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A B S T R A C T

Several Direct Numerical Simulations (DNS) of a fully developed turbulent channel
flow are performed. The aim of this thesis is to analyze how grid resolutions and
domain sizes affect the turbulence statistics. The simulations have been divided
into four cases with a variable number of simulations within each case: Coarse-grid,
Short-domain, Narrow-domain and Large-domain. The simulations, in each case,
are compared to both each other and to the results obtained by Kim et al.[1]. The
latter is used as a reference and is considered very accurate. The friction Reynolds
number of the flow, which is based on the channel height, is 360.

The Coarse-grid case consists of three simulations with grid resolutions of 24x24x96,
48x24x96 and 48x48x192, in x, y and z respectively. The domain size is kept constant
at lx = 1.5, ly = 0.75 and lz = 1, where lx , ly and lz is the channel length, width and
height, respectively. The results obtained in this case indicates that the grid resolu-
tion of 24x24x96 is too coarse and that the domain size is too small. The results are
therefore unreliable. For the Short-domain case the channel length is doubled twice
to lx = 3 and lx = 6 and the grid resolution in the streamwise direction is increased
accordingly to keep the resolution constant. Domain size effect is the expected out-
come for this case. The results show expected data for the large scale motion com-
pared to Kim et al.[1]. The small scale motion show a grid effect between the simula-
tions of length lx = 1.5 and lx = 3. Between the channels of length lx = 3 and lx = 6
the discrepancy is less. The two longest channels show satisfying results, even though
the two-point correlation deviates from zero. In the Narrow-domain case the chan-
nel width is doubled two times, while keeping the length constant. The results are
satisfying for the large scale motion. The small scale motion shows smaller discrep-
ancies compared to each other and bigger discrepancies compared to Kim et al.[1]
than for the Short-domain case. This suggests that there is a small or non-existent
grid effect. The two-point correlation shows that only the widest channel is adequate.
The Large-domain case consists of a simulation with grid resolution of 192x192x192
and domain size lx = 6 and ly = 3. The turbulence statistics correspond well with Kim
et al.[1] and the two-point correlation shows that the domain size is adequate in both
directions. The discrepancies are small compared to the Short-domain case, which
indicates that the simulations in Short-domain case yields satisfying results. This
suggests that increasing the channel length will yield better results and have greater
impact than increasing the channel width.
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S A M M E N D R A G

Formålet med oppgaven er å gjennomføre en serie med Direkte Numeriske Simu-
leringer (DNS) av en fullt utviklet turbulent kanalstrømning for å analysere hvordan
ulike gridoppløsninger og domenestørrelser påvirker turbulensen. Simuleringene
har blitt delt opp i ulike tilfeller, med flere simuleringer per tilfelle: Grovt-grid, Kort-
domene, Smalt-domene og Stort-domene. Simuleringene i hvert tilfelle sammen-
liknes både med hverandre og med arbeidet gjort av Kim et al.[1]. Sistnevnte er
brukt som referanse og er ansett for å være nøyaktig. Strømningen har et friksjons-
Reynoldstall på 360, som er basert på kanalhøyden. Grovt-grid består av tre simu-
leringer med gridoppløsning på 24x24x96, 48x24x96 og 48x48x192 i x, y og z. Domen-
estørrelsen er konstant lik lx = 1.5, ly = 0.75 og lz = 1 gjennom simuleringene. For-
målet er å se effekten av økende gridoppløsning. Resultatene indikerer at den groveste
gridoppløsingen er for grov og domenestørrelsen for liten, og fører til upålitelige data.
Kort-domenetilfellet består av to simuleringer hvor kanallengden er doblet to ganger.
Oppløsningen er den samme, det vil si at gridoppløsningen i strømretningen også
dobles to ganger. Det gjør at det i utgangspunktet kun skal være en domeneeffekt.
Dette gjelder også for Smalt-domenetilfellet. Resultatene viser en liten, men grad-
vis forbedring for storskalaturbulensen. For småskalaturbulensen er det merkbare
forskjeller spesielt mellom simuleringene med lengde lx = 1.5 og lx = 3, men min-
dre forskjeller mellom lx = 3 og lx = 6. Det tyder på at en grideffekt har oppstått
mellom de to førstnevnte simuleringene og en mindre grideffekt for de to sistnevnte.
Ellers ser resultatene ut til å korrespondere bra med Kim et al.[1]. Resultatene virker
å være tilfredsstillende, selv om to-punktskorrelasjonen viser et avvik for begge simu-
leringene. Det neste tilfellet, Smalt-domene, dobler bredden på kanalen to ganger.
Resultatet for storskalaturbulensen viser liten endring mellom simuleringene, men
har merkbar forskjell fra Kim et al.[1]. For småskalaturbulensen er det heller ikke stor
endring mellom simuleringene og tyder på at det er liten eller ikke-eksisterende grid-
effekt. Resultatene er dårligere enn for Kort-domenetilfellet. To-punktskorrelasjonen
viser at kanalbredden er tilstrekkelig for det bredeste tilfellet. Stort-domene består av
en simulering med domenestørrelse lx = 6 og ly = 3 og gridoppløsning på 192x192x192.
Domenestørrelsen er veldig nært det som er brukt i Kim et al.[1]. Både storskala- og
småskala turbulens viser resultater tilsvarende det lengste domenet i Kort-domene-
tilfellet. To-punktskorrelasjonen indikerer at domenestørrelsen er tilstrekkelig. Dette
gir en indikasjon på at økning i bredden har mindre betydning enn økning i lengden.
Det betyr at simuleringene i Kort-domene gir tilfredsstillende resultater.
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1

I N T R O D U C T I O N

1.1 BACKGROUND IN TURBULENT FLOWS

As is clear from the problem formulation given earlier, this thesis will address differ-
ent aspects of Direct Numerical Simulations (DNS) of turbulent flows, and analyze
the effect of domain and grid changes. The overall aim is to be familiar with the work-
ings of DNS. Before going into the theory and simulations, this section will give a brief
introduction to the characteristics of turbulent flows, for completeness. If you are fa-
miliar with turbulent flows, and their characteristics, feel free to skip this section.

Almost every flow we encounter in real life are turbulent, for example waterfall and
water in a river. To be able to make good and efficient turbulent applications it is vital
to have a good knowledge about turbulent flows. Due to the nature of turbulent flows
it is difficult to give a precise definition of them, but they need to have certain char-
acteristics that apply to all of them. If one or more of the characteristics is not met,
the particular flow is simply not turbulent. People often think about turbulent flows
as just chaotic conditions, but a flow with a chaotic characteristic is not necessarily
turbulent.

One of the easiest characteristics to observe is irregularity. This means that the tur-
bulent flow structures are random and not repeatable. It is therefore difficult to use
a deterministic approach and instead a statistical approach is used. This will be ex-
plained in more detail later on. Another characteristic is diffusivity. This means that
flows transport and mix, and thus spread mass, momentum and heat. Turbulent
flows are rotational, three dimensional and time dependent. This is easily observed
by looking at the vorticity that are created. Turbulent flows have high Reynolds num-
ber, which means that they have high inertia compared to viscosity. This feature
means that the flow has less friction to keep it in order. Turbulent flows also have a
dissipative characteristic. That means that the high kinetic energy they initially have
are dissipated to heat due to viscous stress. To keep the flow going, it needs to get a
continued supply of energy. The turbulent characteristics are valid to every fluid, and
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2 I N T R O D U C T I O N

thus, turbulence is not a characteristic of the fluid, but rather of the flow.

One of the challenges with turbulent flows is that it is very difficult, if at all possible,
to use a deterministic approach to calculate quantities of interest. The most suitable
approach is to use a statistical approach. In other words there are no trivial analytic
ways to solve turbulent flows, so they have to be solved numerically. To get reason-
ably good results, this approach demands a lot of computer power. Fortunately the
computer power continues to increase these days and the effect of that is that it is
feasible to solve them numerically. DNS is one of the computational approaches for
turbulent flows and resolve all scales of motion. It is one of the easiest methods con-
ceptually, but one of the most resource demanding methods as well. Because of that
it is mostly used in research. More detailed information will be found in the next few
chapters.



Part I

R E S E A R C H M E T H O D O L O G Y





2

T H E O RY

This chapter will present the most important theory about turbulent flows. Some im-
portant equations will be derived from the basic equations of motion, and then ex-
plained extensively. This is done to make it easier to follow and to understand the
results produced from the DNS simulations. As explained in the preface, this thesis is
a continuation from the project work during the fall of 2017, so most of the theory still
apply, and are taken directly from the project work [3]. This is an unpublished project
work which can be found at the Department of Energy and Process Engineering at
NTNU.

2.1 EQUATIONS OF MOTION

The fundamental governing equations are exactly that, fundamental, and describes
the conservation of mass, momentum and energy, and are derived from the princi-
ples of physics. They are called continuity, momentum and energy equation, respec-
tively. They are very important tools for the ability to analyze and simulate different
fluid flows. They are listed below, in the same order as described above, using Ein-
stein’s summation convention. Note that the energy equation (3) is added for com-
pletion only, as it is not of interest for the work presented in this thesis.

∂ρ

∂t
+ ∂(ρui )

∂xi
= 0 (1)

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
= ∂σi j

∂x j
+ρ fi (2)

∂(ρe)

∂t
+ ∂(ρeui )

∂xi
=−∂(pui )

∂xi
+ ∂(τi j u j )

∂xi
+ρ fi ui − ∂(qi )

∂xi
(3)

Hereσi j is the stress tensor, fi represents gravity and other body forces in i direction,
which will not be included going further for simplicity. e is the energy per unit mass,
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6 T H E O R Y

qi is the heat flow per unit area and τi j = µ
(
∂ui
∂x j

+ ∂u j

∂xi

)
is the viscous stress tensor

which is proportional to the rate of deformation. In general the stress tensor is given
by

σi j =−pδi j +µ
(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
+µBδi j

∂uk

∂xk
, (4)

where µ is dynamic viscosity, also called the first viscosity coefficient, and
µB =λ+ 2

3µ is called the bulk viscosity and describes the energy exchange between
translational and internal energy at molecular level [4]. λ is called the second viscos-
ity coefficient. According to Ertesvåg [5], the bulk viscosity is µB = 0 which simplifies
the equation further. Kronecker delta, δi j , is defined by

δi j =
{

1 for i = j

0 for i 6= j
(5)

As stated earlier the energy equation (3) will not be considered in much detail in this
thesis and instead the kinetic energy will be derived and used later to investigate the
viscous dissipation of turbulent energy. This thesis will only consider incompressible
Newtonian fluid, which will simplify the equations. Equation (1) will then become

∂uk

∂xk
= 0, (6)

which implies zero volumetric deformation. This simplification can be used in equa-
tion (2) to yield the following

ρ

(
∂ui

∂t
+u j

∂ui

∂x j

)
=− ∂p

∂xi
+2µ

∂si j

∂x j
, (7)

where the rate of strain is defined by si j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. The Einstein summation con-

vention is a way to write vector and tensor expressions in a compact way. It uses
indices, e.g i , j and k, to represent the dimensions. If an index appears twice in a
term, it is called a dummy index and represents a summation over all possible values
of that index. ([6], p. 26)

2.2 TURBULENT EQUATIONS OF MOTION

Turbulence consists of random, irregular and unpredictable velocity fluctuations which
cannot be solved using a deterministic approach, and has to be statistically mod-
elled. Reynolds [7] assumed that all quantities characterizing the flow could be de-
composed into a mean and a fluctuating value. E.g pressure could be expressed as

p̃ = P +p (8)
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where p̃ is the instantaneous value, P is the mean, time averaged, value and p is the
fluctuation. P is defined by

P = lim
T→∞

1

T

∫ t0+T

t0

p̃d t . (9)

This is of course the ideal case, where the period T →∞, but in practice T is finite
and is called the "time-window". T must be large compared to the largest turbulence
time scale and short compared to the time variations of the mean. The mean value
of the fluctuations are zero as can be seen from the following equation

p = lim
T→∞

1

T

∫ t0+T

t0

(p̃ −P )d t = 0. (10)

This means that fluctuations have zero mean. This holds true also for velocity and
the stress tensor. The use of an overbar on fluctuations means the mean value of that
quantity.

2.2.1 REYNOLDS DECOMPOSITION

Using the same convention as in equation (8) the equations of motion then becomes

∂ũi

∂xi
= 0, (11)

∂ũi

∂t
+ ũ j

∂ũi

∂x j
= 1

ρ

∂σ̃i j

∂x j
. (12)

Equations (11) and (12) are continuity equation and momentum equation respec-
tively. In an incompressible Newtonian fluid the stress tensor, σ̃i j , is given by

σ̃i j =−p̃δi j +2µs̃i j , (13)

which means that it accounts for both pressure and viscous stresses. By combining
the equations above the equation below is obtained:

∂ũi

∂t
+ ũ j

∂ũi

∂x j
=− 1

ρ

∂p̃

∂xi
+ν ∂2ũi

∂x j∂x j
. (14)

Here, ν= µ
ρ

is the kinematic viscosity. Before applying the Reynolds decomposition
on equations (11) and (12) there are some rules that need to be established. For two
signals ã = A+a and b̃ = B +b then the following rules apply:

ã + b̃ = A+B A ·B = A·B Ab = 0 b A = 0 ãB = A·B ãb̃ = A ·B +ab.
(15)
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2.2.2 EQUATIONS FOR THE MEAN FLOW

If equation (11) now is expanded using Reynolds decomposition and then take the
average, the following will be obtained, respectively:

∂ũi

∂xi
= ∂

∂xi
(Ui +ui ) = ∂Ui

∂xi
+ ∂ui

∂xi
= 0 (16)

and
∂ũi

∂xi
= ∂

∂xi
(Ui +ui ) = ∂Ui

∂xi
+ ∂ui

∂xi
= 0. (17)

Here ∂ui
∂xi

= 0 because of the rule in equation (10). This leads to ∂Ui
∂xi

= 0 and according

to equation (16), ∂ui
∂xi

= 0. This means that both the mean and fluctuating velocity in-
dependently satisfy mass conservation.

Using Reynolds decomposition again on equation (12), applying the rules given in
equation (15) and taking the average this yields

∂Ui

∂t
+U j

∂Ui

∂x j
= 1

ρ

∂

∂x j
Σi j −u j

∂ui

∂x j
, (18)

where Σi j =−Pδi j +2µSi j is called the mean stress tensor. Using the chain rule in

differentiation, it can be shown that u j
∂ui
∂x j

= ∂
∂x j

(ui u j )−ui
∂u j

∂x j
, where the last term

on the right hand side is zero due to continuity equation. By putting this into equa-
tion (18) the Reynolds-averaged Navier-Stokes (RANS) equation will be obtained. It
is given by

∂Ui

∂t
+U j

∂Ui

∂x j
= 1

ρ

∂

∂x j
(Σi j −ρui u j ). (19)

As can easily be seen, RANS is an equation for the mean velocity Ui and mean pres-
sure P . Equation (19) is almost the same as Navier-Stokes for laminar flows except
for the new term ρui u j which is totally unknown and represents turbulent transport
of momentum. It looks like a stress tensor similarly as Σi j and the interpretation
of this is that turbulence has an effect on the mean flow which is the production
of extra stresses. The turbulent stresses, also called Reynolds stresses, are denoted
τi j =−ρui u j and originate from the non-linear term in the momentum equation
and are therefore a property of the flow. This is not the same τi j as the one shown in
equation (3). The total mean stress tensor in turbulence is

Ti j =−Pδi j +2µSi j −ρui u j , (20)

which is the sum of the stress tensor in the mean flow and the turbulent stresses, and
consists of pressure, viscous and turbulent stresses. By decomposing the flow into a
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mean and a fluctuating part it has become easier to differentiate the effects of turbu-
lence on the mean flow.

In order to be able to investigate how the mean flow affects the turbulence, and how
the energy is distributed in turbulence, it is necessary to develop a relation between
the energy and the mean flow. This relation is obtained using the term 1

2UiUi , which
is called the kinetic energy of the mean flow. By multiplying Ui with equation (19)
and summing over i -indices the energy equation is obtained ([8], p. 60):

ρ

[
∂K

∂t
+U j

∂K

∂x j

]
= ∂

∂x j

(
Ti jUi

)−Ti j
∂Ui

∂x j
, (21)

where K = 1
2UiUi . Here, the chain rule is used in order to divide the stress term into

two terms. That makes it easier to make a physical interpretation. The second term
on the left hand side of equation (21) represents the variation of kinetic energy due
to advection. The first term on the right hand side represents energy transport of
the mean flow caused by total mean stress, Ti j , and the second term represents de-
formation work of the fluid element. The kinetic energy changes due to gain or loss
caused by the deformation work. To better view the effects of viscosity equation (20)
is substituted into (21) and then the energy equation for the mean flow becomes

ρ

[
∂K

∂t
+U j

∂K

∂x j

]
= ∂

∂x j

(−Pδi jUi +2µSi jUi −ρui u jUi
)−2µSi j Si j +ρui u j Si j . (22)

Here, the first term on the right hand side is the pressure work, the second term is
energy transport by viscous stresses and the third is energy transport by turbulent
stresses. The fourth term is viscous deformation work and the last term is turbulent
deformation work. Because most turbulent flows have a high Reynolds number the
viscous terms can be neglected, except very close to walls or other smooth surfaces.
Viscous deformation work represents loss of kinetic energy and is therefore negative.
The term 2µSi j Si j is called viscous dissipation. The last term is usually negative, but
can be positive locally in the flow. This term is known as turbulent energy production
because the loss of mean flow energy is transferred to the turbulent fluctuations, and
the turbulent kinetic energy increases. This will be addressed later in this thesis.

Because the energy equation of the mean flow is obtained by mathematical manipu-
lation of the momentum equation for the mean flow, the energy equation does not
contain any more information than the momentum equation ([8], p. 63). Now it is
interesting to look at the equation for the turbulent kinetic energy, k = 1

2 ui ui which
will be covered in the next section.
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2.2.3 EQUATIONS FOR THE TURBULENT FLUCTUATIONS

By multiplying equation (12) by ũi , taking the time average and then subtract equa-
tion (22), the kinetic energy of turbulence is obtained ([8], p. 63). The equation is as
follows

∂k

∂t
+U j

∂k

∂x j
=− ∂

∂x j

[
1

ρ
u j p + 1

2
ui ui u j −2νui si j

]
−ui u j Si j −2νsi j si j , (23)

where k = 1
2 ui ui is the mean kinetic energy of the turbulent velocity fluctuations.

Here, si j is the fluctuating rate of strain and is defined by

si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (24)

The left hand side is the usual rate of change of turbulent kinetic energy. The first two
terms on the right hand side represent transport of turbulent energy caused by tur-
bulence. The next term is transport of turbulent energy by means of viscous stresses,
while the last two terms are deformation work by turbulent and viscous stresses re-
spectively. The production term −ui u j Si j is also in equation (22) but with an oppo-
site sign, and is exchanging kinetic energy between the mean flow and the turbulence,
and usually the energy is transferring from the mean flow to the turbulence/fluctu-
ations. The last term represents drain of energy due to viscous stresses, also called
viscous dissipation. Viscous stresses convert kinetic energy to heat. Viscous dissipa-
tion will be analyzed more later on when discussing the results obtained.

In most shear flows the production and dissipation terms are of the same order of
magnitude. For example in a steady, homogeneous and pure shear flow, equation
(23) reduces to

−ui u j Si j = 2νsi j si j . (25)

To understand the features of turbulence that are not directly related to spatial trans-
port, equation (25) can be used as an aid. If production is defined as Ppr od =−ui u j Si j

and the viscous dissipation is defined as ε= 2νsi j si j then equation (25) reads Ppr od = ε.
If using the scale relations Si j ∼ u/l and
−ui u j ∼ u2 it can be shown that ulSi j Si j = 2νsi j si j ([8], p. 65). Since the Reynolds
number, ul/ν, is large in turbulence it can be seen that

si j si j À Si j Si j . (26)

The equation above means that the fluctuating strain rate is much larger than the
mean strain rate. The strain rate has dimensions s−1, and that means that the higher
the strain rate the lower the time scale. This means that si j and Si j do not interact
very much because the fluctuating strain rate is much bigger than the mean strain
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rate. Because of that, the structure of the small scale turbulence seems to be inde-
pendent of any orientation caused by the mean shear. The small scale structure is
called isotropic if such behavior is present.

2.2.4 VISCOSITY AND DISSIPATION

A convenient way of writing equation (23) is as follows ([5], p.49)

∂

∂t
(ρk)+ ∂

∂x j
(ρkU j )︸ ︷︷ ︸

ρCk

=−ρui u j
∂Ui

∂x j︸ ︷︷ ︸
ρPk

+ ∂

∂x j

(
µ
∂k

∂x j

)
︸ ︷︷ ︸

ρDk,v

+ ∂

∂x j
(−1

2
ρui ui u j −pu j )︸ ︷︷ ︸
ρDk,t

−µ∂ui

∂x j

∂ui

∂x j︸ ︷︷ ︸
ρε′

(27)
Here, Pk represents the production of energy, Dk,v is viscous diffusion, Dk,t is turbu-
lent diffusion and lastly ε′ represents a part of the dissipation. As stated earlier the
dissipation, ε, is defined by ε= 2νsi j si j . By expanding the right hand side we get

ε= 2νsi j si j = 2ν
1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
= ν

(
∂ui

∂x j
+ ∂u j

∂xi

)
∂ui

∂x j
, (28)

where the symmetry si j = s j i has been used. The dissipation term has been divided
into two parts and put into ρDk,v and ρε′. This is done for the purpose of having a
gradient term for diffusion. Even though they have been divided into two parts, ε′

contains most of the dissipation and is therefore often referred to as the dissipation.
While this is not entirely true, it is commonly used. In homogeneous turbulence,
statistically independent of location in space, it can be shown that the dissipation is
simplified to ε′ [9].

2.3 REYNOLDS STRESS

An equation for turbulent stresses, Reynolds stresses, can be derived by the same
principles as for the turbulent kinetic energy. By using the Reynolds decomposi-
tion on equation (12), get an expression for ∂u

∂t for both i and j directions, use the

chain rule on the expression for the Reynolds stresses, ∂
∂t (ui u j ) = u j

∂ui
∂t +ui

∂u j

∂t , and
then take the average the equation for Reynolds stresses the following is obtained ([5],
p.95):
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∂

∂t
(ρui u j )+ ∂

∂xk
(ρui u jUk )︸ ︷︷ ︸

ρCi j

=−
(
ρui uk

∂U j

∂xk
+ρu j uk

∂Ui

∂xk

)
︸ ︷︷ ︸

ρPi j

+ ∂

∂xk

(
µ
∂ui u j

∂xk

)
︸ ︷︷ ︸

ρDi j ,v

+ ∂

∂xk
(−ρui u j uk − (puiδ j k +pu jδi k ))︸ ︷︷ ︸

ρDi j ,t

+p(
∂ui

∂x j
+ ∂u j

∂xi
)︸ ︷︷ ︸

ρφi j

−2µ
∂ui

∂xk

∂u j

∂xk︸ ︷︷ ︸
ρεi j

.

(29)

The terms in the equation above have mostly the same purpose as those in equation
(27), with the difference that they are done by the Reynolds stresses. Pi j is the produc-
tion of kinetic energy from the mean flow to the turbulent flow. Di j ,v is the viscous
diffusion and Di j ,t is the turbulent diffusion. φi j is energy that is exchanged between
the other components and is neither lost nor produced, just redistributed in the flow.
The last term expresses dissipation due to viscosity in the Reynolds stress. This en-
ergy is lost through heat. It can be shown, by comparing εi j to ε′ in equations (29)
and (27) respectively, that ε11 + ε22 + ε33 = 2ε′. This can be shown mathematically by
using the Kronecker delta operator, δi j , as follows

2µ
∂ui

∂xk

∂u j

∂xk
δi j = 2µ

∂ui

∂xk

∂ui

∂xk
. (30)

The next section will address how the energy will flow from the mean flow to the
turbulence and from larger scales to smaller ones, and the break-ups of scales from
larger scales to smaller ones.

2.4 TURBULENT SCALES AND ENERGY CONVERSION

Now that the equations of turbulent motion and kinetic energy are established it is
time to go into how the energy is transferred in the turbulent flow. In a turbulent flow
the energy is produced and transferred from the mean flow to the turbulent fluctu-
ations and from there, in the end, lost by viscous dissipation. Before going into the
energy transformation the turbulent scales are briefly discussed.

In turbulent motion the length scale is a quantity that relates the motion to a physi-
cal size. Going further in the explanations the turbulent flow is considered to have a
high Reynolds number, a length scale L and a characteristic velocity U . Richardson
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[10] introduced the energy cascade concept and characterized turbulence as a hier-
archy of scales and considered turbulent motion to consist of eddies of different size.
There is no clear and precise definition of an eddy, but it can be understood as any
kind of turbulent motion ([2] p. 183). The length, velocity and time scales of eddies
are denoted `, u(`) and τ= `

u(`) , respectively. At the beginning of the energy cascade
the largest eddies exist with high kinetic energy which is then transferred to smaller
and smaller scales. The Reynolds number is here very large and therefore the viscos-
ity is not of importance. At sufficiently small scales the Reynolds number becomes
small enough so that viscosity does play an important role and creates a stable eddy
motion until the energy is dissipated by the viscosity. This is the end of the energy
cascade. The reason for the break up of larger scales to smaller ones is, according to
Richardson, that the large eddies are unstable and then break up.

The largest eddies have a length scale `0, characteristic velocity u(`0) and time scale
τ0. The first two are considered to be in the same order as the flow scale L and U

respectively, which means that they have approximately the same Reynolds number,
which is large, and therefore the viscous effects are small. The Russian mathemati-
cian Andrey Kolmogorov had a big influence on the development of turbulence, as
will be discussed further on. According to Kolmogorov’s hypothesis of local isotropy,
in flows at high enough Reynolds number the smaller scales will gradually be less de-
pendent on directions, i.e the directional information will be lost when ` ¿ `0 ([2]
p. 184). This is called isotropic turbulence. The consequence of this is that both
the characteristic velocity and time scale decreases as ` decreases. As the scales be-
comes smaller and smaller the Reynolds number will decrease, which means that
viscous effects will be greater. Kolmogorov assumed that since the directional infor-
mation is lost the geometry and boundary conditions are also lost. This makes the
directional and boundary condition information for small enough eddies to be the
same. This leads to Kolmogorov’s first similarity hypothesis, which states: "In every
turbulent flow at sufficiently high Reynolds number, the statistics of the small-scale
motions have a universal form that is uniquely determined by ν and ε" ([2], p. 185).
This assumption implies that the smaller eddies are determined only by the energy
dissipation rate, ε, and the kinematic viscosity, ν. Kolmogorov defined equations for
the small scale which are the following:

η≡ (ν3/ε)1/4, (31)

uη ≡ (εν)1/4 (32)

and
τη ≡ (ν/ε)1/2. (33)

Here, ` = η is the length scale for the small scale eddies. uη and τη represents the
small scale velocity and time respectively. As can be seen from Kolmogorov’s mi-
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croscales is that the Reynolds number is equal to one. This means that viscosity
cannot be neglected. The break up of eddies will stop at this length scale and vis-
cosity will convert the kinetic energy to heat. The kinetic energy per mass of the large
eddies are of the order u2

0 and by dimensional analysis it can be shown that ε∼ u3
0/`0.

By combining these relations the comparison between the integral scales (large scale
motion) and the kolmogorov scales can be obtained.

η

`0
=

(
u0`0

ν

)−3/4

= Re−3/4 (34)

uη
u0

= Re−1/4 (35)

τη

τ0
= Re−1/2 (36)

From this we can see that increasing Reynolds number decreases the small scale to
integral scale ratios.

2.5 PIONEERING ARTICLE BY KIM ET AL.(1987)

Kim et al.[1] wrote a pioneering article in 1987 about a performed Direct Numerical
Simulation of a fully developed channel flow at low Reynolds number. The work pub-
lished in this article often works as a reference when performing a DNS of a channel
flow and is considered to be very accurate. This section will give a brief summary of
the most relevant information from this article.

The objective of the article was to perform a DNS where all essential scales of mo-
tion are solved. The performed DNS was done solving the unsteady Navier-Stokes
equations numerically at a Reynolds number of 3300, which was based on the mean
centreline velocity and the half-width of the channel δ, with Reτ = 180, which is
the Reynolds number based on the wall shear velocity uτ. The grid resolution used
was 192x160x129, in x, y and z, resulting in 3 962 880 grid points. Here x, y and z
are streamwise, spanwise and wall-normal directions respectively, which is different
from what is used in Kim et al.[1], but reflects the convention used in this thesis. The
domain size is 4πδ in streamwise direction, 2πδ in spanwise direction and 2δ in wall-
normal direction. The grid spacing are ∆x+ = 4π

192 · 180 ≈ 12 and ∆y+ = 2π
160 · 180 ≈ 7

in streamwise and spanwise direction respectively. They used two-point correlations
and energy spectra to make sure that both the domain size and grid resolution were
adequate.

The numerical approach used in this article is a little different than what was used
in this thesis. For the spatial derivatives a spectral method is used. For the stream-
wise and spanwise, the homogeneous directions, Fourier series are used. For the
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wall-normal direction the Chebychev polynomial expansion is used. The temporal
discretization is performed using Crank-Nicholson for the viscous terms and Adams-
Bashforth for the non-linear terms, which are semi-implicit schemes. They compare
the results against other experiments at comparably low Reynolds numbers and dis-
cusses the discrepancies. The characteristics of the turbulence statistics correspond
well in general with the experimental results, but clearly have some discrepancies, es-
pecially close to the wall. They mention that the measurement of uτ may be one of
the reasons for the discrepancy. When the mean velocity profiles are re-normalized
with the experimental uτ it seems to better correspond with the experimental results.
The same happens when the turbulence intensities and Reynolds shear stress are re-
normalized with the same uτ.





3

F L O W D O M A I N A N D G E O M E T RY

As described in the problem formulation multiple DNS simulations have been per-
formed with different grid resolutions and flow domain sizes. The flow geometry is
a channel flow as shown in Figure (1). Here x, y and z denotes the streamwise, span-
wise and wall normal directions, respectively. This chapter will provide basic theory
about channel flows.

3.1 CHANNEL FLOW

A fully developed turbulent channel flow has been simulated using Direct Numerical
Simulations (DNS). This geometry has often been chosen due to its simplicity to do
experiments of turbulent flows near a wall, where a lot of the complexity is happen-
ing.

Figure (1) shows the channel geometry, where the streamwise and spanwise direc-
tions are homogeneous due to the fact that it is a fully developed flow. More infor-
mation about the simulations will be given in the next several chapters. The length,
width and height are denoted lx , ly and lz , respectively.

17
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Figure 1: Geometry and coordinate system of the flow

3.2 FLOW ALONG A SOLID SURFACE

To get a grasp of the theory behind flows through a fully developed channel flow it
seems to be a good idea to introduce some important parameters and definitions es-
pecially near the wall. The no-slip and impermeability conditions hold true at the
wall, which means that ũi = 0, where ũi is the instantaneous velocity. No-slip condi-
tion means that the velocity along the wall is zero and the impermeability condition
means that the flow cannot go through the wall and the velocity is therefore zero per-
pendicular to the wall. At the solid wall the turbulence is damped out, which means
that τi j =−ρui u j = 0. The flow has a zero mean spanwise velocity, V = 0. Since the
flow is fully developed the velocity statistics are only dependent on z. From this it
follows that dU

d x = 0. The continuity equation then reduces to dW
d z = 0. From the im-

permeability condition, Ww all = 0, this results in W = 0 for all z. The total mean shear
stress is therefore given by

Ti j = ρνdU

d z
−ρuw , (37)

where i 6= j . uv and v w are zero. Since the Reynolds stresses are zero at the wall, the
wall mean shear stress becomes

Tw ≡ ρν
(

dU

d z

)
y=0

, (38)

which indicates that the wall mean shear stress is due to viscosity only. To get more
detailed information the reader is recommended to take a look at ([2], p. 269). Since
much of the complexity, and thus the most interesting things, are happening near
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the wall, parameters used in that region would benefit from having a new scale that
represents the region. First the friction velocity, or shear stress velocity, is defined as

uτ ≡
√

Tw

ρ
, (39)

and the viscous length scale can be defined by

δv ≡ ν
√

ρ

τw
= ν

uτ
. (40)

By using the two scales above, the friction Reynolds number can be defined as follows

Reτ ≡ uτlz

ν
. (41)

Near the wall it is assumed that the mean velocity only depends on uτ, z and ν as
follows

U = f (uτ, z,ν), (42)

and we can define a new parameter u+, which is the mean velocity normalized by the
friction velocity, as a function of another new parameter z+ as follows

u+ = f (z+). (43)

z+ is defined as z+ ≡ uτz
ν

and indicates a wall distance following the viscous length
scale. Equation (43) is called "law of the wall" and says that the normalized velocity
is a function of the wall distance. The normalized velocity is defined by

u+ ≡ U

uτ
. (44)

As stated earlier, close to the wall the Reynolds shear stress is small compared to vis-
cous stress, so the total mean shear stress can be approximated as

Txz ≈ ρu2
τ, (45)

which means that we can assume the following, close to the wall:

µ
dU

d z
= ρu2

τ, (46)

and when solved for U this gives

U = u2
τ

ν
z +constant. (47)

By setting the constant to zero and rearranging the equation we get the following

u+ = z+. (48)
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By going further out, viscosity becomes smaller and at some point it can be neglected
as is clear by the fact that z+ is getting bigger. This will be further discussed later. By
doing some dimensional analysis it can be shown that dU

d z = 1
κ

uτ
z [11] [Andersson, H.

I., Lecture Notes, February 7, 2017]. By integration and further mathematical manip-
ulation this becomes

u+ = 1

κ
l nz++ A, (49)

where A is a constant set to 5.5 here. This has empirically been proven to be correct.
Equation (49) is called the logarithmic law of the wall, or just the log law. κ is called
the von Kármán constant, set to 0.4, after Theodor von Kármán ([2], p. 274). It is
common to divide different values of z+ into layers, the inner layer and the outer
layer, and for each layer again divide into sublayers. In Table (1), reproduced from
([2], p. 275), a description of the different layers can be found. In Figure (2) the dif-
ferent layers are shown, divided into z+ = 5, z+ = 30 and z+ = 50. The data used in
Figure (2) are extracted from [12], which is a database consisting of data from [1]. The
data seems to correspond well with Table (1). The plot for equation (48) clearly fits
well with the data from [12] for z+ < 5 and for z+ between 30 and 50 it fits clearly with
equation (49).

Figure 2: u+
192 plotted against different wall region layers in log z+.
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Region Location Defining property

Inner layer z/δ U determined by uτ
and z+

Viscous wall region z+ < 50
Significant contribu-
tion from viscosity to
shear stress

Viscous sublayer z+ < 5

Reynolds shear
stress is negligible
compared with the
viscous stress

Outer layer z+ > 50
Direct effects of vis-
cosity on U are negli-
gible

Overlap region z+ > 50, z/δ< 0.1
Region of overlap
between inner and
outer layers

Log-law region z+ > 30, z/δ< 0.3 The log-law holds

Buffer layer 5 < z+ < 30

The region between
the viscous sublayer
and the log-law
region

Table 1: Wall region layers ([2], p. 275)
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N U M E R I C A L S O L U T I O N S

The source code used for the simulations originated from Delft University of Technol-
ogy in the Netherlands and was written in the programming language Fortran by Pro-
fessor Boersma and Dr. Gillisen. It uses parallelization using Message Passing Interface
(MPI). The code has been used several times and has been verified and validated. The
subsequent sections briefly present the most important equations and numerical algo-
rithms used in the DNS code.

4.1 DIRECT NUMERICAL SIMULATION

The ultimate objective of using a DNS is to resolve all scales of motion in turbulent
flows and this is done by solving the Navier-Stokes equations (2). The number of
grid points is determined by the product of the number of grid points in each of the
three directions: Ntot = Nx Ny Nz . The process of solving equation (2) takes a lot of
computing power and according to ([13], p. 307) the time steps grows with Re1/2 and
the number of grid points grows with Re3/4, which gives a total of Re11/4. Because the
computer power increases so fast with Reynolds number, it limits the use of DNS to
low Reynolds numbers.

4.2 EQUATIONS SOLVED

The equations used to solve the turbulent channel flow is the non-dimensionalized
Navier-Stokes equation, or momentum equation, (2). The friction Reynolds number
is Reτ = 360, which is based on the channel height. To get the non-dimensionalized
momentum equation the non-dimensionalized variables are used. They are indi-
cated by a star, as follows

x∗ = x

lz
~u∗ = ~u

uτ
t∗ = tuτ

lz
p∗ = p

ρu2
τ

. (50)

23
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By inserting these into equation (2) and mathematically manipulate it, the non-dimensionalized
continuity and momentum equation becomes [14]

∂u∗
i

∂x∗
i

= 0 (51)

∂u∗
i

∂t∗
+
∂u∗

i u∗
j

∂x∗
j

=−∂p∗

∂x∗
i

+ 1

Reτ

∂2u∗
i

∂x∗
j ∂x∗

j

. (52)

4.3 PRESSURE-VELOCITY COUPLING

The Navier-Stokes equations are a set of equations for velocity and pressure (pressure
gradient), and represents the momentum equation in x, y and z directions. What
makes this difficult to solve is the fact that it does not have an independent equa-
tion for the pressure for the three directional momentum equations. For incompress-
ible flows, the continuity equation does not have a dominant variable and it cannot
be used to calculate the pressure, as opposed to compressible flows. One solution
is to make sure that pressure at each time step is constructed in such a way to ful-
fill the conservation of mass. This can be solved by a multiple of different types of
schemes such as Explicit Time Advance Scheme and Implicit Time Advance Method.
The method used here is a projection method, and satisfies the conservation of mass
([15], p. 167). The next sections will briefly go into what discretization schemes that
are used in this DNS code.

4.4 DISCRETIZATION SCHEMES

Navier-Stokes equations are Partial Differential Equations (PDE) and are impossible
to solve analytically, except in some special cases. They have to be numerically solved.
This suggests that an approximate solution needs to be obtained. This is done by
using a discretization scheme. This section will provide information about the dis-
cretization schemes used, both in space and in time. The streamwise and spanwise
directions are, as stated in Chapter (3), homogeneous and have a uniform grid. The
wall normal direction has a non-uniform staggered grid, as shown in Figure (3). The
filled and unfilled circles here represent the cell centers and cell faces respectively.
The positions on the cell faces are represented by zF

i and go from i = 0 to i = N ,
where zF

0 = 0 and zF
N = 1. It is easily seen that ∆zF

i increases further away from the
walls, and thus are non-uniform. It is stretched to give finer resolution close to the
wall. This is necessary because close to the wall is where the complexity is happening
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and is thus more important than further away. The positions of the cell faces and cell
centers in z direction are found by the following equations, respectively.

zF
i (k, s) = 1

2

t an−1(sk − 1
2 s)

t an−1( 1
2 s)

+ 1

2
, k = 0,

1

Nz
,

2

Nz
, ...,1 (53)

zC
i = (zF

i + zF
i−1)/2. (54)

Here s is the stretching factor. The spatial derivatives in the homogeneous directions
are solved using a pseudo-spectral method. The spatial derivatives and velocities in
the homogeneous directions, u and v , are calculated at the cell centers, which also
is the case for the pressure. The spatial derivatives in the wall-normal direction are
computed using a second-order, central finite difference scheme. The spatial deriva-
tives and velocity for the wall-normal direction is calculated at the cell faces. For the
time advancement, a second-order, explicit Adams-Bashforth (AB2) scheme is used.
[16]

Figure 3: Discretized grid in wall normal direction. The black filled cicles represent
the cell centers, while the unfilled circles represent the cell faces.

4.4.1 SPATIAL DERIVATIVES IN HOMOGENEOUS DIRECTIONS

The spatial derivatives in the homogeneous directions are computed using the pseudo-
spectral method, which means that the variables are transformed into wavenumber
space. The transformations are done with Fast Fourier Transform (FFT). After com-
pleting the calculations the variables are then transformed back to physical space
using the inverse FFT (FFT−1).

Letu(x j ) be a periodic function in x direction that is discretized on a domain with

period/length lx and Nx grid points. Then∆x = lx
Nx

is the sample length. The discrete

sampling location is x j = j lx
Nx

, where j is an integer. The complex coefficient of the
Fourier transform are given by the following equation.

û = 1

Nx

Nx−1∑
j=0

u(x j )e
−2π
lx

kx j , k =−Nx

2
, ...,

Nx

2
−1 (55)
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where k is the wavenumber. The complex Fourier coefficients is represented by the
following equation and are calculated by the FFT algorithm. [16]

u(x j ) =
Nx

2 −1∑
k=−Nx

2

û(x j )e
2πi k

lx
x j , j = 0, ..., Nx −1 (56)

where j is in the range 0 ≤ k ≤ Nx −1. For more detailed information take a look at
Pope [2], p. 670-695. An advantage of using the Fourier transform is that the deriva-
tive is simply just a matter of multiplication. This makes it fast and efficient. The
formula for the derivative is the following.

d nu(x)

d xn
=F−1{(iω)nF

{
u(x)

}}
, (57)

whereω= 2πk
lx

is the frequency. The first and second-order derivative are given by the
equations below, respectively.

du(x j )

d x
=

Nx
2 −1∑

k=−Nx
2

2πi k

lx
ûe

2πi k
lx

x j , j = 0, ..., Nx −1 (58)

d 2u(x j )

d x2
=

Nx
2 −1∑

k=−Nx
2

−
(

2πi k

lx

)2

ûe
2πi k

lx
x j , j = 0, ..., Nx −1 (59)

4.4.2 SPATIAL DERIVATIVES IN WALL-NORMAL DIRECTION

In wall-normal direction, second-order central differencing schemes are used to com-
pute the derivatives. On a non-uniform grid this gives a first-order accuracy. As be-
fore, the indices F and C indicates cell face and cell centers, respectively. The first-
order derivatives for cell face and cell centers are computed as follows, respectively.

d

d z
uC

j =
uF

j −uF
j−1

zF
j − zF

j−1

, (60)

d

d z
uF

j =
uC

j+1 −uC
j

zC
j+1 − zC

j

, (61)

where z j indicates the sampling location at grid cell j . For the second-order deriva-
tives, the following equations are used.
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j −uF
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zF
j −zF
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zC
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j

. (63)

Sometimes it is convenient to calculate quantities at cell faces and cell centers when
only one is known. An interpolating scheme is used to calculate one from the other,
shown below.

uF
j =

uC
j+1 +uC

j

2
, (64)

uC
j =

uF
j +uF

j−1

2
. (65)

4.4.3 TEMPORAL DISCRETIZATION

The two previous sections have talked about discretization of the Navier-Stokes equa-
tions in space. This section will talk about how the equations are discretized and
stepped forward in time. A second-order Adams-Bashforth scheme is used for tem-
poral discretization, and is shown below in its general form [17].

yn+1 = yn +h(
3

2
f (tn , yn)− 1

2
f (tn−1, yn−1)). (66)

The Adams-Bashforth scheme is an explicit, two-step method which requires the so-
lution of yn and yn−1 to solve for the next value, yn+1. h is the step size. To discretize
the Navier-Stokes equation in time the Adams-Bashforth scheme is substituted into
equation (2) to achieve the following set of iterative equations shown below. The
Adams-Bashforth scheme is applied only on advection and viscous terms, but not for
the pressure because it does not have a time derivative.

un+1
i −un

i

∆t
= 3

2
g (un

i )− 1

2
g (un−1

i )− δP n+1

δxi
. (67)

The function g (un
i ) is the sum of the advection and viscous terms and is defined as

follows.

g (un
i ) =−un

j

δun
i

δx j
+Re−1

τ

δ2un
i

δx2
j

. (68)

δ
δx j

is representing an approximation of the spatial derivatives. The pressure is here

evaluated at the next time step, as indicated by equation (67). The problem that arises
is that we have two unknowns, assuming values of the n-th and n −1-th are known,
P n+1 and un+1. A working solution to this problem is to divide equation (67) into
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two equations, a predictor and a corrector. By defining a temporary quantity, ui∗, as
follows

ui∗ = un+1
i +∆t

δP n+1

δxi
(69)

it is easily shown, by rearranging equation (67), that

ui∗ = un
i + 3

2
∆t g (un)− 1

2
∆t g (un−1). (70)

The right hand side of the latter equation contains only known quantities. By taking
the divergence of equation (69) the following is achieved.

δui∗
δxi

= δun+1
i

δxi
+∆t

δ2P n+1

δxi
. (71)

Mass conservation still applies and from that it follows that
δun+1

i
δxi

= 0. Equation (71)
now becomes

δ2P n+1

δxi
= δui∗

δxi

1

∆t
. (72)

This is a Poisson equation for the pressure. The temporary quantity ui ,∗ is first solved
and is then used in the Poisson equation to solve for the pressure. Then the next step
velocity is found. According to Gillisen [16], p. 39, the Poisson equation is solved us-
ing a tri-diagonal matrix solver. Homogeneous directions are transformed and solved
in Fourier space.

4.4.4 BOUNDARY AND INITIAL CONDITIONS

In the homogeneous directions, x and y , all variables use periodic boundary condi-
tions which means that at the inlet and outlet the respective variables are equal at
each time step. At the walls, z = 0 and z = 1, the no-slip condition is used

uz=0 = uz=1 = 0. (73)

As mentioned earlier, the velocity in the wall-normal direction are computed in the
cell centers. To fulfill the boundary conditions and enforce zero derivatives on the
walls the following is used, respectively:

u(zC
0 ) =−u(zC

1 ), u(zC
Nz

) =−u(zC
Nz+1), (74)

u(zC
0 ) = u(zC

1 ), u(zC
Nz

) = u(zC
Nz+1). (75)

The initial conditions for the velocities and the pressure can be obtained by either
using a random velocity field or using a fully developed turbulent velocity field from
previous simulation. For the case with grid points of 48x48x192, a previous simula-
tion of a fully developed turbulent velocity field was used, but the rest of the simula-
tions used a random velocity field.
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4.5 COMPUTATIONAL MESH AND DOMAIN

The simulations performed in this thesis are divided into multiple cases. In total
there are eight simulations divided into four cases. Before briefly introducing the dif-
ferent cases, some background information about the simulations will be presented
which are applicable to all of them.

Figure (1) shows the channel flow that are used in all simulations, though with dif-
ferent grid resolutions and domain sizes. The height, width and length are denoted
as lz , ly and lx , respectively. For the simulations Fortran is used as the programming
language and is parallelized using the Message Passing Interface (MPI). The paral-
lelization is used to be able to utilize the power of multiple processors simultaneously.
This is done by dividing the wall-normal direction into multiple parts. Each proces-
sor will be used to solve the Navier-Stokes equations on each corresponding part.
The grid point variables in the top and bottom layers of each part is known to the
adjacent parts and are used in the computations. The data in the streamwise direc-
tion is divided into parts. This is done in regards to solving the Poisson equation (72),
where the data are transposed into the different parts, solved, and then the pressure
data are transposed back ([16], p. 31). The supercomputer used for the simulations
is called Stallo. For all simulations the number of processors used was 16, except for
the last simulation, 192x192x192, which used 64.

As mentioned there were in total eight different simulations divided into four cases:
Coarse-grid, Short-domain, Narrow-domain and Large-domain simulations. The sub-
sections below will briefly introduce the different cases.

4.5.1 COARSE-GRID SIMULATIONS

The first case is Coarse-grid. This is a series of three simulations with what is con-
sidered a series of low resolution simulations combined with a small domain, shown
in Table (2). The two purposes of this case are to compare the simulations with data
from Kim et al.[1] and also to see how different quantities are affected by coarse grid
simulations. This is a small domain case compared to what was done in Kim et al.[1],
so by comparing the simulations it can also show which grid resolutions are sufficient
and which are not.

4.5.2 SHORT-DOMAIN SIMULATIONS

The second case consists of two simulations, with the purpose to see how the stream-
wise length, lx , affect the different quantities and also compare it to Kim et al.[1] for
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Grid resolution (Nx xNy xNz) Domain Size (lx ,ly ,lz)

24x24x96 1.5,0.75,1

48x24x96 1.5,0.75,1

48x48x192 1.5,0,75,1

Table 2: Grid resolutions and domain size for the Coarse-domain case

Grid resolution (Nx xNy xNz) Domain Size (lx ,ly ,lz)

96x48x192 3.0,0.75,1

192x48x192 6.0,0.75,1

Table 3: Grid resolutions and domain size for the Short-domain case

verification. The domain size and grid resolutions for the two simulations are shown
in Table (3).

4.5.3 NARROW-DOMAIN SIMULATIONS

This case consists of two simulations where instead of the streamwise length, the
spanwise width is increased. Here the purposes are to see the effect of greater width
and then again to verify with Kim et al.[1]. The work done by Kim et al. works as
a reference; it has been widely verified by peers and known to be reliable. Table (4)
shows the grid resolutions and the domain sizes used in this case.

4.5.4 LARGE-DOMAIN SIMULATIONS

The last case consists of one simulation where both the channel length and channel
width are increased four times the base domain size of lx = 1.5 and ly = 0.75, to lx = 6

Grid resolution (Nx xNy xNz) Domain Size (lx ,ly ,lz)

48x96x192 1.5,1.5,1

48x192x192 1.5,3.0,1

Table 4: Grid resolutions and domain size for the Narrow-domain case
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Grid resolution (Nx xNy xNz) Domain Size (lx ,ly ,lz)

192x192x192 6.0,3.0,1

Table 5: Grid resolutions and domain size for the Large-domain case

and ly = 3 as shown in Table (5). The purposes of this case are to see how much
better the obtained results are compared to the two latter cases and then be able
to conclude which of the directions that have the greatest effect on the turbulence
statistics.
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The results presented in this thesis are divided into four main cases: Coarse-grid, Short-
domain, Narrow-domain and Large-domain, with different grid resolutions and do-
main sizes. The purpose is to see how different grid resolutions and domain sizes affect
the turbulent quantities, and they are then compared with experiments done by Kim et
al.[1] for verification purposes. The results will be presented illustratively using graphs
along with brief comments. The results are processed from a statistically steady state
velocity field with Reτ = 360. Kim et al.[1] are using a Reynolds number of 180, but
this is the essentially the same because they are using only half the channel, which is
sufficient due to symmetry. For the comparisons only half the channel is used. The
structure of how the results are presented, for all cases, is more or less the same as in
Kim et al.[1].

5.1 COARSE GRID SIMULATIONS

The Coarse grid simulations consists of three simulations as shown in Table (2). The
initial conditions are set using a random velocity field for the first two simulations
and for the last simulation, 48x48x192, a fully developed turbulent velocity field from
a previous simulation is used. The simulations performed in this case have very
coarse grid resolutions and small domain sizes. DNS is usually used in much higher
grid resolutions and bigger domain sizes, in which have been done in the other cases
shown in the next two sections. With that in mind, the results obtained in this case
are very good.

5.1.1 MEAN PROPERTIES

The normalized mean velocity profiles of simulations with increasing grid resolu-
tions, compared with data from Kim et al.[1], can be shown in Figure (4). Close to the
wall they correspond very well, but going further out towards the center of the chan-

35
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nel the discrepancies starts to increase. The velocities of the performed simulations
are slightly below the mean bulk velocity from Kim’s simulation. With increasing grid
resolutions, the results correspond better with the results of Kim et al. The mean bulk
velocity is defined by

Um ≡ 1

lz

∫ lz

0
Ud z. (76)

(a) Grid resolution of 24x24x96 (b) Grid resolution of 48x24x96

(c) Grid resolution of 48x48x192

Figure 4: Normalized mean velocity profile for different simulations compared with
data from Kim et al.[1]
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To see how the velocity profile corresponds to the law of the wall, described in Chap-
ter (3.2), a logarithmic plot of the three simulations against the equations of the law
of the wall is created and shown in Figure (5). The velocity profiles are in agreement
with the law of the wall and it is easily seen that the higher the grid resolution, the
better the velocity profile will follow the law. The mean velocity is caused by large
scale motion and should not be much affected by the grid resolution. This will be
discussed more in the next chapter.

(a) Grid resolution of 24x24x96 (b) Grid resolution of 48x24x96

(c) Grid resolution of 48x48x192

Figure 5: Velocity profile close to the wall, in logarithmic scale, compared with data
from [1]
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5.1.2 TURBULENCE INTENSITIES

Turbulence intensity can be characterized as a measure of turbulence, often as a per-
centage. Here, the root mean square (rms) value of the velocity fluctuations are used
as the turbulence intensity. Figure (6) shows the rms values of the velocity fluctua-
tions for the different simulations in all three directions for the half channel. The
velocity fluctuations, also called the turbulent fluctuations, are caused by large scale
eddies and should not be much affected by different grid resolutions. The rms value
of the velocity fluctuations are calculated using the following equation.

ur ms,i =
√

u2
i . (77)

In Figure (6) we still see some discrepancies, especially between the 24x24x96 simula-
tion and the other two simulations around 20 < z+ < 130. For the maximum value of
ur ms , around z+ = 20, we see that ur ms for 24x24x96 slightly overestimates, 48x24x96
slightly underestimates and 48x48x192 is overestimating more. At z+ > 20 the dis-
crepancies for 48x24x96 and 48x48x192 are smaller than for 24x24x96. It is difficult
to see a clear trend in increasing grid resolution. Other than that it seems that in-
creasing the grid resolution will give results that correspond better with Kim’s results.
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(a) Grid resolution of 24x24x96 (b) Grid resolution of 48x24x96

(c) Grid resolution of 48x48x192

Figure 6: The rms values of the velocity fluctuations for different simulations com-
pared with data from [1]
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5.1.3 REYNOLDS SHEAR STRESS

The Reynolds stress is a matrix consisting of nine components, as shown in the equa-
tion below, and accounts for turbulent motion as discussed in Chapter (2.3). The
Reynolds stress matrix is given by the following matrix.

ui u j =


uu uv uw

vu v v v w

wu w v w w

 (78)

Due to the symmetric property of the tensor it represents only six unknowns. The
diagonal components are called Reynolds normal stresses and they are the squared
values of the rms values of the velocity fluctuations, which will not give more infor-
mation than what was given in the previous subsection. They will therefore not be
considered further. The other components in the tensor are called Reynolds shear
stresses. The components uv , v w and their corresponding symmetrical components
are very close to zero, and will not be considered further. The important compo-
nent is uw , and will be analyzed further in this section. Equation (37) physically
means that the total shear stress consists of two terms; the viscous shear stress and
the Reynolds shear stress. Figure (7) shows the viscous shear stress and the Reynolds
shear stress compared to Kim’s results, shown in green straight lines. It also shows the
total shear stress, shown in straight black line. The total shear stress should in theory
be a straight line, and the only grid resolution to notably deviate from a straight line
is the 24x24x96 simulation. For grid resolutions the viscous stress fits well with Kim’s
data, while the turbulent shear stress have some discrepancies, especially between
z+ = 20 and z+ = 40, but gradually improving with finer grid resolutions.
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(a) Grid resolution of 24x24x96 (b) Grid resolution of 48x24x96

(c) Grid resolution of 48x48x192

Figure 7: The viscous, turbulent and total shear stress for increasing grid resolutions
compared with data from [1]

5.1.4 VORTICITY

In turbulence the large rotating eddies are broken down into smaller rotating eddies,
as discussed in Chapter (2.2.4). This means that during the whole existence of turbu-
lence, vorticity exists. It is therefore interesting to look at how the vorticity change
over the course of the channel. Vorticity, ~ω, is a vector that measures the rotation at
the points in the flow and is defined by the following equation.

~ω=∇x~V . (79)
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This equation mathematically means that the vorticity is the curl of the velocity field.
Calculation of the rms value of the vorticity fluctuations is done by using the math-
ematical expression, ωiν/u2

τ. Figure (8) shows the different components of the rms
value of the vorticity fluctuations for the different simulations. Kim’s data are shown
in dashed lines. From the figure it can be shown that the wall-normal component is
significantly better in 48x48x192 than in the other two. The other components do
gradually improve. Close to the wall the different components seem to be dependent
of direction, also called anisotropic, but further out they become isotropic, which
means they are independent of direction. Vorticity is mainly caused by small scale
motion and should be affected by change in grid resolution. There are noticeable dis-
crepancies compared to Kim’s data in all directions and throughout the height of the
channel.
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(a) Grid resolution of 24x24x96 (b) Grid resolution of 48x24x96

(c) Grid resolution of 48x48x192

Figure 8: The rms value of the vorticity fluctuations for increasing grid resolutions
compared with data from [1]

5.1.5 DISSIPATION

The dissipation components ε11, ε22 and ε33 for the different cases compared to re-
sults from Kim et al.[1] are shown in Figure (9). The components are computed us-
ing equation (28). For ε11 the simulated cases all have a discrepancy close to the
wall compared to Kim’s data, but moving further away from the wall the discrep-
ancy gets smaller and at around z+ = 80 they seem to coincide. This behaviour is
expected, and applies to all components, because the dissipation is getting smaller



44 R E S U LT S

further away from the wall and thus there are less discrepancies. For ε22 it seems that
the coarser the grid resolution, the better results will be obtained. The dissipation is
mainly caused by small eddies and should normally be affected by the grid resolution
not the domain sizes. This behaviour will be discussed more in the next chapter. For
ε33 the data fits well with the theory that dissipation is affected by the grid resolution
and improves significantly with finer grid resolution.

Figure (10) shows the total dissipation, ε, again compared with Kim’s results. ε is
computed using the last term in equation (27). From the figure it is shown that it has
more or less the same shape as ε11. This is expected because ε11 is bigger than the
other two components and therefore contributes more. The discrepancy is small for
all simulations compared to each other but significant compared to Kim’s data.
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(a) ε11 for increasing grid resolutions. (b) ε22 for increasing grid resolutions.

(c) ε33 for increasing grid resolutions.

Figure 9: The dissipation components for increasing grid resolutions compared with
data from [1]
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(a) Grid resolution of 24x24x96 (b) Grid resolution of 48x24x96

(c) Grid resolution of 48x48x192

Figure 10: The total dissipation for increasing grid resolutions compared with data
from [1]

.

5.2 SHORT DOMAIN SIMULATIONS

The aim of this case is to see how the length, lx , in the streamwise direction is af-
fecting the turbulent quantities. The streamwise length is doubled two times and
should give noticeable results because the base domain size, lx = 1.5 and ly = 0.75, is
a short domain. The grid resolution in the streamwise direction is also changed so as
to keep ∆x = lx/Nx constant. This will make sure the resolution is unchanged, and
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therefore should theoretically only be a domain size effect. It consists of two simula-
tions, as shown in Table (3), where they are compared to each other and to the results
from Kim et al. The finest grid resolution from the Coarse-grid case, 48x48x192, is
included here for comparison. The two simulations used a random velocity profile
to obtain the initial conditions.

5.2.1 MEAN PROPERTIES

The mean velocity profiles are shown in Figure (11). It seems that increasing channel
length gives greater mean velocity. The discrepancy between them is very small. The
mean velocity is mainly caused by large scale motion and should therefore be more
affected by the domain size than the grid resolution.
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(a) Grid resolution of 48x48x192 (b) Grid resolution of 96x48x192

(c) Grid resolution of 192x48x192

Figure 11: The mean velocity profile for the Short-domain case for increasing stream-
wise domain size, lx , compared with data from Kim et al.[1]

5.2.2 TURBULENCE INTENSITIES

Figure (12) shows the rms values for increasing the streamwise length of the domain.
The ur ms is over predicted in the 48x48x192 simulation at around z+ = 15 and then
going towards the half channel it under predicts. For the 96x48x192 simulation it
is very close to Kim’s data until around z+ = 70 and then under predicts all the way
to the half channel. The vr ms seems to under predict over almost the whole range
of the half channel. The last simulation is very close to Kim et al.[1]. Increasing the
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streamwise domain size gives better results for both ur ms and vr ms while for wr ms

they do not change much between the simulations and discrepancies between them
are very small.

(a) Grid resolution of 48x48x192 (b) Grid resolution of 96x48x192

(c) Grid resolution of 192x48x192

Figure 12: The rms value of the velocity fluctuations for the Short-domain case for
increasing streamwise domain size, lx , compared with data from Kim et
al.[1]
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5.2.3 REYNOLDS SHEAR STRESS

Figure (13) shows the Reynolds, viscous and total shear stress. Again, the viscous
stress is also here corresponding well with Kim’s data almost without noticeable dis-
crepancies. The turbulent stress gives slightly better results by increasing the channel
length.

(a) Grid resolution of 48x48x192 (b) Grid resolution of 96x48x192

(c) Grid resolution of 192x48x192

Figure 13: The Reynolds shear stress, viscous shear stress and total shear stress for the
Short-domain case for increasing streamwise domain size compared with
data from Kim et al.[1]
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5.2.4 VORTICITY

Figure (14) shows the rms value of the vorticity fluctuations. Close to the wall the x-
and y-components are improving with increasing streamwise domain size, especially
between 48x48x192 and 96x48x192, while the z-component does not give any notice-
able changes. The discrepancy between 96x48x192 and 192x48x192 is noticeable,
although very small, only in the streamwise direction. Away from the wall none of
the components give any noticeable discrepancies and more or less behaves isotrop-
ically.

(a) Grid resolution of 48x48x192 (b) Grid resolution of 96x48x192

(c) Grid resolution of 192x48x192

Figure 14: The rms value of the vorticity fluctuations for the Short-domain case for
increasing streamwise domain size compared with data from [1]
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5.2.5 DISSIPATION

Figure (15) shows the dissipation components and the total dissipation for increasing
channel length. The dissipation is caused by small scale eddies and it is not expected
for the dissipation to change significantly when increasing the domain size. From the
figure it is clear that increasing the channel length improves the results compared to
Kim’s data. A secondary effect seems to occur and will be discussed further in the
next chapter.

(a) ε11 (b) ε22

(c) ε33 (d) ε

Figure 15: The dissipation components and total dissipation for the Short-domain
case for increasing streamwise domain size compared with data from Kim
et al.
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5.2.6 TWO-POINT CORRELATION

The two-point correlation is used as a tool to decide if the domain sizes are adequate.
The turbulent fluctuations should be uncorrelated in the homogeneous directions.
The two-point correlation is calculated using the following equation.

Ri j (r, t ) = ui (x+ r, t )u j (x, t ) (80)

Figures (16) and (17) shows the two-point correlation, in streamwise and spanwise
directions respectively, for increasing lengths of the channel at the center of the chan-
nel. The figure only shows half the channel due to symmetry. Both the streamwise
and spanwise correlations are getting better and more uncorrelated for longer chan-
nels, but especially R11 still has a value significantly greater than zero for the stream-
wise correlation. For the spanwise direction it improves greatly, but deviates signifi-
cantly from zero in especially R11 and R33. It is difficult to tell whether the channel
width is adequate from the two-point correlation because it is too narrow and there-
fore can interfere with the results.
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(a) Two-point correlation for 48x48x192. (b) Two-point correlation for 96x48x192.

(c) Two-point correlation for 192x48x192.

Figure 16: Two-point correlation in the streamwise direction for increased values of
lx at the center of the channel.
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(a) Two-point correlation for 48x48x192. (b) Two-point correlation for 96x48x192.

(c) Two-point correlation for 192x48x192.

Figure 17: Two-point correlation in the spanwise direction for increased values of lx

at the center of the channel.

5.3 NARROW DOMAIN SIMULATIONS

In this case the domain size in the spanwise direction will be doubled in size two
times from the base domain size. Here the aim is to see how an increase in channel
width will affect the different turbulent quantities. This case consists of two simu-
lations, as shown in Table (4). To conserve space the mean velocity profile is not
included. The reason for not including it is that it does not have noticeable discrep-
ancies compared to the 48x48x192 simulation which is shown in the two previous
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sections. The mean velocities have reached satisfying results in almost all simula-
tions and there is not much to gain increasing the channel width nor the channel
length. Again, the 48x48x192 simulation is included here for comparison. To obtain
the initial conditions the two simulations used a random velocity profile.

5.3.1 TURBULENCE INTENSITIES

Figure (18) shows the rms values of the velocity fluctuations and shows noticeable
changes for the different simulations in the streamwise direction, while the other two
directions have very small discrepancies. The discrepancies towards the results of
Kim et al.[1] are significant.
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(a) Rms values of velocity fluctuations for
48x48x192.

(b) Rms values of velocity fluctuations for
48x96x192.

(c) Rms values of velocity fluctuations for
48x192x192.

Figure 18: Turbulence intensities for increasing channel width ly .

5.3.2 REYNOLDS SHEAR STRESS

Figure (19) shows the viscous, turbulent and total shear stress for increasing values
of the channel width. At the top of the turbulent shear stress curve there are some
differences between the simulations, but other than that they are close to each other
and correspond well with Kim et al.[1]. The discrepancies gradually improve with
increased channel width.
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(a) Grid resolution of 48x48x192. (b) Grid resolution of 48x96x192.

(c) Grid resolution of 48x192x192.

Figure 19: Viscous, turbulent and total shear stress for increasing values of domain
width ly .

5.3.3 VORTICITY

Figure (20) shows the rms values of the vorticity, which are small scale motion and
should not be much affect by domain changes. As can be seen from the figure this is
also the case. None of the components change much between the simulations and
correspond well with Kim’s results.
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(a) Grid resolution of 48x48x192. (b) Grid resolution of 48x96x192.

(c) Grid resolution of 48x192x192.

Figure 20: Rms of vorticity for increasing values of domain width ly .

5.3.4 DISSIPATION

Figure (21) shows the dissipation components and the total dissipation for increased
values of the channel width. As shown in the figure increasing the channel width does
not give significantly better results and the discrepancy is small. This case shows
significantly worse results compared to increasing the channel length, which gave
data that changed and improved a lot between the simulations. This shows that the
secondary domain effect that occurred in the Short-domain case is smaller or non-
existent here.
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(a) ε11 for increasing values of ly . (b) ε22 for increasing values of ly .

(c) ε33 for increasing values of ly . (d) ε for increasing values of ly .

Figure 21: The dissipation components and the total dissipation for the Narrow-
domain case for increasing values of the width compared with data from
Kim et al.

5.3.5 TWO-POINT CORRELATION

The two-point correlation in the streamwise and spanwise direction, at the center of
the channel, are shown in Figures (22) and (23) respectively. In the streamwise direc-
tion the two-point correlation does not change much, but deviates much from zero
and means that the channel length, lx = 1.5, is too short. In spanwise direction the
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two-point correlation gradually gets better and all of the components are approach-
ing zero, which means that the channel width is sufficiently large at ly = 3.

(a) Two-point correlation for 48x48x192. (b) Two-point correlation for 48x96x192.

(c) Two-point correlation for 48x192x192.

Figure 22: Two-point correlation in the streamwise direction for increased values of
lx at the center of the channel.
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(a) Two-point correlation for 48x48x192. (b) Two-point correlation for 48x96x192.

(c) Two-point correlation for 48x192x192.

Figure 23: Two-point correlation in the spanwise direction for increased values of lx

at the center of the channel.

5.4 LARGE-DOMAIN SIMULATIONS

Large-domain simulations is the last case presented here and consists of one simu-
lation with increased channel length and channel width to a domain size of lx = 6
and ly = 3 and grid resolution of 192x192x192. From the previous two sections it is
clear that the Short-domain case gives significantly better results than the Narrow-
domain case, and to better be able to see the effect of a larger domain it was decided
to include the Large-domain case. It is interesting to look at the different quantities
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to see if the results are getting better by increasing the domain sizes in both direc-
tions. That way it can be shown which of the two directions will give better results by
increasing the domain size and also show if the domain size is adequate through the
two-point correlation. This domain size is nearly the same as used by Kim et al.[1],
which is 4πδx2πδx2δ. This is true because Kim et al. has 2δ in wall normal direction
and dividing the domain size by two will yield 2πδxπδxδ.

Figure (24) shows the mean velocity profile, rms value of the velocity fluctuations,
viscous shear stress, turbulent shear stress, total shear stress and rms value of the
vorticity. By comparing these quantities with the other previous cases it is clear that
there are improvements for most of them, but there is more improvement compared
to the Narrow-domain simulation than compared with Short-domain. Figure (25)
shows the dissipation components and the total dissipation for this case. The dis-
sipation shows little change compared to the Short-domain case, which is expected
due to the small scale properties.



64 R E S U LT S

(a) Mean velocity profile. (b) Rms values of velocity fluctuations.

(c) Viscous, turbulent and total shear stress. (d) Rms values of vorticity.

Figure 24: Mean velocity profile, rms values of the velocity fluctuations, turbulent-,
viscous- and total shear stress, and rms values of the vorticity for the do-
main size lx = 6 and ly = 3.
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(a) ε11. (b) ε22.

(c) ε33. (d) ε.

Figure 25: The dissipation components and the total dissipation for the Large-
domain case compared with data from Kim et al.

5.4.1 TWO-POINT CORRELATION

Figure (26) shows the two-point correlation of the velocity for the streamwise and
the spanwise directions for the domain sizes of lx = 6 and ly = 3, and grid resolution
of 192x192x192. The two-point correlation approaches values close to zero for both
directions, which means that the velocities are close to be uncorrelated and that the
domain is large enough in both directions.
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(a) Two-point correlation in the streamwise di-
rection.

(b) Two-point correlation in the spanwise di-
rection.

Figure 26: Two-point correlation for both the streamwise and spanwise directions for
domain sizes of lx = 6 and ly = 3.
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D I S C U S S I O N

This chapter discusses some of the main results obtained from the Direct Numerical
Simulations performed. It will be structured more or less the same way as in the prob-
lem formulation, starting with the four cases, discuss the guidelines for required do-
main size and grid resolution, and briefly suggests further work.

6.1 DISCUSSION

6.1.1 COARSE-GRID SIMULATIONS

In this case the domain size is kept constant equal to lx = 1.5 and ly = 0.75, while
the grid resolution increases. The domain size and the grid resolutions used here are
considered very small and it is expected to give noticeable discrepancies compared
to Kim et al.[1]. The expected behaviour would be that the quantities caused by large
scale motion do not change much with increasing grid resolution, while the quan-
tities caused by small scale motion should be affected in an improving manner by
finer grid resolutions. For the mean properties and turbulence intensities, which are
caused by large scale motion, this reflects for the most part the results obtained, but
for the most coarse grid resolution the discrepancy is significant compared to the
other simulations. Domain size effect seems to be a secondary effect for the mean
velocity profile, for the obvious reason that the domain size is too small.

As stated earlier the vorticity and dissipation are mainly caused by small scale motion
and to solve even the smallest scales the grid resolution need to be sufficiently fine.
It is clear that the vorticity is affected by increased grid resolution. In the 48x48x192
simulation the vorticity is significantly better than the other two simulations in z-
component. In the other two directions it improves gradually from the most coarse to
the finest grid resolution. The dissipation components and the total dissipation all do
change significantly with the change of grid resolution. The dissipation component
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ε11 shows small but noticeable changes between the simulations. The component
ε22 shows a strange pattern, with a decreasing value for increasing grid resolution
close to the wall and until around z+ = 30 and then they intersect each other. Fur-
ther away from the wall, z+ > 30, the value increases with increased grid resolution.
The last component, ε33, increases its value with increasing grid resolution, which is
expected. From the theoretic fact that grid resolution should affect small scale mo-
tion much more than large scale motion it is possible that for this small domain a
secondary effect is occurring and is interfering. This secondary effect seems to be a
domain effect, where the domain is too small. Whether it is the length or the width,
or both is unknown. This makes the results unpredictable and unreliable.

6.1.2 SHORT-DOMAIN SIMULATIONS

The streamwise component of the grid resolution and the channel length have been
doubled two times to see the effects of a longer domain in the streamwise direction.
The grid spacing is kept constant, which means that the resolution is the same. Since
the grid spacing is kept constant the effect should come from the domain size. The
expected outcome is that the turbulence statistics will be unchanged or improving,
and therefore get closer to the results obtained by Kim et al.[1]. Some of the quanti-
ties will have greater improvement than others due to whether they are large scale or
small scale motion. The mean velocity profile has very small changes and has been
stable over the course of the simulations, and correspond very well with Kim’s results.
Another large scale quantity, the rms value of the velocity fluctuations, improved sig-
nificantly around z+ = 10 to z+ = 20 in the streamwise direction from lx = 1.5 to lx = 3,
but when doubled again it did not change noticeably. The other two directions did
not show any significant changes. This suggests that the domain sizes in this case
(lx = 3 and lx = 6) gives satisfying results.

For the small scale quantities rms value of the vorticity and the dissipation the im-
provements are noticeable and are gradually getting closer to the results of Kim et
al.[1] for increasing values of the channel length. The two simulations with the longest
channels are much closer to each other compared to the shortest one (lx = 1.5), which
is said to be unreliable and shows signs of grid effect due to the significant discrep-
ancy in dissipation. This is in accordance with what is expected when increasing the
domain size and implies that the channel length was too short when lx = 1.5. The
two-point correlations for both the streamwise and spanwise directions are clearly
getting better after increasing the length of the channel, which means that it is get-
ting more uncorrelated the longer the domain. For the streamwise direction R22 and
R33 are close to zero, but R11 is a little bit higher than zero. The two-point correla-
tion in the spanwise direction also gets better with increasing length, but has more
discrepancies than in streamwise direction. This shows that the domain still is not
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adequate and that the channel width is too narrow and can interfere with the results.
The effect of increasing the width will be addressed in the next section.

6.1.3 NARROW-DOMAIN SIMULATIONS

In this case the width of the channel has been doubled two times to see the effect of
a wider channel. The other directions have been kept constant and equal to the base
grid resolution and domain, which are 48x48x192 and lx = 1.5, ly = 0.75. To keep the
grid spacing constant, the grid resolution in the spanwise direction was also doubled
twice. As mentioned in the previous subsection the effect should mainly be the do-
main size and not grid effect.

The turbulence intensities show small changes in the streamwise direction, and not
much in the other two directions. The Reynolds and the viscous shear stress shows in-
significant changes. The rms of the vorticity also shows no significant changes with
increased channel width, while the dissipation simulations have noticeable differ-
ences, although less than for the Short-domain case. Even though the differences
between the simulations are not so big, the discrepancies towards the data from Kim
et al.[1] are greater than for the Short-domain case. This suggests that the effect of a
too short channel is significantly greater than a too narrow channel. The two-point
correlation clearly shows that the channel width of the widest channel simulation is
adequate. The next section will discuss how the large-domain will affect the results.

6.1.4 LARGE-DOMAIN SIMULATIONS

The domain size in this case is very close to the one used in Kim et al.[1], although
with different grid resolution, so the expected results should be close to their results.
Even though the DNS code used by both Kim et al.[1] and the one used in this thesis
are considered good, they are different and a discrepancy is to be expected.

The mean velocity profile and the turbulence intensities do not show significant dis-
crepancies compared to the short-domain case. This can be interpreted as that the
effect of increasing the channel width from the base domain size is insignificant. The
Reynolds shear stresses only have small discrepancies around z+ = 10 and z+ = 20
in the Short-domain and Narrow-domain cases compared to the Large-domain case.
The rms of vorticity does not show any significant changes compared to the Short-
domain case, but in the Narrow-domain case there are discrepancies in both x- and
y-components. The dissipation components are not changing much compared with
the Short-domain case. Compared to the Narrow-domain there are significant dis-
crepancies for all dissipation components, where the Large-domain case shows sig-
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nificantly better results. It cannot be determined in general whether increasing the
channel length has a greater effect than increasing the channel width, but by look-
ing at the large scale quantities and the comparisons between the Short-domain and
Narrow-domain cases it can be concluded that in these simulations the effect of in-
creasing the channel length is greater than increasing the channel width.

The two-point correlation approaches values close to zero in both the streamwise
and spanwise directions for all components, but R11 in both directions deviates a
little bit while the other two directions are very close to zero. This means that the
velocities are close to be uncorrelated and therefore the domain size is considered to
be adequate.

6.1.5 GUIDELINES FOR REQUIRED DOMAIN SIZE AND GRID RESOLUTION

From the previous sections it has become clear that increasing the channel length
has a greater effect than increasing the channel width. It is also clear that the Large-
domain case did not yield significantly better results compared to the two simula-
tions in the Short-domain case. The analysis of the two-point correlations shows that
the Large-domain case had an adequate domain size, while the domain sizes for the
Short-domain case was less adequate. With this in mind it seems that using both the
domain sizes in the Short-domain case, of lx = 3, ly = 0.75 and lx = 6 and ly = 0.75,
with corresponding grid resolutions, give satisfying and adequate results. If the cost
of the simulations allows, it is still recommended that 192x192x192 with domain size
lx = 6 and ly = 3 is used to be sure that the domain is adequate in both the channel
length and width.

6.1.6 FURTHER WORK

A natural continuation of this work would be to increase the Reynolds number and
see how it will affect the turbulence statistics. Due to time limitation this task was
not done properly and was therefore excluded from the thesis. It is also interesting
to see whether the same patterns explained in the previous sections appears when
increasing the Reynolds number. Another interesting thing to do would be to use
a finer grid resolution and see how much better the results will correspond to Kim
et al.[1]. It can also be interesting to use a finer grid resolution while keeping the
domain size constant, and then see if the small scale quantities will improve. Further,
the Kolmogorov micro scales could be calculated to see how much it deviates from
the grid size used in this thesis.
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The results from the Coarse-grid simulations shows that for the large scale quanti-
ties mean velocity profile and rms of velocity fluctuations the two most coarse grid
resolutions have a significant discrepancy, while the discrepancy gets smaller with
finer resolutions. The Reynolds shear stress shows the same pattern. The small scale
quantities, rms of vorticity and dissipation, have significant discrepancies for some
of the components. The rms of vorticity improves for increasing grid resolution. The
dissipation component ε11 has insignificant discrepancy. ε22 has an odd behaviour
in that close to the wall it starts to decrease with increasing grid resolution, but go-
ing further away from the wall the opposite behaviour occurs. A possible reason is
that the domain is so small that the dissipation is affected by the domain size and the
data might be unreliable. ε33 has an expected behaviour with increased value with
increasing grid resolution. For the Short-domain and Narrow-domain cases the do-
main size increases in the streamwise and spanwise directions respectively. The large
scale quantities does not change noticeably, but the Narrow-domain case shows a sig-
nificant discrepancy compared to both Short-domain and Kim et al. The rms of vor-
ticity does not change noticeably in neither Short-domain nor the Narrow-domain
case. For the dissipation in Short-domain the two channels have a significant dis-
crepancy towards the shortest channel of length lx = 1.5. This suggests that lx = 1.5
is too short, and that a grid effect occurs. In the Narrow-domain case the dissipation
components have less discrepancy compared to each other, but bigger compared to
Kim’s data, than Short-domain. The two-point correlation shows that the two chan-
nels in the Short-domain case deviate a little bit from zero in the streamwise direction
and in the Narrow-domain case only the widest channel is adequate in the spanwise
direction. The Large-domain case is very close to the domain size used in Kim et
al.[1] and shows that both the streamwise and spanwise domain size are adequate.
The data obtained in this case are satisfying. The discrepancy between the Large-
domain case compared to the two domains lx = 3, ly = 0.75, and lx = 6, ly = 0.75 is
small. This indicates that both domain sizes in the Short-domain case are satisfying.
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Another conclusive remark is that increasing the channel length has a greater impact
than increasing the channel width.
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