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Abstract

In the technological world we live in today, Internet of Things (IoT) is
becoming more prominent. IoT uses sensor nodes in order to perform the
intended task, and these sensor nodes need power. When powering IoT
nodes, the usage of rechargeable batteries is the most common method.
Batteries that are rechargeable, charges and discharges several times
during their life cycle. This charging and discharging is for this project
considered to be the behavior of the battery. For this master theses the
object is to analyze the correlation in the behavior of batteries. To see if
there is any correlation, and if there is, if this behavior can be predicted.

The experimenting conducted in this master thesis is testing whether
machine learning models may be used to predict the behavior of the
batteries in IoT nodes. Eight sensor nodes were placed outside on the
roof, and these sensors were sending measurements at constant intervals.
The sensor nodes are powered by batteries that are connected to solar
power panels. These solar power panels are responsible for the charging
of the batteries. There exists many machine learning models, so therefore
the first task was to figure out which of these models could be used for
predicting battery behavior. Six machine learning models were chosen
for the testing. The testing was done by creating the models with help of
programming code, and then running this code in the computer terminal.
As a basis for the testing, large datasets with measurements from each of
the batteries was used. These large datasets were created into training
sets for the machine learning models to learn from in order to make
predictions. After all the models had made their predictions, the task was
to analyze these predictions to see if any of the models could be utilized
for this purpose.

From analyzing the data sent from the batteries, it was evident that
there might be a correlation between the behavior in batteries. This is
however dependent on which way the solar panel connected the battery
is facing. For northern places where the weather is unreliable, the panels
have to be facing south in order for the batteries to charge correctly.
Using machine learning models to predict the future behavior of batteries
also proved to be plausible. Even though all the models did not work for
the purpose intended, some of the models matched the actual data very
well. To sum up, there is a correlation in the behavior of batteries if the
batteries are charged at an even rate. This charging can be obtained if
the solar panels are facing the correct way. Machine learning is a very



good tool for predicting future behavior of batteries, if the right model is
chosen.



Sammendrag

I den teknologiske verden vi lever i i dag, er IoT blitt mer og mer
fremtredende. IoT bruker sensornoder for å utføre den tiltenkte oppgaven,
og disse sensornodene trenger strøm. For å gi strøm til IoT-noder, er
bruken av oppladbare batterier den vanligste metoden. Batterier som er
oppladbare, lader og utlader flere ganger i løpet av deres livssyklus. Denne
ladingen og utladingen er for dette prosjektet ansett å være batteriets
oppførsel. Målet for denne masteroppgaven er å analysere korrelasjonen i
batteriets oppførsel. For å se om det er noen korrelasjon, og hvis det er,
om denne oppførelsen kan forutsies.

Eksperimenteringen som gjennomføres i denne masteroppgaven, er å
teste om maskinlæringsmodeller kan brukes til å forutsi oppførselen til
batteriene i IoT-noder. Åtte sensornoder ble plassert ute på taket, og disse
sensorene sendte målinger med jevne mellomrom. Sensornodene er drevet
av batterier som er koblet til solcellepaneler. Disse solcellepanelene er an-
svarlige for lading av batteriene. Det finnes mange maskinlæringsmodeller,
derfor var den første oppgaven å finne ut hvilke av disse modellene som
kunne brukes til å predikere oppførselen til batteriet. Seks maskinlærings-
modeller ble valgt for testing. Testingen ble gjort ved å lage modellene
med hjelp av programmeringskode, og deretter kjører denne koden i termi-
nalen til datamaskinen. Som grunnlag for testingen ble store datasett med
målinger fra hver av batteriene brukt. Disse store datasettene ble laget til
treningssett for maskinlæringsmodellene som de kunne lære av for å gjøre
prediksjonene. Etter at alle modellene hadde gjort sin prediksjon, var
oppgaven å analysere alle prediksjonene for å se om noen av modellene
kunne benyttes til dette formålet.

Ved å analysere dataen som batteriene målte, var det tydelig at
det kan være en sammenheng mellom oppførselen i batterier. Dette er
imidlertid avhengig av hvilken himmelretning solcellepanelet vender. For
nordlige områder hvor været er upålitelig, må panelene vende mot sør for
at batteriene skal lade opp riktig. Bruk av maskinlæringsmodeller til å
forutsi fremtidig oppførsel av batterier viste seg også å være troverdig.
Selv om ikke alle modellene fungerte til det mente formålet, matchet
noen av modellene de faktiske dataene veldig bra. For å oppsummere er
det en sammenheng i oppførselen til batterier dersom batteriene er ladet
med jevn hastighet. Denne ladingen kan oppnås hvis solpanelene vender i
riktig himmelretning. Maskinlæring er et veldig godt verktøy til å forutsi
fremtidig oppførsel av batterier, dersom riktig modell er valgt.
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Chapter1Introduction

On the roof of the Electro-building at the Norwegian University of Science and
Technology (NTNU) campus Gløshaugen, there are eight Waspmote sensors nodes.
Some of them have been up there since April 2017 and some since May 2017.
Each of these sensor nodes are coupled with sensors that measures CO2, pressure,
humidity and temperature. These measurements are transmitted from the sensors
to a computer every 5-10 minutes, where the data is stored. When measuring the
CO2 level, the sensor uses a heater in order to capture the gas density at a specific
temperature. Because of the different measurements and the heater, the sensors
requires a substantial amount of energy. To provide the energy, each sensor is
equipped with a Lithium-ion Polymer (LiPo) battery [KAB+17]. As the sensors
are active at all times, the batteries will be discharging and eventually run out of
energy. To prevent this, a solar panel is connected to each of the sensors for energy
harvesting and recharging of the battery. Five of the solar panels are facing south,
and the other three panels are facing north. An illustration of how the sensors nodes
look and their placement is shown in Figure 1.1. A deeper explanation of the sensors
and their setup will be presented inChapter 4.

Figure 1.1: Five of the eight sensors placed on the roof of the Electro-building
[KAB+17]

1



2 1. INTRODUCTION

1.1 Motivation

In 2018, the world is more technological than it has ever been. Smartphones are
owned by a large part of the population, and more and more services are executed
online or through an application on the phone. Furthermore, smart houses and smart
cities are getting more common, which means Internet of Things (IoT) is a part of the
everyday life. When you turn on the light with your phone, or find available parking
spaces in a city, this is IoT. IoT is explained in Section 3.2.1. When the world is
evolving around technology and internet, the technology has to evolve also. For IoT
sensor nodes to work as expected they, as mentioned in the Chapter 1 introduction,
require energy. This energy may be provided using either wires directly connected
to a power outlet, or by using batteries. When using batteries to power IoT sensor
nodes, they have to be changed or recharged. Recharging may be done in several
ways and one of them is by the use of solar energy. Using solar energy for recharging
opens up to a broader use of sensor nodes because the devices does not have to
be connected to any other power source. However, the usage of solar energy also
presents a different kind of challenge; sunlight dependency. There has to be enough
sunlight for the battery to never fully discharge, and often there is a lower battery
percentage level that should not be exceeded. For this reason knowing and predicting
when the battery recharges and discharges i.e. the behavior of the battery, is very
interesting. This is the topic that will be addressed in this thesis.

1.2 Research Question

The energy consumption of a sensing node, and the prediction of solar energy are
researches that have already been conducted. They will be presented in Chapter 2.
For this master thesis the topic to be researched is the behavior of the batteries when
discharging and recharging, and to see if there is any correlation. To predict the
behavior of the LiPo batteries and their power percentage, machine learning will be
deployed. Figuring out what machine learning models might be used for this purpose
and which model fits the problem, is also a big part of the thesis. Is there zero, one,
or several models that may be applied for the prediction? And if there is several,
which is the best one? The research question for this thesis is to examine whether
machine learning can be deployed to investigate the correlation in the behavior of
batteries. If there is a pattern in the behavior making it possible to predict the
power percentage for the battery at any time of the day. Is sunlight and weather to
unpredictable and does this play an important part in the behavior?

To list up the problems that will be investigated:

– If there is a pattern in the behavior of the batteries
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– Which machine learning models, if any, are applicable for the topic

– If it is possible to predict power percentage for the batteries

– If the battery power is dependent on the weather

The problems faced in this thesis requires both a theoretical and a practical
approach. The theoretical approach consists of literary research regarding machine
learning and the different models. Each model has to be understood and investigated
thoroughly in order for them to be practiced correctly. The practical approach is to
apply the models found in the literary research to a training dataset, in order to test
and fit the models. Machine learning model has to be fitted in order to be able to do
their predictions.

1.3 Outline

This master thesis has its basis from research previously conducted at NTNU and
other research regarding battery behavior. These researches will be presented in
Chapter 2 "Background and Related Work". Chapter 3 "Theory", is the theory basis
for research and testing done in this thesis. The testing that has been conducted and
the resources needed for the testing will be presented in Chapter 4 "Experiment",
followed by a presentation of the results in Chapter 5 "Results". In the following
Chapter 6 "Discussion" the results and testing will be further discussed. Also, in this
chapter the usefulness of machine learning in this context is discussed. The thesis is
completed with a conclusion in Chapter 7 "Conclusion", followed by the references.





Chapter2Background and Related Work

The usage of LiPo batteries is very widespread, but there are not many research
papers for this exact topic. Most of the papers is about using Lithium-ion (LIB) in
electric vehicles. There are also some papers where the energy consumption in IoT
nodes, and where the solar energy prediction is investigated. Common for all these
research papers are that they use supervised machine learning models for estimation.

2.1 Existing Work Regarding Electric Vehicles

In electric vehicles, a battery is the most common energy carrier and hence has
an important role in the performance of the electric vehicle [HLY16]. Therefore,
accurately knowing the state-of-charge (SOC) of the battery is very important. This
is in order to predict the capacity of the battery, to figure out the range the electric
vehicle may travel before the battery needs recharging. SOC is an indication of
the remaining energy in a battery, and it helps to decide an effective management
strategy which again may lead to avoiding overcharging or over discharging. The main
methods used for SOC estimation is: the current integral method, the open-circuit
voltage method, the equivalent circuit method, the electrochemical model-based
method, the Kalman filter method, the extended Kalman filter method, and artificial
neural network models [KZM14]. All of these models have disadvantages, so the
main goal for the [KZM14] research is to figure out a more accurate way to estimate
the SOC by developing a new neural network model.

Combining a new Radial Basis Function Neural Network (RBFNN) model with
the life cycle model is expected to eliminate the effect battery degradation has on
SOC estimation accuracy. RBFNN has three layers: the input layer, the hidden layer,
and the output layer. The parameters for the input layer are current, instantaneous
terminal voltage, and practicable capacity. In order to achieve the nonlinear trans-
formation that happens from the input layer to the hidden layer, the hidden layer
is established by a series of Radial Basis Functions. The output layer is the SOC

5



6 2. BACKGROUND AND RELATED WORK

estimation. When the RBFNN model estimates the SOC the first time, it uses a
selected number of data samples to train the model. The model will then continue to
adjust itself until all the data from the training set is being utilized. The combination
of RBFNN and the life cycle model proves to have a good robustness against varying
temperatures and the degradation of the battery. The research also found that it is
possible to indirectly measure the aging cycles of the battery in electric vehicles with
the running mileages of the battery [KZM14].

Another research that has been done, aimed at the same subject was the [HLY16]
paper. The machine learning approach used here is a novel genetic algorithm-based
fuzzy C-means (FCM) clustering technique. This approach provides a powerful
means of modeling complex and nonlinear dynamic systems. Even though the offline
training for fuzzy models is computationally intensive, established models can easily
estimate the SOC of the battery in real time. This technique was used in the first step
of the SOC estimation, and had incorporated subtractive clustering and direct search
algorithm. In the second step, the back-propagation learning algorithm was exploited,
in order to perform simultaneous optimization of the parameters. This approach
had a much better precision than previously tested approaches, and demonstrated
superiority in both average and worst cases [HLY16].

2.2 Solar Energy Prediction and Energy Consumption for
IoT Nodes

A research conducted at NTNU was to predict solar energy for constrained IoT nodes,
based on weather forecasts [KAB+17]. When the nodes are constrained they can
not move around according to the position of the sun, and the prediction of solar
energy is therefore important. This is because the resources has to be managed and
utilized in an efficient way. Machine learning have for some time been used to predict
solar power for large power plants. However, this research aims to predict for smaller
sensors used in IoT hardware. As mentioned in Section 1.1 the deployment of IoT
nodes is simpler when they have energy available at all times, which energy harvesting
may provid. When predicting solar energy based on weather forecast, planning the
energy-budget becomes more effective. Energy-budget planning is important when it
comes to resource-constrained IoT nodes. Another observation made in this paper is
which machine learning model may be used for this purpose.

Another paper by some of the same authors as [KAB+17], also from NTNU,
discussed energy consumption estimation for sensing applications [THK17]. Here
an approach for figuring out the estimation of the energy consumption of nodes
in IoT sensing applications is proposed. This estimation is important because the
energy budget for the sensors determine and limits how much sensing and processing
can be done by the nodes. Distinctive activities phases, that the sensors execute
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repeatedly was identified, and the energy consumption for these different phases
were measured before the nodes were deployed. Then the total consumption was
estimated by combining the measured values with the timestamps for when the
application was running, i.e the nodes were sensing. The approach in this paper was
done without any additional hardware to measure the energy when the nodes were
deployed. This research discovered major differences in the energy consumption for
the different activity phases, where the sensing activity required the largest part of
the energy-budget. The accuracy of the approach was sufficient enough for it to be
applicable for further use [THK17].





Chapter3Theory
This chapter contains the theory behind this master thesis. Here the different
aspects mentioned in the previous chapters will be explained further, to better the
understanding for the thesis. LiPo batteries, solar energy and machine learning are
the main subjects that will be presented in this chapter.

3.1 Lithium-ion Polymer Batteries

Lithium batteries are batteries that uses the metal lithium as an anode. They are
widely used in consumers portable electronic devices. These batteries are considered
to be primary batteries, which means that they are disposable and not rechargeable.
Lithium-ion (LIB) batteries are secondary batteries, which means that they are
rechargeable. These batteries consists of lithium ions that move from the positive
electrode to the negative electrode when charging, and the opposite way when
discharging. In order to make LIB batteries rechargeable, they consist of intercalated1

lithium, compared to disposable batteries which consist of metallic lithium.

LiPo batteries are also rechargeable batteries. Unlike a LIB battery, which uses
a liquid electrolyte, a LiPo battery uses a polymer electrolyte. This polymer is a
semi solid electrolyte, which can be described as gel, that has a high conductivity.
Conductivity is a measurement for a material’s ability to conduct electric current. The
use of polymer electrolyte causes these batteries to be light in weight, as other lithium
batteries. In difference from other lithium batteries that is not high performance
energy sources, LiPo batteries have a high voltage and the ability to supply high
current [Gib09].

3.1.1 History of Lithium Batteries

The progression of any device is influenced by its past history [Scr13]. This is also
the case for lithium batteries. In 1800 a dispute between professors Alessandro Volta

1Intercalation is the insertion of a ion (or molecule) into materials with layered structures

9



10 3. THEORY

and Luigi Galvani was the initial start of electrochemical science, that eventually
led to the lithium battery that is widely used today. As a result of Volta’s work,
many electrochemical systems was invented: zinc-manganese oxide cell invented
in 1866, lead-acid rechargeable battery invented in 1859, and rechargeable nickel-
cadmium battery invented in 1901. All of these systems are still used for developing
commercial batteries designed for different applications, by making changes to the
original concept. An example of this is the common alkaline battery. In this battery
type the zinc-manganese oxide cell form 1866 was altered by changing the electrolyte
from a liquid to a mixed manganese dioxide-carbon paste. The zinc rod was changed
to a core of mixed powdered zinc and electrolyte paste, and the container was changed
to consist of stainless steel. Alkaline batteries are widely used and billions of units
are produced every year. Lead-acid batteries have also been altered and are mostly
used for car lighting and ignition [Scr13].

After discovering lead-acid, nickel-cadmium and alkaline batteries the innovation
regarding batteries decreased. Only minor changes were made with the already
existing battery types. This continued until the 1960s when the demand for energy
to portable devices triggered a series of innovation. When the demand for portable
electrics escalated, there was a need for batteries with a high energy density. Until
now, conventional batteries had a low energy density because of their electrode
combinations. The electronic combinations in the original batteries could only offer
a limited specific capacity value, measured in ampere-hours per gram (AH/g), which
gives a low energy density. Figure 3.1 is an illustration of the relation between energy
density and specific density for a variation of batteries. Batteries that have a high
energy density have more energy for each weight unit, which makes it light in weight.
Batteries that have a high specific density have more energy in a specific space, which
makes it small in size. A battery intended for the electronics marked should both
have a high energy density and a high specific density, in order to be as light and
small as possible. This means that the batteries closest to the upper right corner,
which are lithium batteries, are the preferred batteries for portable devices and are
also the most promising for electrical vehicles. The previously mentioned batteries
that were invented in the late 1800s, are located in the bottom left corner and are
considered to be big and heavy. Therefore, they are not ideal for the new technology
that was evolving [Scr13].

Initially, lithium batteries was developed as primary batteries. When technology
developed further, and the lithium batteries became a success, the interest in sec-
ondary rechargeable batteries increased. To create rechargeable batteries, difficulties
had to be acknowledged and changes had to be made. Lithium ions formed when
the battery discharged were expected to plate back onto the lithium metal in charge.
Therefore, the anode side was considered to have no apparent difficulty. Focus was
thus directed to the cathode side. The intent here was to find materials that would
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Figure 3.1: Energy density vs. specific density for several types of batteries [Scr13]

have a long life cycle. In 1978 intercalation electrodes were developed. This was
a compound that reversibly accepted and released lithium ions from their open
structure. These conditions was met by, for instance, Titanium Disulfide (TiS2).
Li-TiS2 was therefore a good alternative for the cell in a rechargeable battery. The
process of a Li-TiS2 cell involves lithium oxidation at the anode, which is when
lithium ions forms and travels through the electrolyte to the cathode where the ion
is inserted into the layered structure [Scr13]. This structure and process is shown in
Figure 3.2.

After rechargeable lithium batteries became a success, the development of new
types of rechargeable lithium batteries started in the 1980s. One of the ideas that was
discussed was to use conducting polymers as positive electrodes. The interest around
this faded some when it was discovered that polymer had a poor electrochemical
behaviour. First the use of polymer electrolyte was examined as a solid state. This
was done by forming an aggregate between a lithium salt and a coordinating polymer
like PEO. During the process, the lithium salt is dissolved in the Poly Ethylene Oxide
(PEO) matrix. The main difference from liquid electrolyte is that in liquid ions can
move in their salvation shell, but this is not possible in PEO because of the large size
and constraints of the polymer chains. Transport of ions in the polymer electrolytes
therefore requires a flexibility in the PEO chains, so that the ions can move from
one loop to the other. Fast ion transportation may only happen when the polymer is
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Figure 3.2: The structure of a Li-TiS2 cell [Scr13]

in amorphous state, which happens when it goes above 70◦C. This condition makes
PEO-based polymer batteries less applicable. After realizing that solid polymer
electrolyte based on PEO had a low conductivity, the development of gel polymer
electrolytes started. To create the gel, liquid electrolyte is introduced in order for
the polymer to be softened. This produces solid polymer electrolyte with a high
conductivity, almost as high as with liquid electrolyte. This gel based electrolytes
are the base of today’s lithium batteries that are used in electrical consumer product
e.g. cell phones, tablets and other highly technological devices [Scr13].

3.1.2 Properties of a Lithium-ion Polymer Battery

LiPo cells are made up of several thin plates that are connected in parallel. This
makes the internal resistance in the cells low, and LiPo batteries are therefore suited
for high discharge rates. Therefore, a LiPo battery with the same weight as a nickel
based battery will contain much more stored energy. In a LiPo cell, as shown in
Figure 3.3, there are three components: the anode, the cathode, and a separator.
The anode is the negative plate and the cathode is the positive plate. Both plates are
primarily made of lithium, and the separator is made of polymer with a conductive
electrolyte. Because the plates are very thin and the case around the cells is simply
thin foil, LiPo batteries are easily damaged by impacts [Gib09].

Table 3.1 gives a comparison of a nickel based battery and a LiPo battery, and
their different properties. Here it is visualized that a LiPo battery has a bigger ability
to sustain a high discharge rate, because of its ability to have a low internal resistance.
But, it is also more risky if not used correctly. LiPo cells are unable to release any of
the pressure that can build up inside the cell. The case around the cell will therefore
"puff up" when the battery is under pressure. This can happen for several reasons,
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Figure 3.3: The structure of a LiPo cell [Kai13]

Table 3.1: A comparison of a nickel based battery versus a LiPo battery [Gib09]

Property NiMH LiPo
Nominal voltage per cell 1.2 Volts 3.7 Volts
Internal resistance Moderate Can be very low
Normal maximum continuous dis-
charge current Up to 10C Up to 30C

Normal maximum charge current 1C-2C 1C (or higher if ap-
proved)

Capacity per weight unit Moderate Very high

Overall safety Very high Much lower if not
used correctly

Overcharging Allowed at C/10
only Dangerous

Tolerance to over-discharging Limited Very poor
Life cycle (durability) Limited Good

for instance overcharge and damage to the battery. If the pressure is to much for the
container, the cell may blow up and burn. As seen in Table 3.1, normal voltage for a
LiPo cell is 3.7V which is far higher than for several other battery types. When it
is fully charged the voltage increases to 4.2V, and decreases to 3.0V for whent it is
fully discharged. This small difference in voltage makes it difficult to decide the state
of charge (in percent) by measuring the voltage. Internal resistance is related to the
battery’s state of charge. When the battery is in a high state of charge the internal
resistance will be low, and the other way around. LiPo batteries are sensitive to the
temperature and the internal resistance is lowest when the battery is warm. They
are therefore considered to have a poor performance when they are too cold [Gib09].

When LiPo batteries are charging the cells have two requirements: charge current
has to be limited to a safe value, and the cell voltage must not exceed 4.2V per
cell. Because of these requirements, LiPo batteries have a different technique for
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charging than other cell types and must use a charger intended for LiPo batteries.
The charging process has three phases. The first phase is when the charging starts,
some chargers skip this phase. Here the charging current increases gradually until
it reaches the required value. The battery voltage rises throughout this phase. In
the second phase the charging current shifts to consistent. but the voltage continues
to rise towards the maximum safe value of 4.2V. The last and third phase is when
charging happens at a almost constant voltage. The battery is now almost fully
charged, so the charge current is reduced to approach the maximum voltage at a
safe pace. Even though this phase is said to have a constant voltage, the voltage is
still increasing only very slowly. When the charge current is approximately C/20,
the battery is considered to be fully charged and the charging process is completed.
Figure 3.4 shows this charging process, with the different colors representing charging
current, voltage, and energy capacity. Normally the charging rate used for LiPo
batteries is 1C, and this was the maximum charging rate until recently. To extend
the battery life it is recommended to not charge at the maximum rate. The batteries
should not be charged if they are very warm or very cold, this could be dangerous
[Gib09].

When LiPo batteries are discharging, they should never have a voltage level lower
that 3.0V. In the earlier years 2.5V was considered to be the lowest voltage level, so
it is expected that 3.0V will be considered to be a too low voltage in the future. To
increase the battery’s life expectancy, it is recommended to not go any lower than
3.3V. A slightly over discharge, only happening once, is not likely to have any effect
on the battery. Although, if a damage does occur it can not be reversed, and the
battery is therefore permanently damaged. This damage may happen if the battery
is frequently over discharged or if it has been very over discharged. The discharge
rate is affected by the available capacity of the battery. When the discharge rate is
faster, the capacity is lower. In comparison to nickel based batteries, LiPo batteries
can keep their charge over a longer time when it is not being used. When a battery
is discharging it is recommended to not discharge lower than 20% to give it a longer
life expectancy.

3.1.3 Safety Regarding Lithium Polymer Batteries

Since the invention of LiPo batteries, the safety regarding them has been widely
discussed. These batteries, if not used correctly and carefully, can be dangerous.
Because of the usage of LiPo batteries in many electrical consumer products, it
is important to be aware of the uncertainties regarding the batteries. When in
an electrical product, such as cell phones and tablets, each individual LiPo cell is
carefully monitored and controlled by Protection and Charge monitoring (PCM)
circuits. These circuits are there to prevent the battery from exceeding the safe
voltage range, or to prevent it from being mishandled. Because of the PCMs and
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Figure 3.4: The charge process of a LiPo battery. The green line is the charge
current, the blue line is the voltage, and the red line is the energy capacity of the
battery [Gib09]

the low charge and discharge rate, accidents regarding LiPo batteries in consumer
products are very rare. However, if an accident does occur, the possible consequences
of a LiPo battery accident is more serious than with other battery types. For instance
if a nickel based battery overcharges it might get hot, but if a LiPo battery overcharges
it might start to burn [Gib09].

A fire in a LiPo battery may happen due to of several causes. When the battery
is overcharged in voltage, i.e. the voltage exceeds 4.2V, this might result in damaging
the cell. This again may result in an internal short circuit which can cause the battery
to be set on fire. Over discharging is another cause for fire in a LiPo. At best over
discharging only results in a capacity loss, but it is known for causing the battery to
"puff up", get hot and even start to burn. In a battery there can be several cells. To
not cause the battery to overcharge or over discharge, it is important to make sure
that the battery is balanced. This is done by using balancing equipment to prevent
two neighboring cells from not having a similar state of charge. As mentioned in
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Section 3.1.2, batteries can operate with different discharge rates. If the rate is to
high, this might cause the battery to overheat or "puff up". The most sever result
could be a short circuit in the battery. Short circuits happens when the positive and
negative wires in the battery come in direct connection with each other. In this case
a high current can flow quickly, making the battery very warm. Short circuits have
to be avoided because they cause a high risk of damage and fire. The safety concerns
mentioned in this section has all been internal in the battery, but causing damage to
the external of the battery may also lead to dangerous situations. The casing of the
LiPo battery can handle a minor damage, but if the damage is to severe this may
damage the cells of the battery resulting in a short circuit. Batteries should also not
be stored in a warm place, because this may lead to overheating and fire [Gib09].

3.2 Solar Power

In 1839, a discovery was made by Edmond Becquerel. He observed that if two
different brass plates, that was submerged in liquid, would produce a continuous
current if they were exposed to sunlight. This is the first known discovery of solar
cells, which evolved into the solar cells known today. In the late 1970s and early
1980s solar power was mostly used for remote locations where utility power was
unavailable. In the early 1990s, solar power started to be utilized in suburban and
urban homes and office buildings. Today, solar cell electricity is considered to be the
cheapest and best way to generate electricity for most power needs [FP10].

Solar power is the conversion of sunlight to electric current. The sun and sunlight
is filled with energy. This energy is free of charge and will not run out, at least
not as we know. When the sunlight hits an object the energy is converted to heat,
which is why being in the sun is warmer than being in the shadow. But for certain
objects, the energy is not converted into warmth but rather converted into electrical
current. This electrical current can be harvested and stored for power. The solar
technology developed in earlier years used large crystals made of silicone. This
produces electricity when it is struck by light, because the electrons in the crystal
move around when exposed to light instead of only wiggling in the same place to
make heat. Crystals made of silicone creates a lot of electricity from the light, but
is expensive to use because big crystals are hard to grow. Newer solar technology
uses smaller and cheaper crystals, e.g. copper-indium-gallium-selenide, that can be
shaped into a flexible film. This technology however, is not as good as silicone for
turning the light into electricity [Loc08].

Figure 3.5 is an illustration of the process of harvesting solar energy. In a crystal
in the solar sell, bonds are made of electrons that are shared between every atom in
the crystal. When the cell absorbs the light, one of the electrons gets excited and
reaches a higher energy level. The result is that this electron can move around in the
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Figure 3.5: An overview of the process regarding collecting solar power [Kit11]

crystal more freely, which leads to current [Loc08]. After the sunlight is converted
into electric current the current is transferred to a charge controller. This controller
helps to properly manage the voltage flowing to the battery, making sure that the
battery does not overcharge. The energy is then stored in the battery, which may
be charged and discharged several times. When converting sunlight into electricity,
direct current is the result. However, if the desire is to power devices that is plugged
in to the wall, the current has to be alternating current. To convert the current from
direct to alternating, an inverter is used.

3.2.1 Solar Power in Connection to Internet of Things

IoT was a term first used to describe a system where physical objects could be
connected to the Internet using sensors. The term was used to illustrate the power
of connecting Radio Frequency Identification (RFID) tags to the Internet to count
and track goods without needing human intervention. Today, IoT is a popular term
to use for describing scenarios where Internet connectivity and computing capability
is extended to a variety of devices, sensors, and everyday objects [MP16]. There are
a lot of definitions to describe IoT, and this is one of them:

The term "Internet of Things" (IoT) denotes a trend where a large number
of embedded devices employ communication services offered by the Internet
protocols. Many of these devices, often called "smart objects,” are not
directly operated by humans, but exist as components in buildings or
vehicles, or are spread out in the environment [MP16].
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Figure 3.6: An illustration of the usage of IoT by different industries [Hil16]

The utilization of IoT may be very diverse. Figure 3.6 contains several industries
and the way IoT may be deployed in that particular industry. Here the diversity of
IoT is very evident. IoT may be used in a private home, in business or the industry,
or may even be used in the military. Because of the world developing rapid in terms
of technology, embracing and developing IoT for a business is crucial in order to
compete in the market.

For an IoT device to function, it needs power. Often these devices are powered
with batteries, which would need to be recharged when empty. This is where solar
power enters the picture. If the IoT device has to be active at all times, it would
also need to be powered at all times. Solar energy is, in most cases, a dependable
source of energy. The sun is always up during the day, and even on light cloudy days
the solar panels will gather some light and convert this to power. There are negative
sides of solar power also. Solar panels are very dependent on sunlight, and if the
panels are located in a area where the sunlight is limited this could cause problems.
The angle and tilt of the panel is also included in the factors that may affect the
utilization of solar panels [KAB+17].

3.3 Machine Learning

A process of learning includes acquiring new knowledge, organizing the new knowledge,
developing new cognitive and motoring skills through practice, and discovering
new facts and theories through observation and experimentation [MCM13]. Since



3.3. MACHINE LEARNING 19

the invention of computers, the capability of learning have been attempted to be
implemented in computers. This process of computers having the capability to learn
is called machine learning.

Machine learning is revolved around the problem of predicting the future. This
became feasible when researchers started approaching intelligent tasks in an empirical
way, instead of using the procedural way. Machine learning predictions does not
respond well to hard-wired rules, but rather training by using known datasets and
making functions from these training data. The purpose of using machine learning is
to discover structures and patterns in data, and to generalize this discovery. It fits
complex and flexible functional forms without overfitting [MS17]. Machine Learning
is now so widely known that there are simple explanations for every model that exists
and how to use them. This makes machine learning a very applicable tool, in order
to do predictions and analyzing data.

There are three main areas machine learning can be divided in to: Task-Oriented
Studies, Cognitive Simulation and Theoretical Analysis. Task-Oriented Studies is also
known as the "engineering approach" and is a method to improve the performance
in a fixed set of task by analyzing learning systems. Cognitive simulation is when
the computer is taught to simulate the learning process of a human. The last area
is Theoretical Analysis which is an exploration of the possible learning methods
and algorithms independent of the application domain [MCM13]. It is preferable
to utilize only one of these approaches, however the progress of one approach often
leads to the progress of another approach.

3.3.1 Types of Machine Learning Models

Machine learning is a wide term that includes many different algorithms, or methods,
that may be used for different purposes. These methods may be divided into two main
areas: supervised learning, and unsupervised learning. Unsupervised learning may
again be divided in three: feature learning, generation, and clustering. Supervised
learning could be divided into: regression, and classification. These different areas
is illustrated in Figure 3.7. As mentioned in Section 3.3 machine learning is used
for prediction based on training datasets. In supervised learning or "learning with
a teacher", the predictions are based on a training set from previously solved cases.
The previous solved cases have known values that are created by joining all variables.
A training set is created by the machine learning algorithm predicting an already
known output (answer), and is then told whether it is correct or not. In unsupervised
learning or "learning without a teacher", the algorithm has a set of known observations,
but the correct output is not known [HTF09]. For this section the focus will be on
regression from the main area of supervised learning.

Regression is the process of figuring out and estimating the relationship between
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Figure 3.7: The different areas in machine learning [NERwn]

several variables. It focuses on the relationship between a dependent variable and
independent variables, also called predictors. Regression is a way of figuring out how
the dependent variable will change when one of the independent variable changes.
Next, the machine learning models used for this thesis will be presented.

Linear Regression

In linear regression the goal is to predict a linear(straight) line, which fits the points
in a given dataset in the best way possible. One variable, called criterion variable, is
predicted using another variable, called the predictor variable. If there is only one
predictor variable, the method is called simple regression. This is the method that
gives the straight line, which is called a regression line. When using linear regression
the predicted regression line may have an error to the actual points in the dataset.
This error is calculated by subtracting the predicted point value from the actual
point value. The best fitting regression line will be the line with the lowest sum
of the squared error values. Figure 3.8 shows an example on how a plotted linear
regression might look. The black points are the dataset input for the regression, and
the red line is the fitted regression line output [Gér17].

Support Vector Regression

Support Vector Machine (SVM) is a very adaptable and powerful machine learning
model. This model can perform classification, regression, and outliers detection.
This is one of the more popular machine learning models to utilize [Gér17]. SVM
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Figure 3.8: An illustration of a Linear Regression prediction plot [Lan03]

are effective in high dimensional spaces, even when the number of dimensions is
higher than the number of samples. The model uses a subset of the training points,
called support vectors, in the decision function. Therefore, the model is very memory
efficient. A disadvantage with SVM is that it does not directly provide probability
estimates. The estimates are calculated by using an expensive cross-validation
[PVG+11].

SVM can, as mentioned, perform more than one task. One of these is regression.
This is called Support Vector Regression (SVR). SVR may be both linear and
nonlinear. The linear model only considers the linear kernels, while the non-linear
model considers all kernels. Instead of trying to fit the largest possible street between
two classes, SVR tries to fit as many instances possible on the street. The model that
SVR produces, predicts by only using a subset of the training data. This is because
the cost function for building the model does not care about the training point that
lies to close to the model prediction. The model predicts with two chosen values:
epsilon (ε) which defines a tolerance margin where errors are accepted without a cost,
and gamma (γ) which decides how strict the model fits to the training set. A too
strict model could result in overfitting [PVG+11].

Kernel Ridge Regression

Ridge regression is a regulated version of linear regression, where a regularization
term is added to the cost function. This results in the algorithm not only fitting
the data, but also making the model weight as small as possible [Gér17]. Kernel
Ridge Regression (KRR) is an regression algorithm that combines Ridge regression
with kernels. It learns a linear function in a space generated by the kernels and the
dataset. The form of the KRR creates is identical to the form SVR creates, but the
models use different loss functions. KRR uses a squared error loss, and SVR uses
ε-insensitive loss. Fitting KRR is typically faster for medium sized datasets, and
the fitting can be done in closed-form. More precisely, fitting KRR is about seven
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times faster for medium datasets than SVR. However, the model is non-sparse and
uses all the points in the training data for prediction. Therefore, it is slower than
SVR, which is sparse, on large datasets [PVG+11]. The reason for the KRR being
slow for large datasets is because when computing the regression, the kernel matrix
has to be inverted. This requires large costs in time and memory [ZDW13]. The
model predicts with two chosen values: alpha (α) which helps the conditioning of
the problem to improve and reduces the variance of the estimates, and gamma (γ)
that also here represents how strict the prediction is [PVG+11].

K-Nearest-Neighbor

K-Nearest Neighbor (K-NN) is a prediction algorithm that stores all available data
and makes a prediction based on a similarity measure. This method was utilized
already in the 1970’s for statistical estimation and pattern recognition, but as non-
parametric. One approach when using K-NN regression is to calculate the average of
the numerical target of the K nearest neighbors. Another is to use inverse distance
weighted average of the K nearest neighbors. The regression method uses the same
distance function as K-NN classification. The difficult part of K-NN regression is to
choose the optimal value for K. This could be done by inspecting the data first. A
larger K value will be more precise as it reduces the noise, but the distinct boundaries
in the feature space will be blurred [Say10]. To figure out which points are the
nearest neighbors, metric distance is used to calculate the distance. Any measure
method may be used, but Euclidean distance is the most common. Methods based
on neighbors are non-generalizing machine learning methods, because they remember
all the training data [PVG+11].

Decision Tree Regression

Decission Tree Regression (DTR) is to fit a sine curve with observing noisy addition.
The main difference from decision tree classification is that instead of predicting a
class in each node the regression predicts a value. DTR predicts the average target
value of the training dataset. The algorithm in the model splits each region in the
training set which makes most training instances as close as possible to the predicted
value. DTR is prone to overfitting and has to be regularized in order to prevent this
[Gér17]. Overfitting happens when the maximum depth of the tree is set to high,
which leads to the decision tree learning too fine details of the training data and
therefore learn from the noise [PVG+11].

Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a neural network machine learning model. The
algorithm learns a function by training on a dataset with a decided number of input
dimensions and output dimensions. Between the output and input layer there can
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be, in difference to logistic regression, one or more nonlinear layers. These layers are
called hidden layers. The input layer consists of a set of neurons that represents the
input data. In the hidden layer each neuron transforms the values from previous
layers with a weighted linear summation that is followed by an activation function
that is non-linear. Finally the output layer receives the value from the last hidden
layer and transforms these values into output values. The MLP has the potential
to learn non-linear models, and to learn models in real-time. MLP also has some
disadvantages. Because of the hidden layers, the MLP have a non-convex loss function
where more than one local minimum exists. This can cause different random weight
initialization which can lead to different accuracy for validation. MLP also requires
determining a number of hyperparameters, for instance the number of hidden neurons,
layers, and iterations [PVG+11].





Chapter4Experiment

An important part of this master project is the testing of the different machine
learning models found in the literary review to see if they are usable for the intended
purpose. The sensors that were presented in Chapter 1 were the basis of the project.
As mentioned, they transmitted data every 5-10 minutes that included measured CO2
level, pressure, humidity and temperature. This was not the only data transmitted
from the sensors. To keep track of the resources connected to the sensors, all the
statistics involving time and date, and energy power was also transmitted. This
included among others battery percentage, battery voltage, seconds from midnight,
solar charge, sunrise and sunset. These latter measurements are the ones used as
parameters for creating the different machine learning models.

The IoT sensor nodes from the roof had been transmitting data for a long period
of time. Therefore the datasets that were the basis for the training set were very large.
They also had some missing data at some points and were not homogeneous. So the
first step before actually starting to design the models, was to clean the datasets and
make them homogeneous. From viewing the large datasets it was decided that the
results would be more straightforwardly if the batteries was tested separately. This
was because even though the batteries shared behavior, they had different battery
percentage at different times and it would not be possible to fit the machine learning
models.

To create the machine learning models the programming language python was
chosen. PyCharm was used as the python integrated development environment (IDE),
and the models was inspired by the Scikit-learn library. Running the tests was done
by using the computer terminal to run the programming code. The machine learning
models used for testing are the ones presented in Section 3.3.1. The figures for this
chapter is based on only one battery that is facing south. However, in Chapter 5 the
results from one battery facing north will also be presented.
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Figure 4.1: One night with linear regression

4.1 Testing During Nighttime

The first part of the testing was conducted using only data from when the sun
was down. During nighttime the battery would not recharge because of the lack
of sunlight and this would make it easy to get an overview of the discharge rate.
Figure 4.1 is a presentation of the dataset for one battery during nighttime with a
linear regression model applied.

4.2 Testing During Daytime

After looking at the data for the battery during nighttime, viewing the data only
when the sun was up was the next step. This was to better understand the charging
and discharging during daytime, and to better understand the curve. Figure 4.2
presents the dataset for the charging and discharging only when the sun is up. The
dataset in the figure is combined with linear regression, KRR, and SVR. Linear
regression is the red line, KRR the yellow line and SVR is the green line.
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Figure 4.2: One day with linear regression, KRR, and SVR

4.3 Testing for Entire Days

When both nighttime and daytime had been viewed and tested separately, it was
time to combine the two and look at the entire day. This was to view the data in a
unified way, and therefor get a better understanding of the behavior of the battery.
The behavior of to consecutive days are illustrated in Figure 4.3 in combination with
linear regression (red line), KRR(yellow line), and SVR (green line).
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Figure 4.3: Two entire days with linear regression, KRR, and SVR

4.4 Expanding to Weeks and Months

Expanding the entire day was the next step. First a whole week was tested, to
see if there was a pattern in the behaviour for longer than the two days that was
viewed in Section 4.3. Figure 4.4 represents a week of data combined with KRR, and
SVR. Second, an entire month of the dataset was applied. This was also to check
for a possible pattern that could be applied to the machine learning models. An
illustration of the entire month with KRR and SVR is shown in Figure 4.5.
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Figure 4.4: One week with KRR(yellow line) and SVR(green line)

Figure 4.5: One month with KRR(yellow line) and SVR(green line)
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4.5 Fitting the Models

After viewing the dataset in different intervals, the models had to be fitted. Here it
was important to fit the models enough without overfitting. The different machine
learning models had different parameters for the fitting. For this part of the testing
the goal was to change the values of the different parameters and choose the parameter
value that was most suitable for the specific model. Figure 4.6 shows the SVR model
not highly fitted with gamma value 1.0, Figure 4.7 shows the model more fitted with
gamma value 4.0, and Figure 4.8 shows the model highly fitted with gamma value
8.0. The values used to fit here does only apply for the visualization on how fitting
is done, and does not represent the actual values used for prediction.

Figure 4.6: SVR model fitted with gamma = 1.0
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Figure 4.7: SVR model fitted with gamma = 4.0

Figure 4.8: SVR model fitted with gamma = 8.0
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4.6 Decisions for the Testing and Predictions

When going through the different intervals for the dataset, it was clear that a large
interval was to unclear to be able to get good results from. It was therefore decided
that the visualization for the dataset would be for only two days. Of those two days,
the first day would be the representation of the actual data for that day, and the
second day would be the prediction. The training dataset was created by generalizing
all of the previous days up to the predicted day. Generalizing is to take all days and
creating the data based only on the seconds passed midnight, meaning that it will
appear to only be one day.



Chapter5Results
The purpose of the experiment presented in the previous Chapter 4, was to use
different machine learning models. These models were used to see if there was any
correlation in the behavior of batteries, and if there was a possibility to predict the
future behavior of the same batteries. The decision of which machine learning models
to use was decided based on the theory, and the usage of the machine learning models.
As already explained in Chapter 2, Section 2.2 the sensor nodes have different activity
phases. The entire phase cycle is completed when the sensors send information, and
therefore the decent in battery percent is linear when the battery is not charging.
However, when the sun is up, the battery may be charging and discharging. This is
dependent on the whether there is sunlight or not.

Training data has been the input for each of the models mentioned in Chapter 3,
and predictions have been made. The models have been created using python
programming. In this chapter, the result from the predictions will be presented.
First each model separately, then some and all models together. As explained in
Chapter 4.6 the result will be presented as two consecutive days. When viewing the
figures showing the different result the blue dots will represent the previous day, and
the black dots will represent the actual registered data for the predicted day. The
x-axis of the graph the time and date, and the y-axis is the battery percent.
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5.1 Prediction Data

When making a prediction, a machine learning model has to have data to learn
from. As mentioned in Chapter 4 the dataset received from the sensor nodes had
to be cleaned in order to be homogeneous. This means no missing data or wrongly
registered data. After cleaning the data, two of the batteries were selected. One of
them had the solar panel facing south, and the other had the panel facing north.
Even after cleaning the datasets, the data may still vary depending on the charging
during a certain period of time. The different models were fitted with the same
values for both the south and north facing battery. This means that the models are
fitted on a general purpose, and not for one specific battery.

Figure 5.1 shows the entire dataset for the battery facing south. It shows that the
data in general follows a specific pattern. However, sometimes the data points are far
from the general pattern. This data is the basis for the training set, and is generalized
to become one day of data. Figure 5.2 is the illustration for the training set of the
battery facing north. This dataset has a less recognizable pattern. Generalizing to
create the training set for one day is also conducted to this dataset. Even though
these figures only represent two batteries, the remaining batteries had a similar
dataset to the battery where the solar power panel was facing the same way.

Figure 5.1: The training set used for prediction on the battery facing south
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Figure 5.2: The training set used for prediction on the battery facing north

5.1.1 Linear Regression

Prediction using linear regression will, as explained in Section 3.3.1, provide a straight
line. However, if fitted it can provide straight lines between points, and the point
may then create a dynamic line. Linear regression does not have any variables to set,
and does only take the parameters into consideration when predicting. When looking
at Figure 5.3 and Figure 5.4 it is visible how linear regression may appear like a
dynamical line. Figure 5.3 is an illustration of the prediction with linear regression
for the battery facing south. The yellow dots represent the predicted values. It is
clear that the yellow dots follow the curve of the actual data to a certain extent, but
it does not reach either the lowest or highest battery percent of the actual graph.
The prediction is not very noisy, and at some point not noisy at all.

Figure 5.4 is the illustration of prediction with linear regression for the north
facing battery. Also here are the yellow dots a representation of the predicted values.
The curve of the predicted values follows the curve of the actual values very well.
However, the entire predicted curve lies on a higher x-value and does not match at
any point. Noise is nearly non-existent, only at points where the actual data is noisy
as well. The predicted curve is a better match to the training data, shown in blue.
This could be caused by several reasons. The maximum effect of the battery may be
decreasing, the actual day might have had very bad weather, the training set created



36 5. RESULTS

Figure 5.3: Results of the prediction model using linear regression on the battery
facing south

by the model may be wrongly created, or the dataset used for the training set may
be so varied that the prediction is difficult to perform.
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Figure 5.4: Results of the prediction model using linear regression on the battery
facing north

5.1.2 Support Vector Regression

Prediction with SVR and how it works is explained in Section 3.3.1. SVR only uses a
part of the training set in order to make the prediction. For this prediction the values
used for fitting is: ε = 0.1, and γ = 0.000001. Figure 5.5 shows SVR performed on
the battery facing south, where the red dots represent the prediction. The prediction
curve follows the curve of the actual data very well, and it is only missing the actual
data when recharging. Noise is almost non-existent in the prediction, only a small
amount at the peaks. For the SVR prediction performed on the battery facing south,
a validation curve was also created. This is shown in Figure 5.6 and shows how the
training score performs in relation to the γ value used.

An illustration of the prediction for the north facing battery is shown in Figure 5.7.
Predicted values are, in this case also, represented with red dots. The prediction
values are not as closely gathered here as they are in the south facing value, meaning
more noise points. Even though this prediction is more noisy, it still follows the
curve of the actual data to a certain degree. At some points the prediction is on the
actual data curve, but for the most part the prediction is at a higher x-value than
the actual data.



38 5. RESULTS

Figure 5.5: Results of the prediction model using SVR on the battery facing south

Figure 5.6: A validation curve for SVR on the battery facing south
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Figure 5.7: Results of the prediction model using SVR on the battery facing north

5.1.3 Kernel Ridge Regression

KRR, which is presented in Section 3.3.1, is not a sparse model. This means that the
model uses the entire data set for training rather than a selected amount of training
points. For this prediction the values used for fitting is: α = 0.04, and γ = 0.000001.
Figure 5.8 is a representation of the prediction done for the battery that is facing
south. The purple dots are the prediction from KRR. It is visible that this prediction
model follows the curve of the actual data for most of the graph. However, it does
not reach the highest values on the x-axis, which means that the model does not
predict that the battery will be fully charged. The prediction does not appear to
have any noise.

Figure 5.9 shows an illustration of the prediction for the battery facing north,
where the purple dots are the KRR prediction. It is very clear that the KRR model
misses the predicting with a quite large margin. The predicted curve matches the
actual to some extent, but the prediction is not correct for this specific day. Noise is
also a part of the prediction, but it is not severe.
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Figure 5.8: Results of the prediction model using KRR on the battery facing
south

Figure 5.9: Results of the prediction model using KRR on the battery facing
north
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5.1.4 K-Nearest-Neighbor

The K-NN algorithm bases its prediction on a chosen number(K) of selected neighbors.
This is explained further in Chapter 3.3.1. The larger the K-value, the less noise in
the prediction. For this prediction the value used for the number of neighbors, K =
10. Figure 5.10 illustrates the K-NN prediction for the south facing battery, with the
predicted dots are represented in turquoise. The curve of the prediction follows the
curve of the actual data at almost any point in the graph. Noisiness however is an
issue, and the noise makes the prediction harder to read because of the large spaces
between the extremities.

The representation of the prediction for the north facing battery is Figure 5.11,
with turquoise dots as the prediction. There is really no noticeable curve in the
prediction, and difficult to even see what is predicted. This is because of the enormous
amount of noise points in the K-NN prediction. Some of the predicted points fits
some points in the actual data curve, but this is far from enough to get a good
prediction.

Figure 5.10: Results of the prediction model using K-NN on the battery facing
south
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Figure 5.11: Results of the prediction model using K-NN on the battery facing
north

5.1.5 Decision Tree Regression

DTR bases its prediction on the average value of the training set, which is explained
in Section 3.3.1. This regression model bases its prediction on the decided maximum
depth of the tree. The deeper the tree, the more fine details is taken into consideration.
Maximum depth for this prediction is set to, max_depth = 10. An illustration showing
the prediction for the battery facing south is Figure 5.12. The predicted points
are presented with maroon dots. This illustration shows that the predicted curve
follows the actual curve in a very good way, and it is only at the high peak that
the prediction misses by a small margin. The noisiness in the curve is also good,
meaning not a lot of noise points.

Figure 5.13 shows the prediction done for the north facing battery, also represented
with maroon dots. This prediction however, it not as good as the one for the south
facing battery. The predicted curve is not visible, and is replaced with a clustered
presentation. Clustering is not the type of prediction wanted for regression. Noise
points are also the majority of the prediction, where some of the noise points are
very far from the actual data.
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Figure 5.12: Results of the prediction model using DTR on the battery facing
south

Figure 5.13: Results of the prediction model using DTR on the battery facing
north
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Figure 5.14: Results of the prediction model using MLP on the battery facing
south

5.1.6 Multi-layer Perceptron

The MLP prediction model bases its prediction, which is presented in Section 3.3.1,
on a decided number of input and output dimensions. The model consists of several
layers, where at least one layer is hidden. Figure 5.14 shows the prediction created
with using MLP prediction on the battery facing south. This prediction is shown by
the usage of green dots. The predicted curve fits the actual curve almost perfectly
with only very small differences. It also reaches the high an low peaks of the actual
data. There is some noise to the predicted data, but not more than what exacts in
the actual data.

Figure 5.15 shows the prediction done with MLP on the north facing battery.
Also this represented with green dots. The predicted curve follows the curve of the
actual data to a certain extent, but misses quite clearly in some points. For the
peaks of the actual graph, the prediction is a little lower on the x-axis for both the
highest and lowest point of the graph. There is also some noise in some of parts of
the prediction, while other parts have no noise.
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Figure 5.15: Results of the prediction model using MLP on the battery facing
north

5.2 Combination of Several Models

For this part of the results, more than one of the machine learning models used
in this project will be presented in the same figure. This is to illustrate how the
different models behave and performs compared to the other models. Values used
for prediction in the previous section, are the same for the prediction in this section.
The colors used to represent the different predictions are also the same as they were
in the previous sections.

In Figure 5.16 all of the models used to predict for the south facing battery is
combined. The figure also has a box with which model is which color, to make it
easier to see the differences. All of the prediction models used for the south facing
battery is very similar. This could be because of the homogeneous training set for
this battery, which can be seen in Section 5.1. From the figure it is visible that the
most accurate models are SVR and MLP. However, the MLP prediction is a bit noisy
and the least noisy models are SVR and KRR. When it comes to the models that
has the worst prediction, this is K-NN and linear regression for this battery.

Figure 5.17 is a illustration of a combination of all of the models used to predict
for the battery facing north. This figure also has the box showing the different colors
used for the different models. The similarities between the prediction curve for the
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Figure 5.16: Results of the prediction model using all previously mentioned
machine learning models on the battery facing south

different models are not so apparent for this battery as they were for the south facing
battery. This might be because of the training set for the north facing battery was
more volatile, making predicting more difficult. From the figure it is visible that the
models that are most accurate in their predictions are SVR and MLP. The least
noisy models are MLP and linear regression. When it comes to the least accurate
prediction models it is clear that K-NN is the model that is furthest from the actual
data curve, and by far the noisiest.

Viewing all models in one figure is very unclear when the models look quite
similar. In Figure 5.18 and Figure 5.19, respectively presenting the south facing and
the north facing batteries, three and four models are selected to be displayed. It
is more clear in these figures the differnce in the different machine learning models.
Figure 5.18 shows how SVR is the most accurate prediction and how K-NN is a
lot more noisy than KRR. It also shows that the difference is not so huge for the
predictions because of the homogeneous training set. Figure 5.19 shows how much
more difference there can be in predictions when the training set is less homogeneous.
It also shows that the prediction from DTR does not have a curve compared to the
other predictions, and is therefore more diffucult to read results from.

When the different machine learning models predict, they test their models fitting
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Figure 5.17: Results of the prediction model using all previously mentioned
machine learning models on the battery facing north

Figure 5.18: Results of the prediction model using SVR, KRR, and K-NN on the
battery facing south
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Figure 5.19: Results of the prediction model using SVR, KRR, and K-NN on the
battery facing north

by checking the confidence level. This is done by splitting the training data in to
separate parts where the first part(80%) is tested to predict the second part(20%).
How well it is fitted is then represented by a confidence value. The confidence level
will vary a lot, depending on how big the dataset used for prediction is. As the
dataset increases, the confidence level will decrease. This is because it is difficult to
be as precise in the prediction when the data points used for training are so many,
because of the difference in the data. Table 5.1 is an table that shows the confidence
level for the different machine learning models used in this project. It is presented
one value for the north facing battery and one value for the south facing battery.
Confidence level 1 is the highest possible level to reach, and confidence level 0 is the
lowest possible value.
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Table 5.1: A table showing the confidence level for each of the machine learning
models

Machine learning model South facing battery North facing battery
Linear regression 0.4 0.67
SVR 0.47 0.66
KRR 0.49 0.62
KNN 0.22 0.27
DTR 0.5 0.72
MLP 0.25 0.64

5.3 Sources of Error

The testing done in this level may have some errors. One of the major errors are the
fitting of the models. The models should be fitted correctly without being overfitted,
which happens if the model is fitted to precisely for that exact battery. This is
attempted to be prevented by using the same fit for the north and south facing
battery, and using the fitting values that is best for both batteries. Another error
that may occur in this project is the decision on which part of the data for the
batteries to use for training. The data was cleaned to the best attempt, but may
still contain errors affecting the prediction models. Choosing which batteries to use
for the testing may also be a source of error. The batteries chosen were the ones
that looked like they contained the most data available for testing, but this may be
incorrect.
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The subject of this master thesis has been to analyze the correlation in the behavior
of LiPo batteries. For the project and testing conducted, the purpose was to see if
machine learning models could be used to predict the future behavior of the batteries.
In the project there has been both a theoretical approach as well as a practical
approach. This chapter will contain a discussion on the background theory and the
experiment conducted. The utilization of machine learning in combination with
battery behavior prediction, and also the placement of the solar power panel will be
the main focus for the discussion.

6.1 Discussing the Theoretical Background

When viewing the information presented in Chapter 2 and Chapter 3 the behavior
of LiPo batteries should be similar. The batteries are created in the same way,
and charge and discharge in the same way. However, if the batteries are using
different devices for charging, this may lead to overcharging or over discharging.
The life cycle of the batteries then might be different. If a battery is damaged in
any way it may loose some of its effect, and will therefore not be able to reach the
same voltage level as an undamaged battery. When using a large enough dataset of
battery behavior, these possible damages should be visible and thus be taken into
consideration. Machine learning models have already been applied to predict the
energy consumption of a battery in electric vehicles, and to predict the solar energy
for constrained nodes. This means that a combination of these to should be feasible.

6.2 Discussing the Usage of Different Machine Learning
Models

In Section 3.3.1, all the different machine learning models used for testing is presented
and their approach is explained. All of the models were chosen because they were
regression models, and for this project regression appeared to be the best fit. This is
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because the representation of the battery behavior would be a presented as a graph.
When deploying different models that have the same purpose they might end up
looking very similar. They will however often have a difference in the noise they
generate and the speed of executing the prediction. This is based both on the values
chosen for the fitting of the models, and the amount of the training set they use
for the prediction. When testing if machine learning may be utilized for a certain
purpose it is smart to look at several models and not just one or two. For this thesis,
six models have been reviewed and tested. This is in order to get several different
predictions to be able to collect the best possible results. I thought six would be an
appropriate number of models to get enough references and predictions, to be able
to solve the problem for this project. Based on the results collected, this number
was a good decision.

6.2.1 Figuring out Which Models to Utilize

For this part of the discussion, each of the machine learning models will be discussed
separately based on the results presented in Chapter 5. After all the models are
presented, there will be a summary with decision of which models work best for the
purpose of this master thesis.

Linear Regression

The linear regression model prediction could be usable for the battery facing south.
Here it fits in some of the data points. It does however miss on both the high and low
peaks, and would therefore not be able to tell if and when the battery is fully charged.
As this is considered to be essential information, the linear regression model is not as
usable for predicting as it could appear from Figure 5.3. With a confidence level of
0.4, the model it self is not very confident in its own prediction, and this for a good
reason. Because the training set for the south facing battery is very homogeneous,
the error in the prediction done by the linear regression model is to big.

For the north facing model the prediction misses for the entire graph completely.
Even though it follows the curve, this would not help in a real world situation. If you
are expecting the battery to have a power percentage of 46% and the real percentage
is 41%, this could have a big impact. You could expect the sensors to be able to
send a specific amount of measurements, however the number would be lower which
could have an effect on the results of the measurements. The confidence level for the
linear regression on the north facing battery is 0.67, meaning also that the model
expects to predict much better than it actually does. This could be because of the
non homogeneous training set for this battery, or the battery might be getting worse
in performance. The performance might sink because of outer damage, over charging,
or over discharging. The error in the prediction might also be because of bad weather
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causing the battery to not charge as much. However the model is taking solar charge
in as a parameter and should therefore know the amount the battery has charged.

Support Vector Regression

When viewing the figures presented in Section 5.1.2, it is very clear that the SVR
prediction model is very suitable for the battery facing south. It fits the curve at
every part and the prediction is very gathered and not noisy. This means that
the SVR model could be utilized to predict for a model when the battery has a
homogeneous training data. When creating the model certain values were decided.
For the south facing battery the confidence level for SVR is 0.47 which is not so high.
Even though the model fits quite well, it did not have a big confidence for its ability
to predict correctly.

Since SVR only uses a part of training set it is faster than other regression models.
This on the other hand might cause errors when the dataset is not homogeneous. For
the north facing battery this effect is very visible. The SVR prediction matches the
curve and matches almost the lowest points and does match with the highest points
of the graph, but it is very noisy. Since the training set for this battery is quite
variable, this could result in more noise when only selecting a part of the training
set. The confidence level for the north facing battery is 0.66, which is a fairly high
score. Even though it does not look like it, the model fits the actual data to some
extent, but with a lot of noise points.

The γ value chooses how strict the prediction should be, a bigger value will cause
overfitting and a too small value will make the prediction not fit the actual data.
Even though the fitting could be better for the north facing battery, it would have
been bad to make it stricter because then the prediction for the south facing battery
would be incorrect. The ε value that allows more errors the higher the value was set
to be low in order for the prediction to be very accurate. This could have been even
lower for the north facing battery, but then it would have been too low for the south
facing battery. It is still clear from the results that SVR is a possible model to use
for the purpose of predicting the behavior of any battery.

Kernel Ridge Regression

Since KRR is a regulated version of linear regression that uses kernels, I expected it
to have similar results as the linear regression model. This was not the case. For the
south facing battery the prediction i almost not noisy at all. It also fits the curve of
the real data pretty well. The only similarity to the linear regression model is that it
does not reach the high and low peaks. Confidence value for the south facing battery
is 0.49. This is not a very good value, but the prediction is better than the model
expects it to be. The prediction for the north facing battery on the other hand is not



54 6. DISCUSSION

as good. Even though it hits the same curve it does not mach at any point and is
noisy. This could be a result of the model not being strict enough when predicting,
or that the training set for this battery is not good enough to predict from. The
confidence value for KRR for the north facing battery is 0.62. Because the curves
are similar this confidence is eligible, but the curve misses the actual data.

Because the model uses the entire training set and also inverts the training set,
this is by far the slowest of the chosen models. This is negative when dealing with
large data sets, but the model is possible to use if the number of training points is
below 100. The value chosen for α is low but positive, this resulted in the conditions
for the south facing battery to improve. It did not have a very big effect on the north
facing battery. The γ value was also, as with SVR, chosen not to be any stricter
because this would cause overfitting and the results for the north facing battery
would then be wrong. This would prevent that the model might be used for any
battery and not just one specific. When viewing the results, KRR does not seem to
fit the intended purpose of creating a prediction for any battery. It can work for a
chosen battery, but the model would have to be fitted for each battery which would
cause a lot of work.

K-Nearest-Neighbor

The results presented in Section 5.1.4 shows the K-NN regression for both the north
and south facing battery. Although slightly noisy, the model fits the actual data for
the south facing battery to a certain extent. It reaches both the high and low peaks
of the actual data, and it could be used to predict this battery. For the south facing
battery the confidence level is 0.21. This could be explained with the model being
somewhat noisy, but the model predicts better than it expects to.

The prediction for the north facing battery on the other hand is really not readable.
Prediction point are all over the place and there is no visible curve, only noise. This
could be because of the training set or because of the chosen K value. As it is
presented, the model is not usable for the north facing battery. The confidence level
for the north facing battery is at 0.28, which means that the model did not have a
hig confidence in the prediction it would perform. This with a good reason.

When predicting with K-NN the only value to be chosen is the K value of how
many neighbors the average should be calculated from. When viewing Figure 5.10
and Figure 5.11 it is clear that K value could be much higher for the north facing
battery. This would affect the boundaries for the south facing battery, making that
prediction worse. The K value which was chosen for the tests were the best value
for the model to work for both batteries. As seen in the figure, the K-NN regression
model is not feasible for both batteries and therefore not really feasible for the
intended purpose of this project.
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Decision Tree Regression

Figure 5.12 and Figure 5.13 illustrates the prediction performed with DTR. The
prediction for the south facing battery is fitting the actual data very well with little
noise. It only misses at the highest peak. This could result in thinking that the
battery is not fully charged when it actually is, which again could lead to overcharging
and damaging the battery. The confidence level for this model for the south facing
battery is 0.5. The model anticipated for the prediction to be worse than the actual
result which is good.

For the north facing battery the prediction is very bad. The predicted point are
all over the place, and it is not possible to read a result from this prediction. It does
not have a recognizable curve, and even though it matches the actual data in some
points this is just a coincidence. The confidence level for the north facing battery is
0.72. The model anticipated to give a good prediction, but as the figure shows this
was not the case.

When predicting with DTR the value that is chosen is the maximum depth.
When the depth is increased the models takes more fine details into consideration
for the prediction. If this value had been lower, the prediction for the north facing
battery might have been better, but this would affect the prediction for the south
facing battery making it worse. As the figures illustrates the DTR prediction model
will work well for the south facing battery but not for the north battery. This means
that this is not a general model than may be used for any battery.

Multi-layer Perceptron

The MLP regression consist of at least three layers. This is further explained in
Chapter 3.3.1. The prediction for the south facing battery is almost spot on for
every part of the actual data graph. This is a very good prediction, with just a small
amount of noise points. For the south facing battery the confidence level is 0.25.
This is a very low number of confidence considering how good the model predicted.
The number could be explained by the fact that the training set is very large making
the model less secure of its prediction abilities.

The prediction done for the north facing battery is also quite good. It misses the
actual data curve in some parts, but matches for the most parts. This prediction is a
little noisier than the one for the south facing battery, but it is still a good prediction.
The layers in the MLP model might be the reason for the good prediction for both
batteries, because they filter out the usable information and creates a prediction
based on this. Confidence level for the north facing battery is 0.64 which is a better
value than for the south facing battery. Figure 5.14 and Figure 5.15 illustrates the
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prediction for both batteries and shows that the model is feasible for the purpose of
this master thesis.

6.2.2 Summary

The review of the machine learning models used in the experiment for this master
thesis shows both small and big differences between the values. Some of the models
can be used for the purpose intended without large alterations, while others will not
be usable even with alterations. The best suited model to predict for both batteries,
and therefore any batteries are MLP and SVR. Both of these models predictions
matched the actual data well. MLP was the model that matched the best, but SVR
also matched only with slightly more noise for the north facing battery. These to
models, I believe, can be used for further development when it comes to predicting
the behavior of batteries charged with solar power.

When it comes to the different batteries, the models had a much harder time
predicting the behavior of the north facing battery. If Figure 5.1 and Figure 5.2 is
reviewed it is easy to see why. While the training set for the south facing battery is
almost homogeneous with some abnormalities, the training set for the north facing
battery has no real pattern. This could be because of the battery used, but when
looking at all the batteries this was the case for all. The batteries facing south had a
repeatable homogeneous pattern, and the batteries facing north had no recognizable
pattern. Because of these findings I think it would be a good idea to face all the
solar power panels towards south.
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The basis for this master thesis was to find a correlation in the behavior of LiPo
batteries, and to see if machine learning models could be utilized to predict future
behavior. IoT and the always developing technological world was the motivation
for deciding to work on this task, as well as analyzing data. Machine learning is
becoming more and more familiar, and the areas use of machine learning models are
increasing.

7.1 Possibility for Deployment in IoT Nodes

In Section 1.2 a research question was proposed, with some underlying problems to
investigate. When using IoT sensor nodes they need power to be able to sense, make
measurements, and send these measurements. To generate this power rechargeable
LiPo batteries can be used, and these batteries can be recharged with the help of
solar power. When using such rechargeable batteries for power, and solar energy for
recharging it is beneficial to know how the battery will behave. This could be used
for knowing how much energy is consumed by the node, and how fast the battery
will recharge. It could also say something about when the maximum effect of the
battery will be low, so that it is time to change the battery. Using machine learning
models to predict this behavior is a possible solution, and with the testing conducted
it is also proven to be feasible. However, not every machine learning model can be
used for this purpose, because it requires a high match in the predicted values. This
is because a battery may be damaged or even completely ruined if it overcharges or
over discharges.

Some of the solar panels connected to the batteries were facing south, while
others were facing north. When looking at the different datasets for the different
batteries it became clear that there was a correlation in the behavior of the batteries
facing south. However for the batteries facing north, the correlation was not so clear.
So, when the solar power is being used in a northern place where the weather is
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considered to be unstable, the solar panels charging the batteries should be facing
south. The behavior therefore appears to be dependent on the weather, but there
is a correlation in the behavior of the batteries when the batteries are facing the
correct way.

Through testing and literary review, six machine learning models have been
investigated to see if they fit the purpose intended for this master thesis. Using
machine learning to predict the future behavior of batteries proved through testing
to be possible. This by using previously registered battery percent, time of day and
solar charge values as parameters for the models. The models should not only be
applicable for one specific battery, but for any battery. predicting future behavior
using machine learning models proved to be achievable. However it is somewhat
dependent on the training set for the prediction to be homogeneous.

Using regression models for the prediction was the best fit because the data was
presented as a graph. From all of the six models tested, there were only two models
that would be recommended for this purpose. This is because they would fit the
actual data very well for both batteries, without being overfitted. The two models
possible to use for battery behavior predicting is MLP and SVR, where MLP was
the absolute best mach. Other models could be used for this purpose as well, but
they would maybe have to be fitted for each battery creating a lot of work.

7.2 Further Work

For future work it would be natural to include the weather forecast more. It could
be to combine data for cloudiness, positioning of the sun, and other weather data to
the models. This to see if the models would be even more precise and maybe the
dataset used for training would not have to be cleaned before using it. There could
also be research on the factors that makes the battery decrease in maximum effect,
and maybe it could be possible to merge this into the models to be able to predict
when exactly the battery need to be changed. This could be usable for IoT sensor
nodes deployed in places where they are hard to reach.
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