = 1

N
VL

 = 2

N
L
 = 0

N
V

 = 2

N
VL

 = 1

N
L
 = 0

Vapor-Liquid

N
V

 = 0

N
VL

 = 3

N
L
 = 0

Vapor-Only

N
V

 = 0

N
VL

 = 3

N
L
 = 0

Figure 6.23: The amount of iterations used to solve the HEX model with some parts in the vapor-
only region and other in the vapor-liquid region. The dotted lines indicates where there is a phase
change. NV is number in vapor-only region, NVL is number in the vapor-liquid region and NL is
number the in liquid-only region.

-4.2 -4 -3.8 -3.6
0

500

1000 Vapor-Liquid

N
V

 = 0

N
VL

 = 3

N
L
 = 0

N
V

 = 0

N
VL

 = 2

N
L
 = 1

Figure 6.24: The amount of iterations used to solve the HEX model with some parts in the liquid-
only and others in the vapor-liquid region. The dotted lines indicates where there is a phase change.
NV is number in vapor-only region, NVL is number in the vapor-liquid region and NL is number the
in liquid-only region.

In Figure 6.24, the iterations needed to find the steady state solution for Q = -3.5...-4.2
MW is shown. For values close to Q = -3.5 MW, the entire HEX is in the vapor-liquid
region. At Q ≈ -3.85 MW the last part of the HEX moves into the liquid-only region.
At this point the number of iterations increases. This is expected as it moves through a
nonsmooth point. However, the amount of iterations needed for the solver to converge at
this point is less than when a part of the HEX moves from the vapor-only region to the
vapor-liquid region. An indication of why there are these differences in the number of
iterations the residuals and condition numbers can be investigated.

In Figure 6.25a the residuals, ‖f(x)‖1, at each iteration when the solver moves toward
the steady state solution is shown. From the previous steady solution to the one the solver

71

Chapter 6. Results and Discussion

converges to there is a phase change. NV L = i→ j denotes that the number of parts which
are in the vapor-liquid region changes from i to j. As it can be seen, the rate of convergence
is close to linear and converges quite slowly at the beginning. However, as it approaches
the correct solution the convergence rate improves a lot. This is the because solver gets
within the neighborhood where the LMA has quadratic convergence. In Figure 6.25b the
residual at each iteration when there are no phase changes between the previous and the
current steady state solution is presented. In this case the solver has close to quadratic
convergence from the beginning and converges after 10 iterations. It is important to notice
that the residual at the initial guess is more or less the same for all the cases presented
in Figure 6.25a and 6.25b. However, there is a significant difference between the number
of iterations needed for the solver to converge. The condition number at the steady state
solution can give an indication of why that is the case. When the entire HEX is in the
vapor-liquid region (Q≈ [-3.8,-0.6]) the condition number is significantly smaller than the
other regions. With a high condition number, the system is said to be ill-conditioned and
it is harder for the solver to find the correct solution[31]. Why there is such big difference
between the different phase regions has not been thoroughly investigated. However, an
explanation can be that since some of the variables are zero in the vapor-only and liquid-
only region can make some of the equation to be close to linear dependent. This will
make the generalized derivative matrix, G(x), close to singular and thereby the condition

0 500 1000 1500
10

-15

10
-10

10
-5

10
0 N

VL
 = 0 1

N
VL

 = 1 2

N
VL

 = 2 3

N
VL

 = 3 2

(a) The residuals ‖f(x)‖1 at each iteration when
there occur a phase change from the previous
steady state solution to the current.

0 2 4 6 8 10
10

-15

10
-10

10
-5

10
0

(b) The residuals ‖f(x)‖1 at each iteration when
the entire HEX is in the vapor-liquid region both
at the current and previous steady state solution.

-4 -3 -2 -1 0
0

5

10

10
7

(c) The condition number of the generalized
derivative, κ(G(x)) at the solution as a func-
tion of the heat transfer, Q.

Figure 6.25: The residuals, ‖f(x)‖1, at each iteration and the condition numbers κ(G(x) at the
steady state solutions.

72

6.5 Further Discussion

number increases. Another explanation can be that some of the variables are badly scaled.
However, this will affect the condition number in the vapor-liquid region as well.

6.5 Further Discussion

The results presented in this thesis corresponds to the expected behavior of a heat ex-
changer. However, the results obtained are not compared to any real process data. As
no specific heat exchanger is considered in this work comparing to real data is not pos-
sible. If a specific heat exchanger was to be considered, it is expected that the current
dynamic model will deviate in some extent to real data. The reason for this is some of
the assumptions made during the development of the model. Assumptions like ideal gas
and liquid as well as constant heat capacity are something that should be revised to get
results closer to real data. It is possible to include nonideal behavior for both the vapor
and liquid phase by incorporating cubic equations of state (EOS) such as Peng-Robinson
or Soave-Redlich-Kwong (SRK) to the model. There are some challenges related to incor-
porating such EOS, mainly associated with the number of real roots of the EOS depending
on which phase regime the system finds itself in. The assumption of constant heat capacity
can be replaced with a polynomial where the heat capacity of a component is a function of
the temperature.

73

Chapter 6. Results and Discussion

74

Chapter 7
Concluding Remarks

This thesis presents a nonsmooth formulation for a multiphase multicomponent heat ex-
changer which handles phase changes. The heat exchanger is modeled as multiple flash
tanks in series with a fixed volume. To detect and adapt to appearance and disappearance
of phases the mid function, which is a PC1-function, is used. To maintain the same num-
ber of equations in all the phase regimes (vapor-only, vapor-liquid, liquid-only) the phase
mole fractions are extended into the phase-regime where they normally does not exist.
The existence, uniqueness, and sensitivity of its solution are supported by the nonsmooth
analysis thoroughly discussed in Chapter 2. Here it is explained how the generalized
derivatives of PC1-functions can be calculated and that they can be used as a replacement
for the Jacobian elements.

In this thesis dynamic simulations of a single flash tank, one side of a HEX in addition to
a countercurrent HEX has successfully been performed. The model has proved to both de-
tect and adapt to the appearance and disappearance of phases. Further, the behavior of the
model coincides with the expected behavior of a HEX. However, simulating the model is
relatively computational demanding. The reason for this is that the calculation of the gen-
eralized derivatives, which is used as a replacement for the Jacobian in the fsolve-solver in
MATLAB®, is computational demanding. The automatic differentiation was implemented
using operator overloading in MATLAB®. Therefore, the computation takes time as all the
operations are redefined, together with the derivative rules. In addition, MATLAB® does
not support other data types than doubles as input for the system variables to their solvers.
This leads to that the AD-objects needs to be created at each function evaluation. Another
remark regarding the simulation of the model is that the DAEs ode15s implemented in
MATLAB® was not able to simulate the system. Because of this, an implicit Euler inte-
grator with constant time step was used for simulation purposes. To solve the system of
equations at each time, t, the Levenberg-Marquardt algorithm in fsolve was used. To the
best of the author’s knowledge, there is no literature supporting that this algorithm handles
nonsmooth equations. However, the algorithm was able to solve the nonsmooth equations

75

in the HEX model. In addition, an example showing that the LMA handles nonsmooth, at
least in some cases, is presented in this thesis.

7.1 Suggestion for Further Work

The proposed model can be used to simulate shut-down, start-up in addition to the effect
of different disturbance. Therefore it is suitable to use for optimization studies, or it could
be implemented as part of a larger dynamic model, like a refrigeration cycle. Such op-
timization studies are not within the scope of this thesis but are something that could be
interesting to investigate further. This is suggested as optimization of HEXs could lead to
a significant decrease in energy consumption. However, as the model is relatively com-
putational demanding to solve. It should be considered to implement the model and the
automatic differentiation in a low-level language such as C/C++ before integrating it in a
larger system or performing optimization studies. As C/C++ support call-by-reference, it
will not be necessary to create the AD-objects at each function evaluation.

Another improvement that should decrease the simulation time of the model is to make
a integrator without a constant time step. As shown in Section 6.4 it is easier to solve
the system when the entire HEX is in the vapor-liquid regime. In this region it should be
possible to use larger time steps. However, using a constant time step, the time step is
limited by that it is difficult to converge when approaching a phase change. If the time
step is not fixed it is possible to adjust it to both how close it is to a phase change and
which phase-region the system is in at the current time. A suggestion for how to make this
work is to use the mid-function. If two of the terms are close to zero, the system is close
to a nonsmooth point and the time step should be decreased. In addition, it can be used to
detect which phase region the HEX is in by checking which of the three terms are zero.

Another suggestion for further work is to extend the model to include nonideal vapor and
liquid. This can be done by including cubic equations of state such as Peng-Robinson
or Soave-Redlich-Kwong. A challenge here will be to find the correct roots of the cubic
equation for the different phase regions and it should be considered whether this should be
done in the inner or outer loop. In addition, the assumption of constant heat capacity can
be revised. The heat capacity can be implemented as a function of the temperature using a
polynomial function with experimental parameters.

In this thesis, no specific heat exchanger has been considered, but rather a generic model
was developed. The parameters of this model can be fitted to some real equipment. A
possibility is to use sizing parameters from an existing heat exchanger and thereafter use
real process data to tune the other model parameters. By doing this, the model could be
used to simulate different cases as part of training for process operators. In addition, the
model could be used for model predictive control (MPC) and thereby improve the overall
control of the HEX. As a result, the energy consumption could be reduced.

76

Bibliography

[1] Ali M Sahlodin, Harry A. J. Watson, and Paul I. Barton. “Nonsmooth model for
dynamic simulation of phase changes”. In: AIChE Journal 62.9 (2016), pp. 3334–
3351.

[2] Christina Florina Zotica. “Dynamic Simulation of Heat Exchanger with Multicom-
ponent Phase Changes”. MA thesis. Norwegian University of Technology, 2017.

[3] Øivind Wilhelmsen, Geir Skaugen, Morten Hammer, Per Eilif Wahl, and John Chris-
tian Morud. “Time Efficient Solution of Phase Equilibria in Dynamic and Dis-
tributed Systems with Differential Algebraic Equation Solvers”. In: Industrial &
Engineering Chemistry Research 52.5 (2013), pp. 2130–2140.

[4] Marius Reed. Nonsmooth analysis of connected oil well system. Project Thesis, De-
partment of Chemical Engineering, Norwegian University of Science and Technol-
ogy, 2017.

[5] H. Pingaud, J.M. Le Lann, B. Koehret, and M.C. Bardin. “Steady-state and dynamic
simulation of plate fin heat exchangers”. In: Computers & Chemical Engineering
13.4 (1989), pp. 577 –585.

[6] Ravindra S. Kamath, Lorenz T. Biegler, and Ignacio E. Grossmann. “An equation-
oriented approach for handling thermodynamics based on cubic equation of state
in process optimization”. In: Computers & Chemical Engineering 34.12 (2010),
pp. 2085 –2096.

[7] Harry A.J. Watson and Paul I. Barton. “Simulation and Design Methods for Multi-
phase Multistream Heat Exchangers”. In: IFAC-PapersOnLine 49.7 (2016), pp. 839
–844.

[8] Kamil A. Khan and Paul I. Barton. “Generalized Derivatives for Solutions of Para-
metric Ordinary Differential Equations with Non-differentiable Right-Hand Sides”.
In: Journal of Optimization Theory and Applications 163.2 (2014), pp. 355–386.

[9] Kamil A. Khan and Paul I. Barton. “Switching behavior of solutions of ordinary
differential equations with abs-factorable right-hand sides”. In: Systems & Control
Letters 84 (2015), pp. 27 –34.

77

[10] Kamil A. Khan and Paul I. Barton. “A vector forward mode of automatic differenti-
ation for generalized derivative evaluation”. In: Optimization Methods and Software
30.6 (2015), pp. 1185–1212.

[11] Kamil A. Khan and Paul I. Barton. “Generalized Derivatives for Solutions of Para-
metric Ordinary Differential Equations with Non-differentiable Right-Hand Sides”.
In: Journal of Optimization Theory and Applications 163.2 (2014), pp. 355–386.

[12] Stefan Scholtes. Introduction to Piecewise Differentiable Equations. Jan. 2012.
[13] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. Springer, 2006.
[14] Marlene L. Lund. “Implementation and evaluation of a new solution approach for

semidefinite programming”. MA thesis. Norwegian University of Technology, 2017.
[15] Mathias Vikse. “Design and Implementation of Modular Subroutines for Simulation

of LNG Plants.” MA thesis. Norwegian University of Technology, 2016.
[16] Telma Caputti. “The plenary hull of the generalized Jacobian matrix and the in-

verse function theorem in subdifferential calculus”. In: Colloquium Mathematicae.
Vol. 60. 1. Institute of Mathematics Polish Academy of Sciences. 1990, pp. 15–20.

[17] Liqun Qi and Jie Sun. “A nonsmooth version of Newton’s method”. In: Mathemat-
ical Programming 58.1 (1993), pp. 353–367.

[18] Yu. Nesterov. “Lexicographic differentiation of nonsmooth functions”. In: Mathe-
matical Programming 104.2 (2005), pp. 669–700.

[19] Richard D. Neidinger. “Introduction to Automatic Differentiation and MATLAB
Object-Oriented Programming”. In: SIAM Review 52.3 (2010), pp. 545–563.

[20] Haavard I. Moe. “Dynamic Process Simulation - Studies on modeling and index
reduction”. PhD thesis. Norwegian Institute of Technology, 1995.

[21] Endre Sli and David F. Mayers. An Introduction to Numerical Analysis. Cambridge
University Press, 2003.

[22] Peter G. Stechlinski and Paul I. Barton. “Dependence of solutions of nonsmooth
differential-algebraic equations on parameters”. In: Journal of Differential Equa-
tions 262.3 (2017), pp. 2254 –2285.

[23] Peter Stechlinski, Michael Patrascu, and Paul I. Barton. “Nonsmooth differential-
algebraic equations in chemical engineering”. In: Computers & Chemical Engineer-
ing 114 (2018), pp. 52 –68.

[24] Tore Haug-Warberg. Den termodynamiske arbeidsboken. Kolofon Forlag, 2006.
[25] Sigurd Skogestad. Chemical ans Energy Process Engineering. CRC Press, 2008.
[26] P. Flatby, S. Skogestad, and P. Lundstrm. “Rigorous Dynamic Simulation of Distil-

lation Columns Based on UV-Flash”. In: IFAC Proceedings Volumes 27.2 (1994),
pp. 261 –266.

[27] Peter Stechlinski, Michael Patrascu, and Paul I. Barton. “Nonsmooth differential-
algebraic equations in chemical engineering”. In: Computers & Chemical Engineer-
ing (2017).

[28] Manolis Lourakis. “A Brief Description of the Levenberg-Marquardt Algorithm Im-
plemened by levmar”. In: 4 (Jan. 2005).

[29] The National Institute of Standards and Technology (NIST). NIST Chemistry Web-
Book. URL: https : / / webbook . nist . gov / chemistry/ (visited on
06/20/2018).

78

https://webbook.nist.gov/chemistry/

[30] PubChem. PubChem - Open Chemistry Database. URL: https://pubchem.
ncbi.nlm.nih.gov (visited on 06/20/2018).

[31] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

79

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov

80

Appendix A
Units Used in Simulations

State variable Description Unit
U Internal energy MJ
Mi Molar hold-up of component i kmol
T Temperature kK
P Pressure MPa
xi Molar fraction of component i in liquid phase -
yi Molar fraction of component i in vapor phase -
ML Liquid molar hold-up kmol
MV Vapor molar hold-up kmol
VL Liquid volume m3

VV Vapor volume m3

ρL Liquid density Mmol m−3

Ps,i Saturation pressure of component i MPa
ki Vapor-liquid equilibrium coefficient for component i -
H Enthalpy MJ
hL Liquid molar enthalpy MJ kmol−1

hV Vapor molar enthalpy MJ kmol−1

FV Vapor flow rate kmol s−1

FL Liquid flow rate kmol s−1

Table A.1: State variables in the flash tank model

81

82

Appendix B
Summary: Model Equations

In this appendix the model equations for the flash tank and HEX is presented. This to make
it easier for the reader to see all the model equations that are included in the calculations
in one place. The part with i = 1...NC and j = 1...M is not included in the equations
to simplify the equations. However, where a subscript of i is included it is given that
this equation is for i = 1...NC, while a superscript of j means that the equation is for
j = 1...M .

B.1 Total Flash Tank Model Equations

dMi

dt
(t) = Fin(t)zi − FL(t)xi(t)− FV (t)yi(t) (B.1)

dU

dt
(t) = Fin(t)hin(t)− FL(t)hL(t)− FV (t)hV (t) +Q(t) (B.2)

Mi(t) = MLxi(t) +MV (t)yi(t) (B.3)
NC∑
i

Mi(t) = ML(t) +MV (t) (B.4)

H(t) = ML(t)hL(t) +MV (t)hV (t) (B.5)
H(t) = U(t) + p(t)VT (B.6)
yi(t) = ki(t)xi(t) (B.7)

0 = mid

(
MV (t)

MV (t) +ML(t)
,

NC∑
i

xi(t)−
NC∑
i

yi(t),
MV (t)

MV (t) +ML(t)
− 1

)
(B.8)

VT = VL(t) + VV (t) (B.9)

83

FV (t) = cV ·
VV (t)

VT
max

(
0,

p(t)− p0√
|p(t)− p0|+ ε

)
(B.10)

FL(t) = cL ·
VL(t)

VT
max

(
0,

p(t)− p0√
|p(t)− p0|+ ε

)
(B.11)

ρL(t) =

NC∑
i

xi(t)

ρi (1 + C0(p(t)− pref))
(B.12)

hL(t) =

NC∑
i

xi(t)cp,L,i(T (t)− T0) (B.13)

hV (t) =

NC∑
i

yi(t)(∆vaphi + cp,V,i)(T (t)− T0) (B.14)

ki =
ps,i(t)

p(t)
(B.15)

log10(Ps,i(t)) = Ai −
Bi

T (t)− Ci
(B.16)

B.2 One Side of Heat Exchanger

dMi

dt

1

= Finzin,i −
(
max

(
0, F 1

L

)
x1
i + max

(
0, F 1

V

)
y1
i

)
(B.17)

−
(
(min

(
0, F 1

L

)
x2
i + min

(
0, F 1

V

)
y2
i

)
, i = 1...NC

dMi

dt

j

=
(

max
(

0, F j−1
L

)
xj−1
i + max

(
0, F j−1

V

)
yj−1
i

)
−
(

max
(

0, F jL

)
xji + max

(
0, F jV

)
yji

)
(B.18)

+
(

min
(

0, F j−1
L

)
xji + min

(
0, F j−1

V

)
yji

)
−
(

min
(

0, F jL

)
xj+1
i + min

(
0, F jV

)
yj+1
i

)
, i = 1...NC, j = 2...M − 1,

dMi

dt

M

=
(
max

(
0, FM−1

L

)
xM−1
i + max

(
0, FM−1

V

)
yM−1
i

)
−
(
FML xMi + FMV yMi

)
+
(
min

(
0, FM−1

L

)
xMi + min

(
0, FM−1

V

)
yMi
)
, i = 1...NC (B.19)

dU

dt

1

= Finhin −
(
max

(
0, F 1

L

)
h1
L + max

(
0, F 1

V

)
h1
V

)
(B.20)

−
(
min

(
0, F 1

L

)
h2
L + min

(
0, F 1

V

)
h2
V

)
+Qcell,

84

dU

dt

j

=
(

max
(

0, F j−1
L

)
hj−1
L + max

(
0, F j−1

V

)
hj−1
V

)
−
(

max
(

0, F jL

)
hjL + max

(
0, F jV

)
hjV

)
(B.21)

+
(

min
(

0, F j−1
L

)
hjL + min

(
0, F j−1

V

)
hjV

)
−
(

min
(

0, F jL

)
hj+1
L + min

(
0, F jV

)
hj+1
V

)
+Qcell, j = 2...M − 1,

dU

dt

M

=
(
max

(
0, FM−1

L

)
hM−1
L + max

(
0, FM−1

V

)
hM−1
V

)
(B.22)

−
(
FML hML + FMV hMV

)
+
(
min

(
0, FM−1

L

)
hML + min

(
0, FM−1

V

)
hMV
)

+Qcell.

M j
i (t) = M j

Lx
j
i (t) +M j

V (t)yji (t) (B.23)
NC∑
i

M j
i (t) = M j

L(t) +M j
V (t) (B.24)

Hj(t) = M j
L(t)hjL(t) +M j

V (t)hjV (t) (B.25)

Hj(t) = U j(t) + pj(t)VT (B.26)

yji (t) = kji (t)x
j
i (t) (B.27)

0 = mid

(
M j
V (t)

M j
V (t) +M j

L(t)
,

NC∑
i

xji (t)−
NC∑
i

yji (t),
M j
V (t)

M j
V (t) +M j

L(t)
− 1

)
(B.28)

V jT = V jL(t) + V jV (t) (B.29)

F jV (t) = cV ·
V jV (t)

VT
max

(
0,

pj(t)− p0√
|pj(t)− p0|+ ε

)
(B.30)

F jL(t) = cL ·
V jL(t)

VT
max

(
0,

pj(t)− p0√
|pj(t)− p0|+ ε

)
(B.31)

ρjL(t) =

NC∑
i

xji (t)

ρi (1 + C0(pj(t)− pref))
(B.32)

hjL(t) =

NC∑
i

xji (t)cp,L,i(T
j(t)− T0) (B.33)

hjV (t) =

NC∑
i

yji (t)(∆vaphi + cp,V,i)(T
j(t)− T0) (B.34)

kji =
pjs,i(t)

pj(t)
(B.35)

log10(P js,i(t)) = Ai −
Bi

T j(t)− Ci
(B.36)

85

B.3 Counter-Current Heat Exchanger

In this section all of the equation is for i = 1...NC, j = 1...M and k ∈ C,H . Here C and
H denotes the hot and cold side of the HEX.

dMi

dt

1,k

= Finzin,i −
(
max

(
0, F 1

L

)
x1
i + max

(
0, F 1

V

)
y1
i

)
(B.37)

−
(
(min

(
0, F 1

L

)
x2
i + min

(
0, F 1

V

)
y2
i

)
, i = 1...NC

dMi

dt

j,k

=
(

max
(

0, F j−1
L

)
xj−1
i + max

(
0, F j−1

V

)
yj−1
i

)
−
(

max
(

0, F jL

)
xji + max

(
0, F jV

)
yji

)
(B.38)

+
(

min
(

0, F j−1
L

)
xji + min

(
0, F j−1

V

)
yji

)
−
(

min
(

0, F jL

)
xj+1
i + min

(
0, F jV

)
yj+1
i

)
, i = 1...NC, j = 2...M − 1,

dMi

dt

M,k

=
(
max

(
0, FM−1

L

)
xM−1
i + max

(
0, FM−1

V

)
yM−1
i

)
−
(
FML xMi + FMV yMi

)
+
(
min

(
0, FM−1

L

)
xMi + min

(
0, FM−1

V

)
yMi
)
, i = 1...NC (B.39)

dU

dt

1,H

= Finhin −
(
max

(
0, F 1

L

)
h1
L + max

(
0, F 1

V

)
h1
V

)
(B.40)

−
(
min

(
0, F 1

L

)
h2
L + min

(
0, F 1

V

)
h2
V

)
+ UA

(
TC,M − TH,1

)
,

dU

dt

j,H

=
(

max
(

0, F j−1
L

)
hj−1
L + max

(
0, F j−1

V

)
hj−1
V

)
−
(

max
(

0, F jL

)
hjL + max

(
0, F jV

)
hjV

)
(B.41)

+
(

min
(

0, F j−1
L

)
hjL + min

(
0, F j−1

V

)
hjV

)
−
(

min
(

0, F jL

)
hj+1
L + min

(
0, F jV

)
hj+1
V

)
+ UA

(
TC,M−j+1 − TH,j

)
,

j = 2...M − 1,

dU

dt

M,H

=
(
max

(
0, FM−1

L

)
hM−1
L + max

(
0, FM−1

V

)
hM−1
V

)
−
(
FML hML + FMV hMV

)
+
(
min

(
0, FM−1

L

)
hML + min

(
0, FM−1

V

)
hMV
)
(B.42)

+ UA
(
TC,1 − TH,M

)
,

dU

dt

1,C

= Finhin −
(
max

(
0, F 1

L

)
h1
L + max

(
0, F 1

V

)
h1
V

)
(B.43)

−
(
min

(
0, F 1

L

)
h2
L + min

(
0, F 1

V

)
h2
V

)
− UA

(
TC,M − TH,1

)
,

86

dU

dt

j,C

=
(

max
(

0, F j−1
L

)
hj−1
L + max

(
0, F j−1

V

)
hj−1
V

)
−
(

max
(

0, F jL

)
hjL + max

(
0, F jV

)
hjV

)
+
(

min
(

0, F j−1
L

)
hjL + min

(
0, F j−1

V

)
hjV

)
(B.44)

−
(

min
(

0, F jL

)
hj+1
L + min

(
0, F jV

)
hj+1
V

)
− UA

(
TC,M−j+1 − TH,j

)
,

j = 2...M − 1,

dU

dt

M,C

=
(
max

(
0, FM−1

L

)
hM−1
L + max

(
0, FM−1

V

)
hM−1
V

)
−
(
FML hML + FMV hMV

)
+
(
min

(
0, FM−1

L

)
hML + min

(
0, FM−1

V

)
hMV
)
(B.45)

− UA
(
TC,1 − TH,M

)
.

M j,k
i (t) = M j,k

L xj,ki (t) +M j,k
V (t)yj,ki (t) (B.46)

NC∑
i

M j,k
i (t) = M j,k

L (t) +M j,k
V (t) (B.47)

Hj,k(t) = M j,k
L (t)hj,kL (t) +M j,k

V (t)hj,kV (t) (B.48)

Hj,k(t) = U j,k(t) + pj,k(t)VT (B.49)

yj,ki (t) = kj,ki (t)xj,ki (t) (B.50)

0 = mid

(
M j,k
V (t)

M j,k
V (t) +M j,k

L (t)
,

NC∑
i

xj,ki (t)−
NC∑
i

yj,ki (t),
M j,k
V (t)

M j,k
V (t) +M j,k

L (t)
− 1

)
(B.51)

V j,kT = V j,kL (t) + V j,kV (t) (B.52)

F j,kV (t) = cV ·
V j,kV (t)

VT
max

(
0,

pj,k(t)− p0√
|pj,k(t)− p0|+ ε

)
(B.53)

F j,kL (t) = cL ·
V j,kL (t)

VT
max

(
0,

pj,k(t)− p0√
|pj,k(t)− p0|+ ε

)
(B.54)

ρj,kL (t) =

NC∑
i

xj,ki (t)

ρi (1 + C0(pj,k(t)− pref))
(B.55)

hj,kL (t) =

NC∑
i

xj,ki (t)cp,L,i(T
j,k(t)− T0) (B.56)

(B.57)

87

hj,kV (t) =

NC∑
i

yj,ki (t)(∆vaphi + cp,V,i)(T
j,k(t)− T0) (B.58)

kj,ki =
pj,ks,i (t)

pj,k(t)
(B.59)

log10(P j,ks,i (t)) = Ai −
Bi

T j,k(t)− Ci
(B.60)

88

Appendix C
Rate of Convergence

In this chapter the local rate of convergence of nonlinear programming algorithms are
introduced. It is emphasized that the rate of convergence described in this is on local rate
of convergence. This means that the convergence rate is only current in the neighboorhood
of an optimal solution[31]. There are approaches that can provide information about the
progress of a method far away from the convergence limit such as the Computational
complexity and Informational complexity approach[31]. However, this information is often
pessimistic as it considers the worst possible problem instance[31]. The theory presented
in this Appendix is taken from Nonlinear Programming - Bertsekas[31] if not otherwise
stated.

C.1 The Local Analysis Approach

The local analysis approach considers the local behavior of a method. It describes the be-
havior near the solution quite accurately by using Taylor series approximations. However,
the behavior far from the solution is ignored. The rate of convergence of a method is ob-
tained by investigating how an error function e(x) changes from one iteration to another.
Typical choices for e(x) is,

e(x) = ‖x− x∗‖2 , (C.1)
e(x) = ‖f(x)− f(x∗)‖1 . (C.2)

In Equation C.1 and C.2 x is the system variables, x∗ is the optimal solution and f(x)
is the residual of the system equations. ‖‖1 and ‖‖2 denotes the absolute value and the
euclidean norm. sup denotes the supremum.

89

A method with linear convergence will satisfy the following inequality,

lim sup
k→∞

e(xk+1)

e(xk)
≤ β, (C.3)

where β ∈ (0, 1) is some scalar. The further away β is from unity, the faster the method
converges. A method is said to converge superlinearly if,

lim sup
k→∞

e(xk+1)

e(xk)
= 0, (C.4)

Further it is possible to show that a method has quadratic convergence if,

lim sup
k→∞

e(xk+1)

e(xk)2
<∞, (C.5)

C.2 The Effect of the Condition Number

In Chapter 2 the condition number κ was defined in Equation 2.23. An alternative defini-
tion is[31],

κ(A) =
λmax
λmin

. (C.6)

Here λi is the eigenvalues of the matrix A. To find the condition number of a system of
equations, the matrix A is substituted with the Hessian, ∇2f(x). The best convergence
rate for the steepest descent method is bounded by the following inequality,

∥∥xk+1
∥∥

2

‖xk‖2
≤ λmax − λmin
λmax − λmin

. (C.7)

From Equation C.7 it can be seen that for a system with a high condition number will have
a lower rate of convergence compared with a well conditioned system.

90

Appendix D
MATLAB® code

In this appendix, the automatic differentiation class, valder, the HEX models, and the
initialization of values and solvers are presented as MATLAB® code.

D.1 valder.m

%**
% @author: Marius Reed, Marlene L. Lund
% @organization: Process Systems Engineering, NTNU
% @since: September 2017
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Stores double values and their LD-derivative
%**

classdef valder
properties

val %function value
der %derivative value or gradient vector

end
methods

%Constructor of a valder object.
function obj = valder(a,b)

if nargin == 0
obj.val = [];
obj.der = [];

elseif nargin == 1
obj.val = a;
obj.der = 0;

else
obj.val = a;
obj.der = b;

end

91

end

function val = getVal(obj)
val = obj.val;

end

function der = getDer(obj)
der = obj.der;

end

% Creating a vector from the valder object.
function vec = double(obj)

vec = [obj.val, obj.der];
end

% Overloading plus for the object
function h = plus(u,v)

if ˜isa(u,'valder')
h = valder(u+v.val, v.der);

elseif ˜isa(v,'valder')
h = valder(v+u.val, u.der);

else
h = valder(u.val+v.val, u.der+v.der);

end
end

% Overloading negative for the object
function h = uminus(u)

h = valder(-u.val, -u.der);
end

% Overloading minus for the object
function h = minus(u,v)

if ˜isa(u,'valder')
h = valder(u-v.val, -v.der);

elseif ˜isa(v,'valder')
h = valder(u.val-v, u.der);

else
h = valder(u.val-v.val, u.der-v.der);

end
end

% Overloading multiplication for the object
function h = mtimes(u,v)

if ˜isa(u,'valder')
h = valder(u*v.val, u*v.der);

elseif ˜isa(v,'valder')
h = valder(v*u.val, v*u.der);

else
h = valder(u.val*v.val, u.der*v.val + u.val*v.der);

end
end

% Overloading division for the object
function h = mrdivide(u,v)

if ˜isa(u,'valder')
h = valder(u/v.val, -u*v.der/(v.val)ˆ2);

92

elseif ˜isa(v,'valder')
h = valder(u.val/v, u.der/v);

else
h = valder(u.val/v.val, (u.der*v.val - u.val*v.der)/v.valˆ2);

end
end

% Overloading power for the object
function h = mpower(u,v)

if ˜isa(u,'valder')
h = valder(uˆv.val, uˆv.val*log(u)*v.der);

elseif ˜isa(v,'valder')
h = valder(u.valˆv, v*u.valˆ(v-1)*u.der);

else
h = exp(v*log(u));

end
end

% Overloading exponenital for the object
function h = exp(u)

h = valder(exp(u.val), exp(u.val)*u.der);
end

% Overloading log for the object
function h = log(u)

h = valder(log(u.val),(1/u.val)*u.der);
end
% Overloading log10 for the object
function h = log10(u)

h = valder(log10(u.val),(1/u.val)*u.der);
end

% Overloading the square root for the object
function h = sqrt(u)

h = valder(sqrt(u.val), u.der/(2*sqrt(u.val)));
end

% Overloading sine for the object
function h = sin(u)

h = valder(sin(u.val), cos(u.val)*u.der);
end

% Overloading cosine for the object
function h = cos(u)

h = valder(cos(u.val), -sin(u.val)*u.der);
end

% Overloading tan for the object
function h = tan(u)

h = valder(tan(u.val), sec(u.val)ˆ2*u.der);
end

% Overloading arcsine for the object
function h = asin(u)

h = valder(asin(u.val), u.der/sqrt(1-u.valˆ2));
end

93

% Overloading arctan for the object
function h = atan(u)

h = valder(atan(u.val), u.der/(1+u.valˆ2));
end

% Overloading the absolute function for the object using
% lexicographic derivatives
function u = abs(u)

s.type = '()'; % reference type
for i = 1:length(u.val)

s.subs = {i};
uvar = subsref(u,s); % store ith element
x = double(uvar); % convert to double

% assign abs value and derivative to output :
v = abs(uvar.val);
d = valder.fsign(x)*uvar.der ;
u = subsasgn (u, s, valder(v, d));

end
end

% Overloading the max function for the object
function h = max(u)

s.type = '()';
if length(u.val) > 2

s.subs = {length(u.val)};
u_l = subsref(u,s);
s.subs = {1:length(u.val)-1};
u_f = subsref(u,s);
h = max2(u_l,max(u_f));

else
s.subs = {1};
u_f = subsref(u,s);
s.subs = {2};
u_l = subsref(u,s);
h = max2(u_f,u_l);

end
end

% Overloading the min function for the object
function h = min(u)

s.type = '()';
if length(u.val) > 2

s.subs = {length(u.val)};
u1 = subsref(u,s);
s.subs = {1:length(u.val)-1};
u2 = subsref(u,s);
h = min2(u1,min(u2));

elseif length(u.val) == 1
h = u;

else
s.subs = {1};
u1 = subsref(u,s);
s.subs = {2};
u2 = subsref(u,s);
h = min2(u1,u2);

end

94

end

% Overloading the max function for two objects
function h = max2(u,v)

h = (u + v + abs(u-v))/2;
end

% Overloading the min function for two objects
function h = min2(u,v)

h = (u + v - abs(u-v))/2;
end

% Overloading the mid-function for the object
function h = mid(u)

s.type = '()';
s.subs = {1};
u1 = subsref(u,s);
s.subs = {2};
u2 = subsref(u,s);
s.subs = {3};
u3 = subsref(u,s);
s.subs = {1};
u = subsasgn(u,s,min2(u1,u2));
s.subs = {2};
u = subsasgn(u,s,min2(u1,u3));
s.subs = {3};
u = subsasgn(u,s,min2(u2,u3));
h = max(u);

end

% Overloading the midfunction for the three objects
function h = midobj(u1,u2,u3)

s.type = '()';
s.subs = {1};
u = valder();
u = subsasgn(u,s,min2(u1,u2));
s.subs = {2};
u = subsasgn(u,s,min2(u1,u3));
s.subs = {3};
u = subsasgn(u,s,min2(u2,u3));
h = max(u);

end

% Overloading the 1 and inf norm for the object
function h = norm(u,p)

switch p
case 1

h = sum(abs(u));
case inf

h = max(abs(u));
end

end

% Overloading the mnorm of the function
function h = mnorm(u,p)

nsq = length(u.val);
n = sqrt(nsq);

95

if mod(n,1) > 0
n = nsq;

end
S.type = '()';
D.type = '()';
uabs = abs(u);
h = double(zeros(n,1), zeros(n,length(getDer(u))));
switch p

case 1
j = 1;
for i = 1:nsq

S.subs = {i};
D.subs = {j};
h = subsasgn(h, S, subsref(h,D) + subsref(uabs, S));
if mod(1,n) == 0

j = j + 1;
end

end
h = max(h);

case inf
j = 1;
for i = 1:nsq;

S.subs = {i};
D.subs = {j};
h = subsasgn(h,S, subsref(h,D) + subsref(uabs, S));
if j < n

j = j + 1;
else

j = 1;
end

end
end

end
% overloads indexed reference
function h = subsref (u,S)

SD.type = S.type;
SD.subs = {S.subs{1} , ':'}; % get row number 1
h = valder(subsref(u.val,S), subsref(u.der,SD));

end
% overloads indexed assignment
function obj = subsasgn (obj ,S,u)

SD. type = S.type ;
SD. subs = {S.subs{1} ,':'}; % get row number i
A = subsasgn (obj.val , S, u.val);
B = subsasgn (obj.der , SD , u.der);
obj = valder(A,B);

end

% Overloading the sum function for the object
function h = sum(u)

s.type = '()';
s.subs = {1};
h = subsref(u,s);
if length(getVal(u)) > 1

for i = 2:length(getVal(u))
s.subs = {i};

96

h = h + subsref(u,s);
end

end
end

end

methods (Static)
% Returns sign of the first nonzero element in x
function s = fsign (x)

i = 1;
while x(i) == 0 && i< length (x)

i = i+1;
end
s = sign (x(i));

end
end

end

97

D.2 Shutdown of one-sided Heat Exchanger

This section includes all the MATLAB®-files needed to produce the results presented in
Section 6.2.1. Only small adjustments is needed to produce the results in 6.2. The part
which decreases the inlet flow rate and heat removal in HEX implicit.m must be replaced
by Algorithm 4.

D.2.1 Documentation of MATLAB®-files

**
@Name of Folder: Shutdown
@author: Marius Reed
@organization: Process Systems Engineering, NTNU
@project: Master Thesis 2018
@since: June 2018
@requires: MATLAB R2017b (not tested in other releases)
@description: The folder cotains the files that are neceassary for

simulating a single-sided HEX. As it is, the main.m
file will simulate a shutdown of a HEX with water and
methanol The parameters can be altered to include other
components and change the inlet conditions and more.
This can be changed in the parameters functions. The
results from these simulations are presented and discus-
sed in the master thesis.

@estimated run time: 3 hours

**
Sketch of one side of a heat exchanger

___________ ___________ ___________
| | | | | |

Inlet | | | | | | p_0
------->| |------>| |------>| |------->

| | | | | |
|___________| |___________| |___________|

ˆ ˆ ˆ
| | |
| Q | Q | Q
| | |

Variable list
Var1: M_1 Molar hold up of component 1 (Methanol) [kmol]
Var2: M_2 Molar hold up of component 1 (Water) [kmol]
Var3 : U Internal Energy [MJ]
Var4 : F_V Vapor outlet flow [kmol/s]
Var5 : F_L Liquid outlet flow [kmol/s]
Var6 : M_V Molar vapor hold-up [kmol]
Var7 : P Pressure [MPa]
Var8 : T Temperature [K]
Var9 : V_L Liquid volume [mˆ3]
Var10: x_1 Liquid fraction of component 1 (Methanol) [-]
Var11: x_2 Liquid fraction of component 2 (Water) [-]
Var12: y_1 Vapor fraction of component 1 (Methanol) [-]
Var13: y_2 Vapor fraction of component 1 (Water) [-]
Var14: H Enthalpy [MJ]
Var15: h_L Liquid molar enthalpy [MJ/kmol]

98

Var16: h_V Vapor molar enthalpy [MJ/kmol]
Var17: V_V Vapor volume [mˆ3]
Var18: rho_L Liquid molar density [Mmol/mˆ3]
Var19: M_L Liquid molar hold-up [kmol]
Var20: K_1 Equilibrium coeffiecient for component 1 [-]
Var21: K_2 Equilibrium coeffiecient for component 2 [-]
Var22: Ps_1 Saturation pressure for component 1 [MPa]
Var23: Ps_2 Saturation pressure for component 2 [MPa]

Component list:
1: Methanol CH3OH
2: Water H2O

**
Brief description of each files in the folder. [i] behind an input or
output denotes the dimension of the variable. If nothing is stated,
the variable is a scalar or a struct.
--
main.m
input:
output: Saves the results into HEX.mat file. In additi-

on it produces some plots from the results.
description: The main.m script do necessary operations to find the

inital condition for the simulation of a HEX In addit-
ion it simulates the HEX and saves the results into a
.mat file and produces plots.

--
Flash.m
input: t = time, w = system variables[18], data = paramters
output: F = function residuals[18], G = Generalized derivative

matrix[18x18]
description: The flash.m function contains the model of a two

component flash. It includes 2 differential equations
(internal energy U, and component hold-up M_1). In ad-
dition, there are 16 algebraic equations.

--
HEX.m
input: t = time, w = system variables[18*M],data = parameters
output: F = residuals[18*M], G = Generalized Derivative Matrix

[18*Mx18*M], Q = Heat transfer
description: The HEX.m function contain the model of one side of a

two component HEX with given heat transfer.
--
HEX_implicit.m
input: t = time, w = system variables[2*M*18],

data = parameters, dynVar = dynamic variables values
at previous time step [4*M], dt = Time Step

output: F = residuals [M*18], G = Generalized Derivative
Matrix[M*18xM*18]

description: The HEX_implicit.m function contains the model of one
side of a heat exchanger where the differential equat-
ions are discretized.

--
implicitSolverFull.m
input: w0 = initial conditions[M*18], data = parameters, dt

= time step, tspan = [t_start, t_end]
output: t_vec = time vector [(t_start-t_end)/dt + 1] ,

99

w = System variables matrix[M*18x(t_start-t_end)/dt+1],
Q = heat transfer [(t_start-t_end)/dt + 1],

description: Simulates the HEX_implicit.m model using a implicit
euler integrator with constant time step dt.

--
initialGuesses_gases.m
input: par = parameters
output: w0 = Initial guesses [18], lb = lower boundaries [18],

ub = upper boundaries [18]
description: Returns inital guesses and boundaries for a Flash tank

given the parameters and that the flash is in the
vapor-only regime.

--
parameters.m
input:
output: par = parameters
description: Returns the parameters for a one side of a HEX with

methanol and water.
--
plotShutDown.m
In this function the dimension of the variables is equal to the once
produced by implicitSolverFull.m
input: t = time, w = system variables, Q = heat transfer,
description: Produces plots from the result obtained from the dyna-

mic simulation of one side of a heat exchanger.
The plots are the same as those included in the master
thesis

--
valder.m
description: The valder.m file contains the MATLAB class valder wh-

ich is a user defined MATLAB object. These object cal-
culates the function values as well as computing the
generalized derivative using vector forward automatic
differentiations. The class includes computation of
generalized derivative information at nonsmooth points
for piecewise continues functions such as abs, min,
max and mid. This is done through the lexicographic
directional derivative.

--
ShutDown.mat
description: This .mat file contains the results from running the

main.m file.

**

D.2.2 main.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @project: Master Thesis 2018
% @since: June 2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Main script for simulating shutdown of a two component HEX
% @estimated run time: 3 hours

100

%**
% Description of files
% @ Flash(t,w,data): Two component flash tank model
% @ HEX(t,w,data): Two component HEX model
% @ HEX_implicit(t,w,data): Two component HEX model with discretized diff-
% erential equaionts
% @ implicitSolver_Full(w,data,dt,tspan): Euler integrator for simulating
% the two component HEX
% @ initialGuesses_gases(par): Initial guesses and boundaries for two
% component HEX in vapor-only region
% @ parmeters: Parameter values two component HEX with water and
% methanol
% @ plotHEX_shutDown(t,w,Q): Function for plotting result from simulation
% of two component HEX
% @ valder: Matlab class for calculating the function residuals and
% Generalized derivatives.
%**
clear all
clc
tic
%% Variable list
% Var1: M_1 Molar hold up of component 1 (Methanol) [kmol]
% Var2: M_2 Molar hold up of component 1 (Water) [kmol]
% Var3 : U Internal Energy [MJ]
% Var4 : F_V Vapor outlet flow [kmol/s]
% Var5 : F_L Liquid outlet flow [kmol/s]
% Var6 : M_V Molar vapor hold-up [kmol]
% Var7 : P Pressure [MPa]
% Var8 : T Temperature [K]
% Var9 : V_L Liquid volume [mˆ3]
% Var10: x_1 Liquid fraction of component 1 (Methanol) [-]
% Var11: x_2 Liquid fraction of component 2 (Water) [-]
% Var12: y_1 Vapor fraction of component 1 (Methanol) [-]
% Var13: y_2 Vapor fraction of component 1 (Water) [-]
% Var14: H Enthalpy [MJ]
% Var15: h_L Liquid molar enthalpy [MJ/kmol]
% Var16: h_V Vapor molar enthalpy [MJ/kmol]
% Var17: V_V Vapor volume [mˆ3]
% Var18: rho_L Liquid molar density [Mmol/mˆ3]
% Var19: M_L Liquid molar hold-up [kmol]
% Var20: K_1 Equilibrium coeffiecient for component 1 [-]
% Var21: K_2 Equilibrium coeffiecient for component 2 [-]
% Var22: Ps_1 Saturation pressure for component 1 [MPa]
% Var23: Ps_2 Saturation pressure for component 2 [MPa]

% Component list:
% 1: Methanol CH3OH
% 2: Water H2O

%% Parameters and initial guesses
data.par = parameters();
[w0,lb,ub] = initialGuesses_gases(data.par);

%% Solver settings
options_lsq = optimoptions(@lsqnonlin,'Display','iter',...

'MaxIterations',500,'MaxFunEvals',1e10,...
'stepTolerance',1e-20,'FunctionTolerance',1e-20,...

101

'specifyObjectiveGradient', true,...
'OptimalityTolerance',1e-20);

options_fsolve = optimoptions(@fsolve,'Display','iter',...
'MaxIterations',3e3,'MaxFunEvals',1e10,...
'stepTolerance',1e-13,'FunctionTolerance',1e-6,...
'specifyObjectiveGradient', true,...
'OptimalityTolerance',1e-13, 'Algorithm','levenberg-marquardt');

%% Solving a two component flash tank with no heat transfer
data.par.Q = 0;
data.par.V_T = data.par.V_T/data.par.M; % Volume of Flash tank is equal to

% 1/M of the HEX
lb(17) = data.par.V_T; % Lower boundary on volume
ub(17) = data.par.V_T; % Upper boundary on volume
w0 = lsqnonlin(@(w) Flash(1,w,data), w0,lb,ub,options_lsq);
%% Full heat exchanger steady state
data.par = parameters();
w_initial = [];
% Repeating the system variables M times
for i = 1:23

w_initial = [w_initial;repmat(w0(i),data.par.M,1)];
end
%% Increasing heat removal until the desired initial value
Q = 0:-0.01:-2;
data.par.Q = 0;
w_initial(:,1) = fsolve(@(w)HEX(0,w,data)...

,w_initial,options_fsolve);
for i = 2:length(Q)

data.par.Q = Q(i);
w_initial(:,i) = fsolve(@(w) HEX(0,w,data)...

,w_initial(:,i-1),options_fsolve);
end
%% Simulating the HEX model
[t,w,Q,F_in] = implicitSolverFull(w_initial(:,end),data,0.01,[0 100]);
save('HEX_Shutdown.mat','t','w','Q','F_in'); % Saving results into .mat
% file
plotHEX_ShutDown(t,w,Q,F_in)

D.2.3 Flash.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Two component Flash tank model
% @input: t = time, w = system variables data = parameters
% @output: F = residuals, G = Generalized Derivative Matrix Q = Heat
% transfer
%**

function [F,G,Q] = Flash(t,w,data)

%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate [kmol/s]

102

Q_0 = par.Q; % Heat transfer [MW]
Q_max = par.Q_max; % Maximum Heat transfer [MW]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor Heat Capcity comp 1 [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid Heat Capcity comp 1 [MJ/kmol*kK]
Cp_V_2 = par.Cp_V(2); % Vapor Heat Capcity comp 2 [MJ/kmol*kK]
Cp_L_2 = par.Cp_L(2); % Liquid Heat Capcity comp 2 [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization comp 1 [MJ/kmol]
h_vap_2 = par.h_vap(2); % Heat of vaporization comp 2 [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter comp 1
B_1 = par.Antoine(2,1); % Antoine Parameter comp 1
C_1 = par.Antoine(3,1); % Antoine Parameter comp 1
A_2 = par.Antoine(1,2); % Antoine Parameter comp 2
B_2 = par.Antoine(2,2); % Antoine Parameter comp 2
C_2 = par.Antoine(3,2); % Antoine Parameter comp 2
rho_1 = par.rho(1); % Molar density comp 1 [Mmol/mˆ3]
rho_2 = par.rho(1); % Molar density comp 2 [Mmol/mˆ3]
z_1 = par.z(1); % Inlet composition comp 1
z_2 = par.z(2); % Inlet composition comp 1
h_in = par.h_in; % Inlet molar enthalpy [MJ/kmol]
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V; % Vapor valve coefficient [kmol/barˆ0.5*s]
c_L = par.c_L; % Liquid valve coefficient [kmol/barˆ0.5*s]

% Defining the changes in heat transfer
if t < 5

Q = Q_0;
elseif t < 100

Q = Q_0 + (Q_max-Q_0)/(100-5)*(t-5);
else

Q = Q_max;
end
%% Unpacking system variables
w = valder(w,eye(length(w)));
M_1 = w(1); % Component 1 Molar hold-up [kmol]
M_2 = w(2); % Component 2 Molar hold-up [kmol]
U = w(3); % Internal Energy [MJ]
F_V = w(4); % Vapor flow rate [kmol/s]
F_L = w(5); % Liquid flow rate [kmol/s]
M_V = w(6); % Vapor molar hold-up [kmol]
P = w(7); % Pressure [MPa]
T = w(8); % Temperature [kK]
V_L = w(9); % Liquid Volume [mˆ3]
x_1 = w(10); % Liquid mole fraction component 1
x_2 = w(11); % Liquid mole fraction component 2
y_1 = w(12); % Vapor mole fraction component 1
y_2 = w(13); % Vapor mole fraction component 2
H = w(14); % Enthalpy [MJ]
h_L = w(15); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(16); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(17); % Vapor volume [mˆ3]
rho_L = w(18); % Liquid molar density [Mmol/kK]
M_L = w(19); % Liquid molar hold-up [kmol]
k_1 = w(20); % Vapor-liquid equilibrium coefficent component 1

103

k_2 = w(21); % Vapor-liquid equilibrium coefficent component 2
Ps_1 = w(22); % Saturation pressure component 1
Ps_2 = w(23); % Saturation pressure component 2

%% Differential equations
f1 = F_in*z_1 - F_L*x_1 - F_V * y_1;
f2 = F_in*z_2 - F_L*x_2 - F_V * y_2;
f3 = F_in*h_in - F_L*h_L - F_V*h_V + Q;

%% Algebraic equations
f4 = M_1 - (M_L*x_1 + M_V*y_1);
f5 = M_2 - (M_L*x_2 + M_V*y_2);
f6 = (M_1+M_2) - (M_L + M_V);
f7 = H - (M_L*h_L + M_V*h_V);
f8 = H - (U + P*V_T);
f9 = y_1 - k_1*x_1;
f10 = y_2 - k_2*x_2;
f11 = midobj(M_V/(M_V+M_L),(x_1+x_2) - (y_1+y_2), (M_V/(M_V+M_L))-1);
f12 = V_T - (V_L + V_V);
f13 = P*V_V - M_V*R*T;
f14 = V_L - M_L/(rho_L*1e3);
f15 = F_V*V_T - c_V*V_V*max2(0,(P-P_0)/sqrt(abs((P-P_0))+1e-10));
f16 = F_L*V_T - c_L*V_L*max2(0,(P-P_0)/sqrt(abs((P-P_0))+1e-10));
f17 = 1/rho_L - (x_1/(rho_1*(1+C0*(P-0.1))) + x_2/(rho_2*(1+C0*(P-0.1))));
f18 = h_L - ((x_1*Cp_L_1)*(T-T_ref) + (x_2*Cp_L_2)*(T-T_ref));
f19 = h_V - (y_1*(h_vap_1 + Cp_V_1*(T-T_ref)) + y_2*(h_vap_2 +...

Cp_V_2*(T-T_ref)));
f20 = k_1*P - Ps_1;
f21 = k_2*P - Ps_2;
f22 = Ps_1 - 10ˆ(A_1 - B_1/(T*1e3+C_1))/10;
f23 = Ps_2 - 10ˆ(A_2 - B_2/(T*1e3+C_2))/10;

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18);getVal(f19);getVal(f20);getVal(f21);...
getVal(f22);getVal(f23)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18);getDer(f19);getDer(f20);getDer(f21);...
getDer(f22);getDer(f23)];

end

D.2.4 HEX.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)

104

% @description: Two component HEX model
% @input: t = time, w = system variables data = parameters
% @output: F = residuals, G = Generalized Derivative Matrix Q = Heat
% transfer, F_in = inlet flow rate
%**

function [F,G,Q,F_in] = HEX(t,w,data)

%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate [kmol/s]
Q_0 = par.Q; % Heat transfer [MW]
Q_max = par.Q_max; % Maximum Heat transfer [MW]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor Heat Capcity comp 1 [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid Heat Capcity comp 1 [MJ/kmol*kK]
Cp_V_2 = par.Cp_V(2); % Vapor Heat Capcity comp 2 [MJ/kmol*kK]
Cp_L_2 = par.Cp_L(2); % Liquid Heat Capcity comp 2 [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization comp 1 [MJ/kmol]
h_vap_2 = par.h_vap(2); % Heat of vaporization comp 2 [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter comp 1
B_1 = par.Antoine(2,1); % Antoine Parameter comp 1
C_1 = par.Antoine(3,1); % Antoine Parameter comp 1
A_2 = par.Antoine(1,2); % Antoine Parameter comp 2
B_2 = par.Antoine(2,2); % Antoine Parameter comp 2
C_2 = par.Antoine(3,2); % Antoine Parameter comp 2
rho_1 = par.rho(1); % Molar density comp 1 [Mmol/mˆ3]
rho_2 = par.rho(1); % Molar density comp 2 [Mmol/mˆ3]
z_1 = par.z(1); % Inlet composition comp 1
z_2 = par.z(2); % Inlet composition comp 1
h_in = par.h_in; % Inlet molar enthalpy [MJ/kmol]
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V; % Vapor valve coefficient [kmol/barˆ0.5*s]
c_L = par.c_L; % Liquid valve coefficient [kmol/barˆ0.5*s]
M = par.M; % Number of flash tanks in series
% Adjusting the valve coeffcient to M
c_V = sqrt(M)*c_V;
c_L = sqrt(M)*c_L;

% Defining the changes in heat transfer
if t < 5

Q = Q_0;
elseif t < 70

Q = Q_0 - Q_0/(70-5)*(t-5);
else

Q = 0;
end
if t < 5

F_in = F_in;
elseif t < 50

F_in = F_in - F_in/(50-5)*(t-5);
else

F_in = 0;
end

105

%% Unpacking system variables
L = length(w);
w = valder(w,eye(length(w)));
M_1 = w(1:M); % Component 1 Molar hold-up [kmol]
M_2 = w(1*M+1:2*M); % Component 2 Molar hold-up [kmol]
U = w(2*M+1:3*M); % Internal Energy [MJ]
F_V = w(3*M+1:4*M); % Vapor flow rate [kmol/s]
F_L = w(4*M+1:5*M); % Liquid flow rate [kmol/s]
M_V = w(5*M+1:6*M); % Vapor molar hold-up [kmol]
P = w(6*M+1:7*M); % Pressure [MPa]
T = w(7*M+1:8*M); % Temperature [kK]
V_L = w(8*M+1:9*M); % Liquid Volume [mˆ3]
x_1 = w(9*M+1:10*M); % Liquid mole fraction component 1
x_2 = w(10*M+1:11*M); % Liquid mole fraction component 2
y_1 = w(11*M+1:12*M); % Vapor mole fraction component 1
y_2 = w(12*M+1:13*M); % Vapor mole fraction component 2
H = w(13*M+1:14*M); % Enthalpy [MJ]
h_L = w(14*M+1:15*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(15*M+1:16*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(16*M+1:17*M); % Vapor volume [mˆ3]
rho_L = w(17*M+1:18*M); % Liquid molar density [Mmol/kK]
M_L = w(18*M+1:19*M); % Liquid molar hold-up [kmol]
k_1 = w(19*M+1:20*M); % Vapor-liquid equilibrium coefficent component 1
k_2 = w(20*M+1:21*M); % Vapor-liquid equilibrium coefficent component 2
Ps_1 = w(21*M+1:22*M); % Saturation pressure component 1
Ps_2 = w(22*M+1:23*M); % Saturation pressure component 2

%% Preallocating memory
f1 = valder(zeros(M,1),zeros(M,L));
f2 = valder(zeros(M,1),zeros(M,L));
f3 = valder(zeros(M,1),zeros(M,L));
f4 = valder(zeros(M,1),zeros(M,L));
f5 = valder(zeros(M,1),zeros(M,L));
f6 = valder(zeros(M,1),zeros(M,L));
f7 = valder(zeros(M,1),zeros(M,L));
f8 = valder(zeros(M,1),zeros(M,L));
f9 = valder(zeros(M,1),zeros(M,L));
f10 = valder(zeros(M,1),zeros(M,L));
f11 = valder(zeros(M,1),zeros(M,L));
f12 = valder(zeros(M,1),zeros(M,L));
f13 = valder(zeros(M,1),zeros(M,L));
f14 = valder(zeros(M,1),zeros(M,L));
f15 = valder(zeros(M,1),zeros(M,L));
f16 = valder(zeros(M,1),zeros(M,L));
f17 = valder(zeros(M,1),zeros(M,L));
f18 = valder(zeros(M,1),zeros(M,L));
f19 = valder(zeros(M,1),zeros(M,L));
f20 = valder(zeros(M,1),zeros(M,L));
f21 = valder(zeros(M,1),zeros(M,L));
f22 = valder(zeros(M,1),zeros(M,L));
f23 = valder(zeros(M,1),zeros(M,L));
%% Differential equations
f1(1) = F_in*z_1 - (F_L(1)*x_1(1) + F_V(1)*y_1(1));
f2(1) = F_in*z_2 - (F_L(1)*x_2(1) + F_V(1)*y_2(1));
f3(1) = F_in*h_in - (F_L(1)*h_L(1) + F_V(1)*h_V(1)) + Q/M;

for j = 2:M-1

106

f1(j) = (F_L(j-1)*x_1(j-1) + F_V(j-1)*y_1(j-1))...
- (F_L(j)*x_1(j) + F_V(j)*y_1(j));

f2(j) = (F_L(j-1)*x_2(j-1) + F_V(j-1)*y_2(j-1))...
- (F_L(j)*x_2(j) + F_V(j)*y_2(j));

f3(j) = (F_L(j-1)*h_L(j-1) + F_V(j-1)*h_V(j-1))...
- (F_L(j)*h_L(j) + F_V(j)*h_V(j)) + Q/M;

end

f1(M) = (F_L(M-1)*x_1(M-1) + F_V(M-1)*y_1(M-1))...
- (F_L(M)*x_1(M) + F_V(M)*y_1(M));

f2(M) = (F_L(M-1)*x_2(M-1) + F_V(M-1)*y_2(M-1))...
- (F_L(M)*x_2(M) + F_V(M)*y_2(M));

f3(M) = (F_L(M-1)*h_L(M-1) + F_V(M-1)*h_V(M-1))...
- (F_L(M)*h_L(M) + F_V(M)*h_V(M)) + Q/M;

%% Algebraic equations
for j = 1:M

f4(j) = M_1(j) - (M_L(j)*x_1(j) + M_V(j)*y_1(j));
f5(j) = M_2(j) - (M_L(j)*x_2(j) + M_V(j)*y_2(j));
f6(j) = (M_1(j)+M_2(j)) - (M_L(j) + M_V(j));
f7(j) = H(j) - (M_L(j)*h_L(j) + M_V(j)*h_V(j));
f8(j) = H(j) - (U(j) + P(j)*V_T/M);
f9(j) = y_1(j) - k_1(j)*x_1(j);
f10(j) = y_2(j) - k_2(j)*x_2(j);
f11(j) = midobj(M_V(j)/(M_V(j)+M_L(j)),...

((x_1(j)+x_2(j)) - (y_1(j)+y_2(j))), (M_V(j)/(M_V(j)+M_L(j)))-1);
f12(j) = V_T/M - (V_L(j) + V_V(j));
f13(j) = P(j)*V_V(j) - M_V(j)*R*T(j);
f14(j) = V_L(j) - M_L(j)/(rho_L(j)*1e3);
if j < M

f15(j) = F_V(j)*V_T/M - c_V*V_V(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

f16(j) = F_L(j)*V_T/M - c_L*V_L(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

else
f15(j) = F_V(j)*V_T/M - c_V*V_V(j)*((P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10));
f16(j) = F_L(j)*V_T/M - c_L*V_L(j)*(((P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10)));
end
f17(j) = 1/rho_L(j) - (x_1(j)/(rho_1*(1+C0*(P(j)-0.1)))...

+x_2(j)/(rho_2*(1+C0*(P(j)-0.1))));
f18(j) = h_L(j) - (x_1(j)*Cp_L_1*(T(j)-T_ref)...

+ x_2(j)*Cp_L_2*(T(j)-T_ref));
f19(j) = h_V(j) - (y_1(j)*(h_vap_1 + Cp_V_1*(T(j)-T_ref))...

+y_2(j)*(h_vap_2 + Cp_V_2*(T(j)-T_ref)));
f20(j) = k_1(j)*P(j) - Ps_1(j);
f21(j) = k_2(j)*P(j) - Ps_2(j);
f22(j) = Ps_1(j) - 10ˆ(A_1 - B_1/(T(j)*1e3+C_1))/10;
f23(j) = Ps_2(j) - 10ˆ(A_2 - B_2/(T(j)*1e3+C_2))/10;

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18);getVal(f19);getVal(f20);getVal(f21);...
getVal(f22);getVal(f23)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...

107

getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18);getDer(f19);getDer(f20);getDer(f21);...
getDer(f22);getDer(f23)];

end

D.2.5 HEX implicit.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Implicit two component HEX model
% @input: t = time, w = system variables data = parameters, dynVar =
% Value of differential variables at previous time, dt = time step
% @output: F = residuals, G = Generalized Derivative Matrix
%**

function [F,G] = HEX_implicit(t,w,data,dynVar,dt)

%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate [kmol/s]
Q_0 = par.Q; % Heat transfer [MW]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor Heat Capcity comp 1 [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid Heat Capcity comp 1 [MJ/kmol*kK]
Cp_V_2 = par.Cp_V(2); % Vapor Heat Capcity comp 2 [MJ/kmol*kK]
Cp_L_2 = par.Cp_L(2); % Liquid Heat Capcity comp 2 [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization comp 1 [MJ/kmol]
h_vap_2 = par.h_vap(2); % Heat of vaporization comp 2 [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter comp 1
B_1 = par.Antoine(2,1); % Antoine Parameter comp 1
C_1 = par.Antoine(3,1); % Antoine Parameter comp 1
A_2 = par.Antoine(1,2); % Antoine Parameter comp 2
B_2 = par.Antoine(2,2); % Antoine Parameter comp 2
C_2 = par.Antoine(3,2); % Antoine Parameter comp 2
rho_1 = par.rho(1); % Molar density comp 1 [Mmol/mˆ3]
rho_2 = par.rho(1); % Molar density comp 2 [Mmol/mˆ3]
z_1 = par.z(1); % Inlet composition comp 1
z_2 = par.z(2); % Inlet composition comp 1
h_in = par.h_in; % Inlet molar enthalpy [MJ/kmol]
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V; % Vapor valve coefficient [kmol/barˆ0.5*s]
c_L = par.c_L; % Liquid valve coefficient [kmol/barˆ0.5*s]
M = par.M; % Number of flash tanks in series
% Adjusting the valve coeffcient to M
c_V = sqrt(M)*c_V;
c_L = sqrt(M)*c_L;

% Values of the differential variables at previous time.

108

M_1_0 = dynVar(1:M);
M_2_0 = dynVar(1*M+1:2*M);
U_0 = dynVar(2*M+1:3*M);

% Defining the changes in heat transfer
if t < 5

Q = Q_0;
elseif t < 70

Q = Q_0 - Q_0/(70-5)*(t-5);
else

Q = 0;
end

if t < 5
F_in = F_in;

elseif t < 50
F_in = F_in - F_in/(50-5)*(t-5);

else
F_in = 0;

end
%% Unpacking system variables
L = length(w);
w = valder(w,eye(length(w)));
M_1 = w(1:M); % Component 1 Molar hold-up [kmol]
M_2 = w(1*M+1:2*M); % Component 2 Molar hold-up [kmol]
U = w(2*M+1:3*M); % Internal Energy [MJ]
F_V = w(3*M+1:4*M); % Vapor flow rate [kmol/s]
F_L = w(4*M+1:5*M); % Liquid flow rate [kmol/s]
M_V = w(5*M+1:6*M); % Vapor molar hold-up [kmol]
P = w(6*M+1:7*M); % Pressure [MPa]
T = w(7*M+1:8*M); % Temperature [kK]
V_L = w(8*M+1:9*M); % Liquid Volume [mˆ3]
x_1 = w(9*M+1:10*M); % Liquid mole fraction component 1
x_2 = w(10*M+1:11*M); % Liquid mole fraction component 2
y_1 = w(11*M+1:12*M); % Vapor mole fraction component 1
y_2 = w(12*M+1:13*M); % Vapor mole fraction component 2
H = w(13*M+1:14*M); % Enthalpy [MJ]
h_L = w(14*M+1:15*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(15*M+1:16*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(16*M+1:17*M); % Vapor volume [mˆ3]
rho_L = w(17*M+1:18*M); % Liquid molar density [Mmol/kK]
M_L = w(18*M+1:19*M); % Liquid molar hold-up [kmol]
k_1 = w(19*M+1:20*M); % Vapor-liquid equilibrium coefficent component 1
k_2 = w(20*M+1:21*M); % Vapor-liquid equilibrium coefficent component 2
Ps_1 = w(21*M+1:22*M); % Saturation pressure component 1
Ps_2 = w(22*M+1:23*M); % Saturation pressure component 2

%% Preallocating memory
f1 = valder(zeros(M,1),zeros(M,L));
f2 = valder(zeros(M,1),zeros(M,L));
f3 = valder(zeros(M,1),zeros(M,L));
f4 = valder(zeros(M,1),zeros(M,L));
f5 = valder(zeros(M,1),zeros(M,L));
f6 = valder(zeros(M,1),zeros(M,L));
f7 = valder(zeros(M,1),zeros(M,L));
f8 = valder(zeros(M,1),zeros(M,L));
f9 = valder(zeros(M,1),zeros(M,L));

109

f10 = valder(zeros(M,1),zeros(M,L));
f11 = valder(zeros(M,1),zeros(M,L));
f12 = valder(zeros(M,1),zeros(M,L));
f13 = valder(zeros(M,1),zeros(M,L));
f14 = valder(zeros(M,1),zeros(M,L));
f15 = valder(zeros(M,1),zeros(M,L));
f16 = valder(zeros(M,1),zeros(M,L));
f17 = valder(zeros(M,1),zeros(M,L));
f18 = valder(zeros(M,1),zeros(M,L));
f19 = valder(zeros(M,1),zeros(M,L));
f20 = valder(zeros(M,1),zeros(M,L));
f21 = valder(zeros(M,1),zeros(M,L));
f22 = valder(zeros(M,1),zeros(M,L));
f23 = valder(zeros(M,1),zeros(M,L));

%% Differential equations

f1(1) = M_1(1) - (M_1_0(1) + (F_in*z_1 - (max2(0,F_L(1))*x_1(1)...
+ max2(0,F_V(1))*y_1(1)) - (min2(0,F_L(1))*x_1(2) +...
min2(0,F_V(1))*y_1(2)))*dt);

f2(1) = M_2(1) - (M_2_0(1) + (F_in*z_2 - (max2(0,F_L(1))*x_2(1)...
+ max2(0,F_V(1))*y_2(1)) - (min2(0,F_L(1))*x_2(2)...
+ min2(0,F_V(1))*y_2(2)))*dt);

f3(1) = U(1) - (U_0(1) + (F_in*h_in - (max2(0,F_L(1))*h_L(1)...
+ max2(0,F_V(1))*h_V(1)) - (min2(0,F_L(1))*h_L(2)...
+ min2(0,F_V(1))*h_V(2)) + Q/M)*dt);

for j = 2:M-1
f1(j) = M_1(j) - (M_1_0(j) + ((max2(0,F_L(j-1))*x_1(j-1)...

+ max2(0,F_V(j-1))*y_1(j-1)) - (max2(0,F_L(j))*x_1(j)...
+ max2(0,F_V(j))*y_1(j)) + (min2(0,F_L(j-1))*x_1(j)...
+ min2(0,F_V(j-1))*y_1(j)) - (min2(0,F_L(j))*x_1(j+1)...
+ min2(0,F_V(j))*y_1(j+1)))*dt);

f2(j) = M_2(j) - (M_2_0(j) + ((max2(0,F_L(j-1))*x_2(j-1)...
+ max2(0,F_V(j-1))*y_2(j-1)) - (max2(0,F_L(j))*x_2(j)...
+ max2(0,F_V(j))*y_2(j)) + (min2(0,F_L(j-1))*x_2(j)...
+ min2(0,F_V(j-1))*y_2(j)) - (min2(0,F_L(j))*x_2(j+1)...
+ min2(0,F_V(j))*y_2(j+1)))*dt);

f3(j) = U(j) - (U_0(j) + ((max2(0,F_L(j-1))*h_L(j-1)...
+ max2(0,F_V(j-1))*h_V(j-1)) - (max2(0,F_L(j))*h_L(j)...
+ max2(0,F_V(j))*h_V(j)) + (min2(0,F_L(j-1))*h_L(j)...
+ min2(0,F_V(j-1))*h_V(j)) - (min2(0,F_L(j))*h_L(j+1)...
+ min2(0,F_V(j))*h_V(j+1)) + Q/M)*dt);

end

f1(M) = M_1(M) - (M_1_0(M) + ((max2(0,F_L(M-1))*x_1(M-1)...
+ max2(0,F_V(M-1))*y_1(M-1)) - (max2(0,F_L(M))*x_1(M)...
+ max2(0,F_V(M))*y_1(M)) + (min2(0,F_L(M-1))*x_1(M)...
+ min2(0,F_V(M-1))*y_1(M)))*dt);

f2(M) = M_2(M) - (M_2_0(M) + ((max2(0,F_L(M-1))*x_2(M-1)...
+ max2(0,F_V(M-1))*y_2(M-1)) - (max2(0,F_L(M))*x_2(M)...
+ max2(0,F_V(M))*y_2(M)) + (min2(0,F_L(M-1))*x_2(M)...
+ min2(0,F_V(M-1))*y_2(M)))*dt);

f3(M) = U(M) - (U_0(M) + ((max2(0,F_L(M-1))*h_L(M-1)...
+ max2(0,F_V(M-1))*h_V(M-1)) - (max2(0,F_L(M))*h_L(M)...
+ max2(0,F_V(M))*h_V(M)) + (min2(0,F_L(M-1))*h_L(M)...
+ min2(0,F_V(M-1))*h_V(M)) + Q/M)*dt);

110

%% Algebraic equations
for j = 1:M

f4(j) = M_1(j) - (M_L(j)*x_1(j) + M_V(j)*y_1(j));
f5(j) = M_2(j) - (M_L(j)*x_2(j) + M_V(j)*y_2(j));
f6(j) = (M_1(j)+M_2(j)) - (M_L(j) + M_V(j));
f7(j) = H(j) - (M_L(j)*h_L(j) + M_V(j)*h_V(j));
f8(j) = H(j) - (U(j) + P(j)*V_T/M);
f9(j) = y_1(j) - k_1(j)*x_1(j);
f10(j) = y_2(j) - k_2(j)*x_2(j);
f11(j) = midobj(M_V(j)/(M_V(j)+M_L(j)),...

((x_1(j)+x_2(j)) - (y_1(j)+y_2(j))), (M_V(j)/(M_V(j)+M_L(j)))-1);
f12(j) = V_T/M - (V_L(j) + V_V(j));
f13(j) = P(j)*V_V(j) - M_V(j)*R*T(j);
f14(j) = V_L(j) - M_L(j)/(rho_L(j)*1e3);
if j < M

f15(j) = F_V(j)*V_T/M - c_V*V_V(j)*(P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10);

f16(j) = F_L(j)*V_T/M - c_L*V_L(j)*(P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10);

else
f15(j) = F_V(j)*V_T/M - c_V*V_V(j)*max2(0,(P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10));
f16(j) = F_L(j)*V_T/M - c_L*V_L(j)*max2(0,((P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10)));
end
f17(j) = 1/rho_L(j) - (x_1(j)/(rho_1*(1+C0*(P(j)-0.1)))...

+x_2(j)/(rho_2*(1+C0*(P(j)-0.1))));
f18(j) = h_L(j) - (x_1(j)*Cp_L_1*(T(j)-T_ref)...

+ x_2(j)*Cp_L_2*(T(j)-T_ref));
f19(j) = h_V(j) - (y_1(j)*(h_vap_1 + Cp_V_1*(T(j)-T_ref))...

+y_2(j)*(h_vap_2 + Cp_V_2*(T(j)-T_ref)));
f20(j) = k_1(j)*P(j) - Ps_1(j);
f21(j) = k_2(j)*P(j) - Ps_2(j);
f22(j) = Ps_1(j) - 10ˆ(A_1 - B_1/(T(j)*1e3+C_1))/10;
f23(j) = Ps_2(j) - 10ˆ(A_2 - B_2/(T(j)*1e3+C_2))/10;

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18);getVal(f19);getVal(f20);getVal(f21);...
getVal(f22);getVal(f23)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18);getDer(f19);getDer(f20);getDer(f21);...
getDer(f22);getDer(f23)];

end

D.2.6 implicitSolverFull.m

%**
% @author: Marius Reed

111

% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Implicit Euler integrator for two component flash tank
% @input: w0 = initial conditions, data = parameters, dt = time step,
% tspan = [t_start, t_end]
% @output: t = time vector, w = System variables matrix, Q = heat transfer,
% F_in = inlet flow rate
%**

function [t,w,Q,F_in] = implicitSolverFull(w0,data,dt,tspan)
% Solver settings
options_fsolve = optimoptions(@fsolve,'Display','iter',...

'MaxIterations',3e3,'MaxFunEvals',1e10,...
'stepTolerance',1e-20,'FunctionTolerance',1e-20,...
'specifyObjectiveGradient', true,...
'OptimalityTolerance',1e-13, 'Algorithm','levenberg-marquardt');

% Preallocating memory and setting the first value equal to initial values
t = tspan(1):dt:tspan(2);
w = zeros(length(w0),length(t));
Q = zeros(1,length(t));
F_in = zeros(1,length(t));
w(:,1) = w0;
Q(1) = data.par.Q;
F_in(1) = data.par.F_in;
M = data.par.M;
% Solving the flash model and doing time steps integrations
for i = 2:length(t)

disp(t(i));
w0 = w(:,i-1);
dynVar = w(1:3*M,i-1);
w(:,i) = fsolve(@(w) HEX_implicit(t(i),w,data,dynVar,dt)...

,w0,options_fsolve);
[˜,˜,Q(i),F_in(i)] = HEX(t(i),w(:,i),data);

end
end

D.2.7 initialGuesses gases.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Returns inital guesses and boundaries for a Flash tank
% given the parameters and that the flash is in the vapor-only regime
% @input: par = parameters
% @output: w0 = Initial guesses, lb = lower boundaries, ub = upper
% boundaries
%**

function [w0,lb,ub] = initialGuesses_gases(par)

% M_1 = w(1); % Component 1 molar hold-up [kmol]
w0(1) = 0.5;

112

lb(1) = 0;
ub(1) = inf;
% M_2 = w(2); % Component 2 molar hold-up [kmol]
w0(2) = 0.5;
lb(2) = 0;
ub(2) = inf;
% U = w(3); % Internal energy [MJ]
w0(3) = -1;
lb(3) = -inf;
ub(3) = inf;
% F_V = w(4); % Vapor flow rate [kmol/s]
w0(4) = par.F_in;
lb(4) = par.F_in;
ub(4) = par.F_in;
% F_L = w(5); % Liquid flow rate [kmol/s]
w0(5) = 0;
lb(5) = 0;
ub(5) = 0;
% M_V = w(6); % Vapor molar hold-up [kmol]
w0(6) = 0.1;
lb(6) = 0;
ub(6) = inf;
% P = w(7); % Pressure [MPa]
w0(7) = 0.11;
lb(7) = 0;
ub(7) = inf;
% T = w(8); % Temperature [kK]
w0(8) = par.T_in;
lb(8) = par.T_in;
ub(8) = par.T_in;
% V_L = w(9); % Liquid volume [mˆ3]
w0(9) = 0;
lb(9) = 0;
ub(9) = 0;
% x_1 = w(10); % Liquid mole fraction component 1
w0(10) = 0.5;
lb(10) = 0;
ub(10) = inf;
% x_2 = w(11); % Liquid mole fraction component 2
w0(11) = 0.5;
lb(11) = 0;
ub(11) = inf;
% y_1 = w(12); % Vapor mole fraction component 1
w0(12) = par.z(1);
lb(12) = par.z(1);
ub(12) = par.z(1);
% y_2 = w(13); % Vapor mole fraction component 2
w0(13) = par.z(2);
lb(13) = par.z(2);
ub(13) = par.z(2);
% H = w(14); % Enthalpy [MJ]
w0(14) = 1;
lb(14) = -inf;
ub(14) = inf;
% h_L = w(15); % Liquid molar enthalpy [MJ/kmol]
w0(15) = par.h_in;
lb(15) = -inf;

113

ub(15) = inf;
% h_V = w(16); % Vapor molar enthalpy [MJ/kmol]
w0(16) = par.h_in;
lb(16) = par.h_in;
ub(16) = par.h_in;
% V_V = w(17); % Vapor volume [mˆ3]
w0(17) = par.V_T;
lb(17) = par.V_T;
ub(17) = par.V_T;
% rho_L = w(18); % Liquid molar density [Mmol/mˆ3]
w0(18) = 0.5;
lb(18) = 0;
ub(18) = inf;
% M_L = w(19); % Liquid molar hold-up [kmol]
w0(19) = 0;
lb(19) = 0;
ub(19) = 0;
% K_1 = w(20); % Vapor-liquid equilibrium coefficient comp 1
w0(20) = 1;
lb(20) = 0;
ub(20) = inf;
% K_2 = w(21); % Vapor-liquid equilibrium coefficient comp 2
w0(21) = 1;
lb(21) = 0;
ub(21) = inf;
% Ps_1 = w(22); % Saturation Pressure component 1 [MPa]
w0(22) = 0.1;
lb(22) = 0;
ub(22) = inf;
% Ps_2 = w(23); % Saturation Pressure component 1 [MPa]
w0(23) = 0.1;
lb(23) = 0;
ub(23) = inf;
w0 = w0';
end

D.2.8 parameters.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Parameters for two component HEX
% @componentList: 1: Methanol 2: Water
%**

function par = parameters()
%% Literature
% https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Mask=4&Type=ANTOINE&Plot=on
% https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Mask=4&Type=ANTOINE&Plot=on
% http://www.personal.utulsa.edu/˜geoffrey-price/Courses/ChE7023/
% HeatCapacity-HeatOfFormation.pdf
%% Parameters
% Antoine Parameters log(p_sat[bar]) = A - B/(T[K]+C)

114

A = [5.15853 4.6543];
B = [1569.613 1435.264];
C = [-34.846 -64.848];

par.T_in = 0.410; % Temperature inlet [kK]
par.F_in = 0.1; % Inlet flow rate [kmol/s]
par.Antoine = [A;B;C]; % Antoine parameters
par.Q = 0; % Heat transfer [MW]
par.Q_max = -4; % Maximum heat transfer [MW]
par.h_vap = [35.210 40.660]; % Heat of vaporization [MJ/kmol]
par.Cp_V = [44.06, 35]; % Vapor Heat Capacity [MJ/kmol*kK]
par.Cp_L = [81.08, 75]; % Liquid Heat Capacity [MJ/kmol*kK]
par.R = 8.314; % Gas constant [MJ/(kK * kmol)]
par.P_0 = 0.1; % Outlet Pressure [MPa]
par.V_T = 0.2; % Total volume [mˆ3]
par.rho = [0.792/32.04, 1/18.016]; % Liquid molar density[Mmol/mˆ3]
par.c_V = 1; % Valve coefficient vapor[kmol/(barˆ(-0.5) s)]
par.c_L = 5; % Valve coefficient liquid [kmol/(barˆ(-0.5) s)]
par.z = [0.5 0.5]; % Composition inlet [Hot Cold]
par.C0 = 3*145.0377e-6; % Liquid compressability factor [1/MPa]
par.T_ref = 0.29815; % Reference temperature [kK]
par.M = 3; % Number of flash tanks in series

%% Calculation of inlet enthalpy [MJ/kmol]
% This calculation assumes that the inlet is in vapor phase
par.h_in = par.z(1)*(par.h_vap(1) + par.Cp_V(1)*(par.T_in-par.T_ref))+...

par.z(2)*(par.h_vap(2) + par.Cp_V(2)*(par.T_in-par.T_ref));
end

D.3 Counter-Current Heat Exchanger

This section includes all the MATLAB®-files needed to produce the results presented in
Section 6.3. In addition the a description of each file is included.

D.3.1 Documentation of MATLAB®-files

**
@Name of Folder: HEX_CounterCurrent
@author: Marius Reed
@organization: Process Systems Engineering, NTNU
@project: Master Thesis 2018
@since: June 2018
@requires: MATLAB R2017b (not tested in other releases)
@description: The folder cotains the files that are neceassary for

simulating a counter current HEX. As it is, the main.m
file will simulate a counter current HEX with methanol
on the hot side and water on the cold side. The paramet-
ers can be altered to include other components and chan-
ge the inlet conditions and more. This can be change in
the parameters functions. The results from these simula-
tions are presented and discussed in the master thesis.

@estimated run time:

**

115

Sketch of the counter current heat exchanger
___________ ___________ ___________
| | | | | |

Inlet | | | | | | p_0
------->| |------>| |------>| |------->

| | | | | |
|___________| |___________| |___________|

ˆ ˆ ˆ
| | |
| Q | Q | Q

_____|_____ _____|_____ _____|_____
| | | | | |

p_0 | | | | | | Inlet
<-------| |<------| |<------| |<-------

| | | | | |
|___________| |___________| |___________|

**
System Variables:
Var1: M_1 Molar hold up of component 1 [kmol]
Var2 : U Internal Energy [MJ]
Var3 : F_V Vapor outlet flow [kmol/s]
Var4 : F_L Liquid outlet flow [kmol/s]
Var5 : M_V Molar vapor hold-up [kmol]
Var6 : P Pressure [MPa]
Var7 : T Temperature [K]
Var8 : V_L Liquid volume [mˆ3]
Var9 : x_1 Liquid fraction of component 1 [-]
Var10: y_1 Vapor fraction of component 1 [-]
Var11: H Enthalpy [MJ]
Var12: h_L Liquid molar enthalpy [MJ/kmol]
Var13: h_V Vapor molar enthalpy [MJ/kmol]
Var14: V_V Vapor volume [mˆ3]
Var15: rho_L Liquid molar density [Mmol/mˆ3]
Var16: M_L Liquid molar hold-up [kmol]
Var17: K_1 Equilibrium coeffiecient for component 1 [-]
Var18: Ps_1 Saturation pressure for component 1 [MPa]

**
Brief description of each files in the folder. [i] behind an input or
output denotes the dimension of the variable. If nothing is stated,
the variable is a scalar or a struct.
--
main.m
input:
output: Saves the results into HEX_CC_UA4.mat file. In additi-

on it produces some plots from the results.
description: The main.m script do necessary operations to find the

inital condition for the simulation of a counter curr-
ent HEX. In addition it simulates the CC HEX and saves
the results into a .mat file and produces plots.

--
Flash.m
input: t = time, w = system variables[18], data = paramters
output: F = function residuals[18], G = Generalized derivative

matrix[18x18]
description: The flash.m function contains the model of a single

component flash. It includes 2 differential equations
(internal energy U, and component hold-up M_1). In ad-

116

dition, there are 16 algebraic equations.
--
HEX.m
input: t = time, w = system variables[18*M],data = parameters
output: F = residuals[18*M], G = Generalized Derivative Matrix

[18*Mx18*M]
description: The HEX.m function contain the model of one side of a

single component HEX with given heat transfer.
--
HEX_CC.m
input: t = time, w = system variables [2*M*18],

data = parameters.
output: F = residuals [2*M*18], G = Generalized Derivative

Matrix[2*M*18x2*M*18], Q = Heat transfer, F_in_2 =
Inlet flow rate cold Side, F_in = Inlet flow rate hot
side, T_in_2 = Inlet temperature cold side.

description: The HEX_CC.m function contains the model of counter
current heat exchanger with a single component on each
side. The HEX is divided into M flash tanks in series.
The model contains 2 differential equations for each
part of the HEX on both sides as well as 16 algebraic
equations.

--
HEX_CC_implicit.m
input: t = time, w = system variables[2*M*18],

data = parameters, dynVar = dynamic variables values
at previous time step [4*M], dt = Time Step

output: F = residuals [2*M*18], G = Generalized Derivative
Matrix[2*M*18x2*M*18], Q = Heat transfer, F_in_2 =
Inlet flow rate cold Side, F_in = Inlet flow rate hot
side, T_in_2 = Inlet temperature cold side

description: The HEX_CC.m function contains the model of counter
current heat exchanger with a single component on each
side. The HEX is divided into M flash tanks in series.
The model contains 2 differential equations for each
part of the HEX on both sides as well as 16 algebraic
equations.

--
implicitSolverFull_CC.m
input: w0 = initial conditions[2*M*18], data = parameters, dt

= time step, tspan = [t_start, t_end]
output: t_vec = time vector [(t_start-t_end)/dt + 1] ,

w = System variables matrix[2*M*18x(t_start-t_end)/dt+1],
Q = heat transfer [(t_start-t_end)/dt + 1],
F_in_2 = Inlet flow rate cold side[(t_start-t_end)/dt+1],
F_in = Flow Rate hot side [(t_start-t_end)/dt + 1],
T_in_2 = Inlet temp. cold side[(t_start-t_end)/dt+1]

description: Simulates the HEX_CC_implicit.m model using a implicit
euler integrator with constant time step dt.

--
initialGuesses_gases.m
input: par = parameters
output: w0 = Initial guesses [18], lb = lower boundaries [18],

ub = upper boundaries [18]
description: Returns inital guesses and boundaries for a Flash tank

given the parameters and that the flash is in the
vapor-only regime.

117

--
initialGuesses_liquid.m
input: par = parameters
output: w0 = Initial guesses [18], lb = lower boundaries [18],

ub = upper boundaries [18]
description: Returns inital guesses and boundaries for a Flash tank

given the parameters and that the flash is in the
liquid-only regime.

--
parameters_Methanol.m
input:
output: par = parameters
description: Returns the parameters for a HEX with methanol as the

single component. Here the inlet conditions are defin-
ed as well.

--
parameters_water.m
input:
output: par = parameters
description: Returns the parameters for a HEX with water as the si-

ngle component. Here the inlet conditions are defined
as well.

--
parameters_CC.m
input:
output: par = parameters
description: Returns the parameters for a counter current HEX with

methanol on the hot side and water on the cold side.
The parameters for each of the sides are the same as
defined in the two other parameters function.

--
plotCC.m
In this function the dimension of the variables is equal to the once
produced by implicitSolverFull_CC.m
input: t = time, w = system variables, Q = heat transfer,

F_in_2 = Inlet flow rate on cold side,
T_in_2 = Inlet temperature on cold side.

description: Produces plots from the result obtained from the dyna-
mic simulation of the counter current heat exchanger.
The plots are the same as those included in the master
thesis

--
valder.m
description: The valder.m file contains the MATLAB class valder wh-

ich is a user defined MATLAB object. These object cal-
culates the function values as well as computing the
generalized derivative using vector forward automatic
differentiations. The class includes computation of
generalized derivative information at nonsmooth points
for piecewise continues functions such as abs, min,
max and mid. This is done through the lexicographic
directional derivative.

--
HEX_CC_UA4.mat
description: This .mat file contains the results from running the

main.m file.

**

118

D.3.2 main.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @project: Master Thesis 2018
% @since: June 2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Main script for simulating a single component coun-
% ter current HEX.
% @estimated run time:
%**
% Description of files
% @ Flash(t,w,data): Single component flash tank model
% @ HEX(t,w,data): Single component HEX model
% @ HEX_CC(t,w,data): Single component counter current HEX model
% @ HEX_CC_implicit(t,w,data,dynVar,dt): Single component counter current
% HEX model with discretized differential equations
% @ implicitSolverFull_CC(w,data,dt,tspan): Euler integrator for simulating
% the HEX_CC_implicit model
% @ initialGuesses_gases(par): Initial guesses and boundaries for single
% component Flash in vapor-only region
% @ initialGuesses_liquid(par): Initial guesses and boundaries for single
% component Flash in liquid-only region
% @ parmeters_CC: Parameter values for counter current HEX
% @ parameters_Methanol: Parameters for HEX model with methanol
% @ parameter_water: Paramters for HEX model with water
% @ plotCC(t,w,Q,F_in_2,T_in_2): Function for plotting result from
% simulation of counter current HEX
% @ valder: Matlab class for calculating the function residuals and
% Generalized derivatives.
%**
clear all
clc
tic
%% Variable list
% Cold side is Var 1-18, Hot Side has the same structure and is Var 19-36
% Var1: M_1 Molar hold up of component 1 [kmol]
% Var2 : U Internal Energy [MJ]
% Var3 : F_V Vapor outlet flow [kmol/s]
% Var4 : F_L Liquid outlet flow [kmol/s]
% Var5 : M_V Molar vapor hold-up [kmol]
% Var6 : P Pressure [MPa]
% Var7 : T Temperature [K]
% Var8 : V_L Liquid volume [mˆ3]
% Var9 : x_1 Liquid fraction of component 1 [-]
% Var10: y_1 Vapor fraction of component 1 [-]
% Var11: H Enthalpy [MJ]
% Var12: h_L Liquid molar enthalpy [MJ/kmol]
% Var13: h_V Vapor molar enthalpy [MJ/kmol]
% Var14: V_V Vapor volume [mˆ3]
% Var15: rho_L Liquid molar density [Mmol/mˆ3]
% Var16: M_L Liquid molar hold-up [kmol]
% Var17: K_1 Equilibrium coeffiecient for component 1 [-]
% Var18: Ps_1 Saturation pressure for component 1 [MPa]

119

%% Component list:
% Hot Side: Methanol CH3OH
% Cold Side: Water H2O

%% Solver Settings
options_lsq = optimoptions(@lsqnonlin,'Display','iter',...

'MaxIterations',1000,'MaxFunEvals',1e10,...
'stepTolerance',1e-20,'FunctionTolerance',1e-20,...
'specifyObjectiveGradient', true,...
'OptimalityTolerance',1e-20);

options_fsolve = optimoptions(@fsolve,'Display','iter',...
'MaxIterations',2e3,'MaxFunEvals',1e10,...
'stepTolerance',1e-13,'FunctionTolerance',1e-13,...
'specifyObjectiveGradient', true,...
'OptimalityTolerance',1e-13, 'Algorithm','levenberg-marquardt');

%% Solving single Flash Tank with Methanol with no Heat Transfer
data.par = parameters_Methanol(); % Parameters
[w0,lb,ub] = initialGuesses_gases(data.par); % Initial guess and boundaries
data.par.Q = 0; % No Heat Transfer
data.par.V_T = data.par.V_T/data.par.M; % Volume equal to one cell in HEX
lb(14) = data.par.V_T; % Lower Vapor Volume Boundary
ub(14) = data.par.V_T; % Upper Vapor Volume Boundary
w0_methanol = lsqnonlin(@(w) Flash(1,w,data),...

w0,lb,ub,options_lsq); % Solving the Flash
%% Solving a Full Single Side of HEX with no Heat Transfer
data.par = parameters_Methanol(); % Parameters
w_initial = [];
for i = 1:18 % Repeating each variable M times

w_initial = [w_initial;repmat(w0_methanol(i),data.par.M,1)];
end
w_initial_methanol = fsolve(@(w)HEX(1,w,data),...

w_initial,options_fsolve); % Solving one Side HEX
%% Solving single Flash Tank with Methanol with no Heat Transfer
data.par = parameters_water(); % Parameters
[w0,lb,ub] = initialGuesses_liquid(data.par);% Initial guess and boundaries
data.par.Q = 0; % No Heat Transfer
data.par.V_T = data.par.V_T/data.par.M; % Volume equal to one cell in HEX
lb(8) = data.par.V_T; % Lower Liquid Volume Boundary
ub(8) = data.par.V_T; % Upper Liquid Volume Boundary
w0_water = lsqnonlin(@(w) Flash(1,w,data),...

w0,lb,ub,options_lsq); % Solving the Flash

%% Solving a Full Single Side of HEX with no Heat Transfer
data.par = parameters_water(); % Parameters
w_initial = []; % Clearing Var
for i = 1:18 % Repeating each Var M Times

w_initial = [w_initial;repmat(w0_water(i),data.par.M,1)];
end
% Solving one Side HEX
w_initial_water = fsolve(@(w)HEX(1,w,data),w_initial,options_fsolve);

%% Finding inital values with desired UA (Here UA = 4 is used)
data.par = parameters_CC(); % Parameters
w_initial = [w_initial_methanol;w_initial_water];% Concatenating Init. Val.
%%
UA = 0:0.1:4; % UA values

120

data.par.UA = 0; % First UA Value
% Solving CC HEX with UA = 0
w_initial_Full = fsolve(@(w)HEX_CC(1,w,data),...

w_initial,options_fsolve);
% Stepwise changing UA until desired UA
%%
for i = 2:length(UA)

data.par.UA = UA(i);
w_initial_Full(:,i) = fsolve(@(w)HEX_CC(1,w,data),...

w_initial_Full(:,i-1),options_fsolve);
end

%% Simulating the CC HEX
data.par = parameters_CC(); % Setting the parameters
[t_full,w_full,Q,F_in_2,F_in,T_in_2] = implicitSolverFull_CC(...

w_initial_Full(:,end),data,0.05,[0 200]);
% Saving the result into a .mat file
save('HEX_CC_UA_4.mat','t_full','w_full','Q','F_in_2','F_in','T_in_2','data');
%% Generating Plots
plotCC(t_full,w_full,Q,F_in_2,T_in_2)
toc

D.3.3 Flash.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Single component Flash tank model
% @input: t = time, w = system variables data = parameters
% @output: F = residuals, G = Generalized Derivative Matrix
%**

function [F,G] = Flash(t,w,data)
%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate [kmol/s]
Q = par.Q; % Heat transfer [MW]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor Heat Capcity [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid Heat Capcity [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter
B_1 = par.Antoine(2,1); % Antoine Parameter
C_1 = par.Antoine(3,1); % Antoine Parameter
rho_1 = par.rho(1); % Molar density [Mmol/mˆ3]
z_1 = par.z(1); % Inlet composition (Should be 1!)
h_in = par.h_in; % Inlet molar enthalpy [MJ/kmol]
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V; % Vapor valve coefficient [kmol/barˆ0.5*s]
c_L = par.c_L; % Liquid valve coefficient [kmol/barˆ0.5*s]

121

%% Unpacking system variables
w = valder(w,eye(length(w)));
M_1 = w(1); % Component Molar hold-up [kmol]
U = w(2); % Internal Energy [MJ]
F_V = w(3); % Vapor flow rate [kmol/s]
F_L = w(4); % Liquid flow rate [kmol/s]
M_V = w(5); % Vapor molar hold-up [kmol]
P = w(6); % Pressure [MPa]
T = w(7); % Temperature [kK]
V_L = w(8); % Liquid Volume [mˆ3]
x_1 = w(9); % Liquid mole fraction
y_1 = w(10); % Vapor mole fraction
H = w(11); % Enthalpy [MJ]
h_L = w(12); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(13); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(14); % Vapor volume [mˆ3]
rho_L = w(15); % Liquid molar density [Mmol/kK]
M_L = w(16); % Liquid molar hold-up [kmol]
k_1 = w(17); % Vapor-liquid equilibrium coefficent
Ps_1 = w(18); % Saturation pressure

%% Differential equations
f1 = F_in*z_1 - F_L*x_1 - F_V * y_1;
f2 = F_in*h_in - F_L*h_L - F_V*h_V + Q;

%% Algebraic equations
f3 = M_1 - (M_L*x_1 + M_V*y_1);
f4 = M_1 - (M_L + M_V);
f5 = H - (M_L*h_L + M_V*h_V);
f6 = H - (U + P*V_T);
f7 = y_1 - k_1*x_1;
f8 = midobj(M_V/(M_V+M_L),x_1 - y_1, (M_V/(M_V+M_L))-1);
f9 = V_T - (V_L + V_V);
f10 = P*V_V - M_V*R*T;
f11 = V_L - M_L/(rho_L*1e3);
f12 = F_V*V_T - c_V*V_V*max2(0,(P-P_0)/sqrt(abs((P-P_0))+1e-10));
f13 = F_L*V_T - c_L*V_L*max2(0,(P-P_0)/sqrt(abs((P-P_0))+1e-10));
f14 = 1/rho_L - (x_1/(rho_1*(1+C0*(P-0.1))));
f15 = h_L - (x_1*Cp_L_1)*(T-T_ref);
f16 = h_V - (y_1*(h_vap_1 + Cp_V_1*(T-T_ref)));
f17 = k_1*P - Ps_1;
f18 = Ps_1 - 10ˆ(A_1 - B_1/(T*1e3+C_1))/10;

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18)];

122

end

D.3.4 HEX.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: One side of heat exchanger with given Q with one component
% @input: t = time, w = system variables, data = parameters
% @output: F = residuals, G = Generalized Derivative Matrix
%**

function [F,G] = HEX(t,w,data)
%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate [kmol/s]
Q = par.Q; % Heat transfer [MW]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor Heat Capcity [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid Heat Capcity [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter
B_1 = par.Antoine(2,1); % Antoine Parameter
C_1 = par.Antoine(3,1); % Antoine Parameter
rho_1 = par.rho(1); % Molar density [Mmol/mˆ3]
z_1 = par.z(1); % Inlet composition (Should be 1!)
h_in = par.h_in; % Inlet molar enthalpy [MJ/kmol]
M = par.M; % Number of flash tanks in series
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V*sqrt(M); % Vapor valve coefficient [kmol/barˆ0.5*s]
c_L = par.c_L*sqrt(M); % Liquid valve coefficient [kmol/barˆ0.5*s]

%% Unpacking system variables
L = length(w);
w = valder(w,eye(length(w)));
M_1 = w(1:M); % Component Molar hold-up [kmol]
U = w(1*M+1:2*M); % Internal Energy [MJ]
F_V = w(2*M+1:3*M); % Vapor flow rate [kmol/s]
F_L = w(3*M+1:4*M); % Liquid flow rate [kmol/s]
M_V = w(4*M+1:5*M); % Vapor molar hold-up [kmol]
P = w(5*M+1:6*M); % Pressure [MPa]
T = w(6*M+1:7*M); % Temperature [kK]
V_L = w(7*M+1:8*M); % Liquid Volume [mˆ3]
x_1 = w(8*M+1:9*M); % Liquid mole fraction
y_1 = w(9*M+1:10*M); % Vapor mole fraction
H = w(10*M+1:11*M); % Enthalpy [MJ]
h_L = w(11*M+1:12*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(12*M+1:13*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(13*M+1:14*M); % Vapor volume [mˆ3]
rho_L = w(14*M+1:15*M); % Liquid molar density [Mmol/kK]

123

M_L = w(15*M+1:16*M); % Liquid molar hold-up [kmol]
k_1 = w(16*M+1:17*M); % Vapor-liquid equilibrium coefficent
Ps_1 = w(17*M+1:18*M); % Saturation pressure

%% Preallocating memory
f1 = valder(zeros(M,1),zeros(M,L));
f2 = valder(zeros(M,1),zeros(M,L));
f3 = valder(zeros(M,1),zeros(M,L));
f4 = valder(zeros(M,1),zeros(M,L));
f5 = valder(zeros(M,1),zeros(M,L));
f6 = valder(zeros(M,1),zeros(M,L));
f7 = valder(zeros(M,1),zeros(M,L));
f8 = valder(zeros(M,1),zeros(M,L));
f9 = valder(zeros(M,1),zeros(M,L));
f10 = valder(zeros(M,1),zeros(M,L));
f11 = valder(zeros(M,1),zeros(M,L));
f12 = valder(zeros(M,1),zeros(M,L));
f13 = valder(zeros(M,1),zeros(M,L));
f14 = valder(zeros(M,1),zeros(M,L));
f15 = valder(zeros(M,1),zeros(M,L));
f16 = valder(zeros(M,1),zeros(M,L));
f17 = valder(zeros(M,1),zeros(M,L));
f18 = valder(zeros(M,1),zeros(M,L));

%% Differential equations
f1(1) = F_in*z_1 - F_L(1)*x_1(1) - F_V(1) * y_1(1);
f2(1) = F_in*h_in - F_L(1)*h_L(1) - F_V(1)*h_V(1) + Q/M;
for j = 2:M

f1(j) = F_L(j-1)*x_1(j-1) + F_V(j-1)*y_1(j-1)...
- (F_L(j)*x_1(j) + F_V(j)*y_1(j));

f2(j) = F_L(j-1)*h_L(j-1) + F_V(j-1)*h_V(j-1)...
- (F_L(j)*h_L(j) + F_V(j)*h_V(j)) + Q/M;

end
%% Algebraic equations
for j = 1:M

f3(j) = M_1(j) - (M_L(j)*x_1(j) + M_V(j)*y_1(j));
f4(j) = (M_1(j)) - (M_L(j) + M_V(j));
f5(j) = H(j) - (M_L(j)*h_L(j) + M_V(j)*h_V(j));
f6(j) = H(j) - (U(j) + P(j)*V_T/M);
f7(j) = y_1(j) - k_1(j)*x_1(j);
f8(j) = midobj(M_V(j)/(M_V(j)+M_L(j)),x_1(j) - y_1(j),...

(M_V(j)/(M_V(j)+M_L(j)))-1);
f9(j) = V_T/M - (V_L(j) + V_V(j));
f10(j) = P(j)*V_V(j) - M_V(j)*R*T(j);
f11(j) = V_L(j) - M_L(j)/(rho_L(j)*1e3);
if j < M

f12(j) = F_V(j)*V_T/M - c_V*V_V(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

f13(j) = F_L(j)*V_T/M - c_L*V_L(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

else
f12(j) = F_V(j)*V_T/M - c_V*V_V(j)*max2(0,(P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10));
f13(j) = F_L(j)*V_T/M - c_L*V_L(j)*max2(0,((P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10)));
end
f14(j) = rho_L(j)*(x_1(j)) - (rho_1*(1+C0*(P(j)-0.1)));

124

f15(j) = h_L(j) - (x_1(j)*Cp_L_1)*(T(j)-T_ref);
f16(j) = h_V(j) - (y_1(j)*(h_vap_1 + Cp_V_1*(T(j)-T_ref)));
f17(j) = k_1(j)*P(j) - Ps_1(j);
f18(j) = Ps_1(j) - 10ˆ(A_1 - B_1/(T(j)*1e3+C_1))/10;

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18)];

end

D.3.5 HEX CC.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Counter current heat exchanger
% @input: t = time, w = system variables, data = parameters
% @output: F = residuals, G = Generalized Derivative Matrix,
% Q = Heat transfer, F_in_2 = Inlet flow rate cold Side
% F_in = Inlet flow rate hot side,
% T_in_2 = Inlet temperature cold side
%**

function [F,G,Q,F_in_2,F_in,T_in_2] = HEX_CC(t,w,data)
%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate on hot side [kmol/s]
F_in_2 = par.F_in_2; % Inlet flow rate on cold side [kmol/s]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor heat capacity component 1 [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid heat capacity component 1 [MJ/kmol*kK]
Cp_V_2 = par.Cp_V(2); % Vapor heat capacity component 2 [MJ/kmol*kK]
Cp_L_2 = par.Cp_L(2); % Liquid heat capacity component 1 [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization component 1 [MJ/kmol]
h_vap_2 = par.h_vap(2); % Heat of vaporization component 2 [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter component 1
B_1 = par.Antoine(2,1); % Antoine Parameter component 1
C_1 = par.Antoine(3,1); % Antoine Parameter component 1
A_2 = par.Antoine(1,2); % Antoine Parameter component 2
B_2 = par.Antoine(2,2); % Antoine Parameter component 2
C_2 = par.Antoine(3,2); % Antoine Parameter component 2
rho_1 = par.rho(1); % Molar density component 1 [Mmol/mˆ3]
rho_2 = par.rho(2); % Molar density component 2 [Mmol/mˆ3]
z_1 = par.z(1); % Molar fraction hot side (Should be 1)

125

z_2 = par.z(2); % Molar fraction cold side (Should be 1)
h_in = par.h_in; % Inlet molar enthalpy hot side [MJ/kmol]
h_in_2 = par.h_in_2; % Inlet molar enthalpy hot side [MJ/kmol]
T_in_2 = par.T_in_2; % Inlet temperature cold side [kK]
M = par.M; % Number of flash tanks in series
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V*sqrt(M); % Vapor valve coefficient [kmol/barˆ.5 s]
c_L = par.c_L*sqrt(M); % Liquid valve coefficient [kmol/barˆ.5 s]
UA = data.par.UA; % Heat transfer coefficent times area [MW/kK]

%% Unpacking hot side variables
L = length(w);
w = valder(w,eye(length(w)));
M_1 = w(1:M); % Component Molar hold-up [kmol]
U = w(1*M+1:2*M); % Internal Energy [MJ]
F_V = w(2*M+1:3*M); % Vapor flow rate [kmol/s]
F_L = w(3*M+1:4*M); % Liquid flow rate [kmol/s]
M_V = w(4*M+1:5*M); % Vapor molar hold-up [kmol]
P = w(5*M+1:6*M); % Pressure [MPa]
T = w(6*M+1:7*M); % Temperature [kK]
V_L = w(7*M+1:8*M); % Liquid Volume [mˆ3]
x_1 = w(8*M+1:9*M); % Liquid mole fraction
y_1 = w(9*M+1:10*M); % Vapor mole fraction
H = w(10*M+1:11*M); % Enthalpy [MJ]
h_L = w(11*M+1:12*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(12*M+1:13*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(13*M+1:14*M); % Vapor volume [mˆ3]
rho_L = w(14*M+1:15*M); % Liquid molar density [Mmol/kK]
M_L = w(15*M+1:16*M); % Liquid molar hold-up [kmol]
k_1 = w(16*M+1:17*M); % Vapor-liquid equilibrium coefficent
Ps_1 = w(17*M+1:18*M); % Saturation pressure

%% Unpacking hot side variables
M_1_2 = w(18*M+1:19*M); % Component Molar hold-up [kmol]
U_2 = w(19*M+1:20*M); % Internal Energy [MJ]
F_V_2 = w(20*M+1:21*M); % Vapor flow rate [kmol/s]
F_L_2 = w(21*M+1:22*M); % Liquid flow rate [kmol/s]
M_V_2 = w(22*M+1:23*M); % Vapor molar hold-up [kmol]
P_2 = w(23*M+1:24*M); % Pressure [MPa]
T_2 = w(24*M+1:25*M); % Temperature [kK]
V_L_2 = w(25*M+1:26*M); % Liquid Volume [mˆ3]
x_1_2 = w(26*M+1:27*M); % Liquid mole fraction
y_1_2 = w(27*M+1:28*M); % Vapor mole fraction
H_2 = w(28*M+1:29*M); % Enthalpy [MJ]
h_L_2 = w(29*M+1:30*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V_2 = w(30*M+1:31*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V_2 = w(31*M+1:32*M); % Vapor volume [mˆ3]
rho_L_2 = w(32*M+1:33*M); % Liquid molar density [Mmol/kK]
M_L_2 = w(33*M+1:34*M); % Liquid molar hold-up [kmol]
k_1_2 = w(34*M+1:35*M); % Vapor-liquid equilibrium coefficent
Ps_1_2 = w(35*M+1:36*M); % Saturation pressure

%% Preallocating memory
f1 = valder(zeros(M,1),zeros(M,L));
f2 = valder(zeros(M,1),zeros(M,L));
f3 = valder(zeros(M,1),zeros(M,L));

126

f4 = valder(zeros(M,1),zeros(M,L));
f5 = valder(zeros(M,1),zeros(M,L));
f6 = valder(zeros(M,1),zeros(M,L));
f7 = valder(zeros(M,1),zeros(M,L));
f8 = valder(zeros(M,1),zeros(M,L));
f9 = valder(zeros(M,1),zeros(M,L));
f10 = valder(zeros(M,1),zeros(M,L));
f11 = valder(zeros(M,1),zeros(M,L));
f12 = valder(zeros(M,1),zeros(M,L));
f13 = valder(zeros(M,1),zeros(M,L));
f14 = valder(zeros(M,1),zeros(M,L));
f15 = valder(zeros(M,1),zeros(M,L));
f16 = valder(zeros(M,1),zeros(M,L));
f17 = valder(zeros(M,1),zeros(M,L));
f18 = valder(zeros(M,1),zeros(M,L));
f19 = valder(zeros(M,1),zeros(M,L));
f20 = valder(zeros(M,1),zeros(M,L));
f21 = valder(zeros(M,1),zeros(M,L));
f22 = valder(zeros(M,1),zeros(M,L));
f23 = valder(zeros(M,1),zeros(M,L));
f24 = valder(zeros(M,1),zeros(M,L));
f25 = valder(zeros(M,1),zeros(M,L));
f26 = valder(zeros(M,1),zeros(M,L));
f27 = valder(zeros(M,1),zeros(M,L));
f28 = valder(zeros(M,1),zeros(M,L));
f29 = valder(zeros(M,1),zeros(M,L));
f30 = valder(zeros(M,1),zeros(M,L));
f31 = valder(zeros(M,1),zeros(M,L));
f32 = valder(zeros(M,1),zeros(M,L));
f33 = valder(zeros(M,1),zeros(M,L));
f34 = valder(zeros(M,1),zeros(M,L));
f35 = valder(zeros(M,1),zeros(M,L));
f36 = valder(zeros(M,1),zeros(M,L));

%% Defining how some of the input will change during simulation

% Changing the temperature in the inlet on the cold side
if t < 5

T_in_2 = T_in_2;
h_in_2 = h_in_2;

elseif t < 70
T_in_2 = T_in_2 - 0.0003*(t-5);
h_in_2 = par.Cp_L(2)*(T_in_2-T_ref);

else
T_in_2 = T_in_2 - 0.0003*65;
h_in_2 = par.Cp_L(2)*(T_in_2-T_ref);

end

% Changing the inlet flow rate on the cold side
if t < 100

F_in_2 = F_in_2;
elseif t < 150

F_in_2 = F_in_2 + 0.001*(t-100);
else

F_in_2 = 0.15;
end

127

%% Differential equations
f1(1) = (F_in*z_1 - (max2(0,F_L(1))*x_1(1) + max2(0,F_V(1))*y_1(1))...

- (min2(0,F_L(1))*x_1(2) + min2(0,F_V(1))*y_1(2)));
f2(1) = (F_in*h_in - (max2(0,F_L(1))*h_L(1) + max2(0,F_V(1))*h_V(1))...

- min2(0,F_L(1))*h_L(2) + min2(0,F_V(1))*h_V(2) + UA*(T_2(M)-T(1)));
f19(1) = (F_in_2*z_2 - (max2(0,F_L_2(1))*x_1_2(1)...

+ max2(0,F_V_2(1))*y_1_2(1)) - (min2(0,F_L_2(1))*x_1_2(2)...
+ min2(0,F_V_2(1))*y_1_2(2)));

f20(1) = (F_in_2*h_in_2 - (max2(0,F_L_2(1))*h_L_2(1)...
+ max2(0,F_V_2(1))*h_V_2(1)) - (min2(0,F_L_2(1))*h_L_2(2)...
+ min2(0,F_V_2(1))*h_V_2(2)) + UA*(T(M)-T_2(1)));

Q(1) = getVal(UA*(T_2(M)-T(1)));
for j = 2:M-1

f1(j) = (max2(0,F_L(j-1)*x_1(j-1) + F_V(j-1)*y_1(j-1))...
- max2(0,F_L(j)*x_1(j) + F_V(j)*y_1(j)) + min2(0,F_L(j-1)*x_1(j)...
+ F_V(j-1)*y_1(j)) - min2(0,F_L(j)*x_1(j+1) + F_V(j)*y_1(j+1)));

f2(j) = ((max2(0,F_L(j-1))*h_L(j-1) + max2(0,F_V(j-1))*h_V(j-1))...
- (max2(0,F_L(j))*h_L(j) + max2(0,F_V(j))*h_V(j))...
+ (min2(0,F_L(j-1))*h_L(j) + min2(0,F_V(j-1))*h_V(j))...
- (min2(0,F_L(j))*h_L(j+1) + min2(0,F_V(j))*h_V(j+1))...
+ UA*(T_2(M-j+1)-T(j)));

f19(j) = (max2(0,F_L_2(j-1)*x_1_2(j-1) + F_V_2(j-1)*y_1_2(j-1))...
- max2(0,F_L_2(j)*x_1_2(j) + F_V_2(j)*y_1_2(j))...
+ min2(0,F_L_2(j-1)*x_1_2(j) + F_V_2(j-1)*y_1_2(j))...
- min2(0,F_L_2(j)*x_1_2(j+1) + F_V_2(j)*y_1_2(j+1)));

f20(j) = ((max2(0,F_L_2(j-1))*h_L_2(j-1)...
+ max2(0,F_V_2(j-1))*h_V_2(j-1)) - (max2(0,F_L_2(j))*h_L_2(j)...
+ max2(0,F_V_2(j))*h_V_2(j)) + (min2(0,F_L_2(j-1))*h_L_2(j)...
+ min2(0,F_V_2(j-1))*h_V_2(j)) - (min2(0,F_L_2(j))*h_L_2(j+1)...
+ min2(0,F_V_2(j))*h_V_2(j+1)) + UA*(T(M-j+1)-T_2(j)));

Q(j) = getVal(UA*(T_2(M-j+1)-T(j)));
end
f1(M) = (max2(0,F_L(M-1)*x_1(M-1) + F_V(M-1)*y_1(M-1))...

- max2(0,F_L(M)*x_1(M) + F_V(M)*y_1(M))...
+ min2(0,F_L(M-1)*x_1(M) + F_V(M-1)*y_1(M)));

f2(M) = ((max2(0,F_L(M-1))*h_L(M-1) + max2(0,F_V(M-1))*h_V(M-1))...
- (max2(0,F_L(M))*h_L(M) + max2(0,F_V(M))*h_V(M))...
+ (min2(0,F_L(M-1))*h_L(M) + min2(0,F_V(M-1))*h_V(M))...
+ UA*(T_2(1)-T(M)));

f19(M) =(max2(0,F_L_2(M-1)*x_1_2(M-1) + F_V_2(M-1)*y_1_2(M-1))...
- max2(0,F_L_2(M)*x_1_2(M) + F_V_2(M)*y_1_2(M))...
+ min2(0,F_L_2(M-1)*x_1_2(M) + F_V_2(M-1)*y_1_2(M)));

f20(M) = ((max2(0,F_L_2(M-1))*h_L_2(M-1) + max2(0,F_V_2(M-1))*h_V_2(M-1))...
- (max2(0,F_L_2(M))*h_L_2(M) + max2(0,F_V_2(M))*h_V_2(M))...
+ (min2(0,F_L_2(M-1))*h_L_2(M) + min2(0,F_V_2(M-1))*h_V_2(M))...
+ UA*(T(1)-T_2(M)));

Q(M) = getVal(UA*(T_2(1)-T(M)));
%% Algebraic equations
for j = 1:M

f3(j) = M_1(j) - (M_L(j)*x_1(j) + M_V(j)*y_1(j));
f4(j) = (M_1(j)) - (M_L(j) + M_V(j));
f5(j) = H(j) - (M_L(j)*h_L(j) + M_V(j)*h_V(j));
f6(j) = H(j) - (U(j) + P(j)*V_T/M);
f7(j) = y_1(j) - k_1(j)*x_1(j);
f8(j) = midobj(M_V(j)/(M_V(j)+M_L(j)),x_1(j) - y_1(j),...

(M_V(j)/(M_V(j)+M_L(j)))-1);
f9(j) = V_T/M - (V_L(j) + V_V(j));

128

f10(j) = P(j)*V_V(j) - M_V(j)*R*T(j);
f11(j) = V_L(j)*(rho_L(j)*1e3) - M_L(j);
if j < M

f12(j) = F_V(j)*V_T/M - c_V*V_V(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

f13(j) = F_L(j)*V_T/M - c_L*V_L(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

else
f12(j) = F_V(j)*V_T/M - c_V*V_V(j)*max2(0,(P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10));
f13(j) = F_L(j)*V_T/M - c_L*V_L(j)*max2(0,((P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10)));
end
f14(j) = rho_L(j)*(x_1(j)) - (rho_1*(1+C0*(P(j)-0.1)));
f15(j) = h_L(j) - (x_1(j)*Cp_L_1)*(T(j)-T_ref);
f16(j) = h_V(j) - (y_1(j)*(h_vap_1 + Cp_V_1*(T(j)-T_ref)));
f17(j) = k_1(j)*P(j) - Ps_1(j);
f18(j) = Ps_1(j) - 10ˆ(A_1 - B_1/(T(j)*1e3+C_1))/10;

f21(j) = M_1_2(j) - (M_L_2(j)*x_1_2(j) + M_V_2(j)*y_1_2(j));
f22(j) = (M_1_2(j)) - (M_L_2(j) + M_V_2(j));
f23(j) = H_2(j) - (M_L_2(j)*h_L_2(j) + M_V_2(j)*h_V_2(j));
f24(j) = H_2(j) - (U_2(j) + P_2(j)*V_T/M);
f25(j) = y_1_2(j) - k_1_2(j)*x_1_2(j);
f26(j) = midobj(M_V_2(j)/(M_V_2(j)+M_L_2(j)),x_1_2(j) - y_1_2(j),...

(M_V_2(j)/(M_V_2(j)+M_L_2(j)))-1);
f27(j) = V_T/M - (V_L_2(j) + V_V_2(j));
f28(j) = P_2(j)*V_V_2(j) - M_V_2(j)*R*T_2(j);
f29(j) = V_L_2(j)*(rho_L_2(j)*1e3) - M_L_2(j);
if j < M

f30(j) = F_V_2(j)*V_T/M - c_V*V_V_2(j)*((P_2(j)-P_2(j+1))...
/sqrt(abs((P_2(j)-P_2(j+1)))+1e-10));

f31(j) = F_L_2(j)*V_T/M - c_L*V_L_2(j)*((P_2(j)-P_2(j+1))...
/sqrt(abs((P_2(j)-P_2(j+1)))+1e-10));

else
f30(j) = F_V_2(j)*V_T/M - c_V*V_V_2(j)*max2(0,(P_2(j)-P_0)...

/sqrt(abs((P_2(j)-P_0))+1e-10));
f31(j) = F_L_2(j)*V_T/M - c_L*V_L_2(j)*max2(0,((P_2(j)-P_0)...

/sqrt(abs((P_2(j)-P_0))+1e-10)));
end

f32(j) = rho_L_2(j)*(x_1_2(j)) - (rho_2*(1+C0*(P_2(j)-0.1)));
f33(j) = h_L_2(j) - (x_1_2(j)*Cp_L_2)*(T_2(j)-T_ref);
f34(j) = h_V_2(j) - (y_1_2(j)*(h_vap_2 + Cp_V_2*(T_2(j)-T_ref)));
f35(j) = k_1_2(j)*P_2(j) - Ps_1_2(j);
f36(j) = Ps_1_2(j) - 10ˆ(A_2 - B_2/(T_2(j)*1e3+C_2))/10;

end

%% Extracting the values and the derivatives from the valder objects
F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...

getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18);getVal(f19);getVal(f20);getVal(f21);...
getVal(f22);getVal(f23);getVal(f24);getVal(f25);getVal(f26);...
getVal(f27);getVal(f28);getVal(f29);getVal(f30);getVal(f31);...
getVal(f32);getVal(f33);getVal(f34);getVal(f35);getVal(f36)];

129

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18);getDer(f19);getDer(f20);getDer(f21);...
getDer(f22);getDer(f23);getDer(f24);getDer(f25);getDer(f26);...
getDer(f27);getDer(f28);getDer(f29);getDer(f30);getDer(f31);...
getDer(f32);getDer(f33);getDer(f34);getDer(f35);getDer(f36)];

end

D.3.6 HEX CC implicit.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Counter current heat exchanger with discretized
% differential equations
% @input: t = time, w = system variables, data = parameters,
% dynVar = dynamic variables values at previous time step
% dt = Time Step [s]
% @output: F = residuals, G = Generalized Derivative Matrix,
% Q = Heat transfer, F_in_2 = Inlet flow rate cold Side
% F_in = Inlet flow rate hot side,
% T_in_2 = Inlet temperature cold side
%**

function [F,G,Q,F_in_2,F_in,T_in_2] = HEX_CC_implicit(t,w,data,dynVar,dt)
%% Unpacking parameters
par = data.par;
F_in = par.F_in; % Inlet flow rate on hot side [kmol/s]
F_in_2 = par.F_in_2; % Inlet flow rate on cold side [kmol/s]
R = par.R; % Gas constant [MJ/kmol*kK]
V_T = par.V_T; % Total volume [mˆ3]
P_0 = par.P_0; % Outlet pressure [MPa]
Cp_V_1 = par.Cp_V(1); % Vapor heat capacity component 1 [MJ/kmol*kK]
Cp_L_1 = par.Cp_L(1); % Liquid heat capacity component 1 [MJ/kmol*kK]
Cp_V_2 = par.Cp_V(2); % Vapor heat capacity component 2 [MJ/kmol*kK]
Cp_L_2 = par.Cp_L(2); % Liquid heat capacity component 1 [MJ/kmol*kK]
h_vap_1 = par.h_vap(1); % Heat of vaporization component 1 [MJ/kmol]
h_vap_2 = par.h_vap(2); % Heat of vaporization component 2 [MJ/kmol]
A_1 = par.Antoine(1,1); % Antoine Parameter component 1
B_1 = par.Antoine(2,1); % Antoine Parameter component 1
C_1 = par.Antoine(3,1); % Antoine Parameter component 1
A_2 = par.Antoine(1,2); % Antoine Parameter component 2
B_2 = par.Antoine(2,2); % Antoine Parameter component 2
C_2 = par.Antoine(3,2); % Antoine Parameter component 2
rho_1 = par.rho(1); % Molar density component 1 [Mmol/mˆ3]
rho_2 = par.rho(2); % Molar density component 2 [Mmol/mˆ3]
z_1 = par.z(1); % Molar fraction hot side (Should be 1)
z_2 = par.z(2); % Molar fraction cold side (Should be 1)
h_in = par.h_in; % Inlet molar enthalpy hot side [MJ/kmol]
h_in_2 = par.h_in_2; % Inlet molar enthalpy hot side [MJ/kmol]
T_in_2 = par.T_in_2; % Inlet temperature cold side [kK]

130

M = par.M; % Number of flash tanks in series
C0 = par.C0; % Compressability factor [1/MPa]
T_ref = par.T_ref; % Reference temperature [kK]
c_V = par.c_V*sqrt(M); % Vapor valve coefficient [kmol/barˆ.5 s]
c_L = par.c_L*sqrt(M); % Liquid valve coefficient [kmol/barˆ.5 s]
UA = data.par.UA; % Heat transfer coefficent times area [MW/kK]

%% Unpacking hot side variables
L = length(w);
w = valder(w,eye(length(w)));
M_1 = w(1:M); % Component Molar hold-up [kmol]
U = w(1*M+1:2*M); % Internal Energy [MJ]
F_V = w(2*M+1:3*M); % Vapor flow rate [kmol/s]
F_L = w(3*M+1:4*M); % Liquid flow rate [kmol/s]
M_V = w(4*M+1:5*M); % Vapor molar hold-up [kmol]
P = w(5*M+1:6*M); % Pressure [MPa]
T = w(6*M+1:7*M); % Temperature [kK]
V_L = w(7*M+1:8*M); % Liquid Volume [mˆ3]
x_1 = w(8*M+1:9*M); % Liquid mole fraction
y_1 = w(9*M+1:10*M); % Vapor mole fraction
H = w(10*M+1:11*M); % Enthalpy [MJ]
h_L = w(11*M+1:12*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V = w(12*M+1:13*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V = w(13*M+1:14*M); % Vapor volume [mˆ3]
rho_L = w(14*M+1:15*M); % Liquid molar density [Mmol/kK]
M_L = w(15*M+1:16*M); % Liquid molar hold-up [kmol]
k_1 = w(16*M+1:17*M); % Vapor-liquid equilibrium coefficent
Ps_1 = w(17*M+1:18*M); % Saturation pressure

%% Unpacking hot side variables
M_1_2 = w(18*M+1:19*M); % Component Molar hold-up [kmol]
U_2 = w(19*M+1:20*M); % Internal Energy [MJ]
F_V_2 = w(20*M+1:21*M); % Vapor flow rate [kmol/s]
F_L_2 = w(21*M+1:22*M); % Liquid flow rate [kmol/s]
M_V_2 = w(22*M+1:23*M); % Vapor molar hold-up [kmol]
P_2 = w(23*M+1:24*M); % Pressure [MPa]
T_2 = w(24*M+1:25*M); % Temperature [kK]
V_L_2 = w(25*M+1:26*M); % Liquid Volume [mˆ3]
x_1_2 = w(26*M+1:27*M); % Liquid mole fraction
y_1_2 = w(27*M+1:28*M); % Vapor mole fraction
H_2 = w(28*M+1:29*M); % Enthalpy [MJ]
h_L_2 = w(29*M+1:30*M); % Molar enthalpy in liquid phase [MJ/kmol]
h_V_2 = w(30*M+1:31*M); % Molar enthalpy in vapor phase [MJ/kmol]
V_V_2 = w(31*M+1:32*M); % Vapor volume [mˆ3]
rho_L_2 = w(32*M+1:33*M); % Liquid molar density [Mmol/kK]
M_L_2 = w(33*M+1:34*M); % Liquid molar hold-up [kmol]
k_1_2 = w(34*M+1:35*M); % Vapor-liquid equilibrium coefficent
Ps_1_2 = w(35*M+1:36*M); % Saturation pressure

%% Preallocating memory
f1 = valder(zeros(M,1),zeros(M,L));
f2 = valder(zeros(M,1),zeros(M,L));
f3 = valder(zeros(M,1),zeros(M,L));
f4 = valder(zeros(M,1),zeros(M,L));
f5 = valder(zeros(M,1),zeros(M,L));
f6 = valder(zeros(M,1),zeros(M,L));
f7 = valder(zeros(M,1),zeros(M,L));

131

f8 = valder(zeros(M,1),zeros(M,L));
f9 = valder(zeros(M,1),zeros(M,L));
f10 = valder(zeros(M,1),zeros(M,L));
f11 = valder(zeros(M,1),zeros(M,L));
f12 = valder(zeros(M,1),zeros(M,L));
f13 = valder(zeros(M,1),zeros(M,L));
f14 = valder(zeros(M,1),zeros(M,L));
f15 = valder(zeros(M,1),zeros(M,L));
f16 = valder(zeros(M,1),zeros(M,L));
f17 = valder(zeros(M,1),zeros(M,L));
f18 = valder(zeros(M,1),zeros(M,L));
f19 = valder(zeros(M,1),zeros(M,L));
f20 = valder(zeros(M,1),zeros(M,L));
f21 = valder(zeros(M,1),zeros(M,L));
f22 = valder(zeros(M,1),zeros(M,L));
f23 = valder(zeros(M,1),zeros(M,L));
f24 = valder(zeros(M,1),zeros(M,L));
f25 = valder(zeros(M,1),zeros(M,L));
f26 = valder(zeros(M,1),zeros(M,L));
f27 = valder(zeros(M,1),zeros(M,L));
f28 = valder(zeros(M,1),zeros(M,L));
f29 = valder(zeros(M,1),zeros(M,L));
f30 = valder(zeros(M,1),zeros(M,L));
f31 = valder(zeros(M,1),zeros(M,L));
f32 = valder(zeros(M,1),zeros(M,L));
f33 = valder(zeros(M,1),zeros(M,L));
f34 = valder(zeros(M,1),zeros(M,L));
f35 = valder(zeros(M,1),zeros(M,L));
f36 = valder(zeros(M,1),zeros(M,L));

%% Defining how some of the input will change during simulation

% Changing the temperature in the inlet on the cold side
if t < 5

T_in_2 = T_in_2;
h_in_2 = h_in_2;

elseif t < 70
T_in_2 = T_in_2 - 0.0003*(t-5);
h_in_2 = par.Cp_L(2)*(T_in_2-T_ref);

else
T_in_2 = T_in_2 - 0.0003*65;
h_in_2 = par.Cp_L(2)*(T_in_2-T_ref);

end

% Changing the inlet flow rate on the cold side
if t < 100

F_in_2 = F_in_2;
elseif t < 150

F_in_2 = F_in_2 + 0.001*(t-100);
else

F_in_2 = 0.15;
end

M_1_0 = dynVar(1:M);
U_0 = dynVar(M+1:2*M);
M_1_2_0 = dynVar(2*M+1:3*M);

132

U_2_0 = dynVar(3*M+1:4*M);
%% Differential equations
f1(1) = M_1(1) - (M_1_0(1) + (F_in*z_1 - (max2(0,F_L(1))*x_1(1)...

+ max2(0,F_V(1))*y_1(1)) - (min2(0,F_L(1))*x_1(2)...
+ min2(0,F_V(1))*y_1(2)))*dt);

f2(1) = U(1) - (U_0(1) + (F_in*h_in - (max2(0,F_L(1))*h_L(1)...
+ max2(0,F_V(1))*h_V(1)) - min2(0,F_L(1))*h_L(2)...
+ min2(0,F_V(1))*h_V(2) + UA*(T_2(M)-T(1)))*dt);

f19(1) = M_1_2(1) - (M_1_2_0(1) + (F_in_2*z_2 -...
(max2(0,F_L_2(1))*x_1_2(1) + max2(0,F_V_2(1))*y_1_2(1))...
- (min2(0,F_L_2(1))*x_1_2(2) + min2(0,F_V_2(1))*y_1_2(2)))*dt);

f20(1) = U_2(1) - (U_2_0(1) + (F_in_2*h_in_2 - (max2(0,F_L_2(1))*h_L_2(1)...
+ max2(0,F_V_2(1))*h_V_2(1)) - (min2(0,F_L_2(1))*h_L_2(2)...
+ min2(0,F_V_2(1))*h_V_2(2)) + UA*(T(M)-T_2(1)))*dt);

Q(1) = getVal(UA*(T_2(M)-T(1)));
for j = 2:M-1

f1(j) = M_1(j) - (M_1_0(j) + (max2(0,F_L(j-1)*x_1(j-1)...
+ F_V(j-1)*y_1(j-1)) - max2(0,F_L(j)*x_1(j) + F_V(j)*y_1(j))...
+ min2(0,F_L(j-1)*x_1(j) + F_V(j-1)*y_1(j))...
- min2(0,F_L(j)*x_1(j+1) + F_V(j)*y_1(j+1)))*dt);

f2(j) = U(j) - (U_0(j) + ((max2(0,F_L(j-1))*h_L(j-1)...
+ max2(0,F_V(j-1))*h_V(j-1)) - (max2(0,F_L(j))*h_L(j)...
+ max2(0,F_V(j))*h_V(j)) + (min2(0,F_L(j-1))*h_L(j)...
+ min2(0,F_V(j-1))*h_V(j)) - (min2(0,F_L(j))*h_L(j+1)...
+ min2(0,F_V(j))*h_V(j+1)) + UA*(T_2(M-j+1)-T(j)))*dt);

f19(j) = M_1_2(j) - (M_1_2_0(j) + (max2(0,F_L_2(j-1)*x_1_2(j-1)...
+ F_V_2(j-1)*y_1_2(j-1)) - max2(0,F_L_2(j)*x_1_2(j)...
+ F_V_2(j)*y_1_2(j)) + min2(0,F_L_2(j-1)*x_1_2(j)...
+ F_V_2(j-1)*y_1_2(j)) - min2(0,F_L_2(j)*x_1_2(j+1)...
+ F_V_2(j)*y_1_2(j+1)))*dt);

f20(j) = U_2(j) - (U_2_0(j) + ((max2(0,F_L_2(j-1))*h_L_2(j-1)...
+ max2(0,F_V_2(j-1))*h_V_2(j-1)) - (max2(0,F_L_2(j))*h_L_2(j)...
+ max2(0,F_V_2(j))*h_V_2(j)) + (min2(0,F_L_2(j-1))*h_L_2(j)...
+ min2(0,F_V_2(j-1))*h_V_2(j)) - (min2(0,F_L_2(j))*h_L_2(j+1)...
+ min2(0,F_V_2(j))*h_V_2(j+1)) + UA*(T(M-j+1)-T_2(j)))*dt);

Q(j) = getVal(UA*(T_2(M-j+1)-T(j)));
end
f1(M) = M_1(M) - (M_1_0(M) + (max2(0,F_L(M-1)*x_1(M-1)...

+ F_V(M-1)*y_1(M-1)) - max2(0,F_L(M)*x_1(M) + F_V(M)*y_1(M))...
+ min2(0,F_L(M-1)*x_1(M) + F_V(M-1)*y_1(M)))*dt);

f2(M) = U(M) - (U_0(M) + ((max2(0,F_L(M-1))*h_L(M-1)...
+ max2(0,F_V(M-1))*h_V(M-1)) - (max2(0,F_L(M))*h_L(M)...
+ max2(0,F_V(M))*h_V(M)) + (min2(0,F_L(M-1))*h_L(M)...
+ min2(0,F_V(M-1))*h_V(M)) + UA*(T_2(1)-T(M)))*dt);

f19(M) = M_1_2(M) - (M_1_2_0(M) + (max2(0,F_L_2(M-1)*x_1_2(M-1)...
+ F_V_2(M-1)*y_1_2(M-1)) - max2(0,F_L_2(M)*x_1_2(M)...
+ F_V_2(M)*y_1_2(M)) + min2(0,F_L_2(M-1)*x_1_2(M)...
+ F_V_2(M-1)*y_1_2(M)))*dt);

f20(M) = U_2(M) - (U_2_0(M) + ((max2(0,F_L_2(M-1))*h_L_2(M-1)...
+ max2(0,F_V_2(M-1))*h_V_2(M-1)) - (max2(0,F_L_2(M))*h_L_2(M)...
+ max2(0,F_V_2(M))*h_V_2(M)) + (min2(0,F_L_2(M-1))*h_L_2(M)...
+ min2(0,F_V_2(M-1))*h_V_2(M)) + UA*(T(1)-T_2(M)))*dt);

Q(M) = getVal(UA*(T_2(1)-T(M)));
%% Algebraic equations
for j = 1:M

f3(j) = M_1(j) - (M_L(j)*x_1(j) + M_V(j)*y_1(j));
f4(j) = (M_1(j)) - (M_L(j) + M_V(j));

133

f5(j) = H(j) - (M_L(j)*h_L(j) + M_V(j)*h_V(j));
f6(j) = H(j) - (U(j) + P(j)*V_T/M);
f7(j) = y_1(j) - k_1(j)*x_1(j);
f8(j) = midobj(M_V(j)/(M_V(j)+M_L(j)),x_1(j) - y_1(j),...

(M_V(j)/(M_V(j)+M_L(j)))-1);
f9(j) = V_T/M - (V_L(j) + V_V(j));
f10(j) = P(j)*V_V(j) - M_V(j)*R*T(j);
f11(j) = V_L(j)*(rho_L(j)*1e3) - M_L(j);
if j < M

f12(j) = F_V(j)*V_T/M - c_V*V_V(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

f13(j) = F_L(j)*V_T/M - c_L*V_L(j)*((P(j)-P(j+1))...
/sqrt(abs((P(j)-P(j+1)))+1e-10));

else
f12(j) = F_V(j)*V_T/M - c_V*V_V(j)*max2(0,(P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10));
f13(j) = F_L(j)*V_T/M - c_L*V_L(j)*max2(0,((P(j)-P_0)...

/sqrt(abs((P(j)-P_0))+1e-10)));
end
f14(j) = rho_L(j)*(x_1(j)) - (rho_1*(1+C0*(P(j)-0.1)));
f15(j) = h_L(j) - (x_1(j)*Cp_L_1)*(T(j)-T_ref);
f16(j) = h_V(j) - (y_1(j)*(h_vap_1 + Cp_V_1*(T(j)-T_ref)));
f17(j) = k_1(j)*P(j) - Ps_1(j);
f18(j) = Ps_1(j) - 10ˆ(A_1 - B_1/(T(j)*1e3+C_1))/10;

f21(j) = M_1_2(j) - (M_L_2(j)*x_1_2(j) + M_V_2(j)*y_1_2(j));
f22(j) = (M_1_2(j)) - (M_L_2(j) + M_V_2(j));
f23(j) = H_2(j) - (M_L_2(j)*h_L_2(j) + M_V_2(j)*h_V_2(j));
f24(j) = H_2(j) - (U_2(j) + P_2(j)*V_T/M);
f25(j) = y_1_2(j) - k_1_2(j)*x_1_2(j);
f26(j) = midobj(M_V_2(j)/(M_V_2(j)+M_L_2(j)),x_1_2(j) - y_1_2(j),...

(M_V_2(j)/(M_V_2(j)+M_L_2(j)))-1);
f27(j) = V_T/M - (V_L_2(j) + V_V_2(j));
f28(j) = P_2(j)*V_V_2(j) - M_V_2(j)*R*T_2(j);
f29(j) = V_L_2(j)*(rho_L_2(j)*1e3) - M_L_2(j);
if j < M

f30(j) = F_V_2(j)*V_T/M - c_V*V_V_2(j)*((P_2(j)-P_2(j+1))...
/sqrt(abs((P_2(j)-P_2(j+1)))+1e-10));

f31(j) = F_L_2(j)*V_T/M - c_L*V_L_2(j)*((P_2(j)-P_2(j+1))...
/sqrt(abs((P_2(j)-P_2(j+1)))+1e-10));

else
f30(j) = F_V_2(j)*V_T/M - c_V*V_V_2(j)*max2(0,(P_2(j)-P_0)...

/sqrt(abs((P_2(j)-P_0))+1e-10));
f31(j) = F_L_2(j)*V_T/M - c_L*V_L_2(j)*max2(0,((P_2(j)-P_0)...

/sqrt(abs((P_2(j)-P_0))+1e-10)));
end

f32(j) = rho_L_2(j)*(x_1_2(j)) - (rho_2*(1+C0*(P_2(j)-0.1)));
f33(j) = h_L_2(j) - (x_1_2(j)*Cp_L_2)*(T_2(j)-T_ref);
f34(j) = h_V_2(j) - (y_1_2(j)*(h_vap_2 + Cp_V_2*(T_2(j)-T_ref)));
f35(j) = k_1_2(j)*P_2(j) - Ps_1_2(j);
f36(j) = Ps_1_2(j) - 10ˆ(A_2 - B_2/(T_2(j)*1e3+C_2))/10;

end

%% Extracting the values and the derivatives from the valder objects

134

F = [getVal(f1);getVal(f2);getVal(f3);getVal(f4);getVal(f5);getVal(f6);...
getVal(f7);getVal(f8);getVal(f9);getVal(f10);getVal(f11);...
getVal(f12);getVal(f13);getVal(f14);getVal(f15);getVal(f16);...
getVal(f17);getVal(f18);getVal(f19);getVal(f20);getVal(f21);...
getVal(f22);getVal(f23);getVal(f24);getVal(f25);getVal(f26);...
getVal(f27);getVal(f28);getVal(f29);getVal(f30);getVal(f31);...
getVal(f32);getVal(f33);getVal(f34);getVal(f35);getVal(f36)];

G = [getDer(f1);getDer(f2);getDer(f3);getDer(f4);getDer(f5);getDer(f6);...
getDer(f7);getDer(f8);getDer(f9);getDer(f10);getDer(f11);...
getDer(f12);getDer(f13);getDer(f14);getDer(f15);getDer(f16);...
getDer(f17);getDer(f18);getDer(f19);getDer(f20);getDer(f21);...
getDer(f22);getDer(f23);getDer(f24);getDer(f25);getDer(f26);...
getDer(f27);getDer(f28);getDer(f29);getDer(f30);getDer(f31);...
getDer(f32);getDer(f33);getDer(f34);getDer(f35);getDer(f36)];

end

D.3.7 implicitSolverFull CC.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Implicit Euler integrator for the counter current heat
% exchanger model.
% @input: w0 = initial conditions, data = parameters, dt = time step,
% tspan = [t_start, t_end]
% @output: t_vec = time vector, w = System variables matrix, Q = heat
% transfer, F_in_2 = Inlet flow rate cold side, F_in = Flow Rate hot side,
% T_in_2 = Inlet temperature cold side
%**

function [t_vec,w,Q,F_in_2,F_in,T_in_2] = implicitSolverFull_CC...
(w0,data,dt,tspan)

%% Solver settings
options_fsolve = optimoptions(@fsolve,'Display','iter',...

'MaxIterations',2e3,'MaxFunEvals',1e10,...
'stepTolerance',1e-13,'FunctionTolerance',1e-13,...
'specifyObjectiveGradient', true,...
'OptimalityTolerance',1e-13, 'Algorithm','levenberg-marquardt');

%% Initial values and preallocating memory
t = tspan(1);
t_vec = tspan(1);
M = data.par.M;
w = zeros(length(w0),length(t));
w(:,1) = w0;
dynVar = [w0(1:2*M);w0(18*M+1:20*M)];
[˜,˜,Q(:,1),F_in_2(1),F_in(1),T_in_2(1)] =...

HEX_CC_implicit(t,w0,data,dynVar,dt);

i = 1;
while t + dt <= tspan(2)

i = i+1; % Index counter

135

t = t + dt; % Next Time
t_vec = [t_vec t]; % Adding next time in time vector
w0 = w(:,i-1); % Initial guess equal to previous solution
dynVar = [w(1:2*M,i-1);w(18*M+1:20*M,i-1)]; % Dynamic variable values
w(:,i) = fsolve(@(w) HEX_CC_implicit...

(t,w,data,dynVar,dt),w0,options_fsolve); % Solving model
[˜,˜,Q(:,i),F_in_2(i),F_in(i),T_in_2(i)] =...

HEX_CC_implicit(t,w(:,i),data,dynVar,dt); % Saving values
end
end

D.3.8 initialGuesses gases.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Returns inital guesses and boundaries for a Flash tank
% given the parameters and that the flash is in the vapor-only regime
% @input: par = parameters
% @output: w0 = Initial guesses, lb = lower boundaries, ub = upper
% boundaries
%**

function [w0,lb,ub] = initialGuesses_gases(par)

% M_1 = w(1); % Component molar hold-up [kmol]
w0(1) = 0.5;
lb(1) = 0;
ub(1) = inf;
% U = w(2); % Internal energy [MJ]
w0(2) = -1;
lb(2) = -inf;
ub(2) = inf;
% F_V = w(3); % Vapor flow rate [kmol/s]
w0(3) = par.F_in;
lb(3) = par.F_in;
ub(3) = par.F_in;
% F_L = w(4); % Liquid flow rate [kmol/s]
w0(4) = 0;
lb(4) = 0;
ub(4) = 0;
% M_V = w(5); % Vapor molar hold-up [kmol]
w0(5) = 0.1;
lb(5) = 0;
ub(5) = inf;
% P = w(6); % Pressure [MPa]
w0(6) = 0.11;
lb(6) = 0;
ub(6) = inf;
% T = w(7); % Temperature [kK]
w0(7) = par.T_in;
lb(7) = par.T_in;
ub(7) = par.T_in;

136

% V_L = w(8); % Liquid volume [mˆ3]
w0(8) = 0;
lb(8) = 0;
ub(8) = 0;
% x_1 = w(9); % Liquid mole fraction
w0(9) = 0.5;
lb(9) = 0;
ub(9) = inf;
% y_1 = w(10); % Vapor mole fraction
w0(10) = 1;
lb(10) = 1;
ub(10) = 1;
% H = w(11); % Enthalpy [MJ]
w0(11) = 1;
lb(11) = -inf;
ub(11) = inf;
% h_L = w(12); % Liquid molar enthalpy [MJ/kmol]
w0(12) = par.h_in;
lb(12) = -inf;
ub(12) = inf;
% h_V = w(13); % Vapor molar enthalpy [MJ/kmol]
w0(13) = par.h_in;
lb(13) = par.h_in;
ub(13) = par.h_in;
% V_V = w(14); % Vapor volume [mˆ3]
w0(14) = par.V_T;
lb(14) = par.V_T;
ub(14) = par.V_T;
% rho_L = w(15); % Liquid molar density [Mmol/mˆ3]
w0(15) = 0.5;
lb(15) = 0;
ub(15) = inf;
% M_L = w(16); % Liquid molar hold-up [kmol]
w0(16) = 0;
lb(16) = 0;
ub(16) = 0;
% K_1 = w(17); % Vapor-liquid equilibrium coefficient
w0(17) = 1;
lb(17) = 0;
ub(17) = inf;
% Ps_1 = w(18); % Saturation Pressure [MPa]
w0(18) = 0.1;
lb(18) = 0;
ub(18) = inf;
w0 = w0';
end

D.3.9 initialGuesses liquid.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Returns inital guesses and boundaries for a Flash tank

137

% given the parameters and that the flash is in the liquid-only regime
% @input: par = parameters
% @output: w0 = Initial guesses, lb = lower boundaries, ub = upper
% boundaries
%**

function [w0,lb,ub] = initialGuesses_liquid(par)

% M_1 = w(1); % Component molar hold-up [kmol]
w0(1) = 0.5;
lb(1) = 0;
ub(1) = inf;
% U = w(2); % Internal energy [MJ]
w0(2) = -1;
lb(2) = -inf;
ub(2) = inf;
% F_V = w(3); % Vapor flow rate [kmol/s]
w0(3) = 0;
lb(3) = 0;
ub(3) = 0;
% F_L = w(4); % Liquid flow rate [kmol/s]
w0(4) = par.F_in;
lb(4) = par.F_in;
ub(4) = par.F_in;
% M_V = w(5); % Vapor molar hold-up [kmol]
w0(5) = 0;
lb(5) = 0;
ub(5) = 0;
% P = w(6); % Pressure [MPa]
w0(6) = 0.12;
lb(6) = 0.1;
ub(6) = inf;
% T = w(7); % Temperature [kK]
w0(7) = par.T_in;
lb(7) = par.T_in;
ub(7) = par.T_in;
% V_L = w(8); % Liquid volume [mˆ3]
w0(8) = par.V_T;
lb(8) = par.V_T;
ub(8) = par.V_T;
% x_1 = w(9); % Liquid mole fraction
w0(9) = 1;
lb(9) = 1;
ub(9) = 1;
% y_1 = w(10); % Vapor mole fraction
w0(10) = 0.5;
lb(10) = 0;
ub(10) = inf;
% H = w(11); % Enthalpy [MJ]
w0(11) = 1;
lb(11) = -inf;
ub(11) = inf;
% h_L = w(12); % Liquid molar enthalpy [MJ/kmol]
w0(12) = par.h_in;
lb(12) = par.h_in;
ub(12) = par.h_in;

138

% h_V = w(13); % Vapor molar enthalpy [MJ/kmol]
w0(13) = par.h_in;
lb(13) = 0;
ub(13) = inf;
% V_V = w(14); % Vapor volume [mˆ3]
w0(14) = 0;
lb(14) = 0;
ub(14) = 0;
% rho_L = w(15); % Liquid molar density [Mmol/mˆ3]
w0(15) = 0.5;
lb(15) = 0;
ub(15) = inf;
% M_L = w(16); % Liquid molar hold-up [kmol]
w0(16) = 1;
lb(16) = 0;
ub(16) = inf;
% K_1 = w(17); % Vapor-liquid equilibrium coefficient
w0(17) = 1;
lb(17) = 0;
ub(17) = inf;
% Ps_1 = w(18); % Saturation Pressure [MPa]
w0(18) = 0.1;
lb(18) = 0;
ub(18) = inf;
w0 = w0';
end

D.3.10 parameters Methanol.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Parameters for HEX with methanol as inlet in vapor phase
%**

function par = parameters_Methanol()
%https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Mask=4&Type=ANTOINE&Plot=on
%https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Mask=4&Type=ANTOINE&Plot=on
%% Parameters
% Antoine Parameters log(p_sat[bar]) = A - B/(T[K]+C)
A = 5.15853;
B = 1569.613;
C = -34.846;
par.T_in = 0.410; % Inlet Temperature [kK]
par.F_in = 0.1; % Inlet flow rate hot side [kmol/s]
par.Q = 0; % Heat transfer [MW]
par.Antoine = [A;B;C]; % Antoine parameters
par.h_vap = 35.210; % Heat of vaporization [MJ/kmol]
par.Cp_V = 44.06; % Vapor Heat Capacity [MJ/kmol*kK]
par.Cp_L = 81.08; % Liquid Heat Capacity [MJ/kmol*kK]
par.R = 8.314; % Gas constant [MJ/(kK * kmol)]
par.P_0 = 0.1; % Outlet Pressure [MPa]
par.V_T = 0.2; % Total volume [mˆ3]

139

par.rho = 0.792/32.04; % Liquid molar density[Mmol/mˆ3]
par.c_V = 1; % Valve coefficient vapor[kmol/(barˆ(-0.5) s)]
par.c_L = 5; % Valve coefficient liquid [kmol/(barˆ(-0.5) s)]
par.z = 1; % Inlet composition
par.C0 = 3*145.0377e-6; % Liquid compressability factor [1/MPa]
par.M = 3; % Nr of Flash Tanks in series
par.T_ref = 0.29815; % Reference temperature [kK]
%% Calculation of inlet enthalpy [MJ/kmol]
% This calculation assumes that the inlet is vapor
par.h_in = par.h_vap(1) + par.Cp_V(1)*(par.T_in-par.T_ref);
end

D.3.11 parameters water.m

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Parameters for HEX with water as inlet in liquid phase
%**

function par = parameters_water()
%https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Mask=4&Type=ANTOINE&Plot=on
%https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Mask=4&Type=ANTOINE&Plot=on
%% Parameters
% Antoine Parameters log(p_sat[bar]) = A - B/(T[K]+C)
A = 4.6543;
B = 1435.264;
C = -64.848;
par.T_in = 0.300; % Inlet Temperature [kK]
par.F_in = 0.1; % Inlet flow rate hot side [kmol/s]
par.Q = 0; % Heat transfer [MW]
par.Antoine = [A;B;C]; % Antoine parameters
par.h_vap = 40.660; % Heat of vaporization [MJ/kmol]
par.Cp_V = 35; % Vapor Heat Capacity [MJ/kmol*kK]
par.Cp_L = 75; % Liquid Heat Capacity [MJ/kmol*kK]
par.R = 8.314; % Gas constant [MJ/(kK * kmol)]
par.P_0 = 0.1; % Outlet Pressure [MPa]
par.V_T = 0.2; % Total volume [mˆ3]
par.rho = 1/18.016; % Liquid molar density[Mmol/mˆ3]
par.c_V = 1; % Valve coefficient vapor[kmol/(barˆ(-0.5) s)]
par.c_L = 5; % Valve coefficient liquid [kmol/(barˆ(-0.5) s)]
par.z = 1; % Inlet composition
par.C0 = 3*145.0377e-6; % Liquid compressability factor [1/MPa]
par.M = 3; % Nr of Flash Tanks in series
par.T_ref = 0.29815; % Reference temperature [kK]
%% Calculation of inlet enthalpy [MJ/kmol]
% This calculation assumes that the inlet is liquid
par.h_in = par.Cp_L*(par.T_in-par.T_ref);
end

D.3.12 parameters CC.m

140

%**
% @author: Marius Reed
% @organization: Process Systems Engineering, NTNU
% @since: 03-12-2018
% @requires: MATLAB R2017b (not tested in other releases)
% @description: Parameters for counter current HEX
%**

function par = parameters_CC()
%% Literature
% https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Mask=4&Type=ANTOINE&Plot=on
% https://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Mask=4&Type=ANTOINE&Plot=on
% http://www.personal.utulsa.edu/˜geoffrey-price/Courses/ChE7023/
% HeatCapacity-HeatOfFormation.pdf
%% Parameters
% Antoine Parameters log(p_sat[bar]) = A - B/(T[K]+C)
A = [5.15853 4.6543];
B = [1569.613 1435.264];
C = [-34.846 -64.848];

par.T_in = 0.410; % Temperature inlet hot side [kK]
par.T_in_2 = 0.300; % Temperature inlet cold side [kK]
par.F_in = 0.1; % Inlet flow rate hot side [kmol/s]
par.F_in_2 = 0.1; % Inlet flow rate cold side [kmol/s]
par.Antoine = [A;B;C]; % Antoine parameters
par.h_vap = [35.210 40.660]; % Heat of vaporization [MJ/kmol]
par.Cp_V = [44.06, 35]; % Vapor Heat Capacity [MJ/kmol*kK]
par.Cp_L = [81.08, 75]; % Liquid Heat Capacity [MJ/kmol*kK]
par.R = 8.314; % Gas constant [MJ/(kK * kmol)]
par.P_0 = 0.1; % Outlet Pressure [MPa]
par.V_T = 0.2; % Total volume [mˆ3]
par.rho = [0.792/32.04, 1/18.016]; % Liquid molar density[Mmol/mˆ3]
par.c_V = 1; % Valve coefficient vapor[kmol/(barˆ(-0.5) s)]
par.c_L = 5; % Valve coefficient liquid [kmol/(barˆ(-0.5) s)]
par.z = [1 1]; % Composition inlet [Hot Cold]
par.C0 = 3*145.0377e-6; % Liquid compressability factor [1/MPa]
par.M = 3; % Nr of Flash Tanks in series
par.T_ref = 0.29815; % Reference temperature [kK]
par.UA = 4; % Heat transfer coefficient times area [MW/kK]

%% Calculation of inlet enthalpy [MJ/kmol]
% This calculation assumes that the inlet on the hot side is vapor and that
% the cold side is liquid.
par.h_in = par.h_vap(1) + par.Cp_V(1)*(par.T_in-par.T_ref);
par.h_in_2 = par.Cp_L(2)*(par.T_in_2-par.T_ref);
end

141

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Scope of Work
	Previous Work
	Outline

	Mathematical Preliminaries
	Piecewise Differentiable (PC1) Functions and Convexity
	B-subdifferential & Clarke Generalized Jacobian
	Lexicographic Derivatives
	Automatic Differentiation
	AD of PC1-functions

	Differential-Algebraic Equations (DAEs)
	DAE Formulations
	Index of DAEs
	Nonsmooth DAEs

	Solving Semi-Explicit Index 1 DAE

	Thermodynamic Theory
	Vapor-liquid Equilibrium
	K-value Method

	Enthalpy Calculations

	Model Development
	Flash Tank
	Differential Equations
	Algebraic Equations

	Heat Exchanger Model
	Heat Exchanger - One Side Model
	Countercurrent Heat Exchanger

	Simulation Methods
	Solvers
	The Implicit Euler Integrator

	Initialization Methods
	Flash tank
	Heat Exchanger

	Results and Discussion
	Two Component Flash Tank
	Two Component HEX
	Shutdown of HEX

	Single Component Countercurrent HEX
	Performance of Solver
	Further Discussion

	Concluding Remarks
	Suggestion for Further Work

	Bibliography
	Units Used in Simulations
	Summary: Model Equations
	Total Flash Tank Model Equations
	One Side of Heat Exchanger
	Counter-Current Heat Exchanger

	Rate of Convergence
	The Local Analysis Approach
	The Effect of the Condition Number

	Matlab® code
	valder.m
	Shutdown of one-sided Heat Exchanger
	Documentation of Matlab®-files
	main.m
	Flash.m
	HEX.m
	HEX_implicit.m
	implicitSolverFull.m
	initialGuesses_gases.m
	parameters.m

	Counter-Current Heat Exchanger
	Documentation of Matlab®-files
	main.m
	Flash.m
	HEX.m
	HEX_CC.m
	HEX_CC_implicit.m
	implicitSolverFull_CC.m
	initialGuesses_gases.m
	initialGuesses_liquid.m
	parameters_Methanol.m
	parameters_water.m
	parameters_CC.m

