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Summary

The use of small fixed-wing unmanned aerial vehicles has shown an explosive growth
in recent years and this thesis is motivated by the need for low-cost, accurate air
data estimators for these aircraft. The air data contains information that is directly
related to the performance of the unmanned aerial vehicle and is therefore valuable
for operational control. However, the available market systems are often large,
heavy, and expensive and alternatives without these limitations could potentially
allow for new unmanned aircraft possibilities and applications.

This thesis briefly accounts for the influence of air data on fixed-wing unmanned
aerial vehicle flight and continues to present three main contributions in air data
estimation. The main results are:

A nonlinear model-based wind velocity observer for unmanned aerial
vehicles: The observer exploits an aerodynamic model of the aircraft and an air-
speed sensor together with a standard sensor suite consisting of a GNSS receiver,
an inertial measurement unit, a Pitot-static probe, and a heading reference. The
observer is shown to provide exponential stability and convergent estimates of both
wind velocity and relative velocity from which estimates of the air data can be com-
puted. The observer is verified through simulation using a realistic wind signal.

A machine learning approach for estimating air data for small fixed-
wing unmanned aerial vehicles using distributed pressure sensors: The air
data estimation method consists of combining machine learning algorithms with
an array of low-cost pressure sensors embedded in the surface of the unmanned
aircraft. Two machine learning algorithms based on artificial neural networks and
linear regression are implemented, tested, and assessed using data collected from
wind tunnel experiments and a flight test and the results are compared to a bench-
mark flight test. Training the machine learning algorithms using wind tunnel data
was found to introduce several potential error sources that need to be addressed in
order to provide accurate estimation on the benchmark flight test, whereas training
the algorithms using flight data provides lower estimation RMSE values. The per-
formance of the neural network structures has been found to slightly outperform
the linear regression algorithms in estimation accuracy. Lastly, results from using
different sensor configurations and a pseudo Reynolds number are presented in an
effort to evaluate the influence of sensor number and placement on the accuracy of
the method.

Kalman filters for air data bias correction for a fixed-wing unmanned
aerial vehicle: Two distinct Kalman filter approaches for correcting air data sys-
tems with low-frequency drift or a constant error bias for fixed-wing unmanned
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Summary

aerial vehicles are presented. The estimators use a GNSS receiver, an IMU, and a
heading reference, combined with an air data system that is assumed to provide
measurements with an unknown additive slowly time-varying bias. Neither estima-
tor is dependent on the aircraft model. The estimators are, without the effect of
noise, proven to have globally exponentially stable equilibrium points of the error
dynamics if provided with persistence-of-excitation in the angular velocity and an-
gular acceleration of the unmanned aircraft. The estimators are verified through
simulation and using experimental flight data. The results from the experimen-
tal flight data are obtained using the machine learning approach described in the
preceding paragraph. The flight results indicate that a certain amount of excita-
tion is needed in order to have converging bias estimates during turbulent wind
conditions.
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Chapter 1

Introduction

1.1 Motivation

The recent years have shown an explosive growth in the use of small unmanned
aerial vehicles (UAVs) [9, 18]. This is a direct result of the technological advances
in fields such as batteries, MEMS'-based sensors, and computer processors, and
these advances have driven down the weight, size, and price of the components
needed to build small unmanned aircraft. This has in turn allowed for producing
smaller UAVs with relatively low price tags, and the use of UAVs have opened up
outside of high budget military use. The primary advantages of using unmanned
aircraft is arguably the low cost compared to manned flight as well as the reduction
in risk to personnel. The application areas of UAVs are many and diverse, and new
innovative approaches are taken in solving previously impossible tasks or greatly
reducing the cost of existing tasks. A few of the UAV applications include:

Disaster management: In case of large scale natural disasters such as earth-
quakes or forest fires, UAV technology enables a fast response when reaction time
is critical. UAVs can survey an area and provide communication network relays
for disaster survivors. Furthermore, UAVs are capable of accessing hard-to-reach
areas and can fly into dangerous zones with thermal cameras to provide situational
awareness without the concern for the human operators [26, 64].

Sea ice monitoring: One of the main challenges of oil explorations in the artic
is the abundance of sea ice. If not mitigated, the sea ice can result in damaging
loads on installations. By utilizing UAVs to map the surrounding areas, it is possi-
ble to help alleviate this threat by providing an overview. The collected data can
then be used for qualified decisions on whether to break up the ice with a ship [28].

Search and rescue missions: By employing UAVs, it is possible to quickly
provide an eye in the sky in locating a lost person using visual spectrum and ther-
mal cameras, e.g. from a capsized ship or an avalanche [81, 85]. Multiple UAVs
flying in formation allows for searching large areas in a short amount of time [79].

I Micro-electromechanical systems [10, 84].



1. Introduction

An illustration of the search and rescue UAV application is depicted in Figure 1.1.

Figure 1.1: Using UAVs to locate a lost person with both launch and retrieval of UAV
on board ship. Copyright: Bjarne Stenberg/NTNU.

Other UAV applications include wireless connectivity coverage, precision air-
drop of packages, inspection, surveillance, power generation, mapping, oil spill de-
tection, etc. Unmanned aircraft are commonly divided into fixed-wing or rotory-
wing and the preceding examples of applications make use of both types. However,
for this thesis and the results presented, the focus is on small fixed-wing UAVs?.

Knowledge of the wind is very important in fixed-wing UAV control and opera-
tion. The relative velocity of the UAV with respect to the wind contains information
from which the angle of attack (AOA), sideslip angle (SSA), and airspeed are di-
rectly computable. The AOA, SSA, and airspeed variables are commonly referred
to as the air data® and their values during flight is directly related to the perfor-

2There is no one standard of UAV size classification, but here small refers to UAVs with a
wing span of less than three meters.

30ften the Mach number and Reynolds number are also included, but in this thesis we shall
concern ourselves primarily with the airspeed, AOA, and SSA, since the range of airspeeds oper-
ated in by smaller aircraft makes the effects of the Mach number and Reynolds number approxi-
mately constant [6].

2



1.2. The Influence of Air Data on Flight

mance and safety conditions of the unmanned aircraft.

The light weight of the small UAVs make the vehicles susceptible to strong
winds, and having accurate estimates of the air data, enables control of the air-
craft that mitigates this threat. In addition, small unmanned aircraft operate in
low airspeeds where the influence of the windspeed on the ground speed is not
negligible. This is particularly essential for beyond visual line of sight (BVLOS)
operations where the wind cannot be reliably assessed by the operating pilot. The
effects of wind therefore has to be factored into the maximally obtainable range of
the UAV as well as in the path planning [42].

Larger fixed-wing aircraft are often equipped with air data parameter sensors,
such as angle of attack vanes and multi-hole probes*, but for smaller UAVs there are
often strict limitations on size, weight, power consumption, and price. It is therefore
highly desirable to have an air data estimation system only utilizing measurements
that are obtainable for a UAV through a combination of standard sensor suite
measurements and /or extra sensors that have low cost and can easily be integrated
in the UAV. This integration of sensors into the airframe of the UAV should have
a minimal negative influence on the aerodynamic capabilities of the aircraft and
should have a negligible weight and size to not reduce the payload possibilities. The
focus of this thesis is therefore to provide and evaluate new methods to estimate
the air data given this framework.

1.2 The Influence of Air Data on Flight

This section aims to explain the influence of air data on aircraft flight and why
these parameters are important to measure and estimate. In order to understand
the influence of air data on aircraft, it is necessary to quickly introduce a few
concepts. In aerodynamic literature, the wing is often considered as fixed with air
flowing past it, but here it shall be considered from the perspective of the relative
velocity of a wing moving through the air. The AOA « is defined as the angle
between the chord line of the aircraft airfoil and the relative velocity of the UAV
with respect to the wind vector v,.?, projected onto the plane spanned by the airfoil,
as shown in Figure 1.2.

The SSA S is similarly defined as the angle between the relative velocity pro-
jected onto plane spanned by the wings, and the plane dividing the aircraft per-
pendicular to the wings as shown in Figure 1.3. The airspeed V, is defined as the
magnitude of the relative velocity vector.

From the geometric definitions, the relation from the relative velocity vector

4Sometimes in literature also referred to as Prandtl probes or air data booms.



1. Introduction

Figure 1.2: An airfoil with the angle of attack definition and the resultant aerodynamic
force along with its corresponding components, the lift and drag force.

v? = [u,, v, w,] " to the airspeed, AOA, and SSA, can be found as [6]
Vo = VU2 + 02 + w? (1.1)

a = tan™! (Z’) (1.2)
B =sin"! (‘U/a> (1.3)

The aerodynamic forces shown in Figure 1.2 are a result of the pressure and shear
stress distribution over the aircraft body [5]. The resultant force Fg can be decom-
posed into the the lift and drag components. The lift force F, is defined as the
component of Fr perpendicular to the v? and the drag force Fp is defined as the
component of Fr parallel to v2. For a given shape, at zero degree sideslip angle,
and a given angle of attack in a steady airflow®, the lift and drag forces are

1

Fr =3 PooSVZCL(Re, My, ) (1.4)
1

Fp =3 PooSVZCp(Re, My, @) (1.5)

where po, is the freestream air density, Re is the freestream Reynolds number,
My, is the freestream Mach number, S is the planform area of the wing, and
Cp, and Cp are the dimensionless lift and drag coefficients [5]. The dimensionless
parameters Reynolds number and Mach number are called similarity parameters
and are defined as

Re — PooVaC

[hoo
Ve
oo

5Such as experienced during a wind tunnel experiment or in an atmosphere with low turbu-
lence.
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Figure 1.3: A top down view of a Skywalker X8 Flying Wing UAV 3D model with the
SSA definition.

where c is the cord length®, yio is the freestream viscocity coefficient, and a. is the
freestream speed of sound. At a given Reynolds and Mach number, the lift and drag
coefficients are simply functions of the AOA «, which highlights the importance of
the AOA on flight. Furthermore, for the range of airspeeds operated in by smaller
aircraft, the effects of the Mach number and Reynolds number are approximately
constant [6]. A generic example of how the lift and drag coefficients versus the AOA
may look for an airfoil is shown in Figure 1.4.

Notice the linear increase in lift coefficient with « until a certain point where
the slope starts to decrease and Cy, reaches its peak value Cf max. Under normal
flow conditions, the flow follows the curvature of the wing and this is referred to
as attached flow. At a certain AOA, the flow on the top side of the wing cannot
overcome the local pressure gradient and starts to separate from the surface. This
detached flow leads to large scale vortices which causes a significant increase in
drag and a drop in the lift force produce by the wing. This phenomenon is referred

61n this expression for Re, the cord length c is used as a reference length, but it is possible to
exchange this by different reference length.
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stall region

) 10 15
Angle of attack, a [°]

Figure 1.4: The lift and drag coefficients versus the angle of attack for an NREL S826
airfoil in incompressible flow with Re = 2x10°. The graph is based on a fixed amount
of data points and it should be noted that a finer resolution would produce a smoother
curve. Data for the graph has been obtained through numerical CFD simulations and is
provided by Richard Hann.

to as stall and due to the drastic loss of lift in this region, aircraft can be difficult
to recover once they enter stall, e.g. spin that results from stall on one wing. Hav-
ing an estimate of the AOA can therefore warn the operator when stall conditions
are impending, or be exploited in an autopilot and is therefore essential to help
recover the aircraft from an otherwise unrecoverable situation or intentionally op-
erate under turbulent conditions. In addition, having estimates of the airspeed and
AOA can open up for more complex maneuvers such as high precision deep-stall
landings, see Mathisen et al. [63].

For the aircraft to sustain steady and level flight”, the following two relations
hold

Fr, = Fw

Fr=Fp
where Fy is the weight and Fp is the thrust force generated by the propulsive
mechanism. That is, the lift force of the aircraft must equal the weight and the

thrust force must equal the drag force. For fixed values of Re, My, Fw, poo, and
S in a steady flight state, the lift coefficient is

2R, 2Fy
C peSVE T pocSV2

Consequently, under steady and level flight, each value of V, will correspond to
a specific « value and vice versa. A lower airspeed will result in a higher AOA

Cr

(1.6)

"The wind velocity is assumed to have zero vertical component to simplify this example.
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and a higher airspeed will result in a lower AOA. For small UAVs, the range and
endurance is usually of high importance and estimates of airspeed will allow con-
trolling the UAV to maximize either of those parameters. Hovenburg et al. [43]
presented an analysis of mission performance trade-offs for small unmanned air-
craft.

The weather phenomenon icing is a major threat to unmanned aviation. A
combination of sub-zero temperatures and high humidity can lead to atmospheric
icing conditions where supercooled water droplets impinge and freeze on exposed
surfaces of an aircraft. As ice builds on the wings, the aerodynamic capabilities
of the UAV deteriorate (for a treatment of aircraft icing, the reader is directed to
Gent et al. [32]). This deterioration is manifested in the lift and drag coefficients
and if not mitigated, can result in an aircraft not capable of sustaining flight. Using
the ANSYS computational fluid dynamics (CFD) tool FENSAP-ICE, Hann et al.
[37] investigated the influence of different realistic ice accretion shapes on an NREL
S826 airfoil with low airspeed typical for a small UAV. The ice shapes considered
in order of severity is glaze, rime, and mized. Figure 1.5 compares the lift and
drag coefficients under the influence of the different ice shapes compared to a clean
airfoil baseline. The results show that under the presence of ice, the stall region is
reached at a lower AOA, the value of the maximum lift coefficient is reduced, and
larger drag penalties are imposed on lower AOA values.

—e— clean

0.30

0.20

Lift Coefficient
Drag Coefficient

0.10

L I T I I
0.00 5.00 10.00 15.00 0.00 5.00 10.00 15.00
Angle of Attack in Degrees Angle of Attack in Degrees

Figure 1.5: FENSAP-ICE simulation results for the lift and drag coefficient for the
NREL S826 airfoil clean and under different icing shapes for Re = 2x10°. The plots are
from [37].

Sgrensen et al. [82] proposed a structural analysis icing detection scheme. The
method states residuals where both lift and drag coefficients as well as AOA and
airspeed values are assumed known. By applying a statistical change detection,
simulation showed that it is possible to detect the structural changes of a UAV due
to icing. Estimates of icing can either be be used to warn the operator or exploited
in an autonomous icing protection systems, such as the one proposed by Sgrensen
et al. [83]. In addition, Rotondo et al. [78] presented an actuator fault diagnosis
method that assumes air data estimates and is capable of detecting actuator icing
faults.

The influence of wind is not only interesting with respect to the UAV. Consider

7
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the application of precision airdrop, where an unmanned aircraft is expected to
deliver an object to a precise position by releasing the object from a given altitude
[7]. One approach is to assume a known constant wind velocity and model the ob-
ject using gravity and drag forces in order to calculate the desired air-release point
[62]. Another approach to object delivery as well as object retrieval, is to use a
cable-body system and having the UAV engage in a circular towing maneuver that
allows the cable endbody position to remain relative constant®. While this is fairly
straightforward in the absence of wind, it becomes a challenging problem when the
UAV is subjected to wind. Merz and Johansen [65] proposed a path adjustment
approach using optimal control methods to ensure a stable position of the cable
endbody when flying in a known constant uniform wind field.

The preceding section attempted to outline the importance of the relative veloc-
ity of the UAV with respect to the wind from which the air data can be computed.
The lift and drag force produced by the aircraft are functions of the airspeed and
lift and drag coefficients, and the lift and drag coefficients are functions of the
AOA. Having estimates of the air data can provide both a higher level of auton-
omy, efficiency and robustness in operating the UAV and can potentially open up
for new innovative approaches in the way that UAVs are controlled as well as the
applications they are used for.

1.3 Background

This section contains a short survey on existing technology and previous results in
the field of air data sensors and estimation. The contributions in this thesis can
be divided into state estimation approaches and a method where machine learning
(ML) is used in combination with an array of distributed pressure sensors. The
survey will therefore account for results related to both approaches.

At the time of writing, the author is only aware of one company - the Aero-
probe Corporation - producing air data systems that are within the requirements
of weight and space of the Skywalker X8 Flying Wing UAV that has been used as
the experimental platform throughout the thesis (see Appendix A). Several other
companies exist that produce similar solutions for aircraft that are slightly larger.
The commercially available solutions all revolve around a pneumatic multi-hole
probe protruding from the UAV that is connected to a pressure scanner inside the
UAV through rubber tubes. The Aeroprobe Corporation solution, the Micro Air
Data System [2], uses a 5-port air data probe connected to a pressure scanner. The
pressure scanner contains a microcomputer that runs an algorithm to calculate
air data parameters from the direct pressure measurements from the ports on the
probe (shown in Fig. 1.6). The pressure scanner and the air data probes combined
with the necessary wind tunnel tests needed to calibrate the system, results in a
significant price compared to the Skywalker X8 UAV including the autopilot sys-
tem. The expensive components and the need for expensive calibration therefore

8This interesting maneuver was pioneered by missionary Nate Saint who used it to deliver
gifts to remote settlements in South America in the 1950s [40].

8
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limits the use of the air data system to high-cost operations.

{AEROPROBE

corporation

Figure 1.6: The Micro Air Data Computer measurement system. Copyright: Aeroprobe.

Several papers have been published on air data state estimation using a UAV
standard sensor suite that consists of an inertial measurement unit (IMU), a global
navigation satellite system (GNSS) receiver, and a differential pressure Pitot-static
probe that provides a measurement of the relative velocity in the forward direc-
tion. Often, the attitude of the aircraft is also assumed to be either measured or
estimated which may require a magnetometer in addition to the IMU. It is worth
noting once again that there exists a mapping from relative velocity to air data,
and also from air data to relative velocity”. In addition, if assuming knowledge of
the attitude and velocity over ground of the UAV, it is possible to compute the
relative velocity from the wind velocity and vice versa.

Long and Song [57] used sensor fusion in a modular architecture where both
an aerodynamic and kinematic model was used to estimate the AOA and air-
speed without using an airspeed sensor. A Newton—Raphson solver on an aerody-
namic model combined with an extended Kalman filter (EKF, Brown [15]) was
used by Ramprasadh and Arya [72] to obtain AOA and SSA estimates. Lie and
Gebre-Egziabher [56] proposed a cascaded EKF structure and an aircraft dynam-
ics model for estimating the air data without an airspeed measurement. Cho et
al. [21] proposed an EKF method that assumes a scaled measurement of the air-
speed combined with an aerodynamic model of the system to estimate the AOA,
the SSA, and the airspeed sensor scaling factor. Wenz et al. [87] used a simplified
aerodynamic model for the lift force combined with the Dryden wind model (as
described in [29]) in an EKF structure. Wenz and Johansen [86] built on this result
with a moving horizon estimator and improved the accuracy. A common denomi-
nator for the preceding methods is the use of an aerodynamic model of the forces
on the UAV. Aerodynamic forces are complex and a potential disadvantage of this
approach is that model errors due to simplifications or parameter inaccuracies may

9This assumes measuring or estimating in all three dimensions. The mathematical relation
between the relative velocity of the UAV and air data will be stated in Chapter 2.
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result in estimation errors.

An aerodynamic model-free air data state estimator has been proposed by Cho
et al. [22] using a scaled airspeed sensor measurement to estimate wind speed,
wind direction and airspeed sensor scaling factor. Johansen et al. [47] proposed an
aerodynamic model-free kinematic approach to estimating the wind velocity and
a Pitot-static probe scaling factor for small UAVs. The system was linear and Jo-
hansen et al. was able to show global exponential stability (GES) of the estimation
error dynamic equilibrium points under persistence of excitation (PE) of the air-
craft angular rates. Rhudy et al. [74] assumed to have an air data system providing
air data measurements and used these to estimate the attitude of the aircraft and
the wind velocity. An EKF structure with a thrust force model was used by Hansen
and Blanke [39] for providing additional airspeeds measurements used in detecting
sensor failure of the Pitot-static probe. Rhudy et al. [73] presented a nonlinear
Kalman filter method to estimate airspeed that uses wind vanes that measure the
AOA and SSA, but is free of an aerodynamic model of the aircraft and does not
use an airspeed measurement, thus also allowing it to be used for Pitot-static probe
icing detection. For this approach, Rhudy et al. implemented the method as both
an EKF and as an unscented Kalman filter (see [48]) and found similar results in
a comparison.

Using an array of pressure sensors in estimating the air data parameters for
fixed-wing aircraft is not an entirely new approach. An extensive amount of re-
search in flush air data sensing (FADS) systems originates from NASA in response
to the problems associated with protruding Pitot probes. The FADS systems utilize
pneumatic pressure orifices that are flush with the surface, placed in a symmet-
ric and circular pattern on the nose of an aircraft combined with a aerodynamic
pressure model. Larson et al. [53] demonstrated a FADS system in wind tunnels
for subsonic airspeeds. Larson et al. extended this to transonic airspeeds [54], and
Whitmore et al. [88] demonstrated the system in-flight. Using the pneumatic FADS
system in combination with NNs to estimate freestream static and dynamic pres-
sure was proposed and demonstrated by Rohloff et al. [77]. Rohloff et al. [76]
proposed an air data sensing system, where NNs were used in combination with an
aerodynamic model of the nose of the aircraft to estimate the air data estimates.
Quindlen and Langelaan [71] presented a nose FADS system that used NNs to
estimate air data for a soaring UAV. The system was trained using wind tunnel
data and tested in flight without a ground truth sensor to provide verification.
Furthermore, the size of the pneumatic system necessitated removing the electric
motor, thereby requiring a less optimal launching procedure. Instead of pneumatic
pressure sensors, Callegari et al. [17], proposed to combine a maximum likelihood
estimator with redundant strip pressure sensors applied to the wings of a UAV to
estimate airspeed and AOA. This was demonstrated in simulation, but only with a
low level of noise and for small values of AOA. Samy et al. [80] developed a FADS
system for a mini air vehicle where a matrix of pressure orifices was placed on the
leading edge of the wing and a neural network was used to estimate the air data
parameters. The system was tested in a wind tunnel and the pneumatic system
designed by Samy et al. was connected to pressure transducers placed outside of

10
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the aircraft and the system in its presented configuration was therefore not usable
for flight. Laurence et al. [55] proposed a distributed pressure sensor approach for
estimating relative velocity for a small UAV. A CFD simulation software was used
to investigate optimal sensor placement and both a nonlinear least-squares and a
NN method were tested to estimate the AOA and SSA parameters in a wind tunnel
experiment. However, the test setup by Laurence et al. was only tested for a single
airspeed and the pressure sensors were not embedded in the aircraft, but instead
located outside the tunnel connected by pneumatic tubes to the pressure points on
the UAV.

Other approaches include Kumon et al. [51], where the influences of aerody-
namic forces on a light-weight UAV is exploited to determine the wind velocity
and direction. The wind velocity was assumed to be constant and with a zero ver-
tical component. The system listed by Kumon et al. is underdetermined and they
solve the problem by using an iterative optimization method over data spanning
a period of time. Rodriguez et al. [75] presented a method for estimating wind
velocity for a small UAV by using optical flow. Langelaan et al. [52] proposed a
direct computation of the wind velocity, rate of change of wind velocity, and wind
velocity spatial gradient based on GNSS velocity and acceleration measurements
using linearized expressions for the aerodynamic forces and moments. Paces et al.
[69] proposed a twin differential probe setup for estimating the AOA and SSA
that could be integrated into an existing air data system, and twelve different
probes was compared and tested. Martos and Rogers [61] showed that a low-cost
off-the-shelf AOA-system utilizing a differential pressure probe together with air-
speed measurements, makes the system invariant to ambient pressure changes if
the measurements are normalized using the dynamic pressure!®.

1.4 Contributions of the Thesis

The thesis is organized into five chapters. Each chapter accounts for a different
contribution in the field of estimating air data for small fixed-wing UAVs.

Chapter 2

This chapter centers on a short preliminary treatment of the required navigation
basics and then continues into the design of a nonlinear model-based wind velocity
observer. The contribution is the nonlinear wind velocity observer, which provide
exponential stability and convergent estimates of wind velocity and relative ve-
locity. The observer utilizes a standard UAV sensor suite combined with a model
of the aerodynamic forces on the aircraft, and an airspeed sensor. By exploiting
an aerodynamic model of the forces on the UAV and relating the forces to the
observer states, the observer has the advantage of not having PE requirements,
i.e. there are no requirements on maneuvers or flight trajectories in order to have
converging estimates. A potential disadvantage is that model errors may result in

19The quantity defined as goo := 1/2pV2.
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estimation errors. Another contribution of the paper is the compact representa-
tion of the small aircraft model of Beard and McLane [6] using the matrix-vector
representation of Fossen [30]. For the proof, the aerodynamic forces were divided
into a stabilizing linear term and a vector of the remaining nonlinear aerodynamic
forces with physical properties such as energy dissipation, which can be exploited
when constructing the Lyapunov function for observer error dynamics. Finally, the
nonlinear observer is validated through simulation using a small fixed-wing UAV
exposed to wind.

Chapter 3

This chapter contains an ML solution to estimating air data. The contribution
of the chapter is the ML solution, which consists of combining non-intrusive low-
cost MEMS-based pressure sensors embedded in the surface of the UAV with a
linear regression (LR) or (NN) modeling approach. A strength of the presented
solution lies in the flexibility of the sensor placement, since there are few geometric
constraints. Depending on the UAV, this potentially allows equipping a UAV with
an air data estimation system where other solutions are not viable. An example
are aircraft with nose propellers, which denies a nose FADS system. Instead the
pressure sensors can be embedded on the wings or fuselage of the aircraft, thereby
still allowing air data parameter estimation. The wide range of possible layouts of
the solution can be chosen to accommodate the geometry of the UAV it is designed
for. The presented solution is not pneumatic, i.e. does not require tubing to pressure
scanners that can be sensitive to mechanical stress. Furthermore, the approach
removes the need for mounting a protruding probe that is exposed and susceptible
to damage during landing. Another contribution consists of the validation obtained
from extensive testing and comparing the results obtained from different ML models
and sensor configurations in both wind tunnel and flight experiments.

Chapter 4

The contribution of this chapter is two distinct Kalman filter approaches for cor-
recting an air data system or air data estimator with low-frequency drift or a
constant error bias. These errors could be due to sensor performance degradation,
structural changes on the UAV or sensors, or operating outside of the ambient
conditions for which the system was calibrated for. Both presented estimators use
only a standard sensor suite consisting of a GNSS receiver, an IMU, and a heading
reference, combined with an air data system that is assumed to provide biased rel-
ative velocity measurements. Provided with persistence-of-excitation (PE) of the
angular velocity of the UAV, the two linear time-varying systems are proven to be
uniform completely observable (UCO) and uniform completely controllable (UCC),
implying GES for the deterministic case and boundedness in the mean square sense
for the stochastic case. The estimators are verified through simulation and flight
experiments.

12
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Chapter 5

This chapter summarizes findings in methods of air data estimation. It will also be
accompanied by a discussion on future work and how the different methods could
be tied together and further improved.

1.5 Publications

The research conducted during the project has resulted in the following publica-
tions. The patent application referenced below contains seven claims based on the
concepts presented in Chapters 2 - 4 as well as the Future Work section from Chap-
ter 5. These seven claims will potentially be taken out of the patent to function as
the basis for a separate patent application.

Publications included in this thesis:

[13] K. T. Borup, T. I. Fossen, and T. A. Johansen. A Nonlinear Model-Based
Wind Velocity Observer for Unmanned Aerial Vehicles. In Non-linear Control
Systems - 10th NOLCOS 2016, 2016

[12] K. T.Borup, T.I. Fossen, and T. A. Johansen. A Machine Learning Approach
for Estimating Air Data Parameters for Small Fixed-Wing UAVs Using Dis-
tributed Pressure Sensors. Submitted to IEEE Transactions on Aerospace
and Electronic Systems. A preprint is available here

[14] K. T. Borup, B. N. Stovner, T. I. Fossen, and T. A. Johansen. Kalman Filters
for Air Data System Bias Correction for a Fixed-Wing UAV. Submitted to
IEEE Transactions on Control Systems Technology. A preprint is available
here

e United Kingdom Patent Application No. 1614339.8, Detection of Icing on

Wings, GJE Ref: HWH00066GB, Norwegian University of Science and Tech-
nology

Publications not included in the this thesis:

[11] K. T.Borup, T.I. Fossen, J. Braga, and J. Borge de Sousa. Nonlinear observer
for depth-aided INS: Experimental evaluation using an AUV. In 2014 22nd
Mediterranean Conference of Control and Automation (MED), 2014

[31] R. Galeazzi, K. T. Borup, N. K. Niemann, H. Poulsen, and F. Caponetti.
Adaptive Backstepping Control of Lightweight Tower Wind Turbine. In
American Control Conference (ACC), 2015
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Chapter 2

Nonlinear Model-Based Wind
Velocity Observer

In this chapter, a nonlinear model-based wind velocity observer for small UAVs is
presented. The observer exploits a simple model of the aerodynamic forces on the
aircraft in combination with a standard sensor suite and an airspeed sensor. An
advantage of the observer is that it has no requirements on PE, i.e. no requirements
on the maneuvers and flight envelope of the UAV. Before the nonlinear observer
is presented, it is convenient to have a short introduction to the navigation basics
and the notation used.

2.1 Notation and Navigation Preliminaries

For a vector or matrix X, X " denotes its transpose. The operator | - || denotes the
Euclidean norm. For a vector x € R3, S(x) denotes the skew-symmetric matrix

0 —XI3 xTo
S(aj) = I3 O —X1
—T2 I 0

The n x n identity matrix is denoted by I,, and the m X n zero element matrix by

Oan'

In navigation, different sensor systems measure variables in different coordinate
frames, and in order to solve the navigation problem, it is necessary to have the
relationship between the different coordinate frames properly modeled. For the
observers presented in this thesis, it is sufficient to consider only two coordinate
frames, namely the body-fixed (BODY) frame and the North-East-Down (NED)
frame. The BODY coordinate frame is fixed to the aircraft at its center of gravity
and moves and rotates with the vehicle. Figure 2.1 shows the definition of the
BODY frame for a Skywalker X8 UAV. The angular velocity w” = [p,q,7]" and
the relative velocity v2 = [u,, v, w,]T are both defined with respect to the BODY
frame.
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Figure 2.1: A BODY coordinate frame illustrated on a Skywalker X8 UAV.

The NED frame is the coordinate frame we refer to in our everyday lives. It is
defined as a tangent plane on the surface of the Earth at a point of interest® and is
convenient, since it provides an easy interpretation of position, velocity, and atti-
tude relative to north, east and down directions. However, the NED frame does not
account for the curvature of the Earth and should therefore not be used in naviga-
tion over larger areas. Since small UAVs often operate over a limited area, it shall
suffice to limit ourselves to the BODY and NED frames for the scope of this thesis.
Other coordinate frames commonly used in navigation are the Earth-Centered-
Intertial (ECI) frame and the Earth-Centered-Earth-Fixed (ECEF) frame. For a
more in-depth treatment on navigation and coordinate frames, the reader is di-
rected to Farrell [27], Fossen [30] and Groves [34].

Vectors decomposed in the BODY and NED coordinate frames are denoted by
the superscripts b and n, respectively. Consequently, the relation between a vector
2 decomposed in the BODY frame and its corresponding decomposition in the
NED frame z", is governed by z" = Rl’ij, where Ry is the rotation matrix from
BODY to NED. The rotation matrix belongs to the special orthogonal group of
order 3, R} € SO(3), such that R € R3*3, R is orthogonal, and det(R) = 1.
Consequently, we have the corresponding rotation matrix from NED to BODY as
RY = (R?)T. A common parameterization of the rotation matrix is through Euler
angles. Euler angles are a set of three angles used to describe the orientation of
a rigid body with respect to a given coordinate frame and have the advantage
of allowing intuitive interpretation. The Euler angles can be defined in numerous
ways, but it is common in guidance, navigation, and control applications ([30]) to

1For aircraft navigation, an example of this could be the runway or UAV launch position.
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define them by the principal rotations about the z, y, and x axes from BODY to
NED frame as specified by the angles:

¢
or = |0
(U

Using the Euler angle parameterization, the rotation matrix is given as

cpc)  —scg + cystsgp  syse + cisbhso
w = R(D}) = |stpel  ciped + sgslsyp  —cipse + sfsyed
—s6 clsop clco

where the notation cx = cos(z) and sz = sin(x) has been used for notational
brevity. Another possible orientation representation is quaternions. Although less
intuitive than Euler angles, quaternions are more computational efficient and do
not allow for the possibility of a gimbal lock, i.e. if the the pitch angle is £90
degrees, the aircraft is either pointed directly up or down and and the roll and
yaw angles are undefined. Since the scope of this thesis is not attitude estimation,
Euler angles and the rotation matrix shall be used for simplicity. On the topic of
attitude representation, see [19, 25, 59].

The estimation of position, velocity over ground, and attitude (PVA) is the
basis of navigation?. The kinematic navigation model is given by

=l
T N (2.2)
%= RpS(W) (2.3)

where p" is the position decomposed in the NED frame, v," is the velocity over
ground decomposed in the NED frame, and f™ is the specific force. The gravity
vector decomposed in the NED frame is denoted by ¢", and w® is the angular ve-
locity of the BODY frame relative to the NED frame, decomposed in the BODY
frame. Although air data estimation is not a navigation problem, the navigation
equations will play a role in this chapter and in chapter 4. A good overview of
nonlinear attitude estimation is presented in Crassidis et al. [24] and the multi-
plicative EKF presented by Markley et al. [58] is becoming widely used. Grip et
al. [33] proposed a globally exponentially stable nonlinear attitude and gyro bias
observer requiring two or more pairs of vector measurements. Hosen et al. [41]
build on these results by exploiting velocity over ground estimates obtained using
computer vision-based optical flow. Lastly, Hansen et al. [38]| presented an nonlin-
ear attitude observer and a translational motion observer that uses tightly coupled
integration of intertial measurements with global satellites measurements.

20ften velocity over ground is referred to as linear velocity or simply velocity, but given
the importance of both wind velocity and relative velocity in this thesis, the explicit naming of
velocity over ground shall be kept.
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2.2 Problem Formulation

The velocity over ground of a UAV can be expressed as the sum of the relative
velocity and the wind velocity according to

vl = Rpvl + Ryvl, (2.4)

where vy = [Un, Ve, vq] T is the velocity over ground of the UAV decomposed in the

NED frame, v,* = [u,,v,,w,] is the relative velocity of the UAV with respect to
the wind decomposed in the BODY frame and v,? = [y, U, wy] | is the wind
velocity decomposed in the BODY frame. From the relative velocity, the airspeed,
AOA and SSA are recognized as

Vo = VU2 + 02 + w? (2.5)
_ —1 [ Wr

a = tan <Ur> (2.6)

B =sin~! (;’/) (2.7)

And the inverse relation is

up = Vgcos(a)cos(B) (2.8)
vy = Vgsin(B) )
wy = Vsin(a)cos(B) (2.10)

The goal pursued in this chapter is to estimate both the wind velocity v and
the relative velocity v2.

2.3 UAV Rigid-Body Kinetics

In order to obtain a detailed model of the UAV the rigid-body kinematics will
be considered. By application of Euler’s first and second axioms the rigid-body
kinetics for the translational and rotational dynamics of a rigid body is (Fossen
[301)

m(vZ + S(w? Ug) = F? (2.11)
Job — S(Jw)wb = M° (2.12)

where m is the mass of the vehicle, J € R3*3 is the symmetric inertia tensor and
F® and M? are the forces and moments on the vehicle. In Beard and McLain [6],
it is shown that a small aircraft can be modeled by (2.11) and (2.12), where

I 0 —Jz
J= 0o J, 0 (2.13)
_J;Ez 0 Jz

18



2.3. UAV Rigid-Body Kinetics

is a matrix of products and moments of inertia, and the aircraft forces and moments
can be approximated by

—Cp(a) cos(a) + Cr(a) sin(a)

CYO + CYB/B
Fb :lpVQS —Cp(a)sin(or) — Cp (o) cos(cv)
M?b 9lta b (Cl() + Clﬂﬂ + Cls,0a + Clar&")

¢ (Cmg + Cry o + Cis. de)
b (Chy + Cry B+ Crs,0a + Cny, 0r)

[ Cx, (a)ﬁq + Cx;, (a)de |
Cy, ﬁp + Cy, 5v-1 + Cy;, 00 + Cy;, 0r
1 Cyz (a)55-q+ Cyzs (a)de
V28 \¥) 3y Se
T 2p @ b (Clpp + CZTT) 2{2
c (Cmqq) ﬁ
I b(Cp,p+ Cy,r) ﬁ |
—myg sin 0 %pSpropCprop ((kmotorét)z — Vf)
mg cos 0 sin ¢ 0
mg cos 0 cos ¢ 0 (2.14)
0 —kr, (kad;)? '
0 0
0 0

where p, is the density of air, and ¢ is the gravity constant. The aerodynamic lift
and drag coefficients, Cr,(«) and Cp(«), and the aerodynamic force coefficients are
nonlinear functions of AOA:

(o) £ —Cp, cos(a) + Oy, sin(e)

(a) = =Cp,, cos(a) + Cr;_sin(a)
Cz,(a) & —Cp, sin(a) — Cp, cos(a)

(@)

—Cp,, sin(a) — Cr,, cos(a)

Where Cyo, CY/S’ Clo, ClB’ Cl(;aa Cno, Cnﬂ, Cnéa, Cnér, Cyp, CYM Cy5a 5 Clp, Clr, Cmq,
Ch,, Cn,, and Cpyop are constant aerodynamic coefficients®. § = [04, 6¢, 0., 6] T are
the control signals of the aileron deflection, elevator deflection, rudder deflection
and throttle deflection. The area of the wing is given by S, the propeller area is
Sprop, b is the wing span, and c is the mean aerodynamic chord of the wing. kmotor
is the efficiency of the motor and kTp and kq are constants that relate the throttle
deflection d; to the moment opposite the propeller rotation.

3these coefficients are, depending on the influence they model, usually referred to as either
stability derivatives or control derivatives, and are found as the partial derivatives in a Taylor
series approximation.
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2. Nonlinear Model-Based Wind Velocity Observer

2.4 Matrix-Vector Form Aircraft Model

The aircraft model of Beard and McLain list in equations 2.12 - 2.14 can be ex-
pressed in matrix-vector form according to (Fossen [30])

MRBV-l-CRB(I/b)I/b :TII%B (215)

where 1 = [(Ug)‘r7 (W) T]T is the 6-DOF generalized velocity vector expressed

in BODY frame. The rigid-body mass matrix Mrp and rigid-body Coriolis and
centripetal matrix Crp(v) are given by

ml3  Ozx3
M - 2.16
iB [ Os3x3 o/ ] (2.16)

mS(wb) 0O3x3 :| (217)

CRB(”):{ Oaxs  —S(Jub)

The generalized vector of external forces and moments decomposed in the BODY
frame is 755 = [(F®)T,(M")"]". The wind velocity is assumed irrotational and
steady relative to the Earth. The generalized wind velocity of an irrotational flow
decomposed in the BODY frame is

I/Z) = [uw,vw,wv,O,O,O]T (218)
———

b
v w

and the BODY frame generalized relative velocity vector v2 = v® — 1% . Since

v = RPP | then under assumption of steady wind (97 = 0), we get

b Vs
9" = Rvb + Rob, =0 (2.19)
Consequently,
2 = S(wh)l (2.20)
This leads to the property
Mppit + Cre(W)vl =0 (2.21)

which is easily verified by expanding the matrices Mrp and Crp. Hence,
Mppi® + Crp(WP)wb = Mpg[it + 2] + Cre(V2) [Vl +12]
and finally, by inserting (2.21) we get
Mppi® + Crp(W)v* = Mrpt? + Crp(v2)v? (2.22)

Notice that (2.22) is equivalent to Property 8.1 in Fossen [30]. The dynamics of the
relative velocity 2 can finally be expressed as

MRB”? + CRB(V:?)V:? = TIb%B (223)

With the aircraft model relating the aerodynamic forces to the generalized relative
velocity vector, the nonlinear wind velocity observer can be designed.
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2.5. Nonlinear Relative Velocity Observer

2.5

Nonlinear Relative Velocity Observer

The following section presents the relative velocity observer.

2.5.1 Measurements

The proposed relative observer assumes that the UAV is equipped with a standard
sensor suite consisting of an IMU, a heading reference such as a magnetometer,
a GNSS receiver, and a Pitot-static probe, and in addition, an airspeed sensor.
Furthermore, the UAV is also assumed to be equipped with an attitude estimator
using the standard sensor suite measurements. The following measurements are
needed to implement the observer:

An attitude estimate from the attitude estimator, typically represented as
Euler angles or unit quaternions, used to compute the rotation matrix Rj.

Measurement of the airspeed V.

A Pitot-static probe measuring the relative longitudinal velocity u,,, > 0,
which relates to the relative longitudinal velocity w, = vy, » by an unknown
positive scaling factor ~.

An angular rate measurement w? from the IMU, which has been compensated
for gyro drift and bias.

The control deflections § = [d,,dc, 0., 6] from the autopilot.
The UAV velocity over ground vy measured by the GNSS.

It should be noticed that the velocity over ground signal is only needed, if the
observer should also estimate the wind velocity. The cascaded structure of the
model-based nonlinear relative velocity observer is shown in Figure 2.2.

Comment on the V, measurement: Small UAVs are usually equipped
with Pitot-static probes that measure the longitudinal component of the
relative velocity w,, but a direct measurement of the airspeed V, is not
usually available. It is however possible to implement the observer without
the airspeed measurement by exchanging the V, measurement with the
estimate V,. The results obtained using this substitution are similar to
the simulation results presented in this chapter and does not require the
airspeed measurement. However, no stability analysis has been performed
to support this version of the observer.

2.5.2 Assumptions

The assumptions needed to prove exponential stability are:

The measurements Ry, V, w® and vy are smooth bounded signals. Hence,
these signals will be treated as time-varying known signals and not states
in the observer. This implies that the observer error dynamics become non-
autonomous.
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2. Nonlinear Model-Based Wind Velocity Observer

Autopilot 04205 0c. Oy >

Air data Va Ur.m N

system ”
o™ Relative
GNSS g > velocity
observer

b
IMU W >
Y
Heading reference | Attitude |RP_
7| estimator d

Figure 2.2: Block diagram showing the cascaded structure of the observer including the
signals used in the wind velocity observer where the air data system constitutes a air data
sensor and a Pitot-static probe.

w = 0.

w

e The wind velocity vector is slowly time-varying such that o

e The sensor scaling factor v is positive and slowly time-varying such that
4 = 0, and the relative longitudinal velocity u, is positive.

e The relative velocity in the lateral direction v, is small compared to the
airspeed V, and consequently the SSA 3, is small.

e The lift and drag coefficient, Cr,(a) and Cp(a), are linear in «, i.e. « is small.
e The aircraft and autopilot system is closed-loop stable (stable flight) and

the flight envelope ensures the oy, as defined in the proof of Lemma 2.1, is
positive.

2.5.3 Observer model

Throughout the following design and analysis the argument for time-varying sig-
nals have been omitted for notational simplicity, except when emphasis is deemed
important. The translational motion components of (2.23) can be written as:

mi)ﬁ + mS(wb)vf + m(RZL)Tg" = Faem)l(vf,wb, o)+ Faem,g(Va,wb, d) (2.24)

where g" = [0,0,g]" is the gravity vector decomposed in the NED frame. The
functions below depend on the state v® and time-varying measurements represented
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2.5. Nonlinear Relative Velocity Observer

by the arguments V,, w®, and 6:

1 —Cp(a) cos(a) + C (o) sin()
Faeron (V2w 8) :§P5VL12 Cy, +Cy, B3
—Cp(a)sin(a) — C(a) cos(w)

1
1 Cx, (a)ﬁq + Cx;, ()0 — gSpropCprop
+ 508V 0 (2.25)

Cz,()55-q + Oz, (@)de

. %pSp,.opCpmp (kmotorat)2
FaerO,Q(Vllﬂ wb7 6) = 5psv‘/va? (CYP ﬁp —+ CYT ﬁ?‘ + CY‘Sa 60, + CY‘Sr 57") (226)
0

The reason for this separation of the aerodynamic forces will become apparent
in the proof, but it is worth noticing that the airspeed is not an argument for
Faero1(+), since V,, = [[v%||. To simplify notation, the aerodynamic force terms will
be denoted using ¢ as replacement for measured signal arguments, i.e.

Facro,l (Ufzv t) = aero,l(vfz; va 5)

Faero,2(t) = aero,2(va7wb75)

2.5.4 Relative velocity observer design

Lemma 2.1 (Aerodynamic forces). Under the assumptions stated in Section
2.5.2, the linear and nonlinear terms of FaemJ(vff, t) can be expressed as the sum:

Fuaero,1(W2, 1) := —D(t)v? — d(v?, t) (2.27)
Proof: Defining the longitudinal wind speed
Vion £ V U% + w% (228)
By application of trigonometric relations
w w
i =sin(tan™' [ — ) | = — 2.29
sin(a) = sin ( an (Ur )) Vi ( )
w U
= tan~! [ — ) ) = — 2.30
cos(a) = cos ( an (ur >) Vi (2.30)

The following expressions for the aerodynamic forces are based on linear theory
and the assumption that V, ~ Vj,,. Hence,

.1 VUr Uy
= — | = — 2.31
st (1) = 1 (231)
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2. Nonlinear Model-Based Wind Velocity Observer

The linear sway force in (2.25) for an aircraft that is symmetrical about the zz-

plane (Cy, = 0) then becomes:

(2.32)

Cy, + Cy,B = Cy, %

Furthermore
o =sin"! <‘Z):n) 2 % (2.33)
CL(a)%CLoJrCLQOz:CLOJrCLQ% (2.34)
CD(Q)NCDO“FCDQOZ—CDO“FCDQ% (2.35)
and
Cx;, (@) £ (—Cp;, cos(a) + Cy, sin(a))d. 2.36)
Uy Wy
=~ ( C’Dé(3 va + CLSC 7{1)(55 (237)
Cp, cos(a))de 2.38)
(2.39)

Hence, with abuse of notation we define a function Faero’l(vﬁ,t), which depends
on the state v2 and several time-varying measurements all denoted by the single

argument ¢ as:
—Cp(a) cos(a) + Cr(a) sin(a)
CYU + CY[gB

::lpSVGQ
—Cp(a)sin(a) — Cr(a) cos(a)
1

Faero,l(vga t) 9
1 C(Xq (a)ﬁq + CX5E (04)65 - 7Spr0pCpr0p
+ - pV2 ’ s
2/’ a 0
Cz,(@)5-q + Cz; (@)de
) 3+ (Cro+ Cr ) &

- (ODO +Cp, A
Cy,p
t) v (O Ontr) ¥

1
:ngG.QS
— (CD0 +Cp,

1 <_CDQ% + CLq %) 2€/aq
+ ipVGQS 0
| (~Cptz -~ Cuz) oz
r Uy Wy 1
1 (—=Cb;, V. +CLs, ?)56 - gspropcpl'Op
+5oVeS 0
c Wy Uy
L mq—'_ (_CDéeva - CLseva)(Se
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2.5. Nonlinear Relative Velocity Observer

Since the airspeed V, will be positive for any values of v2 during flight, we rewrite
V., as

Vo = Vamin + AV, (2.41)
Combining (2.40) and (2.41) we obtain
1 [ o1 0 —09 Uy
Freron (V2 t) = — EpS’ 0 —Cy, 0 Uy
| 02 0 o1 Wy
D(t)

1
1 CDaurwr - C1L04 w72 + gSpropC(prop‘/a2 + nlAVa
_ §pS )

CLa Up Wy + CDa wg + 772AVa

d(v},t)

(2.42)
where
£ (Cp, + Cps, 0¢) Va,min + Cp,cq(t) /2
£ (Cry + CLy, 0¢) Vaymin + Cr,cq(t) /2
é(CDU+C’D5 e) ur — (Cpy + CL;, be) wr
g 2 (CLO—FCLJ )ur+(CDO+CD5 )
|

For a stable flight D(¢) > 0 and v%T d(v?,t) > 0,V ¢ > 0. In addition, when designing
the observer we assume that under stable flight the nonlinear aerodynamic terms
satisfy:

ad(vt, )] [od(wb,6)]" s
P L X P> R’ t > 2.4
[ ot + g >0, VoleR? t>0 (2.43)
where P = PT > 0. Then the following property ([1]) holds:
(x —y) " P(d(z,t) —d(y,t)) >0, Va,yecR> t>0 (2.44)

Note that D(t) and d(v®,t) depends on time-varying measurements. Consequently,
Condition (2.43) must be satisfied for all measured signals, which are assumed to
be smooth and bounded.

Proposition 2.2 (Nonlinear model-based relative velocity observer):
Under the assumptions given in Section 2.5.2 and inequality (2.43), the nonlinear
observer:

mﬁf :_S(WI))@E"‘Faero l(Ab ) +Faero2(t)
—m(Ry) " g" — Kuh (hT0) —4ul (1)) (2.45)
§ =K, (KT8 — 4P (1) (2.46)
o0 =(Rm) o™ — 0P (2.47)
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2. Nonlinear Model-Based Wind Velocity Observer

renders the equilibrium point (22;7) = (0,0) globally exponentially stable (GES) if the
observer gains are chosen as K,, > 0 and K, = K,u™. The vector h = [1 0 0]"
is a selection vector, u(t) > 0 for all ¢ is the Pitot-static probe relative velocity
measurement in the longitudinal direction, and R}’ are the attitude estimates, and w®
and vy are the IMU and GNSS measurements, respectively. Notice that the airspeed
measurement V, is used in the expression for Flero2(t) given by (2.26), whereas the
airspeed estimate V, = ||0%|| is used in the expression for Fiero,1 (02, ) given by (2.25).

Comment on local versus global stability: The stability result is in
practice local since the observer is based on the linear expressions (2.32)—
(2.35) for the aerodynamic forces. The linear drag and lift coefficients Cp, ()
and Cp(a) cannot describe nonlinear maneuvers such as stall, spinning etc.

Proof: Since the wind velocity estimate 97, is algebraically related to o2 by (2.47),
it is only necessary to prove that the estimated states 92 and 4 converge to their
true values. Consider the translational dynamics of the relative velocity and rewrite
the correction term in terms of the error states (2.24) and (2.45) such that:

MO =Faero (V2 f) — Faero 1(17b,t)
+ K,h ( — Aul ))
— (D(t); ( v) = (d(vy, 1) = d(o7,1))
+ Kuh (h ﬁ u™(t)y + um(t)ﬁ)
= = (d(v7, 1) = d(07, 1))
+ Kuh (ur )y —h'o fz) (2.48)
5=~ (b5 — BT (2.49)

Consider the Lyapunov function candidate:
1
V= 3" (32750 +4%) (2.50)
Hence,

V=32 (D) + D(t)) 3 + 32T (d(wl,t) — d(a0,1))

+ K, (82T hu*(6)7 — 82T hh D)
— K, (u(t)7® — yh ")) (2.51)
<-l #7ew ]
by using (2.44) and
Kum K, 0 0
_ | K pSoi+ K, 0 0
Q) := 0 0 0SCy, 0 (2.52)
0 0 0 pSoy
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2.5. Nonlinear Relative Velocity Observer

where the expression for o1 = (Cp, + Cp;, 6c(t))Va,min + Cp,cq(t)/2 was derived
above in the proof of Lemma 2.1. To assess whether Q(t) is positive definite we
consider the leading principal minors of the symmetric matrix Q(¢) + QT (¢). If the
gains are chosen such that 4K, u(pSoy + K,) — (K,u™ + K,)* > 0 and since
o1 > 0 and Cy, < 0 then it follows that V <0 for 92 # 0 and 7 # 0. Finally, by
invoking Theorem 4.10 in Khalil [49] the conditions for GES are casily verified. m

Corollary 2.3. If the wind velocity observer (2.45)—(2.47) is in cascade with an
attitude observer where the equilibrium point of the error dynamics R} = Rj —
R = 0 is GES, then the nonlinear wind velocity observer (2.45)~(2.47) with R}
exchanged with the estimate Rl’j is GES.

Proof: From theorem 4.14 in Khalil [49], we know there exists a Lyapunov function
Vo (RP) : R?*® — R that satisfies
Vo < —c||Rp| (2.53)

for some ¢ > 0. With an attitude estimate, instead of a measurement, (2.45) should
be replaced with:
mol = — S(w”)0l + Faero1 (02,1) + Facro2(t)
(BT g" — Kb (W7 0!~ 5 (1) (2.54)
and the error dynamics instead becomes
mit = — D(0)7E — (d(uh.t) — (it )
+ K h(u™ ()7 — ha8) + mat T (RP) g™ (2.55)

The time derivative of the Lyapunov function:

Ve-[F a'Q m +may (Ry)Tg"

< Aanin (@A = Anin (@152 117 +mg 57| B | (2.56)

where the time argument of () has been omitted for notational simplicity. Consider
the augmented Lyapunov function

W (3,07, By) = V(3,97) + 6Va(B) (2.57)
where k£ > 0. Hence,
W < = Anin( @A = Amin (@) 157712
+mgl|o || By || — wel By

< — [0l I 150 D) 1&g 150 (2.58)
where 1
/\min(Q) _igm 0
H= _%gm o 0 (2.59)
0 0 Amin(Q)

Hence, H is positive definite since x can always be chosen such that
k> g*m? /(40 min(Q)c). =
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2. Nonlinear Model-Based Wind Velocity Observer

2.6 Aerosonde UAV Stability Requirements

The stability requirements (Proposition 1) of the observer (2.45)—(2.47) can appear
difficult to evaluate and a case study is therefore presented using the Aerosonde
UAV (with the model as given by Beard and McLane [6]). For the Aerosonde UAV
the requirement o1 > 0 reduces to (both C’DJE and C’Dq are zero):

0.03Va min > 0 (2.60)

which is clearly satisfied. Since Cy, = —0.98 the matrix D(t) > 0 for all ¢ > 0. The
Condition (2.43) can be rewritten as (using the results from the proof of Lemma
2.1):

0 G
ad@wt,)]  [adwt,)] |

G2 0 ¢
where

1
S
+2(Cp, + Cp;, 0e) AV,

Cl :2CD(,( wy + 4 Spropcpropur + inur/Va

1
CQ :CDa Uy — CLa wy + 2§Spr0pcpropwr

+ (nlwr + 772”7‘) /Va
(3 =2Cr ur +4Cp, wy + 2now,. [ Vy
+ 2 (CDO + CD&@ 56) AV,

Hence, the inequality (2.43) is satisfied with P =I5 for all ¢t > 0 iff {; > 0, {5 > 0,
and C1C3 — C22 > 0.

For (; > 0:

0.30w, + 0.41u, + 0.30AV, + 0.03u2/V,
—(0.28 — 0.360..(t))w,V, > 0 (2.62)

This can be rewritten as

0.03u?/V, + 0.41u, + 0.30AV,
> 0.02w,.(1 — V,) — 0.366, (t)w,V, (2.63)

Similarly for (3 we have:

6.90u, + 0.06AV, + 0.06w?/V,
> —1.2w, — (0.56 — 0.726, )u,w,/Vy (2.64)

Since ¢, and w, are much smaller than u, during a stable flight (2.63) and (2.64)
holds during normal operation of the UAV. Throughout the simulations presented
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in Section 2.7, the values assumed by ¢; (with a V, i = 14 [m/s]) fluctuates
around 39.5 and never drops below 36.8. For (3, the fluctuation is around 183 with
a minimum of 177. The requirement ;{3 — (3 > 0 is difficult to analyze analytically
but, the magnitude of (5 never exceeds 20.2 and it is therefore evident that the
requirement is fulfilled throughout the simulation. However, there exists combina-
tions of u,, w, and J., which can occur in other conditions that do not guarantee
this condition holds. Because of the constraint (2.63) and the approximations the
stability results are local for the Aerosonde UAV. Consequently, it is recommended
to use the nonlinear observer only for flight envelopes accurately described by the
aircraft model and stable flights.

2.7 Simulation Study

To assess the effectiveness of the proposed nonlinear wind observer, two different
simulations have been conducted using Matlab Simulink. The simulations have
been based on the complete model of the small aircraft system for the Aerosonde
UAV presented in [6] including the autopilot module. The wind is modeled as a
constant wind field with added turbulence. The turbulence is generated as white
noise filtered through a Dryden model, an approach presented by [52] and also used
by [6]. The Dryden transfer functions for the wind turbulence are given by

Ha(s) = 0w %ﬁ (2.65)
Hoy(s) = 0y | Ve (5 + Va/(V3Ly)) (2.66)

L, (s+V./Ly)?

3Va (s+ Va/(\/ng))

Hw = Ow
) = oo\ L T Va L)

(2.67)

where o, 0, 0 and L., L,, L,, are the turbulence intensities and spatial wave-
lengths along the vehicle frame axes. For the simulations the Dryden model has
been implemented with a constant nominal airspeed V, = V,,. The gust model
used is for a low altitude, moderate turbulence gust with the parameters listed in
Table 2.1. For assessing the simulation results, the focus will be on the estimates of

Table 2.1: Dryden gust model parameters used in simulation.

altitude 50 m
Lu,Ly 200 m
Ly 50 m
w0 212 m/s
Ow 1.4 m/s
Vao 26 m/s

the wind velocity and the air data. During simulations the observer measurements
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2. Nonlinear Model-Based Wind Velocity Observer

have been used with the noise from Appendix H and Chapter 7 in [6] on IMU mea-
surements, Pitot static probe measurements and GNSS velocity measurements. For
the GNSS velocity measurement noise a std. dev. of 0.05 m has been used. Since
the noise on the estimate ¥4 is proportional to the noise of the GNSS velocity mea-
surement v™, the GNSS velocity measurement has been filtered through a simple
observer. The observer gains are K., =4 and K, = K., /ul".

2.7.1 Simulation study I

During the first simulation the aircraft autopilot control objectives are changed in
steps. The aircraft control objectives start with an altitude of 50 m and and air-
speed command of 26 m/s. After 30 seconds the course command control objective
is increased by 10 degrees, where it stays for the next 30 seconds. At time 90 s,
the altitude control objective is increased by 5 meters and once again decreased
after 30 seconds. At time 150 s until time 180 s the speed control objective is
increased from 26 m/s to 30 m/s. In the middle of the simulation after 100 sec-
onds the airspeed measurement scaling factor  steps from 1.0 to 1.1 to assess the
scaling factor estimation capabilities of the observer. The wind velocity and wind
velocity estimation is shown in Figure 2.3. The nonlinear wind observer is capable
of providing accurate estimates for the wind velocity along the lateral axis of the
aircraft. In the longitudinal and vertical directions the observer estimates appear
to be slightly delayed.

(m/s)

0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 2.3: Three plots showing the true values of the wind along with their respective
estimates from a simulation with a maneuvering UAV.

Figure 2.4 shows the air data ground truth and estimates values, calculated
directly from the estimated relative velocity, along with the airspeed measurement
scaling factor.
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Figure 2.4: Three plots showing the AOA, SSA and airspeed measurement scaling factor
true variables and their respective estimates from a simulation with a maneuvering UAV.

2.7.2 Simulation study II

To assess the nonlinear wind observer under actuator uncertainties, the second
simulation includes a 10% mismatch between values of the aircraft parameters in
the wind observer for the thrust force created by the propeller actuator and the
true model values. This is emulated as

fp,model =11 fptrue (268)

The simulation is conducted using the same autopilot control inputs as in Simula-
tion I, but without the change in scaling factor. The simulation results are shown
in Figures 2.5 and 2.6. The nonlinear wind observer displays an offset in the lon-
gitudinal wind velocity estimation, while the estimates in the lateral and vertical
directions have only degraded mildly. The AOA estimate also appears to be af-
fected by a small offset, whereas the SSA estimates displays similar performance
to the former simulation.
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Figure 2.5: Three plots showing the true values of the wind velocity along with their
respective estimates from a simulation with with a propulsion model uncertainty.
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Figure 2.6: Three plots showing the AOA, SSA and airspeed measurement scaling factor
true variables and their respective estimates from a simulation with a propulsion model
uncertainty.
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2.8 System Identification, Parameter Estimation and
Modeling Accuracy

The observer was shown to work in simulation, however, the dynamics and behavior
of the UAV during simulation is based on the same model as used by the observer.
Successfully transferring the observer to flight requires that the model accurately
captures the underlying physics. This depends on obtaining accurate estimates of
the aerodynamic coefficients of the UAV model. The discipline of mathematically
modeling the governing physics of a system based on observations of input and
output is commonly referred to as system identification. For aircraft, this is done
by numerically simulating the air flow, wind tunnel experiments, or flight exper-
iments with predefined trajectories designed to excite relevant parameters. Given
the highly nonlinear nature of aerodynamics combined with measurement noise, it
can be difficult to obtain an accurate model for light-weight aircraft such as the
Skywalker X8 that are highly susceptible to the influence of wind. Gryte et al.
[35] presented a case study on establishing a six degrees-of-freedom aerodynamic
model of the Skywalker X8. The aerodynamic forces are modeled as linear with the
exception of the influence of AOA and SSA on drag, which is modeled as a second
order polynomial, and the model structure is therefore different from the one used
in this chapter. Gryte et al. did a comparison between model parameters found
using wind tunnel experiments and the 3D panel software XFLR5. Even though
consistencies were found across the models, there was also some discrepancies. For a
treatment of system identification and parameter estimation for aircraft, see Klein
and Morelli [50].

2.9 Chapter Summary

In this chapter a nonlinear wind observer for a UAV was presented. The wind
observer combines a model of the aircraft with a GNSS receiver, an attitude ref-
erence, an airspeed sensor, and a Pitot-static probe. The nonlinear wind observer
provides estimates of both the wind velocity and the relative velocity, from which
the AOA and SSA are computable. The nonlinear wind observer developed does
not have any requirements of PE of the aircraft. The nonlinear wind observer has
been proven to be exponentially stable and is verified through simulation.
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Chapter 3

A Machine Learning Approach to
Estimating Air Data Using
Distributed Pressure Sensors

This chapter presents a method for estimating the air data parameters for a small
fixed-wing UAV using distributed low-cost MEMS-based pressure sensors embed-
ded in the surface of the aircraft. The pressure measurements are used in com-
bination with machine learning to estimate AOA, SSA, and airspeed. Two ML
algorithms based on NNs and LR are implemented, tested, and assessed using data
collected from wind tunnel experiments and a flight test and the results are com-
pared to a benchmark flight test. The presented estimation method is build using
low-cost, off-the-shelf components, and an advantage of the method is the flexibil-
ity of the sensor placement. Section 3.1 states the problem and the assumptions
behind the method and Section 3.2 presents the two ML approaches to estimating
the air data parameters from pressure measurements. Section 3.3 contains a de-
scription of the experimental setup and Section 3.4 presents the obtained results.
The presented results are based on both wind tunnel tests and a flight test with
the Skywalker X8 UAV.

3.1 Main Principles

For a UAV the relative velocity can be expressed in the body coordinate frame as
the difference of the ground velocity and the wind velocity:

vb = vlg’ — (3.1)

b = [up, vr, w,] " is the relative velocity vector, v} = [u,v,w] " is the velocity
over ground vector of the UAV, and v = [uy,, Vy, wy,] | is the wind velocity vector.
The goal is to use pressure sensor measurements to estimate the airspeed V,, AOA

where v
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a, and SSA (3 defined as:

u? + v2 + w? (3.2)

a = tan~ (Z:) (3.3)
B=sin"! <‘U/a> (3.4)

As described in Chapter 1, both the airspeed V, and AOA « are directly related
to the lift and drag forces and knowing these variables is valuable in controlling
the aircraft. The relationship between the air data parameters and the pressure
distribution across a cambered airfoil and a fuselage is not trivial to model. For an
airfoil of a given shape at a given AOA, the resultant aerodynamic force, Fp, is de-
pendent on five different parameters: The airspeed V,, the freestream density poo,
the viscosity of the fluid poo, the size of the body by a reference length ¢, and the
speed of sound as.!. By application of the Buckingham pi Theorem, dimensional
analysis allows expressing the aerodynamic force in terms of a dimensionless force
coefficient Cr = Fgr/ %pOOVa202, as a general function of only two variables, the
freestream Reynolds number Re= po,V, ¢/ 10 and the Mach number M =V, /ao.
For a treatment of dimensional analysis for an airfoil, the reader is directed to
Anderson [5]. Furthermore, for Mach numbers below 0.3, the effects of compress-
ibility are negligible and the flow can be considered incompressible. Since most
small UAVs operate in Mach numbers well below 0.3, it is assumed that the use
of Mach numbers for the dimensional analysis can be neglected. Extending dimen-
sional analysis from two dimensional airfoil to a three dimensional aircraft requires
the SSA. Hence, dimensional analysis allows for stating the force coefficient Cg for
an aircraft of a given shape as a general function of only the Reynolds number, the
AOA, and the SSA, where the expression for the Reynolds number also contains
the airspeed.

The theoretical basis for the method presented in this chapter revolves around
the relation from air data to force coefficient and pressure distribution. In gen-
eral, the pressure distribution and flow over a given 3-dimensional object moving
through a fluid is highly nonlinear and very complicated to model. Unless the object
has certain favorable geometric properties, finding the pressure and flow around
the object requires solving the Navier-Stokes equations numerically. In this chap-
ter it is assumed that given a sufficient set of pressure measurements from a set of
measurement points distributed on the surface of a UAV, it is possible to inversely
map this spatially sampled pressure distribution back to the air data.

The pressure measurements obtained by the sensors have been used differen-
tially with respect to a designated reference sensor, i.e. a selected sensor mea-
surement has been subtracted from all the other sensor measurements. Biases and
sensor noise will be addressed later, but for this discussion we assume perfect sensor

LActually the compressibility of the fluid, but that value is representable by the speed of
sound.
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measurements. Instead of using the pressure measured directly, which is a function
of altitude, temperature, and humidity, the differential pressure instead directly re-
lates the measured pressure to the pressure distribution on the aircraft. The price
is the reduction of the sensor measurements by one dimension, but should enable
- given a proper training data set and a suitable ML structure - to make the ML
method robust with respect to changes in ambient conditions. With the differen-
tial sensor approach, there is for a n-sensor setup in effect only n — 1 differential
pressure measurements available and throughout the rest of this chapter, they will
be referred to using their sensor numbers as p,, to ps, .

Finally, it is assumed that the pressure differences stemming from hydrostatic
differences between sensors are negligible. For example, if the UAV is engaged in a
banked turn, one wing will be higher than the other. For small UAVs the pressure
difference between the sensors on that wing relative to the sensors on the other
wing will be relatively small and therefore not affect the results, i.e. the hydro-
static term in Bernoulli’s equation can be neglected due to the low density of air
and the small differences in height.

3.2 Machine Learning Modeling Approach

The two ML approaches used in this chapter are LR and NNs. The results obtained
using both approaches are presented, compared, and discussed in the following
sections. However, the concept used in this paper is not restricted to these ML
algorithms and an algorithm such as support vector machines should for example
be able to replace the mapping from pressure measurements to air data parameter
estimates, although the quality of the results will depend on algorithm, training
method, quality of training data, etc.

3.2.1 Linear Regression (LR)

LR has been called the "work horse" of ML [68]. Contrary to what the name
implies, LR is not limited to modeling linear functions. The algorithm minimizes
a least-squares error cost function to map a linear combination of input variables
to an output, but these input variables can be chosen to be nonlinear functions
of the basis input. Augmenting the basis input with nonlinear functions of the
input is known as basis function expansion. The high complexity of the physics
relating the air data to the pressure distribution over the aircraft does not allow
for a first principles approach to choosing the basis function expansions. In this
chapter, three generic basis function expansions have been tested, compared, and
verified by experiments. Basis function expansions can potentially provide a higher
accuracy to the linear regression method, but comes with the cost of a higher
computational demand, both when computing the weights, but also during run-
time. Another common consideration for model choice is the principle of parsimony,
where the model ideally use the fewest possible parameters to adequately represent
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the input-output relations. The model choice is based on the fundamental trade-off
between underfitting and overfitting the data and thereby balancing model bias
with model variance [16]. For the LR approach presented, the basis input consists
of the differential pressure measurements. Three basis function expansions will be
considered, including two polynomial basis functions. Using low-level polynomial
basis function expansions is a common modeling approach in LR [8, 68]. The basis
input is the vector of differential pressure measurements:

[Ps1s Psssevvs Pspy)

The first basis function expansion uses the first order cross terms between the
differential pressure measurements. Using polynomial cross terms is a widely used
in LR modeling (see [45], where the cross terms are referred to as interactions):

[Ds1Pss> PsiPssy---» PsyDsss PsaDsas---s Dsp_oDsn_1)

where the ps, represents the i’th sensor differential pressure measurement. For a
differential n sensor setup, this corresponds to an augmentation of k vector entries,
where k is given by the binomial coefficient as:

n—1 (n—1)!
k= = - 3.5
< 2 > 2l(n — 3)! (35)
The second expansion is a square of the input measurements:

2 2 2
s10 Psgreoo ps,,,_l]

The third and last expansion is the input measurements cubed:

L N

There are obviously an infinite amount of possible basis function expansions and
there are probably ones that could provide better results than the expansions cho-
sen. However, the chosen basis function expansions are generic choices and should
serve as a first approximation for testing the presented concept and could instead
be augmented with more tailored functions, if available.

When presenting the LR results, the following naming abbreviations have been
used to keep the results concise:

e B: Basis input vector.
e X: First order cross term expansion.
e Q: Quadratic expansion.

e C: Cubic expansion.

Following this convention, BXC will refer to a the basis input vector expanded
by first order cross terms and the cubic terms, where BQC will refer to the basis
input vector expanded by the quadratic and cubic terms, etc.
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For the wind tunnel experiments, the data used for LR has been partitioned
into a 85% training set and a 15% test set, and the data has been randomly divided
into these two sets. The LR weights are found using the training data and the test
set is used in providing a measure of the performance of the method. The influence
of the training and test partition sizes were found to be negligible when kept in
the ranges of 60/40% to 85/15% and the partition sizes of 85/15% was chosen to
allow a large set of training data. The stochastic element from randomly dividing
the data into training and test sets will result in different outcomes for every set
of linear regression weights calculated. Therefore, whenever numerical results are
presented, a mean of ten different training set results have been used to reduce the
impact of randomness.

3.2.2 Artificial Neural Networks (NNs)

The structure of interconnected neurons in artificial NNs provide a generic method
for approximating continuous functions from observational data. The NNs pre-
sented in this chapter have been designed using the MATLAB nftool toolbox. The
NNs are trained using the Levenberg-Marquardt (LM) backpropagation algorithm
(Marquardt [60]), since it is very efficient for networks consisting of a few hundred
weights or less [36]. The LM algorithm minimizes a least-squares cost function
by blending gradient descent with Gauss-Newton’s algorithm, retaining the favor-
able stability properties of gradient descent and the speed of the Gauss-Newton
algorithm. The LM algorithm uses the Gauss-Newton Jakobian-based method of
estimating the Hessian, but with an added positively scaled identity matrix

H=~J"J+ ul (3.6)

where H is the Hessian, J is the Jakobian, and u is a positive scalar called the
combination coefficient. The weights are updated using the update rule

W41 = Wk — H,;leek (37)

where k is the training iteration index, w are the weights, and e is the model out-
put error vector. The combination coefficient can be viewed as a blending factor
between gradient descend, if p is large, and the Gauss-Newton algorithm, if p is
close to zero. The blending factor u is reduced for each step that reduces the cost
function output, and increased for each step that increases the cost function out-
put, thereby allowing the LM algorithm the stability of gradient descent, but with
faster convergence.

The NNs have been chosen with the hidden layer using the tan-sigmoid function
and the output layer using a linear function [36]. The NNs have been designed with
one or two hidden layers and a varying number of hidden neurons. It is known from
NN approximation theory that with a sufficient number of hidden neurons, contin-
uous functions can be approximated to arbitrary accuracy. The optimal structure
depend on the training data and the chosen structures will be validated and com-
pared through results. The three different air data parameters (airspeed, AOA,
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and SSA) will be estimated each by a separate NN and the NNs presented will
therefore all have a single output neuron. Figure 3.1 shows the structure of a NN
for estimating the airspeed from the measurements of n — 1 pressure sensors using
10 neurons in a single hidden layer.

hidden layer

output layer

oM

Psn_1

bh,lO

Figure 3.1: An illustration of a NN that provides estimates of the airspeed, V,. The NN
is here illustrated with n — 1 differential pressure measurements as input, a single hidden
layer with 10 tan-sigmoid function neurons fs, and a linear function output layer that
outputs the airspeed estimate.

Since all the presented NNs are trained using the same algorithm and all have
a single output neuron, the only variables will be the number of hidden layers and
the number of neurons in each hidden layer. As with the linear regression results, a
naming abbreviation has been employed to keep the results concise. Fj, is used to
denote the first hidden layer containing k£ neurons and S; denotes the second hidden
layer containing [ neurons. Hence, FgSy denotes a NN with a single hidden layer
with 8 neurons and F15Sg denotes a NN with two hidden layers with respectively
12 and 8 neurons in first and second hidden layer.

For the wind tunnel experiments using NNs, the data has been partitioned into
70% training data, a 15% validation data, and a 15% test data. The data has
randomly been divided into these three sets. Other possible data partition sizes,
including 60/20/20% and 50/25/25%, were also tested, and the partition sizes were
found to have a very small influence when kept in this range. Just as for the linear
regression approach, dividing the data randomly results in varying results for each
new NN trained and a mean of ten NN results are therefore provided whenever
numerical results are provided and both training and test set results are provided.
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3.3 Experimental Setup

The results in this chapter are obtained using a Skywalker X8 Flying Wing UAV
as detailed in Appendix A. The presented method utilizes an array of low-cost
pressure sensors strategically embedded in the surface of the UAV. The method
is not dependent on a specific type of pressure sensor, but the accuracy of the
chosen sensor will affect the results and so the sensor choice will be a trade-off
between cost, accuracy, weight, size, power consumption, robustness, and ease-of-
implementation. For the Skywalker X8 prototype implementation, the objective is
a proof of concept, and the BMP280 sensor by Bosch was chosen with the breakout
board designed by Adafruit. The Bosch BMP280 is a MEMS-based digital pressure
and temperature sensor that offers a decent accuracy and a small footprint for a
low cost, which makes it ideal for this application. The BMP280 has an absolute
accuracy of £100 Pa and a relative accuracy of +12 Pa, a temperature range of
-40 to 80 °C, and is in the highest resolution capable of logging at 26.3 Hz. The
difference in absolute accuracy and relative accuracy stems from a slowly varying
bias. A 24 hour test was conducted, where the bias for 16 sensors only varied min-
imally and it was therefore concluded that the BMP280 biases can be assumed
as constant throughout a UAV flight and as a counter measure, these biases have
been removed from the tests. This was done in a pre-flight calibration by finding
the biases from data where there was no wind velocity on the Skywalker X8 as
the difference between the mean measurement of a specific sensor and the mean
measurement of all the sensors. This calibration method has been employed for
all the data used in this chapter. Hence, the BMP280, when used in a differential
setup, is assumed to have an accuracy of +12 Pa. Throughout the wind tunnel
test the logging frequency was 7 Hz and for the flights it was increased to 20 Hz.
The BMP280 comes with built-in low pass filters, but these filters have not been
employed, since an objective of the presented method is to be able to estimate air
data parameters in high dynamics.

A total of 16 BMP280 sensors have been embedded in the surface of the Sky-
walker X8 used in all the tests. The sensors are connected to an Arduino Mega 2560
through Serial Peripheral Interface (SPI). The wire-based communication usable
for a MEMS-based sensor relieves the conventional setup of rubber tubes con-
nected to a pressure scanner, which will simplify the implementation. The Arduino
Mega 2560 collects the pressure and temperature readings and outputs the readings
through serial to USB to either a laptop (the setup used the wind tunnel tests) or
an ODROID-XU4 that logs the data (the setup employed in the flight tests). The
16 sensors have been distributed in a symmetric pattern with 5 sensors on a cross
section of each wing that is parallel to the (longitudinal) zy-plane. The remaining
6 sensors have been embedded in the nose of the Skywalker X8 in a pattern roughly
resembling a circle. Figure 3.2 shows the implementation of the pressure sensors on
the wings, where the sensor installment has been attempted to result in as small
an intrusion as possible to the aircraft surface. The wing is shown before a layer
of film is applied to reduce the roughness of the surface. After applying the layer
of film, small rectangles were cut in the film to leave the BMP280 sensors open to
the environment. Figure 3.3, shows the placement of all BMP280 sensors on the
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portside of a 3D model of the Skywalker X8.

BMP280 sensors

Figure 3.2: A top view of the Skywalker X8 starboard wing showing four BMP280
pressure Sensors.

I Il

Figure 3.3: Sensor placement illustrated on the Skywalker X8 UAV. The red dots cor-
respond to the BMP280 sensors and the blue dots correspond to the DSA3217 pressure
scanner measurement points described further down. The dots with connected line and
arrow denotes a sensor or measurement point, placed on the underside. Note that besides
the two BMP280 middle nose sensors, the remaining sensors and measurement points are
only shown on the port side, however, the placement is symmetric on the starboard side.
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3.3.1 Wind tunnel tests setup

A part of the development and verification of the results in this chapter is based
on wind tunnel testing. The tests were conducted in the BLTW Slovak University
of Technology (STU) wind tunnel in Bratislava [44]. The BLTW STU wind tunnel
allows testing in both laminar and turbulent wind flow depending on the section
of the tunnel used. For the purpose of the method presented in this paper, laminar
wind flow was chosen and all results presented are from tests conducted in the
designated laminar flow area of the tunnel. The BLTW STU wind tunnel is 14.6
m long and has a cross section of 2.6 x 1.6 m.

For the wind tunnel tests a PTU-D48 pan-and-tilt unit by FLIR Systems was
employed as a part of the mount of the Skywalker X8 in order to control AOA
and SSA. The PTU-D48 offers a precision up to 0.006° and is controlled through
a computer, which enabled altering the AOA and SSA during the tests without
having to stop/start the wind tunnel for every single AOA and SSA. Since the
wind tunnel has a few minutes transition time before reaching a steady state air-
speed, this allowed for a much faster data collection rate. A picture of the wind
tunnel setup is shown in Figure 3.4. The data from the PTU-D48 and the BMP280
sensors were collected and synced using DUNE: Unified Navigation Environment,
developed by the Underwater Systems and Technology Laboratory [70].

The BLTW STU is equipped with three Scanivalve DSA3217 pneumatic pres-
sure scanners. The DSA3217 pressure scanners measures with a frequency of 10
Hz and offer a +1.25 Pa full scale long term accuracy, corresponding to an accu-
racy improvement compared to the BMP280 of almost a factor 10. The DSA3217
pressure scanners have been connected through rubber tubes to thin cobber pipes
embedded in the Skywalker X8, flush with the surface. The pressure scanners have
been used to measure the pressure at the points at the tips of the cobber pipes
at the surface of the Skywalker X8. The high accuracy pressure scanners allows
insight into the impact of sensor accuracy on the estimation method by comparing
results obtained using the high accuracy DSA3217 pressure scanners to the results
obtained using the lower accuracy BMP280s. Since it is not possible to place both
types of pressure sensors directly on top of each other and to avoid cross influence
between sensors, the DSA3217 pneumatic cobber tubes have been placed in differ-
ent positions from the BMP280s and furthermore, a total of 22 pneumatic sensors
has been placed on the Skywalker X8 and the placement is shown in Figure 3.3. It
should be noted that since the placement and numbers of sensors will influence the
results, the comparison between DSA3217 pneumatic and MEMS-based pressure
sensors is not ideal, but should still serve to give insight into the advantage of a
higher number of higher accuracy sensors on the presented method. Table 3.1 lists
the extra equipment used in the wind tunnel tests along with its description.

The wind tunnel tests were conducted the 7th and 8th of September, 2016.
The tests encompassed six different airspeeds: 11.01 m/s (7' = 27.4 °C, p = 1.1573
m/kg?), 12.09 m/s (T = 27.4 °C, p = 1.1573 m/kg?), 13.12 m/s (T = 27.5 °C,
p = 1.1568 m/kg?), 14.14 m/s (T = 27.6 °C, p = 1.1564 m/kg?), 15.21 m/s (T
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Figure 3.4: A sideways view of the tunnel setup with the Skywalker X8 mounted on the
PTU-D48.

= 27.6 °C, p = 1.1559 m/kg?), 16.23 m/s (T = 27.7 °C, p = 1.1555 m/kg?), and
17.32 m/s (T = 27.8 °C, p = 1.1555 m/kg?). At high airspeeds, the Skywalker X8
looked to be under some flutter and a high static wing load. For that reason, no
tests with airspeed higher than 17.32 m/s were attempted, although the Skywalker
X8 is usually flown in airspeeds up to 25 m/s. The inability to cope with high air-
speeds in the wind tunnel are assumed to primarily be attributed to two different
factors. Firstly, the Skywalker X8 blocks out a sizeable amount of the tunnel cross
section, this will result in the airspeed being higher around the aircraft because of
the blockage effect. Secondly, the free stream turbulence is approximately 5% and
since the shear stress in turbulent flow is higher than in laminar [6], this results in
higher drag on the X8.

The AOA and SSA values were chosen to span a large range of different values,
since ML algorithms are better suited for interpolation than extrapolation. The
Skywalker X8 was therefore also tested in stall conditions. The nonlinear relation
between lift coefficient and AOA for the stall regions, is assumed to also influence
the pressure distribution in a nonlinear fashion, making the ML modeling more
difficult. The AOA values tested for extend up to 35 °, which is beyond the AOA
values normally identified with regular flight. AOA values in this range are usually
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Equipment Description

3 DSA3217 pressure scanners A high accuracy pressure sensor used
for comparison with the lower accuracy
BMP280 setup

22 1.5 cm long thin copper pipes Embedded in the surface of the Sky-
walker and connected to the DSA3217
pressure scanners by rubber tubes

Laptop Runs DUNE and connected to the
PTU-D48 and the Arduino Mega 2560
which sends the collected BMP280
pressure measurement

DUNE: Unified Navigation Environ- Logs the PTU-D48 output and time

ment software stamps together with the BMP280
measurements and timestamps
PTU-D48 Used to adjust and accurately measure

the AOA and SSA of the Skywalker X8
during tests
Wind tunnel PC Logs the DSA3217 measurements

Table 3.1: The extra equipment used in the wind tunnel tests that is not a part of the
flight test setup described in Section 3.3.2 and Appendix B.

only associated with special maneuvers such as deep stall landings, or other agile
maneuvers or high turbulence. The intended purpose of the air data parameter
measurement system should be considered when selecting the training data range
for AOA, SSA and airspeed. Given the discussion in Section 3.1, it is also impor-
tant to have data spanning a large range of Re numbers, and since the Re number
is directly proportional to the airspeed, this was attempted fulfilled by varying the
airspeed.

The raw pressure data for the Skywalker X8 nose BMP280 sensors and the
corresponding air data parameters for the test with airspeed 11.01 m/s are shown
in Figure 3.5. It is worth noticing that some of the sensors appear to have a very
small response to changes in SSA while other sensors likewise appear to largely
not be affected by the changes in AOA. This is related to the geometry of the
Skywalker X8 relative to the wind and indicates that these sensors would be less
valuable in estimating the corresponding parameter compared to the sensors with
a larger change in response.

3.3.2 Flight test setup

For the flight test, the same Skywalker X8 as employed in the wind tunnel tests was
used. However, since flight does not allow for connection by cable, the test setup was
different from the tunnel test setup in a few ways. The Scanivalve DS3217 pressure
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a The Skywalker X8 nose pressure measured b The air data parameters, where o and (3 are
by the six BMP280s embedded in surface. the angles of the PTU-D48 pan-and-tilt unit.

Figure 3.5: The raw data from the wind tunnel test with an airspeed of 11.01 m/s.

scanners have not been possible to use, since they are too heavy and cumbersome
for the Skywalker X8. The 16 embedded BMP280 pressure sensors are therefore
the only embedded pressure sensors used during flight. The BMP280 sensors are
read using an Arduino Mega 2650 and are sent through a serial connection to an
ODROID-XU4 where it is logged along with GNSS and IMU data with precise
timestamps using a synchronization board developed by Albrektsen and Johansen
[3]. As a source of ground-truth air data parameters for ML and testing, the Micro
Air Data System by the Aeroprobe Corporation has been used. The Micro Air
Data System consists of a 5-port air data probe connected through rubber tubes
to a small pressure scanner. The Micro Air Data System has an accuracy of +1°
on flow angles and has a total flow velocity accuracy <1 % or 1 m/s (whichever is
larger). The Micro Air Data System air data probe is mounted on the nose section
of the Skywalker X8. The mounting mechanism can result in a slight misalignment
between the probe and the aircraft axes from which the AOA and SSA are defined
with respect to, and this should be compensated for. Another error source is that
the Aeroprobe saturates beyond +21° for AOA and SSA and any measurements
outside this range will be truncated to +21°. This will have a negative influence
when using ML to estimate AOA and SSA values above 21°, and will also inhibit
result assessments for angles outside of this range.

The flight test was conducted on the 20th of September 2016 on a field in
Udduvoll, Norway. For the period of the flight, there was a temperature of approx-
imately 16°C. The data set begins at the catapult launch of the Skywalker X8 and
ends directly after landing. During the flight that lasts just below 37 minutes, the
pilot operated the UAV in a large square with some changes in pitch and altitude.
For the last part of the flight, the pilot engaged in some high dynamic maneuvers.
The flight has been divided into two separate segments. The first five minutes of
the flight has been separated from the remaining 31 minutes and will throughout
the test be used as a flight benchmark test in order to assess the ML algorithms
capabilities in estimating air data parameters for a flight scenario.
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3.4 Results

This section contains the results obtained using the ML approaches on both wind
tunnel test data and flight data. First, the BMP280 wind tunnel data is used to
train and test the NN and LR approaches to see if the ML methods are capable
of modeling the wind tunnel data input and output relations. Afterwards, a com-
parison with the more accurate DS3217 follows. The main benchmark test of the
ML method capabilities will be a five minute test segment of flight with the Sky-
walker X8. The wind tunnel trained ML algorithms will be tested on this data to
assess whether it is feasible to use the obtained wind tunnel data in order to train
the ML algorithms for estimating air data parameters during flight. Afterwards,
ML algorithms trained using the other segment of flight will be tested on the five
minute benchmark flight and the results will be compared and discussed. Then,
the impact of choice of sensor configuration on the accuracy of the results will be
evaluated, as well as using a pseudo Re number as an extra input.

3.4.1 Wind tunnel test results

The focus of this section will be on the results obtained using the BMP280 sensors
on the wind tunnel data and whether the ML algorithms are capable of modeling
the air data parameters from the measured pressure. Results obtained with the
BMP280 data using different LR and NN configurations are displayed in Table
3.2 and 3.3, respectively. The tables contain the RMSE for the air data parameter
estimates from both the training data and the test data, however, the validation
data results from the NNs have been left out.

Linear Regression

B BX BQ BC BXQC

V, [m/s] 0.4519 0.1541 0.3005 0.3280 0.1465
V. [m/s] 0.4541 0.1558 0.2987 0.3260 0.1505
& ] 1.2490 0.4833 0.8252 0.8967 0.4371
a ] 1.2650 0.4389 0.8333 0.9044 0.4704
3 1.0462 0.6079 0.8033 0.7972 0.5950
B 1.0647 0.6384 0.8073 0.8088 0.6094

Table 3.2: The results obtained using LR with different basis function expansions on
the wind tunnel data. Vee denotes the training set RMSE and bar denotes the test set
RMSE.

Looking into the numerical LR results, it appears that the basis function ex-
pansion of adding first order cross terms is the single function augmentation that
yields the best numerical results. However, it does also expand the input vector
with 105 extra entries, since

number of extra entries = (Z) (3.8)
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Neural Networks
i F;5S¢ F15So F155¢0 F2So F10S5 F10S10
Ve [m/s] 0.1369 0.1171 0.0991 0.0877 0.0829 0.0498
Ve [m/s] 0.1391 0.1239 0.1060 0.0986 0.0938 0.0689

al° 0.3950 0.3522 0.3491 0.3275 0.3303 0.3286
a|° 0.4086 0.3860 0.3799 0.3675 0.3716 0.3642
B [°] 0.5605 0.4830 0.4456 0.4138 0.3942 0.3690
B °] 0.5738 0.5200 0.5018 0.4650 0.4608 0.4305

Table 3.3: The results obtained using NNs with different structures on the wind tunnel
data. Vee denotes the training set RMSE and bar denotes the test set RMSE.

where n=15 and k = 2, whereas the other feature expansions only increase the vec-
tor size with an additional 15 entries each. The remaining basis function expansions
yield similar results. The best numerical results are obtained for the basis function
expansion BXQC, but the RMSE values are relatively close to the results obtained
expanding only with the first order cross terms. The choice of LR basis function
expansion will therefore be a trade-off between accuracy and computational cost,
but for this data set it appears that the chosen function expansions leave a limit
on the level of obtainable accuracy when compared to the NNs.

The results obtained using NNs are from an accuracy perspective superior to
the LR results. The estimate RMSE decreases with the increase in the NN struc-
ture complexity which might hint that more neurons and more layers provide more
accurate estimates. It appears that the difference between training and test set
RMSE grows with NN complexity, which could indicate a small degree of overfit-
ting for the more complex NN structures, as expected.

Figure 3.6 consists of two plots of the results obtained using LR and Figure 3.7
consists of the two corresponding plots using NNs. These plots contain the ground
truth values along with the estimates using the complete data set, i.e. both training
data and test data (and validation data for the NN), and the error between ground
truth values and estimates. For the LR results, it appears that the accuracy of the
airspeed is relative constant, but for NN results, the accuracy is slightly higher
for lower airspeeds. For higher AOA and SSA, both methods exhibit less accurate
estimates compared to lower AOA and SSA values.

Figure 3.8 shows the difference between the NN and LR estimates from Figure
3.6 and Figure 3.7 and both sets of estimates together with the ground truth values.
It appears that for the wind tunnel tests, the biggest difference between the two
ML algorithms occurs when the AOA assumes high values and this is assumed to
be attributed to nonlinearities and turbulence introduced when the wing is close
to or under stall conditions.
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Figure 3.6: Results obtained using LR with the basis input vector augmented with the
first order cross terms, the absolute function term, and the cubed term (BXQC). The
results displayed consists of the complete wind tunnel data set.
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Figure 3.7: Results obtained using NNs with 10 neurons in a single hidden layer (F10So).
The results displayed consists of the complete wind tunnel data set.
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Figure 3.8: Comparison between the NN and LR results, respectively denoted by Va,NN
and V,, rRr, from Figure 3.6 and Figure 3.7.

3.4.2 Comparison with higher accuracy pressure sensor

To obtain insight into the advantage of using more sensors of higher accuracy on
the method, a comparison with the Scanivalve DSA3217 pneumatic pressure scan-
ner setup is presented. As mentioned previously, the DSA3217 is too heavy and
large to install on the Skywalker X8 and was therefore not possible to use during
flight. Furthermore, the setup utilizes more sensors than the BMP280 setup, and
the measurement points are not identical. The comparison between the two sets
of sensors can therefore as such not provide a complete picture of the influence of
sensor amount and sensor accuracy on the method, but it can function towards
an impression of the highest attainable estimation accuracy given the used sensor
accuracy, as well as an understanding of the influence of ML algorithm choice on
the results. For the comparison between BMP280 sensors and the DSA3217, only
a single LR and NN structure has been chosen, BXQC and F1(Sg, respectively. A
plot of the F13S¢ NN estimation results are shown in Figure 3.9 and the numerical
results are listed in in Table 3.4.

The spikes in estimation error seen in Figure 3.9, is assumed primarily to be a
result of the built-in low pass filter of the DSA3217 pressure scanner, resulting in
a transient phase between reaching the PTU-D48 pan-and-tilt unit set points and
the pressure measurements. There are therefore two sets of results in Table 3.4. In
the first set of results, the data has been used without any processing (labeled as
raw data). In the second set of results, the transition phase and has been removed
from the data before training and testing (labeled as stationary data). It appears
that the higher number of sensors, and higher accuracy of the DSA3217 pressure
scanners improves the numerical results for the ML approaches when compared
to the less accurate BMP280 measurements. Based on these results, it is expected
that an increase in number of sensors and sensor accuracy will improve the output
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Figure 3.9: Results for the NN (F10So) estimation method using the DSA3217 pressure
scanner measurements and displaying the complete wind tunnel data set.

BXQC F10So BXQC F10So

raw data raw data stationary stationary
data data
Vo [m/s] 0.0205 0.0172 0.0169 0.0128
Va [m/s] 0.0213 0.0179 0.0182 0.0140
a° 0.2213 0.1796 0.0285 0.0235
al° 0.2347 0.2062 0.0328 0.0247
B 1°] 0.3497 0.3311 0.0447 0.0370
B 1°] 0.3678 0.3610 0.0452 0.0373

Table 3.4: The results obtained using LR and NN on the DSA3217 pressure scanner
measurements. Vee denotes the training set RMSE and bar denotes the test set RMSE.

of the ML algorithms, and that the choice of sensor and quantity of sensors will be
a trade-off between price, weight, size, and power consumption of the sensors and
the accuracy of the air data parameter estimates.

The results presented so far indicates that a more complex structure of the ML
approach provides better results and that the NNs have slightly lower RMSE values
than the LR. Also, there is reason to believe that using higher accuracy sensors
results in higher accuracy estimates. However, a weakness with the approach so
far is that the estimates are trained and tested with a set of data with identical
conditions and only a rather limited set of different air data parameter points.
Should the trained LR and NN structures be tested with a different set of data with
air data parameters differing from the points trained for, there is no guarantee on
the quality of the results. The test and training of ML methods on flight benchmark
test data is therefore the primary focus of the remaining part of the results section.
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3.4.3 Wind tunnel trained ML algorithms on benchmark flight
test

This section contains the results obtained using the ML methods trained using
the wind tunnel data on the benchmark flight test. For this comparison, 100% of
the wind tunnel data has been used in training the LR method and for the NN
method, the wind tunnel data has been divided into 85% training data set and a
15% validation data set. The initial numerical results using the wind tunnel data
for training (not included here) showed low estimation accuracy on the benchmark
flight test. Given a significant difference between the RMSE of the training set
results and the test set results, it is assumed that the poor results are not primarily
attributable to poor sensor accuracy, but instead stems from one or several of the
following factors:

e There might have been a misalignment between the AOA and SSA in of the
Skywalker X8 in the wind tunnel and the mounting of the Aeroprobe sensor.
This would result in biases on the AOA and SSA estimates corresponding to
the misalignment.

e As mentioned previously, the Skywalker X8 blocked out a sizeable amount
of the wind tunnel. This could therefore result in the airspeed around the
Skywalker X8 being higher than the wind tunnel airspeed used in training
the ML methods. This could in turn result in the estimates provided by the
ML methods being too low.

e ML methods are not suited for extrapolation and a considerable fraction of
the airspeeds experienced by the Skywalker X8 in the flight test, was higher
than the highest value tested for in the wind tunnel tests. Courrieu [23]
suggested a geometric approach of using a convex hull polytope to find the
domain of validity of a feedforward NN and this limit is obviously violated
by the airspeed, without even having to consider the remaining values of the
estimated parameters.

e Too few training data points to properly model the (biased) input-to-output
relationship. Rohloff et al. [77] discusses a binning technique to choose a
proper training set from a larger data set. The training data is divided into
bins in the different dimensions and choosing data following this technique
then ensures a decent density distribution of the training data. However, for
the wind tunnel data this technique could be misleading since the data could
appear to be evenly divided into different bins, while in reality, many of the
points in the bins would be from the same static air data parameter wind
tunnel set points. Instead, data collected from flight tests will add a stochastic
element that ensures that no air data parameter points are exactly the same,
and that should result in a finer resolution and a better distribution compared
to the wind tunnel.

Furthermore, training the ML methods using data containing stall conditions
introduce strong nonlinearities into the system, and modeling will require even
more data and represents an unnecessary difficulty if the intention is to not fly
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under stall conditions?.

In order to remove the effect of blockage and misalignment on the results, a new
set of results have been generated where the training data have had bias correction
terms added to it. The bias have been estimated as the mean of the error for 10
instances of training F19Sg NNs with the wind tunnel data and testing on the
benchmark flight. The biases were found to be 3.24 m/s for the airspeed, 10.59°
for the AOA, and -1.63° for the SSA. The results are listed in Table 3.5 and 3.6.

Linear Regression

B BX BQ BC BXQC
V, [m/s] 0.4521 0.1541 0.3001 0.3275 0.1468
V. [m/s] 1.2075 14815 17577 3.5591 1.0415
& ] 1.2512 0.4828 0.8260 0.8974 0.4406
a ] 8.66183 2.4905 3.4951 17.0525 77749
3 1.0488 0.6115 0.8036 0.7936 0.5959
B 1.1666 5.1462 2.8018 5.3993 19333

Table 3.5: The results obtained using LR trained with wind tunnel data with added
bias corrections on the flight benchmark test. Vee denotes the training set RMSE and bar
denotes the test set RMSE.

Neural Networks

) F5So F10So Fi5S¢ F2So F10Ss F10S10
Va [m/s 0.1341 0.1154 0.0961 0.0818 0.0773 0.0567
Va [m/s 0.7337 0.9642 1.0603 1.2318 1.0871 1.3066
a [°] 0.4004 0.3566 0.3411 0.3190 0.3334 0.3148
a [O] 1.0877 1.5216 1.7246 3.7936 2.2111 3.8493
I5) [O] 0.5665 0.5003 0.4471 0.4220 0.4122 0.3784
) [O] 2.2016 2.4157 2.5866 3.1320 2.6473 2.0639

Table 3.6: The results obtained using NNs trained with wind tunnel data with added
bias corrections on the flight benchmark test. Vee denotes the training set RMSE and bar
denotes the test set RMSE.

Modifying the training data in an attempt to account for the effects of blockage
and misaligned sensors improved the numerical results. However, the high AOA
and SSA RMSE for the LR method, may indicate that there are significant nonlin-
earities in the wind tunnel data. The NN results indicate that the more advanced
structures are prone to overfitting. As mentioned previously, the numerical results
are found as the mean of the results obtained from 10 different instances of NNs
with identical structure. The results from each of these 10 NNs show a large varia-
tion in the RMSE of the different estimates. The best NNs were capable of obtaining

21t should be noted that the comparison sensor, the Micro Air Data System by the Aeroprobe
Corporation, is not capable of measuring in the stall region either.
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a RMSE on the flight benchmark test of 0.54 m/s for the airspeed, 0.77° for the
AOA, and 1.37° for the SSA, which is significantly lower than the mean of the
results from the 10 NNs. This indicates that the results could be improved by a
training data choosing algorithm, perhaps using a binning technique as described
previously. The high variance on the accuracy of the results is assumed to be pri-
marily due to a lack of a high resolution wind tunnel training data set that covers
all possible air data parameter values that the Skywalker X8 can be expected to
experience in flight.

3.4.4 Flight trained ML algorithms on benchmark flight

This section contains the results of training the ML methods with a 31 minute
flight training set and evaluating the methods on the flight benchmark test. The
last part of the training segment involved the Skywalker X8 flying in high dynamic
maneuvers and the training data set contains data that eclipses the test set and the
algorithms will therefore not have to rely on extrapolation. The results are shown in
Table 3.7 and 3.8. The results obtained by training the ML algorithms using flight
data gives much better results than the ones obtained using the wind tunnel data
for training. It appears that the test LR results obtained are not that dependent on
the structure of the LR, although it seems beneficial to add a single basis function
expansion to increase the the accuracy of the estimates. For the NN, the results
appear to be relatively independent on the chosen structure, which indicates that
for the conditions trained and tested in, the relation between pressure and air data
parameters must be possible to model by three five-neuron NNs. Furthermore, the
numerical results are relatively close in accuracy and both methods seems viable
to use for similar flight conditions if properly trained.

Linear Regression

B BX BQ BC BXQC

Vo [m/s| 0.3815 0.2865 0.3213 0.3227 0.2760
V. [m/s] 0.4439 0.3587 0.3655 0.3696 0.4088
R 0.3112 0.2010 0.2325 0.2465 0.1896
R 0.2736 0.2379 0.2609 0.2591 0.2328
BT 1.3654 0.9162 1.0928 1.1371 0.8652
B 1.3358 1.0058 0.9997 1.0572 1.0161

Table 3.7: The numerical results obtained using LR trained with flight data on the flight
benchmark test set. Vee denotes the training set RMSE and bar denotes the test set
RMSE.

Figure 3.10 and 3.11 contains plot of the results obtained using the flight data
trained BXQC LR and F13Sg NN algorithms. The plots show relatively low esti-
mation errors from both algorithms. The improvements of the results from using
flight data compared to wind tunnel data is expected to be caused by the removal
of the error points discussed in the previous section - there is no misalignment of
angles, the airspeed used in the training data is not biased due to blockage effect,
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Neural Networks
} F5Sg F,0S, F15S¢ F20So F10Ss F10S10
Ve [m/s] 0.2745 0.2516 0.2388 0.2305 0.2437 0.2326
Ve [m/s] 0.3503 0.3497 0.3460 0.3478 0.3372 0.3492

& 0.1905 0.1735 0.1654 0.1613 0.1677 0.1622
al° 0.2341 0.2298 0.2415 0.2445 0.2298 0.2313
G 1°] 0.8504 0.7584 0.7055 0.6592 0.6922 0.6676
B °] 0.9165 0.9329 0.9585 0.9674 0.9322 0.9180

Table 3.8: The numerical results obtained using NNs trained with flight data on the
flight benchmark test set. Vee denotes the training set RMSE and bar denotes the test
set RMSE.

and there is no extrapolation. However, the biggest improvement is assumed to
be attributed to the data being distributed in relevant flight conditions and with
a much finer parameter resolution which allows the methods a better chance at
correctly modeling the input/output relations.

Air Data Air Data Estimation Error
T T

e T T T T T T e T T T T
. ‘
Z u o N;j'mn-inlm-ﬂ‘ U VYR PV PR U T VP VAP P i
5 b L e Akl e
15 1
| | | | | | . . . . . .

[ 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

E . . . . . .
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time [s] Time [s]

a True air data parameter values and the cor- b The LR air data parameter estimation error,
responding LR estimates, denoted by the hat denoted by the tilde accent.
accent.

Figure 3.10: Results obtained using a BXQC LR trained with flight data on the flight
benchmark test set.

Figure 3.12 shows the difference between the NN and LR algorithm estimates
Figure 3.10 and Figure 3.11. The plot indicates that the two algorithms provide the
largest differences in estimates when the air data ground truth values deviate the
furthest from steady flight conditions. This is assumed to be due to less training
data covering these air data values.

3.4.5 Sensor configuration influence

So far, all the algorithms have been trained using the data from all the BMP280
sensors. However, a part of the novelty of the presented method lies in the option
of adjusting the sensor configuration to whichever aircraft is the desired platform
of implementation. This section investigates the relation between different sensor
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Figure 3.11: Results obtained using a F10So NN trained with flight data on the flight
benchmark test set.

Figure 3.12: The difference between the NN and LR estimates, respectively denoted by
Va,nn and Vi, Lr, from Figure 3.10 and Figure 3.11.

configurations and their corresponding results in estimating the air data parame-
ters. The results will obviously only be valid for the Skywalker X8 UAV, but can
perhaps serve as an indicator of how the results would be on similar platforms
(which would have to be trained using data acquired using that specific platform).
The flight data trained BXQC LR and F1pSg NN algorithms have been chosen
as the basis ML algorithms for this sensor configuration assessment. Furthermore,
a single test is included where the the full sensor configuration is augmented with
a pseudo Re number. The pseudo Re number uses ambient pressure and tempera-
ture from the autopilot, but with the relative velocity in the forward direction, wu,.,
obtained from the Pitot-static tube as an approximation for the airspeed.

Reverting back to Figure 3.2 and 3.3, the naming convention of the sensors is
that the first five sensors, ps, - ps, are located in the starboard wing. The topside

sensor at the leading edge is ps, and the sensor numbers then increment towards
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and around the trailing edge with ps, as the sensor on the bottom of the wing. For
the nose, the sensor located at twelve o’clock in Figure 3.3 is the reference sensor
and the sensor on the right is ps,. Incrementing in a clock-wise pattern, the sensor
to the left of the reference sensor is ps,,. The port wing follows the same system as
the starboard wing starting with sensor ps,, and ending with ps,, on the bottom
side of the wing. For the tests, the LR and NN structures BXQC and F1,S, have
been used once again. Regarding the choice of sensor configurations, it appears in-
tuitive to evaluate the configurations that involves using only nose or wing sensors,
since there might be limitations on a UAV platform related to these, e.g. propellers
that hinders the use of pressure sensors in either nose or wings. It would also be
advantageous to get an impression of the influence of using fewer sensors on the
attainable accuracy. Fewer sensors would reduce the cost of the setup, reduce com-
plexity of the implementation, and lower the risk of a single sensor malfunctioning.

The numerical results from different sensor configurations and augmenting with
the pseudo Re number are shown in Table 3.9 and 3.10, where the numbers are
used for denoting the sensors used in the configuration, i.e. 5 corresponds to using
sensor ps. in the configuration. Both tables show the same trends in accuracy with
respect to the different sensor configurations. The nose sensors alone are relatively
poor at estimating the airspeed, whereas adding a sensor from each wing greatly
increase the accuracy. The wing sensors alone are on the other hand decent at
estimating the airspeed, but suffer from poor SSA estimates, since the sensors only
measure in two parallel planes, both perpendicular to the SSA. The choice of sensor
configuration should be dependent on the UAV platform of implementation and
will be a trade-off between accuracy, cost, and ease of implementation. Adding the
pseudo Re number only appears to provide a small benefit to the results. However,
the flight results contain relatively constant ambient conditions, and the pseudo
Re number can potentially provide a higher level of robustness with respect to
these conditions or be used in non-dimensionalizing the pressure measurements
into pressure coefficients.

BXQC LR
All All Nose Wing 5,6,7,8, | 5,7,9,15
sensors | sensors | sensors | sensors | 9,10,15
+ Re
V, [m/s] 0.2593 0.2760 0.9329 0.6121 0.5120 0.7303
Va [m/s 0.4043 0.4088 0.8858 0.7293 0.5765 0.7371
a [°] 0.1809 0.1896 0.4213 0.2890 0.2955 0.3228
a [°] 0.2271 0.2328 0.3837 0.4086 0.2737 0.3185
B 1°] 0.8546 0.8652 1.1743 2.2266 1.0059 1.1251
B 1°] 1.0104 1.0161 1.0874 3.7345 0.9274 0.9826

Table 3.9: The numerical results from using different sensor configurations and adding
a pseudo Re number when training and testing the BXQC LR algorithm. Vee denotes
the training set RMSE and bar denotes the test set RMSE.
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F1pSg NN
All All Nose Wing 5,6,7,8, | 5,7,9,15
sensors | sensors | sensors | sensors | 9,10,15
+ Re
V, [m/s] 0.2375 0.2534 0.8512 0.5680 0.4534 0.6684
Ve [m/s] 0.3402 0.3535 0.8363 0.7891 0.4557 0.6713
a [°] 0.1655 0.1741 0.4030 0.2688 0.2815 0.3225
a [°] 0.2167 0.2318 0.3873 0.4167 0.2857 0.3277
B 1°] 0.7439 0.7575 1.0746 2.0189 0.9051 1.0188
B [°] 0.9326 0.9507 1.0568 3.7503 0.9168 1.0232

Table 3.10: The numerical results from using different sensor configurations and aug-
menting with a pseudo Re number when training and testing the F19So NN algorithm.
Vee denotes the training set RMSE and bar denotes the test set RMSE.

3.5 Chapter Summary

This chapter presented a method for estimating air data for small fixed-wing un-
manned aerial vehicles. The method comprises a set of low-cost MEMS-based pres-
sure sensors embedded in the surface of the unmanned aerial vehicle combined with
machine learning algorithms. A strength of the presented method is the flexibil-
ity of the pressure sensor placement. Two different machine learning algorithms,
neural networks and linear regression, have been implemented and tested. Both al-
gorithms have been evaluated on data obtained through wind tunnel experiments
and experimental flight data. The neural network algorithm was found to generally
provide a slightly lower estimation error than the linear regression approach pre-
sented. However, linear regression allows for basis function expansions that could
potentially improve the results further. By comparing the results obtained from
using the low-cost sensors on the aircraft against the results from the expensive
pressure scanner from the wind tunnel, the influence on sensor amount and sensor
accuracy on the results was assessed. Training the machine learning algorithms
using only wind tunnel data was found to have several error sources, namely the
wind tunnel blockage effect, misalignment in the aircraft mount, as well as a too
sparse (not very rich) training data set. However, trying to account for these error
sources showed potential in decreasing the estimation error. Using flight data to
train the machine learning algorithms was found to be a feasible approach that
allowed estimating the air data parameters for both neural networks and linear
regression. Finally, a study of the sensor number and placement influence on the
result was conducted along with an assessment of augmenting the system input by
using a pseudo Reynolds number.
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Chapter 4

Kalman Filters for Air Data System
Bias Correction

This chapter proposes two different Kalman filter approaches for correcting air data
systems with low-frequency drift or a constant error bias for fixed-wing UAVs. The
presented estimators use a standard sensor suite consisting of a GNSS receiver, an
IMU, and a heading reference, combined with an air data system that is assumed to
provide measurements with an unknown additive slowly time-varying bias. Neither
estimator is dependent on the UAV model. The estimators are, except for the effect
of noise, proven to have globally exponentially stable (GES) equilibrium points of
the error dynamics if provided with persistence-of-excitation (PE) of the angular
velocity of the UAV. This chapter is initiated by Section 4.1 in which the problem
formulation is stated along with the models and assumptions. Section 4.2 contains
the wind velocity estimator and analyses the observability properties of the system,
and Section 4.3 describes the relative velocity estimator along with a corresponding
observability analysis. The two estimators are tested in simulation in Section 4.4
and using experimental flight data in Section 4.5. The results from the experimental
flight data is obtained using the ML approach presented in Chapter 3. The results
indicates that a certain amount of PE is needed in order to have converging bias
estimates during turbulent wind conditions.

4.1 Problem Formulation

The velocity over ground of a UAV can be expressed as the sum of the relative
velocity and the wind velocity according to

vy = npb 4 (4.1)

where vg = [Un, Ve, Vg

the NED frame, v% = [u,,v,,w,]T is the relative velocity of the UAV with respect
to the wind decomposed in the BODY frame and v = [wy, w.,wq] " is the wind
velocity decomposed in the NED frame. The goal is to estimate either v% or v?,

since knowledge of one allows computing the other using only known measurements.

]T is the velocity over ground of the UAV decomposed in
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From the relative velocity the airspeed, AOA and SSA are recognized as
Vo = VU2 + 02 + w? (4.2)
w
=tan ' [ — 4.3
a = tan <Ur> (4.3)
.1 VUr
= - 4.4
6 = sin (V) (4.4)

4.1.1 Models and assumptions

For the two presented estimators, it is assumed that the UAV is equipped with a
standard sensor suite consisting of an inertial measurement unit (IMU), a GNSS
receiver, and a heading reference such as a magnetometer. Furthermore, it is as-
sumed that a biased relative velocity sensor is available. Such a sensor could be
obtained by using the output of the pressure sensor-array approach presented in
Chapter 3 treated as a virtual sensor. The measurements assumed are:

e An attitude estimate from an attitude estimator, typically in either Euler
angles or quaternions, used to compute the rotation matrix ;. This estimate
is assumed free of noise in the estimator design, but studied in simulation and
experiments.

o A GNSS receiver velocity over ground measurement modeled by
Vg m = Vg + €, where €, ~ N(0, X,,) is a noise term.

e An IMU specific force measurement modeled by
fb = f* + €5, where e ~ N(0, £y) is a noise term.

e An IMU angular rate measurement, compensated for bias and drift, modeled
by Wp,m = wp~+€,, where wy, is the angular velocity of the BODY frame relative
to the NED frame, decomposed in the BODY frame, and €, ~ N(0, 3,,) is

a noise term.

e A biased relative velocity measurement such as [12] modeled by vf,,, = v} +
b + ¢,,, where b® = [by, by, by] " is a sensor bias and €, ~ N(0, ¥, ) is a
noise term.
Note that the argument for time-varying signals have been omitted for notational
simplicity, except when needed. An example of a GES attitude and gyro bias ob-
server is found in Grip et al. [33]. The bias-compensated IMU measurements of
angular rate and specific force are only used in the relative velocity estimator.
Similarly, the GNSS velocity over ground measurement is only used in the relative
velocity estimator if wind velocity estimates are also desired.
For both estimators, it is assumed that the wind velocity vector field is slowly
time-varying and uniform over the area of flight, i.e.

Uy = €y, (4.5)

where €,,, ~ N (0, X,,) is the wind model noise term, and that the relative velocity
sensor bias is slowly time-varying

W =e (4.6)
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where ¢, ~ N (0, ;) is the bias model noise term. These two model assumptions
will be used in both the estimators and the states will be estimated using Kalman
filters.

Note on additive bias versus multiplicative error model: Instead
of using the bias model in Eq. 4.6, the two estimators can be formulated
with an unknown 3-dimensional scaling factor multiplied onto the relative
velocity measurement similar to Johansen et al. [47].

4.2 Wind Velocity Estimator

The wind velocity estimators presented in this section is inspired by the estimator
presented in Johansen et al. [47]. It estimates the wind velocity and the bias of the
relative velocity sensor. Using the assumed measurements, it is possible from the
wind velocity to estimate the relative velocity, and in turn the airspeed, AOA, and
SSA. The structure of the wind velocity estimator is shown in Fig. 4.1.

Relative z)fjm
velocity > ~n
sensor &_}
n
GNSS Yg,m_
receiver d Wind velocity
estimator
. R?
b A, N N
O A Vi
>
A
Heading reference

Figure 4.1: Block diagram showing the cascaded structure of the wind velocity estimator.

By inserting the GNSS velocity over ground measurement and the relative ve-
locity sensor measurement into Eq. 2.4, we get

0 — RpD,, = vl 4+ RpW + Rie,, + ey, (4.7)

Consider the state vector

and the composed measurement
_.mn _ Rn b
Yw = Vg m b U

T,m
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4. Kalman Filters for Air Data System Bias Correction

The linear system can be stated as
i’w = G1u€mu, (48)
Yuw = Cu(t)zy, + Cy(t)ey, (4.9)

where
€v,,
Gy = Is, €x, = |:€b :|
€y

Cult) = [t By0]. =[]

[

Also, notice that the system matrix is A, = Ogxg-

4.2.1 Wind velocity estimator design
Consider the estimator _

Zw = Ky (yw — Coww) (4.10)
where K, is the Kalman filter gain matrix. The process noise covariance matrix is
Qu = Eleg,, 6;,)} = Qa,
where Q,,, = diag(X,,,, ). The measurement covariance matrix is found to be

Ry, (t) = E[Ow (t)eyw e;l'w Cuw (t)T] =Cy (t)E[eyw E;w]cw (t)—r
= Cu(t)Ry, Cu(t)’
where R, = diag(X,,,%.,).

Proposition 1: Assume the angular velocity and angular acceleration of the UAV
satisfies ||w® x &w®|| > 0 for all t > 0, then the LTV system described by Eq. 4.8 and 4.9
is uniform completely observable (UCO) and uniform completely controllable (UCC).

Proof: First, we show UCO of the pair (A, Cy(t)). Theorem 6.012 in Chen
[20], states that the continuously differentiable pair (A(t),C(t)) is UCO at ¢,
if there exists a finite t; > t such that the observability codistribution dO,, =
[No(t1);-..; Nn—1(t1)] has full rank, where
No(t) = C(t)
d
Npt1(t) = N (0) A(t) + %Nm(t)’ m=0,1,...,n—1
For the pair (A, Cy(t)), we have

Cu(t)
C(t)
Cu(t)
I3 Ry (t)
= |03x3 Ry (1)S(W* (1))
033 Ry (t)S(wh(t))? + Ry (1)S(w(1))
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4.3. Relative Velocity Estimator

Given the form of the dO,,, to verify that it has full rank, it suffices to show that
the submatrix

_ Ry (1)S(w"(1))
Owi = [R?(t)S(wbé?t))2 + R?(t)S(wb(t))}

is full rank, as proven by Meyer [66]. By linear row operations and scalar multi-
plications, it is possible to obtain the following matrix that has the same rank as
Ow,l

Oua = [BOSO)

We see that O, 2 has full rank if @b and w® are non-zero, linearly independent
vectors, which corresponds to the requirement [w® x Wb| > 0.

Lastly, we show that the pair (A,,Gy) is UCC. Theorem 6.12 of Chen [20],
states that the continously differentiable pair (A(¢), G(t)) is UCC at ¢ if there exists
afinte t; > g such that the controllability codistribution dC,, = [Mo(t), ..., My —1(t)]
has full rank, where

Mo(t) = G(t)
d

My (t) = —A() My () + aMm(t)

It is easily seen that this is obtained for dC,, = My = I. ®m

The UCO and UCC properties of the system implies that the equilibrium points
of the Kalman filter error dynamics, % = v — ¢ and b’ = b* — b, are GES in
the deterministic case, as proven by Anderson [4] and bounded in the mean-square
sense in the stochastic case [46]. The definition of the estimator in Eq. 4.10 and
the observability analysis is done in continuous time for convenience. However,
the Kalman filter should be implemented using a discrete-time algorithm. The
conducted analysis showed that in order for the system to be UCO, the requirement
lw® x &|| > 0 has to be fulfilled. This correspond to a PE requirement on the
angular rate, that needs to vary over time. The implications of the PE requirement
on the estimator performance is investigated in the simulation study in Section 4.4
and using experimental flight data in Section 4.5.

4.3 Relative Velocity Estimator
The relative velocity estimator is distinct from the wind velocity estimator. It does
not require GNSS velocity over ground measurements, but angular rate and specific

force measurements. The relative velocity estimator structure is shown in Fig. 4.2.

The dynamics of the velocity over ground and attitude is described by

o =Ry fP+g" (4.11)
R = RI'S(wP) (4.12)
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Relative b
. T,m
velocity b
sensor Up >
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Attitude | Fb A
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IMU ”|estimator d Va, &, >
A
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Figure 4.2: Block diagram showing the cascaded structure of the relative velocity esti-
madtor.

where f? is the specific force decomposed in the BODY frame and ¢" is the gravity
vector decomposed in the NED frame. Differentiating Eq. 2.4 results in

b = Ry S(wh)vl + Ry + ey, (4.13)
Inserting Eq. 4.11 into Eq. 4.13 and rearranging gives
00 = P+ Rbg" — S(wP)vl — Rle,, (4.14)

Replacing the specific force and angular rate with the bias-compensated IMU mea-
surements, we have that

B = b+ R — S )b — ¢ — S(ub)e, — Rhen, (115)
Consider the state vector .
T, = [Zb} (4.16)
and the input and measurement vector
b
U, = { 7,;] C Y= (4.17)
g
Then the linear time-varying system can be stated as
r = Ar () + Br(t)uy + Gr(t, zr)es, (4.18)
Yr = Crap + €y, (4.19)
where
[ =S (wp, () ngg} { I3 (R”(t))q
A (t) = m , B.(t) = b
®) O3x3 O3x3 ®) O3x3 O3x3
Gt z0) = [—13 =S(u(t)) —(Rp(®)T 03x3}
O3x3 O3x3 O3x3 I3
e
€w
€z, = €o, ) Cr= [I3 13} y €y, = €y,
L eb
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4.3. Relative Velocity Estimator

4.3.1 Relative velocity estimator design
Consider the estimator
&y = Avitr + Bruy + Ko (y, — Crity) (4.20)
where K, is a time-varying Kalman gain. The process noise covariance matrix is
Qr = E[G,(t, &)eq, €5, Gr(t, )]
= G, (t,#)Eles, €, )G (t,8)"
= G,(t,2)Qq, Gr(t,2) "
where Q,, = diag(X¢, X, Xy, , Xp). The measurement covariance matrix is
R, =Eley e, ] =Ry, (4.21)

where R, =%, .

Proposition 2: Given the angular velocity and angular acceleration of the UAV sat-
isfies |lw® x || > 0 for all t > 0, then the LTV system described by Eq. 4.18 and 4.19
is UCO and UCC.

Proof: We start by showing UCO of the pair (A, (t),C;) as defined for the LTV
system described by Eq. 4.18 and 4.19. Once again employing Theorem 6.012 of
Chen [20], we have

_ c
do, = Cr A (1)
|Cr A ()2 + CrAL(t)
I I I
= —S(w(t)) 03x3
|S(@(t)? — S(@(t) Osxs

By applying linear row operations and scalar multiplications, we get

Cr

O, = Cy A (1)
|Cr AL (1) + Cr A (L)
[ I3 I3
= | =S(wh(t)) 033
|—S(@P(t) Osxs

Through the identity, rank(A) = rank(AT A) for any matrix A, we examine the
ranks of dO, ;:

rank(dO, 1) = raunk(d(?,j:1 dO,.1)

— rank ([I — SO - SE ) ED
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4. Kalman Filters for Air Data System Bias Correction

By applying the Schur complement [89], the full rank requirement is equivalent to
det (—=S(w(t))? — S(wb(t))?) >0

This is obtained if &’ and w® are non-zero, linearly independent vectors, which
corresponds to the requirement [|w® x &®(| > 0.

Applying Theorem 6.12 of Chen [20] to show UCC property of the pair (A,.(t), G,),
it is sufficient to examine the first set of columns of controllability codistribution
Cr = My = G.(t), where it is easy to see that this has full rank. m

The UCO and UCC properties of the system implies that the equilibrium points
of the Kalman filter error dynamics, #2 = v2 — 92 = 0 and bb = b — b = 0, are
GES in the deterministic case, as proven by Anderson [4] and bounded in the
mean-square sense in the stochastic case [46]. Similar to wind velocity estimator,
the definition of the relative velocity estimator in Eq. 4.20 and the observability

analysis is done in continuous time for convenience.

4.4 Simulation Study

This section presents simulation results for the wind velocity estimator and the rel-
ative velocity estimator. The results are obtained using the UAV model presented
in Beard and McLain [6] with the Aerosonde UAV model parameters. Since both
estimators are kinematic, the aerodynamic model of the UAV does not influence
the estimation properties of the estimators.

The wind is modeled as a uniform, constant wind field with added turbulence.
The turbulence is generated as white noise filtered through a Dryden model, with
the transfer functions

Ha(s) = 0w %ﬁ (4.22)
Hy(s) = 0y | Ve (s +Va/(V3Lv) (4.23)

L, (s+Vu/Ly,)?
% (S + Va/(\/ng))

Hu(s) = 0w/ - (s + Vi/Lo)?

(4.24)

where o, 0y, 0, and L., L,, L, are the turbulence intensities and spatial wave-
lengths along the vehicle frame axes as defined in [67]. The simulation assumes
low altitudes and moderate gusts. Suitable Dryden model parameter values for
these conditions was presented by Langelaan et al. [52] and the Dryden model has
been implemented with those parameters values and a constant nominal airspeed
Vo = Va,. The parameter values are listed in Table 4.1.

The simulated trajectory has been chosen to provide insight into the behavior
of the two estimators with respect to PE requirements. The simulation is initiated
with trim conditions at an altitude of 50 m and an airspeed of 26 m/s. After 50
seconds, the course control command objective is chosen as a sinusoidal signal with
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altitude 50
L,L, 200
Ly 50
O,0 2.12
Ow 1.4
Vao 26

m

m

m
m/s
m/s
m/s

Table 4.1: Dryden gust model parameters used in simulation.

amplitude of 50 degrees and a frequency of 0.04 Hz. This course control command
pattern is continued for 100 seconds, corresponding to four periods. At time 225 s
to 325 s, the altitude objective was similarly chosen as a sinusoidal signal with an
amplitude of 10 m and a frequency of 0.04 Hz. It is worth noticing that the wind
influence on the UAV, will result in a non-perfect tracking of control objectives.
Plots of the position, angular rates, and Euler angles obtained through simulations
are shown in figures 4.3 - 4.5. The angular rates indicate that the PE assumption

of |w® x wb|| > 0 only holds between

time 50 s to time 150 s.

East (m)

2000 4000 6000 8000 10000 12000

0 50 100

150 200 250 300
Time (s)

Figure 4.3: The trajectory described by the UAV in simulation.

For both estimators, the sensors were assumed corrupted by additive, uncorre-
lated, zero-mean white noise and sampled at 100Hz. For the biased relative veloc-
ity measurement, a standard deviation of 0.05 m/s was applied and an arbitrar-
ily chosen constant bias b = [2.0,—1.5,1.3] was added. The rotation matrix was
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Figure 4.4: The Euler angles obtained from simulations.
17 =
Z 05¢ |
=
g o0
=051 7
0 50 100 150 200 250 300 350

0.4

q (rad/s)
o
onN

-0.21 7
-04¢t 1 1 1 1 1 1 |
0 50 100 150 200 250 300 350
04t .
Z02f 1
\f/ O VI""M v o o b M" Lau 'vl 'w
= -02r 7
—04 C 1 1 1 1 1 1 |
0 50 100 150 200 250 300 350

Time (s)

Figure 4.5: The angular rates obtained from simulation.
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parametrized by Euler angles with a white noise term with standard deviation 1.0
deg. For the wind velocity estimator, the GNSS velocity over ground measurement
white noise term was assumed to have a standard deviation of 0.05 m/s, and for the
relative velocity estimator, the specific force measurements and the angular rate
measurements were assumed to have white noise terms with standard deviations
of 2.5x1072 deg/s and 2.5x1073m /s%.

4.4.1 Wind velocity Estimator simulation results

For the wind velocity estimator, the wind model noise standard deviations were
chosen by tuning as ¥, = 1x 107213, and the bias model noise standard deviations
were chosen by tuning as ¥, = 1 x 107%I5, and the error covariance matrix was
initialized as Py, o = 1 X 10~2Is. The tuning was conducted with a prioritization of

steady state performance over fast convergence. The simulation results are shown
in Fig. 4.6 - 4.8.

-4t I I I I I I -
0 50 100 150 200 250 300 350
T
6 [ — We 7'&)5 1
Q
54 M
2kt I I I I I I |
0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Time (s)

Figure 4.6: The wind velocity obtained from simulation using the Dryden wind model
and the corresponding wind velocity estimator estimates.

The results show that during the first 50 seconds of trim flight conditions, the
wind velocity estimator is not provided with sufficient PE and the estimates do
not converge. Once the UAV engages in a sinusoidal course pattern, the estimates
converge towards the true values. After convergence, there is no divergence even in
periods without PE. RMSE results from the period after t = 100 seconds is shown
in table 4.2.
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Figure 4.7: The relative velocity sensor bias and the wind velocity estimator bias esti-
mates.

T

321 —Vo—Vi]
- 30 T
~ 28 .
g \
— 26

24 L Il Il Il Il Il Il 1

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Time (s)

Figure 4.8: The air data obtained from simulation and the air data estimates computed
from the wind velocity estimator.
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O 0.0720 m/s
e 0.0903 m/s
oF 0.1048 m/s
bu 0.0659 m/s
by 0.0761 m/s
bu 0.0863 m/s

Table 4.2: The RMSE obtained from simulation for the wind velocity estimator after t
= 100 seconds.

4.4.2 Relative velocity estimator simulation results

For the relative velocity estimator, the wind model noise standard deviations, the
bias model noise standard deviations, and the initial error covariance matrix were
chosen as the same values as used in the wind velocity estimator simulation. The
simulation results are shown in Fig. 4.9 - 4.11.
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Figure 4.9: The relative velocity obtained from simulation and the corresponding relative
velocity estimator estimates.

Similarly to the wind velocity estimator, the relative velocity estimator does not
show convergence of estimates for the first 50 seconds. After the UAV initiates the
sinusoidal course pattern, the estimates starts converging towards the true values
and does not diverge in the following periods without PE. RMSE results from the
simulation period after 100 seconds are shown in table 4.3.
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Figure 4.10: The relative velocity sensor bias and the relative velocity estimator bias
estimates in simulation.
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Figure 4.11: The air data obtained from simulation and the air data estimates computed
from the relative velocity estimator.
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i 0.0670 m/s
Oy 0.0843 m/s
b, 0.0898 m/s
bu 0.0598 m/s
by 0.0740 m/s
bu 0.0777 m/s

Table 4.3: The RMSE obtained from simulation for the relative velocity estimator after
t = 100 seconds.

4.5 Experimental Flight Test Results

This section contains results from testing the air data system bias correction es-
timators on experimental flight data. The flight data was obtained on the 30th of
January, 2017, outside of Agdenes in Norway using a Skywalker X8 Flying Wing
UAV (see Appendix A). A STIM300 IMU was used to provide angular rate and
specific force measurements at 500 Hz. The distributed pressure sensor approach
presented in Chapter 3 has been used as a virtual relative velocity sensor. Three
neural networks were trained to provide relative velocity virtual sensor measure-
ments at 20 Hz. As a ground truth reference, the Micro Air Data System by the
Aeroprobe Corporation has been used to provide relative velocity measurements at
100 Hz. The sensor measurements has been logged with an accurate timing of less
than 10 ns using the SyncBoard [3] (described in Appendix B). In addition, a Pix-
hawk PX4 Autopilot was used to provide EKF attitude and velocity over ground
estimations. The estimators are tested on a flight segment that is 10 minutes long.
The relative velocity virtual sensor measurements and the ground truth values are
shown in Fig. 4.12 and 4.13. The bias error in the neural network output are as-
sumed to be attributed to one of two things. The BMP280 sensors are subjects to
a slowly time-varying drift that a pre-flight calibration process is used to compen-
sate for. This calibration uses the mean of the BMP280 sensor measurements for
a shorter period and noise from wind during this process will negatively influence
the results. In addition, [12] assumes that the pressure distribution, given enough
data, is invariant to ambient conditions, and the amount of data used to train the
NNs may not be sufficient.

The flight is spent loitering in a circle with an approximate radius of 100 m,
where better PE conditions would have been achieved with sinusoidal patterns or
figure eight flying. The position, angular rates, and Euler angles are shown in Fig.
4.14 - 4.16. Also, note that the mounting of the Micro Air Data System probe on
the Skywalker UAV is a potential error source, since an error in the alignment of
the probe with respect to the definitions of the virtual relative velocity sensor axes
will result in estimation errors.
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Figure 4.12: The relative velocity virtual sensor measurements and the Micro Air Data
System ground truth values. It is apparent that the biases between the two sets of signals
are not constant.

4.5.1 Wind velocity estimator flight results

For the experimental flight data, the wind velocity estimator was tuned as ¥, =
diag(3 x 10723 x 1072,8 x 1072), and ¥ = 9 x 1076I3. The error covariance
matrix was initialized as P, = diag(1 x 107°,1 x 107°,1 x 107°,3 x 1076,3 x
1074,3 x 10~%). The sensor noise covariance matrices were chosen by tuning as
¥y, = diag(1x 1072,1x1072,2x1072) and X, = diag(6x1072,6x1073,3x1073).
The tuning was conducted with a prioritization of steady state performance over
fast convergence. The experimental flight test results are shown in Fig. 4.9 - 4.11.
The wind velocity estimator RMSE results from the flight after the initial 100
seconds have passed are listed in table 4.4.

Va 0.6911 m/s
& 1.1432  deg
Br 22395 deg
U, 0.7254 m/s
Ve 0.6804 m/s
0F) 0.4364 m/s

Table 4.4: The RMSE obtained from flight data for the wind velocity estimator after t
= 100 seconds.
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Figure 4.13: A closer look at the virtual sensor relative velocity measurements and the
ground truth values. It is evident that the virtual sensor does not output a perfectly
biased relative velocity measurement, but it does appear to capture the high-frequency
dynamics.
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Figure 4.14: The trajectory described by the UAV during the experimental flight.
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Figure 4.15: The Euler angles obtained from the Pixhawk PX4 Autopilot during the
experimental flight test.
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Figure 4.16: The angular rates obtained from the STIM300 IMU during the experimental
flight test. It is not obvious whether the angular rates and angular acceleration from this
test flight provides sufficient PE for the estimators to have UCO properties.
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Figure 4.17: The wind velocity computed from from the Micro Air Data System using
the relations in Eq. 2.4 and the wind velocity estimates from the wind velocity estimator.
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Figure 4.18: The relative velocity sensor bias estimates from the wind velocity estimator.
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Figure 4.19: The air data obtained from experimental flight and the air data estimates
computed from the wind velocity estimator estimates.

4.5.2 Relative velocity estimator flight results

For the experimental flight data, the relative velocity estimator was initialised with
the same values for the wind model noise, the bias model noise, the error covariance
matrix, and the velocity sensor error covariance as the wind velocity estimator was.
The sensor noise covariance matrices were chosen by tuning as Xy = 1 x 107213,
and X, = 1 x 1073I3. The tuning was conducted with a prioritization of steady
state performance over fast convergence. The experimental flight test results are
shown in Fig. 4.9 - 4.11. The wind velocity estimator RMSE results from the flight
after the initial 100 seconds have passed are listed in table 4.5.

Va 0.7073 m/s
& 1.2252  deg
Br 1.2451  deg
iy 0.7021 m/s
s 0.4304 m/s
D, 0.4110 m/s

Table 4.5: The RMSE obtained from flight data for the relative velocity estimator after
t = 100 seconds.
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Figure 4.20: The relative velocity obtained from the Micro Air Data System and the
relative velocity estimator estimates.
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Figure 4.21: The relative velocity sensor bias estimates from the relative velocity esti-
mator.
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Figure 4.22: The air data obtained from experimental flight and the air data estimates
computed from the relative velocity estimator estimates.

Note on faults in sensor input: The method and its results will ob-
viously depend on the faultlessness of the sensor input used. The ground
truth sensor, the Micro Air Data System, is factory calibrated and has an
accuracy of £1° on flow angles and a total flow velocity accuracy <1 % or 1
m/s, according to the manufacturer. However, the Micro Air Data System
requires annual re-calibration and any faults due to a lack of calibration
would result in a faulty comparison with the output of the two estimators.
The BMP280 pressure sensors are used after a pre-flight calibration has been
conducted, but any drift over time will influence the air data estimation.
The influence of this fault on the method depends on both size of sensor
drift and the influence of the specific sensor on the ML algorithm output.
For sensor drift, the presented method is capable of handling errors that
manifests themselves as slowly-varying biases on the virtual relative veloc-
ity sensor output. Furthermore, any faults in attitude estimates, GNSS or
IMU measurements will negatively influence respectively the wind velocity
and relative velocity estimators.

4.6 Chapter Summary

This chapter presented two different Kalman filter approaches for correcting air
data systems for a constant error bias. The estimators are designed for fixed-wing
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unmanned aerial vehicles and use a standard sensor suite consisting of a GNSS
receiver, an IMU, and a heading reference, combined with an air data system that
is assumed to provide measurements with an unknown additive slowly time-varying
bias. The proposed estimators are not model-dependent and are in the absence
of noise proven to have globally exponentially stable equilibrium points for the
error dynamics if provided with persistence of excitation of the angular rates of
the unmanned aircraft. The estimators are verified through simulation and using
experimental flight data. The experimental data indicates that a certain amount
of PE is necessary to provide converging estimates for turbulent wind conditions.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The contributions and conclusions of the thesis is listed in order of appearance:

Conclusions of Chapter 2 - Nonlinear Model-Based Wind Velocity Ob-
server

In this chapter a nonlinear wind observer for a fixed-wing unmanned aerial vehicle
was proposed. The wind observer combines a standard sensor suite consisting of a
GNSS receiver, an inertial measurement unit, a Pitot-Static probe, and a heading
reference, with model of the aircraft and an airspeed sensor. The observer provides
estimates of both the wind velocity and the relative velocity, from which the angle
of attack and sideslip angle are computable. The nonlinear wind observer devel-
oped does not have any requirements of persistence of excitation of the aircraft,
and the nonlinear wind observer has been proven to be exponentially stable. The
wind observer is verified through simulations using a realistic wind signal.

Conclusions of Chapter 3 - A Machine Learning Approach to Estimating
Air Data

In this chapter, a method for estimating the air data parameters for small fixed-
wing unmanned aerial vehicles has been presented. The method compromises a set
of low-cost MEMS-based pressure sensors embedded in the surface of the unmanned
aerial vehicle combined with machine learning algorithms. The presented method
is flexible in placement of sensors and two different machine learning algorithms,
neural networks and linear regression, have been implemented and tested. Both al-
gorithms have been evaluated on data obtained through wind tunnel experiments
and experimental flight data. The neural network algorithm was found to generally
provide a slightly lower estimation error than the linear regression algorithm. How-
ever, linear regression allows for basis function expansions that could potentially
improve the results further. By comparing the results obtained from using the low-
cost sensors on the aircraft against the results from the expensive pressure scanner
from the wind tunnel, the influence on sensor amount and sensor accuracy on the
results was assessed. Training the machine learning algorithms using only wind
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tunnel data was found to have several error sources, namely the blockage effect,
misalignment from the aircraft mount, as well as a too sparse (not very rich) train-
ing data set. However, trying to account for these error sources showed potential
in decreasing the estimation error. Using flight data to train the machine learning
algorithms was found to be a feasible approach that allowed estimating the air
data parameters for both neural networks and linear regression. Finally, a study of
the sensor number and placement influence on the result was conducted along with
an assessment of augmenting the system input by using a pseudo Reynolds number.

Conclusions of Chapter 4 - Kalman Filters for Air Data System Bias
Correction

This chapter presented two different Kalman filter approaches for correcting air
data systems for a constant error bias. The estimators are designed for fixed-wing
unmanned aerial vehicles and use a standard sensor suite consisting of a GNSS re-
ceiver, an inertial measurement unit, and a heading reference, combined with an air
data system that is assumed to provide measurements with an unknown additive
slowly time-varying bias. The presented estimators are not model-dependent and
are in the absence of noise proven to have globally exponentially stable equilibrium
points for the error dynamics if provided with persistence of excitation of the angu-
lar rates of the unmanned aircraft. The estimators are verified through simulation
and using experimental flight data. The experimental data indicates that a certain
amount of PE is necessary to provide converging estimates during turbulent wind
conditions.

5.2 Future Work

There are many potential future improvements to the air data estimation methods
presented in this thesis. The machine learning approach presented in Chapter 3
has several points that could be improved. During two of the experimental flights
conducted, several of the pressure sensors repeatably measured high pressure spikes
corresponding to a specific attitude of the aircraft. A deeper look into the aero-
dynamic theory could perhaps provide a better understanding of the method and
how to optimally place the sensors to avoid this sort of behavior. Furthermore, for
a new aircraft platform, the need to perform flights with a ground truth sensor or
wind tunnel tests in order to gather training data, could potentially be replaced
by CFD simulations. The payload could be augmented with a single high-accuracy
pressure sensor used for the pre-flight calibration of the low-cost BMP280 pressure
sensors, to provide a solution that is more robust to drift of the BMP280 sensors.
An algorithm could be designed to detect a pressure sensor failure and in case
of this, replace the air data estimation machine learning algorithm with one that
uses a different sensor configuration that does not include the faulty sensor. These
suggestions could all improve the method presented in Chapter 3, however, it is
hard to imagine an end-all air data estimation solution relying on a single method.

A deeper understanding of the presented methods and their shortcomings could
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be exploited in a solution that combines different observers and estimators into a
single component. One such possible combination is shown in Fig. 5.1.

Bias-Correcting Air Data
Estimation Component

Persistency-of-
Excitation
State Estimator

v

¢ Decision
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3

Model-Based
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IMU and
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Measurements
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Pressure Sensor
Measurements

Aircraft Control

Signals

Figure 5.1: A possible combination of different methods for estimating air data combined

into a single solution.

The bias-correcting air data estimation component envisioned combines the air
data estimation approaches presented in this thesis with the estimator presented
in [47]. A decision structure based on the performance of the different methods
in different conditions and for different maneuvers is used to switch output esti-
mates of the component. The solution from Fig. 5.1 represents a single possible
configuration, however, there are many possible combinations as well as possible

improvements to the different subcomponents.
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Appendix A

Experimental Platform

The experimental results in this thesis have been obtained using a Skywalker X8
Flying Wing UAV. The Skywalker X8 is a consumer grade UAV with a wingspan
of 2.12 meters that is usually flown in airspeeds ranging from 15 to 25 m/s, and is
capable of carrying a payload of up to 2 kg (including the control system, batteries,
etc.). A picture of a Skywalker X8 in flight is shown in A.1.

Figure A.1: A Skywalker X8 in flight. Copyright: Jodo Fortuna.
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Appendix B

Data Logging Payload

This appendix outlines the method used for logging the experimental flight data
used in Chapter 3 and 4. The backbone of the payload consists of the SyncBoard
designed by Sigurd Mgrkved Albrektsen, NTNU [3]. The SyncBoard is a reconfig-
urable sensor timing board designed for accurate timing of sensor measurements
with an accuracy less than 10 ns. The SyncBoard has been designed to be compat-
ible with different commonly used communcation protocols and uses an onboard
microcontroller interrupt capture function combined with time of validity signals
to achieve the high accuracy. The SyncBoard is shown in Fig. B.1.
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Figure B.1: The topside of the SyncBoard version 2.2. The image is from [3].

The payload used during experimental flights consists of:

e STIM300: A tactical grade IMU used to provide measurements of specific
force and angular rate at 500 Hz.

e u-blox LEA-MS8T: GNSS receiver capable of logging position, velocity,
range data, and environmental data.

e Micro Air Data System: A 5-port probe air data system with an accuracy
of £1° and a total flow velocity < 1% or 1 m/s (whichever is largest) [2].
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SyncBoard: A custom printed circuit board designed and built by Sigurd
Mgrkved Albrektsen, NTNU.

ODROID-XU4: A single-board computer used for handling, parsing and
storing the data passed from the SyncBoard onto an SD card.

16 Bosch BMP280: MEMS-based digital pressure and temperature sensors
embedded in the surface of the Skywalker X8 UAV.

Arduino MEGA 2650: Microcontroller board connected to the BMP280
pressure sensors via serial peripheral interface bus. The MEGA 2650 collects
the pressure measurements and sends them in a package to the ODROID-
XU4 component.

Pixhawk PX4: The autopilot used on the Skywalker X8. The PX4 measure-
ments and estimates are accurately synchronized to the rest of the payload
using GPS timestamps.

The STIM300, the LEA-MS8T, and the Micro Air Data System are directly

connected to the SyncBoard. However, the BMP280 pressure sensor measurements
are not logged using the accurate timing stamps of the SyncBoard and are related
to the other sensors by the timing stamps of the Odroid.
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