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Abstract: 
 

Characterization of Epoxy (diglycidyl ether of Bis-phenol A cured with Tri ethylene 

Tetra amine) without fillers was done. The Water absorption test at 95°C shows that at 

saturation the epoxy contains a water concentration of 2.089%. The diffusion coefficient 

of absorption is calculated as 0.021 cm2/s. The diffusion coefficient of desorption is 

calculated as 0.0987 cm2/s. The diffusion is almost 5 times faster than absorption. Also 

the material looses weight as the hydrothermal aging progresses. The water in the sample 

leads to chain scission which leads to the weight loss. The weight loss is more incase of 

absorption followed by desorption than only absorption. The chain scission leads to 

decrease in the mechanical strength by around 45%. The diffusion of water from the 

samples doesn’t affect the mechanical strength of the materials. The glass transition 

temperature reduces by 20°C with water inside the sample. The diffusion of water out of 

the sample only increases by around 10°C. The Dielectric response of the material shows 

that after the water absorption the sample shows high losses at lower frequencies. Also 

the increase in the real part of the permittivity increases with low frequency. The rapid 

increase in the real art of the permittivity of the material at lower frequencies can be 

attributed to a polarization at the electrode due both to accumulation of the charge 

carriers and to chain migrations. The breakdown test of the samples shows that with 

water in the sample the breakdown strength of the material decreases by 10 KV, but the 

material regains its dielectric strength when the water is diffused out. This shows that the 

chain scission and weight loss of the samples has no or minimum effect on the dielectric 

strength of the sample.  
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1 Introduction: 
Epoxy resins have become an essential part of insulation materials since their 

commercial introduction over 60 years ago. The versatility, stability under adverse 

conditions, and ease of use has significantly improved the electrical equipment that relies 

on their insulating abilities. From the smallest computer to chip to the largest motors and 

generators, epoxy polymers serve their purpose and are required to do this for long period 

of time. The evolution in both equipments and materials have been used a close 

observation of the processes to ensure solutions to the inevitable problems. 

Several conventions will be used in this paper to simplify discussions. Epoxy 

resins will refer to the uncured material, still containing epoxy rings intended for 

polymerization. The resin will frequently be compounded with other components to 

achieve the desired properties in the final polymer. Once the system is cured, the material 

becomes an “epoxy polymer”.  

The conversion from resin to polymer is a chemical reaction that must be carried 

out every time in a proper fashion. Any change that can affect the rate of a chemical 

reaction can affect the final properties of the epoxy polymer. 

 

 

2 Literature review: 
 

2.1 General Epoxy Chemistry: 
 Epoxy resins are a family of thermoset polymers in which two components are 

mixed to eventually form a glassy product at room temperature which has reasonable 

electrical insulating properties. Many different curing agents are used to bring about 

cross-linking if this resin. The action of the curing agent or the “hardener” is to open and 

join into the epoxide rings. Cross-linking in cured epoxies can be very high and an 

extensive network of connections with high mechanical rigidity is produced.  

To improve the physical and mechanical properties of the end product and also to 

control the cost, the epoxy resins are loaded with fiber-glass, fumed silica, and other 
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inorganic particulates fillers. Cast resin polymers are compounds that are formulated by 

mixing resin with hardener, filler, plasticizer, and colouring pigments. Here fillers may 

constitute 50% or more of the compound weight, during curing phase, epoxy may shrink 

by about 3%, which is reduced to less than 0.5% by adding mineral fillers. 

Epoxy resin chemistry is based of the reaction if three membered rings of two 

carbons and an oxygen atom known as the oxirane group, commonly known as the epoxy 

group. This chemical reaction of the groups has been known for many years but only 

during the post World War II period sufficient raw materials containing the epoxy group 

were commercially available. Dow Chemicals, Ciba-Geigy and Shell Oil were early 

innovators in developing processes for the large scale production of materials containing 

this reactive group [1]. 

 Insulation industry is not a large user of epoxy resin compared with other resin 

users in the chemical industry. Hence, the resins to be used for insulation must be 

available from the industry for other widespread uses, and electrical insulation must be 

“piggy-bagged” onto the larger uses. The largest quantity material made is the diglycidyl 

ether of Bis-phenol A, which is known by the acronym, BPADGE, and is made by the 

reaction of ephichlorohydrin with Bis-phenol A. The simple BPADGA (n=0) is a 

crystalline material (mp ≈ 35° C), which creates formulation problems. The displacement 

reaction is therefore carried out so there are additional reactions of the phenol with the 

epoxy group to form dimmers or oligomers. The resulting mixture then remains a viscous 

liquid, which is easier to handle in subsequent formulations using the epoxy resin. A 

range of molecular weight material is available from manufacturers, where the n in Fig. 1 

can have a variety of values from 0.1 to 100.  

There are numerous agents that react with epoxy resins to convert them to 

insulation polymers in the process called cure. The choice of system is dictated by the 

method of application, the cure process, and the properties wanted both in the uncured 

resin and in the final polymer. The polymer properties are affected by the curing agent as 

they are incorporated into the polymer.  The common curing processes are: 

 

Amine Cure: A common cure system is to use a multifunctional amine to react 

with the bis epoxy resins. The ring polymerizes by the amine which adds to the epoxy 

group to form an amino alcohol . The amine cures, the process can actually stop at this 
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stage, although some more additions can occur with the amine if secondary hydrogen is 

present. However, the usual process involves other amines reaction with other epoxy 

groups to form the final network of the crossed material.  

In low molecular weight amines, the concentration of amine groups is high so that 

the heat of reaction becomes a serious problem, leading to runaway reaction and product 

charring. Also, the lower molecular weight amines tend to have toxic characteristics and 

their use is to be avoided. One of the ways to eliminate the low molecular weight amines 

is to use a polyamide. This is an oligomeric product of the reaction of amines with acids. 

While polyamides contain amide groups that can react through any hydrogen on the 

amide nitrogen, the reactant for the epoxies is generally the amines on the end of the 

amide chains. The reduction in concentration and the higher molecular weight solves the 

high reactivity and the toxicity problems, and the use of the amide chains provides an 

additional way to vary the physical properties of the end polymer.  

Acid Cure: The cationic polymerization of the epoxy by an acid or cation 

proceeds by a different mechanism than the amine polymerization. The acid adds to the 

oxygen of the epoxy ring and opens to the carbonium ion intermediate. This intermediate 

can in turn add to another epoxy ring.  This process is actually a chain addition reaction 

and results in many rings being polymerized with each acid or cation, in contrast with the 

previously mentioned amine case, where only one or two rings are polymerized with each 

amine group. Finally, the carbonium ion ether acquires a hydrogen atom or reacts further 

with another epoxy, continuing the polymerization.  

 

The epoxy unit, when polymerized by a ring opening process, releases energy to 

the system. This is not an insignificant amount of heat. One who has mixed considerable 

amount of epoxy resin will know. The exotherm can be quite vigorous at its extreme. The 

heat release must be controlled, but since it is depended upon for many cures, it cannot be 

totally eliminated. However, the heat rise of the exotherm is important, especially in 

systems where it is difficult to provide enough heat for cure. For example, room 

temperature cure epoxies do not generally give satisfactory physical properties unless 

there is enough material present to create an exotherm, which provides enough heat to 

cure the resin.  
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Cure of epoxy resins is ended when all available epoxy groups have been opened 

and their energy released. The usual method of determining cure on a laboratory scale is 

with differential scanning calorimetry (DSC), which measures the residual heat in a given 

sample. The method is particularly valuable for determining when the bulk of the heat is 

released but becomes less sensitive as the end of the reaction is approached and the 

concentration of remaining epoxy group diminishes. Because most of the important 

physical and electrical properties are generated in the final stages of cure, it is very 

important to be able to follow this part of the cure system.    

The glass transition temperature (Tg) is the temperature where the polymer 

undergoes a transition from the glassy, brittle and rigid state at the lower temperature to 

the rubbery or flexible state. At a high temperature, polymer can reach the melting point 

(Tm) where the rubbery polymer becomes liquid and begins to flow. In the case where 

the polymer is cross-linked, as with epoxies, there is no melting point and the polymer 

does not reach the point where it starts to flow. Molecular movement is severely limited 

below Tg, and cure effectively stops once the Tg is reached by the polymer, since the 

molecules cannot slide around anymore. 

 The presence of hydroxyl group in the polymer that results from the ring opening 

polymerization makes the polymer susceptible to water absorption. The water can cause 

the polymer to lose some strength which is present in the dry polymer. This is worse 

when the use temperature is near or above Tg, because the water effect causes a 

disastrous failure. It is knows that water can cause a 20° to 30°C drop in Tg of an 

epoxy[1]. This drop can cause the tensile strength of the epoxy to drop from 40% to 75% 

[1]. 

When more cross links are present the drop in Tg is lower. And the drop in tensile 

strength is less. There is some indication that the use of anhydrides for cure allows the 

epoxy polymer to have better properties when the polymer is used at temperatures 

slightly above Tg.  

One of the uses of epoxy potting material is to conduct heat through the polymer. 

This heat can be as simple as the heat of reaction of the polymerization, a one-time 

problem during the curing cycle. It can also be important during the use of the system 

where heat much be conducted away from an active part to a heat sink. Most polymers 

conduct heat at about the same rate where the thermal conductivity (TC) is from .17 to 
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.22 watts/meter-degrees Kelvin (W/mK). This number can be increased by the addition of 

inorganic fillers. By mixing 30% to 40% by weight of these fillers the TC can be raised to 

.31 W/mK. Even higher value can be reached using glass fibers, or in the case of high 

voltage application, 50% or more mica can be used to reach value of .35-.4 W/mk [1] .  

2.2 Water absorption in Epoxy  
 
It has been long known that epoxy and epoxy composites easily absorb water when 

exposed to humid environments. This reduces the stable lifetime of the material. 

Experiments show that the water in epoxy is present in two states [7]: 

• Evenly distributed water molecules between the polymer chain 

• Condensed water in fractures and cavities. 

 

In Epoxy with mineral fillers it has been seen that water destroys the bond at the interface 

between the filler and polymer. This creates additional cavities along the fibers that can 

be filled with water. 

 
Although the sorption processes of liquids and vapour in glassy polymers follow complex 

water diffusion mechanisms in epoxy resin matrices, their behaviour has frequently been 

found to approximate to that corresponding to Fickian diffusion. The characteristics of 

Fickian diffusion have been described as under: 

 

• The sorption curves are linear in the initial stages. 

 

• Above the linear portion both absorption and desorption curves are concave to the 

abscissa. For absorption the linear region extends to over 60% or more of the 

region studied. 

 

• When a series of reduced absorption curves are plotted for films of different 

thickness, the curves are super-imposable. 

 



 
Figure 1: Water absorption in epoxy with mineral fillers. Sample thickness of 5.3 μm [7] . 

 
 
 
 
 
 

3 Procedure Methods and Experimentation:  
 

3.1 Work Outline: 
 

The main aim of the project is characterization of unfilled epoxy polymer (bis- 

phenol A cured by amine). The raw material used for epoxy casting was RenLam© CY 

219 (epoxy resin) and Ren© HY5160. These are procured from the company Huntsman. 

The work for this thesis includes making epoxy samples and then performing different 

tests on them for characterization.  The casting was done using two different ways. In one 

way the resin and the hardener was mixed manually and then put in to a form then the 

mixture is vacuum cured at 60° C. In the other method the mixture of the resin and 

hardener was mixed in the machine and then put into the forms and then vacuum cured at 

60° C. Both the samples were studied for dielectric response to find if there is any 

difference due to the way of mixing the resin and hardener before curing.  

 For the ease of mixing large quantity of epoxy resin and hardener, the materials 

for all samples casted were mixed in the machines. The samples were casted in different 

shapes for different kind of tests. The following are the shapes, in which the epoxy 

samples are casted, 
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• Disc ( 1mm thick X 10 mm diameter )  

• Dog bone shaped ( 4 mm X 115 mm  X 10 mm )  

• Rogowski shaped ( 1mm think )  

 
Figure 2: “Dog bone” shaped Epoxy sample 

 
Figure 3:  Disc epoxy samples 

 
Figure 4 : Rogowski samples for breakdown. 
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To study the effect of electrode material on dielectric response one of the disc shaped 

sample was casted with one side with aluminum foil casted into it. The aluminum foil 

acts as the high voltage electrode. In the other sample the sides of the epoxy were painted 

with silver paint, which acted as the high voltage electrode.  

 The main characterization of the unfilled epoxy sample was done on the basis of 

water absorption at 95° C. The following are the tests performed on the sample; 

 

• Dielectric response  

• Glass Transition Temperature 

• Mechanical Strength ( stress – strain curve)  

• Breakdown Strength. 

Also the absorption and desorption coefficients for the material was found.  

 

4 Casting of Epoxy samples:  
 

 For the casting of the epoxy samples RenLam© CY 219 and Ren© HY 5160 were 

used. RenLam© CY 219 is the epoxy resin and Ren© HY 5160 is the hardener. They are 

mixed with each other in the proportion 100 (RenLam© CY 219) : 50 (Ren© HY 5160) by 

weight. CY 219 is a diglycidyl ether of bis-phenol A, which is known by the Acronym, 

BPADGE. HY 5160 is hardener containing a multifunctional amine. The things that have 

to taken care of while mixing manually that the mixture should not contain any trapped 

air bubbles, as it is very easy if proper care is not taken to introduce air bubbles, in the 

resin and hardener mixture. Also the resin and the hardener are to be mixed thoroughly, 

else the polymerization is not proper and the physical, mechanical and electrical 

properties of the polymer are not to the level expected. While the mixture is put into the 

cast again care should be taken not to introduce any air bubble in the mixture. Though 

this is very hard and practically impossible hence the curing is done in a vacuum oven. 

The trapped air bubbles are released when the vacuum is turned on. Another important 

thing to take care of is that sufficient Teflon spay is to be added on the surface of the cast 

so that the cured epoxy can be easily removed. This is necessary as the thickness of some 



samples are small (1mm) hence the samples may break while removing it from the cast if 

they are stuck to the cast. The figure below shows the pictures of the casted epoxy 

samples. One sample is casted with aluminum foil on one side. This is used as an 

electrode for measuring the dielectric response. The effect of electrode material is 

studied. On the other samples the electrode was silver paint. As shown in Fig 6. Due to 

the shrinkage problem the casting to epoxy with aluminum foil is difficult as the cured 

epoxy is not a flat disc it gets a bit curved and hence causes trouble while placing it in the 

arrangement for measuring the dielectric response. The other samples are made in 

Machine and applied silver paints on both sides as shown in the Fig 5. The samples were 

very good and flat. Hence the tests are carried on the samples with electrodes as silver 

paint. Also the samples were easy to cast with the machines than manually.  

 

Figure 5: Epoxy samples casted in machine. With silver painted electrodes. 
 

 
 

 
Figure 6: Epoxy samples manually casted. With aluminium foil as electrode. 
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5 Equipments Used 
 

5.1 IDAX 206 
 
The IDAX 206 is an insulation diagnostic system designed and manufactured by “PAX 

Diagnostics”. It employs the principle of dielectric spectroscopy as described in section 

2.4, and balances out the capacitive current before measuring it. 

 

The IDAX 206 is by designed intended for performing insulation diagnostic in the field, 

for instance on transformers, high voltage cables, bushings etc. It has two built in signal 

generators capable of generating sinusoidal voltage of 10V peak and 200V peak 

respectively. The frequency range is between 0.1 mHz to 1 kHz using the built in voltage 

sources. The voltage is measured by a voltmeter and the current is measured by 

electrometer acting as a current to voltage converter. The analogue signals are then 

converted to digital samples used in calculations. 

 

The system operates fully standalone, essentially containing a PC with a slimed down 

version of Windows Xp operating system for embedded systems and a hard drive for 

storing measurement data. Measurements are programmed using a specialized scripting 

language, and executed through instrument control software. The instrument is capable of 

calculating any of the parameters in different insulation models, and can also export the 

calculated values to text files for manual post-processing.  

 

 

 

 

 

 

 

 

 
Figure 7: IDAX 206 
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5.2 Mettler Toledo AT250 
 

The Mettler Toledo AT250 is a precision scale for measuring weights up to 200g with a 

resolution of 0.01 mg. It calibrates itself automatically when it detects a change in 

temperature or relative humidity. It is shown in Figure:8 

 

 
Figure 8: Mettler Toledo AT250 

 

 

 

5.3 Mettler Toledo DSC822 
 
Mettler Toledo DSC822 is Differential scanning calorimetry equipment. It can measure 

the Glass Transition temperature of the given polymer samples. It is shown in Fig 9. 
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Figure 9: DSC822 

 

 

5.4 Lloyd Instruments LR 5K: 
 

Lloyd Instruments LR 5K is the equipment for applying the tensile force on the dog bone 

shaped objects. This unit is connected with a computer which records all the data of the 

stress and the Extension during the test. This equipment can apply tensile force upto 5 

Kilo Newton.  

 15



 
Figure 10: LR 5K 

 

 

6 Tests Performed (Experimentation): 
 
 
To characterize the epoxy material Different tests were performed. The following tests 

were performed: 

 To study the effect of electrode material two samples were taken. One of the 

samples was casted with aluminum foil casted on one side to be used as the high voltage 

electrode; where as in the other sample there was no metal foil casted, the surface of this 

sample was painted with silver paint. Both the samples were tested for Dielectric 

response for frequency range 1000 Hz to 0.01 Hz. The results were noted. The value of 

dielectric loss factor and permittivity (both real and imaginary part) were studied.  

 The samples were put in water at 95°C and the water absorption and desorption 

were studied. The graph of water content as a percentage of weight of the polymer versus 

time is plotted and the coefficient of absorption and desorption were found out.  
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 Dielectric response test was done on the samples in three different stages, namely 

in Dry condition before the start of water absorption, after the samples are kept under 

water for absorption at 95°C (hydro thermal ageing) in wet condition and after the 

desorption is done. The results were documented and the effects of the water in the 

samples in the dielectric response were discussed. Also the effect of hydrothermal aging 

is on dielectric response is discussed.  

 The glass transition temperature (Tg) of the samples were found using DSC 

(Differential Scanning Calorimetry). The Tg is measured in the samples in dry condition 

before the water absorption process, then in samples after the water absorption process 

with moisture in the sample, and then in sample after the desorption. The effect of water 

on the Tg of the epoxy polymer is studied and the result is documented and discussed.  

 The mechanical strength of the epoxy polymer is studied. A destructive test has 

been performed. A tensile force is applied to the dog bone shaped samples till it breaks 

and the stress versus strain curve is plotted. This test is also done in dry sample before 

water absorption, then in sample which was kept under water at 95°C for absorption, and 

in sample which has undergone absorption and desorption at 95° C. The difference 

between the stress-strain curves is documented and discussed.  

 Breakdown testing is done in Rogowski shaped object to find the dielectric 

breakdown strength of the materials at different condition to study the effect of water in 

Dielectric breakdown strength of the material. The test is again performed on three type 

of samples, Dry samples (before water absorption), Wet samples (after water absorption 

at 95°C), and on samples after desorption. The breakdown strengths of the materials is 

documented and discussed.  

 

 

 

 

 

 

 

 



7 Results and Discussion: 
 

7.1 Effect of Electrode Material on Dielectric response: 
 The effect of electrode material on the dielectric response of the material was 

studied. On one sample the high voltage electrode is painted with silver paint. On the 

other sample the aluminum foil which is casted on to the sample is used as the high 

voltage electrode. The measuring electrodes of both the samples are silver painted. Fig 

11. 

 

 

 
Figure 11: Dielectric losses for sample with two different types of electrodes 

 

 The dielectric response test was performed on both the samples. The frequency 

range used was from 1000 Hz to 0.1 Hz. The dielectric losses at high frequency for both 

the samples don’t have much difference. But at lower frequencies the losses of the 

sample with silver paint is higher.  As can be seen from the graph the dielectric response 

of the material is affected by the materials of the electrode used.  The aluminum foil 

casted onto the sample and that is the fact that there is perfect connection between the 

electrode and the epoxy. As there the silver paint is applied on the sample there are some 
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gaps in the connection. As the surface of the epoxy is not uniform in the micro level, the 

silver painted electrodes has some interface with the epoxy. Hence there is an interfacial 

polarization. This polarization loss adds to the dielectric loss. At lower frequency this is 

clearly visible by the increased loss with the sample with silver paint. As interfacial 

polarization in a relaxation mechanism, at lower frequency it is dominant and at higher 

frequencies it is negligible. Also the Work function of Aluminum is lower than that of 

silver. An shrinkage of the epoxy was seen when the aluminium foil is casted into it. This 

skrinkage might crease voids on the contact between epoxy and the foil. This give rise to 

many problems like partial discharge. Also if water is absorbed my the sample it may 

condensate in to the voids giving rise to high losses and early breakdown. 

 

7.2 Water absorption and desorption in Epoxy: 
 The samples as shown in Fig 2 are kept under water at 95°C in a heating cabinet. 

The weights of samples were measured from time to time and the weight gain was noted. 

The graph percentage weight gain with against time was plotted. It is seen that the 

absorption process here is following the Fick’s law. A curve fitting was done. The 

equation used for fitting the curve is  

 
0.75( )(1 ( )K XY Cs e ×= −                                                1                            

Where, 

Cs = water concentration at saturation 

K = how close to saturation the sample is.  
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Figure 12: Water absorption Graph 

 

 

The curve fitting is done in the software Grapher 4. Both the above parameters are 

adjusted to fit the graph so that the closest fitting is got to the points obtained 

experimentally. The Graph of water absorption is shown below.  

The diffusion coefficient is calculated and is presented in Table 1.  

 

 

Temperature Absorption

Coefficient

(cm2/s) 

Saturation at 

Concentration

(% of weight)

95°C 0.021 2.089 
Table 1: Diffusion Coefficient 

 

 As can be seen from the absorption curve, initially, the resin gains weight linearly 

with time, the rate then decreases and the polymer starts loosing weight after around 
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75hours of aging. However, this absorption was not accompanied by any visible damage 

to the material. 

 

 From the absorption curve, it can be clearly seen that the residual weight change, 

ΔW, as a function of initial weight, W0, increased initially, and was then followed by a 

reduction that led eventually to a weight loss. This behavior suggests irreversible trapping 

of water and degradation of the polymeric structure during hydrothermal aging. This 

result is in good agreement with Ref [14], where a commercial epoxy resin based on 

DGEBA was studied. 

 The absorption behavior shown in Fig 12 suggests the following scenario, in 

qualitative terms. Initially, the polymer absorbs water, of which a fraction reacts 

chemically, causing hydrolysis leading to chain scission. Schematically, we can write: 

2A B H O A OH B H− + → − + −∼ ∼ ∼ ∼                                         2 

where, A and B represent chemical groups in the epoxy main chain. In the early stages, 

chain scission leads to simply to the chemical addition of water that will be unable to 

leave upon drying. However, after the number of chemical reaction site has increased, the 

probability of a given inter crosslink chain being cut into two (or more) increases, thus 

facilitating separation and subsequent leaching of the detached segments from the 

network. This leads to a weight loss.  

7.2.1 Desorption:  
After the water absorption for a given period, the samples were surface dried and 

weight. Drying was continued, at the same temperature (95°C) as that of absorption , and 

the samples were periodically weighed until a good estimate of their final equilibrium 

weight after desorption could be obtained. This process normally took 1 to 2 weeks to 

finish.  

Fig 13 below shows desorption of the epoxy samples at 95°C.  
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Figure 13: Desorption Graph 

 

The coefficient of Diffusion is given in Table2. It can bee seen that the diffusion 

is around 5 times faster than absorption.  

 

Temperature at which

Desorption is done 

Diffusion coefficient of

Desorption (cm2/s) 

95°C 0.0987 
Table 2: Desorption coefficient 

It can be seen from the graph that the weight loss due to chain scission is more in 

case of absorption followed by desorption [1].  
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7.3 Glass transition temperature: 
 

The glass transition temperatures of the samples were measured using Differential 

Scanning Calorimetry (DSC). Fig 14, Fig 15 and Fig 16 shows the curves obtained from 

the DSC for the dry sample, samples after water absorption and on samples after 

absorption followed by desorption. Table 3 shows the values of the measured Tg.  

 

 

 

 
Figure 14: DSC of dry unaged sample 
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Figure 15: DSC of Wet aged sample 

 

 

 

 
Figure 16: DSC of aged dried sample. 
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Samples Onset 

Temperature

Midpoint 

Temperature 
Unaged 

Dry sample 

71.76°C 75.81°C 

Aged wet  

sample 

49.65°C 53.67°C 

Aged sample 

(with water absorption 

followed by desorption) 

56.05°C 59.78°C 

Table 3: Glass transition Temperatures. 
 

It can be observed that the Tg for the samples with water have reduced by 

approximately 20°C. With water concentration of around 2.0 % the Tg reduces by 20°C. 

The water in the sample can cause the polymer to lose some strength. This problem is 

even worse at high temperature and can lead to disastrous failure [1]. When the cross 

links are present, the Tg drop is lower and the drop in tensile strength is less. Knowing 

the Tg of the cured polymer is especially necessary where the polymer is used for its 

adhesion or cohesion properties. If the Tg is exceeded, the tensile strength and 

compressive strength of the polymer is drastically reduced, and even if the polymer is 

cross linked, the insulation can fail. There is some indication that the use of anhydrides 

for cure allows the epoxy to have better properties when the polymer is used at 

temperatures slightly above Tg [1].  

In many systems, the insulation in use will be heated and the cure will continue to 

push the Tg to high temperature. If the stress damages the epoxy polymer as the Tg is 

exceeded, failure can occur. The practical solution to this problem is to ensure that the 

cure temperature exceeds the expected use temperature of the insulation.  

 

 

 

 

 



 

 

7.4 Dielectric response: 
 

Disc samples of dimension 10mm (diameter) X 1mm are used to study the 

dielectric response. The electrodes on the samples used are conduction silver paint. Fig 

17 shows the picture of the samples prepared for testing. Three samples were tested. The 

first sample tested was a dry sample (un-aged). The dielectric response is shown in the 

Fig 17, blue curve.  

 

 
Figure 17: Dielectric response of unaged, wet aged and aged dried samples 

 

The second sample tested is a sample that has undergone hydrothermal aging. The 

sample was put under water at 95°C and the weight gain was noted. The sample when 

near saturation with a water concentration of 2.089 %, it was removed from the water 

cooled down and dried superficially. The samples were cooled down so that no water is 

diffused out of the sample. The electrodes were pained with silver paint on both the sides 

of the sample. This sample is then tested with IDA 206 instrument for dielectric response. 

The frequency range used was 1000 Hz to 0.1 Hz. The Fig 17,black curve shows the 
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dielectric response of this sample. It can be seen that due to water in the sample the 

dielectric loss factor have increased considerably. Also there is a considerable increase in 

the real part of the permittivity of the material Fig 18 Green curve. At low frequency the 

dielectric loss factor increases rapidly this is due to the presence of water in the sample. 

This shows a conduction effect inside the sample due to the presence of water, which 

causes the high conductive current at low frequency. The rapid increase in the real art of 

the permittivity of the material at lower frequencies can be attributed to a polarization at 

the electrode due both to accumulation of the charge carriers and to chain migrations. The 

chain migration is high because the water causes a chain scission in the epoxy after 

absorption. With water present in the sample it’s easy for the chain to migrate than in dry 

samples.  

 
Figure 18: Relative permittivity of unaged and wet aged sample. 

 

The third sample tested was kept under water at 95°C and then when reached 

saturation has been subject to desorption at same temperature. When the sample is dry 

then the samples is cooled down and then the electrodes were painted on to the sample. 

Silver paint is used for the electrodes. The Fig 17, Green curve shows the dielectric 

response. The below shown are the dielectric loss factor and the real part of the relative 

permittivity. It can be seen that after the absorption followed by desorption the dielectric 
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loss actually is quite close to the results already obtained. But in the lower frequency 

range a increase in the dielectric loss is observed.  

 

 

 

7.5 Mechanical test: 
With respect to finding the characteristics of the epoxy, it is important to find the 

mechanical properties as well. It’s an important properties looked at in many industrial 

applications.  The Dog bone shaped samples were used for testing. The Fig 2 shows the 

picture of the samples. The samples were then applied tensile force till breakage. The 

stress-strain curves were plotted. These Curves give the idea about the mechanical 

strength of the material.  

Fig 19 shows the stress-strain curve of the unaged sample.  
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Figure 19: Stress – Strain Curve for Unaged sample 
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For the second set of test dog bone samples are immersed in water. Till they reach 

saturation around 2.089% of water concentration. The samples are then cooled down and 

dried superficially and then again tensile force is applied on them till break. The stress 

strain curve is plotted from the test. Fig 20 shows the stress-strain curve of the samples 

after they have undergone water absorption at 95°C. By comparing with Fig 19 it can be 

seen that the after the water absorption the material has much lower Yield stress. The 

Yield stress almost reduces by 50%. But the material can take much more strain before it 

breaks. The elongation at break is much larger with water in the sample. The water 

results in chain scission which in turn makes the sample less rigid. But the material 

suffers a permanent deformation after yield point. The stress at yield point is also reduced 

drastically. 
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Figure 20: Stress – Strain curve for wet aged sample 
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For the third set of tests dog bone shaped samples were subjected to water 

absorption followed by desorption at 95°C. After the desorption process the samples are 

cooled down and then they were subjected to mechanical tensile force till break. The 

Stress-Strain curve is plotted for the samples. Fig21 shows the Stress-Strain curve. While 

comparing it with Fig 19 and Fig 20, we can see that even after desorption the material 

doesn’t gain back the mechanical strength. That proves that the water present in the 

epoxy doesn’t only acts as a flexibilizer, it results in chain scission causing permanent 

and irreversible damage to the cross linking in the materials. Due to this the material 

looses strength.  

0 4 8 12
Extension(mm)

16

0

400

800

1200

1600

2000

S
train(N

)

 
Figure 21: Stress – Strain Curve for the Aged dried samples 
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Sample Reference Stiffness (N/m) Young's Modulus (MPa) Tensile Strength (MPa)
Dry sample 1 635055.1498 1825.783556 57.3426342 
Dry sample 2 585805.87 1684.191876 55.00903548 
Dry sample 3 656198.6968 1886.571253 57.69517294 

Aged wet Sample 1 404038.9939 1161.612108 26.38791279 
Aged wet Sample 2 399761.2448 1149.313579 26.04797695 
Aged wet Sample 3 284783.2527 818.7518515 21.29674607 

Test Sample aged dried 1 500984.3778 1440.330086 38.0221676 
Test Sample aged dried 2 551794.613 1586.409512 39.27350708 
Test Sample aged dried 3 615122.0248 1768.475821 41.6396404 

Table 4: Mechanical test data of Unaged, aged wet and aged dried samples. 
 

 

7.6 Electrical Breakdown Strength:  
 

Electrical breakdown strength of the epoxy material was studied for this epoxy 

type. For this test Rogowski shaped materials were used. Fig 22 shows the samples. The 

Break down test was performed on three sets of samples. Each set consist of 3 samples. 

First set of samples were test for breakdown. These samples were not subjected to any 

kind of aging. The break down strength of the samples was given in Table 5.  

 

Samples Breakdown Strength.

C1 54 KV 

C2 31.6 KV 

C3 45.1 KV 
Table 5: Breakdown strength of Unaged samples 

 



 
Figure 22: Unaged sample for breakdown. 

 

The second set of samples was subjected to water absorption at 95°C. They were 

tested for electrical breakdown strength when the water concentration in the samples was 

2.0 % of the weight of the samples. The Breakdown strength of the samples is shown in 

Table 6. Comparing the results of Table5 and Table 6 it can be seen that with water in the 

samples reduces the breakdown strength of the material. This can be concluded from the 

fact that water inside the samples helps in conducting the charges across the epoxy which 

leads to early breakdown of the material.  

 

Samples Breakdown Strength.

C4 29.5 KV 

C5 37.0 KV 

C6 29.7 KV 
Table 6: Breakdown Strength of Aged wet sample 
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Figure 23: Aged wet sample for breakdown. 

 

The third set of samples were subjected to water absorption at 95°C followed by 

desorption at the same temperature. The breakdown strength of these materials was then 

tested. Table9 shows the results of this test. The results shows that the epoxy regains their 

breakdown strength after the water is diffused out and the small weight loss after 

desorption don’t affect the breakdown strength of the epoxy. 

 

 

Samples Breakdown Strength.

C7 50.3 KV 

C8 44.0 KV 

C9 50.7 KV 
Table 7: Breakdown Strength of aged dried samples 

 
Figure 24: Aged dried sample for breakdown. 
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8 Conclusion: 
 

From the results of the water absorption tests it can be deduced that as the water 

absorption follows Fick’s rule. It is even evident from the weight of the samples, that it 

starts decreasing after the water concentration in the sample have reached the saturation 

i.e. 2.089 %. From Desorption test it can be deduced that the desorption is approximately 

5 times faster than the absorption. Water absorption causes the glass transmission to 

reduce by approx 20°C (from 75° C to 53°C). Even after all the water is diffused out the 

glass transition temperature of the sample increases just by around 7° to 8° C.  

The results of Dielectric response suggest that after aging the losses of the 

material increases. Also during wet condition the increase in real part of permittivity at 

lower frequencies is of considerable interest. The rapid increase in the real art of the 

permittivity of the material at lower frequencies can be attributed to a polarization at the 

electrode due both to accumulation of the charge carriers and to chain migrations. The 

rapid rise of losses at lower frequencies gives the idea that there is a conduction current 

present due to the presence of water in the sample.  

The Mechanical test shows that the Tensile strength of the material reduces by 

50% when a water concentration of 2.089 % is present in the epoxy material. Also when 

the samples are dried the tensile strength doesn’t regain the original value, hence 

suggesting that the water in the sample has caused chain scission in the material and 

hence the mechanical strength is permanently reduced.  

The Breakdown strength test suggests that the breakdown strength of the material 

decreases when water is absorbed. But the dielectric strength is regained when the water 

is diffused out of the sample. So the chain scission for the short testing time is not 

affecting the breakdown strength of the material. This can be inferred from the test. For 

understanding the actual behavior of the breakdown strength further tests are needed.  

 

 

 



9 Appendix: 
 

 

9.1 Appendix A: 

9.1.1 Background theory:  

9.1.1.1 Water Diffusion in Polymers: 
 

 Water or any other fluid diffusion in a solid material is described by Fick’s Two 

laws. Fick’s first law states that in the steady state condition, the flux of water J [g/mm2] 

through a solid is proportional to the gradient of the water concentration [g/mm3].  

 

,J D
x
φ∂

= −
∂                                                    3                       

 
φ  = Water concentration in the material 

D = Diffusion coefficient or Diffusivity of the material [mm2/s], relating to the speed at 

which the water concentration changes in side the material. 

 

 

 

Fick’s Second law is given by, 

2

2D
t x
φ φ∂ ∂

=
∂ ∂                                                           4 

 

 

Lets consider a rectangular object as shown in Fig 25 . It has an initial 

concentration as φ i. The object is exposed to moisture, giving a water concentration on 

the surface of φ a . The boundary conditions are as under: 

φ  = φ i, for 0 < x < h. 
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φ  = φ a, for x > 0.  

 

 

l 

b

h 

 

 

 

 

 

 Figure 25:  Geometry of Rectangular test specimen 

 

 

 Applying Fick’s second law following solution can be found. 

 
2 2

2
0

(2 1)4 1 (2 1)1 sin exp
2 1

i x

jm i

j Dj x
j h h

φ φ ππ
φ φ π

∞

=

,t⎡ ⎤− ++
= − −⎢ ⎥− + ⎣ ⎦

∑           5 

where φ m is the water concentration when the object is fully saturated and Dx is the 

diffusivity normal to the surface. By integrating Eq. (3) over the object’s full thickness 

the total water content can be obtained, giving the relation 

 

2 2
2

2 2
1

e x p ( 2 1 )
81
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x

i

jm i

D tj
hm mG

m m j

π

π

∞

=

⎡ ⎤⎛ ⎞− + ⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦≡ = −
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where,  

m  = weight of the moisture at any given time,  

mi  = initial weight of moisture on the object,  

mm = weight of moisture at full saturation. 

 G = measure of how close to full saturation the object is, It is dimension less. 
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 The value of G can be approximated by the equation 

 

0.75

21 exp 7.3 xD tG
s

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                                                    7 

The value of the parameter s is dependent on the fact if the object is exposed to moisture 

on either sides or a single side. It exposed on both sides, s = h. If exposed on only one 

side then s = 2h. 

 For Practical purposes, the percentage moisture content is the most interesting 

quantity. Usually defined as the weight gain of the material, give by the formula below, 

 

( ) .100,d

d

W WM M t
W
−

= ≡                                                       8 

Where, W = weight of the sample at any given time. 

 Wd = weight of the dry material.  

 

By putting W = Wd + m, and rearranging the terms we get 

 

( )m i ,iM G M M M= − +                                                       9 

Where, Mi = initial moisture content 

Mm =  moisture content at full saturation. 

 

The diffusivity can be estimated by plotting the water uptake versus time t and using 

numerical tool (Grapher 4 ) to fit to Eq.*  to the experimental data. Also the diffusivity 

can be calculated by plotting water uptake versus t and D can be calculated by the 

following equation.  

 

 

22

2 1

2 14 m

M MhD
M t t

π
⎛ ⎞⎛ ⎞ −

= ⎜⎜ ⎟ ⎜ −⎝ ⎠ ⎝ ⎠
⎟⎟                                            10 

If diffusion through the side surface can be neglected then Dx≈D. If the diffusion through 

the side surface can’t be neglected then Dx can be calculated by the following equation. 
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Figure 26: Illustration of change of moisture content with square root of time. The initial rate of 

change is almost constant. 
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9.1.1.2 Insulation Diagnostics Using Impedance Spectroscopy 
 

 In this method the different parameters of the Insulation under test is determined 

by calculating the impedance of the material. This is done in following project with the 

help of and Equipment from PAX Diagnostic called IDAX-206. The impedance of the 

sample is measured by applying a voltage across the sample. This voltage will generate 

current through the sample. By accurately measuring the voltage and the current, the 

impedance can be calculated. 
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Figure 27: Measurement of electrical Impedance 
 
The impedance is calculated using ohm’s law: 

 

Z = U/I 

 

where Z, U and I are complex entities.  

 

The voltage generated by the voltage source. The voltage is measured by means of a 

voltmeter and the current is measured by an ammeter or electrometer which acts as a 
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current to voltage converter. The analogue signals are then converted to digital samples 

of the signal that are used in subsequent calculations. 

 

Insulation diagnostic is based on material characterization and therefore material models 

are often used. To be able to define material parameters from measured impedance Z the 

geometry of the sample, described in terms of the geometric capacitance C0, has to be 

defined. In the picture bellow a vacuum capacitor of defined geometry is shown. Since no 

material is between the electrodes the capacitance of a) is the geometrical capacitance. 

 

 
Figure 28: Material parameter models based on a geometrical capacitance C0 and material 

parameter. 
 
 

In picture above b) and c) a material is inserted between the electrodes and it will 

influence the current, I, flowing in the circuit. The influence of the material can be 

described by different parameters using either a dielectric model or a conductive model. 

In the dielectric model the “material capacitance”, the permittivity is a complex function 

describing both the capacitance and the loss, whereas in the conductive model the 

capacitance is described by a permittivity and the loss by a conductivity ( or resistivity). 

The dielectric and resistive models are derived as follows: 

 
 

1Z
j Cω

=    

 
0 ( )C C jε ε′ ′= − ′  
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Dielectric: 
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9.1.1.3 Dielectric Response in Frequency Domain 
 
 
We assume here that the dielectric material is linear, homogeneous and isotropic. The 
material will then follow the Ampere’s Law. 
 
The current density J(t) through a dielectric material with an electric field E(t) in time 
domain can be expressed as: 
 

 2
0

0

( ) ( ) (1 ) ( ) ( ) ( ) ( / )
t

eJ t E t E t f E t d A m
t

σ ε χ τ τ τ
⎧ ⎫∂

= + + + −⎨ ⎬∂ ⎩ ⎭
∫     (12) 

 
 

 
The Ampere’s Law in time domain can be written as : 
 

 2( / )DH E A m
t

σ ∂
∇× = +

∂
                              (13) 

 
If now only time-harmonic electric fields are considered the Fourier transform is 
applicable. The Fourier transformed Ampere’s Law can be written as 
 

 2ˆ ˆ( ) ( )..( / )H E i D A mσ ω ω ω∇× = +                       (14) 
 
The electric polarization in time domain is expressed as  
 

  (15) 2
0 0 0

0

( ) ( ) ( ) ( ) ( ) ( ) ..( / )e eP t E t P t E t f E t d C mε χ ε χ ε τ τ τ
∞

= + Δ = + −∫
 
If the separation of electric polarization in rapid and slow processes is done, the Fourier 
transformed electric polarization can be expressed as  
 

 ( ) 2
0 0 0

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )..( / )e eP E f E f E Cω ε χ ω ε ω ω ε χ ω ω= + = + m     (16) 
 
Now the dimensionless frequency- dependent electric susceptibility ( )χ ω  can be defined 
as 
 

             (17) ( ) ( )
0

ˆˆ ˆ ˆ( ) ( ) ( ) i ti f f t e ωχ ω χ ω χ ω ω
∞

−′ ′′= − = = ∫ dt

 
Now the total current density, ( )J ω  of a dielectric material under harmonic 

excitation, ( )E ω  can be expressed according to Ampere’s law as: 
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(18) 

 
 
From this expression it is seen that there is one part of the current ( )J ω  which is in 

phase and one part which is 900 before the driving harmonic electric field ( )E ω . The 
part of the current which is in phase with driving field in associated with the energy 
losses in the dielectric material. Two types of energy losses are seen in the material. The 
first type, which is due to the conduction (free charge) in the material, gives rise to ohmic 
losses. The second type, which is due to electric polarisation in the material, gives rise to 
what is called dielectric losses. Dielectric losses occur due to the inertia of the bound 
charges when they are accelerated in the driving field. The part of the current which is 
900 before the driving field, displacement current, is associated with the capacitance of 
the material. 
 
In many situations it is more convenient to talk about the complex permittivity which is 
defined as follows: 
 

  

 ( ) ( ) ( ){ } ( )
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e

J i i E
ε ω χ χ

ω ωε ε ω ε ω ω σ
ω

ε ω χ
ε ω

′ ′= + +
′ ′′= − ⇒

′′ ′′= + ω
   (19) 

 
It is seen from the equation above that the conductivityσ , the relative permittivity rε  and 
the electric susceptibility ( )χ ω  characterises the behaviour of the dielectric material 
under harmonic excitation. This equation shows that it is possible in frequency domain to 
make measurements which characterise the material.  
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