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Abstract

The development of Wide Area Measurements (WAMS) is growing with the increasing
usage of Phasor Measurements Units(PMU) in power systems. Its introduction gives
power system operators greater observability, as PMUs can measure the voltage angle
and magnitude in real time (up to 50/60 recordings per second), with the help of GPS
technology. Given better situational awareness, system operators gain a higher chance
of preventing unstable or insecure operation of the power system. The applications of
PMU measurements are many, on the subject of power system stability the availability
of using PMU measurements makes it possible to estimate system modal characteristics
directly from the measurements. System identification and signal processing method
has in the last decades been studied and customized for power system application,
particularity to estimate modal properties in power systems.

The objective of this thesis is to assess the performance of two algorithms which are
commonly used in the structure and civil engineering for modal estimation. The two
methods investigated in this report, are the Natural Excitation Technique used in con-
junction with Eigensystem Realization Algorithm (NExT-ERA) and Multivariate Auto-
regressive model(MAR). The NexT-ERA is a twofold algorithm. The first algorithm,
The Natural Excitation Technique, can estimate impulse responses of power systems
by calculating cross-correlation functions between measurement. The second algorithm,
Eigensystem Realization Algorithm, uses the impulse responses calculated with NExT
to estimate a state-space model of the power system. From the state matrix, the eigen-
values which describes the dynamic of the system can thus be extracted. Multivariate
Auto-regressive model is an extension of the Auto-regressive model which uses multiple
signals to fit into the model. The modal properties can be calculated by the parameters
of the MAR model by eigendecomposition.

This thesis shows that the methods can estimate the electromechanical modes, which
correspond to low-frequency oscillations that are excited by continuously varying loads.
The performance of the methods is investigated by comparing prior knowledge of the
modal properties from a synthetic signal, simulation model and the Nordic power grid
with estimated values. The evaluation of the performance of the methods is based on
the consistency of the estimation for different window length and model order. The
evaluated results are designated to give the reader input on how NExT-ERA and MAR
perform as a stability indicator for power systems. Which may motivate the reader to
implement and study the method further with the intent to create an application for
real-time and off-line modal identification.





Sammendrag

Utviklingen av kontroll og overv̊akingssystemet knyttet til bruken av vektormålere
(PMU) i kraftsystemet, har ført til utvikling av det langt omfattende overv̊akingssystem
Wide Area Measurement System (WAMS). Dens innføring gir operatører i kraftsys-
temet større observasjon av dynamikken i kraftsystemet, da vektromålere kan m̊ale
opptil 50/60 opptak per sekund og måle synkront ved hjelp av GPS-teknologi. Gitt
bedre informasjon om forløpet til systemets dynamikk, har systemoperatørene større
sjanse til å forhindre kraftsystemet til å driftes forsyningsstridig.

Applikasjonene til vektormålere er mange. Med hensyn til stabilitet i kraftnettet, gjør
tilgjengeligheten av å bruke m̊alinger fra vektorm̊alere det mulig å estimere systemets
modale egenskaper direkte fra m̊alinger i nettet. Metoder og teknikk fra systemiden-
tifikasjon og signalbehandling har i de siste ti̊arene blitt studert og tilpasset til bruk i
sammenheng med identifikasjon av modale egenskaper knyttet til kraftsystemer. Målet
i denne oppgaven har vært å vurdere hvordan to algoritmer som ofte brukes i kon-
struksjon og bygningsteknikk for modal estimering, fungerer i bruk av estimering av
lavfrekvente modi i kraftsystem ved hjelp av vektormålere. De to metodene som un-
dersøkes i denne rapporten, er The Natural Excitation Technique som brukes i sam-
menheng med Eigensystem Realization Algorithm (NExT-ERA), og Multivariate Auto-
regressive modell (MAR). NexT-ERA er en todelt algoritme. Den første algoritmen,
The Natural Excitation Technique, kan estimere impulsresponser av kraftsystemer ved
å beregne krysskorrelasjonsfunksjoner mellom målingene fra vektormålere. Den andre
algoritmen, Eigensystem Realization Algorithm, bruker impulsresponsene beregnet med
NExT for å estimere en tilstandsmodell av kraftsystemet. Slik at, fra tilstandsmatrisen
s̊a kan egenverdiene som beskriver systemets dynamikk, beregnes.

Multivariate Auto-regressive modellen er en forlengelse av den Auto-regressive modellen
som bruker flere målesignaler til å tilpasse den Auto-Regressive modellen. De modale
egenskapene kan beregnes av parametrene til MAR-modellen ved dekomponering av
koeffisient matrisen.

Denne oppgaven viser at metodene kan estimere de elektromekaniske modiene, som
eksiteres av kontinuerlig varierende last. Funksjonaliteten til metodene undersøkes
ved å sammenligne forh̊andsberegnet modi fra et syntetisk signal, simuleringsmodell
av nordiske kraftsystemet og det reelle nordiske kraftnettet. De evaluerte resultatene
er ment å gi leseren et overblikk om hvordan NExT-ERA og MAR fungerer som sta-
bilitetsindikator for kraftsystem.
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Chapter 1

Introduction

1.1 Background ant Motivation

Power systems are complex interconnected systems with the purpose of delivering elec-
tricity to consumers, at demand. Operating a power system is complex. Many requisites
have to be met for the power system to meets its objective. One of the issues that threats
the security of power system is the electromechanical oscillations. Electromechanical
oscillations are inherent in power systems, and they stem from generators swinging
relatively to one another or against a group of generators, due to continuously varying
load in the system. The low damping in some of these oscillations is a limiting factor
on the systems transmission capacity. In severe situations, they can grow and cause
several outages, and in worst case blackouts[1],[2],[3].

To prevent the threat by electromechanical oscillation, the frequency of the oscillations
and their corresponding damping ratio may be monitored with wide area measure-
ment systems(WAMS). Damping ratio is a stability indicator on the systems ability to
tackle oscillatory behavior. Monitoring the number of damping areas has, the system
operators can take measures in early stages before a possible failure occurs due to elec-
tromechanical oscillation. Thus, power oscillation monitoring is essential, as it gives
power system operators a situation awareness they can act upon.

Currently, the concept of wide area measurement system and control is being developed,
tested and gradually implemented into control room application. Wide area measure-
ment system is the utilization of system-wide information obtain by phasor measuring
units, PMUs. A PMU is a unit that can measure synchronized current and voltage
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Chapter 1. Introduction

phasors, which can measure up to 50/60 records per second. Utilizing multiple syn-
chronized PMUs, dynamic information from dominant inter-area paths can be obtained
and observed. These time-domain measurements have enabled the possibility for online
modal identification.

Traditionally, the stability studies concerning oscillatory behavior in power systems are
conducted off-line with extensive simulations. However, with the development of PMUs,
there has been conducted many studies on estimation of modal properties in power sys-
tem using signal processing and system identification techniques and algorithms. In
this thesis, the capability of Natural Excitation Technique in conjunction with Eigen-
system Realization Algorithm is investigated together with the method Multivariate
Auto-regressive model. The objective is to evaluate their performance to estimate the
oscillatory stability of a power system using PMU data.

The Natural Excitation Technique used in conjunction with Eigensystem Realization
Algorithm (NExT-ERA) and Multivariate Auto-regressive (MAR) is common dynamic
estimation methods used in the structure and civil engineer to estimate ambient re-
sponses. NExT-ERA algorithm consists of two different algorithms. The first algorithm,
NExT, estimate the impulse response of the power system by utilizing cross-correlation
functions between measurements from PMUs. The ERA algorithm is then used to iden-
tify a state-space model of the power system with the impulse responses. By, obtaining
the state-space model, the modal properties can easily be calculated.

MAR is an extension of the Auto-regressive model which uses multiple signals to cal-
culate the present value as a weighted linear sum of previous values. By fitting the
time-series to a MAR model, the modal properties of the system can be obtained by
eigenvalue decomposition. The method along with NExT-ERA has proven to be func-
tional for estimating the electromechanical modes by [4],[5],[6],[7]. Therefore NTNU
and the electrical power engineering faculty has sought out to gain experience of their
performance.
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1.2. Scope and Objective

1.2 Scope and Objective

The primary objective of the thesis is to show that NExT-ERA and MAR are capable
of identifying the modal properties of low-frequency oscillation in power systems and
examine their performance. Before the methods are tested on real PMU data, the
algorithms are tested with a synthetic signal and generated PMU data by simulation
from a test network. All the PMU data used are ambient data from the Norwegian
power grid provided by the supervisor, Kjetil Uhlen together with a test network that
is used to obtain simulated data. The NExT-ERA is implemented in MATLAB, while
co-supervisor Dinh Thuc Duong provided the code for MAR in MATLAB.

1.3 Outline of Thesis

The thesis is organized into six chapters. First theoretical background on power system
stability, signal processing and the algorithms to be examined are reviewed in chapter
2. The following chapter 3,4 and 5 investigate the performance of the methods with
a synthetic signal, simulated PMU data and real PMU data respectively. Chapter 4
focuses on how the method responds to different noise levels. Chapter 5 focuses on how
the model order and window length affect the estimation of modal properties with real
PMU data. Chapter 6 summarize, discuss and conclude the findings.
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Chapter 2

Background

The purpose of this chapter is to provide the reader, some of the background to under-
stand the concepts and methods used in this report as well as establishing the basis for
the report. The chapter presents the stability concept related to rotor angle stability
and the concept of using wide area measurement system to control and identify the
electromechanical modes as well as theory related to modal identification.

2.1 Phasor

The currents and voltage in the commercial power systems are alternating. They are
represented as sine or cosine function with time. In the time domain, the voltages are
mathematically described as:

v(t) = Vmcos(ωt+ δ) (2.1)

Where Vm is the amplitude of the sinusoidal wave, δ is the phase shift, ωt is the angular
frequency which is defined as 2πf , whereas f is the frequency. A similar representation
can be made for currents.

A phasor is a sinusoidal waveform represented as a time-invariant vector, where its
magnitude corresponds to the amplitude of the sinusoidal, and its angle is the angular
separation between a reference time. The phasor representation is deduced by Euler’s
formula, by:
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2.1. Phasor

v(t) = Vme
jδejwt =

√
2V ejwt (2.2)

where

V = V ejδ = V (cosδ + jsinδ) (2.3)

Figure 2.1: Phasor representation of voltage

Figure 2.1 shows a signal in a time-frame and the corresponding phasor of the signal
projected into a complex plane. Let t0 be the reference time, and peak be when the
phase-shifted sinusoidal reaches its peak. When the reference frame and the phasor
move at the same rate, the time-varying component ejωt can be dropped in 2.2. As a
result, the vector becomes standing still. This allow the function to be presented as
a phasor with only its magnitude and angle as an angular separation of the reference
frame in the complex plane.

Figure 2.2: Voltage phasors in the complex plane

The state of a power system with n number of nodes can be determined by determining
the voltage magnitudes and voltage angles in the system. Thus, to determine the system
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Chapter 2. Background

state, one can measure the voltages and fit them into one common reference such that
the relative voltage angles between each bus voltage do not change with time, like in
figure 2.2. This enables the voltage phasors to be measured and calculated into the
reference frame and thus determine the state of the system.

2.2 Phasor Measuring Unit

A phasor measurement unit is a time synchronized measurement device that measures
voltage and current signals represented as phasor and the frequency. Measuring the
voltage and currents as phasors makes it possible to place them into a common refer-
ence frame directly. By using GPS technology to time stamp, the measured phasors
makes it possible to measure voltages and currents at a different location simultaneously
accurately. Subsequently, the relative phase angles between the nodes in the network
can be determined directly, which enables to calculate the powers of the power system
fast[2].

2.3 Wide Area Measurement and Control System

Wide Area Measurement Systems (WAMS) and Wide Area Control Systems(WACS)
are data acquisition and control systems which use synchronized phasor measurement
data to monitor power system dynamics. By monitoring, possible weaknesses(WAMS)
in the system can be identified, and corresponding countermeasures can be developed[2].

The current Energy Management Systems use Supervisory Control and Data Acquisi-
tion(SCADA) as a tool for data acquisition. The SCADA system is not able to coordi-
nate the measurements synchronously, and it has a slower rate than PMU, leaving out
most of the dynamics of power systems. SCADA record data every 2-10 second, while
PMU record 50/60 records per second. For this reason, the introduction to WAMS
and WACS has been paid much attention and is tediously researched. An example of a
three-layered WAMS structure is shown in figure 2.3. The PMUs deployed in the figure
are time stamped with a GPS receiver. The data acquired measured from PMUs are
forwarded to phasor data concentrator(PDC) which supply data for system monitor-
ing, protection and control. The layer in the middle combine the measurements from
different areas, while the top layer of PDC’s combine all the information and forward
it to the control center.
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2.3. Wide Area Measurement and Control System

The concept has been widely discussed over the past decades, and its entry to the
power system is a natural response to the way power system is operated. The electric
power utilities has to optimal run the power systems due to economic restraints and
technical restraints [8],[9],[4]. One of the main concerns is the limited transfer capability
between areas. The limiting factor is due to high probability of oscillations due to
low damping. The utility company cannot fully exploit the thermal capability of the
transmission lines. As a consequence, the power systems are running close to their
transfer capabilities which could lead to unforeseen contingencies. Thus, it becomes
necessary to be able to monitor and observe the power system also increase the power
transfer capabilities.

Figure 2.3: Example of structure of Wide Area Measurements

The current Energy Management Systems use Supervisory Control and Data Acqui-
sition(SCADA) as a tool for data acquisition. The SCADA system is not able to
coordinate the measurements synchronously, and it has slower rate than PMU, leaving
out most of the dynamics of power systems. SCADA record between 2-10 per second,
while PMU record 50/60. For this reason, the introduction to WAMS and WACS has
been paid much attention and is tediously researched.
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Chapter 2. Background

2.4 Power System Stability

Power systems are complex interconnected networks with the purpose of delivering
electrical power to consumers at demand. Due to its inherent non-linear nature and
dynamic interaction between power system elements, the challenges associated with a
power system correspond to the ability to deliver power and keep the system elements
intact following any disturbance. The response of the power system is what defines its
stability. In definition, the stability of a power system is defined as the ability to remain
in a state of equilibrium under normal operation and the ability to regain a satisfactory
equilibrium point after being subjected to a disturbance. A power system response
to a disturbance involves many of the system elements. Following a disturbance some
elements may actuate other few elements, while others actuate a wide range of elements,
and some the whole system. Depending on the elements that upset the power system
stability after a disturbance, the stability problem is categorized by rotor angle, voltage
and frequency stability.

Figure 2.4: Classification of power system stability

Depending on type, size and time span of disturbance, the stability is classified as in
figure 2.4. The rotor angle stability is defined as the ability of synchronous machines in
power systems to remain in synchronism following a disturbance. Frequency stability
is defined as the ability of the system to keep a steady state frequency following a
disturbance that upset the balance of generation and load. While Voltage stability is
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2.4. Power System Stability

defined as the ability of the power system to keep a steady state voltage following a
disturbance.

2.4.1 Rotor angle stability

The rotor angle stability is associated with the study of rotor speed interactions with
electromagnetic changes, which are referred to as electromechanical dynamics[2]. To
understand it, the manner of how generator output power as a function of rotor angle
must be understood first.

(a) The equivalent diagram of figure 2.5b.

(b) A generator G1 connected to groups of
generators represented as GS through a trans-
mission line and transformer. GS is assumed
to have the same characteristics as an infinity
bus.

Let us consider the two bus system in figure 2.5b with G1 connected to other groups
of generator represented by GS with the same characteristics as an infinity bus. G1 is
connected to GS through a transformer XT and a transmission line XL.
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Chapter 2. Background

EG is the internal emf behind the generator reactance Xd, and Xs is the reactance of
Gs in which ES is behind. In the simplest form, the power transfer from G1 to the rest
of the system presented by GS is given by:

P = EGVs
X

sinδ (2.4)

Q = EGVS
X

cosδ − V 2
S

X
(2.5)

where

X = Xd +XT +XL is the transfer reactance and δ = δG + δL + δS is referred to as the
rotor angle and it is the angular separation between the generator rotor G1 and system
generator rotor GS. Since voltages must be kept within a small percentage of limit, they
are assumed constant, and hence changes in active power correspond to the sinusoidal
variation of the rotor angle. An active power vs rotor angle relationship is plotted in
figure 2.6 for the simplified and idealized model, where PE is the electrical power from
generator G1 and PM is the mechanical power. As it can be seen from the figure, the
power transfer depends on the rotor angle, when it is zero there is no transfer. The
power transfer has a certain maximum limit, in this case, when the rotor angle equals
90 degrees and further increases from the maximum point result in a decrease of power
transfer.

Figure 2.6: Power vs rotor angle relationship
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2.4. Power System Stability

Swing equation

The power system presented in figure 2.5b is considered in equilibrium (steady state)
stable when each generators electrical air gap power (electrical power) is equal and
opposite to its turbine shaft power (mechanical power), and the speed is constant. This
behavior is according to Newton’s law of motion described by equation 2.6 called the
swing equation.

M
d2δ

dt2
= Pm − Pe −D

dδ

dt
= Pacc (2.6)

Where Pm is the turbine shaft power, Pe is the air gap power, and D is the damping
coefficient. While M is the inertia coefficient and δ is the rotor angle.

When a disturbance occurs, a shift in power balance results in the system moving away
from the equilibrium point. This makes according to the swing equation the rotors of
the machines in power system to accelerate or decelerate. If for instance, a disturbance
cause generator G1 angular speed to run faster, its rotor angle will advance relative
to the groups of generator represented by GS. This result in that part of the GS

load is shifted to G1, which correspond to increase in power according to the power
vs. rotor angle relationship. While GS power is reduced. This tends to reduce the
speed difference, and hence the angle difference. If the faster-running machine rotor
angle advance beyond a limit, the power transfer capability reduces, which in turn
increase the angular separation between the generators and leads to a machine to lose
synchronism with the rest of the system, in this instance, G1 fall out of step with system
GS.

Synchronizing torque and damping torque

Following a disturbance, the changes in the electrical torque are described by a synchro-
nizing torque and damping torque. The synchronizing torque is component correspond-
ing to torque change in phase with rotor angle, and this torque can be deduced from
Pe(δ) in swing equation. Lack of sufficient synchronizing torque results in instability
in the form of periodic shifts in rotor angle. While damping torque corresponds to the
term D dδ

dt
in swing equation 2.6. The damping torque is associated with speed changes,

and lack of damping torque result in instability in the form of oscillations.
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2.4.2 Small-signal stability

Analysis of stability associated with rotor angle stability is divided into small-signal and
transient stability. Small signal stability is the ability of a power system to maintain
the system synchronized during small disturbances. Transient stability is the ability of
a power system to maintain synchronism after being subjected to large disturbances.
Only the concept of small signal stability is elaborated in this report.

Small disturbances instability can occur in either due to lack of sufficient synchronizing
torque or damping torque. In today’s power systems, instabilities associated with lack
of sufficient synchronizing torque are almost non-existent since nowadays the generators
are equipped with automatic voltage regulators. Most problems correspond to lack of
sufficient damping of oscillations[3]. These oscillations are referred to as electromechan-
ical oscillations.

Electromechanical oscillations can occur either locally or globally. The local problem
is referred to a single generator rotor oscillations against the rest of its system and is
called local plant oscillation mode. The generators in local plant oscillations swing at
1.0 to 2.0 Hz against its systems. Global problems involve groups of generators in an
area oscillating against other groups of generators in another area and are known as
inter-area oscillation mode. The oscillations are usually between 0.1 and 1.0 Hz.

Other modes associated with rotor angle stability are control-modes which involve
poorly tuned controllers that contribute to reducing the damping torque. Another
mode is the Torsional mode which is a reference to generator and turbine shaft system
rotational components. Its instability may be caused by excitation controller, speed
governor control or series-capacitor compensated line controllers.

12



2.5. Signal Processing and Modal Identification

2.5 Signal Processing and Modal Identification

One of many applications to WAMS is the monitoring of low-frequency oscillations.
Monitoring the low-frequency oscillations on-line with synchronized PMUs make it
possible to detect poorly damped oscillations in real-time. To estimate the modal
components of the inter-area oscillations numerical algorithms are often used. Small
signal stability analysis using modal identification algorithms originate from signal pro-
cessing and system identification methods, but have in the last decades had a growing
application and customization to the estimation of modal components in power systems.

There exist two approaches for identifying modal properties in small signal stability
analysis. One approach is based on linear analysis using eigenvalue analysis techniques.
While the second approach is based on processing time domain data and is the one
referred to as modal identification[7], using system identification techniques.

Linear analysis has proven to give accurate stability characteristics(frequency, damping
and mode shapes) for the given operating point. The steps in this approach are per-
formed by obtaining the linearized state matrix, which is obtained by linearization of the
non-linear differential equations describing the system dynamics(swing equation). This
is followed up by an eigenvalue analysis which gives the characteristics of the system
by the eigenvalues obtained. This approach is desirable as it enables a detailed model
of the power system and by using numerical methods, accurate dynamic information is
obtainable for a given operating point. However, the limitation of this method is that
it can only obtain dynamics for a given operating point and only a small number of
modes can be obtained for large power systems.

Modal identification is the process of determining modal components by measured
data using system identification methods. The modal identification is based on signal
processing techniques and has had a growing application to power system over the last
decades. These methods are an alternative approach to obtain dynamic characteristics
when it is not possible or preferable to use linearized power system equations. The
essence of system identification is to replicate a system with an equivalent model based
on observed data. A model can be a mathematical description of the system which
describes its variables and relationship of the system variables. In the instance of
modal estimation of a power system, many of the models used contain variables with the
dynamical properties of the system, determining those variable allow the user to obtain
valuable information about power system dynamics. Furthermore, the disadvantage
with the identification methods is that well-damped modes and dynamics embedded in
signal noise are difficult to detect. Also, the selection of model order is a challenge and
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practical issue[7].

The methods and algorithms developed for modal identification in power system are
classified based on power system response. There are broadly two responses. Ambient
and transient(ringdown). A response is considered an ambient response when there
are random variations in the system excited by small amplitude variation, such as load
variations. Whereas a transient is substantially larger in amplitude, which is often
caused by a contingency or switch.

2.5.1 Parametric vs Non-parametric Methods

In system identification, the analysis methods are classified either as a parametric or
non-parametric method. The most common approach is to use parametric methods
which consist of fitting a set of observed data to a model with many unknown param-
eters. Estimating the parameters provide the model with the best fit to the observed
data [10],[11]. The advantage of parametric methods is the high amount of data re-
duction, by going from a large set of measurement data to a small set of parameters.
However, one of the main difficulties of the parametric method is to choose the model
structure.

The other method is non-parametric, which is an estimation without using a prede-
fined model with unknown parameters. The non-parametric method uses the observed
data directly to estimate the frequency and impulse response for the system. In many
instances, the non-parametric method is used to verify the parametric methods. For
example, using the spectral density of a signal help discover if the signal contains the
frequency of interest.

2.5.2 Analysis of Ambient Measurements

The random load variations that continuously probe the power systems is the cause
for the ambient oscillations, and they are conceptualized as unknown inputs noise.
When recording the ambient oscillations, these noises are translated to the records. An
Ambient analysis in power system refers to the estimation of mode shapes when the
primary excitation is the random variations [10],[4]. Ambient analysis can be conducted
either in frequency or time domain. Time-domain algorithms perform the estimation
on the sampled data set, while frequency-based methods need to to use spectral density
functions. However, before estimating the modes, it is useful to perform a spectral
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density estimation using, for example, Welch’s periodogram functions. By doing so,
the user can be aware of which frequencies are dominant in the signals. The dominant
modes correspond to the peaks in the spectral periodogram.

The figure 2.7 shows an example of Welch’s power spectral density estimate. The signal
used is the synthetic signal in 2.7 with a sampling frequency of 100 Hz.

y(n) =50cos(2π1.68n− 0.2π) ∗ e−0.1n + 5cos(2π2.0n
+ 0.1π)e0.2n + 12cos(2π0.69n− 0.3π)e−0.5n (2.7)

Figure 2.7: Example of Welch’s power spectral density estimate

From the figure 2.7 it can be seen that the frequency peaks correspond well with the fre-
quency of the signal in 2.7. Using this as an additional tool in ambient analysis can help
validate the estimation of the modes. Other periodogram using Fourier transformation
can be found in signal processing literature [12],[11].
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2.6 Theoretical Background of Modal Estimation
Methods

The goal of the following sections is to introduce the theoretical background for the lin-
earization method modal analysis as well as modal identification method MAR, NExT-
ERA and Prony algorithms.

2.6.1 Modal Analysis - Linear Analysis

A power system is described by a set of nonlinear equations and can be written in the
state space form of equation 2.8. Where x is a vector of state variables, and A is the
state matrix. A nonlinear system can be linearized around an operating point. For a
power system this is only valid for small deviations from the operating point, hence
small disturbances.

ẋ = Ax (2.8)

Equation 2.8 has the solution:

x(t) = xeAt = x1eλ1t + x2eλ2t + · · ·+ xneλnt (2.9)

The state variables x can be transformed into a new state variables z:

x = Wz (2.10)

Substituting 2.10 into state space equation 2.8 result in:

ż = W−1AWz (2.11)
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ż = Λz (2.12)

Where W is the right eigenvectors of state matrix A and is referred to as the modal
matrix, Λ is the modal form of the state matrix, and z is the modal variables also
referred to as modes. The differential equations have the solution:

z(t) = eΛtz0 (2.13)

Whereas z0 is the initial condition. The set of vector solution can be expressed as a
scalar:

zi(t) = eλitzi0 i = 0, 1, 2....n (2.14)

The effect of modal transformation is that the state matrix A, which in general is
non-diagonal is transformed into a diagonal matrix Λ such that the state equations
become decoupled. The modal variables in 2.14 are the solution of the decoupled
state equations. The modal variables hold information about the response of the state
variable from each of its state equation. The state variable can be expressed as a linear
combination of modal variables by transforming back using 2.10:

x(t) = WeΛtz0 (2.15)

which implies that

xk = wk1z10e
λ1t + wk2z20e

λ2t + · · ·+ wkizi0e
λit (2.16)

where the initial conditions z0 can be expressed as z0 = Ux0. U is the left eigenvectors
and is the inverse of the right eigenvectors since they are orthogonal. In the more
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compact form we get:

xk = wk1z1 + wk2z2 + · · ·+ wkizi (2.17)

The above equation represents the time response of free motion in terms of eigenvalues
and right and left eigenvector. The right eigenvector carries information about the
observability of the modal variables for an individual state variable. If the eigenvectors
are normalized, then the right eigenvector wki determines the share of involvement
of modal variable zi in the state variable xk in terms of magnitude and phase. This
share of involvement is referred to as the mode shape. The left eigenvector carries
information about the controllability of modal variables for an individual state variable.
Similar to right eigenvectors, if the eigenvectors are normalized, then the left eigenvector
uki determines the share of involvement of an individual modal variable zi for the
corresponding state variable xk

The eigenvalues are referred to as the modal response and describe the characteristic
behavior of the system dynamics. The eigenvalues are in general complex and are
expressed as:

λ = σ + jω (2.18)

with the corresponding frequency of oscillation given by.:

f = w

2π (2.19)

the damping ratio which determines the rate of decay of the amplitude of the oscillation
is given by:

ζ = −σ√
σ2 + ω2

(2.20)

In the general complex form of eigenvalue given in equation 2.18, the real part represents
the damping and the imaginary part represent the frequency of oscillation. Any mode
with w = 0 represent a non-oscillatory mode. A negative real value corresponds to a
decaying mode, a positive damped mode and hence a stable mode. While a positive real
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value corresponds to negative damped mode, which represents aperiodic instability[2].
Further details can be found in [2].

2.6.2 Natural Excitation Technique - Eigensystem Realization
Algorithm

The Natural Excitation Technique - Eigensystem Realization Algorithm also referred
to as NExT-ERA is a twofold method because it consists of two algorithms. The
NExT algorithm estimates the impulse responses of the system using cross-correlation
functions from the measurement data. The ERA estimates a state-space model based on
the impulse responses which are then used to determine the system dynamics. Thereon
the modal components can be calculated from eigenvalues of the dynamic matrix of the
state-space model.

The method is a three-step process. The first step is to acquire the ambient data
of power system variables, such as voltage magnitude, voltage angle, power flow or
generator speed.

The second step is to perform the NExT method. First, the auto-correlation of a signal
or the cross-correlation between multiple signals is calculated, whereas one of them is
a reference. The reference signal corresponds to a variable in the equation of motion
for the system, and consequently, therefore, is seen as free responses. The reference
variable could, for example, be rotor angular displacement or the air gap power.

The third step is to use ERA to estimate the modal parameters by using the estimated
free responses. After the state-space model is estimated, the modal components can be
determined.

Natural Excitaiton Technique (NExT)

Consider the swing equation presented in 2.6 and repeated here for convenience.

M
d2δ

dt2
= Pm − Pe −D

dδ

dt
= Pacc (2.21)

Modeling the generator with constant flux linkage, and linearizing the swing equation
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2.21 around an operating point, gives

M
d2∆δ
dt2

+D
d∆δ
dt

+K∆δ = 0 (2.22)

Where K is the synchronizing coefficient, and ∆δ is the rotor angle deviation from the
operating point. Considering a power system consisting of n generators, all generators
can be represented in the classical form of equation 2.22. Consequently, equation 2.22
become a matrix equation with M , D and K transforming into diagonal matrices con-
taining inertia, damping and synchronizing coefficient of each generator in the system.
An elaboration of this modeling can be found in [2].

Furthermore, each generator is consistently exposed to stochastic accelerating power
due to random load variations. This excitation is considered the natural excitation of a
power system together with minor switching, production change and faults. With the
natural excitation taken into consideration, equation 2.22 is extended to

M∆δ̈(t) + D∆̇δ(t) + K∆δ(t) = F(t) (2.23)

where the (·) indicates the derivative with respect to time and F(t) is the excitation
vector. Post multiplying equation 2.23 with a reference displacement angle ∆δr(s) ,
and taking the expected value on each side yields:

ME[∆δ̈(t)∆δr(s)] + DE[∆δ̇(t)∆δr(s)] + KE[∆δ(t)∆δr(s)] = E[F(t)∆δr(s)] (2.24)

Where E[·] stand for expected value. Further on, 2.24 can be expressed in terms of
correlation functions where R(· denotes a vector of correlation functions

MR∆δ̈∆δr
(t, s) + DR∆δ̇∆δr

(t, s) + KR∆δ∆δr(t, s) = RF∆δr(t, s) (2.25)

Assuming that A(t) and B(s) are stationary process in RAB(t, s), it can be shown that
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for stationary process that

RAmB(τ) = Rm
AB(τ) (2.26)

where τ = t−s and Am is the mth derivative of the random process A(t) with respect to
time and Rm

AB give the mth derivative of the correlation function RAB(τ) with respect
to τ .

The reference rotor displacement angles is assumed weakly stationary process and
uncorrelated with future disturbances(future values of F(t). Which corresponds to
RF∆δr(t, s) = 0 being true for τ > 0. Thus, 2.25 can be written as

MR̈∆δ∆δr(t, s) + DṘ∆δ∆δr(t, s) + KR∆δ∆δr(t, s) = 0 τ > 0 (2.27)

Thus, the correlation functions of the rotor angle displacement satisfy the homogeneous
equation of motion for the power system in 2.23 which allows the correlation functions
obtained to be treated as a free impulse response of the power system. An extended
derivation of the correlation functions can be found in [13],[14] and [15]. Since the
rotor angle of the generators has a coupling to the other variables such as power flow,
voltages and voltage angles, the impulse responses can also be estimated from the
correlation functions of these variables. This allows the correlation functions obtained
from different PMU data to be used to estimate the total dynamic behavior of the
power system.

The NExT can also be used on unsynchronized data. Since it is not treated further in
the thesis, it is not explained here. However, theoretical background of it can be found
in [4],[5].

Eigensystem Realization Algorithm

The Eigensystem Realization Algorithm is developed by Juang and Pappa [16], and it
was made with the goal of finding the minimum realization of the state-space represen-
tation of a system by measured responses from a physical system. Realization in control
system theory is the matrices A,B and C that form the state-space representation of
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the system. Following [16] notation, given a system in the form of

x(k + 1) = Ax(k) + Bu(k) (2.28)
y(k) = Cx(k)

where A,B and C are discrete-time state-space matrices. And x(k) is the vector of
states, y(k) is a vector of system outputs and u(k) is a vector of system inputs at the
kth step. The ERA can be conducted by first forming Hankel matrix H(0) and H(1).
A Hankel matrix has the following form [16],[7]

H(k) =


y(k) y(k + l) y(k + 2) · · · y(k + s− 1)

y(k + 1) y(k + 2) y(k + 3) · · · y(k + s)
... ... ... ...

y(k + r − 1) y(k + r) · · · y(k + r + s− 2)

 (2.29)

where y(k) is the vector of measurements of the system at time k. After running the
measurements with NExT, y(k) becomes the correlation functions and can thus be used
with ERA. The parameters r and s corresponds to the number of rows and columns
in the Hankel matrix. The values of s and r has to be selected prior to building the
matrix, which can be difficult. However, the values of s and r has to be chosen such
that the rank of H(0) does not increase by increasing r ans s. [16] recommend s to be
10 times the number of expected poles and r double of s.

H(0) can also be written as

H(k) = PAkQ (2.30)

where P corresponds to the observability matrix and Q the controllability matrix of
the system and looks like
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P =


C

CA
...

CAr−1

 , Q =
[
B AB A2B · · · As−1B

]
(2.31)

The P and Q matrices has the properties of a rank which equals the minimum model
order n for the system. Applying Sylvester’s rank inequality [17] theorem, it can be
shown that

rank(P) + rank(Q)− n ≤ rank(PQ) ≤ min[rank(P), rank(Q)] (2.32)
n+ n− n ≤ rank(H(0)) ≤ min[n, n] (2.33)

rank(H(0)) ≤ n (2.34)

Which shows that the minimum order of any realization of the system equals the rank
of H(0). However, due to non-linearities and noise, the rank of rank(H(0) can be
significantly higher than the minimum order of the system. Therefore, to estimate the
order of the system, singular value decomposition(SVD) is performed on H(0). The
decomposition is of H(k) is given by

H(k) = UΣVT (2.35)

Where Σ is the diagonal matrix of the singular values of H(0), U is a left vector of
singular values and V is the right singular vectors, respectively. The order is estimated
by examining the singular values along the diagonal ofrank(Σ). Singular values that are
very small compared to highest singular value correspond to noise, and their columns
and rows are omitted from U,Σ,, and VT matrices. The ratio of each singular value
to largest singular value is compared to a threshold which is given by

σi
σmax

= 10−m (2.36)
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Where m is an integer that is chosen by the user. In this study, the threshold is set
to 10−3, and any singular values below that threshold are omitted along with their
corresponding rows and columns from U,Σ and VT. This result in truncated matrices.

The last step in ERA is to obtain the state-space matrices using the truncated U,Σ,
and VT. The discrete-time state-space matrices are calculated by

Â = Σ− 1
2 UTH(1)VΣ

−1
2 (2.37)

B̂ = Σ− 1
2 VT

[
Is 0

]T
(2.38)

Ĉ =
[
Ir 0

]
UTΣ− 1

2 (2.39)

After the discrete-time state-space matrices have been calculated, the modal compo-
nents can be derived from the state matrix Â. The eigenvalue from ith mode is given
by

λi = σi + jωi (2.40)

with the corresponding frequency and damping of oscillation given by.:

fi = ωi
2π ζi = −σi√

σ2
i + ω2

i

(2.41)
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Challenges with NExT-ERA

A successful performance of NExT depends on the capability of the systems input pa-
rameters to excite all the modes. However, the input parameters are unknown. Besides,
the performance relies also on the window length of the measurements observed. The
cross-spectral density functions are estimated by ”windowing” the data and averaging
them in the frequency domain. Thus, having longer records provide more samples to be
averaged, and thus a more accurate estimation. The drawback with NExT is that the
correlation functions need one reference parameter for the entire set of data records.
The reference variable should be a signal located close to where the mode of interest is
observable. In power system, the reference PMU records should have high observability
of the inter-area modes. If not, there are chances of not detecting the mode or obtaining
an answer that deviates from true value is highly increased.

In ERA, the challenges of performing it successful relate to selecting the dimensions
to the Hankel matrices and the truncation of the singular values. Choosing too small
dimensions makes it difficult for ERA to detect all relevant modes, but the dimension
should be large enough such that an increase of dimension does not affect the rank of
the Hankel matrix. [16] recommend the columns to be ten times the expected poles, and
the rows of the matrix to be double that of the columns. There is, however, another
conventional method to select dimensions, according to [4],[16] the Hankel matrix is
built making full use of the decaying signal provided the SNR to be high. However,
this method depends on the quality of the free responses.

Concerning the singular values, the truncation of singular values has an essential impact
on the accuracy of the results. Underestimation leads to modes being omitted from
the results, and overestimation leads to inclusion of noise and non-linearities, which
consequently can estimate non-existent modes and computational modes. However, it
is preferable to overestimate the singular value matrices, since there exist mathematical
tools that can differentiate the true modes from fictitious modes generated by noise. It
is also easy to which modes that are fictitious, as they have either too high damping or
unexpectedly low damping.
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2.6.3 Summary of NExT - ERA

The steps in NExT-ERA can be summarized by the following points:

1. Preprocess the PMU measurements to appropiate signals by filtering, detrending
and downsampling

2. Select reference parameter to make the correlation functions

3. Calculate the correlation functions

4. Select r(rows) and s(columns) forthe the Hankel matrix

5. Build Hankel matrices H(0) and H(1)

6. Perform singular value decomposition on H(0) and truncate the resulting matrices
by a ratio determined by σi

σmax
= 10−m. The rank of the truncated matrices is the

order of the system.

7. Calculate state-space matrices A,B and C

8. Obtain the eigenvalues from A and determine the frequency and damping ratio
of each mode.

2.6.4 Modal estimation with Multivariate Auto-Regressive Model

Multivariate Auto-Regressive Model(MAR) is as the name implies, a method that can
fit multiple time series into Auto-Regressive models(AR) which correlates. The MAR
model is also referred to as Vector Auto-Regressive Model and has the same properties
as a univariate Auto-Regressive model. Both AR model and MAR model obtain present
value from all variables as a linear sum of their past values. The MAR differ from the
univariate in that it can take into account the relation between multiple time-series and
fit it to vectors of AR models. Such process gives more accurate information on the
modal variables related to power systems, as more PMU measurements from different
location yields more observability. It should be noted that univariate AR models can
also treat multiple signals, but the method does not take into account the relation
between the signals, and thus it may not always give the best observability.
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Theoretical Background

According to [18] and [19], a MAR model can be decomposed such that eigenvalues are
obtained. Obtaining the eigenvalues give the user information on the dynamic behavior
of a system. The modal information can be estimated with MAR by decomposition of
its coefficient matrices. Given the following AR model of arbitrary order p

yt = ω + A1yt−1 + A2yt−2 + . . . Apyt−p + εt, (2.42)

where yt is a nx1 random vector, A is a nxn matrix and correspond to the coefficient
matrix. The ω is nx1 vector of intercept terms, while εt correspond to noise and has
the same dimension as the intercept terms vector. The MAR(p) model has the same
properties as an AR(p) model. Investigating the following AR(1) model

yt = ω + A1yt−1 + εt, (2.43)

for a specific period of t elements, it can be shown that

y1 = ω + A1y0 + ε1 (2.44)
y2 = ω + A1y1 + A2 + ε2

= ω + A1(ωA1y0 + ε1) + ε2

= (Ik + A1)ω + A2
1y0 + A1ε1 + ε2

...

yt = (Ik + A1 + · · ·+ At−1
1 )ω + At1y0

t−1∑
i=0

Ai1 + εt−i

This shows that the vectors y1, y2..., yt is determined by its past values and the noise
and coefficient matrices. The unknown parameters ω and coefficient matrices can be
estimated by a least squares function [19],[18],[4] and other functions as well, such as
Yule-Walker least square algorithm [20][4]. The AR (1) can be extended to a MAR
model with arbitrary order p because any AR(p) can be written as MAR(p) model.
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If yt is a MAR of order p like in 2.43, there exist a corresponding MAR(1) with n*p
dimensional model



yt
yt−1

yt−2
...

yt−p+1


=



ω

0
0
...
0


+



A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0
0 I . . . 0 0
0 0 . . . 0 0
0 0 · · · I 0





yt−1

yt−2

yt−3
...

yt−p


+



εt
0
0
...
0


(2.45)

in a more compact form :

yt = ω +
np∑

k=1
Ayk

t−1 + ε
t

(2.46)

Decomposing the coefficient matrices to

A = LΛL−1

A = L


u1 0 0 0
0 u2 0 0
0 0 . . . ...
0 0 · · · uk

L−1 (2.47)

(2.48)

Where Λ =
[
L1L2 . . . Lk

]
is a matrix containing columns of eigenvectors which corre-

sponds to the basis of vector space to the state variables yt. The eigenvalues of the
coefficient matrix can be obtained by:

λk = ln(uk)
τs

(2.49)

λk = αk + ωk (2.50)

Where τs is the sampling time of the time series. The damping ratio of the corresponding
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mode is found by:

ζk = −σ√
α2
k + ω2

k

(2.51)

Model order selection

One of the main challenges with MAR is the model order selection. The accuracy of the
MAR is clearly affected by the order selection [4],[18],[20]. In [18], different algorithms
for model order selection based on several different criteria are presented. In [6], the
least squares using Schwarz Bayesian Criterion (SBC) [1] for model order selection is
used. The author in [6] suggest in [4] the model order for MAR in the range 20 and 24
is suitable for 10 Hz sampling frequency.
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Chapter 3

Validation of Identification Methods
with Synthetic Signal

To validate the methods implemented in MATLAB, they are tested with a synthetic
signal. This chapter shows the results of the estimation by NExT-ERA and MAR for a
synthetic signal with and without noise. When there is only a single signal, the NExT
estimate the impulse response of the system by auto-correlation of a single signal, and
MAR estimate the signal to fit as an AR model.

The signal created for the validation is 3.1 and is presented in figure 3.1.

y(t) = 4cos(2π2.5t)e0.05t + 5.5cos(2π5t+ π

8 )e2.0t + 2cos(2π0.8t)e0.667t (3.1)

Following the Nyquist criteria, the sampling rate is chosen to be 6 times the highest
frequency for MAR, NExT-ERA, which result in a sampling frequency of fs = 30i Hz.
The signal is sampled over 10 seconds and is tested with and without noise. There are
3 poles in the synthetic signal, and thus the model order is chosen to be 6 MAR. For
NExT-ERA, the columns of the Hankel matrices c becomes c = 30 ∗ 6, which makes
the rows r 180. The order of the NExT-ERA is chosen to be the number corresponding
to all the singular values larger that are larger than 0.1 ∗ σmax in ERA, which is 6.
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3.1. Noise Free Signal

Figure 3.1: Synthetic signal without noise

3.1 Noise Free Signal

Table 3.2 shows the resulting estimation of NExT-ERA, MAR and a comparison with
the robust prony algorithm. Table 3.1 shows the corresponding eigenvalues. As it can
be seen from table 3.2, the methods is capable of estimating the modes of interest in the
synthetic signal for a model order of 6. These results are not post-filtered. However,
MAR was not as accurate for the initial model order of 6 and were tried for different
model orders.

Table 3.1: Estimated eigenvalues of the synthetic signal without noise

Eigenvalues [rad/s]
NExT-ERA MAR
-0.2000 +31.4159i -0.2001 +31.4159i
-0.2000 -31.4159i -0.2001 -31.4159i
-0.0500 +15.7080i -0.0503 +15.7083i
-0.0500 -15.7080i -0.0503 -15.7083i
-0.6670 + 5.0265i -0.6170 + 4.9804i
-0.6670 - 5.0265i -0.6170 - 4.9804i
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Chapter 3. Validation of Identification Methods with Synthetic Signal

Table 3.2: Estimated results of the synthetic signal without noise

NExT-ERA MAR
frequency [1/s] Damping ratio Phase [rad] Amplitude frequency [1/s] Damping ratio Phase [rad] Amplitude
5.0001 0.0064 -0.3927 5.5000 5.010 0.00636 -0.3927 5.5008
2.5000 0.0032 -0.0000 4.0000 2.5001 0.0032 0.0015 4.0044
0.8070 0.1315 0.0000 2.0000 0.7987 0.1230 -0.0486 1.9297

Using least squares with Schwarz’s Bayesian Criterion (SBC) for model order estimation
, which are used in [18] and [21], suggest that the model order for the signal should be
37 for MAR. But, it does not have to be that large as, a lower order estimate the signal
perfectly and makes the computation faster. The model order were tested for 8,10,16,20
and 37. The lowest model order with accurate result were 8, which are presented in
table 3.3.

Table 3.3: Estimated result with MAR when the model order is 8

MAR
frequency [1/s] Damping ratio Phase [rad] Amp
5.0001 0.0064 0.3927 5.5000
2.5000 0.0032 0.0000 4.0000
0.0107 1.0000 3.1416 0.0413
0.8070 0.1316 -0.0007 2.0001
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3.2 Signal with Noise

The synthetic signal is added white Gaussian noise with a SNR of 5. Before running
the algorithms, the signal is filtered with a second order high-pass and low-pass filter
with a cut off frequency of 0.5 Hz and 6 Hz respectively. Then a spectral analysis is
conducted to see if the desired frequency components are visible. It can be seen from
figure 3.2 that the filtering is able to make the 0.8 Hz mode visible, which otherwise is
not visible with the added noise.

Figure 3.2: Spectrum of filtered the synthetic signal with noise

Prior to conducting the identification, the model order is to be selected. In ERA, the
order is chosen to be 6. This is based on the computed singular values in figure 3.3that
are larger than 0.1∗σmax, suggested by [22], while for MAR model order is chosen to be
55, approximated by least squares using Schwarz’s Bayesian Criterion (SBC) for model
order estimation.
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Chapter 3. Validation of Identification Methods with Synthetic Signal

Figure 3.3: Singular Values of the noised signal

The sampling rate is the same and the window length is 10 seconds. Conducting the
identification, it can be seen from table 3.4 that ERA and MAR is capable of estimating
frequency and damping components of the noised signal, but struggles to approximate
the damping of the 0.8 Hz. With added noise, MAR generates components which is not
present in the original signal without noise. This is a result of not being able to choose
the right model order best fitted for the signal. An inaccurate model order computes
fictitious components. Thus, the model order were reduced to 20, which gave accurate
estimation with a less computational modes.
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3.2. Signal with Noise

Table 3.4: Estimated result of the synthetic signal with noise

NExT - ERA MAR
Frequency Damping Damping ratio Frequency Damping Damping ratio
4.9971 -0.2011 0.0064 11.8798 -1.3524 0.0181
2.5004 -0.0571 0.0036 10.2628 -2.1088 0.0327
0.8201 -0.6701 0.0833 8.8215 -2.7748 0.0501

7.8514 -1.4216 0.0288
6.4732 -1.1543 0.0284
5.0006 -0.1924 0.0061
2.4993 -0.0636 0.0041
0.8094 -0.7307 0.1437

The same analysis is conducted for a longer window length. The length of the signal
is now increased to 1 minute seconds with a sampling frequency of 30 Hz. And the
window length is increased by 10s for each estimation up to 1 minute. Figure 3.4 and
3.5 show the performance of ERA and MAR as the window is increased. Only the
desired modes is plotted. MAR generated computational noise, while ERA did not.

(a) Frequency estimate by ERA (b) Damping estimate by ERA

Figure 3.4: Mode estimate of lowest damped inter-area modes by ERA.

As it can be seen from figure 3.4, both frequency and damping estimation by ERA is
consistent even though the window length is increased.
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Chapter 3. Validation of Identification Methods with Synthetic Signal

(a) Frequency estimate by MAR (b) Damping estimate by MAR

Figure 3.5: Mode estimate of low damped inter-area modes by MAR

MARs estimation of the frequency resulted very accurately,but the estimation of damp-
ing deviates from the actual value as the window size increases.
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Chapter 4

Linear Analysis of Nordic Test Grid

In this chapter, the performance of the method is examined by comparing inter-area
modes estimated NExT-ERA and MAR with obtained modes from linearized power
system model in PowerFactory.

4.1 Simulation Software - DigSILENT PowerFac-
tory

DigSILENT’s PowerFactory is a power system software with the capability to model
the behavior of a power system, from synchronous machines to transformers and trans-
mission lines, and down to load. It is effectively used to study faults, power flow, state
estimation, stability analysis and more.

In this project, PowerFactory is chosen, to use simulated data of a test network, as
a mean to validate the system identification methods. This is conducted by carrying
out a modal analysis with PowerFactory inbuilt linear analysis function to estimate the
modal response of the inter-area modes with poor damping. These estimations are later
used to validate the system identification modes.

To validate the system identification methods, signals from simulated data in the test
network are used as measurements. To emulate PMU data from PowerFactory, each
load is perturbed with Gaussian white noise for different signal to noise ratio(SNR) to
obtain a model with ambient responses. Then, a selected number of nodes are used
as measurement point based on the nodes observability, and measurement data are
extracted.
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4.2 Nordic 44 Test Model

The Nordic 44 model is a test network developed at NTNU customized for analysis
of power system phenomena that can also be analyzed analytically. The test network
represents the Norwegian, Swedish and Finnish grid. The Norwegian grid consists of 8
areas denoted as NO 1 to NO 8 and is connected to the Swedish grid through two-lines
between Hasle and Ringhals and Jarpend and Hagaasen. While the Norwegian grid is
connected to the Finnish in Varangerbotn in the north. The Swedish grid is divided
into four areas, denoted as SE1 to SE4, and connects to the Finnish grid through
Porjus and Grundforsen. The Finnish grid has two areas. The single line diagram
of the test network is shown in the figure below. The network consists of 44 buses,
hence its name. In the original version, it consists of 45 loads, 23 active generators
and 3 active wind turbines in each area. The Nordic 44 has also included NorNed and
NordLink which is the tie-line connection between North Netherlands and Germany
from Norway respectively, the Nordbalt link between Sweden and Lithuania and the
Estlink connection between Finland and Estland.

Figure 4.1: Line diagram of Nordic 44 test system

The network has gone through many iterations of updates from the original network,
more of the changes can be found in [23]. The latest version of the Nordic 44 for
PowerFactory was tailored for a study on stability analysis of future scenarios of the
Nordic Power Systems by Lester Kalemba, in that version the total load and generation
were half of what current load and generation of the Nordic power system is, and thus

38



4.2. Nordic 44 Test Model

the inter-area modes were non-existent. To excite the inter-area modes and obtain a test
network that reflects the current power system the load and generation were increased
a substantial amount by using data from an equivalent Nordic 44 model from PSSE.
The details of changes and alterations can be found in appendix .1.

A summary of N44 components is shown in table 4.1 and its loading in table 4.2.

Table 4.1: N44 Components summary

No. Of Substations 3 No. Of Busbars 50 No. Of Terminals 36 No. Of Lines 70
No. Of 2-W Trfs 16 No. Of 3-W Trfs 0 No. Of Syn.Machines 44 No. Of Asyn.Machines 0
No. Of Loads 44 No. Of Shunts/Filters 0 No. Of SVS 0

Table 4.2: Load flow Summary

MWA MVA MVAr
Generation 52484,19 11268,69 53680,29
External Infeed 0 0 0
Load P(U) 52235,05 13081 53848,05
Grid Losses 249,14 -1812,31
Line Charging 0 -5828,44

Installed Capacity 1314833,3
Spinning Reserve 15285,76
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4.3 Modal Analysis of Nordic 44

Before perturbing each load with Gaussian white noise, a small signal stability analysis
is conducted in PowerFactory on Nordic 44 to estimate the lowest damping of the inter-
area modes. The small signal stability analysis resulted in 405 modes, whereas the
lowest damping modes of inter-area modes were mode f1 = 0.666 Hz and f2 = 0.927 Hz.
Their modal components are shown in table 4.3. The 0.66 Hz mode is poorly damped,
while 0.927 Hz mode is slightly above the 5% boundary for what is considered poorly
damped [3].

Table 4.3: Result of modal analysis in PowerFactory. The table shows the lowest damped
inter-area modes.

Frequency Eigenvalue[1/s + rad/s] Damping ratio
0,666 -0,1373 + j4,1854 0,0328
0,666 -0,1373 - j4,1854 0,0328
0,927 -0,4389 + j5,8225 0,0752
0,927 -0,4389 - j5,8225 0,0752

The corresponding mode shapes for the modes in 4.3 are shown in figure 4.2. The plots
show the state variable of generator speed and only the 15 first synchronous machines
which are most observable. Both plot legends show the generator speed in descending
order of magnitude in mode shape.

(a) f1 = 0.666 Hz Mode (b) f2 = 0.927 Hz Mode

Figure 4.2: Modeshapes of lowest damped inter-area modes. The plot is of speed state.
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When exposed to 0.666 Hz mode it is clear that the most observable generators are
at Bl̊afalli together with generators in Sima. These generators are the one’s vector
arrows pointing upwards in 4.2a at almost 90 degrees, whereas Bl̊afalli generator 1 is
the one with the most significant magnitude. These generators are swinging against
the generators at Helsinki and the generator at Grundforsen which points in opposite
direction of the generators at Bl̊afalli and Sima. Thus, it can be said the southern and
western part of Norway is swinging against Finland and eastern part of Sweden. These
swings are greatly involved in forming the inter-area oscillation at mode 223.

The 0.927 Hz mode with damped frequency of 0.9267 Hz has the generators at Helsinki
swinging against generators in Sweden, the generators in Oskarshamn, Forsmark, Malmo,
Jarpstrømmen and Ringhals. The generators in Finland are the ones pointing to left
with approximately 180 degrees, and the Swedish generators pointing to the right. The
most observable generator in Sweden is Oskarshamn generator 1, while in Finland is
Helsinki generator 7.

4.4 Analysis of Simulated Data from Nordic 44

To emulate PMU measurements, each load in Nordic 44 is perturbed with SNR of 5, 10
and 25. Each identification method is tested for all signals containing all three SNRs,
to test how robust they are. A SNR of 5 corresponds to the poorest measurement a
PMU have. PMU has typically a higher SNR than 5, ranging between 5 and 30[6].

4.4.1 PMU Placement in Nordic 44

The modes obtained in section 4.3 in table 4.3 are used as comparison for the simulated
data. The most observable components are in South-West Norway, South Sweden and
Helsinki in Finland. Simulated data are extracted from Bl̊afalli, Kristiansand, Trond-
heim, Ringhals, Oskarshamn, Grundforsen and Helsinki. The placement is based on
the observability in the network based on the modal information on the most observ-
able generators, the nodes with the majority connections to other nodes and inter-area
transmission. The measurement taken on these nodes are active power from one of the
generators and voltage angle, whereas Bl̊afalli is used as a reference.
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Chapter 4. Linear Analysis of Nordic Test Grid

Figure 4.3: PMU Placement in Nordic 44. The blue colored nodes correspond to nodes with
PMU

The placements are shown in figure 4.3 and the numbering in red correspond to Bl̊afalli,
Trondheim, Kristiansand, Ringhals, Grundforsen, Oskarshamn and Helsinki in that
order.

4.4.2 Simulated data

The data extracted for testing were simulated for a SNR of 5, 10 and 25. The data
simulated is 20 minutes with a sampling frequency of 10 Hz. The same data is filtered
by a high-pass and low-pass filter with a cut-off frequency at 0.1 Hz and 2 Hz. The
means are removed from the signal before estimation.

Before the estimation, a spectral analysis is conducted to identify the dominant fre-
quency in the signal. It can be seen in 4.4 for the active power measurements that
the f1 = 0.666 Hz and f1 = 0.927 is present in the signal. Also, another frequency
component which is dominant, but not of interest.
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Figure 4.4: Spectral density of simulated active power data

The optimal order of MAR is calculated to be 66 using least squares with Schwarz’s
Bayesian Criterion (SBC). The model order for NExT-ERA is chosen automatically
based on the singular values truncation method. The columns of the Hankel matrices
c is chosen to be c = 30 ∗ 10, which makes the rows r 600. The window length of the
measurements is increased 1 minute, for all measurements taken.
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4.4.3 Ambient analysis

Results for SNR = 5

The initial estimation of active power for a window length of 20 minutes is shown in
table 4.4, and for voltage angle in 4.5. The active power as the signal results in the
0.666 Hz mode being rather accurate for the frequency and damping ratio by both
algorithms. While the 0.927 Hz mode estimation by both algorithms is acceptable for
the frequency but inaccurate for the damping ratio. The frequency estimation of the
0,927 Hz is acceptable since its deviation is approximately 5%.

Table 4.4: Modal estimation with active power as signal

NExT-ERA MAR
Frequency Damping ratio Frequency Damping ratio
0.9409 0.0846 0.9895 0.1255
0.6655 0.0336 0.6579 0.0328

The estimation using voltage angle measurements as a signal resulted in 4.5. The table
indicates that the methods are capable of estimating using voltage angle as a signal.
However, the estimation is somewhat inaccurate. The frequency estimation of the
0.666 Hz mode is rather accurate for both algorithms. The damping ratio deviates for
both MAR and NExT-ERA by 18%. The frequency estimation of the 0.927 Hz mode
by NExT-ERA deviates by 2% and is rather accurate for damping ratio. While the
estimated frequency of MAR has a 4% deviation, and damping ratio has 9% deviation,
which is close.

Table 4.5: Modal estimation with voltage anlge as signal

NExT-ERA MAR
Frequency Damping ratio Frequency Damping ratio
0.9537 0.0720 0.9675 0.0684
0.6641 0.0388 0.6506 0.0269

The modal estimation is conducted for a window length up to 20 minutes, with updates
each minute. Figure 4.6 shows the result with voltage angle as signal and figure 4.5
show the result with active power as the signal. As it can be seen, the estimation is
rather constant for both algorithm apart from MARs damping estimation of 0.667 Hz
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mode. This show that the noise has little effect on the identification if the length is
sufficient enough.

(a) Frequency estimated (b) Damping estimated

Figure 4.5: Modal estimation based on active power measurements for a SNR = 5

(a) Frequency estimated (b) Damping estimated

Figure 4.6: Modal estimation based on voltage angle measurements for a SNR = 5

Results for SNR = 10

For SNR of 10, the noise is less, and thus it is expected a better estimation. Figure 4.7
and 4.8 shows the damping and frequency estimation when the signal has a SNR = 10.
The NExT-ERA estimated satisfactory results of the frequency and the corresponding
damping components when using active power as the input signal. While the MAR has

45



Chapter 4. Linear Analysis of Nordic Test Grid

a good estimation of the 0.6661 Hz mode but struggles to estimate the 0.927 Hz mode
accurately. The deviation is 13% at worst for the frequency and 112% for damping
ratio estimate when the window length is 20 minutes.

(a) Frequency estimated (b) Damping estimated

Figure 4.7: Modal estimation based on active power measurements for a SNR = 10

(a) Frequency estimated (b) Damping estimated

Figure 4.8: Modal estimation based on voltage angle measurements for a SNR = 10

Using voltage angle as the signal, the MAR estimation of frequency component becomes
highly more accurate for 0.927 Hz mode. The 0.6661 Hz mode estimated is also accurate,
but its corresponding damping ratio estimate deviates more than 10%. While the
damping ratio for 0.927 Hz mode deviates with 5% at best and 12,23% at worst. The
same is true for the estimation by NExT-ERA. The frequency estimated is highly
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accurate, but their corresponding estimated damping ratio deviates by 14% and 5% for
the 0.6661 Hz mode and 0.927 Hz mode respectively.

Results for SNR = 25

With a SNR of 25, the estimates of frequencies of interest are rather accurate estimated
for both methods when the active power signal is used as a signal. For the of 0.666 Hz
mode, the damping ratio is rather accurate. Both methods have an estimate of damping
ratio which deviate less than 3% from the actual damping ratio. The damping ratio
estimation 0.927 Hz mode is farther away from the actual damping, the NExT-ERA
estimate a damping ratio of 0.078, while MAR estimates a damping ratio of 0.082.
Which makes a deviation of 3,7% and 9% respectively.

(a) Frequency estimated (b) Damping estimated

Figure 4.9: Modal estimation based on active power measurements for a SNR = 25

The same accuracy on estimation of the frequency is obtained with voltage angle as
measurement, apart from NExT-ERA estimation on 0.927 Hz mode. The NExT-ERA
estimation on 0.927 Hz mode is 0.95 Hz and deviates by 2% which is satisfactory. The
damping ratio estimates is rather accurate for the estimation on 0.666 Hz mode damping
ratio, but deviates for the 0.927 Hz mode. The estimated damping ratio by NExT-ERA
on 0.927 Hz mode is 0.08 which deviates by 6,4%, while MAR best estimation is 0.085
and deviates as the window length extends. At worst, MAR estimates the damping
ratio of 0.927 Hz mode to be 0.09 which is approximately 20% off the 0.0752
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(a) Frequency estimated (b) Damping estimated

Figure 4.10: Modal estimation based on voltage angle measurements for a SNR = 25
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Chapter 5

Linear Analysis of PMU data

In this chapter, an analysis of the modal identification methods presented in this thesis
is going to be conducted based on its performance with real PMU data. The PMU data
and its associated mode are presented, together with the process of pre-processing the
data. Further on a spectral density analysis is conducted to verify the mode of interest
before a thorough analysis is conducted. The analysis is based on the window length,
the model order and the size of the Hankel matrix.

5.1 Analysis of PMU data

In this section, real PMU data are used to test the performance of the methods. The
data is provided by Statnett through Kjetil Uhlen and Dinh Thuc Duong. The extracted
PMU data are measurements of active power on the transmission lines connected to
Varangerbotn in the Nordic power system grid and the power flow between Hasle and
Halden. Varangerbotn lies in northern Norway where it is close to northern Finland
borders. The transmission lines measured are the connection between Varangerbotn,
Adamselv, Ivalo(Finland) and Kirkenes. The connection between Varangerbotn and
Ivalo is a dominant inter-area path and based on experience and studies, where there
has been observed 1 Hz mode with an approximately 5% damping.

Hasle lies in the south-east of Norway and is close to the Swedish border and connects
the Norwegian grid with the Swedish. The Hasle-Halden connection is Norwegian, and
this will be used to identify the inter-area oscillation known to be seen in Halden. In this
area, a 0.5 Hz mode has been observed by Statnett[Uhlen], with damping approximately
10%. The damping varies and can be 2-3% deviation in Varangerbotn and 3-4 %
deviation in Hasle. All these are approximated since the conditions of a power system
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changes all the time, and thus it is difficult to assure which values that are entirely
correct. These modes also listed in table 5.1 is the modes of interest in this chapter.
They which will be used as a benchmark for the performance for MAR and NExT-ERA.

Table 5.1: Modes observed in Varangerbotn and Hasle.

Varangerbotn Hasle
Frequency ∼1.0 Hz ∼0.5 Hz
Damping ratio ∼5% ∼10%

5.1.1 Data pre-processing

Figure 5.1 shows the measurements extracted.The flow of the power is from Kirkenes
to Varangerbotn and Varangerbotn towards Ivalo and Adamselv. While in Hasle, the
power flow from Hasle to Halden. The measurement is taken for 1 hour with a sampling
frequency of 10 Hz.

(a) Measurement in Varangerbotn (b) Measurement in Hasle

Figure 5.1: PMU measurement of active powerflow in Hasle and Varangerbotn

Prior to analyzing the signals, the data is filtered with a Butterworth high-pass and
low-pass filter with fc1 = 0.1 Hz and fc1 = 2 Hz respectively. The high-pass filter is
used to remove unwanted low frequency components, while the low-pass filter is used to
remove high frequency noise. The choice of cut-off frequency corresponds to the range
in which electromechanical modes can be found, such that essential information is not
lost.
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5.1.2 Spectral Analysis of PMU Data

Before the identification is conducted, a spectral analysis is performed to identify the
prominent frequencies in measurement data. This is done to verify that the modes of
interest are there. Figure 5.2 and 5.3 shows the spectral density functions of Varanger-
botn and Halden, respectively. The method used to plot spectral density function is
Welch’s power spectral density function in MATLAB.

Figure 5.2: Spectral density function of active power in Varangerbotn

From figure 5.2, all measurements from each connection spectral density is plotted. The
Varangerbotn - Ivalo spectral estimate lies upon the Varangerbotn - Adamselv estimate.
The dashed line is a reference to the observed mode in Varangerbotn from table 5.1. As
shown in the figure, the mode of interest is one of two primary component. The other
primary component is 0.14 Hz. Observe also that the 0.1 Hz frequency component is
not significant in Varangerbotn - Kirkenes spectral estimate, and thus it may not be as
easy to detect in that connection compared to the other two.

Figure 5.3: Spectral density function of active power in Hasle
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In Hasle there also two prominent components. From figure 5.3 there is a 0.5 Hz
component which is the mode of interest. In addition, the 0.14 Hz component and 1
Hz component can also be observed.

By conducting a spectral analysis on the measurements on, the modes of interest is
verified to be among the PMU data extracted.

5.1.3 Modal analysis of PMU data

In this section, the performance of NExT-ERA and MAR based on Hankel matrix size,
model order selection and window length are presented. The analysis is presented in
two-part. First, the MAR is being tested for different model order and window length.
Then NExT-ERA performance is presented for different Hankel matrix size and window
length. The estimation by both algorithms is performed on the data obtained from
Hasle and Varangerbotn separately and also in conjunction. This is to evaluate if the
dominant modes in one place can be seen in another.

First, the modal identification is conducted in Varangerbotn, then in Hasle, and last
when the measurements are in conjunction. The model order was chosen to be 20 based
on [6] and the findings in specialization project. The size of Hankel matrix in ERA is
chosen to be 120x240. This is based on that there are 3 dominant modes in the spectral
density analysis, and accordingly, to [24],[5],[22], which states the columns should be
20 times the frequencies and rows double of columns. The size was doubled as the
initial results did not estimate the desired frequency. The reference for NExT is chosen
to be Varangerbotn - Ivalo measurements since the mode of interest has the highest
observability there. The window size was chosen to b 60 minutes with a sampling
frequency of 10 Hz. The time elapsed time were 0.646290 seconds for both algorithms
running simultaneously.

Estimated mode with measurements from Varangerbotn

Table 5.2 show the resulting modes estimated by both algorithms from measurements
in Varangerbotn. The NExT-ERA is capable of estimating the dominant frequencies
observed in the spectral analysis and their corresponding damping ratio. The first mode
estimated by NExT-ERA coincide well with the 1.0 Hz mode that is known to oscillate
in Varangerbotn. This deems the estimation as a success and capable. However, the
estimation is not capable of locating 0.5 Hz mode that is known to oscillate in Hasle.
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The size of the Hankel matrix was expanded to evaluate if the dynamics were not
included, but only computational modes were generated.

Table 5.2: Estimated modes with measurements from Varangerbotn.

NExT-ERA MAR
No Frequency[Hz] Damping ratio [%] Frequency[Hz] Damping ratio [%]
1 0.9942 5.5686 1.8251 1.4938
2 0.1025 11.5226 1.8359 1.5553
3 1.7155 2.2287
4 1.2183 6.1550
5 0.9951 3.4823
6 1.0535 9.9183
7 0.4909 40.0022
8 0.2924 36.0018

Similar to NExT-ERA, the estimation by MAR was not able to identify the 0.5 Hz mode
seen in Hasle. The corresponding damping ratio of the estimated 0.5 Hz mode in table
5.2 is too high and thus not representative. This mode is deemed as computational
mode, along with mode 8 in table 5.2. The other modes estimated are not known if
they are fictitious or real. However, the modes that coincide with 1.0 Hz mode known
to be in Varangerbotn is mode 4 and 5, which is a close approximation. However, which
of them is the computational mode or not is difficult to tell.

Estimated modes with measurements from Hasle

The same estimation is conducted with measurements in Hasle, and their result is
shown in table 5.3. Similar to estimation by data in Varangerbotn, the NExT-ERA
is not capable of estimating the 1.0 Hz mode in Varangerbotn using measurements in
Hasle. The first mode in table 5.3 coincide with expected estimation of 0.5 Hz mode.
If this is, the mode representing the 0.5 Hz is difficult to say, since the second mode
is also within the frame of expectation. Comparing the second mode estimated by
NExT-ERA and the fourth mode estimated by MAR. It can be concluded that second
mode estimated by NExT-ERA and the no fourth mode by MAR is the corresponding
estimate of the expected 0.5 Hz mode.
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Table 5.3: Estimated modes with measurements from Hasle

NExT-ERA MAR
No Frequency[Hz] Damping ratio [%] Frequency[Hz] Damping ratio [%]
1 0.5108 12.9317 1.9616 0.8298
2 0.4418 6.1686 1.5902 1.7001
3 0.1136 16.1564 1.1951 4.9782
4 0.2443 15.4069 0.5736 7.1516
5 0.2307 25.6863

The 0.1 Hz mode which is dominant in the signal is also estimated by NExT-ERA, but
the damping ratio is however increased which is not coherent with the measurements in
Varangerbotn. The fourth mode by NExT-ERA is not of interest as it is well damped
and have not any impact on the system. The first, second and fifth mode estimated by
MAR are computational modes. The third mode estimated by MAR is coherent with
the 1.0 Hz mode known to be in Varangerbotn and may be the same mode.

Estimated modes with measurements from Hasle and Varangerbotn in con-
juction

Using data from Varangerbotn and Hasle yield the modes in table 5.4. The estimation
of the known 1.0 Hz and 0.5 HZ by both methods is coherent with the findings with
estimation using the PMU data separately.

Table 5.4: Estimated modes with measurements from Hasle and Varangerbotn together

NExT-ERA MAR
No Frequency[Hz] Damping ratio [%] Frequency[Hz] Damping ratio [%]
1 0.9727 6.1192 1.1995 5.0170
2 0.4040 8.9397 1.1448 5.2804
3 0.7152 17.2621
4 0.5728 7.2153

Estimation with different order by MAR

The estimation conducted for different orders with MAR is performed with a fixed
window length of 20 minutes. The order is increased by one up to 60. The modes of no
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interest are post-filtered out. The resulting estimation for each model order on data of
Varangerbotn is shown in figure 5.4. The estimated frequency component is consistent
with the increasing model order and the reference mode of 1 Hz. The estimation of
damping ratio is however inconsistent with the change of model order. The expected
value is 5%, and estimated damping ratios vary around the expected damping ratio
which indicates that MAR is functional, but is prone to give biased information if the
model order does not fit.

(a) Frequency estimate (b) Damping estimate

Figure 5.4: Modal estimation in Varangerbotn for different model orders

(a) Frequency estimate (b) Damping estimate

Figure 5.5: Modal estimation in Haslefor different model orders

Similar observations are made of estimation conducted with data from Hasle. In figure
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5.5 it can be seen that the most significant variance is when the model order is low for
both frequency and damping estimation. As the model order increases the variations
are less and coincide more with the expected mode in Hasle, which is 5% and a damping
ratio between 6 10%.

The model order which coincides best with the expected modes is between 20 and 25
which also corresponds with suggested model order [6].

Estimating the modes for different model order with the measurement in Varangerbotn
in conjunction with the measurements in Hasle yielded the result in figure 5.6. The
orange curve corresponds to the estimation of 0.5 Hz observed in Hasle, and the blue
curve corresponds to 1.0 Hz mode in Varangerbotn. The results are coherent with the
findings above when the estimation is performed using measurements separately.

(a) Frequency estimate (b) Damping estimate

Figure 5.6: Modal estimation in Varangerbotn for different model orders

Estimation with increasing window by MAR

The estimation with a window increasing is conducted with the model order of 20.
The total window size is 60 minutes. Estimations are conducted each minute up to 60
minutes, with the initial window size being 1 minute.

The resulting estimation with measurements from Varangerbotn is shown in figure
5.7 together with estimation with measurements from Hasle. The estimation is done
separately. The estimation of the 1.0 Hz mode in Varangerbotn is rather accurate. In
the frequency and damping estimate it can be seen that before a window size of 10,
the estimation is not consistent with damping estimate. As the window size increase
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beyond 10 minutes, the estimation becomes more consistent and coincide well with the
expected result and earlier findings in table 5.2 and 5.4. Similar results are obtained
with measurements from Hasle.

(a) Frequency estimate (b) Damping estimate

Figure 5.7: Modal estimation with increasing window size. The estimation shown is done
with data individually from each area

The same estimation conducted with measurements in Varangerbotn and Hasle together
yielded almost identical results as when the estimation is done separately. Figure 5.8
show the result. The damping ratio estimated in Varangerbotn is more consistent than
the one in figure 5.7.

(a) Frequency estimate (b) Damping estimate

Figure 5.8: Modal estimation with increasing window size from measurements in Varanger-
botn in conjunction with measurements in Hasle
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Estimation for different Hankel matrix size with NExT-ERA

Table 5.5, 5.6 and 5.7 show the modal estimation by NExT-ERA for different Hankel
matrix size. The same approach of estimating using only measurements from the indi-
vidual area and subsequently estimating with measurements from both area together
is used.

The numbers of rows and columns in the Eigensystem Realization Algorithm are one
of the main parts of the algorithm. As the size expands, more elements from the
cross-correlation functions are included, and thus more dynamic properties are taken
into account. However, oversizing the Hankel matrix may include noise and which
subsequently may generate dynamically. The selection of the size becomes iterative if
the dynamic properties are not known. In this section, the estimation with NExT-ERA
is tested with the size of the matrix ranging from 200x100 to 800x400. The first column
show, the input parameter which is multiplied by 10 (expected poles)[5],[16]. The third
row shows the elapsed time.

Table 5.5: Estimated modes with measurements from Hasle using NExT-ERA

Varangerbotn
n Size [rxp] Computation Time [s] Frequency [Hz] Damping ratio [%]
10 200x100 0.151620 0.9826 5.92
20 400x200 0.656044 0.9815 5.57
30 600x300 1.669735 0.9800 5.08
40 800x400 2.829884 0.9769 4.28

The estimation with data from Varangerbotn shown in table 5.5 show that the algorithm
is capable of estimating the 1.0 Hz mode known to be in Varangerbotn. Comparing
the results with findings in table 5.2 when n is 6, it can be seen that the estimation is
consistent and coherent. As the size increases, the computation time increases.
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Table 5.6: Estimated modes with measurements from Varangerbotn using NExT-ERA

Hasle
n Size [rxp] Computation Time [s] Frequency [Hz] Damping ratio [%]
10 200x100 0.34 0.5229 11,74
20 400x200 0.496707 0.4932 13.5035
30 600x400 1.259946 0.4867 9.11
40 800x400 2.338633 0.4496 12.16

Similar to findings in Varangerbotn, the findings with data from Hasle in table 5.6
shows that the estimation is consistent with the first mode found in table 5.3, except
for the third mode found. This may be due to as the size of the Hankel matrix increases,
more elements from the measurements are included, and thus as mentioned in [16], the
calculation can become less accurate.

Table 5.7: Estimated modes with measurements from Varangerbotn and Hasle together
using NExT-ERA

Varangerbotn + Hasle
n Size [rxp] Computation Time [s] Frequency [Hz] Damping ratio [%]

0.9711 5.5710 200x100 0.196462 0.3902 7.44
0.9700 5.1520 400x200 0.708910 0.3965 3.57
0.9706 4.463630 600x300 1.690378 0.4982 1.1575
0.9630 3.470140 800x400 3.245818 0.4008 1.4026

Table 5.7 show results estimated by the ERA when the measurements are put to-
gether.The first estimation when the size is 200x100 is coherent with the findings table
5.4. As the size increases, the results for damping ratio become biased. The damping
ratio becomes less and less accurate compared to the result in table 5.4. This can be
due to that more elements from the measurements are included in the estimation and
thus more dynamic properties
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Summary

6.1 Discussion
The main objective of this thesis is to test the performance of stability indicators based
on phasor measurements. Before the method was applied to real PMU measurement, a
synthetic signal and simulated data emulating PNU measurements were used to demon-
strate the functionality of the algorithm. The results obtained in chapter 3 and 4 prove
that the implemented algorithms are functional and capable of estimating the modal
component in signal and multiple signals with and without noise. In chapter 5, estima-
tion on real PMU data is presented and proves it is applicable for real-time data. The
method shows accurate estimation on the frequency component in all demonstrations,
but its estimation on damping ratio varies.

Despite the accuracy of the frequencies estimated by both algorithms, In real-time
analysis, and in many cases, the damping ratio estimate is the variable which interests
the operators most. However, that is the variable that is often difficult to estimate, since
the actual damping ratios of power systems are unknown. As the dynamic changes in
the power system, so do the damping ratios. In addition, during ambient operation, the
damping ratio may vary significantly as a function of time and the non-linearity. The
following sections discuss some of the aspects and findings that influence the estimations

6.1.1 Model order

Specifying the right model order in system identification is one of the essential steps
in the estimation. If the model order is to low, some of the dynamic properties may
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be excluded in the estimation. This is true for both NExT-ERA and MAR method.
Overestimating the model order may generate computational modes by the algorithms.
Selecting model order is a difficult task, and there is no exact procedure for it. In this
thesis, both MAR and NExT-ERA is tested for different model order.

This thesis starts off by choosing the model order iteratively. The least square method
for model order selection for MAR using Schwarz’s Bayesian Criterion (SBC) suggested
by [18] is used. The initial result by selecting a model order for MAR based on the
amount of frequency component yielded an accurate estimate with small insignificant
deviation. A more accurate estimation was obtained by increasing the model order
slightly. However, this followed a computational mode. And had no significance at
that stage. Further on using the suggested model order based on the aforementioned
method yielded too high model order, and thus many more fictitious modes. To reduce
the number of fictitious modes generated, a model order of 20 were used as a basis.
The same approach was used in chapter 4 and gave rather accurate results with less
computational modes. In chapter 5, the performance of MAR is tested for different
model orders. The presented result using real PMU measurement prove that a model
order of 20 and higher give a consistent estimation, and also concludes what other
studies have shown.

However, this approach is not efficient, and in an online operation, there is no time
to test for different model orders. There exist automated algorithms for model order
selection which should be investigated and tried out extensively. The least squares
method using Schwarz’s Bayesian Criterion (SBC), is such a method and should be
further investigated along with Aikake’s Finer prediction Error[18].

Similar to MAR, the NExT-ERA modal identification is dependent on choosing the
right model order. In NExT-ERA, notably the ERA algorithm, the dimension of the
Hankel matrix has to be chosen as well as the model order. The size of the Hankel matrix
determines the number of elements from the measurements(cross-correlation functions)
that are included further in the estimation. Building a low-rank Hankel matrix may
result in missing dynamic information. On the other hand, overestimating the Hankel
matrix could lead to computation inaccuracy[16]. This can be seen in chapter 5 where
estimation is conducted for different Hankel matrix size. The damping ratio becomes
less accurate for estimated damping ratio as the size increases. In addition, the com-
putational time increases which make the method non-applicable for real-time online
estimation. The suggested method of choosing the Hankel matrix dimension based on
the number of modes in the signal proved accurate, but in real-time such knowledge
will not be evident for a system operator. This area should be researched in the same
manner as MAR, a method to automatically select the size of the Hankel matrix.
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What is great about the NExT-ERA algorithm is two things, the cross-correlation
functions and the truncation based on the singular value. The truncation of the sin-
gular values matrices based on the number of singular values that are larger 0.1 ∗ σmax
produced for the most part estimation without computational modes. The truncation
number also corresponds to the model order and makes it less difficult to analyze the
result. However, it should be noted that if the Hankel matrix is forced to be low-rank,
the model order (truncation number) may need to be slightly higher to include other
dynamic.

6.1.2 Window length and effect of noise

As mentioned in the section above, one of the pros about NExT-ERA is the cross-
correlation functions. The cross-correlation functions between two measurements can-
cel out the noise. This is evident also in the few computational modes estimated by
NExT-ERA. It should also be pointed out that the NExT algorithm in the NExT-ERA
method, is dependent on having a reference signal for calculation of the cross-correlation
functions. The reference signal in this thesis was chosen based on the spectral density
analysis conducted in chapter 5, and the most observable generator in chapter 4. It
should be further investigated how choosing other reference signal affect the estimation
since it is an important point step in estimation.

In this thesis it is found out that the window length for estimation with NExT-ERA
is dependent on the Hankel size as explained in the section above, thus increasing the
window length has no significance if the Hanke matrix is low-ranked. This is evident
in the constant estimation conducted in chapter 3,4 and 5.

However, the analysis window length plays a particular part in estimation with MAR.
As seen both in chapter 3 and 4 and 5, the estimation of the frequency component is
rather accurate compared to the damping ratio. The estimation of noised simulated
data and synthetic signal proved to give an inaccurate estimate of the damping ratio
by MAR as the window length were increased. This contradicts with findings in other
literature [6],[18] which have done similar studies. The suspicion lies in the added
noise with an SNR of 5. Perhaps, the filter used was not good enough. However, the
same conclusions are taken in chapter 4 when simulated data is used to imitate PMU
measurement. In chapter 5 it is shown that as the window size increases the estimation
by MAR becomes more consistent, which is coherent with expected results and other
similar studies.
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6.1.3 Wide Area Estimation

The applicability for wide area estimation is demonstrated with simulated data and
real PMU data. The result presented in chapter 4 and 5 show clear indication that
NExT-ERA and MAR are applicable for wide area estimation. In chapter 5, the modal
identification is performed iteratively by estimating with measurements from each area
individually first, then together. This is conducted to confirm the mode expected to
be in each area corresponding to the estimated through modal identification. The
problem that presents itself is to know which mode corresponds to which area, for that
individual mode. Another problem discussed along the way is to know which mode is
real and which is fictitious. In NExT-ERA, it is possible to compute the mode shapes
corresponding to an individual mode estimated, however, this is an uninvestigated
territory and should be examined how it can be applied to power system-

6.2 Conclusion

This thesis presented two methods of stability indicators that can be used with multiple
phasor measurements. The Natural Excitation Technique is used in conjunction with
Eigensystem Realization Algorithm. The NExT utilize the cross-correlation between
measurements to determine impulse responses of the power system, which can be used in
ERA to estimate the state-space model of the power system. Similar, the Multivariate
Auto-Regressive model fits the measurement data to multiple AR models which are a
linear combination of each other. With multiple signals, the observability of the power
system enhances and makes it possible to monitor more of the system dynamics.

The performance of NExT-ERA and MAR was evaluated in three stages. First, a syn-
thetic signal was used to validate the algorithms. Secondly, a test network was used
to test the performance with multiple signals by comparing inter-area modes estimated
with NExT-ERA and MAR with modes from the linearized test network in Power-
Factory. The focus of this chapter was how estimation varied for different size of the
window length. Last, real PMU data from the Nordic grid were used to evaluate the
performance of the method for different window length and model order.

The results in all three stages indicate that NExT-ERA and MAR are functional and
capable of estimating inter-area modes. Both algorithms show that they can estimate
for small window length, which is essential for real-time operation. In addition, it was
seen that noise had little effect on NExT-ERA, but the MAR had problems when the
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window length becomes very large for the simulated data. However, this was not the
instance for real PMU data. The estimated results were consistent for long and small
window size.

It was also shown that very high Hankel matrix size(model order) for NExT-ERA give
an inaccurate estimation. However large Hankel matrix dimension is not desired as
the computation time increases to several seconds. Low-rank Hankel matrix proved
accurate and sufficient. For MAR, the model order was proved to be consistent when
it became 20 or higher. This suggests that a model order of 20 must be used for MAR
on real PMU data.

In conclusion, both algorithms presented can detect the modal frequency and the cor-
responding damping ratio from real PMU measurements, with short and long record
length. The result presented in this thesis indicates that NExT-ERA and MAR can
be utilized to study the electromechanical modes in power system off-line, and that is
possible to implement them for online estimation as well.

6.3 Future Work

The steps for a successful identification follows selecting a data records and their length,
pre-processing the data record such that only inter-area modes are visible and the
amount of noise is limited, then choosing the model order before estimating. To im-
plement the identification, these steps need to be automated. So far, the only step
which proves to be an issue for online estimation is the model order selection. An auto-
matic method to select the model order and in particular for ERA, the Hankel matrix
dimension need to be further investigated, to give it online applicability. Another is-
sue, in using multiple signals is that estimated modes do not indicate which area they
correspond to. A suggestion could be using multiple signals from a small number of
nodes located far from each other, and simultaneously use multiple signals from local
measurements connected to the same node and investigate which mode from wide area
estimation correspond to local estimated modes. To perform this routine, it is worth
mentioning that NExT-ERA is capable of utilizing unsynchronized measurements for
estimation. The Natural Excitation Technique introduce a time synchronization error,
which is introduced in the correlation functions. More of this can be found in [5].
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.1. Modification in Nordic 44

.1 Modification in Nordic 44

Figure 1 display the initial state 0f Nordic 44 model

Figure 1: Summary of N44’s initial state before it was modified

Figure 2 shows summary of Nordic 44 model state after it was modified.
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Figure 2: Summary of N44’s post state after its modification

The table below shows the altered elements and the corresponding values that it was
changed to.
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Table 1: Modification in loads

Original Model Updated Model
Terminal Out of Service Active Power[MW] React.Power[MVAr] App.Power [MVA] Out of service Active Power[MW] React.Power[MVAr] App.Power [MVA]

NORDLINK 0 -1190 0 1190 Changed to –> 1 - - -
NSN 0 -1400 0 1400 Changed to –> 1 - - -
OSLO2 0 922,019 200 943,4612 Changed to –> 0 2203,42 200 2212,47818
OSLO2 0 922,019 200 943,4612 Changed to –> 0 2203,42 200 2212,47818
OSLO1 0 667,235 100 674,687 Changed to –> 0 1149,77 100 1154,110503
KRISTIAN 0 391,638 125 411,1026 Changed to –> 0 674,86 125 686,3388519
KRISTIAN 0 391,638 125 411,1026 Changed to –> 0 674,86 125 686,3388519
NORDNED 0 -595 175 620,2016 Changed to –> 0 414 175 449,4674627
SKAGERAK 0 -1445 363 1489,897 Changed to –> 0 1412 363 1457,913921
BLAFALLI 0 696,245 400 802,9677 Changed to –> 0 1199,76 400 1264,683382
BLAFALLI 0 696,245 400 802,9677 Changed to –> 0 1199,76 400 1264,683382
SIMA 0 1253 -70 1254,954 Changed to –> 0 2651 -70 2651,924019
TRETTEN 0 482,962 70 488,0085 Changed to –> 0 1154,17 70 1156,290789
TRONDHEI 0 687,667 333 764,0516 Changed to –> 0 1013 333 1066,329217
TRONDHEI 0 687,667 333 764,0516 Changed to –> 0 1013 333 1066,329217
TRONDHEI 0 687,667 333 764,0516 Changed to –> 0 1013 333 1066,329217
TRONDHEI 1 -368 0 368 Changed to –> 1 0
ROSSAGA 0 1280 150 1288,759 Changed to –> 0 2489 150 2493,515791
GRUNDFOR 0 1365,088 648,616 1511,346 Changed to –> 0 2265 650 2356,422076
PORJUS 0 448,044 648,616 788,3186 Changed to –> 0 621 650 898,966629
HJALTA 0 448,044 109,766 461,2939 Changed to –> 0 621 110 630,6671071
DANNEBO 0 504,923 614,689 795,4809 Changed to –> 0 1219 616 1365,802694
FORSMARK 0 717,973 565,793 914,1154 Changed to –> 0 1420,66 567 1529,628659
FORSMARK 0 717,973 565,793 914,1154 Changed to –> 0 1420,66 567 1529,628659
FORSMARK 0 717,973 565,793 914,1154 Changed to –> 0 1420,66 567 1529,628659
FORSMARK 1 -2500 0 2500 Changed to –> 1 0
OSKARSHA 0 615,23 399,149 733,3675 Changed to –> 0 1217,36 400 1281,391966
OSKARSHA 0 615,23 399,149 733,3675 Changed to –> 0 1217,36 400 1281,391966
RINGHALS 0 738,276 598,723 950,537 Changed to –> 0 1460,83 600 1579,248014
RINGHALS 0 738,276 598,723 950,537 Changed to –> 0 1460,83 600 1579,248014
RINGHALS 0 738,276 598,723 950,537 Changed to –> 0 1460,83 600 1579,248014
RINGHALS 0 738,276 598,723 950,537 Changed to –> 0 1460,83 600 1579,248014
STENKU H 0 -1,996 261,442 261,4496 Changed to –> 0 -330 262 421,3597038
ARRIE HV 0 150 10 150,333 Changed to –> 0 446 10 446,1120935
KARLSH H 0 -1 0 1 Changed to –> 0 628 0 628
LT HVDC 0 85 0 85 Changed to –> 0 0
MALMO 0 560,804 432,078 707,9495 Changed to –> 0 1240 433 1313,426435
MALMO 0 560,804 432,078 707,9495 Changed to –> 0 1240 433 1313,426435
MALMO 0 560,804 432,078 707,9495 Changed to –> 0 1240 433 1313,426435
OULU 0 859,446 209,739 884,6682 Changed to –> 0 1431,68 200 1445,582105
OULU 0 859,446 209,739 884,6682 Changed to –> 0 1431,68 200 1445,582105
OULU 1 -1728,478 0 1728,478 Changed to –> 1 0
ESTLINK 0 209,739 -4,195 209,7809 Changed to –> 0 -1219 600 1358,661474
HELSINKI 0 956,602 73,409 959,4146 Changed to –> 0 1593,53 70 1595,066726
HELSINKI 0 956,602 73,409 959,4146 Changed to –> 0 1593,53 70 1595,066726
HELSINKI 0 956,602 73,409 959,4146 Changed to –> 0 1593,53 70 1595,066726
HELSINKI 0 956,602 73,409 959,4146 Changed to –> 0 1593,53 70 1595,066726
HELSINKI 0 956,602 73,409 959,4146 Changed to –> 0 1593,53 70 1595,066726
VYBORG H 0 -530,639 629,216 823,0981 Changed to –> 0 343 -4 343,0233228
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