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Abstract

Differential diffusion effects in turbulent reactive and non-reactive problems based on
hydrogen-rich fuels are not yet fully investigated. Through use of a Fortran implementa-
tion of the Linear Eddy Model (LEM) realised in three dimensions as the LEM3D model,
simulations were performed. The objective of this thesis is to investigate the differential
diffusion in hydrogen-rich jets by application of the LEM3D code and ANSYS Fluent.
Two configurations were used, a 90% H2 and 10% Freon 22 (CHClF2) jet issuing into air,
as well as a 64% CO2 and 36% H2 jet placed in an air co-flow. The former configura-
tion was performed for a Reynolds number Re = 20000, while the LEM and Reynolds-
averaged Navier–Stokes (RANS) resolutions were variable. The simulations were based
on three different sets of Fluent input, named the coarse, fine and modified solutions ac-
cording to their spatial resolutions. The second configuration was performed for a series
of Reynolds numbers Re = 2000, 4000, 8000, 16000, 32000, and 64000. The simulation
results were used in order to investigate the accuracy of the Linear Eddy Model in 3D with
respect to differential diffusion, and hence turbulent mixing of highly diffusive species
such as hydrogen.

Compared to the experimental data for measurements done by Rayleigh scattering for
the turbulent H2/Freon 22 jet by Dibble et al. [1], the LEM3D displays reasonable agree-
ment, but underestimates the data by almost an order of magnitude. The modified solution
gave the LEM3D results which fit best with measurements. Raman scattering has been
performed for a turbulent CO2/H2 jet by Smith et al. [2], and the LEM3D shows similar
trends and value ranges to the experimental results, including decreasing effects of differ-
ential diffusion with higher values of Re. Large Eddy Simulation (LES) results produced
by Maragkos et al. [3] only show vague agreement with LEM3D, and is overestimated by
more than an order of magnitude.
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Sammendrag

Effekter av differensiell diffusjon i turbulente reaktive og ikke-reaktive problemer basert
på hydrogenrike brennstoffer er fremdeles ikke fullstendig utforskede. Ved bruk av en
Fortran-implementasjon av den lineære virvelmodellen (LEM), realisert i tre dimensjoner
som LEM3D, ble simuleringer utført. Målet med denne masteroppgaven er å undersøke
differensiell diffusjon i turbulente, hydrogenrike stråler (heretter kalt jeter) ved anven-
delse av LEM3D-kode og ANSYS Fluent. To forskjellige blandinger ble anvendt, en
90% H2 og 10% Freon 22 (CHClF2) jet inn i luft, i tillegg til en 64% CO2 og 36% H2
jet plassert i en langsgående luftstrømning. Førstnevnte konfigurasjon ble simulert for
Reynoldstall Re = 20000, der LEM og Reynolds-midlet Navier–Stokes (RANS) oppløs-
ninger ble varierte. Simuleringene ble gjort på basis av tre ulike sett av Fluent-resultater,
kalt den grove, fine og modifiserte løsningen i henhold til deres romlige oppløsning. Den
andre jet-miksturen ble simulert for Re = 2000, 4000, 8000, 16000, 32000, og 64000.
Simuleringsresultatene ble bruk i den hensikt å undersøke nøyaktigheten til den lineære
virvelmodellen i tre dimensjoner med hensyn på differensiell diffusjon og dermed turbu-
lent miksing for svært diffusive stoffer som hydrogen.

Sammenliknet med eksperimentelle data for målinger utført ved hjelp av Rayleigh-
spredning på den første jetkofigurasjonen av Dibble et al. [1], viser LEM3D noe overen-
stemmelse, men forutsier verdier som ligger nesten en størrelsesorden lavere. Den mod-
ifiserte løsningen gav LEM3D-resultatene med best overensstemmelse med målingene.
Tilsvarende ble Raman-spredning utført for den andre strålekonfigurasjonen av Smith et
al. [2], og LEM3D viser lignende trendlinjer og verdiområder, samt avtagende differensiell
diffusjon med høyere Re-verdier. Resultater av store virvelsimuleringer (LES) fremstilt av
Maragkos et al. [3] har kun vag overensstemmelse med LEM3D resultater, og blir overes-
timert med opptil flere størrelsesordener.
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Chapter 1
Introduction

Hydrogen is primed to be one of several important energy carriers over the coming years.
Due to the pollution and environmental effects of carbon based fuels, the transition to more
environmentally sensitive energy solutions will be necessary. Hydrogen gas is a suitable
energy storage in this context as it produces H2O as its single waste product during com-
bustion or other energy exploiting processes. Hydrogen may even be extracted from for
example methane (CH4) which is a sustainable consumption of carbon fuels if it is com-
bined with carbon capture and storage (CCS), since CO2 is among the conversion process’
waste products [4]. Hydrogen can also be extracted from biofuels and by electrolysis of
water, making it available all over the world. And another advantage to traditional carbon-
based fuels is that hydrogen has a far higher energy per mass content, up to three times.
However, hydrogen does face challenges concerning storage when in its gas phase, because
of the current lack of infrastructure supporting hydrogen. These factors and the currently
high price of hydrogen production makes the risk far too high for any single company
to try to introduce widespread societal consumption of hydrogen on as a single entity [5].
Despite this, Demirbas predicts that hydrogen based energy consumption will satisfy 34 %
of global energy demand by 2050 also considering the estimate that the global petroleum
reserves are said to be depleted in 50 years [6]. Hydrogen faces competition from the pure
consumption of bio-fuels and from battery technology, but Ball et al. claim that the major
use of hydrogen will be in automotive transport through fuel cell technology, and that with
the current state of the competitors, hydrogen has some advantages that may push it ahead
in this competition [5].

As Ball et al. underlines, policy support and larger initiatives from multiple stake-
holders are necessary to make a hydrogen society come to fruition. In Europe, research
initiatives such as the Fuel Cell and Hydrogen Joint Undertaking (HFC JU), supported by
the European Union’s Horizon 2020 programme will research, develop and demonstrate
hydrogen technologies that may prove to be sustainable [7]. As mentioned, the assumed to
be most widely utilised means of extraction energy from hydrogen is fuel cells, however
hydrogen may also have applications within combustion in for example gas turbines. The

1



Chapter 1. Introduction

mixture of hydrogen and air is a highly combustible mixture which also carries a certain
risk. In for example nuclear reactors, the formation of hydrogen gas may lead to hazardous
situations as has been put in the spotlight since the Fukushima accident of 2011. Satiah et
al. stress that computational tools are essential in such a context [8].

Enter the Linear Eddy Model (LEM), a model for turbulent molecular mixing which
works differently to other turbulence models in that it is not solving any equations di-
rectly but instead rearranges scalar fields and introduces gradients. It was conceived and
developed by A. Kerstein in the late 1980s and is inherently a one-dimensional model
[9, 10]. SINTEF Energy has built upon the LEM and developed a three-dimensional model
known as the LEM3D [11]. Many competing computational approaches may be applied
to hydrogen flows such as direct numerical simulations (DNS) [12], Reynolds-averaged
Navier–Stokes (RANS) [13] or Large Eddy Simulations (LES) [3]. Even the standalone
LEM has been applied to diffusion in hydrogen-rich jets, as demonstrated by Dibble et al.
[1]. The LEM is a computationally efficient model and saves a lot of computational time
compared to other methods. Weydahl has compared the run time of a DNS simulation to
an equivalent LEM3D simulation and expressed the result as follows,

TLEM3D =
TDNS

M2
, (1.1)

where TLEM3D and TDNS are the total computational time for the LEM3D and DNS
simulations, while M is the one-dimensional resolution of the LEM [14]. This proves the
LEM3D to be a low cost model. Even though the model is economical, it is originally
written in sequential code, and any code which can be parallelised may benefit from it.
Parallel programming is a useful technique, which drastically reduces run times whenever
it is run on systems with a large number of CPUs, or CPU cores. Even simply four or
six cores may give a noticeable reduction in run time. Hence, spending time parallelis-
ing sequential code will most likely pay off, since run time is reduced which further will
lessen the consequences whenever a simulation is initiated with the wrong parameters or
if it goes awry somehow else.

Due to the potential in hydrogen as an energy carrier, SINTEF has allotted many
resources and projects to hydrogen research, and as such application of the LEM3D to
hydrogen-rich flows is only natural. Hydrogen, which is the lightest element has diffusive
properties different to heavier elements and compounds. Traditionally in mixed flows, dif-
ferent species have been assumed to have the same diffusivity [15]. This is therefore a poor
assumption for flows containing hydrogen species. That is why measuring differential dif-
fusion and its effect on molecular mixing is advantageous, and may uncover important
implications for combustion properties [16]. It is known that the effects of differential dif-
fusion decreases with higher Reynolds numbers, but the decrease has proven to be slower
than initially assumed. Capturing this effect is then an important feature for the validation
of any turbulence model.

The aim of the work presented in this paper is to investigate turbulent, hydrogen-rich
jets propagating into air. Different hydrogen mixtures will be considered, and computa-

2



tional results will be compared to other computational and experimental results. This will
give grounds for assessing the performance and precision of the LEM3D, and may yield
some more insight into differential diffusion, since the LEM is a model is a mechanisti-
cally correct model. This work is to a large extent based on the work done by Sannan and
Kerstein, and aims to build upon and add detail to the results [16, 17].
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Chapter 2
Theory

2.1 Governing Equations
The most general equations describing momentum conservation in constant density fluid
flows are the Navier–Stokes equations

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

∂τi,j
∂xj

+ fi, (2.1)

where ui is the i-th velocity component, fi is the i-component of an external force, τi,j
is the shear stress tensor, and ρ is the fluid mass density [18, p. 68]. The equation has
no known analytical solutions, but may be solved numerically. For the present work only
subsonic, incompressible flows at constant pressure are treated. All (chemical and nu-
clear) reactions are neglected and so are their source terms, since the examined flows are
non-reactive. The above equation accounts for conservation of momentum, and mass con-
servation is expressed by the continuity equation

∂uj
∂xj

= 0, (2.2)

which is given under the continued assumption of incompressible flow. Diffusive and
advective transport of a scalar field ϕ is in this work described by the equation

∂ϕ

∂t
=

∂

∂xj

(
DM

∂ϕ

∂xj

)
+ T +ADV3D, (2.3)

where DM is the molecular diffusivity. T is the term incorporating turbulent transport, as
for example governed by scalar field rearrangements which will be described in context of
the LEM in a coming subsection. The term ADV3D is a term accounting for Lagrangian
advective transport processes, and coupling of control volumes and intersecting domains
[11]. The advection is governed by the mean velocity flow field, ~U , which may be supplied
externally from a flow solver.
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2.2 Diffusion
Diffusion is the natural process where a gradient in some physical property induces move-
ment in the property or particle such that the gradient is lessened in magnitude. Hence,
nature counteracts gradients in materials. The first term on the right hand side of Equa-
tion (2.1) expresses viscous diffusion, and the same term in Equation (2.3) is handling
molecular diffusion. The Schmidt number relates these two fluid properties in a parameter

Sc =
ν

DM
, (2.4)

which is an important parameter when looking at the diffusive behaviour of a flow prob-
lem. ν is the kinematic viscosity. Another fundamental diffusion parameter is the Prandtl
number which is the dimensionless ratio between momentum induced diffusivity (or vis-
cosity), and the thermal diffusivity α. The parameter assumes the form in laminar and
turbulent flow respectively as

Pr =
ν

α
, and Prt =

νt

αt
. (2.5)

2.2.1 Differential Diffusion
Differential diffusion is a measure introduced to determine the mixing of species due to
differing diffusive properties. The mixture fraction of a species l is defined as

ξl =
Yl − Yl,2
Yl,1 − Yl,2

, (2.6)

where Yl is the mole fraction in the mixture, and Yl,s is the mole fraction of species l in
incoming stream s. By subtracting the mixture fractions of two species l and m, where
l 6= m, the differential diffusion is defined as

z = ξl − ξm. (2.7)

2.3 Turbulence
For a fluid flow, a dimensionless number known as the Reynolds number can be defined.
The number is defined as

Re =
ρUL

µ
, (2.8)

for a fluid with dynamic viscosity µ = νρ. U is a velocity scale for the flow field, while
L is a characteristic length scale for the fluid in question. For sufficiently high Reynolds
numbers, laminar flow and motion transition into turbulence. Turbulent flow is character-
istically different from laminar flow in that it is fluctuating and disorderly fluid motion.
White summarises turbulence in this way in his book on viscous fluid flows [18, p.400]:
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“A spatially varying mean flow with superimposed three-dimensional random
fluctuations that are self-sustaining and enhance mixing, diffusion, entrain-
ment and dissipation.”

Fluctuations appear in the pressure, the temperature, and the velocity in all the dimen-
sional directions. The fluctuations can be regarded as superimposed around the mean value
of the properties. For a turbulent flow with velocity components ui and pressure p they
can be expressed as

ui = Ui + u′i,

p = P + p′,
(2.9)

where p′ and u′i are the fluctuations around the means Ui and P . The mean is here defined
as the time averaged value;

Φ = ϕ̄ =
1

T

∫ t0+T

t0

ϕ(t)dt, (2.10)

where ϕ is a general time dependent quantity. The time T is larger than the time scale
for the fluctuations, but shorter than the time scale for variations in the mean value. As a
measure for the magnitude of velocity fluctuations, the turbulence intensity, or root-mean-
squared velocity fluctuation u′rms, can be used. It is defined as

u′rms =

√
1

T

∫ t0+T

t0

u′i
2dt. (2.11)

Introducing a measure of the energy carried by the turbulent part of the flow, the tur-
bulent kinetic energy may be defined as,

k =
1

2
u′iu
′
i, (2.12)

where Einstein’s summation convention is applied. A turbulent flow contains eddies,
which are packets of fluid often moving in a swirling motion. Eddies both appear and
disintegrate into smaller eddies over a large spectrum of time scales. The eddies are of-
ten categorised by three length scales; the integral scale, the intermediate (or often known
as the Taylor) scale, and the Kolmogorov scale. According to Kolmogorov’s theory, the
largest eddies belonging to the integral length scale, Λ, transfer their energy to smaller
eddies when they break down, and thus the energy cascades down until eddies on the Kol-
mogorov length scale, η, and below are reached. The integral scale process is illustrated
in Figure 2.1. A turbulent Reynolds number can be determined for the integral scale as

Ret =
u ′Λ

ν
. (2.13)

Similarly the Reynolds number for the Kolmogorov scale eddies may be given as:

Reη =
vη

ν
= 1. (2.14)

Here, v is a velocity scale defined such that Reη is equal to 1, which it is by definition
[19, p.130,137]. The largest eddies carry most of the energy in the turbulent flow while the
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Λ

η

Figure 2.1: A simple illustration of the Kolmogorov cascade. Larger eddies, starting at the integral
scale, Λ, breaks down into more and gradually smaller eddies, transferring energy into the new
eddies until the Kolmogorov length scale, η, is reached.

Kolmogorov scale eddies feel the viscous effects of the fluid and dissipates energy carried
by the flow. Kolmogorov hypothesises that smaller scale eddies are independent of the
larger eddies and the mean flow, and that they are isotropic, which means that all direc-
tions are equally probable for the eddies to move in [19, p.127]. The Kolmogorov scale
eddies represent the smallest eddies, in which kinetic energy is dissipated by viscous dif-
fusion processes. The smallest eddies do not contribute much to overall transport in terms
of distance, but are broken down on the molecular level and greatly enhances molecular
mixing compared to ordinary laminar flow [19, p.124]. A relationship between the integral
and Kolmogorov scales is derived by Weydahl [14], and appears as

η

Λ
∼ Re−

3
4

t . (2.15)

The fluid particles transported by many turbulent eddies perform a random walk, and
the transport by this motion may be classified as the turbulent diffusivity DT, with units
m2/s. By dimensional analysis and the turbulent time scale, Tt, the relations

DT ∼
Λ2

Tt
, Tt ∼

Λ

u′
,

are uncovered. Further, using the relation (2.15) it can then be derived that the turbulent
diffusivity scales as

DT ∼ u′Λ = νRet ∼
(

Λ

η

) 4
3

.

Finally, based on this the scaling with eddy size l is assumed to be [20]

DT(l) ∼ l 43 . (2.16)

2.3.1 RANS
The Navier–Stokes equations (2.1) may be solved numerically, but this process is compu-
tationally very demanding by current hardware standards. Removing some information by
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averaging the equation, makes it more computationally affordable for turbulent flows, but
then results in identifying the mean velocity field. For Newtonian fluids, the stress tensor
is

τi,j = −pδi,j + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λδi,j

∂uk
∂xk

. (2.17)

Here, µ is the dynamic viscosity, λ is the bulk viscosity, and δi,j is the Kronecker delta.
By inserting this into Equation (2.1), and introducing the decomposition for velocity and
pressure in the equations (2.9), and then averaging the equation as per Equation (2.10), the
Reynolds-averaged Navier–Stokes (RANS) equations may be obtained,

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂

∂xj

(
Pδi,j + ρu′iu

′
j

)
+ ν

∂2Ui
∂x2

j

+ Fi. (2.18)

Here, Fi is the time averaged i-component of the external force. The ρu′iu
′
j are the

turbulent stress components, and must be modelled by a turbulence model. A common
model is the k-ε model which sets up and solves transport equations for the turbulent ki-
netic energy k, and the dissipation of turbulent energy ε.

In the RANS framework, the turbulent viscosity can be defined as

µt = Cµρ
k2

ε
, (2.19)

where Cµ = 0.09. From Prandtl’s mixing length model, the relation between the integral
scale and the turbulent dissipation can be constructed by dimensional analysis arguments
[19, p. 52, 138], and takes the form

Λ = C
3
4
µ
k

3
2

ε
. (2.20)

2.4 Jets
The definition of a jet in the context of this thesis is a fluid or mixture flow entering a
still fluid consisting of different species, through a circular nozzle. The flow is considered
to have a sufficiently high Reynolds number to be turbulent, and for the remainder of the
thesis the term “jet” means an axisymmetric turbulent jet.

A turbulent jet, see Figure 2.2, consists of a potential core, mixing layers where the
surrounding fluid is entrained into the incoming jet, and the self-similar region which is
established an integer multiple of inlet diameters downstream. The self-similar region is
defined as the part of the jet where a Gaussian mean velocity profile has developed for
which
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Figure 2.2: An illustration of the streamwise mean velocity (Ui) profile development for an axisym-
metric turbulent jet. The general internal structure near the inlet is illustrated, as well as the jet width
δ(x). The jet center axis coincides with the x-axis.

Ui
Umax

= f
(r
δ

)
, (2.21)

where f is a Gaussian function, and Umax is the maximum velocity of the velocity profile
at the given downstream location. A jet expands in cross section as the distance from the
inlet increases, and the width of the jet δ varies as a linear function of x, i.e., δ(x) ∼ Cx,
where C is a constant.

For the simulations performed in this thesis the circular inlet is approximated by a
square inlet in order to apply a Cartesian mesh consisting of perfect cubic control volumes
(3DCVs). Kim et al. [21] have by means of numerical simulation in ANSYS Fluent
using RANS with Reynolds Stress Modelling (RSM) examined differences in downstream
development of turbulent jets with different inlet geometries. Square inlets have then been
shown to have a slightly wider mean velocity distribution, i.e. more spreading, in the self-
similar region downstream, compared to a circular inlet. The square jet no longer has an
axisymmetric flow, but mixing is enhanced.

2.5 The Linear Eddy Model
The Linear Eddy Model is a model representing turbulent eddies and mixing of scalars in
a one-dimensional domain. It is a technique based on stochastic rearrangement events of
the species’ position, in contrast to other computational approaches such as Direct Numer-
ical Simulation which solves the governing equations directly. The drawback of DNS is
that for sufficient resolution to resolve the smallest scale eddies, it demands an extreme
amount of computational power and time. The aim of the Linear Eddy Model is to greatly
reduce this computational time without sacrificing resolution and while still treating tur-
bulent advection as an advective process. LEM is not only a tool for making predictions
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in turbulent flow, it also gives a mechanistically correct picture of turbulent flow, and can
be used to study the physics of such problems unlike other computational models based
on the gradient diffusion hypothesis [20]. Being a model for molecular mixing, the LEM
lends itself well to reacting flows and combustion problems, however this will not be the
focus of the following since the present work treats non-reacting flows.

2.5.1 LEM in 1D
The LEM can resolve the full range of turbulent length scales from the integral scale
down to the Kolmogorov scale, as well as all turbulent time scales [20], while being less
computationally demanding than for instance DNS. The model has been combined with
other turbulence simulation techniques in the past. LEM can be used as a subgrid model
for methods such as Large Scale Eddy Simulations (LES) which simulates the mean flow
and larger eddies. LEM is then used for modelling of the smallest eddies. In the present
subsection, LEM will be presented in its standalone 1D form.

The Triplet Map

Equation (2.3) describes transport of a scalar field ϕ. It can easily be modified to handle
even turbulent reactive flow, by adding a term to represent reactions. LEM handles the
convection term T in a characteristic way, which us by executing stochastically occurring
stirring events in the one-dimensional domain. The events are modelled, both temporally
and spatially, by randomly selecting the location and length of the stirring rearrangement
for each event. This is done though a permutation, the triplet map. The length is deter-
mined based upon the values for the turbulent length scales set for the given case. The
LEM triplet map is a mapping from c(x, t) to C(x, t), applied to a segment of length l,
[x0, x0 + l] at the time t. The mapping is defined as follows:

C(x, t) =


c(3x− 2x0, t), for x0 ≤ x ≤ x0 + 1

3 l,

c(−3x+ 4x0 + 2l, t) for x0 + 1
3 l ≤ x ≤ x0 + 2

3 l,

c(3x− 2x0 − 2l, t) for x0 + 2
3 l ≤ x ≤ x0 + l,

c(x, t) otherwise.

(2.22)

In this way the scalar species concentration profile is rearranged. An example for a lin-
ear concentration gradient is shown in Figure 2.3. This rearrangement mimics the way the
scalars are transported convectively for the swirling motion of an eddy in 3D, such that the
1D triplet map intersects this mixing motion. Hence, the LEM mechanistically resembles
turbulent transport. The eddy motion induces enhanced gradients, as can be seen from the
triplet mapping formulation. A drawback of the model is that it introduces discontinuities
in ∂C

∂x , as is evident from Figure 2.3. This leads to faster than expected fall-off for high-
wavenumber eddies in the Batchelor energy spectrum κ2

BEB(κB). κB , is a wave number
on the Batchelor length scale, which is the scale at which molecular-diffusive smoothing
can counteract strained wrinkling of the scalar field. Hence, there are fewer eddies of short
length scales than expected [10].
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Figure 2.3: A linear one-dimensional scalar field is; a) in its initial state, b) subjected to an instan-
taneous triplet map stirring event, c) experiencing diffusive effects as the solution of the diffusion
equation has been propagated in time to t1.

The Rate of Events

If one considers a particle transported by turbulent motion in the x-dimension, its turbulent
diffusivity can be expressed as

DT =
1

2
N〈x2〉, (2.23)

where N = ζl is the frequency of events, ζ is a rate parameter, and l is the length of the
stirring event [20]. It can be shown that for a particle in a stirring event the mean square
displacement 〈x2〉 takes the form such that,

DT =
2

27
ζl3. (2.24)

Generalising this to be valid for a wider range of eddy lengths around l, the diffusivity
is [22]

DT =
2

27
ζl3f(l)dl. (2.25)

In a fluid flow the fraction of the eddies which has lengths in the range [l, l + dl] are
expressed as f(l)dl, where f(l) is the probability density function satisfying∫ Λ

η

f(l)dl = 1. (2.26)

Making use of the normalisation, Equation (2.25) and the assumption that the turbulent
diffusivity is proportional to l

4
3 from Equation (2.16), the function f(l) can be shown, see

[22], to have the form

f(l) =
5

3

l−8/3

η−5/3 − Λ−5/3
. (2.27)
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2.5 The Linear Eddy Model

By finding the expectation value of DT by integration over l for Equation (2.25), and
using the relation (2.16) showing that DT ∼ νRet this leads to an expression for the
number of events given as [22];

N = ζl =
54

5

ν Ret

Λ3

(Λ/η)5/3 − 1

1− (η/Λ)4/3
l. (2.28)

In essence, the triplet map rearrangements are statistically independent events that oc-
cur instantaneously, similar to a Poisson process. In contrast, the diffusion solving is
steadily advanced in time as stirring events occur randomly throughout the simulation
according to the event frequency ζ. Hence, an important assumption in LEM is that tur-
bulent eddies are statistically independent events. This also emphasises how LEM makes
a clear distinction in its treatment of convective (turbulent) and diffusive species transport
[10, 20]. The equations (2.27) and (2.28) are the foundations for how triplet maps are
implemented in code.

2.5.2 LEM3D

The model presented in the current subsection is based on the model presented by Sannan
et al. in 2013 [11]. In contrast to CFD, the LEM3D treats advection and mixing of fluid
cells as opposed to solving flow field equations. LEM3D is in some ways a straight for-
ward development of the 1D LEM, in the sense that it is constructed as a mesh of 3DCVs
containing intersecting and independent 1D LEM domains in all three dimensions. The
independent domains makes the model suitable for parallel execution. Three arrays of
Nx × Ny , Nx × Nz and Ny × Nz LEM domains, each domain containing Mz,My or
Mx 2D LEM-wafers for each array respectively. The intersection between three 1D LEM
domains, one from each array, constitutes and bounds a 3DCV. See Figure 2.4 for an il-
lustration of the model’s geometrical composition. In terms of resolution, the parameter
LEMres is used here, and is the number of LEM-wafers Mx/y/z divided by number of
3DCVs within that particular domain. The intersecting, yet independent LEM domains
do introduce a few problems not encountered in the 1D version which must be addressed,
such as three simultaneous co-located representations of the same volume, and limited
mixing between adjacent 1D domains. Also, LEM3D requires flow field input from either
a CFD framework, analytic expressions or experimental data, and is therefore not a com-
plete flow solver on its own, only a mixing framework.

LEM3D makes use of several assumptions. First of all it considers incompressible
flow, which means decoupling the pressure and velocity fields. Thermal expansion and
density changes is included when reacting flows are considered. The version of the model
considered in this thesis assumes a constant mean flow field, i.e. a steady state solution,
which also means neglecting effects from counter gradients induced by triplet map stirring
which would otherwise affect the mean flow field. This assumption can be discarded if
backward coupling to a flow solver, or data, is a part of the model solution setup.

Since molecular mixing and turbulent stirring is resolved down to Kolmogorov scale,
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Figure 2.4: The three array mesh constructed by Nx ×Ny ×Nz control volumes. Three 1D LEM
domains are shown to intersect and create a cubic 3DCV, each domain consisting of either Mx, My

or Mz LEM wafers according to axial direction.

the LEM-wafers are similar to a perfectly stirred reactors (PSR) [14]. This means that
mixing is resolved at all scales and all wafers are homogeneous perfect mixtures where
also substances entering the wafer are instantly perfectly mixed. A PSR is a reactor that
is well macro- and micromixed. A well macromixed mixture has a uniform distribution
making scalar fields independent of the spatial coordinates mapping the mixture, while a
well micromixed mixture has zero scalar variance, and LEM-processes take care of both
scales of mixing. If a resolution cut-off is set at a higher scale than the Kolmogorov scale,
then all scales not resolved are assumed to also be perfectly stirred mixtures.

Another major assumption incorporated in the model is that turbulence at all scales is
isotropic, and in nature this is only a fact at small turbulent scales. In addition, turbulent
eddies are assumed to only appear in the planes parallel to the three main axes, no eddies
tilted with regards to these axes appear. The eddies restricted to the planes are also dif-
ferent to real eddies since the 3D structure of an eddy may be more cylindrical, it may be
curved, and may even transport other smaller eddies as if the smaller eddies were frozen in
time. In comparison, the eddies modelled in LEM3D are simplified. The 1D triplet maps
are based on lines of sight through a 3D eddy, but may be represented for visualisation as
a perfect circular cross section from a 3D eddy. Figure 2.5 contrasts the two eddy types.
Similar to triplet maps, molecular diffusion is only allowed in the direction of the 1D LEM
domains, i.e. along the coordinate axes, even though diffusion in reality may happen in all
spatial directions.
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2.5 The Linear Eddy Model

Figure 2.5: A comparison of idealised eddies, and an example of a more realistic 3D eddy. In part
a) a circular 3D eddy cross section is illustrated as a simple swirl, while in b) a curved cylindrical
quasi-3D eddy is presented.

Equation (2.3) has a term describing advective transport, including domain coupling.
In LEM3D, Lagrangian treatment of advection is applied. This means the LEM wafers
are simply displaced according to the velocity field, as opposed to using Eulerian finite
differences [14]. However, the three arrays of LEM domains are all simultaneous indi-
vidual representations of the computational domain, and therefore all extensive properties
such as scalar concentration fields are tripled. As a consequence, the transport through the
boundaries of each 3DCV is set three times as large as for a single representation of the
computational domain. The solution reached in LEM3D is simply to multiply velocities
by three, which may be unsuitable concerning the effect on Reynolds numbers, but has for
previous work performed decently [11].

For each LEM domain all advective transport only happens in one direction. This in-
troduces yet another problem with the model composition, since this hinders substances
mixing with neighbouring domains. To remedy this, random 90◦ rotations around a a ran-
domly chosen axis of the 3DCVs were introduced. The rotation frequency is set using the
time the flow field would use to transport a particle through the 3DCV in question. The
rotations do also mimic turbulent eddies in some sense, but the solution also has a draw-
back in that sharp, unphysical gradients are introduced. Figure 2.6 illustrates the effects of
the rotations for a 2D case.

The probability density function for eddy lengths in triplet maps has been reformulated
for use in LEM3D and is presented by Sannan et al. [11] in this form:

f(ĥ) =
ĥ−

8
3∑hmax

h=hmin
h−

8
3

. (2.29)

Here, h is an integer number of LEM cells. hmin and hmax is determined by an ap-
proximate integral scale Lmod = 3hmaxd, related to the measured integral scale Λ by an
adjustable parameter c, such that Lmod = cΛ. The parameter c can be adjusted for best fits
to scalar mixing properties [11], and to the scalar fields passed to LEM3D from external
sources. hmin is determined exactly analogously for the Kolmogorov scale η, while d is
the LEM wafer thickness. The rate of events is rewritten in the following form
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Figure 2.6: Part a) shows the intersection of two 1D LEM domains in directions i and j, with
the profiles of a scalar values ϕi and ϕj for each domain respectively. The domain intersection is
rotated 90◦ clockwise, such that the intersection segments are effectively interchanged between the
domains. The resulting scalar profiles are shown in part b).

ζ =
DT

2d3

( hmax∑
h=hmin

h2(h− 1)f(h)

)−1

, (2.30)

for ease of implementation. Finally, selecting positions of the triplet maps are implemented
by creating a probability density function for the 3DCVs using the rate of events for each
cell. The cumulative eddy center position probability density function is implemented in
the following way for an arbitrary direction s,

fC(Ns) = fC(Ns − 1) +
ζ(Ns)∑
Ns
ζ(Ns)

. (2.31)

Here, Ns is the position of a 3DCV in direction s. It is initialised by fC(1) =
ζ(1)/

∑
Ns
ζ(Ns). The three equations (2.29), (2.30) and (2.31) determine all proper-

ties of triplet map eddies, in practice.

LEM3D is not yet a complete model because some of the problems highlighted above
are yet to be solved, such as the lateral mixing of species, and triple simultaneous repre-
sentations of domains. As demonstrated, solutions have been proposed and implemented,
but they often introduce other problems. It is likely that these additional problems may be
corrected by continued refinement of the model, or by alternative solutions. For example,
methods of transporting wafers laterally between domains can possibly be linked to turbu-
lent behaviour without rotating domains, or some additional coupling may be done after
rotations. Further validation of the model is needed before it is known whether the model
will give a realistic and quantitatively more precise solution to turbulent mixing problems,
and can compete with DNS and other quantitative computational approaches.
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Computational Method

3.1 Software and Code
This section concerns itself mainly with the type of software used, and the implementation
of the LEM3D code.

3.1.1 Various Tools
For the current work, a variety of different software was used for various tasks, among
these is the ANSYS software package, including the subprograms Fluent, DesignModeler,
and Meshing. The other software used was MatLab, Maple, and InkScape. See Table 3.1
for details on what versions were used.

MatLab, was used for different tasks, but mainly to treat coordinate setups, plots and
post-processing of the results whenever needed. GNUplot was used for viewing simple
plots consecutively as the results were finished. For the creation of illustrative figures
for this paper, InkScape was employed. Maple was used for processing input data and
computing some necessary parameters. The use of ANSYS will be explained in detail in
Subsection 3.2.1.

3.1.2 LEM3D
The LEM3D is implemented Fortran 77/90 in a straightforward, linear fashion. The start-
ing point is to initialise, load, and test the validity of data, and whether the simulation is
new or to be restarted. The main loop iterating over the RANS scale time steps is then
started. Within this loop all LEM domains and 3D control volumes are visited. First, the
advection routine is implemented according to the LEM3D model description, before the
3DCVs are rotated. Then the LEM processes are initiated. At the end of a set interval
of loop iterations, data is collected and restart files may be written. After the loop has
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Name Version(s)
ANSYS 18.1, 17.2
MatLab 2014b
Maple 2017
Inkscape 0.91
Gnuplot 5.0

Table 3.1: The programs used to create, analyse and present data, as well as prepare input for the
LEM3D code.

finished its iterations, the data is post processed and written to file. See Figure 3.1 for an
illustration of the code structure.

The most central parts of the program are the subroutines handling the LEM domains
and their triplet map rearrangements, as well as the 3DCV rotation and advection routines.
In the main loop, the LEM domain routines are executed every single iteration and are
responsible both for triplet maps and molecular diffusive processes. Several iterations are
performed in order to resolve shorter time scales than the RANS advection time steps,
which makes this part of the code very computationally intensive. The diffusion equation
is solved during the time intervals between each triplet map event. It is solved by the
implicit Euler scheme in time, and by central difference in space, giving the discretised
equation

−Cϕn+1
j−1 + (1 + 2C)ϕn+1

j − Cϕn+1
j+1 = ϕnj .

This finite difference scheme then gives the diffusive development of the scalar value
ϕ of wafer #j in a 1D LEM domain from time step n to n+ 1. C is the CFL-number de-
fined as DM∆t

∆x2 , where ∆x and ∆t are the discretisation steps in space and time, while DM

is the molecular diffusivity. This can be arranged as a tridiagional matrix system for the
entire domain. For the current code Neumann boundary conditions are used at the domain
boundaries such that there are no scalar fluxes out from the system during diffusion. The
resulting profile is finally computed using the tridiagonal matrix algorithm.

For finely resolved RANS grids and LEM domains, the simulations demand longer
computational times which may become impractical for the scope of this work, even if
LEM3D scales better with increased complexity than for example DNS simulations. The
solution to this became to parallelise the code such that the LEM computations could be
distributed over several nodes, thereby drastically reducing the computational time of a
simulation. The initialisation and post processing of the code would still be executed se-
quentially, but the heaviest part of the simulation should ideally be reduced to an n− 1-th
of the original computational time, with n being the number of nodes to be used by the
code. This neglects run times of sequential code and intercommunication between nodes
which are major factors.

Parallelisation demanded much reworking and analysis of the code, but the work was

18



3.1 Software and Code

Figure 3.1: An illustration of the code flow, roughly organised in the sequential initialisation, the
main loop and the sequential post processing. The parallel computations take place in connection to
the LEM processes in the main loop, where all LEM domains are distributed to the parallel processes
before the iteration is finished. Iter is the iteration index, and Nt is the set number of iterations for
the main loop.

made considerably easier by comparing the code structure to a different implementation of
LEM3D which was already parallelised. Most of the subroutines handling parallelisation
could be reused with varying degrees of modification.
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The first step was to determine what parts of the code would stay sequential, and how
to adapt the main time iterations for parallel handling of the LEM domains. The sequential
part of the code would be handled by the root thread, while it would distribute 1D LEM
domains to be worked on by other threads simultaneously. To keep the processes synchro-
nised, MPI barrier commands were placed at critical points in the code, for example after
initialisation such that all variables would be initialised before any threads could start any
computations. Similarly, a barrier was placed after each time iteration such that all threads
would always work on the same time step.

Parallelisation was implemented such that one root node would run through all LEM
domains in the RANS domain, and distribute them to available and idle processors after
advective and rotational processes had been performed sequentially. The receiving pro-
cessors would then perform diffusion and triplet map calculations, since it lies within the
confines of the LEM3D that the processes can be performed independently of all other 1D
LEM domains. The receiving processes would pick random numbers to determine loca-
tion, magnitude and times at which the triplet map rearrangements would take place, and
perform diffusion of scalar arrays in between each event. Finally, the processed LEM do-
main would be returned to the root node which would incorporate it into the arrays keeping
track of the scalar fields.

The original LEM3D code was written exclusively in Fortran 77. The original idea was
to update the code to Fortran 90 since dynamically allocated arrays were not introduced
until this version. The version change would also allow the use of modules which would
increase the readability of the code and make it more structured. Then all subroutines
concerning parallelisation could be moved to modules. This was thought to be necessary
at first and quite some time was spent on this implementation, but it was aborted after it
was discovered that the passing of allocatable arrays as subroutine arguments introduced
some compilation errors which would be quite time consuming to correct.

Instead, the code was rewritten to only handle statically defined arrays. Using only
static arrays caused the need for more arrays than was originally necessary to be defined,
which caused higher memory requirements. However, it was observed during run time that
this was so minimal that it caused no problems with regards to system memory capacity,
at least for small RANS input meshes. The code was kept written in Fortran 77, with a
couple of Fortran 90 features which were accepted when compiling using the Fortran 77
compilation wrapper mpif77. Otherwise, to avoid allocating any arrays dynamically the
number of processes to be run would have to be hard-coded into the source code as a pa-
rameter in the variable declaration. A rough outline of the code structure after completed
parallelisation can be seen in Figure 3.1.

The new code had to be properly tested before any real simulations could be performed.
To make sure that this would not be to time consuming a simple test case for a 22×11×11
RANS domain, with a square jet inlet of 0.4 × 0.4 cm2 was set up using ANSYS Fluent.
The 1D LEM resolution was set to 30 wafers per 3DCV. Validation of the parallelisation
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would happen by comparison to results by the sequential code. The parallelisation of the
code would cause the random numbers to be picked in a different order than the sequential
code, since each 1D LEM domain is assigned its own set of random number generating
seeds. The sequential code shares a set of two seeds between all domains and therefore
the instantaneous triplet map events will be very different between the two codes due to
architecture and hardware factors coming into play when it comes to which thread acts
first. However, the two programs should converge to the same solutions when a sufficient
amount of statistics has been collected. Despite this, the sequential code was modified to
give each LEM domain an independent set of seeds, which allowed testing for only a few
iterations at a time.

Due to errors in the parallelisation, extensive debugging was necessary before the test-
ing yielded results agreeing with the original code. Both codes were run on two different
systems, and for one system the parallel code was observed to be slower than the sequential
code, by a slowdown of 4 minutes, or nearly 12%. The other pair of test runs performed
on different hardware experienced a similar 4 minute extended run time for the parallel
code. The parallel code was run on 4 processors including the root node, and therefore it
was assumed that computational time would be decreased. However, the test case had a
very low resolution which would likely cancel out the benefits of the parallelisation due
to the added work from communication between processes, and higher resolution of the
LEM domains should reverse this effect. In other words, a finer LEM resolution should
increase the cost saving effect. Some nodes on the NTNU cluster used for simulations
only had 4 processors available, which was the reason for this early test case. The extent
of the performance increase from parallelisation would be difficult to predict because of
the resolution scaling and since parts of the time iterative loop was still computed sequen-
tially, so this would have to be investigated by even more test runs.

3.2 Using the Software Tools
The LEM3D is dependent on being provided initial data externally, and cannot initialise
itself. Therefore, initial data must be provided by other software, in this work ANSYS
Fluent was chosen to prepare a Cartesian grid and compute a steady flow velocity field
and turbulent properties for the three-dimensional domain. In the end of the section other
tools and use of the LEM3D code are presented as well.

3.2.1 ANSYS Fluent
ANSYS [23] is a commercial collection of software providing numerical solution in a
variety of scenarios and scopes, be it mechanical, construction or fluid mechanical en-
gineering. Fluent is a CFD tool solving flow problems in even complex geometries and
for turbulent cases, and provides a variety of options in terms of computational solution
schemes. The grids were designed to be cuboids, or rectangular prisms, using the ANSYS
Geometry and Mesh components. An illustration of the grids can be seen in Figure 3.2,
and the jet inlet is placed at the centre of the quadratic face which is in view. Two grids
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were prepared, one of 23× 23× 38 cells, and one of 69× 69× 114.

In order to ensure exact cubic cells in the grid, the length, width and height scales were
all adjusted to allow for this, while creating a domain large enough such that the walls may
be treated to be infinitely far away and wall effects can be neglected. However, to keep the
Cartesian grid from deforming near the jet inlet, the circular jet inlet was instead modelled
as a square inlet. The diameter Dj = 0.53 cm of the circular inlet was taken into consider-
ation and a square inlet of the equivalent area was used, see Figure 3.2. The edge length of
this inlet would the be used to determine the size of all cubic cells in the mesh as this was
a suitable working scale. For the finest grid the cell face areas are nine times smaller than
for the coarsest mesh, and hence the inlet consists of a 3×3 grid of cell faces for this mesh.

Figure 3.2: The 3D mesh displayed with the inlet shown at the center of the square surface.

The prepared grids were loaded into Fluent to compute solutions for different mixtures.
Boundary conditions were set such that the side walls were treated as pressure inlets, as
was the face containing the inlet. The surface of the grid opposite to the inlet was de-
fined as a pressure outlet. For computational methods, second order upwind methods were
chosen whenever applicable. The k-ε turbulence model was chosen with slightly tuned
parameters. C1ε was chosen to be 1.44, while C2ε = 1.83, since this would give a more
correct spreading and jet width compared to experiments, as used by Sannan et al. [16].

The properties of the mixtures were chosen in order to ensure that minimal differential
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diffusion was introduced in Fluent. This matter would be left to the LEM3D to ensure
that differential diffusion is isolated to the solution computed by the LEM, and then it
is easier to evaluate how well, or how accurately the LEM predicts differential diffusion
compared to other data. The different elements and substances were defined one by one
and were eventually combined in mixtures. The H2/Freon 22 (CHClF2) mixtures were set
to be governed by (ideal gas) mixing laws such that all species would have equal diffu-
sive properties, as is traditionally assumed for many turbulent flows. This would therefore
assure that no differential diffusion would take place in the Fluent simulation. Thermal dif-
fusion was neglected since all initial conditions were set to the same temperature of 298 K.

The faces of the domain were defined as pressure inlets and outlets, except for the jet
inlet which is a velocity inlet with the boundary condition Ujet = 73 m/s. Standard con-
ditions for temperature, T = 298 K and gauge pressure equal to zero were applied to the
domain boundaries. The turbulent intensity was set at 5% while the turbulent length scale
was chosen to be 0.1 cm. The stopping criterion for the simulation was defined to be that
the absolute magnitude of the continuity equation residual would fall below 10−6.

After running the simulation for 2000 iterations and obtaining a steady-state solution,
multiple lines were defined in the domain. The lines were drawn from the central sym-
metry axis and in the horizontal plane towards the edges of the boxed domain, becoming
radial lines and orthogonal to the jet center axis, see Figure 3.3. The velocities parallel
to the jet center axis along the cells on the radial lines were stored in data files and fur-
ther processed in other software. This was done by plotting the interesting data and then
enabling it to be written to file. The radial lines were plotted at points along the center
axis at fixed distances as close as possible to an integer number of inlet diameters. Using
these, the jet half widths and the spreading rate of the jet could be computed. The half
width is here the radial distance from the jet centerline at which the streamwise velocity
component is half the value of the velocity exactly at the centerline.

In the Maple software, scripts were written to process the radial lines, an example of
which is displayed in Figure 3.4. Using simple algorithms the half width of the jet at the
end of the domain is determined. The velocity profile could then be investigated in closer
detail, and revealed that the Fluent solution is not perfectly symmetric. When extracting
velocity and turbulent data from Fluent, UDFs would be used which will be described
in the next section. However, when computing the integral scale based on the turbulent
properties several incorrect, high magnitude values would appear outside the jet near the
inlet end. This is illustrated in Figure 3.6 and will be described in more detail later, but
illustrates that the Fluent solution has its drawbacks.

A second jet configuration was also treated using ANSYS Fluent, and subsequently
LEM3D. Differences to the previous case lies in the jet mixture as well as the boundary
conditions. This new scenario treats a jet mixture consisting of 36% H2 complemented by
64% CO2, measured in mole fractions. In addition, the jet is now placed at the exit of a
wind tunnel such that the surface of the computational domain where the jet inlet is located
has an incoming air co-flow at a speed of 1.5 m/s. The co-flow is illustrated in Figure 3.5.
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Figure 3.3: The radial lines defined within the mesh shown in relation to the jet center axis and the
square inlet.

The jet diameter is in this case set to Dj = 0.77 cm.

The computational domain had to be resized in order to capture the entire length of the
new jet, the initial setup was 23 × 23 × 70 3DCVs with edge lengths of 0.6824 cm. The
case needed to be recomputed for 6 distinct Reynolds numbers between 2000 and 64000,
corresponding to inlet velocities in the range Ujet = 3.4 - 108.8 m/s. Unfortunately, the
solution would suffer similar irregularities and boundary effects as the integral scale data
in Figure 3.6, only in the opposite end of the domain. The UDFs used in the previous
case could be also applied to remove these effects, but the jet turbulence would widen for
higher Reynolds numbers and grow outside the domain eventually. In the interest of keep-
ing the computational domain and computational time as small as possible, the domain
width and height was incremented in steps of 2 until a suitable solution was reached. In
the end, this approach ended in a RANS mesh of 33 × 33 × 70 for Re = 16000, 64000,
and 41 × 41 × 70 for Re = 32000. The Re = 32000 case proved difficult to find, since
the edge effects were quite prominent within the jet itself, which meant the domain width
would have to be increased even more to find a clean solution. However even so, the clean-
ing algorithm failed to remove only the edge effects, but also removed the integral scale
far downstream from the jet itself. At first the width was increased step wise to 59 such
that the edge effects would be far removed from the jet, but ANSYS Mesh failed to create
perfect hexagonal meshes for configurations wider than 43 cells. The wider meshes were
also tested with other versions of ANSYS on different hardware. After some additional
analysis of the algorithm cleaning the data, it was discovered that by tuning a few param-
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Figure 3.4: The final part of a script made in Maple, designed to analyse some of the data from the
Fluent output.

eters the 41-width solution would suffice anyway, and hence all the relevant cases were
readily prepared for LEM3D simulations. It must be noted that the Fluent solution for a
jet of Reynolds number 1000 was only very weakly turbulent, and the resulting turbulence
data profiles were poorly resolved and not very smooth as a consequence. A decision was
made to only continue with the cases for Re = 2000 and above.

Finally, the process used to find stable Fluent solutions for LEM3D input can be sum-
marised in the following steps,

1. Create geometry

2. Create hexagonal mesh

3. Compute steady-state RANS solution in Fluent

4. Extract velocity profile data, and compute jet half width in Maple

5. Create jet property output files using UDFs

6. Correct integral scale data using UDFs

7. Compile LEM3D code, and tune run parameters according to test-run output

8. Run LEM3D simulation and analyse results
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Figure 3.5: A turbulent jet cross section containing the jet center axis. The turbulent eddies are
depicted as simple curves, while the inlet and co-flow velocities, Ujet and Ucoflow are depicted as
uniform velocity fields. The walls of the inlet are assumed to be infinitely thin.

3.2.2 Preparing Input Data for LEM3D

Through the use of User Defined Functions (UDFs) in Fluent, the generated data was
formatted and written to file, using a coordinate formatting setup created in Maple. The
UDFs were written in the C programming language, and were provided by SINTEF. The
UDFs create input files for LEM3D for the quantities; turbulent diffusivity (DT), mod-
ified integral scale (Lmod), molecular viscosity (ν), and all three velocity components.
In particular, the integral scale was computed using other turbulent quantities by way of
Equation (2.20). The corresponding input-files needed for a LEM3D run are listed in Table
3.2.

Parameter Description
jet_u_velocity.dat The streamwise velocity component of the jet, in

units [cm/s].
jet_vj_velocity.dat The lateral jet velocity in the j-direction, in units [cm/s].
jet_vk_velocity.dat The lateral jet velocity in the k-direction, in units [cm/s].
jet_diffusivity.dat The turbulent diffusivity, DT, in units [cm2/s].
jet_viscosity.dat The molecular viscosity, ν, in units [cm2/s].
jet_integralscale.dat The modified integral scale, Lmod = cΛ, in units [cm].

Table 3.2: The input files required to run LEM3D, and their descriptions.
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MatLab scripts were written in order to plot and investigate the different input data.
The integral scale in particular was investigated and proved that the data contained some
inaccuracies, which justified cleaning parts of the data files to prevent errors. The inaccu-
rate data was mainly due to round-off errors when dividing k and ε for small values, which
caused large spikes in the resulting output. A UDF was used especially for the cleaning
operation and ensured that the integral scale was negligible in the non-turbulent flow part
of the domain. Examine Figure 3.6 to see an example of cleaned versus uncleaned data.
Spatial gradients in the integral scale distribution were investigated and used to lessen the
unphysical integral scale values.

Figure 3.6: Comparison of the cleaned integral scale data in a horizontal plane containing the jet
center axis, to the untreated data. Spatial coordinates are in units cm, while the integral scale Lmod

is given in units m.
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Maple was, as mentioned, used to calculate the half width of the jet at the end of the
domain which was used as a scaling factor for the values of the resulting integral scales.
This was done in Fluent by extracting streamwise velocity components at the end of the
RANS domain, as illustrated in Figure 3.3.

The fine and coarse meshes each served as the source of input for two separate se-
ries of simulations. A third set of simulations was based on input created by averaging
the fine mesh solution, and modifying the number of cells such that the modified solution
was adapted to a Cartesian 23 × 23 × 38 mesh matching the coarsest solution. For the
velocity components, the material flux over the finely resolved cell faces corresponding
to a coarsely resolved cell face was used to compute the modified velocity. The integral
scale, turbulent diffusivity, and viscosity are computed by averaging the 27 cell values
which constitute one modified cell. Thus, three sets of input data was generated; a finely
resolved set, a modified set, and a coarsely resolved set for the H2/Freon 22 jet.

The general procedure described in this subsection was also applied to the CO2/H2 jet,
apart from the modified mesh approach. Only that in these cases, the inlet velocity was
varied in order to create RANS solutions for different Reynolds numbers.

3.2.3 Using the LEM3D Code - Input Parameters
A set of input parameters would have to be specified to run the LEM3D code. These
parameters were set in the input files jet_init.dat, jet_physical.dat as well as some
parameters set directly in the source code. The source code parameters were necessary
because of Fortran 77 restrictions. The files with parameter explanations can be found
in Tables 3.3 and 3.4, while the source code parameters can be seen in Table 3.5. The
parameters for the position, and configuration of a thermal source downstream in the jet
are included in the files, but they were deactivated by setting isrc = 0, for all simulations
referred to in this document.

Parameter Description
Ni Number of 3DCVs in the x-direction.
Nj Number of 3DCVs in the y-direction.
Nk Number of 3DCVs in the z-direction.
srcloc The x-axis index of the 3DCV where a thermal source is located.
RANSdx The length of a cubic 3DCV.

Table 3.3: The parameters specified in the jet_init.dat input file, and their descriptions.

Some parameters are subject to certain restrictions. For instance, the CFL number
must be less than 2

3 in order for the code to run. Another necessary requirement is that
the LEMres has to be an even number. Otherwise, the input parameters from files has to
be within the corresponding limit parameters set in the source code, as for example Ni,
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Parameter Description
Nt The number of iterations at the RANS advection time

scale.
datcst The number of iterations before data collection starts.
datmod The number of iterations between each time statistics are

collected for scalar profiles.
varmod The number of iterations between each time statistics are

collected for scalar profiles along centerlines in j- and k-direction.
velmod The number of iterations between each time the average number

of LEM wafers crossing 3DCV surfaces are computed.
LEMres The resolution of a 1D LEM domain per 3DCV length.
CFL The Courant-Friedrichs-Lewy number.
rad(1) The radius of one ring shaped, co-centric thermal source.
rad(2) The radius of another ring shaped, co-centric thermal source.
DfM(1) The molecular diffusivity of scalar species 1.
DfM(2) The molecular diffusivity of scalar species 2.
PrT The turbulent Prandtl number.
lkfac A factor determining how closely the Kolmogorov scale

should be resolved.
rotfac Parameter affecting the frequency of rotations for 3DCVs.
loc(1) The first downstream center axis position where differential

diffusion is computed.
loc(2) The second downstream center axis position where differential

diffusion is computed.
loc(3) The third downstream center axis position where differential

diffusion is computed.
loc(4) The fourth downstream center axis position where differential

diffusion is computed.
loc(5) The fifth downstream center axis position where differential

diffusion is computed.
loc(6) The sixth downstream center axis position where differential

diffusion is computed.
locx A jet center axis position far downstream used to determine the

maturity of the solution.
isrc A flag activating point or ring shaped thermal sources in the

jet flow.
comp A flag activating compression of the triplet maps, keeping

their length confined within a 3DCV.
restrt A flag indicating whether the initiated run is a restart of

a previous simulation or not.
rstmod The number of iterations between updates of restart files.

Table 3.4: The parameters specified in the jet_physical.dat input file, and their descriptions.
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Name Version(s)
NSCMAX The maximum number of scalar fields allowed in the simulation.
LOCMAX The maximum number of output locations for differential

diffusion results.
ProcNumber The number of processes used when running the code.
LMXMAX Parameter setting a maximum eddy length for triplet maps.
RESMAX The maximum 1D LEM domain resolution.
IMAX The maximum number of 3DCVs in the streamwise i-direction.
JMAX The maximum number of 3DCVs in the lateral j-direction.
KMAX The maximum number of 3DCVs in the lateral k-direction.
RMAX The maximum number of 3DCVs in the lateral radial direction.
varMAX The maximum number of variables allowed in the mean fields.
velMAX The maximum number of variables in the velocity fields.
lmaxmx Parameter setting the maximum length for triplet maps, which

cannot be larger than LMXMAX.
kmin The smallest allowed size of a triplet map is 3 × kmin

LEM wafers.
Nscalr The number of distinct scalars in the simulation.
Nlocs The number of downstream locations for differential

diffusion output.

Table 3.5: A list of parameters declared and initialised directly in the source code.

Nj, and Nk are to the set of IMAX, JMAX, and KMAX. Similarly, lmaxmx mus be less
than or equal to LMXMAX, but the code has some built-in tests which will recommend
new values for these parameters if they are too small judging by integral scale data input.
Similar tests exist for most input parameters, even the data collection parameters datcst,
datmod, varmod, and velmod are subject to such tests. This helps make the code consid-
erably more user friendly, despite having to set some parameters in the source code, and
recompiling every time they are tuned.

The ProcNumber parameter needs to match how many processors the code is set to
run on, when entering the code execution command. Hence recompilation is necessary for
each change of processor numbers. The lkfac is another crucial parameter, which bounds
the size of the smallest resolved eddies. lkfac = 1, would give eddies resolved all the way
down to the Kolmogorov scale, lkfac = 2 would give smallest eddies twice the length of
the Kolmogorov scale, and so on.

The loc-positions were set according to the ratio x/Dj = pos, i.e., a number of jet
diameters along the jet center axis since this is a common measure when considering jets.
To find the correct 3DCV index i for the computational domain, the formula

i =
pos Dj

RANSdx
+

1

2
,
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was used. Normally, this would yield a non integer, and hence the closest integers above
and below this value would be entered in the loc list, such that the solution at the correct
position could be reached by weighted interpolation.

The final parameter configurations used for the simulations presented in the results
section are listed in Appendix B.

3.2.4 Post-processing

Within the code there is a section handling post processing of data which is mainly con-
cerned with computing statistics, such as means, variances, and correlations, while writing
the scalar fields and differential diffusion results to output files.

Some additional post-processing was sometimes needed. Because of the limited RANS
resolution, the location of output data along the jet centerline is somewhat poorly resolved.
Therefore, to find output at specific locations along the jet center axis, some interpolation
between lateral profiles was necessary. It was deemed sufficient to use linear interpolation
in stead of higher order methods, since more values along the jet axis for higher order
interpolation would increase the computational work and make it more cumbersome to
treat output data. A piece of MatLab code interpolating and plotting profiles is displayed
in Appendix C.

3.3 Simulation Procedure
The input values used for the different parameters in jet_init.dat and jet_physical.dat
can be seen in Tables 3.6 and 3.7. The molecular diffusivities were set according to Sannan
et al. [16] and Massman [24], for the two different mixtures.

Parameter Description
Ni 23, 33, 41, 69
Nj 23, 33, 41, 69
Nk 38, 70, 114
srcloc 0
RANSdx 0.1566, 0.4697, 0.6824

Table 3.6: The parameters specified in the jet_init.dat input file, and the value ranges used for
simulations.

At first, different sets of simulations were determined to run. For a RANS mesh of
23× 23× 38 3DCVs, the LEM resolutions 128, 256, 512, 1024 with lkfacs 8, 4, 2, and 1,
respectively, was used. Similarly, for the RANS mesh 69×69×114 simulations with LEM
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Parameter Description
Nt 50000
datcst 20000
datmod 50
varmod 100
velmod 1000
LEMres 42, 84, 90, 100, 128, 140, 256, 512
CFL 0.1
rad(1) 0.1
rad(2) 0.1
DfM(1) 0.77
DfM(2) 0.12, 0.14
PrT 0.7
lkfac 8, 4, 2
rotfac 1.0
loc(1) 11, 17, 34
loc(2) 12, 18, 35
loc(3) 23, 34, 68
loc(4) 24, 35, 69
loc(5) 34, 68, 102
loc(6) 35, 69, 103
locx 35, 69, 105
isrc 0
comp 0
restrt 0, 1
rstmod 5000

Table 3.7: The parameters specified in the jet_physical.dat input file, and their value ranges
used in simulations.

resolution 42, 84, and 168, using lkfacs 8, 4, and 2, respectively, was employed. These
LEM resolutions denote the number of LEM wafers in 1D per 3DCV edge length. The
resolutions for the finest mesh are therefore approximately equivalent to the more poorly
resolved RANS mesh, since three of the 3DCVs from the finest mesh, are as long as one
of the 3DCVs from the other. Parallelisation of the source code for the LEM3D model
was applied, but the computational time limitations was still far too large for the scope of
the present work for the finest LEM resolution. Problems were also encountered with re-
gards to RAM requirements for highly resolved RANS meshes with finely resolved LEM
domains. Therefore, the LEMres = 1024, 168 with lkfac = 1 simulations were aborted.

The first steps to start a simulation were to determine the output locations for differen-
tial diffusion, and different axis diameter scalings were taken into consideration. Next, all
necessary input data was determined by way of looking up the correct data, and comparing
parameters to other papers with subsequent result comparison in mind.
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Input files from Fluent would be supplied as described in Section 3.2.2. The necessary
parameters for RANS dimensions and LEM-arrays would then be set in the code, before
compiling and doing a short test-run, to get information about recommended maximum
limits on triplet map eddy boundaries. Afterwards, all would be ready to run the simula-
tions. The post processing and handling of results have already been described in Section
3.2.4.

In the case of run time interruptions of the simulations, the programme is fortunately
written such as to periodically store restart files at certain iteration intervals, controlled
by the parameter rstmod. Then by toggling the rstrt flag in the jet_physical.dat file,
the simulations continue from the previous point restart files were written. The number
of iterations Nt must be subtracted by the number of iterations the programme completed
before writing the current restart files, otherwise the program run will be extended by a
similar number of steps.

For the cases equivalent to the ones treated by Smith et al. [2] and Maragkos et al.
[3] a different approach was taken. As Sannan et al. [16] have demonstrated, the LEM3D
is strongly dependent upon the LEM resolution, and a high resolution would most likely
yield the most precise results. However, to keep the computational time consumption fea-
sible for the scope of the present work, the resolution had to be limited. Test runs were
performed for the different values of Reynolds numbers, and since the resolution of this
system was coarser than the Freon 22 case, with larger 3DCVs, the LEM resolution would
be lower than for the previous jet configuration. A general resolution of 100 LEM wafers
per 3DCV, equivalent to a wafer thickness of 6.824 · 10−5 m was deemed suitable, with
individual adjustments for the different Reynolds numbers. A short LEMres refinement
was performed for Re = 64000 in order to test the run time dependence.

Manufacturer Model # Cores Clock speed [GHz]
Intel i7-920 4 2.66
Intel i7-930 4 2.80
Intel i7-960 4 3.20
Intel i7-9530K 6 3.50
Intel Xeon E5-2630 v4 10 2.20

Table 3.8: The processors of the systems used for executing simulations.

Most of the simulations were performed on hyper threaded quad-core CPUs on a net-
work of Linux operated machines. An overview of the relevant CPUs and properties are
displayed in Table 3.8. Note that all except the final processor in the table are hyper-
threaded, which mean the can handle two threads per core. Since the computers are shared
between multiple users, some room for others had to be left, and most simulations were run
on 6 threads, i.e., two cores dedicated to one thread each, and two cores shared between
two threads each. However, the most intensive calculation run on the computing system
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Idun, operated and administrated by the High Performance Computing Group at NTNU.
Then 6 nodes each with two CPUs containing 10 cores each were utilised to speed up the
calculation from well over 80 days of computational time to less than 200 hrs. For other
simulations that were estimated to last over 21 days, they were also run on Idun, using 2
or 3 nodes, according to what was available at the time.
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Disregarding test simulations and alternative jet configurations, the simulation procedures
resulted in 8 Fluent simulations and 13 LEM3D simulations. Their results are presented
in this chapter.

4.1 RANS Solutions
The input data created in the ANSYS software is in itself a set of simulation results, and
are displayed graphically here.

4.1.1 The H2/Freon 22 Jet with Resolution 23× 23× 38

The streamwise u-velocity component and the turbulent viscosity of the solution for the
23 × 23 × 38 RANS-mesh, using the settings specified in Section 3.2.1, are displayed in
Figure 4.1 and 4.2. The inlet velocity is set to Ujet = 73 m/s, while the jet Reynolds
number is Re = 20000.

The u-velocity can be observed to be slightly asymmetric about the center axis, but the
turbulent viscosity is shown to be symmetric.

4.1.2 The H2/Freon 22 Jet with Resolution 69× 69× 114

As in the previous subsection, here the streamwise u-velocity component and turbulent
viscosity for the finer 69 × 69 × 114 RANS mesh are presented in Figures 4.3 and 4.4.
Compared to the solutions from the previous subsection the velocity values are lower in
the region immediately downstream from the inlet, and the maximum turbulent viscosity
is half of that for the coarse mesh. The inlet velocity and boundary conditions are the same
as for the results in Subsection 4.1.1.
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Comparing the finest resolved solution to the same solution averaged and adapted to
the rough 23× 23× 38 mesh it can be observed that the deviations near the inlet are pro-
found. The finest resolved resolution generally has a higher velocity throughout the chosen
domain, and it is fits better with the boundary condition at the inlet in comparison to the
modified solution. The velocity profiles are shown in Figure 4.5, and similar differences
can be seen for the molecular viscosities in Figure 4.6. However, the turbulent diffusivities
from Figure 4.7, which in this figure is the same as the turbulent viscosity divided by the
density of the mixture, is a better match, illustrating that the turbulent properties are quite
well preserved during the solution modification.

As described in the previous paragraph, the fine mesh solution can be compared to the
coarse mesh solution in Figures 4.5, 4.6 and 4.7.

Figure 4.1: A cross section of the jet containing the jet center axis, displaying the streamwise u-
velocity component from the Fluent solution for the coarse 23 × 23 × 38 RANS mesh. The scale is
in units m/s.
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Figure 4.2: A cross section of the jet containing the jet center axis, displaying the turbulent viscosity
from the Fluent solution for the coarse 23 × 23 × 38 RANS mesh. The scale is in units kg/m s.

Figure 4.3: A cross section of the jet containing the jet center axis, displaying the streamwise u-
velocity component from the Fluent solution for the fine 69 × 69 × 114 RANS mesh. The scale is
in units m/s.
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Figure 4.4: A cross section of the jet containing the jet center axis, displaying the turbulent viscosity
from the Fluent solution for the fine 69 × 69 × 114 RANS mesh. The scale is in units kg/m s.

Figure 4.5: The streamwise u-velocities of the finest refined mesh along the jet center axis, com-
pared to the modified solution adapted to a 23 × 23 × 38 RANS mesh, and the direct coarse mesh
solution.
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Figure 4.6: The molecular viscosities of the finest refined mesh along the jet center axis, compared
to the modified solution adapted to a 23×23×38 RANS mesh, and the direct coarse mesh solution.

Figure 4.7: The turbulent diffusivities of the finest refined mesh, along the jet center axis, compared
to the modified solution adapted to a 23×23×38 RANS mesh, and the direct coarse mesh solution.
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4.1.3 The CO2/H2 Jet with Varying RANS Resolution

This section presents the u-velocity, and turbulent viscosity data for different Reynolds
numbers for a 64%CO2 and 36%H2 jet, measured in mole fractions. The velocity data in
a jet cross section containing the jet central axis for Reynolds numbers 2000, 4000, 8000,
16000, 32000, and 64000 can be seen in Figures 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13. Simi-
larly, the turbulent viscosity is shown in Figures 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19. The
inlet velocities corresponding to these Reynolds numbers are 3.4, 6.8, 13.6, 27.2, 54.4, and
108.8 m/s, and the co-flow incoming in the surface surrounding the inlet has a constant ve-
locity of 1.5 m/s.

The series of velocity profiles reveal that the mean velocity of the jet is more clearly
defined for higher Reynolds numbers, and hence the jet is more clearly defined. For the
lower Reynolds numbers the co-flow has a larger effect on the jet, and the flow is very
close to laminar, only minor turbulent effects are experienced, as seen in the turbulent vis-
cosity plots. The turbulent viscosity figures also display a more well defined jet for higher
Reynolds numbers. However, in most of the figures the edge effects can be easily seen in
the top right and left corners. None of the profiles seem to be perfectly symmetric, but the
Re = 32000 and Re = 64000 profiles are quite close.

Figure 4.8: A cross section of the Re = 2000 jet containing the jet center axis, displaying the
streamwise u-velocity component from the Fluent solution for the 23 × 23 × 70 RANS mesh. The
scale is in units m/s.
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Figure 4.9: A cross section of the Re = 4000 jet containing the jet center axis, displaying the
streamwise u-velocity component from the Fluent solution for the 23 × 23 × 70 RANS mesh. The
scale is in units m/s.

Figure 4.10: A cross section of the Re = 8000 jet containing the jet center axis, displaying the
streamwise u-velocity component from the Fluent solution for the 23 × 23 × 70 RANS mesh. The
scale is in units m/s.
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Figure 4.11: A cross section of the Re = 16000 jet containing the jet center axis, displaying the
streamwise u-velocity component from the Fluent solution for the 33 × 33 × 70 RANS mesh. The
scale is in units m/s.

Figure 4.12: A cross section of the Re = 32000 jet containing the jet center axis, displaying the
streamwise u-velocity component from the Fluent solution for the 41 × 41 × 70 RANS mesh. The
scale is in units m/s.
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Figure 4.13: A cross section of the Re = 64000 jet containing the jet center axis, displaying the
streamwise u-velocity component from the Fluent solution for the 33 × 33 × 70 RANS mesh. The
scale is in units m/s.

Figure 4.14: A cross section of the Re = 2000 jet containing the jet center axis, displaying the
turbulent viscosity from the Fluent solution for the 23 × 23 × 70 RANS mesh. The scale is in units
kg/m s. Boundary effects are visible along the edges.
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Figure 4.15: A cross section of the Re = 4000 jet containing the jet center axis, displaying the
turbulent viscosity from the Fluent solution for the 23 × 23 × 70 RANS mesh. The scale is in units
kg/m s. Boundary effects are visible along the edges.

Figure 4.16: A cross section of the Re = 8000 jet containing the jet center axis, displaying the
turbulent viscosity from the Fluent solution for the 23 × 23 × 70 RANS mesh. The scale is in units
kg/m s. Boundary effects are visible along the edges.
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Figure 4.17: A cross section of the Re = 16000 jet containing the jet center axis, displaying the
turbulent viscosity from the Fluent solution for the 33 × 33 × 70 RANS mesh. The scale is in units
kg/m s. Boundary effects are visible along the edges.

Figure 4.18: A cross section of the Re = 32000 jet containing the jet center axis, displaying the
turbulent viscosity from the Fluent solution for the 41 × 41 × 70 RANS mesh. The scale is in units
kg/m s. Boundary effects are visible along the edges.
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Figure 4.19: A cross section of the Re = 64000 jet containing the jet center axis, displaying the
turbulent viscosity from the Fluent solution for the 33 × 33 × 70 RANS mesh. The scale is in units
kg/m s.

4.2 Code Parallelisation and Performance
The effect of the code parallelisation was quite prominent. For a test case of a 23×23×38
RANS mesh with a LEM resolution of 268 cells per 3DCV length, the running of the par-
allel code on four processors led to a run time reduction as large as 49.9%, which is a
prominent improvement. This effectively reduced the run time from ∼ 35.5 hours to
∼ 18.5. For an equivalent run but with double LEM resolution, i.e. 538, the wall to wall
run time is reduced by 43.8%, or a reduction from ∼ 65.6 hours to ∼ 36.9.

The scaling for larger number of threads the same scaling is approximately similar.
Increasing for example 7 threads to 120 as in the most extreme case, ie. by a factor ∼ 17,
the run time was reduced by a factor close to 10.

For the CO2/H2-jet with Reynolds number 64000 a short LEM resolution refinement
was performed, where LEM resolution vs. run time was investigated. The results are
shown in Table 4.1, and all simulations were run on 6 threads (on hyper-threaded 4 core
processors) using the exact same hardware. In the same table, the maximum relative error
between a root-mean-squared differential diffusion solution and the next lower resolved
solution are calculated, illustrating that the solution is not quite stable for LEM resolutions
of this magnitude. A substantial resolution increase would be necessary to find perfectly
stable solutions.
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LEM resolution Run time Relative increase Max. relative zrms error
46 585m49.440s - -
68 1289m15.975s 120.3 % -47.8 %
100 3246m48.718s 151.8 % -44.0 %

Table 4.1: The run times for the CO2/H2 Jet at different LEM resolutions along with the relative
increase for the previous LEM resolution in run time. The LEM resolution is given as the number of
LEM wafers per 3DCV length. The maximum relative error between the current zrms solution and
the previous one is also presented.

For the same case as in the previous paragraph, a run with LEM resolution 46 was
performed for 4 and 6 threads to examine the impact on run time while utilising hyper-
threading. A time reduction of 13.2% was found, showing that increasing the number of
parallel processes beyond the number of cores only has minor, yet positive effects on code
performance for the limited number of threads used.

4.3 Differential Diffusion in LEM3D

4.3.1 The H2/Freon 22 Jet

The differential diffusion in the hydrogen-freon jet was calculated for the radial direction
at jet axis positions x/Dj = 10, 20, and 30 based on a 23× 23× 38 RANS solution with
LEM resolutions 128, 256, and 512. The jet Reynolds number was set to Re = 20000,
corresponding to a inlet velocity Ujet = 73 m/s. The root-mean-squared differential diffu-
sion as defined by Eq. (2.7) is given in Figures 4.20, 4.21, and 4.22. The similar quantities
for a 69 × 69 × 114 RANS solution are presented in Figures 4.23, and 4.24. Finally, the
input data from the fine mesh adapted to a coarse grid generates results as in Figure 4.25,
and 4.26.

4.3.2 The CO2/H2 Jet in Air Co-flow

Simulations resulted in data on both radial mean and root-mean-square differential diffu-
sion values for the 64% CO2 and 36% H2 jet. The jet in this case was placed in a 1.5 m/s
air co-flow. Simulations were performed for Re = 2000, 4000, 8000, 16000, 32000, and
64000. Mean differential diffusion data for the two lowest Reynolds numbers are shown in
Figures 4.27 and 4.28, along with LES results for comparison. The mean diffusion is here
defined as z = ξH2

− ξCO2
. In Figures 4.29 and 4.30 the root mean squared differential

diffusion is presented as a function of Reynolds numbers for different positions in the jet.
Experimental data measured using Raman scattering spectroscopy by Smith et al. [2] is
also given in the two figures. Root-mean-squared data for the entire sequence of Reynolds
numbers are displayed in Figures 4.31, 4.32, 4.33, 4.34, 4.35, and 4.36. The profiles are
given at the following set of positions x/Dj = 15, 30, and 60.
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Figure 4.20: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the coarsest 23 × 23 × 38 RANS mesh with RANSdx = 0.4697 cm, and LEMres = 128.

Figure 4.21: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the coarsest 23 × 23 × 38 RANS mesh with RANSdx = 0.4697 cm, and LEMres = 256.
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Figure 4.22: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the coarsest 23 × 23 × 38 RANS mesh with RANSdx = 0.4697 cm, and LEMres = 512.

Figure 4.23: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the finest 69 × 69 × 114 RANS mesh with RANSdx = 0.1566 cm, and LEMres = 42.
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Figure 4.24: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the finest 69 × 69 × 114 RANS mesh with RANSdx = 0.1566 cm, and LEMres = 84.

Figure 4.25: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the finest mesh solution modified to fit a 23 × 23 × 38 RANS mesh with RANSdx = 0.4697 cm,
and LEMres = 128.
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Figure 4.26: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.53 cm. The data is based
on the finest mesh solution modified to fit a 23 × 23 × 38 RANS mesh with RANSdx = 0.4697 cm,
and LEMres = 256.

Figure 4.27: The radial profile for the mean differential diffusion at different jet center axis posi-
tions, x. The data is plotted together with LES results by Maragkos et al. [3]. All length parameters
are scaled by the jet diameter Dj = 0.77 cm. The data is based on a 23×23×70 RANS mesh with
RANSdx = 0.6824 cm, and LEMres = 90. The CO2/H2 jet has Reynolds number 2000.
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Figure 4.28: The radial profile for the mean differential diffusion at jet center axis position, x/Dj =
15. The data is plotted together with LES results by Maragkos et al. [3]. All length parameters are
scaled by the jet diameter Dj = 0.77 cm. The data is based on a 23 × 23 × 70 RANS mesh with
RANSdx = 0.6824 cm, and LEMres = 100. The CO2/H2 jet has Reynolds number 4000.

Figure 4.29: The root-mean-square values for differential diffusion at different Reynolds numbers
and jet center axis positions, x. Experimental values for an identical CO2/H2 jet measured by Smith
et al. [2] are also given. All length parameters are scaled by the jet diameter Dj = 0.77 cm.
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Figure 4.30: The root-mean-square values for differential diffusion at different Reynolds numbers,
jet center axis positions x, and radial offsets r. Experimental values for an identical CO2/H2 jet
measured by Smith et al. [2] are also given. All length parameters are scaled by the jet diameter
Dj = 0.77 cm.

Figure 4.31: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.77 cm. The data is based
on a 23 × 23 × 70 RANS mesh with RANSdx = 0.6824 cm, and LEMres = 90. The CO2/H2 jet has
Reynolds number 2000.
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Figure 4.32: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.77 cm. The data is based
on a 23×23×70 RANS mesh with RANSdx = 0.6824 cm, and LEMres = 140. The CO2/H2 jet has
Reynolds number 4000.

Figure 4.33: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.77 cm. The data is based
on a 23×23×70 RANS mesh with RANSdx = 0.6824 cm, and LEMres = 140. The CO2/H2 jet has
Reynolds number 8000.
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Figure 4.34: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.77 cm. The data is based
on a 33×33×70 RANS mesh with RANSdx = 0.6824 cm, and LEMres = 100. The CO2/H2 jet has
Reynolds number 16000.

Figure 4.35: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.77 cm. The data is based
on a 41×41×70 RANS mesh with RANSdx = 0.6824 cm, and LEMres = 100. The CO2/H2 jet has
Reynolds number 32000.
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Figure 4.36: The radial root-mean-square profile for differential diffusion at different jet center axis
positions, x. All length parameters are scaled by the jet diameter Dj = 0.77 cm. The data is based
on a 33×33×70 RANS mesh with RANSdx = 0.6824 cm, and LEMres = 100. The CO2/H2 jet has
Reynolds number 64000.
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5.1 RANS Solutions

First the RANS solutions for the H2/Freon 22 jet are examined. As seen in Figures 4.5, 4.6
and 4.7, there are some distinct differences in the fine, modified and coarse mesh outputs.
The streamwise u-velocity of the coarse solution consistently lies above the fine mesh, and
similarly for the turbulent viscosity, but the magnitude of the deviations are seen clearly in
Figures 5.1 and 5.2. It is apparent that the fine and modified solutions are very similar, ex-
cept for at the immediate inlet situations. There are bigger differences between the course
and fine mesh. Both the molecular viscosity, the turbulent viscosity and the streamwise
velocity are generally larger for the coarsest mesh, which explains why for example the
run times, were observed to be quite a lot higher for the fine, and modified meshes. This
will be discussed in more detail later. The high turbulent diffusivity for the coarsest mesh,
which has a maximum relative difference to the fine mesh of nearly 200% will have effects
on the resolution of turbulent scales.

The carbon dioxide-hydrogen jet suffered from some edge effects along the bound-
aries, and toward the downstream end of the flow, which is apparent from all Figures 4.14
through 4.19. That is the reason for why the width and height of the jets were gradually
increased as the jet width increased for higher Reynolds numbers. As explained in Section
3.2, the edge effects were removed by using a UDF cleaning the output file. The UDF
uses gradients and multiple sweeps to smooth the profile, which means that in cases where
the edge effect overlaps with the actual solution, the solution may not be very precise in
relation to the true solution, but is realistic in that the profile is smoothed out. In the low
Reynolds number Figures 4.8 and 4.9, it is apparent that the co-flow is nearly indistinct
from the jet flow, and this may have some implications for mixing outside of the jet itself.
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Figure 5.1: The streamwise u-velocities, turbulent diffusivities and molecular viscosities of the
finest refined mesh, compared to the modified solution adapted to a 23 × 23 × 38 RANS mesh.

Figure 5.2: The streamwise u-velocities, turbulent diffusivities and molecular viscosities of the
finest refined mesh, compared to the coarse 23 × 23 × 38 RANS mesh solution.
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5.2 Differential Diffusion Results for LEM3D

5.2.1 The H2/Freon 22 Jet

The results for the H2/Freon 22 jet to some extent reproduce the behaviour observed by
Sannan et al. [16]. Falling magnitude with higher radial distance and with higher LEM
resolution is observed, except that in this case, the 512 LEM resolved solution also falls
quite low in general magnitude level and has a very slow descent with radial coordinates.
Considering the coarsest RANS mesh, this is especially apparent at x/Dj = 10, and the
results by Sannan et al. do not share the same peak at x/Dj ∼ 3.3. Otherwise, the dif-
ferential diffusion decreases with increased distance from the jet inlet, which is according
to expectations. For LEMres = 128 and 256 the differential diffusion is far higher near
the center axis than the rest of the jet. This may indicate that the peak near the end of the
x/Dj = 10 profile is an important profile feature, which will not be subdued by the falling
profile magnitude. For the profile with LEMres = 512, the lkfac is set as low as 2, which
effectively allows more small eddies to appear, and their effect may explain why less mat-
ter diffuses out from volumes close to the jet center axis than for coarser resolutions. In
addition, by defining the edge of the jet at 0.01× Umax, i.e., at one percent the magnitude
of the maximum mean u-velocity component, the edge of the jet at x/Dj = 10 can be
estimated to be δedge = 3.928 cm from the jet center axis. The edge coincides well with
where the differential diffusion decays and approaches zero.

The fine RANS mesh, gives a much smoother solution. Figures 4.23 and 4.24 illustrate
that the general trend where the differential diffusion decreases for increasing streamwise
and radial coordinates. The same trend is observed for increasing LEM resolution as well.
It is interesting to note that the differential diffusion is higher for the profile at x/Dj = 30
than for x/Dj = 20 for small r. Another feature that separates this solution from the
coarse RANS solution is the high, constant negative gradient for the x/Dj = 30 solution
which implies a more complex differential diffusion behaviour downstream than what the
coarse RANS mesh allows for. Using the finely resolved RANS solution, the jet width at
x/Dj = 10 is estimated to δedge = 2.945 cm, which again coincides well with the decay
of the LEM3D solution.

Finally, the modified solution is considered as represented in Figures 4.25 and 4.26.
The downstream, radial and LEMres variation is more consistent with the coarse RANS
case than the finest. However, it still obeys the jet width of the fine RANS input.

In common for all resolutions is that the LEM3D predicts high differential diffusion
near the center axis, and decreasing yet almost uniform differential diffusion until the full
width of the jet is reached. Further downstream the differential diffusion seems to become
steadily more uniform within the confines for the jet. The slightly deviating behaviour
from the finest RANS mesh case is likely due to the much improved resolution of the
turbulent properties and mean velocity field of the jet. The Kolmogorov scale should be
sufficiently resolved, so all turbulent behaviour should be captured. This is discussed in
closer detail in Section 5.4. Also, since the coarse and modified mesh solutions are both
based on 23 × 23 × 38 meshes, it is likely that the distinct fine mesh profile is a conse-
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quence of the finer RANS resolution.

The LEM3D is readily compared to experimental data in Figures 5.3, 5.4, and 5.5.
Dibble et al. [1] produced the experimental values by use of Rayleigh scattering. The
comparison reveals two very distinct differences, the first being that the computational re-
sults have a much lower magnitude, which means the simulations roughly underestimate
the experimental results by a factor between 1.1 and 10. Considering the coarse RANS
configuration in Figure 5.3, the profiles at x/Dj = 10, and 20 fit quite well with the
radial extent and decaying behaviour of the experimental data. The same is true for the
modified RANS configuration, which also matches even better in terms of magnitude. It
must also be noted that for the experimental data the furthest upstream profile seems to
level off at a value of r/Dj ∼ 5 after a sharp decline at the edge of the jet. This lies
in the area that should be outside the jet, and which would normally experience negligi-
ble differential diffusion. Therefore, it may be assumed that the experimental data has a
maximum uncertainty of ±5 units. That would explain some of the underestimation of
the LEM, but cannot account for all of it. In comparison, the two profiles that are furthest
downstream and based on the fine RANS mesh input, decay to zero far earlier than the
experimental data. The profiles therefore indicate a narrower jet than in the experiment,
or that no mixing action is performed in the extremities of the jet. This solution is better
however, at reproducing the wide peak which the middle distance profile experiences for
x/Dj ∼ 3.5. The low magnitude, also indicates that the true stationary solution which the
LEM3D seeks, is yet to be reached through even higher refinement.

The second major difference is that the experimental data for the x/Dj = 10 profile
has a large peak at r/Dj = 2. Only the modified RANS solution input has a peak which
weakly resembles this, but it is a better fit with the experimental profile than the other two.
It is also interesting to note that in Figure 5.5, the the radial positions where the x/Dj = 10
intersect the other two profile matches experimental data very well. The same is also true
for the intersection between the x/Dj = 20 and 30 profiles. An even finer refined RANS
mesh, for example 207 × 207 × 342 modified to fit the 69 × 69 × 114 or 23 × 23 × 38
mesh, would give even more precise velocity and turbulence property profiles which likely
would benefit even more from the modification.

In general the LEM3D predicts high differential diffusion close to the jet center axis,
and almost uniform diffusion until the edge of the jet is reached. Differential diffusion is
here defined as the difference between the hydrogen and Freon 22 mixing fractions which
means that the highest values are where there is a large difference between the transport
of the more diffusive species (hydrogen) than for the less diffusive species. Hence this
indicates that LEM3D predicts hydrogen to diffuse from the jet center upstream, and that
the diffusion and mixing is more uniform downstream and further out radially. This is
realistic as air is entrained in the early development of the jet, and would possibly affect
the hydrogen diffusion far upstream.

The effects of further refinement for the different mesh configurations are expected
to further decrease the magnitude of the diffusion, and diminish the high values near the
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center axis compared to the rest of the jet domain, at least this is what the current observed
trends suggest.

It was discovered after the LEM3D simulations were performed that the Fluent out-
put for the finest mesh had irregularities in the inlet boundary condition. Not all of the 9
inlet cells had an effective inlet velocity of 73 m/s, and the velocity was asymmetrically
distributed as a result. The effect would be a reduced Reynolds number, and that the mod-
ified mesh solution would get a more imprecise velocity profile with respect to the inlet
boundary condition. In Figures 5.6 and 5.7 the corrected profiles are shown. Here, the
finely resolved Fluent solution has been subjected to stricter conditions on the inlet bound-
ary conditions. It is evident from the velocity profiles that the fine and coarse solutions
are now in better agreement. The modified solution velocity does now fulfil the boundary
condition, but otherwise has a similar profile as before the error correction. The effect of
the error would lessen the mass inflow, and otherwise affect the inlet velocity field for the
modified solution, but is expected not to change downstream radial profiles in the steady
state to a large degree. As will be discussed in subsection 5.2.2, higher Reynolds numbers
are known to decrease the differential diffusion, which means that the inlet error should
cause small increases in the differential diffusion profiles.

Another source of error should be that the boundary condition is not well adapted to a
3× 3 inlet in the LEM3D code. The result should most likely not suffer greatly from this,
but should be improved for future repetitions of similar flow configurations. A possible
effect is that it may contribute to the quick decay to zero for the downstream radial pro-
files. Despite the errors just described, the computed profiles are expected to display the
characteristic behaviour for each of the seven solutions. Some of the differential diffusion
magnitudes are, however, inaccurate due to the input errors, but as has been observed, the
LEMres dependency probably has a much stronger effect on the magnitudes. However, for
future simulations the corrected input and boundary condition should of course be utilised.
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Figure 5.3: The radial root-mean-square profile for differential diffusion at multiple jet center axis
positions, x. Experimental data by Dibble et al. [1] is presented for comparison. All length pa-
rameters are scaled by the jet diameter Dj = 0.53 cm. The LEM3D data is based on the coarsest
resolved 23 × 23 × 38 RANS mesh with RANSdx = 0.4697 cm, and LEMres = 512.

Figure 5.4: The radial root-mean-square profile for differential diffusion at multiple jet center axis
positions, x. Experimental data by Dibble et al. [1] is presented for comparison. All length parame-
ters are scaled by the jet diameter Dj = 0.53 cm. The LEM3D data is based on the finest resolved
69 × 69 × 114 RANS mesh with RANSdx = 0.1566 cm, and LEMres = 84.
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Figure 5.5: The radial root-mean-square profile for differential diffusion at multiple jet center axis
positions, x. Experimental data by Dibble et al. [1] is presented for comparison. All length param-
eters are scaled by the jet diameter Dj = 0.53 cm. The LEM3D data is based on the finest mesh
solution modified to fit a 23×23×38 RANS mesh with RANSdx = 0.4697 cm, and LEMres = 256.

Figure 5.6: The stream wise u-velocities of the finest refined mesh along the jet center axis, com-
pared to the modified solution adapted to a 23 × 23 × 38 RANS mesh, and the direct coarse mesh
solution. For this data, the inlet boundary condition is better implemented than previously.
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Figure 5.7: The turbulent diffusivities of the finest refined mesh, along the jet center axis, compared
to the modified solution adapted to a 23×23×38 RANS mesh, and the direct coarse mesh solution.
For this data, the inlet boundary condition is better implemented than previously.

5.2.2 The CO2/H2 Jet
Figures 4.27 and 4.28, display the mean radial differential diffusion between hydrogen and
carbon dioxide along with LES data by Maragkos et al. [3] for Re = 2000 and 4000. For
Re = 2000 there is not an entirely decisive agreement between the experiments and sim-
ulations. Both sets of simulation data recognise a high differential diffusion close to the
jet center axis, and then a segment of relaxation towards a stable level. Experimental data
agrees for x/Dj = 15, with a relaxation towards zero, but the profile further downstream
has low diffusion near the jet center axis. The LEM3D mean overestimates the experi-
mental data by over two orders of magnitude in the most extreme points. The Re = 4000
case has an opposite trend, where both experiment and simulation agree that less differen-
tial diffusion happens by the central axis than immediately outside, and the peak decays
slowly towards zero. In general, the profiles show similar behaviour as experiments, but
also large overestimation of experimental data.

Figures 4.29 and 4.30 show experimental data by Smith et al. [2], and the rms LEM3D
solutions as functions of Reynolds numbers, for different locations within the jet. The
first figure displays data along the jet center axis and reveals general very good agree-
ment with the experiments. The x/Dj = 10 profile is somewhat overestimated, while the
x/Dj = 30 profile is underestimated. The second figure also shows good agreement with
the general trend of the three profiles, but in this case LEM3D underestimates the exper-
imental data by sometimes a factor close to three. For both figures though, there is some
strange behaviour in the Re = 2000 values. For the first figure, the differential diffusion of
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the furthest upstream profile is smaller than the next downstream profile, which is contrary
to the general trend, and also these values are quite low for the second figure. A possible
explanation may be that the profiles produced by LEM are quite jagged, and may at some
points be slightly over or underestimated, and in addition the Re = 2000 results are more
poorly resolved than the others which may have a slight effect. The two plots confirm
that LEM3D predicts the effects of differential diffusion to decrease with higher Reynolds
numbers, and that this agrees well with experimental measurements.

Figures 4.31 through 4.36 show the radial differential diffusion profiles for the differ-
ent Reynolds numbers. The LEM3D solutions highlight high differential diffusion close
to the center axis, and an almost uniform level of diffusion throughout the rest of the jet
width. The width of the mixing region is shown to widen with higher Reynolds numbers.
It is also apparent that the co-flow has a noticeable effect in the low Reynolds number
results. For Reynolds numbers 2000 - 8000 it is seen that the co-flow ensures a minimum
level of mixing for the area outside the jet as well as within it. In the most extreme case
where the jet inlet velocity is only double that of the co-flow, which is for Re = 2000, the
LEM3D predicts increasing differential diffusion even outside the jet due to the co-flow
interaction. For the subsequent figures, the co-flow effect steadily diminishes. A strange
artefact observed in Figure 4.31, is that the differential diffusion in the middle position
profile is higher than for the profile closest to the inlet, which is contrary to other trends.
The jet should be sufficiently resolved, as discussed in more detail in Section 5.4, and
therefore it is likely that this is an effect of the flow configuration, and since the distinction
between jet and co-flow is so small it is likely an effect of the co-flow influence.

To conclude, the differential diffusion predicted for the CO2/H2 mixture by LEM3D
is generally consistent with the results for the H2/CHClF2 jet. This is unsurprising since
the molecular diffusivity of the two heavier species, CO2 and Freon 22, are comparable,
while hydrogen is highly diffusive. There are some noticeable differences, which are most
likely due to co-flow influence, and the fact that the LEM wafer resolution is between half
and three quarters of the coarsest LEM resolution used for the hydrogen-Freon 22 mixture.

5.3 Details on the Simulation Execution
The parallelisation of the code was very beneficial, since this greatly reduced run times in
comparison to sequential code, as demonstrated in Section 4.2. Yet, the run time growth
with resolution was still quite fast as seen in the same section, so computational demands
were high. Run times for simulations with different RANS resolutions but equivalent
LEM resolution were also wildly different, where the finest RANS mesh demanded the
most computational time. The larger RANS meshes also required multiple arrays in the
code to be enlarged 27 times, and caused high demands for RAM. A consequence of this
was that not all of the nodes used for computations could satisfy the RAM demands, and
therefore some simulations had to be delayed until suitable resources were made avail-
able. Access to a larger multi node system was eventually acquired, but many users and
a crowded work queue made it unfeasible to further refine LEM resolution for the finest
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RANS meshes further than what is presented in the current results section. This system
could allocate a high number of nodes to the parallelisation and greatly reduce run time.

The LEM3D was through experience shown to be very sensitive to input files, espe-
cially to the integral scale, since lower integral scale values would lead to more small
eddies and more triplet map events. This results in more computational work, and longer
run times. McMurtry et al. [22] used leading order analysis to obtain the rate parameter
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from the Equation (2.28). The resulting expression clearly states that higher values of Λ
will give a lower rate of events, ζ.

This fact was observed in multiple ways, for example, using the uncleaned integral
scale files, with many erroneously high integral scale values the run time was reasonable,
but when changing to the cleaned integral scale, the run time was well over doubled. Sim-
ilarly, the input data produced with the coarse and fine RANS meshes in Fluent are so
different that the run time for LEMres = 256, increases from just over 5 days for the coars-
est mesh, to a prediction of approximately 21 days for the finest 69× 69× 114 mesh. This
observation is even further strengthened when investigating the modified RANS mesh so-
lution. Simulations based on this technique, as explained in the final paragraphs of Section
3.2.2, had a run time comparable to the raw 69×69×114 mesh of approximately 21 days.

As shown in Section 4.2, the scaling from 7 to 120 processes gave improved perfor-
mance and was comparable to the performance scaling of going from one to four pro-
cesses. The original run time was over 80 days. Since 7 by 42 is 112 and 80/22 = 20,
the approximate relation that the computational time is halved for each time the number of
processes is quadrupled seems realistic. However, this is not a very rigid computation and
differences in computer architecture and CPUs also affect this to a large extent. It should
be noted that since only a single node handles the communication with all the other nodes,
the parallelisation performance should eventually reach a ceiling where there communica-
tion node starts to slow down the program. This ceiling number of nodes rises however as
the LEM resolution rises, and it takes longer for each node to compute a solution, and the
communication with the root node may happen in a larger interval of time. This is very
visible if considering that 7 threads on a 4 core hyper-threaded processor, was increased
to 120 threads running on 120 processors. The hyper-threaded 7 processes are equivalent
to a small improvement on a pure 4 processor system, as implied in Section 4.2. Counting
this as 4 threads, the number of threads are increased by a factor 30 ≈ 24.9, which means
the amount of threads that work on the finite number of LEM domains are doubled almost
5 times and ideally should reduce run time by half each time. Therefore one would expect
a run time reduction by a factor close to 30. Instead, the run time was reduced by a factor
10, which is quite good, but demonstrates that the sequential code executed by the root
thread, and intercommunication between processors has a prominent effect. Distributing
the root node tasks on more processors would likely improve scaling properties, if possible.
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5.4 Resolution of Turbulent Scales

In terms of resolution, the limiting quantity for turbulent eddies is the LEM wafer thick-
ness lemdx, which must be at least a third of the eddy length in order for the eddy to be
resolved, due to the definition of triplet maps.

The LEM resolution for the H2/Freon 22 jet is varied as well as its RANS input reso-
lution, and as such the resolution of Kolmogorov scale eddies differ for all cases. Due to
the lkfac being set to a value higher than 1, the actual Kolmogorov scale was not actually
resolved in all cases, but for many cases it would have been possible with the given reso-
lution at cost of longer computational times. The Kolmogorov scale is computed locally,
i.e., within the turbulent jet the turbulent structure is not uniform for the entire domain
and therefore the Kolmogorov scale varies between each 3DCV. For the coarsest resolved
RANS input data, the Kolmogorov scale would be resolved 4 - 22 times for the entire jet
centerline. For the finest mesh, the smallest scale turbulence should also be sufficiently
resolved, and it is resolved between 4 and 28 times along the center axis. It should be
noted that the highest values are at the very end of the domain and may be partially caused
by edge effects, but the general trend is that the resolution improves further downstream.

For the modified RANS mesh data, the resolution is again improved, with the Kol-
mogorov scale being resolved 3 - 28 times. The Kolmogorov resolution is constant for all
the chosen LEMres values, since the lkfac is halved each time LEMres is doubled, and
they therefore cancel out perfectly, which then allows the effect of higher LEM resolution
to be investigated without changing the Kolmogorov resolution and saving computational
time. From observations, the integral scales Λ typically are smaller for the finest mesh,
and it would be expected that the Kolmogorov scale would be smaller and more poorly
resolved for the finest mesh. The LEMres and 3DCV sizes are chosen such that the grid
resolution for the LEMres = 128 and 256 solutions should be roughly equivalent to the fine
RANS solution with LEMres = 42 and 84 respectively. From Figure 5.2 it is apparent that
the coarsely resolved turbulent diffusivities have higher magnitudes, and since the code
computes the Kolmogorov scale resolution by the equation
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it explains why the Kolmogorov resolution still agrees so well for both solutions. It is
then also important to note that the integral scale Λ is slightly lower for the finest RANS
solution.

For the CO2/H2 jet, the resolution had to be limited with respect to run time restric-
tions. As observed in Section 4.2, the run time scales almost quadratically as ∼ w2, if
w denotes the ratio between the new and old LEM resolutions. A level of LEMres = 100
was decided to be a suitable compromise for run time and resolution in general, and cor-
responds to a LEM wafer thickness of 6.824 · 10−5 m. This turned out to be only suitable
for the highest resolutions, as the lowest Reynolds number jet (Re = 2000), experienced
an extremely long run time compared to the others, and then resolution was decreased to
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90, and heavier computational resources were needed. For Re = 4000, 8000, the solutions
suffered oscillations, and very sharp jumps until the resolution was increased until 140, or
a wafer thickness of 4.874 ·10−5 m. At this point it would probably be better to run a more
thorough sensitivity analysis for the entire spectrum of Reynolds numbers, but as shown
in Section 4.2, this would probably be unfeasibly time consuming, as the most powerful
available computational resource was subject to a crowded work queue. As shown in the
same section, the maximum relative error between solutions does not change much for this
range of resolutions, which indicates that the resolution probably must be increased quite
a lot to reach a stable magnitude for solutions. The same changes in the solutions are also
observed for the other jet configuration. Despite this, the resolution was usually sufficient
to at least capture many features of the differential diffusion profiles to a satisfactory de-
gree.

The turbulent intensity along the jet centerline, is assumed to have points with the
highest turbulent intensities of the computational domain. Therefore, this line is suitable
for assessing the resolution. For the Re = 2000 jet, the turbulent properties are quite
weak and therefore the Kolmogorov scales are quite large as a consequence. Hence, the
Kolmogorov scales were resolved 50 - 200 times at the centerline points, which should
be more than enough. Compared to Maragkos et al. [3], where the Kolmogorov scale
is resolved approximately between 1 and 5 times this is much better resolved. Despite
this, some strange behaviour is observed in Figure 4.31, for example the upstream profile
exhibiting less differential diffusion than the next downstream profile. However, this may
also be explained by the influence of the air co-flow, and is not necessarily an artefact of
poor resolution. The weak turbulent behaviour and a jet velocity only double the co-flow
velocity, may have caused undiscovered inaccuracies in the UDF calculations, and perhaps
the co-flow effect could explain why the differential diffusion was more pronounced for a
profile further downstream, which was contrary to most other data.

For Re = 4000 and 8000, the resolution was set to 140, and for the centerline Kol-
mogorov was resolved between 12 - 140 times, compared to Maragkos’ 1-10. Similarly,
for the highest Reynolds numbers, resolutions lay between 2 and 39 Kolmogorov scales.
Typically, the Kolmogorov scale would be most poorly resolved near the inlet (or potential
core) as usual, and the resolution requirements became stricter each time the Reynolds
number was increased, as expected. To summarise, all of the jets should be sufficiently re-
solved for the turbulent flow considered here, but in some cases it could be better in order
to also get reliable results for the potential core.
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The thesis addresses the simulation procedure and outcome for hydrogen-rich turbulent
jets using LEM3D. Two distinct jet cases were treated; one 90% H2 and 10% Freon 22
(CHClF2) mixture jet issuing into air, and one 64% CO2 and 36% H2 mixture jet in an
1.5 m/s air co-flow. All percentages were taken with respect to mole fractions. ANSYS
Geometry, Mesh and Fluent, were used to prepare a steady-state mean velocity field, and
turbulent properties for the jets in question. By using user defined functions (UDFs), which
were modified versions of UDFs written by SINTEF, the ANSYS results were converted
into suitable input for the LEM3D code. The LEM3D code provided by SINTEF was
initially written for sequential operation only, but was rewritten to work for parallel com-
putation of LEM 1D domain processes such as molecular diffusion and triplet map events.
Some simple tests for parallelisation performance, in terms of a rough refinement exercise
and multithreading vs. single threaded cores were performed to find that the parallelisation
could potentially greatly reduce run time. Finally, the different simulations were run for
both jet mixtures, while varying RANS and LEM resolution, but also Reynolds numbers.
The results are a set of radial differential diffusion profiles at different downstream posi-
tions in the jet, given as both mean and root-mean-squared values.

The results were compared to different experimental and computational data. Results
for the H2/Freon 22 jet were compared to computational data by Dibble et al. [1], where
the computational data was found to underestimate the experimental data by almost an
order of magnitude. In addition, the trend with refinement of LEM resolution would cause
the underestimation to grow even more. The LEM3D simulations based on the modified
RANS mesh was found to match the experimental data best, both in magnitude and by pre-
dicting the radial positions for intersections between different downstream z-profiles. The
CO2/H2 jet results were compared to LES results for mean differential diffusion, where
they were found to have vaguely similar behaviour, but also to overestimate the LES re-
sults by at most well over an order of magnitude. zrms-values for the jet were plotted
together with experimental data by Smith et al. [2], and even though the LEM3D data
in some areas had almost oscillatory like behaviour the general trend line would match
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experiments well, and values would be both over and underestimated but by maximum a
factor of 3.

The general trend in the results were that the LEM3D, seems to predict large levels of
differential diffusion near the jet center axis, at least upstream near the inlet, and then an
almost uniform level throughout the rest of the jet. This behaviour lasts until the edge of
the jet at δedge, but quickly decays to zero outside of this limit.

There are several interesting findings in the results produced for this thesis. One, be-
ing that the LEM3D seems to capture the decreasing effects of differential diffusion with
higher Reynolds numbers. Another is that by modifying the RANS solution to a coarser
resolved mesh, memory requirements can be decreased while still preserving the turbu-
lent properties of the finest resolved solution well. Despite this, the LEM3D solution still
appears to be highly dependent upon both LEM resolution and RANS resolution, giving
some distinct dissimilarities in the resulting differential diffusion profiles.

For future work it is recommended that the LEM resolution in particular is increased
even further, since the level where the differential diffusion magnitude stops falling with
resolution is not yet reached. Finer LEM resolutions in conjunction with finer resolved
RANS mesh input is also recommended, to get a precise comparison to the LEMres = 512
solution for the fine and modified solutions as well. To this end it would also be very ben-
eficial to make the LEM3D code more affordable in terms of RAM requirements, which
tends to grow outside of bounds for personal computers when run in parallel execution. In
any case, to fully benefit from the parallelisation, it is necessary to have access to resources
on par with Idun, as previously described or even faster, larger computing systems. Most
important would however be to correct for the errors discovered in inlet boundary condi-
tions for the finest resolved input, as this would probably make results even more precise.
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Appendices
Appendix A: Literature Search
During the thesis work, information and data had to be retrieved from external sources.
The most important tool in this context has been the university library service NTNU
UB’s Oria system. Among its resources the SCOPUS, Reaxys, INSPEC and Web of Sci-
ence (ISI) databases have been predominantly used. The Reaxys database have been used
for looking up and confirming values of physical properties rather than finding literature
sources. The first two databases are operated by commercial Elsevier Business and IN-
SPEC is run by the Institution of Engineers and Technology (IET). Therefore, is natural to
suspect that the search result found in these databases may be somewhat biased according
to the policies of these organisations. The Web of Science is run by Clarivate Analytics,
which claims that the database is without bias, and is generally recognised among my
peers and superiors to be a trusted source of information.

When using for example SCOPUS, I have actively used operator commands to limit
or widen the search to the most relevant results, see Table A.1 for an example of a search
procedure. In this example, I was able to limit a search returning over 7700 results to
less than 30, making it easier to find sources that were of interest. The search could be
narrowed down even further if necessary. In this specific example the truncation, *, OR-
and AND-operators were used. The truncation operator, *, allows any word that is an ex-
tension of the word the operator is applied on to be a search result. It can also be used at
the front of the word, allowing any word ending with the tagged root word to be a result.

Search sequence Search query # of results
1 hydrogen AND jet 7785
2 hydrogen AND turbulent AND jet 955
3 (H2 OR hydrogen) AND turbulent AND jet 1029
4 (H2 OR hydrogen) AND turbulent AND jet 470

AND (computat* OR numeric*)
5 (H2 OR hydrogen) AND turbulent AND jet 27

AND (computation* OR numeric*) AND
“Differential Diffusion”

Table A.1: A sequence of search queries entered in SCOPUS, and the number of returned result of
each query.

This was a short demonstration on how relevant information was collected, but is not
of technical interest for the contents of the thesis.
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Appendix B: Parameter Configurations
Tables B.1 and B.2, show the configuration for which the final simulations were performed
for the H2/Freon 22 and H2/CO2 jets respectively. The parameters in Table B.3, were
used for all final simulations producing the differential diffusion data presented the results
section. Two exceptions applies to the Re = 32000 and Re = 4000 CO2/H2 jets, as
rstmod was set to 2500, and 4000 respectively.

RANS resolution LEMres lkfac RANSdx DfM(1) DfM(2) Re
23× 23× 38 128 8 0.4697 0.77 0.12 20000
23× 23× 38 256 4 0.4697 0.77 0.12 20000
23× 23× 38 512 2 0.4697 0.77 0.12 20000
69× 69× 114 42 8 0.1566 0.77 0.12 20000
69× 69× 114 84 4 0.1566 0.77 0.12 20000
23× 23× 38* 128 8 0.4697 0.77 0.12 20000
23× 23× 38* 256 4 0.4697 0.77 0.12 20000

Table B.1: Table showing the most important input parameters used when running the simulations
yielding the presented results. This table treats the H2/Freon 22 jet. Molecular diffusivity, DfM,
values are given in units cm2 s−1, while RANSdx is given in cm. * denotes that RANS data has
been modified to this resolution from an originally finer mesh.

RANS resolution LEMres lkfac RANSdx DfM(1) DfM(2) Re
23× 23× 70 90 8 0.6824 0.77 0.14 2000
23× 23× 70 140 8 0.6824 0.77 0.14 4000
23× 23× 70 140 8 0.6824 0.77 0.14 8000
33× 33× 70 100 8 0.6824 0.77 0.14 16000
41× 41× 70 100 8 0.6824 0.77 0.14 32000
33× 33× 70 100 8 0.6824 0.77 0.14 64000

Table B.2: Table showing the most important input parameters used when running the simulations
yielding the presented results. This table treats the CO2/H2 jet. Molecular diffusivity, DfM, values
are given in units cm2 s−1, while RANSdx is given in cm.
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Parameter Value
Nt 50000
datcst 20000
datmod 50
varmod 100
velmod 1000
CFL 0.1
PrT 0.7
rotfac 1.0
isrc 0
srcloc 0
comp 0
rstmod 5000

Table B.3: The parameters used for all simulations yielding the presented results.
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Appendix C: MatLab Code

Here, a piece of code written to interpolate between and plot differential diffusion profiles
produced by the LEM3D code is presented.

1 % S c r i p t r e a d i n g o u t p u t rms d i f f e r e n t i a l d i f f u s i o n da ta and
2 % c a l c u l a t i n g t h e i n t e r p o l a t i o n be tween two p o s i t i o n s ,
3 % b e f o r e p l o t t i n g o f t h e roo t−mean−squared r a d i a l p r o f i l e s .
4 % W r i t t e n by N i k o l a i L id B j o e r d a l s b a k k e , May 2018
5 c l e a r a l l
6 c l o s e a l l
7 c l c
8
9 %%I n i t i a l i z a t i o n

10 % Load da ta
11 d a t a = load ( ’ s i m _ z r m s l e m r _ t r a n s v e r s e _ 5 1 2 C o a r s e . d a t ’ ) ;
12 [m, n ] = s i z e ( d a t a ) ;
13
14 magnfac = 1000 ;
15
16 % S e t x−a x i s p o s i t i o n s i n numbers o f j e t r a d i i
17 pos1 = 1 0 ;
18 pos2 = 2 0 ;
19 pos3 = 3 0 ;
20
21 Dj = 0 . 5 3 ;
22 dxRANS = 0 . 4 6 9 7 ;
23
24 % Compute d i s t a n c e t o t h e f i r s t g i v e n p r o f i l e
25 % g i v e n i n number o f 3DCV i n d i c e s
26 d i s t p a r a m 1 = pos1 ∗Dj / dxRANS + 0 . 5 ;
27 d i s t p a r a m 2 = pos2 ∗Dj / dxRANS + 0 . 5 ;
28 d i s t p a r a m 3 = pos3 ∗Dj / dxRANS + 0 . 5 ;
29
30 whi le ( d i s t p a r a m 1 > 1 . 0 )
31 d i s t p a r a m 1 = d i s t p a r a m 1 −1 .0 ;
32 end
33 whi le ( d i s t p a r a m 2 > 1 . 0 )
34 d i s t p a r a m 2 = d i s t p a r a m 2 −1 .0 ;
35 end
36 whi le ( d i s t p a r a m 3 > 1 . 0 )
37 d i s t p a r a m 3 = d i s t p a r a m 3 −1 .0 ;
38 end
39
40 % C a l c u l a t i n g s l o p e s o f l i n e a r i n t e r p o l a t i o n s
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41 a1 = ( d a t a ( : , 3 )−d a t a ( : , 2 ) ) / dxRANS ;
42 a2 = ( d a t a ( : , 5 )−d a t a ( : , 4 ) ) / dxRANS ;
43 a3 = ( d a t a ( : , 7 )−d a t a ( : , 6 ) ) / dxRANS ;
44
45 % C a l c u l a t i n g new p r o f i l e s a t d i s t a n c e s found by d i s t p a r a m s
46 p r o f 1 = d a t a ( : , 2 ) +a1∗ d i s t p a r a m 1 ∗dxRANS ;
47 p r o f 2 = d a t a ( : , 4 ) +a2∗ d i s t p a r a m 2 ∗dxRANS ;
48 p r o f 3 = d a t a ( : , 6 ) +a3∗ d i s t p a r a m 3 ∗dxRANS ;
49
50 %% x = 10 Dj p l o t
51 f i g u r e ( 1 )
52 p l o t ( d a t a ( : , 1 ) / Dj , p r o f 1 ∗magnfac )
53 x l a b e l ( ’ r / D_j ’ )
54 y l a b e l ( ’ 10^3 \ t i m e s z_ { rms } ’ )
55 t i t l e ( ’ D i f f e r e n t i a l d i f f u s i o n i n r a d i a l d i r e c t i o n a t x = 10

D_j ’ )
56 a x i s ( [ 0 4 0 5 5 ] )
57
58 %% x = 20 Dj p l o t
59 f i g u r e ( 2 )
60 p l o t ( d a t a ( : , 1 ) / Dj , p r o f 2 ∗magnfac )
61 x l a b e l ( ’ \ i t { r / D_j } ’ )
62 y l a b e l ( ’ 10^3 \ t i m e s z_ { rms } ’ )
63 t i t l e ( ’ D i f f e r e n t i a l d i f f u s i o n i n r a d i a l d i r e c t i o n a t x = 20

D_j ’ )
64 a x i s ( [ 0 4 0 4 0 ] )
65
66 %% x = 30 Dj p l o t
67 f i g u r e ( 3 )
68 p l o t ( d a t a ( : , 1 ) / Dj , p r o f 3 ∗magnfac )
69 x l a b e l ( ’ \ i t { r / D_j } ’ )
70 y l a b e l ( ’ 10^3 \ t i m e s z_ { rms } ’ )
71 t i t l e ( ’ D i f f e r e n t i a l d i f f u s i o n i n r a d i a l d i r e c t i o n a t x = 30

D_j ’ )
72 a x i s ( [ 0 4 0 4 0 ] )
73
74 %% C o l l e c t i o n p l o t
75 f i g u r e ( 4 )
76 p l o t ( d a t a ( : , 1 ) / Dj , p r o f 1 ∗magnfac , ’b−’ , d a t a ( : , 1 ) / Dj , . . .
77 p r o f 2 ∗magnfac , ’ r−’ , d a t a ( : , 1 ) / Dj , p r o f 3 ∗magnfac , . . .
78 ’k−’ )
79 x l a b e l ( ’ \ i t { r / D_j } ’ )
80 y l a b e l ( ’ 10^3 \ t i m e s \ i t { z_ { rms }} ’ )
81 t i t l e ( ’ D i f f e r e n t i a l d i f f u s i o n i n r a d i a l d i r e c t i o n a t

v a r i o u s c e n t e r a x i s p o s i t i o n s ’ , . . .
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82 ’ F o n t S i z e ’ , 1 2 )
83 a x i s ( [ 0 10 −10 3 0 ] )
84 l egend ( ’ \ i t {x / D_j = 10} ’ , ’ \ i t {x / D_j = 20} ’ , ’ \ i t {x / D_j = 30}

’ )
85
86 %% P l o t s f o r t h e measurements by D ibb l e e t a l .
87
88 d a t a 1 = load ( ’ K e r s t e i n _ x d 1 0 . t x t ’ ) ;
89 d a t a 2 = load ( ’ K e r s t e i n _ x d 2 0 . t x t ’ ) ;
90 d a t a 3 = load ( ’ K e r s t e i n _ x d 3 0 . t x t ’ ) ;
91
92 f i g u r e ( 5 )
93 p l o t ( d a t a ( : , 1 ) / Dj , p r o f 1 ∗magnfac , ’b−’ , d a t a ( : , 1 ) / Dj , . . .
94 p r o f 2 ∗magnfac , ’ r−’ , d a t a ( : , 1 ) / Dj , p r o f 3 ∗magnfac , . . .
95 ’k−’ )
96 hold on
97 p l o t ( d a t a 1 ( : , 1 ) / Dj , d a t a 1 ( : , 2 ) , ’b−−’ )
98 p l o t ( d a t a 2 ( : , 1 ) / Dj , d a t a 2 ( : , 2 ) , ’ r−−’ )
99 p l o t ( d a t a 3 ( : , 1 ) / Dj , d a t a 3 ( : , 2 ) , ’k−−’ )

100 t i t l e ( ’ Comparison t o measured d i f f e r e n t i a l d i f f u s i o n ’ , ’
F o n t S i z e ’ , 1 2 )

101 x l a b e l ( ’ \ i t { r / D_j } ’ )
102 y l a b e l ( ’ \ i t { z_ { rms }} ’ )
103 a x i s ( [ 0 10 0 4 5 ] )
104 l egend ( ’LEM3D, \ i t {x / D_j = 10} ’ , . . .
105 ’LEM3D, \ i t {x / D_j = 20} ’ , . . .
106 ’LEM3D, \ i t {x / D_j = 30} ’ , . . .
107 ’ Exp . , \ i t {x / D_j = 10} ’ , . . .
108 ’ Exp . , \ i t {x / D_j = 20} ’ , . . .
109 ’ Exp . , \ i t {x / D_j = 30} ’ )

80


	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Theory
	Governing Equations
	Diffusion
	Differential Diffusion

	Turbulence
	RANS

	Jets
	The Linear Eddy Model
	LEM in 1D
	LEM3D


	Computational Method
	Software and Code
	Various Tools
	LEM3D

	Using the Software Tools
	ANSYS Fluent
	Preparing Input Data for LEM3D
	Using the LEM3D Code - Input Parameters
	Post-processing

	Simulation Procedure

	Results
	RANS Solutions
	The H2/Freon 22 Jet with Resolution 23 23 38
	The H2/Freon 22 Jet with Resolution 69 69 114
	The CO2/H2 Jet with Varying RANS Resolution

	Code Parallelisation and Performance
	Differential Diffusion in LEM3D
	The H2/Freon 22 Jet
	The CO2/H2 Jet in Air Co-flow


	Discussion
	RANS Solutions
	Differential Diffusion Results for LEM3D
	The H2/Freon 22 Jet
	The CO2/H2 Jet

	Details on the Simulation Execution
	Resolution of Turbulent Scales

	Conclusion
	Bibliography
	Appendices
	Appendix A: Literature Search
	Appendix B: Parameter Configurations
	Appendix C: MatLab Code


