
Energy-Efficient Adaptive Sensing in Low
Power Wide Area Networks

Thomas Andersen

Master of Science in Communication Technology

Supervisor: Frank Alexander Krämer, IIK

Department of Information Security and Communication Technology

Submission date: June 2018

Norwegian University of Science and Technology

Title: Energy-Efficient Adaptive Sensing in Low Power Wide Area Networks
Student: Thomas Andersen

Problem description:

Low Power Wide Area Network (LPWAN) technologies such as LoRa and NarrowBand
IoT (NB-IoT) are emerging to meet new demands in the field of IoT. The new
technologies promise low energy consumption with battery life exceeding ten years.

This thesis will investigate LPWAN technologies in the light of a temperature
measurement application. The goal is to investigate the potential implications
on node’s energy consumption when adding some form of intelligence to a system,
providing adaptive transmission capabilities. The state-of-the-art transmission scheme
in IoT is having sensors sending measurements to a Fusion Center (server) at a
fixed interval. This is a potentially energy expensive solution, especially if the
transmission rate is high. Additionally, using a fixed transmission scheme has no way
of guaranteeing that the amount of data sent has an actual value to the system. The
hypothesis of this thesis is that, if we provide the Fusion Center with some intelligence
based on models (predictions on future temperature), the energy consumption in
end nodes can be reduced. Therefore, instead of sending data (potentially useless
to the system) at a fixed interval, the nodes refrain from sending if the measured
temperature matches that of the Fusion Center’s prediction. There are two major
expectations of such an approach: A Fusion Center with less, but higher value data,
and end nodes using less energy than that of the state-of-the-art solution.

The hypothesis will be tested both against the theoretical possibilities of the LPWAN
technologies, as well as in experiments with devices running LoRa and NB-IoT.

The key parts of this thesis consist of:

– Understanding the key factors comprising energy consumption in LPWAN
technologies

◦ What are the baseline energy consumption for a LPWAN device?
◦ Can we tweak device’s operational cycle (sleep, sense, compute, send,

sleep) to reduce energy consumption?
◦ Can we calculate the cost of sending a byte? Is ten bytes ten times more

expensive?
◦ Which factors are fixed and which could potentially be improved?

– Understanding the LPWAN energy modes (e.g. eDRX in NB-IoT)

◦ How can we best utilize the modes to extend battery life of devices?

– Establishing an inexpensive way of sending data to sensor nodes

◦ Can we piggyback the prediction models from Fusion Center to nodes on
existing packets?

◦ What form should the prediction have to reduce the cost of sending it to
nodes?

– Making a test system consisting of LPWAN nodes sending temperature mea-
surements

◦ What are the cost of sending at fixed intervals?
◦ What are the cost of utilizing an adaptive transmission scheme?
◦ Do we see an improvement in battery life? At what cost?

Responsible professor: Frank Alexander Kraemer, ITEM
Supervisor: Frank Alexander Kraemer, ITEM

Abstract

Low Power Wide Area Networks (LPWAN) is attracting attention from
both research communities and the industry due to its low energy, long-
range radio communication. Expectations of the capabilities of the
LPWAN technologies, with LoRaWAN and NB-IoT being the two most
prominent, are high. Standards organizations, such as the 3GPP, promise
end-device battery life of more than ten years. However, little research
has focused on investigating how this is achievable.

This thesis provides a study on the energy characteristics of LPWAN
end-devices, focusing on the prominent factors leading to increased energy
consumption. The research further investigates the potential implications
of applying Adaptive Sensing techniques to the system.

From experiments with a Pycom Fipy LoRaWAN device, we show that
energy consumption when transmitting uplink packets consists of two
parts: an increasing linear factor related to increasing the packet payload
size, plus a fixed cost independent of payload. Introducing accumulation
of packets, or adaptive sensing, the fixed cost yields a potential reduction
in end-device energy consumption of up to 9000 %, compared to using a
fixed-rate transmission scheme. The results of the study also show that
when adaptive sensing manages to reduce half of the transmitted packets,
a seven-month increase in battery life is possible when using a 2400 mAh
battery. This increase implies a 65 % extended battery life, even when
sending only maximum payload packets.

Sammendrag

Low Power Wide Area Networks (LPWAN) tiltrekker seg oppmerksom-
het fra både forskningsmiljøer og industrien på grunn av sin lav-energi,
langdistanse radiokommunikasjon. Forventninger rundt egenskapene til
LPWAN-teknologiene, med LoRaWAN og NB-IoT som de to mest frem-
tredende, er høye. Standardisingsorganisasjoner, som 3GPP, lover batte-
rilevetid på over ti år for enhetene. Imidlertid har lite forskning fokusert
på å undersøke hvordan dette kan oppnås.

Denne oppgaven undersøker energikarakteristikkene til LPWAN-enheter,
med fokus på de fremtredende faktorene som fører til økt energiforbruk.
Forskningen undersøker videre de potensielle implikasjonene ved å anvende
Adaptive Sensing teknikker i systemet.

Fra eksperimenter med en Pycom Fipy LoRaWAN-enhet viser vi at
energiforbruket ved overføring av pakker fra enhet til server består av to
deler: En økende lineær faktor relatert til økning i pakkestørrelse, pluss en
fiksert kostnad uavhengig av pakkestørrelsen. Ved å innføre akkumulering
av pakker eller adaptive teknikker, fører den fikserte kostnaden til en
potensiell reduksjon i energiforbruket på opptil 9000%, sammenlignet
med å sende på et fastsatt intervall. Resultatene av studien viser også at
dersom de adaptive teknikkene klarer å redusere halvparten av de overførte
pakkene, er det mulig å øke batteriets levetid med syv måneder når man
bruker et 2400 mAh batteri. Dette medfører en økning i batterilevetiden
på 65 %, selv om man kun sender pakker med maksimal pakkestørrelse.

Preface

This Master’s thesis is the final deliverable of the 5-year MSc program in
Communication Technology at The Department of Information Security
and Communication Technology, Norwegian University of Science and
Technology (NTNU). The thesis is part of an on-going inter-disciplinary
research project at the Faculty of Information Technology, and Electrical
Engineering called Autonomous Resource-Constrained Things (ART).
The research conducted for this master thesis consists of two parts: A
pre-study conducted autumn 2017 and this thesis due June 2018. The
research is by Thomas Andersen and supervised by Frank Alexander
Kraemer at The Department of Information Security and Communication
Technology, NTNU.

The initial research problem, forming the basis for the pre-study, and
later this thesis was presented to NTNU by The Norwegian Public Roads
Administration and Telenor. The pre-study with title "Is an IoT ap-
proach to road condition monitoring feasible?" focused on the potential of
deploying small cost sensors along roads, monitoring the environment, as
opposed to high-cost weather stations that are in use today. This thesis
builds on the pre-study but with a broader perspective: an investigation
into how we can build adaptive sensing applications within LPWAN.

Acknowledgments

First of all, I want to thank the NPRA and Telenor for presenting
an exciting research project. Although the project has taken a more
specialized form since the initial project for the pre-study, the task is in
many ways the same.

I want to thank my supervisor Frank Alexander Kraemer for his guidance
throughout the process of writing this thesis. I want to thank him for
always being available to answer questions, for being genuinely interested
in the research, for pushing me to write, for reading through all my work
and giving constructive feedback. Lastly, for making me understand that
if it does not work, that is also an answer.

I especially want to thank Ph.D. student Nattachart Tamkittikhun for his
interest in and knowledge about my research. Although not any formally
defined relationship with, or obligations towards my research existed,

he was always available for questions, and help in general. I especially
want to put a focus on the fact that he more than once sat with me
debugging code and electronics, often after midnight. Much of the energy
consumption measurements would not have been possible if it had not
been for his help.

Lastly, I am grateful for Sanna Granbo’s support throughout the process,
especially for leaving work early to look after our puppy Truls so I could
focus on the thesis.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1
1.1 Motivation . 3
1.2 Research Goals . 4
1.3 Thesis Structure . 4

2 Background and Related Work 5
2.1 Low Power Wide Area Networks . 5
2.2 LoRaWAN . 8

2.2.1 LoRaWAN General Overview 8
2.2.2 Physical Layer . 9
2.2.3 MAC Layer . 10

2.3 Narrowband IoT . 11
2.3.1 General Overview . 11
2.3.2 Operating Modes . 12

2.4 Comparison Between LoRa and NarrowBand IoT 14
2.5 Adaptive Sensing . 16

2.5.1 Duty Cycling . 16
2.5.2 In-network Processing . 18
2.5.3 Data Prediction . 18
2.5.4 Adaptive Sampling . 19

2.6 Modeling the Energy Consumption of End-devices 19
2.6.1 Modeling the Energy Consumption of LoRaWAN 19
2.6.2 Modeling the Energy Performance of NB-IoT 20

3 Methodology and Design 23
3.1 Scientific Method . 23
3.2 Equipment and Test Architecture: What, how and why 25

vii

3.2.1 Pycom Fipy . 25
3.2.2 Pycom Expansion Board . 26
3.2.3 Sodaq NB-IoT Shield . 26
3.2.4 Pycom Lopy . 27
3.2.5 Microchip PAC1934 DC Power Monitor Evaluation Board . . 28
3.2.6 Raspberry Pi 3 . 31
3.2.7 HiveMQ MQTT Broker . 32
3.2.8 Computer . 32

3.3 Data Collection Methods . 33
3.3.1 Black Box Experiment Design 33
3.3.2 A Novel Experiment Design for Higher Precision Measurements 34

4 Experiments 37
4.1 Average Idle Current of the Fipy . 38
4.2 Average Deep Sleep Current of the Fipy 39

4.2.1 Fixing Deep Sleep . 41
4.2.2 Preparing for Deep Sleep . 42

4.3 Relationship Between Payload Size and Energy Consumption 42
4.4 Relationship Between Payload Size and Energy Consumption (refined) 45
4.5 Relationship Between Down-link Packet Payload Size and Energy

Consumption . 47
4.6 Generalizing Casals et al.’s Energy Consumption Model 49

5 Discussion 53
5.1 Aggregating Data for Transmission 53
5.2 Battery Lifetime as a Function of Reducing Transmissions 55
5.3 Piggybacking Prediction Models on Existing Packets 57
5.4 What about NB-IoT? . 58

6 Conclusion 61

References 65

List of Figures

1.1 System schematics . 2

2.1 Required data rate vs. range of radio communication technologies.
Adapted from [MBCM18] and [SWH17] 7

2.2 LoRaWAN System Architecture. Inspired by [CMVG17] 8
2.3 Basic transmission scheduling in LoRaWAN Class A functionality. Taken

from [CMVG17] . 9
2.4 A high level view of the NB-IoT architecture. 11
2.5 NB-IoT operation modes. Adapted from [LL17]. 12
2.6 User equipment (UE) power state: (a) discontinuous reception (DRX); (b)

extended discontinuous reception (eDRX); (c) power saving mode (PSM).
Adapted from [LL17]. 13

2.7 Advantages of LoRaWAN and NB-IoT regarding IoT factors. Note that
in the diagram, LoRa is used instead of LoRaWAN. Mekki et al. use the
term LoRa in the diagram that inspired this figure. It does not, however,
make sense to compare LoRa, a physical modulation scheme, with NB-IoT.
We used a web-based diagram maker to generate this diagram, and we
discovered the error too late to remake it. Adapted from [MBCM18]. . . 14

2.8 Taxonomy of adaptive sensing strategies. Adapted from [ACDFP09] . . 17

3.1 Closed learning loop. Adapted from [Spa16] 24
3.2 Test architecture . 25
3.3 Pycom Fipy [Pycd] . 26
3.4 Pycom Expansion board [Pycb] . 26
3.5 Pycom Lopy [Pyce] . 27
3.6 Microchip PAC1934 DC Power Monitor Evaluation Board [Mic] 29
3.7 Raspberry Pi [Ras] . 31
3.8 MQTT test architecture . 32
3.9 Black Box Test Design . 34
3.10 State machine of measurement process 35

4.1 Experiment 1 setup . 38

ix

4.2 Deep sleep current . 40
4.3 Fipy duty cycle. Peak shows device preparing for deep sleep 42
4.4 PAC1934 Graphical User Interface. The image is taken from [Mic17] and

shows the application running in demo mode generating default waveforms. 43
4.5 Relationship between payload size and accumulated power per second,

when normalizing the power against the accumulated power of not sending 45
4.6 Experiment setup using jumper cables between pins 46
4.7 Average energy consumption for different payload sizes 47
4.8 Average energy consumption for different down-link payload sizes 49

5.1 Effect on battery life when reducing percentage of (242 byte payload)
packets sent for 10 minute duty cycle and a 2400 mAh battery 57

List of Tables

2.1 Data rates (DR) and related configuration for EU863-870 band channels.
Taken from [CMVG17]. 10

2.2 Comparision between LoRaWAN and NB-IoT. Adapted from [MBCM18]. 15
2.3 Battery lifetime estimates for NB-IoT with external PA [3GPb]. 21

4.1 Manual test of linearity of payload size of sent packets 44
4.2 Average energy consumption and variance of 100 sent packets of different

payload sizes . 46
4.3 Time and current consumption for a LoRaWAN duty-cycle, based on

parameters used in Modeling the Energy Performance of LoRaWAN
[CMVG17]. 50

xi

List of Algorithms

3.1 Python implementation of formula for ISense 31
3.2 Simplified Python code for test subject 36
3.3 Simplified Python code for observer 36
4.1 Python method: Turning of all radios 39
5.1 Python implementation for calculating the effects on battery life of

end-devices when reducing the percentage of transmitted packets . . 56

xiii

Chapter1Introduction

There are high expectations of what the future of IoT should, and needs to be.
IoT devices are expected to be deployed anywhere, be as self-sufficient1 as possi-
ble, and provide users with up-to-date information about its sensing environment.
Therefore, technologies providing low-cost operation and communication is required.
Additionally, applications need to be designed to reduce the energy consumption of
end-devices to a minimum. Industry, academia, and standards development bodies
have devoted significant efforts to LPWAN in the last years [RKS17]. Low Power
Wide Area Network (LPWAN) technologies such as LoRaWAN and Narrow-band IoT
(NB-IoT) are emerging to meet new demands in the field of IoT. The new technologies
promise long-range communication and low energy consumption with battery life
exceeding ten years. However, under which operating condition this holds is unclear.
Many IoT devices, such as sensors and actuators are required to be battery-operated.
An investigation into the characteristics affecting the energy consumption of these
devices is therefore crucial. Most of the published work within the field, however, only
consider this topic to a limited extent, providing rough estimates on energy perfor-
mance based on datasheets, not considering the realistic behavior of device hardware.
Additionally, research tends to focus on comparing the different technologies based
on features such as coverage, scalability, throughput and latency [MBCM18]. This
thesis investigates the factors influencing energy consumption of LPWAN devices,
both based on work done by other researchers, and experiments. We introduce the
concept of adaptive sensing into the system as a means of intelligently trying to lower
energy consumption of end-devices.

1The term self-sufficient here refers to the devices not needing battery changes or other manage-
ment tasks. For instance, a device solely running on solar panels is defined as self-sufficient.

1

2 1. INTRODUCTION

Figure 1.1: System schematics

Transmitting data from a sensor node to a server is often an expensive task when
it comes to energy consumption. Nodes can be located far away from the server,
making the cost of a single transmission high. Still, many applications rely on sensors
providing frequent measurements throughout a day. Instead of statically defining a
lower frequency for nodes to sense and transmit data, adaptive sensing introduces
mechanisms into the system to dynamically change this at runtime. We can apply
many different adaptive sensing techniques to a system (see section 2.5 for techniques
relevant to this thesis). Although the techniques are different in the way they achieve
the adaptiveness, the general goal is the same: save energy by preventing unnecessary
tasks from happening, providing the server with "just enough" information and at the
same time consuming the least amount of energy doing so. In other words, send data
only when it is needed. Doing this requires knowledge about the environment that is
to be measured. For instance, an environment application measuring temperature
needs to know something about what it should expect when measuring, to be able to
make the right decisions as to whether to send or not. Figure 1.1 shows a simplified
system design schematics, exemplifying one way of introducing adaptive sensing into
the system. We introduce adaptive sensing as a means of trying to lower the energy
consumption of end-devices, and the design consists of two models: a local, and a

1.1. MOTIVATION 3

global sensing model. The Global Sensing Model, residing on the server, is in charge
of modeling future data for all the nodes in the network. The results of the global
sensing model can, for instance, be predictions of future sensor values for a given
node, and are made using different techniques (e.g., statistics or machine learning).
The global model bases its predictions on historical values from the sensor nodes,
but can also include other data sources (e.g., weather forecasts). The Local Sensing
Model is local to each end-device, and is based on the results of the global sensing
model. The local sensing model is used to make decisions on whether the end-device
should send data to the server or not. Additionally, the model can define application
parameters such as device sleep time or sensing parameters (e.g., if the device should
measure a single sensor value or multiple times and average the results). During
application runtime, the model can be updated on a defined interval or upon request
(by either end-devices or the server). The server updates the local sensing model of
an end-device by sending a downlink message. The end-devices in the system design
in Figure 1.1 has one primary goal: send data to the server as seldom as possible.
When the global sensing model generates accurate predictions, the end-devices sends
less often, leading to extending the lifetime of the system.

1.1 Motivation

To motivate our research, consider an environmental monitoring sensor network
deployed along (potentially remote) roads. The sensor nodes should collect data
about the environment (e.g., temperature, humidity and wind) and send data to a
central server, potentially located far away. The central server calculates a prediction
model for the data to be sensed in a location every hour and sends the prediction to
the end-devices in that location. End-devices are required to use as little energy as
possible, so instead of sending temperature data to the central server each sensing
cycle, the nodes compares the measured temperature against the prediction model,
provided by the sensor. If the prediction holds, the end-device do not need to send
the data, since the server already knows the result. With a good prediction model,
such a design could reduce the overall energy consumption of end-devices without
limiting the hardware (e.g., reducing transmit power of radios). Such a system must
be designed to operate under the following conditions and constraints:

Location: Design of end-devices should permit deployment in any location and
terrain, leading to the need for batteries and possibly solar panels.

Energy constraints: End-devices should be energy-aware, and use as little energy
as possible. Energy-awareness implies usage of adaptive sensing techniques, as
opposed to fixed interval sensing and data transmissions. End-devices have two goals:
provide the system with sensor data and maximize system lifetime.

4 1. INTRODUCTION

Unattended operation: A sensor network consists of a potentially large number
of sensors, covering large geographical areas. End-devices should, therefore, require
little or no manual configuration and management. Deployment of sensors outdoors
also yields considering the dynamics of the environment. Lastly, end-devices needs
to enable remote updating of run-time parameters, and possibly device firmware.

1.2 Research Goals

There are two goals in this research: understanding the factors influencing energy
consumption of LPWAN devices and how to reduce them. The idea that sending
data less often should result in lower energy consumption is somewhat intuitive.
However, we do not know to what extent this is true. We also do not know what the
best mechanisms for reducing energy consumption is. Is it better to try to send less
often in itself, or should we focus on aggregating measurement data to send larger
packets when first sending?

To reach the research goals, we ask the following overall research question:

RQ1: What are the main factors driving energy consumption of LPWAN
devices, and what is the effect of using adaptive sensing schemes as a
means of reducing overall energy consumption?

The proposed research looks at techniques for reducing the energy consumption
of sensor nodes at the application layer, by using the underlying already available
techniques of the LPWAN technologies. Although improvements possibly could be
made to improve the existing LPWAN technologies, this is not the focus of this
thesis.

1.3 Thesis Structure

We structure the thesis in the following way: Chapter 2 presents the background
material for this thesis, with an introduction to Low Power Wide Area Networks in
general, before presenting two of the most prominent technologies; LoRaWAN and
Narrowband IoT (NB-IoT). We continue with a presentation of Adaptive Sensing,
focusing on some of the relevant sub-branches within the area. Chapter 2 concludes
with a presentation of energy consumption models for LPWAN. In chapter 3, we
present the research methodology used in this thesis. The chapter also includes a
presentation of the equipment used in the experiments as well as an introduction to
the experiment design. In chapter 4, we present experiments and preliminary results.
Chapter 5 discuss the findings from the experiments in light of the background
material, before chapter 6 concludes this thesis.

Chapter2Background and Related Work

Sensor networks periodically collect context information on the physical environment
from remote terrains and send the data back to a server for further processing [HEE13].
The server is generally located far away from the nodes. Limited energy resources
are the primary factor limiting the lifetime of deployed sensor nodes. Therefore any
development of application in this domain needs to take the issue of energy efficiency
into consideration. Sensor networks discussed in this thesis are applications where
data is not expected to change dramatically or critically in small time frames.

This chapter first presents a general overview of Low Power Wide Area Networks
before looking into two of the most prominent technologies, LoRaWAN and NB-IoT.
The technologies are presented in a general way, focusing on details relevant to this
thesis. The chapter concludes with an introduction to adaptive sensing and some of
the relevant methods of the field, before presenting energy consumption models for
LPWAN.

2.1 Low Power Wide Area Networks

Low Power Wide Area Networks (LPWANs) is a novel communication paradigm,
made to complement traditional cellular and short-range wireless technologies in
addressing the diverse requirements of IoT applications. LPWA is a generic term for
a group of technologies that enable wide area communications at lower cost points
and better energy consumption [SWH17] and is one of the fastest growing spaces in
IoT. LPWAN technologies can be used anywhere and anytime to sense and interact
with their environment instantly [RKS17]. Proprietary LPWAN technologies are
already being rolled out in Norway and are attracting attention from developers for
many reasons. One being its low power, long range, and low-cost communication
characteristics [MBCM18]. Another reason is that the technologies fill a gap in
the IoT landscape. Short-range wireless networks like ZigBee and Bluetooth are
very energy-efficient and used in many applications. However, the technologies are

5

6 2. BACKGROUND AND RELATED WORK

not applicable to scenarios with sensors distributed over large geographical areas.
The range of these technologies is limited to a few hundred meters at best [RKS17].
Cellular technologies like 3G/4G, on the other hand, provide wide area coverage,
but their design and features (e.g., signaling, handover between base stations and
high data rates) makes them too energy demanding for resource-constrained devices.
LPWAN provides communication for up to 10-40 km in rural areas and 1-5 km in
urban areas, is highly energy efficient (10+ years of battery life) and is cost-effective
in regards to hardware purchases [MBCM18]. These features, however, comes at the
expense of low data rates, which therefore makes the technologies not suitable to all
application scenarios. Applications needing multi-year battery lifetime while sending
small amounts of data over long distances a few times per hour is the intended targets.
In figure 2.1 we see the data rate and transmission range of different radio technologies.
The transmission range of LPWAN surpasses those of the other radio technologies but
is best fit for applications made to send just a tiny amount of data. Many LPWAN
technologies have arisen in the last couple of years, both in the licensed and unlicensed
frequency bands, and approximately seven billion IoT/M2M devices are predicted
to be connected to the Internet using LPWAN within 2025 [RKS17]. As many
different hardware manufacturers and software companies are making proprietary
solutions for the different technologies, the need for standardization in the LPWAN
space is apparent. Several well-known standard developing organizations such as
European Telecommunications Standard Institute (ETSI) [ETS], Third Generation
Partnership Project (3GPP) [3GPa], Institute of Electrical and Electronics Engineers
(IEEE) [IEE], and the Internet Engineering Task Force (IETF) [IET] are working
towards the open standards for LPWA technologies [RKS17]. In Norway, research
and development have been made to implement LoRaWAN and NB-IoT by the
country’s two largest telcos, Telenor and Telia Sonera. LoRaWAN has come the
longest regarding deployment, but both Telia Sonera and Telenor have begun testing
on NB-IoT. Telenor is planning a nationwide launch of NB-IoT in autumn of 2018.

2.1. LOW POWER WIDE AREA NETWORKS 7

Figure 2.1: Required data rate vs. range of radio communication technologies.
Adapted from [MBCM18] and [SWH17]

The following presentations of NB-IoT and LoRaWAN provides a general overview
of the two technologies. Many details (e.g., the internals of the network) are left
out. The reason for this is that most of the internals of the LoRaWAN and NB-IoT
networks are not configurable by the end-devices, and are therefore not needed to
understand how to achieve energy efficiency in the respective networks. A general
overview, and what makes the two network different, however, will be presented. We
also show a comparison of some of the differences between the two technologies.

8 2. BACKGROUND AND RELATED WORK

2.2 LoRaWAN

2.2.1 LoRaWAN General Overview

LoRaWAN is a long-range, low power wireless communication technology based on
a one-hop radio system [CMVG17]. LoRaWAN operates in the unlicensed Indus-
trial, Scientific and Medical (ISM) band [AVT+17] and has a star-of-stars topology,
composed of end-devices, gateways and a central server (see Figure 2.2). There is
no one-to-one association between end-devices and gateways, so multiple gateways
often receive data transmitted from one end-device. All gateways forward all packets
from end-devices to the network server, which filters out duplicate packets, using
only the best received packet. The topology improves the ratio of successfully re-
ceived messages, as many gateways may try to forward packets from end-devices
[MBCM18]. Additionally, the topology reduces the need for handover, since multiple
gateways receive the messages. LoRaWAN defines the architecture of the system
and the communication protocol, while LoRa defines the physical layer modulation
scheme used for message transmissions [SWH17]. LoRa is a proprietary modulation
scheme based on Chirp Spread Spectrum Modulation (CSS) [SWH17] used between
end-devices and LoRaWAN gateways. Gateways communicate with the network
server using IP based protocols.

Figure 2.2: LoRaWAN System Architecture. Inspired by [CMVG17]

The LoRaWAN specification defines three functionality classes: Class A, Class B,
and Class C [SWH17]. When choosing which class to use for any given system
implementation, there is a trade-off between latency of sent packets and energy
consumption (battery life) of end devices. All LoRaWAN devices must support
Class A, which allows bidirectional communication between an end-device and the

2.2. LORAWAN 9

network server, scheduled by the end-device based on its needs. Downlink messages
(from the server to end-device) for devices with Class A can only occur after an
uplink transmission (see Figure 2.3). Class B is based on Class A but also supports
additional downlink transmissions happening at a specified time. The idea is that
a Class B device can listen for incoming packets at a predefined time, which can
be useful, e.g., for device configuration. Class C allows downlink transmission to
happen at any time, except when the end-device is transmitting an uplink message.
Class C end-devices consumes more power but offers the lowest latency of the three
classes. Both Class B and C are optional to implement for device manufacturers
and are therefore not often seen used. All experiments in this thesis use the Class A
functionality class. LoRaWAN end-devices have communication constraints, due to
duty-cycle limitations posed by the ISM band. In Europe, the duty cycle limitation
is 1% in the EU868 frequency band. In practice, this means that end-devices have a
maximum transmission time of 36 seconds/hour in each sub-band [AVT+17].

2.2.2 Physical Layer

LoRa modulation is used to achieve better spectral efficiency and increased network
capacity. Each LoRa symbol is composed of 2SF chirps, where SF represents the
corresponding spreading factor [SWH17]. There are six orthogonal SFs in the range
of 7 to 12, which provide different Data Rates. Each data rate is directly proportional
to the spreading factor. The higher the spreading factor (i.e., slower transmission),
the longer the communication range [AVT+17]. Figure 2.1 shows the different data
rates and spreading factor configurations available. The EU 868 ISM band defines
three default channels for LoRaWAN. Each channel has a bandwidth of 125 kHz,
use the LoRa modulation and must allow data rates in the range 0.3 kbps to 5 kbps
(DR0 to DR5).

Figure 2.3: Basic transmission scheduling in LoRaWAN Class A functionality.
Taken from [CMVG17]

10 2. BACKGROUND AND RELATED WORK

Figure 2.3 shows the transmission scheduling in LoRaWAN for the Class A function-
ality class. Receive windows RX1 and RX2 are opened by the end-device to listen
for downlink packets shortly after an end-device sends a successful uplink packet
[MBCM18]. The default offset time, i.e., the time between the uplink packet, to RX1
and RX2 is opened is one and two seconds, respectively [AVT+17]. Downlink traffic
destined for the end-device is only allowed in these reception windows for Class A
devices. Packets not received, will have to wait until the end-device finishes a new
uplink transmission.

Table 2.1: Data rates (DR) and related configuration for EU863-870 band channels.
Taken from [CMVG17].

Data Rate (DR) Configuration Physical Bit Rate (bit/s)
Modulation Spreading Factor (SF) Bandwidth

0 LoRa SF12 125 kHz 250
1 LoRa SF11 125 kHz 440
2 LoRa SF10 125 kHz 980
3 LoRa SF9 125 kHz 1760
4 LoRa SF8 125 kHz 3125
5 LoRa SF7 125 kHz 5470
6 LoRa SF7 250 kHz 11000
7 FSK 50 kbit/s 50000
8-15 Reserved for future use

2.2.3 MAC Layer

The LoRaWAN protocol defines three basic MAC messages: Join message, Confirmed
Data message and Unconfirmed Data message [CMVG17]. Join messages is exchanged
between the end-device and the server when the end-device wants to join the network.
Confirmed Data Messages are data messages requiring ACK messages returned
from server to the end-device, much like TCP for IP based protocols. Due to the
duty-cycle restrictions of LoRaWAN mentioned earlier, infrequent use of Confirmed
Data Messages is recommended. We can compare unconfirmed Data Messages to
UDP, where an end-device sends a message into the network without having any way
of knowing if the intended party received the message. We only use unconfirmed
messages in the experiments in this thesis.

2.3. NARROWBAND IOT 11

2.3 Narrowband IoT

Figure 2.4: A high level view of the NB-IoT architecture.

2.3.1 General Overview

NB-IoT is a new LPWAN technology standardized by The 3rd Generation Partnership
Program (3GPP) as a part of release 13. In Figure 2.4 we present a high-level view of
the NB-IoT architecture. The NB-IoT communication protocol is based on the LTE
protocol [MBCM18] but is a new air interface for IoT [SWH17]. NB-IoT development
focused on reducing device cost and enhancing end-device battery life, removing
many of the features available in LTE (e.g., handover and dual connectivity). The
technology reuses the same licensed frequency bands used by LTE, meaning end-
devices require SIM cards issued by an operator to connect to the networks. The
NB-IoT core network uses the evolved packet system (EPS) but introduces two
optimizations for the cellular Internet of Things (CIoT): the User Plane CIoT and
the Control Plane CIoT [SWH17]. NB-IoT allows connection of 100 000 devices
per cell, and cell access procedure is similar to the one used in LTE. The existing
E-UTRAN network architecture and backbone can be reused, with only software
upgrades to the existing LTE infrastructure [MBCM18]. These software upgrades
enable NB-IoT to coexist with LTE and GSM under the 700 MHz, 800 MHz and 900
MHz licensed frequency bands. NB-IoT is optimized for small and infrequent data
messages [SWH17], which means that it is energy efficient for end-devices. NB-IoT
data rates are limited to 200 kbps for downlink and 20 kbps for uplink messages

12 2. BACKGROUND AND RELATED WORK

[MBCM18]. For modulation, NB-IoT uses Quadrature phase-shift keying (QPSK),
with OFDMA for downlink and SC-FDMA for uplink traffic [SWH17].

There are three frequency band deployments in NB-IoT: standalone, guard-band and
in-band (see Figure 2.5). NB-IoT utilizes GSM frequency with a bandwidth of 200
kHz between guard bands of 10 kHz for standalone operation while using un-used
guard band and resource blocks of the LTE carrier for guard-band and in-band
operations, respectively.

Figure 2.5: NB-IoT operation modes. Adapted from [LL17].

2.3.2 Operating Modes

Figure 2.6, shows the three power saving modes that can be used to reduce energy
consumption on end-devices: discontinuous reception (DRX), extended discontinuous
reception (eDRX) and power saving mode (PSM) [LL17]. In Discontinuous Reception
(DRX), the UE modem deactivates during a specific period negotiated with the base
station (BS). The end-device turns off the modem and reactivates it only during a
specific time to monitor the downlink channel. If the BS has a packet destined for the
end-device, transmission of the packet is delayed until the end-device reactivates the
modem. This transmission scheme is in many ways similar to class A of the LoRaWAN
protocol. In figure 2.6 (a), we see the UE activating the modem and listening for
paging information from the BS for 1 ms before, deactivating the modem and going
back to sleep. The maximum DRX period of an LTE network is 2.56 seconds, due
to user experience considerations. Since energy consumption of IoT devices is more

2.3. NARROWBAND IOT 13

important than immediate response, extended Discontinuous Reception (eDRX) was
introduced as a way of enabling the UE to extend the time between monitoring
paging messages from the BS (see figure 2.6 (b)). The eDRX period is extendable to
as much as 175 minutes. Many IoT applications do not require end-devices sending
packets frequently or being able to receive a packet from a server at any given time.
Power Saving Mode1 (PSM) (see figure 2.6 (c)) was introduces as a means of further
lowering the energy consumption of end-devices. PSM turns off the access stratum
all together and enables deep sleep mode on end-devices over longer periods of time.
NB-IoT uses the Tracking Area Update (TAU) message for negotiating and deciding
the PSM interval between the BS and the UE. The maximum PSM interval is in the
range of several months.

Figure 2.6: User equipment (UE) power state: (a) discontinuous reception (DRX);
(b) extended discontinuous reception (eDRX); (c) power saving mode (PSM). Adapted
from [LL17].

1In some literature referred to as Power Saving State (PSS).

14 2. BACKGROUND AND RELATED WORK

2.4 Comparison Between LoRa and NarrowBand IoT

In the following, we show a brief comparison between LoRaWAN and NB-IoT. We
include Figure 2.7 because it graphically shows how the two technologies focus on
and achieve different factors related to IoT. We will not, however, discuss the details
about the specifics regarding these factors, since it is out of the scope of this thesis2.
We will, however, remark that the battery life from figure 2.7 is much lower for
NB-IoT due to synchronous communication, signaling with base stations and QoS
handling. Table 2.2 summarizes the most important technical details of the two
technologies.

Figure 2.7: Advantages of LoRaWAN and NB-IoT regarding IoT factors. Note
that in the diagram, LoRa is used instead of LoRaWAN. Mekki et al. use the term
LoRa in the diagram that inspired this figure. It does not, however, make sense to
compare LoRa, a physical modulation scheme, with NB-IoT. We used a web-based
diagram maker to generate this diagram, and we discovered the error too late to
remake it. Adapted from [MBCM18].

2The interested reader should consult [MBCM18] and [SWH17] for more detail.

2.4. COMPARISON BETWEEN LORA AND NARROWBAND IOT 15

Table 2.2: Comparision between LoRaWAN and NB-IoT. Adapted from [MBCM18].

LoRaWAN NB-IoT
Modulation CSS QPSK
Frequency Unlicensed (868 MHz in

Europe)
Licensed LTE bands

Bandwidth 250 kHz and 125 kHz 200 kHz
Maximum data rate 50 kbps 200 kbps
Bidirectional Yes / Half-duplex Yes / Half-duplex
Maximum messages/day Unlimited (however, lim-

ited by the duty-cycle
restrictions of the ISM
band)

Unlimited

Maximum payload length 242 bytes 1600 bytes
Range 5 km (urban), 20km (ru-

ral)
1 km (urban), 10 km (ru-
ral)

Interference immunity Very high Low
Authentication and En-
cryption

AES 128 LTE encryption

Adaptive data rate Yes No
Handover Not needed (broadcast) Single base station
Localization Yes (TDOA) No (under specification)
Allow private network Yes No
Standardization LoRa-Alliance 3GPP

16 2. BACKGROUND AND RELATED WORK

2.5 Adaptive Sensing

Wireless sensor nodes have limited resources and often rely on batteries to supply
energy. It is therefore important to be aware of, and manage the use of energy
resources. The main goal of a sensor network is to provide the server with data
gathered from its environment. The sensor nodes typically go through a duty cycle
which consists of different states. First, the node wakes up from its sleep phase and
enters the active phase. In the active phase, nodes gather data from sensors, process
and send the data to the server. Finally, the node returns to the sleep phase. The
duty cycle repeats as long as the device is active. For a given hardware configuration
there is not much to do with the energy consumption of the different states. Radios
for instance, often allow changes to the transmit power, which when lowered can
reduce energy consumption. However, this is often not desired since it implies limiting
the transmission range of the sensor node. One approach to lowering the energy
consumption of nodes without limiting the capabilities of the node itself is to reduce
the number of radio transmissions. In other words, we need to limit how often the
node sends data to the server. It is trivial that limiting the most energy consuming
duty cycle state3 will save energy, but this comes at a cost. When saving energy this
way, we lower data granularity, leading to less knowledge of the environment we are
sensing. Adaptive sensing is a set of techniques that can be exploited to mend for
these challenges. The basic idea is to save energy by preventing unnecessary tasks
from happening. Figure 2.8 shows a taxonomy of the different techniques available.
The nodes in blue are techniques applicable to the scenarios we discuss in this thesis.
A presentation of the relevant techniques follows.

2.5.1 Duty Cycling

Duty cycling consists of sensor nodes being active only for the time it needs to
sense its environment and then returning to sleep immediately after [AAFR09]. Two
complementary approaches can be used to achieve duty cycling: Topology control
and Power Management. Topology control is when we exploit redundancy in nodes
either based on energy levels of sensor nodes or the data they provide and adaptively
selecting only a subset of all nodes to be active [ACDFP09]. In Adaptive Sensing for
Environmental Monitoring, Arici et al. [AA04] propose an adaptive sensing algorithm
for environmental monitoring based on a two-tier network topology, where top-tier
nodes gather, process and send sensor node data of bottom-tier nodes to the server.
The scheme generates clusters of sensor nodes and classifies nodes as redundant when
a cluster produces low variance measurements. A similar two-tier approach can be
seen in Hady et al.’s Intelligent Sleeping Mechanism for wireless sensor networks

3This notion is used throughout this thesis. However, this is not applicable to all cases. See
Alippi et al.’s Energy Management in Wireless Sensor Networks with Energy-Hungry Sensors
[AAFR09] for more detail.

2.5. ADAPTIVE SENSING 17

Figure 2.8: Taxonomy of adaptive sensing strategies. Adapted from [ACDFP09]

18 2. BACKGROUND AND RELATED WORK

[HEE13]. Top-tier nodes receive data from all nodes in its cluster, accumulated and
average the data and send it to the server. The server analyzes the data, and based
on some set threshold decides which cluster(s) should sleep for the remainder of the
round. Both pieces of research require having an intelligent server with an overview
of the entire system that makes network resource allocation decisions based on the
information provided by sensor nodes. These types of duty cycle schemes will not be
investigated further in this thesis, however, if we were to scale up our experiments,
combinations of different techniques could be investigated.

Power Management with regards to duty cycling in this thesis mostly deals with
sleep/wake-up protocols. More generally, this means entering and exiting deep sleep
on devices through application code using the hardware APIs of the devices.

2.5.2 In-network Processing

Data reduction schemes address the case of unneeded samples [ACDFP09]. In-
network processing relates to performing data aggregation techniques on sensor
nodes. The techniques will be application-specific, but can, for instance, relate to
calculating the average over a set of measurement data. In-network processing could
be used to exploit the findings in section 4.4, where we show that aggregation of
data could reduce the energy consumption of end-devices by a factor of 0.6133 mJ
for each aggregated packet.

2.5.3 Data Prediction

Data Prediction refers to building an abstraction, or a model of a sensed phenomenon
[ACDFP09]. The model describes the data evolution, and the goal is to predict
the sensor values within certain levels of error (dynamically or statically defined for
each application). A successful prediction indicates that knowledge of the sensed
environment is present in the system without the sensor nodes needing to send data.
When the model prediction fails to meet the allowed level of error, sensor nodes send
data. Failed predictions could also lead to the model needing to be updated. Data
prediction leads to reduced information sent by nodes, hence less communication.
What the Data Prediction model is, or should be will not be discussed further in
this thesis. Data Prediction will rather act as a black box providing the system
with a model prediction, on which sensor nodes decides on whether to send data or
not. For the interested reader, see [WLG+11] for an application of prediction-based
data aggregation using Combined Grey model and Kalman Filter Data Aggregation
(CoGKDA) or [LBSB07] for an algorithm enabling adaptive model selection for time
series predictions.

2.6. MODELING THE ENERGY CONSUMPTION OF END-DEVICES 19

2.5.4 Adaptive Sampling

Energy-efficient data acquisition aims at reducing the energy spent by the sensing
subsystem [ACDFP09]. Adaptive sampling can, for instance, reduce the number of
packets a node needs to send or how often a node senses by using information about the
environment of the node. More specifically by exploiting spatiotemporal correlations
between data. Environmental data, like temperature, has natural variations that can
be used to know something about future values or to make a deduction of temperature
on one node based on data from another node. In Willett et al. [WMN04], Backcasting
is proposed as an adaptive sensing scheme where a small subset of wireless sensors
initially communicate their sensor data to a server, forming an estimate of the
environment. Based on the estimate, the server activates a portion of available nodes
to achieve the desired level of accuracy in the collected data. The key idea is that the
estimate can detect a correlation in the sensed environment, indicating that many
sensors may not need to be activated to achieve the desired level of accuracy.

2.6 Modeling the Energy Consumption of End-devices

Tamkittikhun et al. experimented with an estimation model for the energy con-
sumption of sensors nodes, in Energy Consumption Estimation for Energy-Aware,
Adaptive Sensing Applications [THK17]. The research focuses on identifying the
distinct states that an end-device goes through during a duty-cycle. Measurements
of average power consumption in each state, conducted prior to deployment, is used
to estimate the total energy consumption for end-devices at runtime. The research
showed that the total energy consumption E of a duty cycle for a given sensor node
could be estimated at runtime by:

Eduty−cycle =
∑I

i=1 Pi ∗ ∆Ti

where Pi is the power consumed in state i and ∆ti is the time spent in state i.

This approach is a very intuitive way of making an energy consumption estimation.
For all states, measure the time used in the state and multiply it by the power that
state consumes. At runtime, this only requires the use of timers which calculates the
∆ti for each state. For this approach to work, however, it requires identifying the
power consumption in each state at design time. We also need to have a system that
operates more or less, in the same way, each duty-cycle. So if we make changes to
the system, we need to know how this affects the energy consumption of the node.

2.6.1 Modeling the Energy Consumption of LoRaWAN

A similar approach is seen in the analytical models of end-device current consumption
and lifetime, in Casals et al.’s Modeling the Energy Performance of LoRaWAN

20 2. BACKGROUND AND RELATED WORK

[CMVG17]. The same approach as in Tamkittikhun et al.’s work is used to calculate
the average current consumption. However, Casals et al. takes it one step further
and introduces Tnotif to the equations as the period between duty cycles, to be able
to estimate system lifetime. A larger Tnotif means the device sleeps for a longer
period. The formula for the average current of an end-device is:

Iavg = 1
Tnotif

∑I
i=1 Ii ∗ Ti

The article further presents the system lifetime as:

Tlifetime = Cbattery

Iavg

where Cbattery refers to the battery capacity in mAh. The calculation for Tlifetime

results in an estimate for the lifetime of an end-device in hours, given the current
and time used in each state of the duty cycle.

The article also defines the energy consumed by the end-device as:

E = Iavg ∗ V ∗ Tnotif

where V denotes the voltage of the end-device.

2.6.2 Modeling the Energy Performance of NB-IoT

Chapter 7.3.6.4, Energy Consumption Evolution and chapter 5.4, Energy Consumption
Evolution Methodology of the 3GPP release 13 [3GPb], provides calculations for the
battery life of NB-IoT devices. In release 13, NB-IoT initially was designed to use
FDMA as channel access for both uplink and downlink. The design has later been
altered to use OFDMA in downlink and SC-FDMA in uplink, making the calculations
in Release 13 invalid, due to increased complexity. Despite this, we can still get a
general idea of the energy consumption. As with the formulas in 2.6 and 2.6.1, the
idea is to identify the different states the device goes through and multiply each
states power consumption with the time used in that state.

From Release 13 we have that, Energy per data report is

e1 = ET x + ERx + EIdle tasks

E1 (Joules) = e1
1000000

Additionally, the Energy consumed per day is:

E2 = Eper report ∗Reportsper day + EP SS per day

e2 (WattHours) = E2
3600

2.6. MODELING THE ENERGY CONSUMPTION OF END-DEVICES 21

This leads to:

Days of battery life(D) = Battery Capacity
e2

Y ears of battery life (Y) = D
365

Release 13 only provides values for 4 of the 11 defined parameters for the equations.
However, the authors still manage to summarize the results for the battery life of
NB-IoT device in two tables (with integrated PA and external PA). How they came
to these conclusions is however unclear. The table for the external PA is reproduced
in Table 2.3. Only one of the two tables is shown here for brevity since the difference
between the values in the two tables is small.

Table 2.3: Battery lifetime estimates for NB-IoT with external PA [3GPb].

Battery Life (years)
Packet size,

reporting interval
Coupling loss =
144 dB

Coupling loss =
154 dB

Coupling loss =
164 dB

50 bytes, 2 hours 22.8 11.5 2.7
200 bytes, 2 hours 18.8 6.3 1.7
50 bytes, 1 day 36.1 31.9 18.1
200 bytes, 1 day 35.1 26.8 13.4

Chapter3Methodology and Design

3.1 Scientific Method

The scientific method used in this thesis is a combination of different methodologies.
We use both quantitative (e.g., confirming or dismissing hypothesis) and qualita-
tive methods (e.g., observing a phenomenon for a device). Fundamental research
techniques were used to gather information, acquire new knowledge and study the
background material comprising this work, whereas the methodology used in the
experiments is a combination of design science and lean development.

Design science has a strong focus on evaluation and iteration of research questions
[Wie14]. The build-and-evaluate loop in the methodology is a good match for research
in software engineering. The goal or the objective of the software engineering process
is often widely known and documented, but how to achieve the goal in the best
possible way is not a trivial task. In software engineering, there is much talk about
lean development, test driven development and different approaches to breaking big
tasks into smaller ones. There are many different reasons for this. The three most
prominent reasons are more control (smaller tasks), evaluation/test-ability of the
code (easier evaluation of small pieces of code) and iteration (faster to redo and
improve a small task). The same applies to this thesis. The primary goal of any
research, at least in computer science, is to solve a problem that has yet to be solved
or to provide a more effective solution to an existing problem. To do so, we need to
know what the problem is and know what a solution might be. We do not yet need
to know how to find the solution, nor if our proposed solution is the best one. The
design science methodology provides guidelines for conducting an iterative research
process. The build-and-evaluate loop either brings us closer to a possible solution or
further away. Either way, we gained knowledge of the problem in question.

Design science also embodies concepts from other research methodologies such as
empirical research, but in a way more suited for experiments in computer science. The
methodology enables both quantitative and qualitative research through knowledge

23

24 3. METHODOLOGY AND DESIGN

building and evaluation of the research results.

Figure 3.1: Closed learning loop. Adapted from [Spa16]

Figure 3.1 depicts the lean development process used in the experiments. The
process is iterative and generally starts with some knowledge or assumptions of the
artifacts that are to be studied. Knowledge or assumptions form ideas that we need
to test. The realization of the ideas happens in the build phase. The code from
the build phase forms the basis for the measure-phase. From the data generated
in the measurements, we get new knowledge of the studied artifacts. The iterative
loop proceeds as long as an answer to our questions is not found or, our solution
could be improved. We used this iterative process throughout the experiments, both
in understanding how the hardware and software of the devices could be used to
perform the experiment themselves and to improve the experiment once a working
solution was up and running.

3.2. EQUIPMENT AND TEST ARCHITECTURE: WHAT, HOW AND WHY 25

3.2 Equipment and Test Architecture: What, how and why

This section describes the different hardware and software used in experiments in this
thesis. The section aims at describing what each equipment is for, how we use it and
why. As a general note, the acquiring of the equipment used for experiments have
mostly been based on what is already available in the lab. Where it is appropriate,
we discuss the potential limitations of the chosen equipment. Figure 3.2 shows the
test architecture and the equipment used in the experiments in this thesis.

Figure 3.2: Test architecture

3.2.1 Pycom Fipy

The Fipy (red hexagons in figure 3.2) is the subject of the experiments. The Fipy
runs all Micropython 1 code to connect to the LoRaWAN network, send and receive
messages. The board comes equipped with LoRa and LTE radios making it possible
to connect to both NB-IoT and LoRaWAN networks. We chose the Fipy because
of the ease of writing, uploading and managing code on the device. Since Pycom

1MicroPython is a lean and efficient implementation of the Python 3 programming language that
includes a small subset of the Python standard library and is optimized to run on microcontrollers
and in constrained environments.

26 3. METHODOLOGY AND DESIGN

uses Micropython as the API programming language, prototyping on the device is
fast. Powering the Fipy is done in two different ways throughout the experiments:
USB and Vin (see Chapter 4). Some experiments use a DS18X20 temperature sensor
connected to the Fipy for prototyping and testing of an adaptive sensing model. In
other experiments, for instance, when testing for linearity of packet sizes against
energy consumption, random bytes were sent. The LoRaWAN setup for the Fipy
was done using the Pycom LoRa API with the following parameters:

Figure 3.3: Pycom Fipy [Pycd]

Mode: LoRa.LORAWAN
Region: LoRa.EU868
Device class: LoRa.CLASS_A
Transmit Power: 14 (2-14 possible)
Bandwidth: LoRa.BW_125KHZ
Spreading Factor (SF): 7
Data Rate: 5 (5470 bps, see Table 2.1)

In mode LORAWAN the only config-
urable parameter is device class (and
three other parameters not applicable to
the experiments in this thesis). The above parameters, which are the default values
for the Pycom LoRa implementation, are therefore used in all experiments. We use
device class A in all experiments.

3.2.2 Pycom Expansion Board

Figure 3.4: Pycom Expansion board
[Pycb]

The Pycom Expansion Board is a devel-
opment board acting as a shield for both
the Fipy and the Lopy. The Expansion
Board enables additional hardware fea-
tures for the different modules connected
to it, such as battery power, USB power
and serial communication, microSD card
storage as well as easy prototyping with
jumper cable connections. The serial communication over USB has been used ex-
tensively throughout the experiments, both for uploading code to the boards and to
monitor logs from the devices at runtime.

3.2.3 Sodaq NB-IoT Shield

A Sodaq NB-IoT shield connected to a Crowduino M0 development board has been
used to try to establish a connection to the TeliaSonera NB-IoT network, with
code from the TeliaSonera Github page [Tel18]. A successful connection has not
been established, despite testing multiple different locations, firmware versions and

3.2. EQUIPMENT AND TEST ARCHITECTURE: WHAT, HOW AND WHY 27

different versions of the code from GitHub. Engineers from TeliaSonera provided help
and guidance in the process of trying to make it work, still without success. Telenor
also provided resources to establish a connection towards their LTE network, also
without success. Experiments with NB-IoT will therefore not be part of this thesis
as a result of the networks still being in their infancy with regards to deployment.

3.2.4 Pycom Lopy

The Pycom Lopy served two different purposes in the experiments. One Lopy acted
as the LoRaWAN Gateway forwarding LoRa packets between the end-devices and
the LoRaWAN Server (grey circle in figure 3.2). The gateway was set up using the
LoRaWAN Nano-Gateway implementation from Pycom [Pyca]. The Nano-Gateway
establishes a connection to the LoRaWAN server by connecting to the Raspberry
Pi WiFi hotspot (see section 3.2.6). The Gateway forwards any packet received in
either direction without any filtering. The LoRaWAN Server filters out any packets
not destined for devices belonging to the private network.

Figure 3.5: Pycom Lopy [Pyce]

The reason for using the Nano-Gateway
implementation was based on simplic-
ity since it required only minor changes
to network parameters to work. How-
ever, the fact that the Lopy only has
one antenna makes it a far from ideal
device acting as a Gateway. Having only
one antenna makes sending and receiv-
ing messages at the same time impossi-
ble; thus collisions happen more often.
Since the LoRaWAN network by default
is public2, and the gateway will receive
incoming messages from all near-by de-
vices, the chance of receiving packets from other devices while uplink or downlink
traffic to our end-devices are happening, is highly possible. Class A devices also limit
downlink messages to right after the reception of a successful uplink message. A
collision happening while attempting to send a downlink message to a device, results
in a lost message. In future experiments, different hardware for gateways should be
considered.

Another Lopy device was used for conducting energy measurement experiments
(blue hexagon in figure 3.2). This Lopy was both connected to the Fipy and the

2All access points (gateways) in LoRaWAN are by definition public and will receive all packets
sent from devices in reach of the gateway. However, a private network allows for filtering out data
from devices not registered by the server.

28 3. METHODOLOGY AND DESIGN

PAC1934 Power Monitor (see section 3.2.5). The connection to the PAC1934 was
used to get higher precision measurements. Instead of visually reading data from the
graphical user interface of the PAC1934, we established an I2C connection between
the devices. The python API of the PAC1934 was used to get measurement data from
the PAC1934 to the Lopy. See section 3.2.5 for further descriptions of this process.
The connection between the Lopy and the Fipy was made to programmatically start
and stop measurements at runtime, instead of doing this manually. A connection
between two devices was made using three GPIO pins using jumper cables (see
section 3.3.2 for a more thorough description of this process). The pins can be set to
high (pin value of 1) or low (pin value of 0). Initially, all pins were instantiated to 0.
The Fipy set individual pins to 1 when changing state.

3.2.5 Microchip PAC1934 DC Power Monitor Evaluation Board

The PAC1934 (green rectangle in figure 3.2) measures and monitors different energy
consumption metrics such as current, power, and energy. In figure 3.6, the PAC1934
is shown with three boxes highlighting the different pins and features used in the
experiments. Following is an explanation of the three boxes:

3.2. EQUIPMENT AND TEST ARCHITECTURE: WHAT, HOW AND WHY 29

Figure 3.6: Microchip PAC1934 DC
Power Monitor Evaluation Board [Mic]

1) Jumper J1 in Box 1 measures input
voltage from a connected device. The
jumpers marked J6, and J7 needs to be
placed to the left (shunt), making the
current flow through the circuit and al-
lowing measurements. When placed in
the right position (as in figure 3.6) the
channel is in demo mode. The shunt
resistor R1 has a value of 0.004 Ω. R1
is RSense in equations that follows. In
most experiments, the devices measured
are treated as black boxes, meaning that
we look at the device as a whole and
not individual components or duty cycle
states within the device. These experi-
ments were conducted by connecting the
PAC1934 to a desktop computer in the
IoT-lab. Measurements were started and
stopped manually by using the PAC1934
software. This method gives us the big
picture and can answer questions regard-
ing for instance accumulated energy of a
device over time or power consumed in
one duty cycle. However, looking at the
device as a black box is in many cases
not precise enough. In the top right corner of box 1, J30 provides a 5V output supply.
The use of these jumpers was key to getting the deep sleep mode to work on the
Fipy (see section 4.2).

2) The USB_I2C switch (seen in the top of figure 3.6) indicates whether the PAC1934
should write measurement data to the USB port or I2C. By using I2C, we gain more
control over the experiments, can start and stop measurements programmatically
at runtime, thus higher precision measurements are possible. See section 3.3.2 for
a description of this process. For USB measurements we use the graphical user
interface application on the desktop computer in the lab, while for I2C measurements,
the PAC1934 Python API on a Lopy.

3) When the USB_I2C switch is set to I2C, GPIO pins marked J27 are used for
gathering measurement data. The two bottom GPIOs (SCL and SDA) are handling
data transfers, while GND and VIO_EXT need to be connected to GND, and a
voltage output port on the device that should receive the data.

30 3. METHODOLOGY AND DESIGN

The PAC1934 reads the different electrical metrics and returns them in a binary
representation to either the USB or I2C interfaces. When the USB_I2C switch is
set to USB, the application running on the desktop computer in the lab handles all
the calculations, returning the measurement in a human-readable format. When the
switch is set to I2C, all calculations need to be performed manually on the binary
data gathered by calling the Python API.

The PAC1934 datasheet specifies the formulas used by the application for the
measurement calculations [Mic17]. The same formulas were used for calculations in
experiments using the I2C interface of the PAC1934.

Imax = F SR
RSENSE

= 100mV
0.004Ω = 25A

where FSR indicates the Full-Scale Range of the measurements in bidirectional mode
(± 100mV) and RSense is the value of the input port resistor (R1 in box 1 in figure
3.6). Imax puts a bound on the highest current, and ultimately the range of currents
(ISense) that can be measured by the PAC1934. The measurements in this thesis
only consider unidirectional positive currents (FSR = 100mV).

ISense = FSC ∗ VSENSE

216

This means that we will be able to measure currents in the range of

ISense = 25A ∗ VSense

216 =
{

25A ∗ 1
216 = 381µA

25A ∗ 216

216 = 25A

where ISense is the actual bus current and VSense is the voltage value read from
the VSense result registers on the PAC1934. See Algorithm 3.1 for the Python
implementation of the formula for ISense.

The range when using 0.004 Ω as value for RSense could be a potential problem.
Many devices do not draw more than approximately 50 µA when in deep sleep mode.
We need to monitor the results when experimenting with deep sleep and find a way
to validate the results. A potential fix to this problem is to introduce an external
resistor in series with RSense. The introduction of an external resistor would make
Imax smaller, ultimately leading to a shift in the range of currents that it is possible
to measure. For instance, by introducing a 0.1 Ω resistor in series with RSense, we
get Imax to be approximately 1 A, making it possible to measure currents down to
1/216 = 15 µA. This range should be more than low enough to capture deep sleep
currents of any device. Experiments of the deep sleep mode on the Fipy needs to
consider the possibility that the PAC1934 returns false values due to the range of
Imax, and ultimately add external resistors to try to fix the problem.

3.2. EQUIPMENT AND TEST ARCHITECTURE: WHAT, HOW AND WHY 31

Algorithm 3.1 Python implementation of formula for ISense

def getCurrent(registerValue):
firstbyte = registerValue[0]
secondbyte = registerValue[1]
firstbyte = firstbyte<<8 #binary left shift 8 places
Vsense = first | second #concatinate the two bytes to

#one variable

return 25 * (V_Sense/(2**16))

addr = i2c.scan()[0] #get the I2C address
data = i2c.readfrom_mem(addr, 19, 2) #read two bytes of data

#from current register

I_Sense = getCurrent(data) #calculate the current

3.2.6 Raspberry Pi 3

The Raspberry Pi (grey rectangle in figure 3.2) serves two purposes. The first purpose
is to act as a WiFi hotspot for the LoRaWAN gateway to connect to and send UDP
packets through, towards the LoRaWAN Server.

Figure 3.7: Raspberry Pi [Ras]

The second purpose of the Raspberry Pi is to
run the Lorawan-server itself. Lorawan-server
is an Open-source LoRaWAN Server that inte-
grates both the network server and the appli-
cation server of the LoRaWAN protocol archi-
tecture [Got18]. Additionally, the server allows
for making custom integrations with other web
services through web sockets or MQTT. Lorawan-
server provides a graphical user interface in the
form of a website running locally on the Rasp-
berry Pi, making it very easy to manage the
network, adding gateways and end-devices, and
monitor traffic. The reason for implementing the
Lorawan-server as a private network, as opposed
to using existing infrastructure and gateways
(e.g., the one set up by Telenor on the roof of the
Elektro building) is twofold: connectivity and
control. When trying to connect to a LoRaWAN
network from the IoT lab through public gate-

32 3. METHODOLOGY AND DESIGN

ways, establishing a connection was often not possible. However, for connection
attempts outdoors or from locations with a more direct route towards the gateways,
a connection was established immediately. The distance to the nearest antenna
from the IoT lab was most likely the reason for these connectivity issues. The
second reason for implementing a private LoRaWAN network is because of the added
control. Registration of devices and gateways with the LoRaWAN server is easy, and
most importantly packets can be tracked through every network element, making
debugging and finding faulty elements easier.

3.2.7 HiveMQ MQTT Broker

The HiveMQ MQTT broker (depicted as clouds in figure 3.2) is an enterprise MQTT
broker. However, unencrypted message transmissions are open for everyone to
use free of charge [Hiv]. The reasons for using MQTT is because of its simplicity
both in setup and usage. Additionally, the LoRaWAN Server supported easy setup
of an MQTT integration, by just specifying server address, port, and topics for
publishing, and subscribing. MQTT was used to send messages from, and to end-
devices in a standard MQTT setup (see figure 3.8). Uplink messages from end-devices
(temperature measurements or random bytes) were forwarded to a subscribing client,
by the LoRaWAN server publishing the message to the topic. For downlink traffic
towards end-devices, the LoRaWAN server subscribes to an MQTT topic. For
messages published to this topic (model data), the LoRaWAN server forwards the
messages to the end-device.

Figure 3.8: MQTT test architecture

3.2.8 Computer

A desktop computer running Windows 10 on the IoT lab served two purposes: To
start and monitor the LoRaWAN gateway running on the Pycom Lopy and to run
the graphical user interface of the Microchip PAC1934. We conducted the black
box experiments of the Fipy on the desktop computer. The monitoring of the

3.3. DATA COLLECTION METHODS 33

gateway Lopy was necessary since the gateway often crashed or stopped working. By
monitoring the gateway’s behavior through the USB serial communication from the
Lopy, problems were rapidly discovered and fixed. One particular error happened
quite often, and the cause has yet to be found. However, a simple reboot of the
Lopy fixed the error, so we did not investigate this further. Another computer (blue
rectangle in figure 3.2) was used to write and upload Micropython code to the devices
as well as interacting with the MQTT broker through publishing and subscribing to
message topics.

3.3 Data Collection Methods

Experiments use two data collection designs: black box testing and a novel state
machine design. The following section describes these two designs, why and how
we use them. Note that it would be possible to implement a solution using only
the device that is the subject of the tests (except for the PAC1934, monitoring the
energy consumption). However, this would mean processing the measurement data
internally on the same device that is the test subject, potentially corrupting the
measurements. This approach is therefore not used in any of the experiments.

3.3.1 Black Box Experiment Design

A black box test design tests functional or non-functional properties of a component
or system without reference to its internal structure [Fun17]. It is often used by
software designers when the internal structures of the software are unknown, or when
testing the results of running the software is more important than how the software
produces these results. Black box tests are used in this thesis for instance in testing
hypothesis (e.g., average idle current in section 4.1) and doing accumulative tests
(e.g., testing for linearity of energy consumption against packet size, as in section 4.3.
Figure 3.9 shows the black box design used in the experiments. A USB cable running
between the Test-subject and the Observer was split, and the Tester is responsible for
measuring the voltage drop across the USB cable. We analyzed the results of black
box tests through visual inspection of graphs produced by the PAC1934 software
running on a computer in the lab (see section 3.2.5).

34 3. METHODOLOGY AND DESIGN

Figure 3.9: Black Box Test Design

3.3.2 A Novel Experiment Design for Higher Precision
Measurements

Black box experiment design is good for getting the big picture, and to confirm or
dismiss assumptions we may have about different phenomena. However, since they
mask internal details, they give little or no information about specifics. One approach
to getting more information of internal structures (e.g., what it cost to send a data
packet) would be to conduct comparative measurements. First, we measure the
system in a steady state configuration (e.g., while the system is idle and not sending
packets) to get a baseline comparison. Then we configure the system to execute the
artifact we want to study while we measure the effects. The two measurements are
compared, and the deviation between the two is our result. While being an intuitive
and quite straightforward process, in many cases this still is not precise enough. We
want to focus only on one specific phenomenon and remove everything that is not a
part of this. This, however, is not necessarily easy. We need to start the measurement
at the exact moment a device enters a given state of the duty cycle and, terminate
the process when exiting the state. However, measurements need to be conducted
from the outside (from another device) both to eliminate the possibility of the device
consuming more energy because it measures itself and, to have more control over
the process. To achieve this, we came up with a state machine configuration for
the experiments in this thesis. The general idea is that the device subject of the
experiment sends events when entering and exiting different states. The observing
device responsible for conducting the measurements listens to and captures these
events. The observer starts and stops the measurements exactly when receiving
the different events from the measuring device. This design allows higher precision
measurements that programmatically can be started and stopped without needing
any manual labor.

Figure 3.10 shows the experiment design as a state machine configuration. When the
Fipy turns on, the Lopy waits for the booting process to complete. When completed,
the Fipy sets the first pin to 1. Next, the Fipy runs all initialization code (e.g.,
connecting to the LoRaWAN network) and prepares for sending packets. The Lopy

3.3. DATA COLLECTION METHODS 35

Figure 3.10: State machine of measurement process

waits for the measurement loop to start. When everything is set up, the Fipy sets its
second pin to 1. Now the Lopy is ready to measure and is waiting for an individual
measurement to start. When the Fipy sets its third pin to 1, it enters the state
that is the subject of the experiment (e.g., sending or receiving packets). The Lopy
then starts measuring some energy consumption metric (e.g., current) by calling
the python API of the PAC1934. The Lopy continues to measure until the third
pin is 0. The collected data is then written to file on an SD card connected to the
Lopy. Finally, the Lopy returns to waiting for a new measurement to start. This
measurement process is looped a specified number of times until the second pin is
0. The first pin is set to 0 to finish the program. As opposed to the "black box"
experiment design, this design enables higher precision measurements targeted at
specific states of the duty cycle.

The state machine could be implemented with two and not three pins: one for
controlling all initialization and the second for handling each measurement. However,
in cases where we wanted to loop the process of measurements (e.g., sending larger,
and larger packets) the extra pin helped handle this.

In algorithm 3.2 and 3.3 simplified versions of the Python code for the test-subject
and observer are presented. The code shows the measurement process and the
communication between the two entities and has been simplified to highlight the
general idea more than the actual implementation.

36 3. METHODOLOGY AND DESIGN

Algorithm 3.2 Simplified Python code for test subject
p_one, p_two, p_three = 0 #initialize pins to low
def togglePin(pin):

pin.toggle() #change value of pin low/high (0 / 1)

#Booting process finished:
togglePin(p_one) #p_one = 1

#All initializing (e.g., radios) finished:

togglePin(p_two) #p_two = 1

for (i in range(numberOfTimesToMeasure)):
togglePin(p_three) #start measurement
sendPacket()
togglePin(p_three) #stop measurement
sleep(someTime)

togglePin(p_two) #All measurements finished

togglePin(p_one) #terminate measurement process

Algorithm 3.3 Simplified Python code for observer
#booting finished -> p_one = 1

timer = Timer.Chrono()

while(p_one == 1):
while(p_two == 0):

sleep(someTime) #waiting for p_two to become 1
while(p_two == 1):

while(p_three == 0):
sleep(someTime) #waiting for p_three to become 1

while(p_three == 1):
timer.start()
data = readDataFromPAC1934()
current = calculateCurrent(data)

timer.stop()
timeSpent = timer.read()
writeToFile(timeSpent, current)
break

break

Chapter4Experiments

The following chapter presents experiments of energy consumption of LPWAN
devices. Figure 3.2 in Chapter 3 showed the architecture of the experiments and the
communication between the different devices. Section 3.2 described what purpose
each device serves, why and how the equipment is used. Because of difficulties with
establishing a connection to an NB-IoT network, only LoRaWAN devices will be the
subject of the experiments.

To be able to build an adaptive sensing application some essential elements need to
be in place. First of all, we need a device that is in a state where it consumes as little
energy as possible. One aspect of achieving low energy consumption is making sure
that the device has turned off all unwanted peripherals and radios. Additionally, we
need a device that sleeps as much as possible and consumes minimal energy doing so,
meaning support for deep sleep mode is essential. In all the following experiments,
we use standard settings in the LoRaWAN protocol, unless specified otherwise. A
lab setting with just a small distance of around 4-5 meters between the gateway and
the end-device were used. However, since the devices used the maximum transmit
power (default for Pycom devices in LoRaWAN mode), one could argue that the
results in many ways could apply to a more real-world setting outside of the lab.

From the problem description we have the following questions:

– What is the baseline energy consumption for an LPWAN device?

– Can we calculate the cost of sending a byte? Are ten bytes ten times more
expensive?

To try to answer these questions, we conducted a series of experiments. Experiment
1 investigates the average idle current of the Fipy device. This experiment is needed
to get an understanding of how the device operates when no program is running.

37

38 4. EXPERIMENTS

Experiment 2 investigates the deep sleep mode on the Fipy, which is the most crucial
state for achieving low energy consumption of end-devices over time. All proceeding
experiments seek to investigate energy consumption characteristics of the Fipy, and
how to reduce them.

4.1 Average Idle Current of the Fipy

Hypothesis: The average current consumed by the FiPy in idle state with no
application running is per the Pycom Fipy specifications 62.7 mA [Pycd].

Method: In this experiment, we will investigate the average current consumption
of the FiPy in an idle state with all radios turned off and no application running.
The experiment will be conducted using the black box method described in section
3.3.1. The current will be measured through the PAC1934 and visually inspected
through the board’s graphical user interface running on a PC in the lab. The FiPy
is attached to a Pycom Expansion board connected to a MAC with a USB cable.
The USB cable has been modified to enable measuring the current drawn through it.
Since we at this point only are interested in measuring the current for the board as a
whole, and not individual components on the board itself, such a black box setup
is sufficient. Additionally, since the goal of the experiment is to confirm that the
board is operating as the specifications indicate, visual inspections are sufficient, and
no exact measurements are needed. The positive, negative and ground terminals
of the USB cable from the MAC, was connected to the respective terminals of the
PAC1934. Additionally, a grounding cable connected the PAC1934 and the Fipy. A
picture of the setup is seen in figure 4.1.

Figure 4.1: Experiment 1 setup

4.2. AVERAGE DEEP SLEEP CURRENT OF THE FIPY 39

Results: Confirming or dismissing the hypothesis should not be that hard, but it
turned out to be an actual design problem requiring a substantial amount of digging
through specifications, device documentation, and forums. Pycom has designed the
Fipy to have all radios on by default (except LoRa and SigFox requiring instantiation
when needed). By default, the device, therefore, has both WiFi, Bluetooth, LTE,
LED light and an FTP server active. By analyzing the current consumption in this
state, we saw that the device drew a current of about 260 mA on average while idle.
This result was very unexpected and is an exceptionally high current for an IoT
device. Per the specification of the board, the idle (no radios) current consumption
should be on average 62.7 mA. Instantiating all radios and then turning them off
lead to the current dropping from around 260 mA to around 70 mA, which is per
the specification1.

At the time of writing, the design leading to this high current has yet to be fixed,
and to achieve the idle (no radios) current of about 70 mA, manually turning off all
radios are required. Since fixing this design in the firmware of the device is out of
the scope of this thesis, the process of deinitializing all radios was implemented in
the code in the method turnOffAllUnwantedRadios() (see algorithm 4.1) by using
methods exposed through the Pycom API. The code snippet in algorithm 4.1 also
deinitializes the server used for establishing an FTP connection on the board. The
effects of this are minor, but since Server is in the network package of the device,
this was also turned off.

Algorithm 4.1 Python method: Turning of all radios

def turnOffAllUnwantedRadios():
wlan = network.WLAN()
wlan.deinit()
server = network.Server()
server.deinit()
bluetooth = network.Bluetooth()
bluetooth.deinit()
lte = network.LTE()
lte.deinit()

4.2 Average Deep Sleep Current of the Fipy

Pycom has for a long time struggled with implementing deep sleep on their devices.
There have been reports of devices consuming currents in the range of 50-100 mA

1It should also be noted that the LTE module on the Fipy will not turn off unless there is a sim
card inserted into the sim card slot of the device

40 4. EXPERIMENTS

in a deep sleep. However, the company states that the problem is only affecting
first generation devices such as the Lopy and not newer devices like the FiPy. The
company has released a deep sleep shield that connects to the devices, to fix these
deep sleep problems. The shield is responsible for handling going into, and waking
up from the deep sleep, either by a timer expiring, or some interrupt has happened
(e.g., some pin put high, or user pressed reset button). According to Pycom, this
shield is unnecessary on the FiPy. To enter deep sleep, the only thing needed is a
call to machine.deepsleep(time). The parameter time (in milliseconds) could be left
out, leading to the device sleeping indefinitely until some external interrupt event
happens. Given the problems, Pycom has had with deep sleep and the fact that low
energy consumption in deep sleep mode is the most crucial aspect to achieving long
device lifetime, we investigate deep sleep on the Fipy here.

Hypothesis: The average Fipy deep sleep current is in the µA range.

Method: This experiment uses the Black box design method, as in experiment 1.

Results: When entering the deep sleep state on the FiPy from the idle (no radios)
state, the device current consumption rises from about 70 mA to over 200mA, before
dropping to a steady current of around 170 mA for the duration of the time in
deep sleep mode. When waking up from a deep sleep, the device again turns on
all radios. In figure 4.2 a screen dump of this behavior taken from the graphical
interface of the PAC1934 can be seen. The drop after the last peek is a call to
turnOffAllUnwantedRadios() (see algorithm 4.1).

Figure 4.2: Deep sleep current

4.2. AVERAGE DEEP SLEEP CURRENT OF THE FIPY 41

The observed deep sleep current is massively exceeding the expectations that the
current consumption should be in the µA range. There could be multiple different
reasons as to why the current consumption is this high. Pycom might have imple-
mented the functionality wrongly, maybe rushing out the code to try to fix the deep
sleep problem explained earlier. Another possibility is that our test setup is not
capable of measuring currents that small, and the program running on the PAC1934
returns false values, as mentioned at the end of section 3.2.5. However, when posting
about the problem on the Pycom forum, several other developers were having the
same issue. After talking directly with Pycom engineers, it became clear that two
things were not working as expected: deep sleep and the device preparing for deep
sleep, related to the 170 mA and 200 mA currents respectively.

4.2.1 Fixing Deep Sleep

We found a partial fix for the deep sleep problem in the Pycom API documentation
[Pycc]. For devices with an LTE modem, the RTS (request to send) and CTS
(clear to send) jumpers need to be removed, since the LTE module uses them. This
information was not provided in an easily accessible way by Pycom but hidden at
the bottom of the documentation of the LTE module on the Pycom website. No
information was made available under the documentation for deep sleep, which meant
finding the cause took time. When removing the RTS/CTS jumpers, the current
dropped to about 30 mA. A Pycom engineer provided tips through the Pycom forums
on further reducing the deep sleep current. When powering the device through USB,
the Expansion board draws extra current for the LED light and the USB-serial chip.
A fix to this is to power the device through the Vin port with a jumper cable. The
PAC1934 has an output voltage of 5 Volts available on the board (see box one in
figure 3.6). By connecting a jumper cable from this voltage supply and adding a
ground between the two devices, the deep sleep current dropped to a steady 12 mA.
Given the potential problem with the measurement range of the PAC1934, we could
not be 100 percent sure that the measured current was correct. A multimeter was
therefore used to confirm the measurement of the PAC1934.

The deep sleep current is much higher than expected and practically too high to be
used for any real-world deployment in LPWAN. However, the most important in our
case is to know what the value is, not only that the value is in the µA range. Given
the massive decrease in current draw and that further lowering it would require
modifications to the firmware of the device, this is the lowest current currently
available for the device.

42 4. EXPERIMENTS

4.2.2 Preparing for Deep Sleep

Figure 4.3: Fipy duty cycle. Peak shows device preparing for deep sleep

In Figure 4.3 we see a duty cycle of the Fipy device where the device wakes up, sends
a packet, waits for a response in the two reception windows (RX1 and RX2) and
finally goes to sleep. Right before the device goes to sleep the energy consumption of
the device more than doubles for some seconds. This behavior was found to be a bug
in the device after presenting the graphs of the duty cycle to Pycom engineers. The
behavior may be the device preparing to enter deep sleep, according to the engineers.
Pycom was not aware of this behavior, but was thankful for the contribution and
are currently looking into the cause. Accumulative tests of energy will, therefore, be
affected by this bug, since the peak in energy consumption happens every time right
before the device enters deep sleep.

4.3 Relationship Between Payload Size and Energy
Consumption

In this experiment, the aim was to investigate the correlation between the amount of
data sent and the current drawn from the board. The goal was to try to find out if
there was some linear correlation such that sending ten bytes draws ten times more
current than sending one byte.

Research question: What is the relationship between packet payload size and
energy consumption of end-devices?

Method: Manual black box tests were conducted to try to find if there is a linear
relationship between energy consumption and payload size of transmitted packets.
The method involved testing nine different combinations of payload sizes, each three

4.3. RELATIONSHIP BETWEEN PAYLOAD SIZE AND ENERGY CONSUMPTION
43

times. For the different payloads random bytes of different length were generated.
This was done using os.urandom(numberOfbytes). This gives a random byte string
of length numberOfBytes. The randomness was introduced to prevent potentially
corrupting the results if caching somewhere in the devices were enabled. There was
no indication in any material read that this was the case, but the method was used
anyway as a means of gaining more control over the experiment. Each test was run
for five minutes. The code written on the Fipy included blinking of the LED light
two times to indicate that the test was about to start. When the last LED turned off,
the device started transmitting packets. At this exact instance the Start Acquisition
button (see figure 4.4) in the PAC1934 application running on the computer in the
lab was pressed, making the application start recording the data. At the same time,
we started a stopwatch on a mobile device. When the test had run exactly five
minutes, the PAC1934 application was stopped and accumulated values for power
was written down from the application. All tests consisted of sending 43 packets from
the Fipy over the five minute period. When the device was not sending it was waiting
to send by calling the Python method time.sleep(). The Fipy was using the standard
LoRaWAN setting: data rate of 5, which corresponds to 125 kHz with a spreading
factor of 7. This results in an indicative physical bit rate of 5470 bits/s. The method
used is time consuming, potentially prone to errors and high variability of result
due to manually starting and stopping the experiment. The PAC1934 application
samples the registers for values 1024/min, and all tests consisted of more or less
300000 samples, meaning that the variance in the results could be low enough to
at least get an indication of the relationship between the payload size and energy
consumption of the device.

Figure 4.4: PAC1934 Graphical User Interface. The image is taken from [Mic17]
and shows the application running in demo mode generating default waveforms.

44 4. EXPERIMENTS

Results: It is not easy finding the actual value of sending a byte. The reason for this
is that for most of the time running the tests, the system is idle. The device sends
43 packets, and data from the tests show that sending a packet takes on average
approximately 35 ms. One could divide the total experiment time into 35 ms chunks,
finding the average accumulated power in each chunk. However, this would be a
very unprecise method of finding the cost of each payload. Additionally, the 35 ms
transmission time could be the time it takes for the application to send the packet
through a socket and down the LoRaWAN protocol stack towards the radio. If the
LoRaWAN protocol stack or the firmware on the device applies some form of internal
threading, the time it takes to perform the packet transmission might be substantially
higher than what is detectable from the application layer. Further analysis needs to
be performed to use a method where we decide if setting a timer before the send
method and reading the timer value after the method returns, is accurate enough to
be used for calculations. This is discussed further in section 4.4.

In this experiment, the actual cost of sending a byte in itself is not that interesting.
However, what happens when we increase the amount of data to send is. Figure 4.1
shows the results from the experiment.

Table 4.1: Manual test of linearity of payload size of sent packets

Payload Size (Bytes) Accumulated Power (mW) Energy (mJ)
0 99637.0 332.1
1 100239.9 334,1
2 100300.1 334.3
8 100491.0 335.0
16 105593.6 335.3
64 101162.0 337.2
128 102047.5 340.2
192 102998.6 343.3
242 103432.4 344.8

The measurements are based on an accumulation of the power over a period of five
minutes by sampling the power register 1024 times per second. This is handled by
the application (see Accumulator (mW) under Raw Data in figure 4.4). Therefore,
the results have no direct indication of what it costs to send the different payloads.
However, the only variable changing in the experiments is the payload length. By
dividing the accumulated power by 300 seconds, we get the average accumulated
power for one second. We first calculate the accumulated power when not sending
any packets, and then subtract this value from all the measurements for the different
payload sizes. From this, we get a good indication of the relationship we seek to find.

4.4. RELATIONSHIP BETWEEN PAYLOAD SIZE AND ENERGY CONSUMPTION
(REFINED) 45

Figure 4.5: Relationship between payload size and accumulated power per second,
when normalizing the power against the accumulated power of not sending

Figure 4.5 shows a clear linear relationship between the accumulation power per
second and the different payload sizes. However, there is no easy way to find the
actual cost of sending a byte or the actual difference between sending one byte and
ten bytes. The test method also involved a substantial amount of manual labor,
which is both time-consuming and prone to error. Therefore, we sought to refine this
experiment by using the novel design method based on pins and a state machine
configuration.

4.4 Relationship Between Payload Size and Energy
Consumption (refined)

Research question: What is the relationship between packet payload size and
energy consumption of end-devices?

Method: This experiment seeks to improve the results seen from the experiment in
section 4.3, by using the state machine design presented in section 3.3.2. A figure of
the hardware setup is seen in figure 4.6. The experiment consisted of sending 100
packets for ten different increments of payload sizes and writing the data to a CSV
file for analysis. In section 4.3 we raised a concern about the potential inaccuracy
introduced when measuring the energy consumed in the send method of the Pycom
API. Before doing the tests, this concern was dismissed by sampling the power register
of the PAC1934 right after the send method terminated. We saw a substantial drop

46 4. EXPERIMENTS

in the power consumption leading to a conclusion that the proposed method would
provide us with the accuracy needed. For post-processing of data, the average and
variance of all samples for a given payload size was calculated using functions in
Excel. The graph and trend line in figure 4.7 were also generated using excel.

Figure 4.6: Experiment setup using jumper cables between pins

Results: Table 4.2 shows the averaged results for each payload size. Except for the
values for 1-byte and 2-byte packets, we see an increase in energy when increasing
payload sizes. The variance in the 100 samples is in the range of 0.2 to 1.0 µJ for all
payload sizes, leading to high confidence in the accuracy of the measured values.

Table 4.2: Average energy consumption and variance of 100 sent packets of different
payload sizes

Payload Size (Bytes) Avg Energy (mJ) Variance (mJ)
1 0.6152 0.0002
4 0.6140 0.0003
8 0.6158 0.0004
16 0.6208 0.0003
32 0.6283 0.0005
64 0.6400 0.0006
90 0.6513 0.0010
128 0.6656 0.0006
192 0.6973 0.0007
222 0.7077 0.0006

4.5. RELATIONSHIP BETWEEN DOWN-LINK PACKET PAYLOAD SIZE AND
ENERGY CONSUMPTION 47

Figure 4.7: Average energy consumption for different payload sizes

From the formula for the trend line in Figure 4.7 we have that the energy consumption
when sending, is a product of the packet size, plus some constant value. Therefore,
there is always some start-up cost regardless of the packet size. So if we were to send
two packets of ten Bytes, each transmission means consuming:

Energy = 2 ∗ (0.004 ∗ 10 + 0.6133) = 1.3066mJ

If we could store and hold the sensor value until the next transmission window, the
energy consumed could be

Energy = 0.004 ∗ 20 + 0.6133 = 0.6933mJ

See section 5.1 for a discussion of the potential implications of this.

4.5 Relationship Between Down-link Packet Payload Size
and Energy Consumption

Research question: What is the relationship between downlink packet payload
size and energy consumption of end-devices?

Method: This experiment uses the same method as in the experiment in section 4.3.
Three different packet payloads (8, 16 and 23 bytes) were tested three times to get
an indication of the effects on energy consumption when increasing down-link packet
size. The experiment was only conducted three times with three different payload

48 4. EXPERIMENTS

sizes due to it being difficult to execute in a precise manner. The experiment used
the same process as in section 4.3, by pressing the Start Acquisition button in the
PAC1934 application and by starting a stop-watch. To send downlink packets to
the end-device, the MQTT broker (see section 3.2.7) was used. A Python program
running on a mac published random bytes of given payload length to a topic in
which the LoRaWAN-server was subscribing. The LoRaWAN-server then forwarded
the message to the end-device. The experiment was hard to execute in a precise
manner due to packet collisions and the limited time frame in which end-devices
accept incoming packets. Class-A LoRaWAN devices open up two short reception
windows right after sending a packet. These windows gave us a short time slot to
publish messages towards the MQTT broker, forward the packets from the broker to
the Lorawan-server and finally send them the end-device. Most of the time this failed.
In some cases, the Lorawan-server, or the gateway seemed to cache the packet, and
forwarded it in the next reception window, other times this was not the case. Since
the Lorawan-server also received (and then discarded) packet from other LoRaWAN
devices, the reason that so few packets were received can be because of collisions of
packets, or packets being dropped due to the system being half-duplex. However,
no attempts were made to investigate if this was the case. We tested each payload
length between five and ten times, but the results presented in this section consists of
three successful runs of sending ten down-link packets for each of the three different
payload lengths. The packets were confirmed successfully received by the end-device
by monitoring the device’s serial port, where the device printed incoming data.

Results: Although the sample size in this experiment is too small to give any
complete answers, some indication of the relationship concerning our sample is clear.
Figure 4.8 shows the amount of extra energy the device consumes when receiving a
packet of a given payload length, compared to receiving a packet. The calculation
consisted of subtracting the power value obtained in the experiment in section 4.3
from the accumulated power when sending. The difference between the two is then
what accounts for receiving a packet. Based on our sample there is a linear increase
in energy consumption when receiving larger packets. Additionally, there seems to
be a start-up cost, which could lead to that accumulating downlink packets destined
for an end-device could save energy.

4.6. GENERALIZING CASALS ET AL.’S ENERGY CONSUMPTION MODEL 49

Figure 4.8: Average energy consumption for different down-link payload sizes

Attempts were made to refine the experiment process as done in section 4.4. Another
pin was added to the state machine configuration handling if the packet were received
or not. The MQTT application responsible for publishing packets of random bytes
were refined to push out packets at a fixed interval. However, the end-device only
received a small fraction of the packets. Neither increasing the publishing rate
(sending out packets more often) or decreasing the rate helped in raising the reception
rate. The attempts to refine the experiment was therefore unsuccessful. In an
attempt to try to receive more packets, we could have configured the end-device as
a Class-C device. The device then would have the radio on at all times, making
receiving packets possibly much easier. However, having the radio on at all times
would affect the overall energy consumption of the device. Therefore, experiments
with this configuration should refine the state machine configuration to only look
at the reception state. It is unclear to what extent such a set-up would work, but
future experiments should look into this.

4.6 Generalizing Casals et al.’s Energy Consumption Model

Research question: Is Casals et al.’s energy consumption model [CMVG17], de-
scribed in section 2.6.1, general enough to be used to model the energy consumption
on the Fipy?

Method: In this experiment we measure the aggregated energy consumption over
a period and compare it with the analytical solution provided by Casals et al. in
[CMVG17]. The experiment uses a simplified version of the state machine experiment
design, using only two pins: one for handling each aggregated measurement and one

50 4. EXPERIMENTS

for handling the entire measurement process. We also measured time, and average
currents during the process.

Table 4.3: Time and current consumption for a LoRaWAN duty-cycle, based on
parameters used in Modeling the Energy Performance of LoRaWAN [CMVG17].

State Duration (ms) Current consumption (mA)
Wake up 168.2 22.1
Radio Preparation 83.8 13.3
Transmission 399.6 83.0
Wait 1st window 983.3 27.0
1st receive window 12.29 38.1
Wait 2nd window 987.71 27.1
2nd receive window 33.0 35.0
Radio off 147.4 13.2
Post-processing 268.0 21.0
Turn-off sequence 38.6 13.3
Sleep based on Tnotif 45 * 10-3

Results: When we calculated the Energy cost using the formulas from [CMVG17],
with the parameters defined in table 4.3, we get an Energy consumption of 0.510 mJ.
The calculation was made using a Tnotif duty cycle time of 50.160 seconds2, a deep
sleep current of 45 µA, and the maximum payload of 242 bytes. The analytic solution
for the average current for this calculation is 2.03 mA. When measuring the energy
consumed by the Fipy for the same interval, with the same maximum payload size we
get 3.357 mJ, with an average current of 13.4 mA. Hence, the Fipy consumes more
than 13 times the energy of the analytical solution. From experiments with the Fipy,
the average deep sleep current lies around 12 mA. When changing the deep sleep
current in the formula for the analytic solution to 12 mA, the average current is 13.25
mA. The result using the increased deep sleep current is an energy consumption of
3.323 mJ, which is close to what we measured on the Fipy. This difference, however
small, can be because the FiPy has a bug where the current rises to about 200 mA
before the device goes into deep sleep (discussed in section 4.2). Additionally, the
research article only conducted tests with one device, so there might be differences
between devices. From experiments with the Fipy, we have also seen that the average
current when sending is closer to 100 mA. The formula uses 83.0 mA for the average
transmission current. If we change the formula to use a transmission current of 100

250.160 seconds was used for the calculations because this was the measured time for the setup
used when testing the Fipy

4.6. GENERALIZING CASALS ET AL.’S ENERGY CONSUMPTION MODEL 51

mA, the average current is the same, 13.4 mA. The increased transmission current
also makes the analytic energy consumption become the same, 3.357 mJ. In many
ways, this confirms the research done by Casals et al. and makes the model general
enough to be used as an energy estimation model for the Fipy.

Chapter5Discussion

In the following chapter, we discuss the results of the experiments from Chapter
4 in light of the research presented in Chapter 2. Questions raised in the problem
description, and throughout this thesis, will be discussed.

From the research presented earlier we know that a LoRaWAN device with a given
duty cycle will behave in a specific manner. The energy consumption for any given
settings for the device is more or less constant, with some deviations, e.g., for different
manufacturers. Casals et al. wrote that because of this, the only way to reduce the
energy consumption of the device, and as a result, increase battery life is to increase
the notification period, Tnotif [CMVG17]. Although true in some cases, this claim
seems overly simplistic. We know that a LoRaWAN device will consume different
amounts of energy in the different states of a duty cycle. The energy consumption in
these different states, and also the time it takes to execute each state is more or less
constant for a specific application. For some applications, sending, accounts for a
large part of the overall energy cost. Intuitively, removing the state that consumes
the most energy would make the energy consumption go down. Although reducing
the amount of data provided by a node, in general, may seem like a disadvantage, it
may be an advantage if the intended sent packets were insignificant [HEE13]. The
goal is to have nodes providing the server with "just enough" information and at the
same time consuming the least amount of energy doing so. In other words, send data
only when it is needed. Doing this requires knowledge about the environment that is
to be measured. For instance, an environment application measuring temperature
needs to know something about what it should expect when measuring, to be able to
make the right decisions as to whether to send or not.

5.1 Aggregating Data for Transmission

In section 1.2, we asked if it is better to try to send data less often in itself, or if
we should focus on aggregating measurement data to send larger packets when first

53

54 5. DISCUSSION

sending. In the experiment in section 4.4 we saw that there is a linear increase in
energy when increasing the payload of the transmitted packets, including a fixed
energy cost regardless of the payload size. The formula for the trendline in figure 4.7
was generated using the measurement data and represents the energy of transmitting
a packet as:

Energy = 0.004 ∗ Payload length+ 0.6133 (mJ)

This means that regardless of the packet payload size, the end-device will consume
0.6133 mJ of energy. The fixed energy cost is a potentially big incentive for aggregating
measurement values, and sending larger packets. So by utilizing in-network processing
techniques (see section 2.5.2) such as accumulating and holding sensor values until
the next transmission we save the majority of energy consumed when sending. The
fixed cost justifies trying to send data less often since we save 0.6133 mJ for every n
packet the end-devices does not send. Hence, we save n ∗ 0.6133 mJ of energy. There
is naturally a trade-off between saving energy by accumulating sensor data, and the
value this data has at any given time. E.g., time-sensitive data, like in intrusion
detection applications would not benefit from using such a scheme. However, since
we are working with environmental data (e.g., temperature) which changes at a slow
pace, this type of design could be sufficient. There is an upper bound to the maximum
energy consumption for a single transmission, defined by the maximum payload
size of 242 bytes. Therefore, the maximum potential energy reduction by using this
scheme is 242 ∗ 0.6133 = 148.4 mJ. Although it may seem unrealistic to aggregate 242
values, an application using a high rate transmission scheme would see huge benefits
of such a design. By not aggregating, the maximum total energy consumed when
sending 242 individual 1 byte payloads would be 242∗ (0.004∗1 + 0.6133) = 149.4 mJ.
By aggregating all the 242 measurements we instead get 0.004 ∗ 242 + 0.6133 = 1.6
mJ, requiring only about 1.1 % of the total energy to send the same data. This cut
implies a reduction of over 9000 % in energy consumption. If the design of such
an application involves doing all these measurements in the same duty-cycle (e.g.,
to get higher confidence in the measurements) the implications could be big. For
most applications, this is not the case, and the reduction in energy cost will be
lower. Regardless of the application design used, this shows that aggregating data or
simply sending less often has potentially huge implications on energy consumption of
end-devices.

Considering a temperature application where sensor nodes measure temperature and
send data every hour, aggregation of packets can also justify making more measure-
ments. If we use two decimal point precision in the temperature measurements, the
resulting payload size would be 5 bytes (e.g., 25.51 degrees Celcius). Measuring the
temperature every hour could be good enough, but increasing the rate at which each
node measures the temperature would lead to higher data granularity as well as

5.2. BATTERY LIFETIME AS A FUNCTION OF REDUCING TRANSMISSIONS 55

higher confidence in the measurements. Instead of measuring the temperature once
and sending the 5-byte measurement value, we measure every 2 minutes, leading to 30
measurements of a total of 150 bytes. Sending the 150-byte packet only doubles the
energy consumption compared to sending a single 5-byte packet (1.2 mJ compared
to 0.6 mJ). The calculation used does, however, not consider the added cost of the
other states introduced when doing so.

When aggregating packets, we could potentially save more energy, besides the reduced
cost of not sending, since the device will not open receiving windows RX1 and RX2
unless it has completed an uplink packet transmission. The research of the energy
performance of LoRaWAN conducted by Casals et al. presents a summary of
measurement data for the different states of the duty cycle (see table 4.3). We can
use these results to get an indication of the added energy reduction when not sending,
based on the removal of the receive window states. From the table we could remove
all the states indicated in italic, leading to a reduction of power consumption of 626.5
mW.

The relevance of these findings for an end-device, or a sensor network as a whole,
depends on end-devices either being able to accumulate values without lowering the
data granularity of the system, or the server producing high-quality sensing models
for the end-devices. How to determine the quality of a sensing model is not an
easy task, as this will also be application-dependent. Future research should test
different methods and evaluate the results with regards to the energy consumption
of end-devices.

5.2 Battery Lifetime as a Function of Reducing
Transmissions

From the experiment in section 4.6 we concluded that the analytical solution of
Casals et al. was general enough to be used to model the energy consumption of the
Fipy, when changes to average deep sleep current and transmission current were made.
In section 2.6.1 we presented the formula for the system lifetime of an end-device
based on the battery capacity and the average current consumption as:

Tlifetime = Cbattery

Iavg

In the following we implement this formula in Python, showing the effects of reducing
the percentage of packets transmissions on system lifetime. We introduce an algorithm
for the Python implementation in Algorithm 5.1 (removing all states in italic from
table 4.3 when not sending) and show the effects of the reduced packet transmissions
as a graph in figure 5.1.

56 5. DISCUSSION

Algorithm 5.1 Python implementation for calculating the effects on battery life of
end-devices when reducing the percentage of transmitted packets

def avgCurrent(minutes, sending):
tnotif = minutes*60.0
totalTime = 168.2 + 268 + 38.6 #time used regardless of sending
totalCurr = 22.1 + 21 + 13.3 #current used regardless of sending
if(sending):

totalTime += 2646.7 #added time for sending
totalCurr += 236.7 #added current for sending

totalTime += (tnotif-totalTime) #add deep sleep time
sleepCurrent = 0.045 * (tnotif-totalTime) #45 microAmpere
totalCurrent += sleepCurrent #add deep sleep current
totalTime = totalTime * 0.001 #normalize time to seconds
totalpower = totalTime*totalCurrent
Iavg = totalpower/tnotif #calculate the average current

return Iavg

def getDeviceLifeTimeWhenReducingPercentageOfSentPackets():
Results = [0.0]*101 #list of length 100

for i in range(0, 101):
pSent = (100-i)*0.01 #percentage of sent packets
pNotSent = i*0.01 #percentage of sent packets
notificationPeriod = 10.0
Results[i] += avgCurrent(notificationPeriod,True)*pSent
Results[i] += avgCurrent(notificationPeriod, False)*pNotSent

BC = 2400 # battery capacity in mAh

#calculate the battery life for each value based on formula
lifetime = np.array([(BC/avgcurr)/24 for avgcurr in Results])
return lifetime

percentageNotSent = np.array(range(0,101))
lifetime = getDeviceLifeTimeWhenReducingPercentageOfSentPackets()

plt.plot(percentageNotSent,lifetime)
plt.title(’Battery lifetime when reducing amount
of sent packets for 10 min duty cycle\n’)
plt.xlabel(’Percentage of packets not sent\n’)
plt.ylabel(’Battery lifetime (days)\n’)
plt.show()

5.3. PIGGYBACKING PREDICTION MODELS ON EXISTING PACKETS 57

Figure 5.1: Effect on battery life when reducing percentage of (242 byte payload)
packets sent for 10 minute duty cycle and a 2400 mAh battery

From Figure 5.1 we see that when sending every packet for each duty cycle (i.e.
Percentage of packets not sent equals 0) the battery lifetime is 341 days. If we achieve
sending half the amount of packets, by accumulating data or using an adaptive
sensing model, we increase the battery life to 564 days. So, by sending only fifty
percent of the packets, we get an increase of 223 days, which is around seven months
of added battery life. This increase results in an extended battery life of 65 %.

5.3 Piggybacking Prediction Models on Existing Packets

For energy-constrained devices, the radio should be used as little as possible to reduce
energy consumption. However, some radio transmissions may be initiated by the
server to set or update network parameters. It is therefore interesting to investigate if
application data can be piggybacked on these packet transmissions, to reduce the need
for sending extra packets between the server and end-devices. Sending data from the
server to Class A end-devices can only be done after a successful uplink data packet

58 5. DISCUSSION

from the end-device. Acknowledged packet transmissions are possible in LoRaWAN
by setting the MType field in the MAC header of the PHY payload (although not
best practice due to the duty cycle restrictions). The server will then send an ACK
in response to all uplink packets from end-devices. The LoRaWAN protocol does not
provide support for piggybacking information on the ACK packets, although this
might reduce the need for downlink packets from the server for applications running
an acknowledged transmission scheme. The LoRaWAN specification defines a FOpts
field in the Frame header (FHDR) of the Medium Access Control (MAC) payload.
This field consists of 15 octets that can be used to transport MAC commands
to end-devices. The MAC commands can be for instance rejoin. The rejoin mac
command could be of particular interest because this message can be used to transport
parameters to end-devices on top of their regular application traffic. The parameters
could be used to initialize a new session context for the end-device, however, the
way that this fields are implemented in the current LoRaWAN specification, this
would not be possible. The FOpts field is however still interesting because of unused
fields. The FOpts can consist of 15 octets, but 0x80 to 0xFF are fields reserved for
proprietary network command extensions. This could make it possible to transfer
data to end-devices through the use of MAC commands. These MAC commands
could contain application parameters for setting device deep-sleep time or model
predictions about future sensor measurements. The network periodically sends rejoin
MAC of type RejoinParamSetupReq to end-devices to reinitialize network parameters.
One possible implementation would be that when the server gets a rejoin request
for an end-device, it gets the device’s configuration parameters and sends them in
the FOpts field. The end-device could then set the application parameters based on
this data. The same approach could be used when the end-device sends the initial
join MAC message to the network. The server could then piggyback application
initialization parameters removing the need to set application parameters by default
during development. This would limit the amount of downlink messages needed
from the server to the end-devices. According to the LoRa specification, a MAC
command request initiated by an end-device will be answered within the RX1/RX2
immediately following the request, if possible. Therefore it should be possible to send
a MAC command in all uplink packages (join, rejoin, standard data transmission)
and receive a MAC response back from the server. There was not conducted any
tests with this in this thesis as this would require access to the firmware of the FiPy
device. It is a theoretical possibility that this could work, and future research could
investigate this further.

5.4 What about NB-IoT?

Since we have not been able to conduct any experiments with NB-IoT in this thesis,
the focus has been on understanding LoRaWAN and how to use the protocol in the

5.4. WHAT ABOUT NB-IOT? 59

best way. Not much research exists on the energy consumption characteristics of
NB-IoT and how to reduce them. However, we know from the background material
presented in Chapter 2 that NB-IoT enables the use of different energy modes, based
on the needs of different applications. To limit the energy consumption, it seems
that we should use Power Saving Mode (PSM) as much as possible since it reduces
signaling with eNodeB base stations to a minimum. We do not, however, know what
the effects of using this scheme have on the battery life of end-devices. We expect it
to be much lower than the other modes (DRX and eDRX), but we do not know what
the cost of entering and exiting the mode is. The end-devices intended to use this
mode, are nodes that sleep for extended periods of time, waking up rarely to send or
receive messages. The cost of the negotiation with the server of the Tracking Area
Update (TAU) messages needs research before using PSM, especially if the application
design requires nodes more frequently sending or receiving messages. Although it
is not possible to come to any conclusions about NB-IoT, these devices will also
behave in more or less the same way as LoRaWAN end-devices. When removing the
signaling with base stations, the duty cycle will probably look more or less the same.
An investigation into what separates NB-IoT from LoRaWAN regarding end-device
energy consumption, especially with concerns to the signaling messages would be an
exciting future research topic. Future research should also investigate what effects
changing the medium access protocols of NB-IoT (from FDMA to OFDMA and
SC-FDMA) has on energy consumption of end-devices, compared to results in table
2.3.

Chapter6Conclusion

In this thesis we have presented Low Power Wide Area Networks, focusing on two
of the most prominent technologies, LoRaWAN and NB-IoT. The goal has been to
understand the factors impacting energy consumption of LPWAN devices and how to
reduce them. We presented adaptive sensing techniques from a general perspective
and discussed how they could be used to improve end-device lifetime in Low Power
Wide Area Networks. Experiments have been conducted to understand the energy
consumption characteristics of LoRaWAN devices, using a private network in a lab
setting. Through the research we wanted to answer the following research question:

What are the main factors driving energy consumption of LPWAN de-
vices, and what is the effect of adding adaptive sensing as a means of
reducing overall energy consumption?

From the research conducted we better understand the key factors comprising energy
consumption in LPWAN technologies. In most cases, the cost of transmission is the
primary factor leading to high energy consumption and should be the focus when
trying to extend the lifetime of end-devices. We know some, but not all of the effects
of the LPWAN energy modes. When designing applications for energy-constrained
devices, we should always use functionality class A for LoRaWAN. More investigation
must be made into the energy modes in NB-IoT to better understand them in practice.
From the background material, Power Saving Mode shows the most potential in
extending the end-device lifetime. However, regardless of using LoRaWAN or NB-IoT,
the network will always impose some energy consumption on end-devices. Much
of the factors leading to these energy costs are fixed and is unconfigurable by the
end-devices. From an application point of view, end-devices must be configured to
use the best possible network parameters to save energy. Additionally, adaptive
sensing techniques should be applied to ensure that applications are energy aware,
and use as little energy as possible.

The experiments investigating the baseline energy cost for LoRaWAN devices, both

61

62 6. CONCLUSION

in accumulative tests and tests of the cost of transmission, show a linear increase
in energy consumption of end-devices when increasing the packet payload length.
We showed that accumulating and sending larger packets implies reducing energy.
Reduction of the amount of energy used by end-devices when transmitting packets
can be as much as 1.1 % of what it costs to send non-aggregated packets. This energy
reduction is a potentially significant incentive for both aggregating packets and using
an adaptive sensing model to try to send data less often.

We have only, to a limited extent, been able to investigate establishing an inexpensive
way of sending data to sensor nodes. The investigation into the energy consumption
of downlink packets was in many ways impaired by the fact that the equipment
we used only had one radio. Since LoRaWAN is half duplex, and the gateway
handled downlink and uplink packets from and to our end-device, as well as other
devices trying to connect to it, the results of the experiment are limited. However,
for LoRAWAN we know that class A devices open the receive windows RX1 and
RX2 after uplink transmission. The small set of data from the experiments show a
relatively low energy consumption when receiving downlink packets. However, due
to the methodology used when measuring this, we cannot be sure if the measurement
included current consumption for RX1 and RX2 from the model of Casals et al. or
not. Therefore, we do not model the downlink data to a satisfactory level in this
thesis.

We also raised questions concerning the possibility of implementing adaptive sensing
model data within the Medium Access Control (MAC) layer of LoRaWAN. Since
there are unused fields in the MAC messages transmitted between server and end-
devices, using this scheme could potentially reduce overall energy consumption, since
transmission of MAC messages happens periodically. One justification of research
into this area is on the function MAC has in the protocol stack with regards to
controlling the access to the physical transmission medium. Although Adaptive
sensing in many cases is achieved at the application layer, controlling how, and how
often IoT nodes gain access to the transmission medium is essential (cf. duty-cycle
limitations of the ISM band). If it is possible to use adaptive sensing techniques
in MAC messages, and how to best implement them, should, therefore, be a future
research question.

Lastly, we showed that a device using a 2400 mAh battery, running an application
with a 10-minute duty cycle could increase battery life more than seven months
when reducing half of the packets to be sent. So if an adaptive model making
predictions on future temperature values is correct half the time, it would have
significant implications for battery life of end-devices. If end-devices use larger
batteries or applications send smaller packet payloads1, the implications are even

1The energy model is based on 242-byte payloads

63

more prominent.

Future works within the topics presented in this thesis could be:

– Investigations into real-world applications of adaptive sensing techniques with
regards to the energy consumption of LPWAN devices. The research should
also conduct experiments using batteries, to better understand how well the
methods can perform with regards to the non-linear properties of batteries.

– Combining the methods proposed in this thesis with network topology based
adaptive sensing techniques.

– Further research into what separates NB-IoT from LoRaWAN regarding energy
consumption, especially on the effects of signaling between end-devices and
base stations on battery life.

– Research into what an adaptive sensing model should, and needs to be to
reduce energy consumption. What form should the models have to reduce the
energy of sending them to nodes?

– Investigate the use of energy-harvesting and adaptive sensing methods within
LPWAN systems, in an effort towards reaching self-sustained devices. An
interesting research question would be: How self-sufficient can such a system
get?

– Studies on how to implement adaptive sensing techniques in the MAC layer of
LoRaWAN, and what effects this might have on end-device battery life.

References

[3GPa] 3GPP. The 3rd generation partnership project. http://www.3gpp.org/.

[3GPb] 3GPP. Release 13. http://www.3gpp.org/release-13.

[AA04] T. Arici and Y. Altunbasak. Adaptive sensing for environment monitoring using
wireless sensor networks. In 2004 IEEE Wireless Communications and Networking
Conference (IEEE Cat. No.04TH8733), volume 4, pages 2347–2352 Vol.4, March
2004.

[AAFR09] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri. Energy management
in wireless sensor networks with energy-hungry sensors. IEEE Instrumentation
Measurement Magazine, 12(2):16–23, April 2009.

[ACDFP09] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella.
Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks,
7(3):537–568, May 2009.

[AVT+17] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and
T. Watteyne. Understanding the Limits of LoRaWAN. IEEE Communications
Magazine, 55(9):34–40, 2017.

[CMVG17] Lluís Casals, Bernat Mir, Rafael Vidal, and Carles Gomez. Modeling the Energy
Performance of LoRaWAN. Sensors, 17(10):2364, October 2017.

[ETS] ETSI. European telecommunications standards institute. http://www.etsi.org/.

[Fun17] Software Testing Fundamentals. Black Box Testing, December 2017.

[Got18] Petr Gotthard. Lorawan-server: Compact server for private LoRaWAN networks,
May 2018.

[HEE13] Anar A. Hady, Sherine M. Abd El-kader, and Hussein S. Eissa. Intelligent
Sleeping Mechanism for wireless sensor networks. Egyptian Informatics Journal,
14(2):109–115, 2013.

[Hiv] HiveMQ. HiveMQ - The Enterprise MQTT Broker. https://www.hivemq.com/.

[IEE] IEEE. Institute of Electrical and Electronics Engineers.
https://www.ieee.org/index.html.

65

66 REFERENCES

[IET] IETF. Internet Engineering Task Force. https://www.ietf.org/.

[LBSB07] Yann-Aël Le Borgne, Silvia Santini, and Gianluca Bontempi. Adaptive model
selection for time series prediction in wireless sensor networks. Signal Processing,
87(12):3010–3020, December 2007.

[LL17] Jinseong Lee and Jaiyong Lee. Prediction-Based Energy Saving Mechanism in
3GPP NB-IoT Networks. Sensors (Basel, Switzerland), 17(9), September 2017.

[MBCM18] Kais Mekki, Eddy Bajic, Frederic Chaxel, and Fernand Meyer. A comparative
study of LPWAN technologies for large-scale IoT deployment. ICT Express,
January 2018.

[Mic] Microchip. PAC1934 4 Channel DC Power Monitor Eval-
uation Board - ADM00805 | Microchip Technology Inc.
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO
=ADM00805&utm_source=MicroSolutions&utm_medium=Link&utm_term=
FY18Q3&utm_content=MSLD&utm_campaign=Article.

[Mic17] Microchip. PAC1934 Evaluation Board (ADM00805) User’s guide, 2017.

[Pyca] Pycom. 5.3.6 LoRaWAN Nano-Gateway · Pycom Documentation.
https://docs.pycom.io/chapter/tutorials/lora/lorawan-nano-gateway.html.

[Pycb] Pycom. Expansion Board 2.0 Specs.

[Pycc] Pycom. Preface · Pycom Documentation. https://docs.pycom.io/.

[Pycd] Pycom. Specification Sheet for the FiPy five network development board.

[Pyce] Pycom. Specification Sheet for the LoPy LoRa, WiFi and Bluetooth development
board.

[Ras] RaspberryPi. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi.
https://www.raspberrypi.org/.

[RKS17] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area Net-
works: An Overview. IEEE Communications Surveys Tutorials, 19(2):855–873,
Secondquarter 2017.

[Spa16] Spartan. Agile + Lean Development. https://blog.joinspartan.com/agile-lean-
development/, October 2016.

[SWH17] Rashmi Sharan Sinha, Yiqiao Wei, and Seung-Hoon Hwang. A survey on LPWA
technology: LoRa and NB-IoT. ICT Express, 3(1):14–21, March 2017.

[Tel18] Telia. Telia-iot-workshop: Guide and software for Telia IoT Workshop, May 2018.

[THK17] Nattachart Tamkittikhun, Amen Hussain, and Frank Alexander Kraemer. Energy
Consumption Estimation for Energy-Aware, Adaptive Sensing Applications. In
Mobile, Secure, and Programmable Networking, Lecture Notes in Computer
Science, pages 222–235. Springer, Cham, June 2017.

REFERENCES 67

[Wie14] Roel J. Wieringa. Design Science Methodology for Information Systems and
Software Engineering, volume 1. Springer Heidelberg, London, first edition, 2014.

[WLG+11] Guiyi Wei, Yun Ling, Binfeng Guo, Bin Xiao, and Athanasios V. Vasilakos.
Prediction-based data aggregation in wireless sensor networks: Combining grey
model and Kalman Filter. Computer Communications, 34(6):793–802, May 2011.

[WMN04] R. Willett, A. Martin, and R. Nowak. Backcasting: Adaptive sampling for sensor
networks. In Third International Symposium on Information Processing in Sensor
Networks, 2004. IPSN 2004, pages 124–133, April 2004.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Research Goals
	Thesis Structure

	Background and Related Work
	Low Power Wide Area Networks
	LoRaWAN
	LoRaWAN General Overview
	Physical Layer
	MAC Layer

	Narrowband IoT
	General Overview
	Operating Modes

	Comparison Between LoRa and NarrowBand IoT
	Adaptive Sensing
	Duty Cycling
	In-network Processing
	Data Prediction
	Adaptive Sampling

	Modeling the Energy Consumption of End-devices
	Modeling the Energy Consumption of LoRaWAN
	Modeling the Energy Performance of NB-IoT

	Methodology and Design
	Scientific Method
	Equipment and Test Architecture: What, how and why
	Pycom Fipy
	Pycom Expansion Board
	Sodaq NB-IoT Shield
	Pycom Lopy
	Microchip PAC1934 DC Power Monitor Evaluation Board
	Raspberry Pi 3
	HiveMQ MQTT Broker
	Computer

	Data Collection Methods
	Black Box Experiment Design
	A Novel Experiment Design for Higher Precision Measurements

	Experiments
	Average Idle Current of the Fipy
	Average Deep Sleep Current of the Fipy
	Fixing Deep Sleep
	Preparing for Deep Sleep

	Relationship Between Payload Size and Energy Consumption
	Relationship Between Payload Size and Energy Consumption (refined)
	Relationship Between Down-link Packet Payload Size and Energy Consumption
	Generalizing Casals et al.'s Energy Consumption Model

	Discussion
	Aggregating Data for Transmission
	Battery Lifetime as a Function of Reducing Transmissions
	Piggybacking Prediction Models on Existing Packets
	What about NB-IoT?

	Conclusion
	References

