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Abstract

For centuries cartographers have segmented and labeled the surface of the earth

onto analog and digital maps. Today, map-making is still a time-consuming, man-

ual process that requires large amounts of work.

In this thesis, we investigate the possibility of using publicly available spatial data

to train deep convolutional neural networks into performing accurate semantic

segmentation of aerial images. We collect spatial data from the Norwegian Mapping

Authority and propose a dataset consisting of aerial photographs and high-quality

labels from five cities in Norway. The dataset consists of four di↵erent spatial

classes: Buildings, Roads, Water and Vegetation. We present detailed statistics

and highlight issues in the dataset and show that the technique for creating the

dataset can be expanded to include data from all of Norway.

To investigate the possibility of creating maps automatically, we adopt two deep

convolutional neural networks and train them on the proposed dataset. We show

that training one network for each semantic class yield better results than training

one network on all the classes simultaneously.

Finally, we present maps produced by the networks and assess its quality and

usability. The results show that our method can produce useful maps without the

need for pre- and postprocessing of the data.

Keywords: High-quality aerial images, deep learning, convolutional neural net-

works, automatic map creation
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Sammendrag

Kartografer har i flere århundrer segmentert og tegnet jordens overflate p̊a analoge

og digitale kart. Å lage et kart er fortsatt en manuel og tidkrevende prosess som

krever store mengder arbeid.

I denne masteroppgaven, undersøker vi muligheten for å bruke o↵entlig tilgjen-

gelige data til å trene dype konvolusjonelle nevrale nettverk for å gjøre nøyaktig

segmentering av flyfoto. Vi samler inn data fra Kartverket og foresl̊ar et dataset

som best̊ar av flyfoto og høy kvalitets masker fra fem byer i Norge. Datasettet

best̊ar av fire ulike romlige klasser: Bygning, Veg, Vann og Vegetasjon. Vi presen-

terer detaljert statistikk og fremhever problemer i datasettet og viser at teknikken

som brukes for å lage datasettet kan utvides slik at datasettet inneholder data fra

hele Norge.

For å undersøke muligheten for å lage kart automatisk, tilpasser vi to dype konvul-

sjonerende nevrale nettverk og trener de p̊a det foresl̊atte datasettet. Vi viser at

det å trene ett nettverk for hver semantisk klasse gir bedre resultater enn å trene

ett nettverk p̊a alle klassene samtidig.

Til slutt presenterer vi kart produsert av nettverkene og vurderer kvalieten og bruk-

ervennligheten p̊a disse. Resultatene viser at metoden v̊ar kan produsere brukbare

kart uten noen form for pre eller postprosessering av dataene.
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Chapter 1

Introduction

In this chapter, we introduce the background and motivation and state our goals

for this master thesis. We continue with explaining our method and discuss the

limitations of our work before we give an outline of the rest of the thesis.

1
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1.1 Background and Motivation

Feature extraction and semantic segmentation of images, using supervised machine

learning algorithms, have become the leading field of research within computer vi-

sion since Krizhevsky, Sutskever, and Hinton [52] won the ImageNet LSVRC-2010

contest with their Deep Convolutional Neural Network. Since then these algorithms

have been used in the development of technologies such as self-driving cars, face

recognition and natural language processing [5, 32]. The remote sensing commu-

nity applies machine learning algorithms in numerous ways to extract meaningful

information from aerial images [97, 96, 36, 66, 35].

One of the most significant challenges for supervised machine learning is to acquire

enough training data. A neural network, for example, often require millions of

training examples to generalize well beyond the data initially seen. One branch

of machine learning that has proven to require a substantial amount of data is

semantic image segmentation [84].

A problem that arises when trying to create large datasets is the amount of manual

work required to label the data. In semantic segmentation problems, each pixel in

the raster label has a color value corresponding to its respective class, as seen in

Figure 1.1. Hence, creating such datasets can be both di�cult and time-consuming

[60].

High-quality aerial imagery combined with geographical information provides an

ideal source for creating semantic segmentation datasets since the purpose of the

geographical information is to represent the position and extent of spatial objects.

Figure 1.1: Training example and corresponding label from city scene [100]

In Norway, the task of producing, storing and maintaining a digital database for

geographical information, is the responsibility of the Norwegian Mapping Author-

ity and the Geovekst [71] initiative. This database, referred to as FKB (Felles
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Kartdatabase), contains large quantities of information, ranging from the use of

land to cadastre data, and the information within this database is considered to be

of high quality.

New machine learning contests such as the SpaceNet challenge [90] and DSTL [43]

shows that there is an increasing focus on semantic segmentation of remote sensing

data, but the amount of high-quality training datasets is still limited compared to

other branches within machine learning.

1.2 Research Goals

We base the work conducted in this thesis on two research goals:

G1: Create a high-quality training dataset based on publicly available

data from the Norwegian Mapping Authority where the label creation

process is automatable.

As machine learning becomes more prominent within the remote sensing commu-

nity, the need for high-quality training data grows. Because of the significant

workload required to label such training data manually, exploitation of already

existing o�cial spatial data can be a better approach. We also want to focus on

creating the labels for the dataset in a way that can be easily automated, without

the need for human intervention.

G2: Train di↵erent configurations of convolutional neural networks on

the proposed dataset.

If the datasets are to bring any value to the research field, they have to be of a cer-

tain quality. Therefore, there is a need for a detailed analysis of the performance of

di↵erent machine learning implementations when being trained on datasets created

from publicly available spatial data.

We combine our goals to create an overall question that we aim to answer in this

thesis:

Can deep convolutional neural networks learn to create maps based on

publicly available spatial data? If we are to answer our research question, it is

apparent that we need to reach both G1 and G2.



4 CHAPTER 1. INTRODUCTION

1.3 Research Methods

To reach the specified goals, we first dive into the relevant theoretical background

and conduct a series of literature reviews to gain a better understanding of the

technology and methods that exist today. Afterward, we use what we have learned

to evaluate relevant techniques by applying them to our problem.

1.3.1 Study of Theory and Related Work

We start by looking into the theoretical background that is relevant to the thesis.

Then we conduct literature reviews for the creation of di↵erent machine learning

datasets, di↵erent methods for semantic segmentation and lastly automatic map

generation and feature extraction from remote sensing data.

1.3.2 Analysis, Implementation and Experiments

We start by giving a definition of our map and analyzing the FKB dataset to

determine its magnitude and level of detail. Then we make a qualitative decision

on which of the FKB classes to include in the dataset.

We use the defined classes to create a geospatial database that can be used to

query geographical information from di↵erent areas in Norway. We combine this

database with tiled, aerial images from Norge i Bilder (NIB) to generate training

examples and labels. Using this approach, we aim to solve G1.

These examples and labels are used to train di↵erent implementations of deep

convolutional neural networks. We evaluate their predictions and compare them

with state-of-the-art segmentation results from other, previous work, to address

G2.

1.4 Limitations

The machine learning community is, at its current state, developing at a very high

pace, continually publishing improved algorithms. Even though this thesis is trying

to present the performance of the dataset on the most advanced neural networks

currently existing, we see examples of new findings continually appearing [53].

Furthermore, while most of the networks presented in the reviewed research papers

train on large machines with high computational power, our work is limited by
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available resources.

1.5 Outline

We structure the remaining chapters of this thesis into the following parts: Related

Work, Evaluation and Discussion and Conclusion.

1.5.1 Theory and Related Work

Chapters 2-5 concern the early research phase of this thesis, which includes looking

into the relevant theoretical background material and reviewing relevant literature

to acquire a deeper understanding of the subject.

• Theoretical background (chapter 2): The chapter gives a theoretical back-

ground of the methods and theory used in the thesis. We start by looking at

FKB data in general and how it is commonly retrieved through photogram-

metric cartography. Furthermore, we present the basic concepts of artificial

neural networks, before we present convolutional neural networks.

• Datasets in Computer Vision: (chapter 3): In this chapter, we present the

previous work related to creating datasets for training machine learning algo-

rithms. It describes earlier work of the creation of computer vision datasets

for object classification, object detection, and semantic segmentation.

• Semantic Segmentation Methods (chapter 4): This chapter includes a

description of standard methods for image segmentation, an overview of the

advances in convolutional neural networks and how one can use these net-

works for semantic image segmentation.

• Feature Extraction in Remote Sensing (chapter 5): The last chapter in

the first part of this thesis describes di↵erent approaches of map generation,

through semiautomatic and automatic feature extraction methods.

1.5.2 Implementation and Assessment

In chapter 6-9, we present the methodology based on our findings from investigating

the related work. We also conduct experiments and show the results of these.

• Methodology (chapter 6): The chapter describes the methods we use in

this thesis, including a definition of our map, a technical description of how
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we generate the dataset, what classes of the FBK dataset we use and how we

implement the di↵erent artificial neural networks.

• Proposed Dataset (chapter 7): This chapter first presents the generated

dataset with examples of labels and statistics explaining the di↵erent fea-

tures. We expose some errors present in the dataset. Lastly, we show the full

potential of the dataset.

• Algorithmic Experiments and Results (chapter 8): In this chapter, we

present all experiments performed on the generated dataset. The experiments

involve finding the proper configuration for the networks and the training of

them on the dataset. We both train the networks to perform binary and

multiclass predictions on the defined classes.

• Results from the Predictions (chapter 9): The chapter presents the final

predictions of our work, including examples of binary predictions from both

the networks and multiclass maps for larger areas.

1.5.3 Discussion and Conclusion

In chapter 10 and 11, we discuss and conclude our findings from the conducted

research within the scope of this thesis.

• Discussion (chapter 10): We discuss di↵erent approaches and choices taken

during the writing of the thesis, including the quality and basis of the dataset,

the chosen configuration and the accuracy of the predictions after training

on the dataset.

• Conclusion (chapter 11): In the last chapter, we present our conclusion

together with suggestions for further work.
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Theory and Related Work
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Chapter 2

Theoretical background

In this chapter, we identify and give the theoretical background needed for this

thesis. The theory includes concepts, definitions, methods and regulations/key

standards to explain the methods and techniques used in the rest of the thesis.

9
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2.1 The Definition of a Map

To define what a map is, we use the definition presented by Anson and Ormeling

[2]:

”A convetionalized image representing selected features or characteris-

tics of geographical reality designed for use when spatial relationships

are of primary relevance.”

According to Heywood, Cornelius, and Carver [29], the mapping process consists

of several steps:

1. Establish the purpose of the map.

2. Define the scale.

3. Select the features which must be portrayed on the map.

4. Choose a method for representation of these features (points, lines, areas).

5. Generalize these features for representation in two dimensions.

6. Adopt a map projection for placing these features onto a flat surface.

7. Apply a spatial reference system to locate these features relative to each

other.

8. Annotate the map with keys text legends to facilitate the map.

2.2 Map construction using photogrammetry

In general, photogrammetry denotes the process of deriving metric information of

di↵erent objects from photographs by measuring distances. By using the principles

of collinearity, we can calculate the real-world distance between two points by

knowing the distance between the points on the image, the projection angles of

the image and the image scale. In geomatics, photogrammetry is used to create

elevation models, orthophotos and maps.

FKB data is, as mentioned in section 2.3, mostly derived from photogrammetric

map production. The process involves taking aerial photographs of a selected area

and georeferencing these photographs using aero-triangulation and block adjust-

ment techniques (see subsection 2.2.1) to create accurate stereo models and use

these models for mapping.
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2.2.1 Georeferencing aerial images

We divide the process of georeferencing images using aero-triangulation and block

adjustment into two parts; Interior Orientation and Outer Orientation.

Interior Orientation The purpose of interior orientation is to reconstruct the

bundle of beams that formed the image at the time of projection. The reconstruc-

tion is done by finding the parameters that define the inner geometry of the camera

at that specific moment.

Outer Orientation The purpose of outer orientation is to find a connection

between the two-dimensional image coordinates and three-dimensional coordinates

in a terrain model. The connection can be found by following the collinearity

constraint, which states that every point that is part of an orientation (three points

in the outer orientation of an aerial photo) should all be on the same line. Shown

in Figure 2.1.

Figure 2.1: Outer Orientation using the bundle method

2.2.2 Vectorizing georeferenced images into maps

By using georeferenced stereo images, it is possible to extract features such as

buildings, roads and contour lines directly from the images, using a digital pho-

togrammetric workstation.

Digital Photogrammetric Workstation (DPW) ADPW is a high-performance

computer connected to a screen with stereoscopic capabilities and an input device

for 3D-navigation. The machine has to have installed photogrammetric software
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that is capable of handling large digital images. Even though there are many appli-

cations for the DWP, the primary usage is 2D feature extraction or vector mapping

[58].

Feature extraction is used to label di↵erent properties of aerial images such as

houses, rivers, roads, fences, and poles. As seen in Figure 2.2. Feature extraction

today is mainly done manually, but there exist attempts to automate parts of the

process.

Figure 2.2: Feature extraction using a DPW

In addition to creating maps from stereo photos, it is possible to use the aerial im-

ages for feature extraction without the use of specialized equipment, if the pictures

go through orthorectification.

Orthophotos A single image is a central projection where the scale is not uni-

form and thus contain geometric distortion. Maps are what we call an orthogonal

projection, where all points are projected with parallel lines and have a uniform

scale. To use a single image as a background map or as an accurate description

of the true distances in the real world, we need to orthorectify it. Rectification

is the process of removing the distortion of each point in the image. Instead of

viewing the stereo model as described above, the stereo model is used to create a

digital elevation model of the area. The elevation model is then used to calculate

the distortion at each point in the image and shift the point accordingly.
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In standard orthophotos, we correct the scale on ground level. However, the photos

still maintain the vertical relief displacement, e.g., the sides of a building would

still have distortions. Orthophotos where the vertical relief displacement also has

been corrected, are called true orthophotos.

2.3 Felles kartdatabase (FKB)

FKB is a collection of map data that makes up for the public map base of Norway.

It consists of data collected by the Norwegian mapping authority, the Norwegian

municipalities and other agencies in an initiative called Geovekst [71]. It includes

detailed data on contour lines, water, land cover, land use, buildings, roads and

more. We see an example of the data in Figure 2.3.

Figure 2.3: FKB data visualized in a geographical information system

FKB focuses on the same cartographical disciplines as the old map series ØK

(Økonomisk Kartverk) and TK (Teknisk Kartverk). Its purpose is to aid in en-

gineering tasks, administrative case management in municipalities, analysis and

presentation in geographical information systems and production of maps.

FKB delivers the data in four quality categories, based on detail, localization accu-

racy and the location of the data. The four categories are shown in Table 2.1, the

locations the categories are based on are shown in Figure 2.4 and the detail levels

of each category can be seen in Figure 2.5.

Although parts of the FKB dataset is retrieved from other sources than the Norwe-

gian Mapping Authority, such as the Tra�c Authority, municipalities and others in

the Geovekst initiative, most of the data in FKB is gathered through photogram-

metric map construction, as explained in section 2.2.
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Figure 2.4: Areas of di↵erent levels of detail [47]

Category Description
FKB-A Used for areas covering larger cities with a high degree of utiliza-

tion. The level of detail in the A-standard is very high. Objects
such as buildings have features such as ridgelines, porches, and
stairs. Furthermore, it includes heights for objects such as fences,
walls, and masts.

FKB-B The B-standard covers areas of smaller cities, towns, larger roads,
railroads and developing regions. The level of detail is very similar
to that of the old technical maps (Tekniske Kart).

FKB-C Used for other populated areas. It has the same level of detail like
the traditional economic maps (Økonomiske kartverk). The level
of detail of, i.e., buildings can vary based on where the data is
collected.

FKB-D Used in rural areas such as mountains. Most of the data is col-
lected from N50. Thus the level of detail is close to that of N50.
Some roads and houses are however collected from the o�cial road
database and cadastre data respectively.

Table 2.1: The di↵erent categories in the FKB data

2.4 Artificial Neural Networks

In the later years, there has been increasing use of artificial neural networks (ANNs)

for feature extraction in remote sensing images [55]. The fundamental principle

behind ANNs is that it is built up by a network of many simple units, called

neurons, with no centralized control unit [70]. The ANNs primary means of long-

term storage is the weights between the individual units, and updating the weights

is the most important way the network learns new information. An ANN is defined

by the number of neurons, layers and the connections between the layers.
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Figure 2.5: Di↵erent levels of detail in the FKB data. FKB-A (a), FKB-B (b),
FKB-C (c) and FKB-D (d) [47]

2.4.1 Artificial neurons

Each layer in the ANN consist of one or more artificial neurons also called nodes or

units. An artificial neuron is a mathematical representation of a biological neuron

and consist of inputs with weights and bias, a transfer function and an activation

function. The weights are what scales, either amplifying or decreasing, the input

to the node. The bias is a constant scalar value per layer that is added to ensure

that at least some of the nodes in the layer are activated, that is, forwarding a

non-zero value to the next layer. The transfer function takes the weighted sum

of the input variables and transfers it to the activation function. A model of an

artificial neuron compared to a real neuron, can be seen in Figure 2.6.

2.4.2 Activation functions

Activation functions are scalar-to-scalar non-linear functions that define the output

of a node based on the inputs, weights, and bias. They are what enables the network

to model non-linear functions. Note that sometimes the identity function f(x) = x
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Figure 2.6: Structure of a real neuron compared with an artificial one [44]

is referred to as an activation function, it is however only used in the input layer

of the network, and is not one of the non-linear activations used in neurons. The

most common non-linear activation functions are:

Sigmoid The sigmoid activation function belongs to the class of logistic activa-

tion functions. It coverts independent variables of near infinite range into proba-

bilities in the range [0, 1]. Expressed mathematically as:

a = �(x) =
1

1 + exp(�x)

Tanh The tanh function represents the ratio between the hyperbolic sine to the

hyperbolic cosine that outputs values in the range [-1, 1]. Expressed mathematically

as:

a = �(x) = tanh(x)

Softmax The softmax function also referred to as the normalized, exponential

function, is a generalization of the logistic function that is most often used to

weight the largest value in a set and dampen values that are considerably smaller.

It returns the probability distribution over mutually exclusive output classes. For

example, if the softmax activation function was applied to the vector [1, 2, 3, 4, 1,

2, 3], the result would be [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175,]. We can

express Softmax as follows:

a = �(x)j =
e
xj

PK
k=1 e

xk

where j indexes the input vector so j = 1, 2, ...,K.
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Rectified Linear The rectified linear unit (ReLU) function only activates a node

if it is above some threshold (usually zero). When the input is above the threshold,

the output has a linear relation to the input:

a = �(x) = max(0, x) (2.1)

ReLUs are considered the state-of-the-art because of their proven usefulness in

many situations, and their ability to train better in practice than sigmoids [52].

ReLUs does not have the problem of vanishing gradients, where networks lose the

ability to learn. The reason is that significant changes in the value of parameters in

the early layers do not have a significant e↵ect on the output since some activation

functions ”squash” the input space into small regions.

While removing the problem of vanishing gradients, ReLUs introduce another prob-

lem. Dying ReLU [44] occurs when a weight update in a ReLU node happens in

such way that the neuron will never activate again, making the gradient passing

through the neuron always to have a zero-value.

2.4.3 Feed-forward neural networks

The most common ANN architecture is the feed-forward neural network. The

network is built up of one input layer, one or more hidden layers and an output

layer. A network that has no hidden layers is called a perceptron, and these types

of networks are only able to model linear functions [65]. A feed-forward network

with one or more hidden layers (with non-linear activation functions), is shown to

be a universal approximator and can thus model any continuous function [16].

Figure 2.7: Example structures of feed forward ANNs [44]

Input Layer The input layer is the layer that feeds the information into the

network. The number of neurons is typically equal to the number of features in

the data.
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Hidden layer The hidden layers with non-linear activation functions are what

enables the network to learn and model nonlinear functions. It is the weights on

the connections between the di↵erent layers that enables the network to encode the

information extracted from the training data.

Output layer The output layer extracts the answer or prediction from the model.

Depending on the setup of the neural network, the output value can either be a

real value or a set of probabilities. The output type is dependent on the activation

function that we choose for the layer.

A feed-forward network can either be fully or partly connected. The di↵erence

is that in a fully connected network (FCN), all the neurons in each layer have a

connection to all neurons in the previous the next layer.

2.4.4 Training a neural network

There are di↵erent forms of learning: Supervised learning where we show the net-

work the correct answer, unsupervised learning where the network itself decides

how to label the data, and reinforcement learning where the network does not get

to know the answer but learns by reward or punishment. We will only focus on

supervised learning in this thesis since it is the form of learning we use when doing

semantic segmentation with ANNs.

The primary purpose of training an ANN is to adjust its weighted connections to

allocate significance to some features and removing it from others. In supervised

learning, the network learns by training on a set of inputs and desired outputs. As

inputs pass through the network and outputs are generated it learns by adjusting

weights and biases, causing some neurons to become smaller and some to grow

larger. The larger a neuron’s weight is, the more it a↵ects the network and vice

versa.

By adjusting the weights and biases, the network reduces the errors, also called

loss. The loss is defined by a loss function that quantifies the correctness of the

output compared to the ground truth. By using a loss function, we reclass the

learning problem as an optimization problem, where we try to minimize the loss.

The most common learning algorithm associated with neural networks is the back-

propagation learning algorithm.
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Backpropagation learning

The backpropagation algorithm adjusts the weights by first taking a forward pass

through the network to compute an output value. If the output produces a signifi-

cant loss, the weights are updated accordingly. We do the weight update with the

following equation:

Wj,i ( Wj,i + ↵ ⇤ aj ⇤ Erri ⇤ g0(input sumi) (2.2)

Equation 2.2 is called the weight update rule for the connection between neurons in

layers j and i. Furthermore, ↵ is the learning rate (discussed in subsection 2.4.6),

aj is the incoming activation function, Erri is the error in i and g
0(input sumi) is

the gradient of the activation function over the input sum

aj = g(input sumj) (2.3)

where the input sumj is defiend as:

input sumi = Wi ⇤ xi + b (2.4)

where Wi is the current weight, xi is the input variable and b is the bias.

The backpropagation algorithm traverses the network backward, updating the

weights of the connections between each layer until it reaches the input layer.

This way it reduces the influence of the weight connections that are assigned the

blame, while it strengthens the connections that support the correct answer.

2.4.5 Loss functions

We describe the ideal state of the network as the state that classifies all the examples

correctly. The loss function is a way of quantifying how close a network is to this

ideal state. This quantification is done by aggregating the errors produced by the

network’s prediction over the entire training dataset and average this value to get

a single number that represents how close the network is to its ideal state. We will

now go through some common loss functions.
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Categorical Cross Entropy Loss

In machine learning, cross entropy is often used to calculate the loss between the

true probability distribution p and the predicted probability distribution q. For

multinomial classification problems, we can use the categorical cross entropy loss

function. For the categorical cross entropy loss function to work, the labels in the

dataset have to be one hot encoded. Meaning that if the dataset consists of 5

classes, we use a 5-dimensional array to represent the labels where all values are

zero, except at the index of the corresponding class where the value is one (see

Figure 2.8).

Figure 2.8: Example of one hot encoded labels

Let p be the predictions in the range [0, 1] from a function such as Softmax and t

be the targets represented as a one-hot encoded vector. We define the categorical

cross-entropy between the predictions and targets as:

L(p, t) = �
X

x

p(x)log(t(x))

Binary cross entropy

Binary cross-entropy is the particular case where the number of classes is two. In

this type of problem, we can model the network output to be in the range [0,1] after

being passed through a Sigmoid activation. Here the two classes are represented

by a single, binary output value and not by separate probability distributions. The

intuition behind only using a single output is that the probability distribution of

class A is equal to one minus the probability distribution of class B (p(classA) =

1 � p(classB)). Therefore having two distributions, as in the one-hot encoded

version, is unnecessary. We define the cross-entropy from the single output as:
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L(p, t) = �tlog(p)� (1� t)log(1� p)

2.4.6 Hyperparameters

In machine learning, hyperparameters are values that we tune to make the network

train faster and better. The selection of these parameters is made to ensure that

the network neither overfits nor underfits the data.

We say that a model overfits its training data when there exists an alternative

model with the same or higher training error that generalizes better. In other

words, overfitting refers to a model that fits its training data too well. It learns

the detail and noise of the training data to the extent that it negatively impacts

the performance of the network on new data. Meaning that the noise or random

fluctuations in the training data is picked up and learned as concepts by the model.

The problem is that these concepts do not apply to new data and negatively impact

the model’s ability to generalize. On the contrary, we say that our model is under

fitted if it generalizes too much and is not able to fit the training data. We see the

terms illustrated in Figure 2.9.

Figure 2.9: Left: Underfitted model. Middle: Appropriate fit. Right: Overfitted
model

Learning rate The learning rate, as seen in Equation 2.2 is a coe�cient that

scales the size of each weight update step. The learning rate decides how much of

the computed gradient it uses when updating the weights in the network. A large

learning rate will update the weights more at each step but can make the optimizer

overshoot the minimum of the loss function. A small learning rate will update the

weights less at each step and should help reach the minimum, but it can take a

significant amount of time.
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The learning rate is one of the most challenging hyperparameters to tune, because

of its significant impact on learning. A conventional technique that helps lower

the significance of the initial learning rate is to anneal the learning rate over time.

The intuition behind annealing the learning rate comes from the fact that with a

large learning rate the optimizer can jump around in the loss space, causing it to

not settle down in the deeper narrower parts of the loss space. There are di↵erent

forms of annealing. The most common is step decay annealing, where we lower the

learning rate by some factor after a few epochs or when for instance the validation

error stagnates. Smith [82] presents a new method for adjusting the learning rate,

named cyclical learning rates, where the learning rate cyclically varies between two

reasonable boundary values. This method lowers the need to experimentally find a

good learning rate since the two boundaries are simple to obtain using a learning

rate test proposed in the paper.

We will later see in subsection 2.4.7 that some of the optimizers have built-in

learning rate decaying to eliminate the need to tune the learning rate before training

correctly.

Regularization Regularization is essential to control what is called out-of-control

parameters. We do this by controlling the trade-o↵ between finding a good fit on

the training data and limiting the weight of features with high polynomials since

these tend to overfit the training examples. A common form of regularization is L2,

where the term 1
2�w

2 is added to the weight [44]. Another form of regularization

is dropout [83]. Dropout works by randomly dropping some of the neurons during

training, causing it to train on a thinned version of the network. Dropout has

shown major improvements over the other regularization techniques [83].

Momentum We often see Momentum described as the learning rate of the learn-

ing rate. It is a method that helps accelerate stochastic gradient descent (SGD)

algorithms in the relevant direction. We can view SGD with momentum as push-

ing a ball downhill. It increases its speed when constantly going downhill. The

same happens to the gradients. They get increased speed when going in the same

direction.

A problem with momentum is that when the gradients get a big accumulated speed,

the momentum algorithm takes a big jump in the direction of the gradient, making

the algorithm not follow the steepest descent, and in the worst case, to overshoot

the minimum. Nesterov Accelerated gradient (NAG) [67] tries to solve this problem

by making the momentum algorithm smarter. Instead of taking a big jump in the

direction of the current gradient, it takes a big leap in the direction of the previous
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gradient and measures where it ends up. Making it able to make corrections before

doing the jump. We can see both methods illustrated in Figure 2.10

Figure 2.10: Standard momentum updated and Nesterov momentum update.

2.4.7 Optimizers

The loss functions quantify the quality of the weights in neural networks. The

goal of gradient descent optimization is to find the weights that minimize the loss

function. Mathematically this can be described as minimizing the loss function

L(✓), that is parameterized by the parameters ✓ 2 Rd, in the direction of the

gradient of the loss function r✓L(✓).

We present some of the most common gradient descent optimizers used to train

neural networks below.

Stochastic gradient descent

Standard gradient descent computes the gradient over the entire training set for

each update. Stochastic gradient descent (SGD) is the same as standard gradient

descent, except that it calculates the gradient for each mini-batch of n training

examples:

✓ = ✓ � ⌘ ·r✓L(✓;x
i:i+n; yi:i+n)

Where ⌘ is the learning rate, x is the training example and y is the training label.

All of the optimizers described next, also does mini-batch gradient descent.
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Adagrad

Duchi, Hazan, and Singer [20] propose the adaptive gradient algorithm (Adagrad)

that adapts the learning rate during training. Adagrad uses a di↵erent learning

rate for each of the parameters ✓i at every step t and is a part of the per-parameter

adaptive learning rate methods. The parameter update then becomes:

✓t+1,i = ✓t,i �
⌘p

Gt,ii + ✏
· gt,i

Where gt,i is the gradient of the loss function w.r.t the parameters ✓ at each step

t, Gt is the diagonal matrix of the sum of the square of the past gradients, ✏ is a

smoothing term to avoid zero-division.

A benefit with Adagrad is that the built-in adaptive learning rate adjustment

eliminates the need to tune the learning rate manually. The problem is, however,

that sinceGt contains the sum of the square gradients, this term becomes larger and

larger, causing the learning rate to become very small, thus making the algorithm

unable to learn anymore.

Adadelta

Adadelta [98] tries to fix the problem of Adagrad, by reducing the decreasing

learning rate. Adadelta does this by making the term Gt contain only the sum

of the past gradients for a smaller window, defining the sum of gradients as a

decaying average of all the past gradients, essentially a running average E[g2]t. The

denominator term of Adagrad,
p
Gt,ii + ✏, thus turns into the root mean square

(RMS) error of the gradient,
p
E[g2]t + ✏. The RMS term causes a mismatch of

units in the equation (see proof in the paper citeZeiler2012), the authors fix this

by adding the RMS term to the numerator making the update equation become:

r✓t = �RMS[r✓]t�1

RMS[r✓]t
gt

✓t+1 = ✓t +r✓t

As we can see, the learning rate is not a parameter in the update rule anymore.
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RMSprop

Root Mean Square propagation (RMSprop) is an unpublished method proposed in

[30]. It is similar to Adadelta in regards to solving Adagrads diminishing learning

rates. The update rule is also the same expression as before the introduction of

the RMS term in the numerator:

E[g2]t = 0.9E[g2]t�1 + 0.1g2t

✓t+1 = ✓t �
⌘p

E[g2]t + ✏
· gt

Adam

Adaptive Moment Estimation (Adam) [50] is also in the family of per-parameter

adaptive learning rate methods. It stores an exponentially decaying average of the

past squared gradients vt, like RMSprop and Adadelta. In addition to this, Adam

saves the exponentially decaying average of the past gradients mt, similar to what

momentum does. It is designed to combine RMSprop and Adagrad. The decaying

averages are computed as follows:

mt = �1mt�1 + (1� �1)gt

vt = �2mt�1 + (1� �2)g
2
t

mt and vt are estimates for the mean (first moment) and the uncentered variance

(second moment) of the gradients respectively. �1 and �2 are hyperparameters that

control the exponential decay rate of the moving averages. They are initialized as

zeros, causing the estimates to be biased towards zero in the initial timesteps, to

counteract this, the authors use bias-corrected estimates m̂t and v̂t:

m̂t =
mt

1� �
t
1

v̂t =
vt

1� �
t
2

This gives the update rule:



26 CHAPTER 2. THEORETICAL BACKGROUND

✓t+1 = ✓t �
⌘p

v̂t + ✏
m̂t

Nadam

Nesterov-accelerated Adaptive Moment Estimation (Nadam) [19] combines Adam

with NAG. The momentum term mt is changed in order to do the Nesterov update:

✓t+1 = ✓t �
⌘p

v̂t + ✏
(�1m̂t +

(1� �1)gt
1� �

t
1

)

2.5 Convolutional neural networks

In recent years, convolutional neural networks (CNN) have become recognized as

very suitable for tasks involving object recognition and semantic segmentation of

images [70]. The name comes from the networks use of convolutions, a mathemat-

ical operation on two functions to produce a third.

A well-known problem when analyzing image data using conventional feed-forward

multilayer neural networks is that they do not scale well with increasing image

sizes. Take for example a series of 400x400 pixel images, used as the input for an

ANN. Each image, represented as a vector, would create 400 ⇤ 400 ⇤ 3 = 480000

di↵erent weight connections for each neuron in the first hidden layer. For a fully

connected network, this would be the case for all layers to come, which would create

a tremendous amount of weight connections.

Convolutional neural networks solve this issue by representing the images in a

three-dimensional structure, meaning that they represent the input data as a three-

dimensional matrix with image width, image height, and color channels.

Architecture

As seen in Figure 2.11 the network can be divided into three sections; Input,

Feature-extraction and Classification layer(s). The most interesting part of this

structure is the feature-extraction layers, which are used to identify features in the

images, and from these construct higher-order features. The strategy of construct-

ing high-order features is one of the key aspects of deep learning.
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Figure 2.11: A general presentation of the architecture of CNNs [70]

Convolutional layers

The convolution layers, seen in Figure 2.11, detect features in an image through

what is called the convolution operation. The layers consist of a set of learnable

filters, also called kernels. Each of the filters is small in regards to input width

and height, but are always the same size as the input in regards to depth. The

convolution operation applies the filter to the input by sliding, or convolving, the

filter across the width and height of the input, seen in Figure 2.12. At each position,

the dot product, expressed in Equation 2.5, between the filter and the input is

calculated. The output is a two-dimensional map called the activation map.

(I ⇤K)xy =
hX

i=1

wX

j=1

Kij · Ix+i�1,y+j�1 (2.5)

Figure 2.12: The convolution operation (applying a kernel filter) [8]

The network will learn filters that cause the node to activate when specific visual
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features are seen, for instance, an edge. Deeper into the network we will see filters

that become more global in term of the input and recognizes nonlinear combinations

of features. An example of what the filters look like in a deep CNN can bee seen

in Figure 2.13 where we see filters learned in the first convolutional layer in an

eight-layer network [52].

Figure 2.13: 96 learned filters in the first convolutional layer [52]

Pooling layers

The pooling layers are another essential part of the CNN. They help to reduce the

number of parameters in the network and prevent overfitting, by reducing the size

of the input data. The reduction is done by downsampling the input with di↵erent

pooling functions. The most common operation is max pooling.

Figure 2.14: Example of max pooling operation [44]

Figure 2.14 shows a max pooling layer with a 2x2 filter size, and a stride of 2,

meaning that it compares 2x2 pixels and that the sliding window moves 2 pixels
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for each comparison. In practice this means that the 75% of the activations from

the previous layer is discarded, thus reducing the number of parameters.

Upsampling

With the use of convolutional and pooling layers, the spatial resolution of the input

is lowered. To make dense predictions that have the same resolution as the input

image, a method to increase the resolution of the coarse heatmaps deep in the

network is needed. This operation is called upsampling. The simplest way to do

this is using resampling and interpolation, where the input image is rescaled to

the desired size and pixel values are calculated using an interpolation method such

as bilinear or nearest neighbor. Transposed Convolution refers to the operation of

going in the opposite direction of a standard convolution. Transposed convolutional

layers work the same way as standard convolutional layers, but with the forward

and backward pass swapped around, thus training the filters to upsample an image

during backpropagation. We can also refer to the operation as deconvolution [99].

However, since the operation is not a proper mathematical deconvolution, we will

use the term transposed convolution in the rest of this thesis.

2.6 Object Recognition and Semantic Segmenta-

tion

2.6.1 Object recognition

Object recognition describes the science of finding and identifying objects within a

two-dimensional image or video stream. Over multiple decades many approaches

have been made to discover an e�cient algorithm for detecting objects, but very

few have been successful [94].

We can divide object recognition into several di↵erent categories. The most im-

portant of these are:

Model-based Object Recognition In model-based approaches, a 3D-model

of the object being recognized is available for analysis. This way the algorithm

can gain spatial knowledge about the object it is trying to identify, concerning the

relationship between di↵erent parts and the shape of the object. An obvious issue

with this approach is the di�culty of creating 3D-model examples that are generic

enough for the algorithm to generalize well.
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Appearance-based Object Recognition This approach uses a set of highly

correlated training images of the desired object, mixed with a collection of ran-

dom photos. By compressing this set of images using dimensionality reduction

techniques, a lower dimensional Eigenspace is obtained. Object recognition is then

performed by projecting new pictures onto the Eigenspace and measure the corre-

spondence.

Feature-based Object Recognition Instead of evaluating an image as a whole,

feature-based methods recognize objects based on di↵erent features, such as colors,

patterns, and edges. By scanning an image for specific features and comparing

the results with a database of various features, the algorithms can determine the

probability of an image containing a particular object.

Pattern matching In pattern matching small parts of an image is matched

against a database of image templates. By summing the di↵erence in pixels between

the image patch and the image template, and providing an acceptable threshold,

the algorithm can decide if an object was recognized or not.

Artificial Neural Networks In later years Artificial Neural Networks (see sec-

tion 2.4) have grown in popularity for object recognition in images. By passing

labeled training examples through the network, a feature space is created within

the network. After a substantial amount of training, the goal is that the network

has defined its feature space in a way such that it can generalize beyond its initial

training data.

2.6.2 Image segmentation

Image segmentation means to divide a picture into a set of visually coherent parts.

Relatively good image segmentation can be achieved in many di↵erent ways by

doing border detection, compare colors within a specific area and measure color

gradients. Some typical algorithms for image segmentation are:

• Felzenszwalb’s e�cient graph based segmentation [22]

• Quickshift image segmentation [34]

• SLIC - K-Means based image segmentation [1]

An example of image segmentation using an e�cient graph-based segmentation

algorithm is shown in Figure 2.15.
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Figure 2.15: Image segmentation using an E�cient Graph based algorithm

2.6.3 Semantic segmentation

As seen in Figure 2.15, there exists algorithms that can segment an image into

coherent parts accurately. However, what if we want to understand the image?

In many use cases, for example, when a self-driving car is trying to understand the

current city scene, it is not enough to only be able to segment an image. We need

algorithms that can both create and classify the segments. These algorithms are

called semantic segmentation algorithms.

In comparison to segmentation problems, semantic segmentation is a lot more

di�cult. The algorithms have to perform dense predictions on a pixel level, dividing

an image into regions of a limited number of classes as seen in Figure 2.16.

Figure 2.16: Semantic segmentation [89]

Before the era of deep learning popular approaches used to solve semantic segmen-

tation problems were algorithms based on concepts such as conditional random

fields and hidden Markov models [61] [40].

Conditional Random Fields CRFs are statistical models that fall within the

category of sequence modeling algorithms. The algorithms take the pixels and

areas around the pixels it is trying to classify into account. For example, nearby
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pixels are more likely to belong to the same class, pixels with similar color are

more likely to belong to the same class, and the pixels above the pixels classified

as ”chair” are more likely to belong to the class ”person” than the class ”plane.”

Hidden Markov Models A Hidden Markov Model (HMM) is a probabilistic

temporal model in which a single discrete random variable describes the state of

the process. The possible values of the variable are the possible states of the world.

Deep Convolutional Neural Networks In later years the use of deep learning

networks has dominated the field of computer vision [78]. Deep Convolutional

Networks can learn deep relationships between features in an image, thus helping

them to perform very well in semantic segmentation tasks.

2.6.4 Evaluation metrics

To compare the di↵erent approaches to semantic segmentation, the need for eval-

uation metrics arise. We will now go through some of the standard metrics used

for semantic segmentation results. We will use the notation from the confusion

matrix, seen in Figure 2.17, for the equations.

Figure 2.17: Confusion matrix

Accuracy Accuracy refers to the ration of correctly classified pixels over all the

available pixels. The accuracy can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
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Precision The precision refers to the relation between true positives and all the

pixels that are classified as positives, and is calculated as follows:

Precision =
TP

TP + FP

Recall The recall is the relation between true positives and all the positive pixels

and is calculated with the following formula:

Recall =
TP

TP + FN

F1 score The F1 score (also known as F-measure, F-score or Sørensen-Dice co-

e�cient) is the harmonic mean of precision and recall and is calculated as follows:

F1 =
2TP

2TP + FN + FP

Mean Intersection Over Union (mIOU) The intersection over union (IOU)

and its mean value (mIOU), is the de-facto evaluation metric for semantic segmen-

tation tasks used in a wide variety of research papers [78, 74, 10, 4, 38, 77, 100]. It

can be seen as a similarity metric between two sets A and B. The general formula

is:

J(A,B) =
|A \B|

|A|+|B|�|A \B|

With the use of our notation this becomes:

J =
TP

TP + FN + FP

The overall perfomance is typically measured by taking the mean value of the

mIOU for all classes except background.

2.7 Predicting large photos

CNN’s train on image patches with sizes that are limited by the computing power

available. Sometimes the size of the input images is much larger than the patches.

If we want to predict a large photo with smaller patches, the predictions generate
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a tiled output map in total, where each of the predictions is concatenated together.

The concatenation makes it obvious where the patch borders are since the network

lack context at the borders, thus making the predictions worse.

One way to fix this is to merge predictions done on overlapping patches [74, 42].

In addition to the overlap, we can rotate and mirror the large photos to make up

the dihedral group D4 [92] as we see in Figure 2.18. We can then predict all the

rotated and mirrored photos with overlapping patches.

Figure 2.18: Dihedral group D4

The patch size might not be divisible with the aerial photo’s size, which can cause

the last patch in vertical and horizontal directions to not fit. We solve this by

padding the image so that the patches divide the aerial photo correctly, as we see

in Figure 2.19. We remove the padding when the predictions are merged to get the

same size as the input image.

We can merge the predictions by using methods such as taking the geometric mean

or with a window function to weight the predictions.
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Figure 2.19: Padded image with overlapping patches in red. (a) The patches do
not divide the image evenly and overshoot the image. (b) The image is padded so
that the patches fit correctly.
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Chapter 3

Datasets in Computer Vision

Datasets play a critical role in computer vision research. There is a broad consensus

that the current state-of-the-art, in convolutional neural networks, is due to large

datasets and increased computational power [84].

This chapter presents the previous work related to the creation of datasets for

computer vision algorithms. We can divide the datasets for object recognition

into three main categories: object classification, object detection, and semantic

segmentation.
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3.1 Object classification

Object classification is the task of determining if an object exists within an image

or not. Some examples of such datasets are the MNIST handwritten digits dataset

[57], CIFAR-10 and CIFAR-100 [51] with 10 and 100 categories from small images

(32x32) and ImageNet [39] with more than 15M classified images in more than 22k

categories. ImageNet is unique, in the sense that it contains many more images

than the other previous datasets. The size has made ImageNet the enabler for

significant advances in object classification [52][28].

3.2 Object detection

Object detection is the task of not only stating that an object is present in the image

but also give the precise location of the object. We often represent the position of

the object with a bounding box. Early research focused on the localization of faces

[32], but short after pedestrian detection also became popular with the Caltech

Pedestrian Dataset [18] containing 350K labeled pedestrians with bounding boxes.

A significant e↵ort was made in the years 2005 to 2012 with the PASCAL VOC

[21] datasets and challenges. Today the dataset contains 20 object categories in

more than 11K images, with more than 27k bounding boxes. The PASCAL VOC

challenges have become a standard way of evaluating the general performance of

object detection algorithms. In 2011 a subset of ImageNet was used to create a

dataset with 200 categories in 400K images [75]. The ImageNet Large Scale Visual

Recognition Challenge 2012 (ILSVRC2012) used this dataset. The object detection

dataset contains 620k bounding box annotations.

Microsoft introduced the Microsoft Common Objects in Context (MS COCO) in

2015 [60], a dataset that contains 328K images and 2.5 million labeled instances

for classification, detection, and semantic segmentation. The dataset strives to

include pictures that provide a non-iconic view of the labeled instances, where

they appear in the background, partially occluded, amid the clutter and among

multiple instances from di↵erent categories.

3.3 Semantic Segmentation

The task of semantic segmentation requires that we assign a class to each pixel in

an image. We do not care to distinguish between the instances of the same type the

same way we do in object detection. Many datasets with semantic labels have been
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created in recent times [7, 101, 14]. PASCAL VOC added segmentation to their

challenge in 2009 with 7K images and 3K segmentations. The CamToy dataset [7]

was in 2008 the first dataset with semantic labels for video with 32 classes. MS

COCO as described above also provides semantic labels for a subset of classes for

their 328K images. The ADE20K dataset [101] with 20K annotated images from

2.6K classes, provide pictures from scenes, objects, parts of objects and parts of

parts. The Cityscapes dataset [14] provides a dataset for complex urban street

scenes from 50 cities with 30 classes. There are 5K images with high-quality labels

and 20K with coarse labels.

3.4 Aerial Image Segmentation

Within aerial and satellite images, a few datasets have been created. The SpaceNet

Challenge [90] is a contest provided by DigitalGlobe, Nvidia and CosmiQ Works.

There have been three challenges in total: Two with building footprints, where

the contestants are supposed to extract segmentations of buildings within images,

and one with road extraction, where the contestants are supposed to retrieve line

segments that correspond to roads within images. For the first contest, a dataset

over Rio de Janeiro was provided, containing 4M building labels over an area of

2400 km
2 with a 50cm ground resolution for the images contributed by the Digital

Globe WorldView-2 satellite. For the second contest, they expanded the dataset to

multiple cities including Las Vegas, Paris, Shanghai and Khartoum with a ground

resolution of 30cm from the Digital Globe WorldView-3 satellite. The total number

of building footprints was over 970K. The roads network extraction challenge is

currently ongoing at the time of writing. The images are over the same areas as in

the second building contest and contain more than 8000km of roads. We note that

they did not release the photos with an open source license and we can therefore

only use them within the competition.

The Defence Science and Technology Laboratory (DSTL) Satellite Imagery Feature

Detection competition [43] provide users with satellite images from the Digital

Globe WorldView-3 satellite. The whole dataset contains 450 1x1km images, but

they only label 25 images for training. They label the photos with ten di↵erent

classes. They do not give the location of where the photos are taken, however, with

inspection, it is clear that they are from a rural area. The images have a ground

resolution of 0.3m. We can see a sample label and image in Figure 3.1. They do

not give any information about how they create the labels, and they state that the

dataset only can be used in the competition.
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Figure 3.1: Ground trouth labels and arial image from the Dstl Satellite Imagery
Feature Detection

The Inria Aerial Image Labeling dataset [62] is a dataset covering an area of 810

km
2 with building footprints from di↵erent regions of the world, where 405 km

2 of

the data has labels used for training, and the rest of the data is unlabeled for testing.

They focus on covering di↵erent cities, ranging from densely populated areas to

alpine towns, as an experiment whether it is possible to learn aerial segmentation

covering multiple cities and landscape types. The cities in the training set are

Austin, Chicago, Kitsap County, Western Tyrol and Vienna. They gather the data

from multiple sources of o�cial data contributions, such as USGS’s National Map

service in the US, that is publicly available. The aerial images have a resolution of

0.3 m. As seen in Figure 3.2 the quality of the images and labels are high.

Figure 3.2: Ground trouth labels and arial image from the Inria Aerial Image
Labeling dataset

DeepGlobe Satellite Image Understanding Challenge [17] is a competition where

there are three di↵erent satellite image understanding tasks: Road extraction,

building detection, and land cover classification. The competition is currently

running at the time of writing, and there is little information about the dataset

publicly, without registering for the contest, other than that they use DigitalGlobe

satellite imagery.



Chapter 4

Semantic Segmentation

Methods

In this chapter, we present related work for semantic segmentation methods. First,

we look at regular image segmentation, before we dive deeper into semantic seg-

mentation and how machine learning has played an essential role in the research

field in recent years.
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4.1 Image segmentation

People have discussed the importance of perceptual grouping of objects in the world

around us for many decades. As early as in 1938, Wertheimer [93] presented several

essential elements, such as similarity, proximity, and good continuation, that are

important for semantic segmentation of objects.

Important works are later done by Shi and Malik [79] which tries to define coherence

in images using low-level cues, such as brightness, color, texture, and smoothness

of boundaries. By building a hierarchical tree structure based on these cues, their

goal is to divide an image into di↵erent segments (see Figure 4.1).

Their approach is to look at the problem as a graph partitioning problem and to

use unbiased, normalized cut criteria to create a segmentation of the image.

Figure 4.1: Segmentation of an image using normalized cuts [79]

Other attempts to automatically divide images into meaningful segments is the

Simple Linear Iterative Clustering (SLIC) algorithm [1]. The SLIC algorithm di-

vides the image into superpixels, where all pixels inside a superpixel has some co-

herence. While other segmentation algorithms have no limitations to their search

space, SLIC limits the search space of each superpixel, thus making the search

speed much faster.

One issue that occurs with these algorithms is that, even though they can divide

an image into meaningful segments accurately, they are not able to classify the

di↵erent segments. Meaning that the algorithms can segment out two houses in an

aerial photograph successfully, but does not know what it is trying to find, or even

that the two houses are belonging to the same class.
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4.2 Semantic Segmentation with Convolutional Neu-

ral networks

In recent years, many semantic image segmentation algorithms have become in-

creasingly dependent on convolutional neural networks (CNN’s), because of their

strong ability to yield hierarchies of features [77].

The use of convolutional operations in neural networks first appeared in the late

90’s [56], but it was not until 2012, when Krizhevsky, Sutskever, and Hinton [52]

won the ImageNet 2012 competition, that CNN’s were acknowledged as one of the

leading approaches for image computer vision [52].

Since then many advances have been made within the research area, such as the

introduction of inception architectures and smaller convolutional operations [85,

81].

A problem that arises with deep convolutional neural networks is the degradation

problem. Meaning that when the depth of the networks increases the accuracy of

the predictions decreases, as seen in Figure 4.2.

Figure 4.2: The problem of degradation in deep convolutional neural networks [95]

To solve the degradation problem, Wu, Zhong, and Liu [95] introduces residual

blocks with shortcut connections, which sets the foundation for their residual neural

network (ResNet). The concept behind ResNet is that any deeper network should

not produce a higher training error than its shallower counterpart, only by seeing

the layers that di↵erentiate the two networks as identity mappings (f(x) = x).

However, this does not seem to be the case in practice, suggesting that networks

have problems learning identity mappings between multiple, non-linear layers. The

authors propose a solution to this problem, by introducing two new concepts:
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Residual mappings The paper hypothesizes that it is easier to optimize residual

mapping, thus introducing the residual mapping function

F (x) := H(x)� x

where H(x) is the desired, underlying mapping function after two layers.

Shortcut connections Shortcut connections are connections that perform iden-

tity mappings (Figure 4.3) and are added to the output of the mapping function

F (xn) = F (xn�1) + xn�1

where xn is the input at layer n. The residual neural network has played an essential

role in the recent development of very deep convolutional neural networks.

Figure 4.3: Residual block with a shortcut connection [95]

One of the first attempts to use convolutional neural networks for pixel-wise, se-

mantic segmentation of images was made using a fully convolutional network (FCN)

[78]. By adopting modern classification networks, such as AlexNet [52], VGG net

[81] and GoogLeNet [85], into fully convolutional neural networks and using them

for segmentation tasks, the network was able to exceed the state-of-the-art solu-

tions. Shelhamer, Long, and Darrell [78] argues that the computational e�ciency

of the convolutional operation makes CNN’s a natural choice for dense problems,

such as semantic segmentation of images.

By analyzing the prediction results of the FCN, Zhao et al. [100] identifies sev-

eral common issues for complex-scene parsing, and present their Pyramid Pooling

module to solve them. The common problems identified are:

• Mismatched Relationship: The lack of ability to collect contextual infor-

mation. The network should know that a car is seldom above water.
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• Confusion Categories: Similar categories are often predicted within the

same object.

• Inconspicuous Classes: Small objects can often be ignored if they are

contained within another object.

We see examples of these issues in Figure 4.4.

Figure 4.4: Common issues in for semantic segmentation seen in FCN [100]. The
first row shows mismatched relationship when the network labels a boat as a car.
The second row shows that the ”building” is confused with ”skyscraper.” The third
row shows inconspicuous classes where the pillow is classified as ”bed” by FCN.

The Pyramid Pooling module is a hierarchical global prior that contains di↵erent

scales and varying filter sizes among di↵erent sub-regions. By applying this module,

Zhao et al. [100] was able to score a mIOU of 0.4168 and a pixel accuracy of 80.04

on the ImageNet Scene Parsing Challenge Zhao et al. [100].

There is, as mentioned earlier, a high consensus in the machine learning community,

that to successfully train a very deep convolutional neural network a vast number of

training examples is required. This is especially the case for semantic segmentation

problems, because of their detailed, pixel-wise labeling. Ronneberger, Fischer, and

Brox [74] present a training strategy that, rather than relying on a large set of

training examples, uses large amounts of data augmentation and a di↵erent network

structure. The augmentations consist of rotations and elastic transformations of the

input images. This way they can successfully train a CNN into performing semantic

segmentation of neuronal structures in electron microscopic stacks 1. They call their

1A microscopic stack is a 3-dimensional stack of images taken by an electron microscope.
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network a U-Net, because of its U-shaped structure, seen in Figure 4.5.

Figure 4.5: U-Net architecture [74]

The network is an extension of the Fully Convolutional Neural Network that has

been modified to work with very few training examples and still yields precise,

semantic segmentation. The networks U-shaped form comes from the large number

of feature channels in the upsampling path of the network. The feature channels

allow the network to propagate context information from higher resolution layers.

As presented earlier, an issue with very deep convolutional networks is the degra-

dation problem caused by vanishing gradients. While one successful solution to

this problem has been identity connections [95], Huang et al. [31] proposes a dense

convolutional network, DenseNet, where they connect all layers in a dense-block to

every other layer in a feed-forward fashion. [31] (see Figure 4.6).

Jegou et al. [38] presents a DenseNet modified to be fully convolutional, FC-

DenseNet, for the task of semantic segmentation. The downsampling path in the

network is the same as in the original DenseNet paper. In conventional fully con-

volutional networks the spatial dimension of the input is recovered by convolution,

upsampling and skip connections. In FC-DenseNet, they replace the convolution

operation with a dense block and an operation they call transition up. The transi-

tion up operation is made up by a transposed convolution on the previous feature

map. A concatenation of the transition up module and the skip connection then

forms a new input to the next dense block. The high-level architecture is similar to

U-Net. The network achieves state-of-the-art results on the CamVid dataset with

fewer trainable parameters than other networks and without pretraining on large

datasets.

A new architecture recently introduces by Sabour, Frosst, and Hinton [76] is cap-
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Figure 4.6: Dense connections between layers [31]

sule networks with dynamic routing. The multi-layer capsule network has shown

state-of-the-art achievements on the MNIST dataset, especially when it comes to

recognizing overlapping digits. LaLonde and Bagci [53] expands the use of capsule

networks to the task of semantic segmentation by modifying the original dynamic

routing algorithm to act locally when it is routing child capsules to the parent

capsules and to share transformation matrices across capsules. They show that the

SegCaps network can perform better than the U-Net while containing 95.4% fewer

parameters.
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Chapter 5

Feature Extraction in

Remote Sensing

As mentioned in section 2.2 the process of producing detailed and meaningful

maps can both be resource intensive and time-consuming. For nearly four decades

automatic feature extraction from remotely sensed data has been an active field of

research [80]. Both semiautomatic and automatic methods have been developed,

mainly focusing on extracting one specific feature. In this chapter, we present the

most relevant research, concerning the extraction of buildings and roads.
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5.1 Roads

Neuenschwander et al. [68] and Vosselman and Knecht [91] present attempts for

semiautomatic tracking of roads. Their approaches take a starting point and a

direction and use techniques such as snakes [48] and recursive Kalman filters to aid

cartographers when manually detecting roads in aerial images.

Signal, Ssing, and No [80] uses Marr’s theory for vision [63] with low-level process-

ing for edge detection, mid-level processing for detection of road structures and

high-level processing for road recognition, to automatically extract roads from the

images. They claim that it is necessary to define a road model containing the

definition of road parts, relationships between roads and geometric/photometric

properties of a general road, to recognize it automatically. We see their results in

Figure 5.1.

Figure 5.1: Road detection: (a) Detected edges, (b) Generatet antiparallel pairs,
(c) Features formed after grouping and (d) Generated hypothesis of road segment
[80]

Laptev et al. [54] make another attempt at road extraction. They propose an

approach that can bridge di↵erent road segments, which have been separated by

shadows or cars, using the heavily disturbed evidence in the aerial images.
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To detect road segments Laptev et al. [54] uses a concept called Ribbon snakes,

which is an extension of the snakes introduced by Kass, Witkin, and Terzopoulos

[48], that takes the width of the element into account.

Satellite constellations, such as Quickbird, IKONOS, SPOT-5, and WorldView

[33][35] have in recent years provided high-resolution aerial images. Higher reso-

lution gives richer spatial information, which allows for more detailed analysis of

the ground, thus making the task of road detection more relevant. However, it also

reveals small objects such as cars and trees, which act as noise for the algorithms.

Therefore, the algorithms need to become smarter.

Mokhtarzade and Zoej [66] present the first approach using artificial neural net-

works for road detection in aerial images, where they apply a simple feed-forward

network with one hidden layer and a single output neuron. They train their net-

work on high-resolution images taken by the satellite constellations IKONOS and

Quick-Bird.

Cheng et al. [12] conclude that the use of convolutional neural networks in road

detection is beneficial because of the complexity of the backgrounds, and the noise

produced by the occlusions of trees and cars. They present a cascading convolu-

tional neural network, CasNet (see Figure 5.2), consisting of two relatively small

networks with eight layers in each. The network aims not only to classify the area

covered by the roads but also detect the center line of the road, which is stated by

many of being of equal importance [33][11][37][64].

Figure 5.2: CasNet contains two convolution networks for road detection and center
line extraction [12]
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5.2 Buildings

Buildings are an essential part of the understanding of urban areas, and techniques

to extract them have numerous applications in urban mapping, urban planning,

and geoinformation engineering. Automatically extracting buildings from aerial

have been a research field for many decades [97].

Kim and Muller [49] propose a method for automatic building extraction using a

line detection approach that utilizes graph structures to map line relationships.

Although being able to detect basic building formations, the presented approach

is not able to generalize well over more advanced constructions.

Other fully automatic approaches have been feature-extraction using corner detec-

tion and variational level set evolution [15] and Conditional Random Fields [59]. Li

et al. [59] points out that even though there have been many advances in the field of

building detection in aerial images, the challenging task of developing generic algo-

rithms that can generalize well remains unsolved. Using a higher-order CRF, they

try to perform a pixel-wise classification of the images into four di↵erent classes,

as seen in Figure 5.3. The blue node nodes represent pixels in the image, purple

dots represent segments formed by the pixels, and the last node represents the four

classes: White (rooftops), black (shadows), green (vegetation) and gray (unknown).

Using their method, they achieve a mean F1-score of 0.786 on six datasets.

Figure 5.3: High-order conditional random field classifying aerial images into four
classes. [59]

Yuan [97] presents a solution for building extraction similar to the solution pre-
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sented in this thesis. By using di↵erent GIS databases, they create a training

dataset for building extraction and uses a convolutional neural network to make

building predictions. Their network is built up by seven convolutional layers.

Bischke et al. [6] criticize earlier deep learning approaches because of their inability

to preserve segmentation boundaries between the di↵erent classes. They address

the problem by introducing a new cascaded multi-task loss

Ltotal(x; ✓) =
TX

i=1

�iLi(xi; ✓)

where T is the number of tasks, Li is the corresponding loss function to be mini-

mized by the optimizer with regards to the network parameters and �i is the weight

for each loss function. The goal of this loss function is to incorporate two di↵er-

ent terms when evaluating the performance of the network. Besides the regular

semantic term, the researchers also use a geometric term indicating the distance

from a pixel to a building boundary. This way they can bias the network to learn

per pixel information about the location of the boundary and capture implicitly

geometric properties. We can see an example of how they calculate the distance in

Figure 5.4.

Figure 5.4: Training example with (a) RGB image, (b) Distance transform, (c)
Segmentation mask, (d) Truncated distance mask and (e) Truncated and quantized
distance mask [6]

Xu et al. [96] uses deep residual neural networks combined with a guided filter to

perform building extraction. By first training the network using high-resolution

aerial imagery, and then preprocessing the building predictions they achieve state-

of-the-art segmentation results as we see in Table 5.1.
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Dataset OA prc. B F1 B Recall B prc. C F1 C Recall C

Postdam 0.9691 0.9634 0.9390 0.9158 0.9709 0.9793 0.9878
Vaihingen 0.9771 0.9621 0.9515 0.9412 0.9816 0.9850 0.9883

Table 5.1: Precision measurements for the cities Postdam and Vaihingen. Here
B stands for buildings, and C represents clutter, and OA represents the overall
accuracy.

5.3 Maps

Iglovikov, Mushinskiy, and Osin [35] presents an approach for semantic segmenta-

tion of aerial imagery in the DSTL Satellite Imagery Feature Detection challenge

[43]. By using a U-Net, as we see in Figure 5.5, with augmentation techniques and

border enhancement, they get an overall third place in the challenge with accuracies

compared with the first and second place.

Figure 5.5: U-Net architecture with five downsampling layers and five upsampling
layers [35]

The network uses an exponential linear unit (ELU) [13] as the activation function,

the evaluation metric is the Jaccard Index, and the loss function is a smooth Jaccard

loss function. They highlight the issue that prediction quality decreases, as seen

in Figure 5.6, as we move away from the center of the tiles. They argue that the

reason for this is that the network is structured so that the number of ways to get

from any input pixel to the center part of the output is much higher than to get

to the edges.

A solution to this problem is to make predictions on overlaying patches and crop out

the edges. The authors present an alternative solution where they add a cropping

layer to the output layers of the network. Later [42], they also describe a way of

predicting, where they average multiple rotations of predictions with the geometric

mean. They also propose to use the dihedral group D4 for the predictions that are
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Figure 5.6: Accuracy of predictions decrease when mooving away from the center
[35]

averaged, using all eight possible rotations on the input image.
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Part II

Implementation and

Assessment
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Chapter 6

Methodology

In this chapter, we present our methods. First, we show our approach for creating

the dataset, including what parts of the FKB dataset we use and how we match

NIB and FKB data to create valid training examples. Then we review the chosen

networks and present our implementations of their architectures.
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6.1 Defining the properties our map

Per the mapping process defined in section 2.1, We aim to create a map to rep-

resent urban areas, consisting of four spatial features: Roads, Buildings, Water

and Vegetation. The map should be able to aid users to navigate urban scenes.

We represent these features as polygons. The input data defines the scale, map

projection, and spatial reference system. We choose not to annotate the map, as

it is outside the scope of this thesis.

6.2 Creating the Dataset

As stated earlier, one of the goals of this thesis is to explore the possibility of using

automatically created segmentation labels based on publicly available spatial data

to train CNN’s. The dataset used to generate the labels is Felles Kartdatabase

(FKB) downloaded from GeoNorge [27]. We use high-quality aerial images from

the service Norge i Bilder (NiB) [26] with a ground resolution of 0.2 m to serve

as example images. These are made available by The Norwegian Public Roads

Administration, The Norwegian Institute of Bioeconomy Research and The Nor-

wegian Mapping Authority. FKB and the aerial photos from NiB are not free to

use for the public, but anyone can buy them. The data is available free-of-charge

for academic use.

We will now explain the overall process used to create the datasets automatically.

We have chosen to focus on some of the largest cities in Norway for the dataset,

while at the same time making sure that the cities are geographically spread out,

to assure proper coverage of di↵erent environments.

6.2.1 Collecting and storing the spatial data

Aerial images from the cities of Oslo, Bergen, Trondheim, Stavanger, Bodø, and

Tromsø are downloaded from NiB in GeoTIFF format. These are aerial images

uploaded by Norway Digital partners [45], which are large-scale vendors using or

creating spatial data in Norway. The photos are taken at di↵erent times and by

di↵erent vendors and uploaded project wise, making the seasonal conditions and

image quality slightly di↵erent across local regions. We see an example of the

quality di↵erence in Figure 6.1.

The images are orthophotos, that is, they have been geometrically corrected in such

way that the scale is uniform. However not all the photos are true orthophotos
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Figure 6.1: Di↵erences in image quality and seasonal condition between two
projects

in the sense that vertical features, such as buildings, are reprojected. This causes

some of the images to contain tall oblique features where the footprint is at the

correct coordinates and the top of the feature somewhat leaning to one side, such as

in Figure 6.2. The labels will always correspond to the footprint of the features, and

from a mapping perspective, this is the correct way to label a feature. Since NiB

does not deliver all the aerial images are delivered as true orthophotos, we choose

to have both types in the dataset. The reason for this being that it might help the

network generalize better, as the real world not only consists of true orthophotos.

We tile the images into 512 x 512 px images corresponding to an area of 10485.76m2

per image.

We download corresponding spatial vector data from FKB from GeoNorge for all

the cities. Since we are focusing on cities, we get the highest quality FKB data,

FKB-A, as described in section 2.3 for our dataset. This is then uploaded to

a PostGIS database (see section A.2). We consider all the 26 datasets in FKB,

with multiple classes, when selecting what data to upload. Having them all in the

dataset would create a very challenging segmentation problem. Therefore, we limit

the problem to four main classes (excluding background) from five of the datasets.

We see the classes, and the belonging datasets in Table 6.1.
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Figure 6.2: Leaning building due to the images not being true orthophotos.

Class Datasets Original Name

Background

Roads FKB Road FKB Veg

Water FKB Water FKB Vann

Grass FKB Landcover FKB AR5
FKB Area Usage FKB arealbruk

Buildings FKB Buildings FKB Bygg

Table 6.1: Classes and belonging datasets

Using the defined classes, we build four binary datasets for individual segmentation

of the di↵erent classes and one multiclass dataset that combines the classes from

the binary datasets. We illustrate the overall process for creating the dataset in

Figure 6.3.

6.2.2 Binary datasets

We represent each class in a separate binary dataset, where the area the feature is

located (foreground) has a value of one, and the rest (background) has a value of

zero. We create a dataset for each of the classes described Table 6.1.

Buildings The binary buildings dataset is, as seen in Table 6.1, generated using

the dataset FKB Buildings. The dataset consists of three di↵erent object types,

as seen in Table 6.2. Out of the three ”Bygning” and ”Takoverbygg” is selected

for generating the dataset. Furthermore, we also consider FKB Building facilities

(FKB BygnAnlegg), but after analyzing the 19 di↵erent object types, we select

none of them. We consider three object types: ”Silo,” ”Tank” and ”Fundament.”
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Figure 6.3: The overall dataset creation process. FKB vector-data is downloaded
from GeoNorge. Aerial images are downloaded from NiB. The aerial images are
tiled and used as bounding boxes when we query the PostGIS database. Both label
and original query image is saved in the dataset.

However, all of them contain too many objects that could pollute the dataset, such

as statues, heat tanks, and other storage devices. We, therefore, omit them from

the dataset generator.

ObjType Description

Bygning Building
AnnenBygning Other Building
Takoverbygg Roof over building

Table 6.2: Object Types in the FKB Buildings dataset

Many of the FKB datasets contain an attribute called medium, which describes the

location of di↵erent spatial objects on the surface of the earth. The possible values

are displayed in Table 6.3. In the part of the FKB Buildings dataset that we are

working with, only two of the mediums appear. These are ”T,” and ”U.” Out of

these, we remove ”U” from the generator. We remove ”U” because it represents

building structures that are beneath the ground. Including these labels in the

dataset would, therefore, pollute the results, since the learning algorithm would

learn to label, e.g., segments of parking lots and streets as buildings.

Roads In the binary road dataset, we label the area that is covered by roads, as

a road. We could have worked with the center lines such as in [12], but since FKB

Road contains accurate road areas and we are focusing on semantic segmentation,

the area came out as the most correct to use. We base the dataset on FKB Road,
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Description Code

Always in water V
In building / building construction B
In air L
On glacier I
On the sea floor S
On the terrain / at ground level (default) T
On the water surface O
Occasionally under water D
Under Glacier J
Under the sea floor W
Under the terrain U
Unknown X

Table 6.3: Medium types in the FKB Datasets [46]

Figure 6.4: Label for building structure hidden under ground

which consists of five di↵erent object types (see Table 6.4).

ObjType Description

GangSykkelVeg Cycling and walking Road
Parkeringsomr̊ade Parking Area
Trafikkøy Tra�c Island
Traktorveg Tractor road
Veg Road

Table 6.4: Object Types in the FKB Road dataset

Out of these five, we use ”Road,” ”Tractor road,” and ”Cycling and walking road”

in the generated dataset. Also, we consider the object type ”Trail” as a potential

candidate, but because of the amount of occlusion caused by trees over large parts of

the dataset, we omit it from the generator. The FKB Roads dataset also contain

the medium attribute. In the FKB Roads dataset, only the mediums ”B,” ”J,”

”L,” ”T,” and ”U” are present. Out of these, we omit ”J,” ”U,” and ”B” from the

generator, to remove the labels for underground tunnels.
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Vegetation The binary vegetation dataset is generated using two of the FKB

datasets: FKB Landcover and FKB Area Usage. The FKB Landcover dataset

consists of 11 area types (as seen in Table 6.5).

ArType Name Description

21 Fulldyrka jord Cultivated land
22 Overflatedyrka jord Surface Cultivated land
23 Innmarksbeite Cultivated pastures
30 Skog Forest
60 Myr Swamp
50 Åpen fastmark Open solid ground
80 Vann Water
70 Bre Glacier
11 Bebygd Inhabited
12 Samferdsel Transport and Communications
99 Ikke kartlagt Not mapped

Table 6.5: Areal types in the FKB AR5 dataset

Out of the area types in Table 6.5, we select 21, 22, 23, 30, 50 and 60 for the dataset.

Furthermore, we also use some parts of the FKB Area Usage dataset, as it includes

areas such as parks, football fields, alpine slopes and more (see Table 6.6).

ObjType Description

Alpinbakke Alpine slope
Anleggsomr̊ade Construction Site
Campingplass Caravan park
Fyllplass Landfill
Golfbane Golf course
Gravplass Cemetery
Grustak Rock dump
Industriomr̊ade Industrial Area
Lekeplass Playground
Park Park
Skytebane Shooting range
SportIdressaPlass Outdoor sport fields
Steinbrudd Quarry
Steintipp Gravel tip

Table 6.6: Object Types in the FKB Area usage dataset

Out of all the object types in Table 6.6, we select ”Alpine slope,” ”Golf course,”

”Cemetery,” ”Park” and ”Shooting range” to supply a higher degree of detail to

the vegetation dataset. These are selected because they contain a stable amount of
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vegetation, while for example ”Playground” and ”Caravan park” often can contain

asphalt and features that look like buildings.

Water We use the FKB Water dataset to generate the water dataset. FKB

Water does not have any object types associated with it, but the whole dataset

is considered relevant and is therefore used in its whole to represent the water

dataset. It does, however, contain the medium attribute, wherein the dataset

we use polygons with medium class T and U. We remove the U class from the

generator, as it represents rivers and other water inventories beneath the ground.

6.2.3 Multiclass dataset

In the multiclass dataset, we represent all the classes described in subsection 6.2.2

in the same dataset. Each raster image consists of multiple labels with color values

ranging from 0 to 4. The connection between the classes and the color values are

displayed in Table 6.7.

Class Color Value

Background 0
Water 1
Vegetation 2
Roads 3
Buildings 4

Table 6.7: Color values for the di↵erent classes

The color value does not only represent a class but also works as a ranking of

the importance of the di↵erent classes. What this means is that the class with the

highest color value will be displayed in the raster image if there is a conflict between

the classes. For example, if a pixel is within both vegetation and a building feature,

it will be labeled as a building.

6.2.4 Querying the database

Since the tiled, aerial images are georeferenced, it is possible to use the extents of the

image to query the database for the geospatial features that lie within the image

bounding box. We can, therefore, create raster labels that contain the features

corresponding to an image by querying the database with its bounding box. We

only use the labels where at least one feature is visible in the related image.
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The five datasets are generated using the queries described in Appendix B. We filter

out the di↵erent geospatial features contained in the database using an attribute

called ”color.” If the ”color” attribute of a feature matches one of the defined class

ranks seen in Table 6.7 we include the feature in the dataset, else we omit the

feature from the dataset.

A problem when querying the PostGIS database for raster labels using a bounding

box, is that they might not get the same extent as the bounding box, as explained

in Figure 6.5. If the extent is di↵erent, the labels are useless since it is impossible

to align them correctly with the input image. The reason for this is that PostGIS’s

ST AsRaster function generate rasters with the extent of the geometries from the

query and not the query bounding polygon [73]. To make this work, we would need

all of the area bounded by the input image to be covered by geometries. This might

be the case when using data such as land cover, but it is not the case when using

other data types such as roads and buildings. We solve this by forcing Postgis to

always create an empty background layer in the raster with the exact bounds as

the input image. The geospatial properties of each pixel then cause the input and

output rasters to align correctly.

Figure 6.5: PostGIS raster rendering problem where (a) is a visualization of the
geospatial features in the database, (b) is a bounding box and (c) is the resulting
raster generated by PostGIS

6.2.5 Generalization Test Areas

To assert the generalization capabilities of the algorithms for new areas, we down-

load aerial photos and labels for the city of Drammen and Grorudalen, a valley in



68 CHAPTER 6. METHODOLOGY

eastern Oslo. The aerial photos from Grorudalen come from the same aerial photo

project in NiB as the Oslo dataset and therefore shares the same characteristics.

The aerial photos from Drammen come from a new NiB project and have entirely

new characteristics compared to the other aerial images.

The Grorudalen images let us assert the generalization capabilities for new areas

within the same aerial photo project, whereas Drammen let ut assert how a di↵erent

NiB project a↵ects the generalization of the algorithms.

6.3 Network architectures

When choosing the network architecture, we consider a few di↵erent factors: Gen-

eral performance, performance without pre-trained datasets, model complexity and

model availability.

We choose to go forward with two networks: U-Net and FC-DenseNet. Both

networks have good performance without much data or pretraining, and they have

open source implementation available in Keras (see section A.5).

All of the code is made available in our GitHub repository 1.

6.3.1 Review of U-Net

For the task of semantic segmentation of aerial images, we have seen increasing use

of U-Nets, or slightly modified U-NETs, in recent competitions [41, 86]. The reason

for this is the excellent baseline performance of end-to-end trained models with little

data, relative simple architecture, and scalability. These properties make it easy

to experiment with, thus making it a sound choice to start with for our thesis.

U-Net is designed as an autoencoder. An autoencoder learns to compress input data

into a shortcode and then decompresses the code to create a close representation of

the input. The compression is done in the encoder part, and the decompression is

done in the decoder part. The U shape of the network comes from the connection

between the encoder and the decoder part of the network. The encoding and

decoding part of the network is referred to as the contracting and expanding path

respectively.

The contracting path follows a typical architecture for a CNN. It consists of multiple

layers of two convolutional operations, ReLU activation, and max pooling. At each

downsampling step, the number of feature channels is doubled. Every step in

1https://github.com/valdemarrolfsen/master-thesis-code
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the expanding path consists of up-convolutions that halve the number of feature

channels, a concatenation with the corresponding layer in the contracting path and

two convolutional operations.

The two convolutional operations after the concatenation help the network learn a

more precise output based on the high-resolution features in the contracting path

and the upsampled output.

The authors focus on the ability to learn accurate segmentations without the need

for large datasets since the medical image dataset they work with only contains

30 images. Data augmentation solves the problem. The augmentation consists of

shifting and rotating the images at random. The augmentation makes the network

robust in regards to deformations and variations in the input images and also has

the benefit of making the dataset larger.

6.3.2 Implementing U-Net

When implementing U-Net, we experiment with several configurations based on

the networks presented in the literature combined with our modifications. We

base the final configuration on the evaluation of the original architecture, a version

with batch normalization and dropout, a deeper version with an additional down

block with batch normalization and dropout and a deeper version with transposed

convolution instead of upsampling.

The original architecture

We base our first implementation, on the architecture presented by Iglovikov,

Mushinskiy, and Osin [35], which we see in Figure 5.5. The network has a depth of

four, where the blocks in the downstream path have the architecture of a standard

convolutional block with Maxpool and batch normalization layers (see Figure 6.6),

except for the first block, where the Maxpool layer is replaced with an input layer.

Figure 6.6: A standard convolutional block with Maxpool.
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The blocks in the upsampling path have a similar structure to the blocks in the

downsampling path. However, the Maxpool layers are replaced with Upsampling

layers, as seen in Figure 6.7, to map the generated feature map back to the original

size of the image (see section 2.5).

Figure 6.7: A block from the upsampling path in the U-Net architecture.

In the last block in the upsampling path, the Upsample2d layer is replaced with a

Softmax/Sigmoid activation function to map the output values to probabilities.

Implementation with dropout

The next implementation is very similar to the original architecture, but a dropout

layer is added to each block in the upsampling path to reduce overfitting.

A deeper version

In the third implementation, we try to increase the depth of the network by one

level, to create an even more complex feature space.

Transposed convolution instead of upsampling

The regular unpooling layer used in the implementation on U-Net (Upsample2d),

multiplies the rows and the columns of the past layer with a specified factor, which

in our case is 2, and then interpolates the pixels to smoothen the result. Although

upsampling layers are useful at mapping the learned feature space back to the

original input size, we lose the advantage of convolutional filters, as explained in

section 2.5.

We implement a version of U-Net where transposed convolutions replace the Up-

sample2d layers.

The di↵erent architectures are visualized in Figure 6.8.
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Figure 6.8: Our unet architectures.

6.3.3 Review of Fully Convolutional DenseNet

Fully Convolutional DenseNet (FC-DenseNet) can provide very accurate semantic

segmentations for di↵erent tasks without pretraining. The high-level architectural

design extends U-Net by adding fully Convolutional dense blocks, that share feature

maps in a feed-forward fashion. Skip connections between the dense blocks are

added, enabling the network to share features between the dense blocks.

To get the intuition of how DenseNets compare to traditional CNN’s, we need to

look at the way the layers in the networks di↵er. In a traditional CNN, we compute

the output of a layer by applying a non-linear transformation of the input. This

transformation is often a convolution followed by a non-linear activation such as

ReLU. If we let xn denote the output at layer n and F the non-linear transformation

function, we write the standard transformation mathematically as:

xn = Fn(xn�1)

The next important inspiration for DenseNets come from ResNets and their residual

blocks [95], where the shortcut connections map the input of the layer to the output

of the transformation F to deal with the degradation problem. We then expand the

transformation function to:

xn = Fn(xn�1) + xn�1

DenseNets take this idea even further and create concatenations between the output
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from all the previous layers in a dense block, thus expanding the transformation

function even further into

xn = Fn([xn�1, xn�2, ..., x0])

where ... is the concatenation operation of the layers.

The authors present three di↵erent architectures in the paper: FC-DenseNet56,

FC-DenseNet67, and FC-DenseNet103. The numbers refer to the number of layers

in the network, and all the architectures consist of five dense blocks (five down,

one at the bottom and five up) with di↵erent configurations. The architectures are

di↵erent in two aspects: The number of layers in each dense block and the growth

rate of the dense blocks. The growth rate describes the number of feature maps,

K, at each layer. The growth rate in the implemented versions is either 12 or 16.

The feature maps grow linear with each layer, meaning that layer L will have K⇥L

feature maps.

The network with 56 layers has four convolutional blocks (convBlocks) per dense

block and a growth rate of 12. The network with 67 layers has five convBlocks per

dense block and a growth rate of 16. The network with 103 layers has 4, 5, 6, 10,

12, 15 convBlocks per dense block (including the bottom one) respectively.

6.3.4 Implementing FC-DenseNet

We implement all three standard architectures as described in the paper [31]. We

base the implementations on the same structure displayed in Figure 6.9. From the

figure, we see that the general structure of the network is very similar to the U-Net

with a U-shape and skip connections at every layer.

We present the actual implementation used in this thesis in Table 6.8. We base

our implementations on the naive, memory ine�ciencies version of the network

presented by Huang et al. [31] because Tensorflow (section A.4) did not support

shared memory allocation, until recently. Meaning that the model size and, also

the maximum possible batch size, is limited by the GPU memory [72].

6.4 Training the Networks

We will now explain how we train the networks and the hardware we use. All

networks are trained using a dataset that is split into training, test and validation
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Figure 6.9: The FC-DenseNet architecture

FC-DenseNet-56 FC-Densenet-67 FC-Densenet-103
3x3 Convolution 3x3 Convolution 3x3 Convolution

DB (4 layers) + TD DB (5 layers) + TD DB (4 layers) + TD
DB (4 layers) + TD DB (5 layers) + TD DB (5 layers) + TD
DB (4 layers) + TD DB (5 layers) + TD DB (7 layers) + TD
DB (4 layers) + TD DB (5 layers) + TD DB (10 layers) + TD
DB (4 layers) + TD DB (5 layers) + TD DB (12 layers) + TD

DB (4 layers) DB (5 layers) DB (15 layers)
TU + DB (4 layers) TU + DB (5 layers) TU + DB (12 layers)
TU + DB (4 layers) TU + DB (5 layers) TU + DB (10 layers)
TU + DB (4 layers) TU + DB (5 layers) TU + DB (7 layers)
TU + DB (4 layers) TU + DB (5 layers) TU + DB (5 layers)
TU + DB (4 layers) TU + DB (5 layers) TU + DB (4 layers)
1x1 Convolution 1x1 Convolution 1x1 Convolution

Softmax Softmax Softmax

Table 6.8: Architecture of di↵erent FC-DenseNet implementations

segments with sizes equivalent to that of 70%, 20%, and 10% respectively. When

choosing the size of the di↵erent segments, we take mainly two competing concerns

into account. First, it is crucial that the network is presented with a rich selection

of training examples so that it can see and learn all the commonalities that define
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the di↵erent classes in the dataset. Secondly, enough examples should be left out

to assure that the network learns universal concepts.

To evaluate the performance during training, we use mIOU and F1 scores. During

training, we predict and evaluate the entire validation set after each epoch. After

training, we do the same procedure for the test set. Lastly, we assert the gener-

alization performance of the trained algorithms by predicting the aerial photos of

Drammen and Grorudalen.

We train the networks on a Linux server with two Nvidia GTX 1080 GPU’s with

8GB of memory each, i7-7700K CPU and 32 GB of RAM.

6.5 Predictions on the test data

To measure the performance of the networks, we measure mIOU and F1 score of

the predictions on the test dataset. The test dataset has been held out of the

training process so that the networks have never seen the images.

When predicting on larger areas, we try two di↵erent approaches. The first ap-

proach, later referred to as the regular approach is to divide the large image into

image tiles with the same size as the network has trained on. Then the networks

predict each of tiles individually before they are concatenated back together. The

second approach later referred to as the merged D4 (mD4) patching approach, is

where we use the technique presented in section 2.7.



Chapter 7

Proposed Dataset

In this chapter, we present the dataset we have created through examples and

relevant statistics. We also present known errors and show the full potential of the

dataset if we use aerial images and FKB data from all of Norway in the process.

As described in section 6.2, we focus on five cities in our work; Oslo, Bergen,

Trondheim, Bodø, Tromsø and Stavanger.
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7.1 Overview

The tiling process explained in section 6.2, produce 49,387 images covering an area

of 517.8km2, with distribution among the cities as seen in Table 7.1.

City Tiles Area (km2)

Bergen 13,260 139.0
Bodø 1,302 13.7
Oslo 18,952 198.7
Stavanger 3,417 35.8
Tromsø 4,008 42.0
Trondheim 8,448 88.6

Total 49,387 517.8

Table 7.1: Dataset statistics

Looking at the distribution, Oslo and Bergen represent 65.21% of the dataset with

a total area of 337,7 km
2. We can divide Norway into two parts: The northern

part with a total area of 112,951 km
2 and 484 647 inhabitants, and the southern

part with a total area 210,802 km
2 and 4 768 525 inhabitants [88, 3]. Out of the

six cities, we locate two of them in the northern part of Norway, while we locate

the rest of the cities in the southern part of Norway. The two cities in the northern

part, Tromsø and Bodø, represent 10.75% of the dataset with a total area of 55.7

km
2, and the remaining four cities represent 89,25 of the dataset with a total area

of 462,1 km
2.

After matching the tiled images with the features in the geospatial database, the

number of tiles included in each dataset is determined based on how many of the

tiles that contain the respective feature of the dataset. The generated training

datasets contain images from all of the cities randomized between the training,

validation and test dataset to have samples that represent all the cities. The number

of training, validation and test examples for each of the datasets are presented in

Table 7.2.

Dataset Training images Val images Test images

Buildings 17,821 5,183 2,570
Roads 19,395 5,611 2,830
Vegetation 20,433 5,788 2,952
Water 9,329 2,692 1,352
Multiclass 31,273 8,989 4,525

Table 7.2: Number of training, validation and test images in the datasets
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7.2 Examples and Statistics

7.2.1 Binary datasets

In the binary datasets, the pixels in the raster images either have a value of zero or

one, indicating whether the pixel belongs to an object or background. We present

samples from the four datasets in Figure 7.1. Because of the spatial nature of

the di↵erent object classes, the amount of area covered by each class will vary to

some extent. Looking at Table 7.3 the area covered by road labels is considerably

smaller than the area covered by the other class labels, while the area covered by

vegetation labels is considerably larger.

Figure 7.1: Sample images from binary datasets.
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City Buildings (km2) Roads (km2) Vegetation (km2) Water (km2)

Oslo 17.47 9.93 64.73 15.71
Bergen 11.96 7.12 56.13 26.92
Tromsø 2.45 1.66 11.20 18.73
Trondheim 6.93 5.13 40.52 12.61
Stavanger 4.13 2.84 6.32 9.32
Bodø 1.43 0.96 4.97 1.69

Total 44.37 27.64 183.87 84.98

Table 7.3: Coverage statistics from the di↵erent cities.

Label distribution

The distribution of label types in the cities are not equal, as we can see in Ta-

ble 7.3. We see in Figure 7.2 that there is a correlation between the percentage of

building and road labels in the cities. Oslo, Bergen, and Trondheim show a similar

percentage of building and road labels. Stavanger has the highest proportion of

road and building labels, together with Bodø, whereas Tromsø has the lowest. For

vegetation, we see that Stavanger has the smallest proportion and Trondheim has

the largest. For water, we see that Tromsø has much more water than any other

of the datasets and Oslo has least.

Figure 7.2: Distribution of labels for each of the cities.



7.2. EXAMPLES AND STATISTICS 79

Pixel density

We present the pixel density for each of the binary datasets in Figure 7.3. It is

evident that there are some imbalances in the datasets. The pixel density of the

labeled pixels in the road and building datasets are very low, whereas for vegetation

and water the number of labels and background pixels is almost the same.

Figure 7.3: Pixel count for each of the binary datasets.

7.2.2 Multiclass

The multiclass dataset is a single dataset where the labels contain at least one of

the four feature classes, Figure 7.4. When used for training, the raster labels have

color values ranging from zero to five, which would be hard to distinguish by the

human eye. Therefore, in Figure 7.4 the colors have been altered to display the

di↵erent features in the labels.

We can see all five classes represented in at least one of the examples in Figure 7.4.

The complexity of the labels varies from having one class covering the whole image

to representing multiple classes in advanced structures where similar parts of the

aerial images can have di↵erent labels.

Pixel distribution

We can see from Figure 7.5 that the multiclass dataset is imbalanced between the

di↵erent classes. It follows the same distribution as the binary dataset, where
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Figure 7.4: Sample images from multiclass datasets.

vegetation and background is the most common class followed by water, buildings,

and roads respectively.

Figure 7.5: Label distribution in multiclass dataset.
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7.3 Errors

As stated in research goal G1, we want the label creation process to be automat-

able. Therefore, we do no manual inspection of the datasets.

FKB is not free from errors, and these errors will, therefore, be transferred by the

process to the generated dataset. We have found three primary sources of errors

in the dataset: Missing and excessive features, miss-labeled features and occluded

features.

Missing and excessive features Since the images we download from NiB and

FKB are created at di↵erent times, some features may not yet have been labeled

and some labels might exist for features that are no longer present.

Miss-labeled features Some features are incorrectly labeled either because of

human or software errors.

Occluded features In some aerial photographs, occlusions caused by trees and

shadows cover the labeled features making them impossible to detect.

In Figure 7.6 we see examples of all the errors mentioned. In (a) we see miss-

labeling where suddenly there is a gap in the vegetation label where water labels

and road labels mix up unnaturally. In (b) we see an occluded river and a residence

labeled as vegetation. Missing buildings and an occluded river can be seen in (c)

and (d), respectively.

7.4 Potential

In the proposed dataset we only use a small part of FKB and NiB that is available,

but the technology developed has the potential of generating a much larger dataset.

This section will discuss the full potential of the FKB and NiB datasets.

Since NiB contains aerial images from all of Norway, the total area of Norway is

385180 km
2 and the generated tiles have an area of 0.010485km2 (512x512px), we

can, in theory, create a total of 36,736,289 tiled images. However, this might not

be the correct number, since the coverage of FKB limits us. By looking at the

statistics for FKB for rest of Norway, we can get an idea of the accurate size that

the dataset can have. The data presented comes from email correspondence with

the Norwegian Mapping authority (Kartverket).
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Figure 7.6: Typical errors in the dataset.(a)Miss-labeling with sudden gap in vege-
tation, (b) Building labeled as vegetation and occluded river, (c) Missing building
features and (d) Occluded river

Dataset Our usage Total available Usage percentage

FKB Buildings (km2) 44.37 527.96 8.40%
FKB Roads (km2) 28.23 1071.76 2.63%
FKB Water (km2) 104.19 167,081.00 0.06%
FKB Landcover (km2) 183.87 385180.00 0.048%

Table 7.4: Available data in FKB

As we can see in Table 7.4, the amount of data available is tremendous and we have

only utilized a small amount of it. The numbers for water include marine areas

which are under Norwegian control. FKB Landcover is the most extensive dataset

because it thoroughly covers Norway with polygons and thus has the same area as

the total area of Norway.

The possible utilization amount for the dataset varies because of the requirement

that all training images should contain at least one feature. For buildings or roads,

this makes it impossible to use all of the 36,736,289 images for the dataset. However,

for FKB Landcover one would be able to utilize all of the image tiles.



Chapter 8

Algorithmic Experiments

and Results

We will in this chapter present the experiments conducted by using the proposed

dataset to train di↵erent implementations of deep convolutional neural networks

as described in chapter 6.
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8.1 Configuration of the network

In order to get the best results it is important to chose and properly configure

the network, which includes setting the right hyperparameters (subsection 2.4.6),

chosing an optimizer (subsection 2.4.7) and a loss function (subsection 2.4.5).

Learning rate adjustment

As seen in subsection 2.4.6, there are di↵erent strategies to how we can adjust the

learning rate. In our experiments, we focus on two of them; Annealing learning

rate adjustment and Cyclic learning rate adjustment.

Annealing learning rate adjustment The first strategy we test is to reduce the

learning rate when the learning stagnates. In our experiments we choose patience

of 3 on the validation mIOU and an adjustment factor of
p
0.1, meaning that if

the validation mIOU does not improve within three epochs, we reduce the learning

rate by a factor of approximately 0.3. Figure 8.1 shows three examples of how the

learning rate adjusted during training for three di↵erent networks.

Figure 8.1: Examples of plateau learning rate adjustment

Annealing the learning rate makes the network make large adjustments to the

weights in the beginning, and then as the accuracy increases, the adjustments

become smaller and smaller.

Cyclic learning rate adjustment We also apply the cyclic learning rate ad-

justment strategy, presented by Smith [82], as it has proven to yield good results.

To decide the base and maximum values for the cyclic learning rate adjustment,

we conduct a learning rate test on both the networks, as described in the paper.
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During the test, the network is run for ten epochs, while linearly increasing the

learning rate form 0 to 0.1. From Figure 8.2 we see that the accuracy proliferates up

to approximately 0.9, where it stagnates and neither improve nor decrease before

the learning rate approaches 0.1.

Figure 8.2: Learning rate test for U-Net

By analyzing the graphs displayed in Figure 8.3 and Figure 8.4, we can pick out

the most suitable learning rate values. According to Smith [82] the ideal values for

the base and maximum learning rates are the points on the test where the learning

starts to improve drastically and where it begins to stagnate.

Figure 8.3: Indication of the ideal values for base and maximum learning rate from
the U-Net learning rate test

Figure 8.4: Indication of the ideal values for base and maximum learning rate from
the FC-DenseNet learning rate test
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We base the learning rate values chosen for the networks, on our analysis of what

values the accuracy starts increasing and stagnates. We can see the values in

Table 8.1.

Network Base Maximum

U-Net 0.0002 0.002
DenseNet 0.00002 0.00055

Table 8.1: Values after learning rate test

We apply two di↵erent policies for how the cyclic learning rate should behave; The

standard triangular policy and the triangular2 policy where we cut the learning

rate di↵erence in half after each cycle. We set the step size to 3 times the number

of training iterations in an epoch, which means that after six epochs the learning

rate has been through one complete cycle.

Regularization adjustment

We test two dropout rates for regularization in the network; A dropout rate of 0.2

and a dropout rate of 0.5. These dropout rates are selected because they are the

most common rates used when training convolutional neural networks [52, 81, 31,

4, 12, 69, 38, 9].

8.1.1 Choosing the optimizer

We consider two optimizers for testing; Adam and Nadam. The reason for this

choice, as explained in subsection 2.4.7 is that all the di↵erent optimizers are part

of a developing research field where newer versions solve the older versions prob-

lems. Karpathy [44] also recommends Adam as a starting point for testing di↵erent

networks.

8.1.2 Choosing the loss function

We consider three di↵erent functions to evaluate the loss of the predictions. We

present two of these in subsection 2.4.5; Categorical Cross Entropy loss and Binary

Cross Entropy loss. The last is an experimental loss function called the Soft Jaccard

Distance loss. Since we use the Jaccard index as the evaluation metric, it would be

ideal to model it as a loss to get the best possible performance. It is however not

di↵erentiable and can therefore not be used with backpropagation. We, therefore,
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use the Soft Jaccard loss [35] which is the combination of cross entropy and the

Jaccard index defined as:

J(p, t) =
1

n

nX

i=1

ti · pi + ✏

ti + pi � ti · pi + ✏

L = H � logJ

Where J is the batch-wise Jaccard index, ti is the true label, pt is the prediction,

n the batch size, ✏ is a smoothing term in order to cope with zero division and H

denotes binary cross entropy and categorical cross entropy for binary and multiclass

segmentation problems respectively. This loss helps to maximize the probabilities

for right pixels and maximize the intersection between the masks and predictions.

8.2 Testing the di↵erent configurations

To estimate which configurations that yield the best results in the final experiments,

we conduct a performance test. Using the configuration of U-Net (d) in Figure 6.8,

we run the network with all 24 combinations of the parameters described above,

for 20 epochs each.

We chose U-Net for these experiments because of its very e�cient computation

time. When running with a batch size of 20, the average computation time for

one epoch is 7.5 minutes, thus making it possible to run all 24 configurations in 60

hours.

As seen in Figure 8.5, the performance of the di↵erent configurations is quite sim-

ilar. The configuration parameters, max F1 score, and max mIOU score for each

run are also displayed in Table 8.2.

Looking at the results from Table 8.2, configuration number 4 stands out as the

best candidate for further experiments, with both the highest F1 and mIOU scores.

The configuration uses the Adam optimizer with a dropout rate of 0.2, the exper-

imental Soft Jaccard Loss function and the learning rate is regulated using the

cyclic triangular2 strategy. In Figure 8.5, where we mark the best run with a solid

line, we see that di↵erence between the configurations is not very large, except for

some outliers, such as run 20 that hit a local minimum.
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Nr. Optimizer Dropout Loss func. rr Max F1 Max mIOU

0 Adam 0.2 Binary Cross Annealing 0.87794 0.73200
1 Adam 0.2 Binary Cross triangular2 0.88251 0.74234
2 Adam 0.2 Binary Cross triangular 0.88125 0.73782
3 Adam 0.2 Soft Jacc Annealing 0.88083 0.73891
4 Adam 0.2 Soft Jacc triangular2 0.88406 0.74505
5 Adam 0.2 Soft Jacc triangular 0.88327 0.74309
6 Adam 0.5 Binary Cross Annealing 0.87866 0.73534
7 Adam 0.5 Binary Cross triangular2 0.88049 0.73790
8 Adam 0.5 Binary Cross triangular 0.88037 0.73682
9 Adam 0.5 Soft Jacc Annealing 0.87829 0.73469
10 Adam 0.5 Soft Jacc triangular2 0.88283 0.74104
11 Adam 0.5 Soft Jacc triangular 0.88271 0.74227
12 Nadam 0.2 Binary Cross Annealing 0.82395 0.65351
13 Nadam 0.2 Binary Cross triangular2 0.80168 0.61835
14 Nadam 0.2 Binary Cross triangular 0.88148 0.74070
15 Nadam 0.2 Soft Jacc Annealing 0.88123 0.74070
16 Nadam 0.2 Soft Jacc triangular2 0.88216 0.74171
17 Nadam 0.2 Soft Jacc triangular 0.81964 0.64558
18 Nadam 0.5 Binary Cross Annealing 0.86058 0.70833
19 Nadam 0.5 Binary Cross triangular2 0.87848 0.73494
20 Nadam 0.5 Binary Cross triangular 0.81730 0.64697
21 Nadam 0.5 Soft Jacc Annealing 0.80656 0.63840
22 Nadam 0.5 Soft Jacc triangular2 0.88116 0.73912
23 Nadam 0.5 Soft Jacc triangular 0.88381 0.74377

Table 8.2: Results from the performance test on the di↵erent configurations for
U-Net.

8.3 Selecting the Number of layers for FC-DenseNet

As explained in subsection 6.3.3, we base our implementation of FC-DenseNet on

the memory-ine�cient version available at the time of writing. Since the number

of training parameters grows when the depth of the network increases, deep imple-

mentations of the network will have a high memory consumption. In practice, this

means that the amount of GPU memory limits other configurations such as the

input and batch size. Looking at the three configurations of DenseNet displayed in

Table 8.3, we see that the computation time of one epoch increases with a factor

of approximately 1.4 between each configuration, while the maximum batch size

decreases with a factor of approximately 0.7.

To get a right balance between computation time and accuracy, we chose to continue

the testing with DenseNet-67.
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Figure 8.5: The batch-wise mIOU score for the test configuration runs.

Name Input size Max batch size Avg. time per epoch

DenseNet-56 256 6 28m
DenseNet-67 256 4 38m
DenseNet-103 256 2 53m

Table 8.3: Tested input sizes, batch sizes and average computation times for 1
epoch, of di↵erent DenseNet

8.4 Training the best configurations

We train the best configuration on each of the datasets. During training, we mon-

itor the mIOU on the validation dataset and stop training once it stagnates. We

only save the weights when the performance after an epoch has finished, measured

in mIOU, increases.

8.4.1 U-Net

For the U-Net we train the network with batch size 20, images of size 320x320px, the

triangular2 cyclic learning rate with a base learning rate of 2e-4 and a max learning

rate 2e-3. We then fine tune each of the network on full-size images (512x512px)

with a batch size of 12, a base learning rate of 2e-5 and a max learning rate of 2e-4.

In Figure 8.6 we see that the water network has a higher batch-wise mIOU score

during training than any other of the datasets.
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Figure 8.6: Training results for U-Net on all classes

8.4.2 FC-DenseNet

To train the FC-DenseNet, we used the FC-DenseNet-67 configuration with a batch

size of 4, an image size of 256x256px and the triangular2 cyclic learning rate with

base and maximum learning rate of respectively 2e-5 and 5.5e-4. We then fine-tune

the network with a batch size of 2, an image size of 320x320px and the triangular2

cyclic learning rate with base and maximum learning rate of respectively 2e-6 and

5.5e-5.

We see the mIOU during training in Figure 8.7, and the resulting mIOU scores test

dataset in Table 9.1.
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Figure 8.7: Training results for FC-DenseNet-67 on all classes
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Chapter 9

Results from the Predictions

In this chapter, we present the results for each of the networks and datasets. We

show the predictions made on the test set for each of the proposed datasets. We

also predict the two generalization test areas from Drammen and Grorudalen.
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9.1 Mean IOU and F1 score on the test datasets

We run the two networks on the test dataset to measure the performance of their

predictions. We use both the mIOU and the F1 score, see subsection 2.6.4, to

measure the performance, and the results are displayed in Table 9.1, where we see

the mIOU and F1 scores for both the networks.

Network Buildings Roads Water Veg. Multi.

U-Net mIOU 0.76355 0.66337 0.77238 0.77157 0.77267
F1 0.89491 0.84156 0.98525 0.93930 0.83316

U-Net mIOU 0.77581 0.67212 0.77164 0.77458 0.77258
Finetune F1 0.90023 0.84502 0.98462 0.93953 0.83327

FC-DenseNet-67 mIOU 0.75784 0.67375 0.75088 0.72971 0.75720
F1 0.89150 0.84491 0.98111 0.93118 0.93791

FC-DenseNet-67 mIOU 0.75447 0.66305 0.71365 0.69244 0.74545
Finetune F1 0.88830 0.83565 0.94849 0.90802 0.81400

Table 9.1: Mean IOU and F1 scores after predictions on the test dataset

The best results are mainly given by the U-Nets, which give the highest F1 score

for all the classes, and the highest mIOU score for all classes except Roads. We

see in Figure 8.7 that FC-DenseNet-67 outperform its own fine-tuned version in

all classes. U-Net, on the other hand, performs better after fine tuning, except

for the water class where both the mIOU and F1 scores on the predictions slightly

drop. The U-Net gives the best mIOU score for multiclass before fine-tuning, which

reflect the fact that the mIOU score did not improve while fine-tuning. The F1

score increases marginally during fine-tuning.

9.2 Examples of Binary Predictions

The scores presented in Table 9.1 does not indicate the qualitative properties of

the predictions. In this section, we present selected examples and try to enlighten

the qualitative properties of the predictions.

9.2.1 Buildings

We show examples of the predictions on the binary building dataset in Figure 9.1.

The four examples are from random locations in the five cities used to create the

dataset.
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Figure 9.1: Examples of binary building predictions

In example (a) a storage building is visible in the image, and both of the networks

seem to label the building correctly. An interesting observation is that the roof

over the entrance of the building is not labeled in the mask, but predicted by

both the algorithms. In example (b) all the labeled houses are discovered by both

the networks. In example (c) there is an error in the mask, where the corner

of the bottom-right apartment building is not labeled, but the networks identify

the building corner correctly as a building. Example (d), shows multiple complex

building structures that both of the networks classify correctly. U-Net has slightly

better qualitative predictions.

9.2.2 Roads

In Figure 9.2 we display selected predictions from the binary roads dataset. The

input images show examples from di↵erent road types in di↵erent areas.

Example (a) shows a T intersection with a cycling path along the cross street. FC-

DenseNet gives a better and cleaner prediction, where it locates the center top road

and have more straight edges. In example (b) we show a highway with a junction
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Figure 9.2: Examples of binary road predictions.

and a crossing bridge. Both of the networks manage to predict this complicated

scenario well. Example (c) shows a similar situation where the networks show

similar performance and are better than each other in di↵erent areas of the image.

Example (d) shows a residential area, where FC-DenseNet classifies one road at

the top-right corner, that U-Net fails to classify.

9.2.3 Vegetation

Figure 9.3 display examples of predictions on the binary vegetation dataset. We

pick the selected examples from both residential and non-residential areas.

We see that U-Net is performing better than FC-DenseNet in all the examples.

Example (a) is typical in the binary vegetation dataset, where it is unclear what

parts of the image that should be labeled vegetation. Both the networks chose

to label the top-left corner as vegetation, while the label does not. In example

(b) the label lack detail and the networks give a more accurate prediction of the

vegetated area. Example (c) shows an example of a more straightforward situation

that both the networks manage to predict. Example (d) show a vegetated area
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Figure 9.3: Examples of binary vegetation predictions.

with a road going through it. Both the networks identify the road, but the U-Net

gives a cleaner prediction.

9.2.4 Water

In Figure 9.4 we show examples of the predictions on the binary water dataset.

The selected examples represent di↵erent settings where water is present.

With many occluded features and areas that are hard to spot, water labels can be

di�cult to predict. Example (a) show an area covered by open water where both

networks manage to predict the label satisfactorily. Example (b) also shows an

open area, but in this example, the water has many tiny islands. We see that none

of the networks manage to predict the islands correctly and that FC-DenseNet

predicts a too large water area. In example (c) the river is entirely hidden by the

trees, and while U-Net predicts that there is no water present in the image, FC-

DenseNet predicts false positives (see Figure 2.17). In example (d) there is a small

river running alongside the road and through a building complex. Both networks

can predict parts of the river, but FC-DenseNet has the same issue as in (c) with
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Figure 9.4: Examples of binary water predictions

multiple false positives.

9.3 Examples of multiclass predictions

In Figure 9.5 examples of the multiclass predictions from both the networks are

presented. All the four spatial classes are represented in at least one of the exam-

ples.

In example (a) both the networks can recognize and connect all the roads in the

image, while some of the buildings are not detected. In (b) there are three buildings

in the mask, but two of them are very hard to see in the aerial image. None of

the networks can detect these two hidden buildings. In example (c) and (d) the

predictions are very close to the image masks.
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Figure 9.5: Examples of multiclass predictions

9.4 Mean IOU and F1 score of the test areas

The scores collected after predicting the two generalization test areas, using both

concatenated patches and merged D4 (mD4) patches, are shown in section 9.4.

From section 9.4 we see that using the mD4 patching approach explained in sec-

tion 2.7, improves the mIOU and F1 scores of the predictions. A qualitative analysis

of the predictions also gives the impression that the technique improves the results,

as seen in Figure 9.6.

9.5 Created maps

We will now look at the created maps from Grorudalen and Drammen. We create

all maps by using the merged mD4 patches. We construct the maps using both

multiclass predictions and by merging binary predictions of all four classes. We

handle conflicts in the merging process by using the ranks presented in Table 6.7.
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Network Buildings Roads Water Veg. Multi.

U-Net mIOU 0.77321 0.74920 0.00134 0.57240 0.49913
Grorudalen F1 0.87210 0.85662 0.00268 0.72806 0.59785
(Regular)

U-Net mIOU 0.77827 0.77186 7.87504e-5 0.61323 0.50309
Grorudalen F1 0.87532 0.87124 0.00016 0.76025 0.60104
(mD4)

FC-
DenseNet

mIOU 0.75343 0.73120 0.00433 0.65648 0.50520

Grorudalen F1 0.85938 0.84473 0.00862 0.79262 0.60274
(Regular)

FC-
DenseNet

mIOU 0.76765 0.74430 0.00161 0.69494 0.54346

Grorudalen F1 0.86855 0.85341 0.00321 0.82002 0.63023
(mD4)

U-Net mIOU 0.64272 0.52823 0.42923 0.24088 0.49654
Drammen F1 0.78251 0.69130 0.60064 0.38824 0.64183
(Regular)

U-Net mIOU 0.69169 0.54982 0.46973 0.25275 0.52486
Drammen F1 0.81775 0.70953 0.63920 0.40352 0.66501
(mD4)

FC-
DenseNet

mIOU 0.67381 0.58304 0.60488 0.12450 0.61962

Drammen F1 0.80512 0.73661 0.75380 0.22143 0.74864
(Regular)

FC-
DenseNet

mIOU 0.73585 0.64382 0.60020 0.11414 0.66329

Drammen F1 0.84783 0.78332 0.75015 0.20490 0.78221
(mD4)

Table 9.2: Mean IOU and F1 scores for U-Net and FC-DenseNet for Grorudalen
and Drammen.

9.5.1 Groruddalen

Figure 9.7 show the binary predictions used for generating the merged binary map.

When comparing U-Net and FC-DenseNet, we can see that FC-DenseNet has a

cleaner vegetation area compared to U-Net. The road predictions are also slightly

better, containing more combined roads sections. We see that even though there

is no water in the image, water is predicted multiple places by both networks.

We see that both multiclass and merged binary maps created by U-Net and FC-
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Figure 9.6: Example of di↵erence between regular and mD4 predictions.

Figure 9.7: Binary predictions of Grorudalen by U-Net and FC-DenseNet

DenseNet in Figure 9.8. We see that the multiclass water predictions are better

than binary for both networks. FC-DenseNet has no false positives for water in the

multiclass case, whereas U-Net predicts a football field as water. It appears that

the predictions done by the binary networks give a better accuracy for roads and

buildings, while they struggle with the water class.
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Figure 9.8: Map of Groruddalen from U-Net by merged binary and multiclass
predictions



9.5. CREATED MAPS 103

9.5.2 Drammen

Drammen portrays a city scene with a river crossing in the middle and a railroad

track crossing in the bottom part of the image. In Figure 9.9 we see the binary

predictions from U-Net and FC-DenseNet. We see that FC-DenseNet perform

better than U-Net for all the classes, with overall more persistent predictions.

Both networks struggle with the water class, where they both predict the river in

the center correctly, but predicts a lot of false positives for water.

Figure 9.9: Binary predictions of Drammen by U-Net and FC-DenseNet

From the predictions in Figure 9.10 we see the same situation as in the created map

of Groruddalen: The merged binary predictions are more accurate for buildings

and roads, but false positives in the water predictions occlude the results. The

multiclass predictions from both networks outperform the binary for the water

class. FC-DenseNet performs better than U-Net with almost no false positives in

the multiclass prediction.
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Figure 9.10: Map of Drammen from U-Net and FC-DenseNet by merged binary
and multiclass predictions



Part III

Discussion and conclusion
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Chapter 10

Discussion

In this chapter, we discuss our approach and the results of our experiments. First,

we look at the generated dataset, and then we evaluate the performance of the

network on it.

107
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10.1 The proposed dataset

Even though we decided to only focus on four di↵erent classes, the level of detail

in the dataset is much broader. We could for example label the dataset using the

object type of each FKB Dataset, potentially giving a large variety of classes. This

is particularly the case for FKB Landcover, because it is a complete segmentation

of Norway, containing 11 di↵erent areal classes. For more specific training tasks,

such as detailed feature extraction from houses or object detection of features such

as chimneys, we could use the FKB Buildings dataset in much more detail.

We use both orthophotos and true orthophotos in the dataset. For tasks such as

building extraction, using only true orthophotos might be a better choice because

then the network does not need to learn what the correct footprint of a leaning

building is. On the other hand, using only true orthophotos limits the amount of

input data, since many aerial imagery providers do not provide true orthophotos.

There are far fewer projects in NIB that have true orthophotos compared to reg-

ular orthophotos. We would, however, need more experiments to conclude on this

matter.

As mentioned in section 6.2 the FKB dataset is publicly available, but not free

of charge. It is, therefore, worth discussing the possibility of creating a training

dataset using only free data. In Norway, the most detailed dataset that is free and

publicly available is the N50 dataset.

Figure 10.1: Di↵erent quality of N50 and FKB datasets taken from di↵erent areas
in Oslo, Norway

Figure 10.1 show that the level of detail in the labeled data is considerably worse for

vegetation, water, and buildings. For roads, the level of detail is almost the same

for the two datasets, but N50 does only contain line representations of the roads. If

the task were to do center line detection of roads, the N50 dataset would probably
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be su�cient to create a training dataset. From the examples in Figure 10.1, we

can see that even though it would be possible to generate a training dataset from

N50, the quality of it would be inferior compared to the dataset presented in this

thesis.

The five cities we select for the proposed dataset are geographically spread out

across Norway to ensure diversified training examples. In section 7.1 we state that

only two cities, which constitutes 10.75% of the dataset, belong to the northern

parts of the country, even though the area of northern Norway is one-third of the

total area of Norway. One can argue that we underrepresent the northern regions

regarding the area in the dataset. On the other hand, only 10% of Norway’s in-

habitants live in the northern part of the country. Choosing a proper, geographical

distribution of the cities in the dataset comes down to what geographic and demo-

graphic factors that represent the output map we want. For us, areas with more

inhabitants give better training data for the networks, since we want them to learn

to create maps of urban areas.

Our dataset has a small size compared to the full potential of FKB. In this thesis,

we chose to only focus on some of the larger cities in Norway. The main reason

why we decided not to include more of the available data is that it would have

been very time-consuming to train the networks. Furthermore, using the current

dataset, we can prove the quality of our method.

As seen in section 7.4, the potential for the dataset is much more significant than

what we present in this thesis. In theory, we could use the whole country as

a basis. Moreover, we believe that our work shows that it is possible to generate

very detailed datasets using the FKB data, which can contribute to further research

within fields such as computer vision and remote sensing.

The errors presented in section 7.3 are di�cult to fix without the use of manual

labor. We might be able to better the number of errors by using very recent

aerial images to make sure that they match the labels better. Another solution

is to use up-to-date satellite images, as they are updated much more frequently

than the images from NIB. The downside with this approach is the price of such

high-quality satellite images with licensing that allow deriving features from them.

The water labels contain many rivers that are impossible to see on the aerial pho-

tos. From a quality perspective, this is good, but it causes problems since we are

only predicting features that are visible in the aerial photos. We can solve this

problem if the Norwegian Mapping Authority can provide more information about

the datasets. For example which aerial images they use during drawing or the data

attribute called visibility that is present in the product specification for the FKB
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datasets but not in the downloaded files. The visibility attribute should describe

the degree of visibility of spatial objects, and if correctly used, would probably

solve many of the problems with invisible features.

One issue that we encountered when training the networks on the binary water

dataset was that the FKB Water dataset covers human-made structures such as

bridges. However, this is not the case for FKB Area usage, which also contains an

area type for water (see Figure 10.2). We can then ask the question: What is the

correct way to label water when we are trying to predict water in aerial images?

The way we see it, the correct classification is the classification that resembles the

FKB Water dataset the most. The binary water classifier should, therefore, learn

to label roads that span over water as water. When we later combine the results

from water with the binary road classifier, the ranking of the road classification is

higher. The resulting class for these pixels will, therefore, be road. In the multiclass

dataset, this is not a problem since the road pixels will appear on top of the water

pixels because of the ranking in the labels.

Figure 10.2: Di↵erent labels for water. (a) Is the FKB Water dataset covering a
bridge, (b) is the FKB AR5 with artype 82 (water) and (c) is the image without
any labels

10.2 Training the networks

The configuration of the network was, as seen in section 8.2, based on a test running

24 di↵erent combinations of network parameters. Using this approach, we were able

to provide a sound basis for the following experiments.

An issue with this approach is that it does not take into account the di↵erences

in the four training tasks. Neither does it give an optimal answer as to which

configuration the FC-DenseNet should run with since the best configuration will

vary based on the architecture of the network and dataset. Therefore, the ideal

approach would have been to run the configuration test for all the four tasks with
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both the networks. This way we would get the optimal configuration for both the

networks on all the tasks, but looking at Table 10.1 the total runtime for all tests

would be 2400 hours. Given the time limitations of the thesis, and the fact that

the results of the U-Net configuration test on the buildings dataset were almost

equally good, we did not prioritize to run all the tests.

Network Approx. Runtime for 20 epochs

U-Net 2h 30m
DenseNet-67 22h 30m

Table 10.1: Approximate runtimes for 20 epochs for the network configurations.

From Figure 8.7 we see that the mIOU scores decrease after we start fine tuning

the FC-DenseNet. We hypothesize that the reason for this is the adjustment of

the batch and image size since decreasing the learning rate should not impact

the prediction accuracy to that extent. Before fine tuning, the FC-DenseNet is

already training with a low batch size because of the memory issues explained in

subsection 6.3.4. To halve the batch size and only slightly increasing the image

size, probably aggravates the results.

In this thesis, we have focused on testing the proposed dataset on two di↵erent

network architectures: U-Net and FC-DenseNet. One can argue that we should

try more architectures to get a better basis for concluding. However, if we were

to train more network architectures on the hardware available, we would need to

lower the number of parameters in the configuration test by a significant amount.

On the opposite side, it might have been better to only focus on a single network

architecture to be able to test more configurations, including a larger number of

optimizers.

10.3 Final predictions and the created maps

Table 9.1 shows the final scores of the trained networks after predicting on the test

dataset. The mIOU is a good, quantitative measure of how close the predictions

match the FKB dataset. However, it is hard to conclude on the performance of the

networks solely based on the quantitative results since there are no other attempts

at training on the proposed dataset. The results are, however, within the range of

what is considered reasonable compared to similar works [35, 6].

Comparing the qualitative properties of the predictions might be more suitable

to address the presented research question. From the figures in section 9.2 we
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see examples of the final predictions of the trained networks. The building, road

and vegetation predictions comply with our minimal map definition and show the

relationship between entities in a satisfying manner, making it possible to navigate

in urban areas. Both networks are capable of predicting open water but struggle

with small rivers that are more or less occluded by objects. The networks trained

on binary water, generally predict many false positives compared to the multiclass

networks. When navigating urban scenes, buildings and roads represent the most

relevant features, because they represent the infrastructure that people must take

into account when navigating. We, therefore, value the accuracy and correctness of

the road and building predictions higher than the water and vegetation predictions.

Figure 9.8 and Figure 9.10 show that the quality of the water predictions on new

areas are not as good as they should be. Water appears in places where there is

no indication of water. There can be many reasons to why the networks fail to

predict water in some areas. First, a problem with binary predictions is that the

networks do not know about other classes than the one they are trying to predict.

While the multiclass network can compare the probabilities of several classes, the

binary networks can only compare two. Also, as we stated in subsection 6.2.4, all

datasets have labels present in all images, which means that it has trained on very

few areas that commonly does not contain water. Being presented with such areas

might, therefore, result in week predictions.

By examining the predictions on Grorudalen and Drammen from both U-Net and

FC-DenseNet, we see that even though FC-DenseNet has a consistently lower mIOU

on the training datasets, the predictions on the generalization areas are sometimes

better than U-Net’s. This shows the importance of validating the network on the

task we ultimately want it to perform during training. It would have been better

to set up a validation case where we predict the two large test areas with the mD4

patching approach during training instead of just predicting the validation dataset.

There is a significant di↵erence in both qualitative and quantitative results for

Grorudalen compared to Drammen. The networks consistently produce lower qual-

ity results on Drammen. The main di↵erence between the photos is that they are

from di↵erent NIB projects. Although the di↵erences in the photographs are small,

we have to expect that there are some aspects, such as the camera used, the lighting

or the time of year which have been learned by the network while training. The dif-

ferences in results between Grorudalen and Drammen shows us that the networks

have lower generalization capabilities across NIB projects and photo characteris-

tics. A problem with this is that we can not assess the generalization capabilities

across di↵erent geographical areas before we have the same consistent photo char-

acteristics across all images. We can solve this problem by using satellite photos
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from the same satellite. We can also use data augmentation to make the photos

have more common characteristics than before.

Data augmentation can help improve the generalization capabilities of the network

by altering the quality, lighting, and colors of the images. These alterations can

help the network learn the universal properties of the objects it is trying to extract.

These properties can, for example, be that a road usually has the same width,

independent of the time of year and the quality or color of the road. From chapter 4

we learn that there are many ways to augment the data before we feed it to the

neural network, such as enhancing the borders [35, 96] or first segmenting the

image using superpixels [1]. In our thesis, we have limited the testing of di↵erent

augmentation techniques, both because of our time limitations and also because it

is not entirely within the scope of what we are trying to prove. However, we think

there is little doubt that preprocessing is very important to improve the accuracy of

the predictions and to make the networks be able to generalize better for unfamiliar

domains.

Even though the road predictions are satisfactory, they have some issues with

connectivity. Viewing road detection as a semantic segmentation problem, might

not be the best approach if we want valid road networks as output. Through our

approach, the networks can learn to extract complex road segments, as seen in Fig-

ure 9.2, but they do not learn the importance of connectivity between the segments.

Therefore, a better approach might be to use another metric that emphasizes the

importance of valid graph structures. We can also apply postprocessing methods

on the road segments, as seen in section 5.1, to find the correct connections.

10.3.1 Use cases

During the last decades, the resolution and update frequency of satellite imagery

has improved drastically, and as satellite technology improves the need for au-

tomatic methods for information extraction increases. If the extraction methods

become good enough, the number of possibilities are many.

By allowing machines to draw up maps can help the government agencies of devel-

oping countries to get a better understanding of their demography and infrastruc-

ture, without the need of extensive manual labor.

The use of fast automatic extraction methods in situations of environmental disas-

ters can be crucial to get a quick overview of damaged areas so that that disaster

response teams can act as quickly as possible. Displacement of houses, locating

roads that have been blocked and measuring the amount of water in flooded areas
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are all examples of such.

As seen in section 9.2, the building predictions are sometimes more correct than

the label. We can use CNN’s for quality checking already existing spatial data. It

is a di�cult job to keep track of new buildings and roads, and by using automatic

extraction methods and satellite imagery, cartographers can get frequent updates

on the change in infrastructure over time.



Chapter 11

Conclusion

In this chapter, we conclude our research and experiments in light of our research

goals. We also highlight future work that could be interesting to investigate further.
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Our thesis aimed to reach G1 and G2 by answering the following question:

Can deep convolutional neural networks learn to create maps based on

publicly available spatial data?

We show how to automatically transform publicly available data into high-quality

training examples for the use of machine learning algorithms. By using data from

FKB and NIB, we create a dataset covering an area of 517.8km2 in five cities

from the northern and southern parts of Norway. We carefully select four seman-

tic classes and create two types of datasets: Binary, where each of the classes is

represented in separate datasets and multiclass, where we represent all classes in

the same dataset. We highlight issues in these datasets and show that, while the

overall quality is high, there are some significant problems with the data, especially

in the case of water where trees occlude many rivers. These are problems with the

underlying data and can be hard to solve. We look at the total available data and

show that the potential size of the dataset is many times larger than the dataset

we propose.

We use the datasets to train two deep convolutional neural networks: U-Net and

FC-DenseNet-67. We test di↵erent configurations of U-Net and experiment with

a deeper network, cyclic learning rates, and soft Jaccard distance loss. We find

that cyclic learning rates with the triangular2 configuration and the soft Jaccard

distance loss produce the best results. We conclude that we obtain the best overall

quantitative results when the networks train on the binary datasets, and their

predictions are merged. For water predictions, we conclude that the multiclass

networks perform better on new, unseen areas. Our quantitative results are similar

to the highest ranking results in challenges such as Inria [62] and DSTL [43].

We increase the mIOU scores when predicting Groruddalen and the city of Dram-

men by merging overlapping predictions on patches from images rotated and mir-

rored in the dihedral D4 group. This technique also increases the usability of the

created maps since it removes border artifacts. We conclude that slight changes in

image characteristics, such as in the comparison between Grorudalen and Dram-

men, considerably a↵ects the predictions from the networks.

Through our research, we have shown that it is possible to train deep convolutional

networks to do semantic segmentation of aerial images, to automatically create

maps. In fact, we have shown that for features such as buildings, the CNN’s

sometimes have a more accurate description of the enclosing area of the features

than the label. Showing that it is possible to use our result for quality checking

the FKB dataset.

We conclude that the created maps for unseen areas are of such quality that it
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is possible to use them for navigating urban scenes and it is, therefore, possible

for deep convolutional neural networks to learn to create maps based on publicly

available spatial data. However, the created maps are simple, and their use cases

are limited. Consequently, there is still a need for high-quality manual cartography.

11.1 Future Work

In this research, we created a relatively small dataset compared to the data avail-

able. Future work should utilize more of the data to create a more extensive dataset,

reaching a size similar to the ImageNet dataset, by expanding the size and number

of features. The dataset should contain images from all the recent aerial photo

projects in NIB for the networks to learn diverse characteristics of the photos. It

is also possible to expand the dataset to include spatial data from other countries,

such as in the Inria dataset.

Future works should strive to combine the more extensive dataset with more com-

puting power to train state-of-the-art networks and their proposed configuration

within reasonable times. We show in chapter 9 that even though the mIOU scores

of DenseNet is lower than U-Net’s, the predictions are sometimes cleaner for roads

and buildings. Utilizing a more memory e�cient version of DenseNet to be able

to train with larger images or batch size is also an exciting topic to pursue in the

future. Other implementations that are interesting to try is the Pyramid Scene

Parsing module presented by Zhao et al. [100] because of its promising results on

the ImageNet Scene Parsing Challenge and the ability to collect contextual infor-

mation in images. It would also have been fascinating to see the performance of

the SegCaps Network presented by LaLonde and Bagci [53], as the use of capsules

for dynamic routing is an active field of research.

Data augmentation of the input images should also be examined in order to solve

the problem of bad generalization across photo characteristics.
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Appendix A

Open-Source projects used

An open-source project is a term used for computer programs where the owners

have made the source code available under a license, such as the Apache 2.0 or the

MIT License1.

Open source projects are important because they enable collaborative develop-

ment between multiple sources, creating better products for the end user in terms

transparency and maintenance. The work done in this thesis would not have been

possible without the use of open source projects.

A.1 PostgreSQL

PostgreSQL (often referred to as postgres) is an object-relation database manage-

ment system (ORDBMS) which has been developed and maintained by an open

source community since 1997 [87].

The postgres system is fully ACID compliant, meaning that it can be characterized

by the following properties:

Atomicity Atomicity says that either all operations in a database transaction

occurs or none. This way there are no ”dangling” operations that can create

inconsistency in the database.

1Link: https://opensource.org/licenses
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Consistency Consistency ensures that all transactions will bring the database

from one valid state to another.

Isolation This property makes sure that if more transactions occur concurrently,

the result of the system state would be equal to a scenario where the transactions

were to be executed sequentially.

Durability A database system is said to be durable if when a transaction has

been committed it will remain so even if the whole system goes down.

PostgreSQL uses GiST (Generalized Search Tree) indexing, which also serves as

the foundation for the open source project PostGIS. GiST is a height-balanced tree

structure with tree nodes that contains predicate (p) and pointer (ptr) pairs. The

predicate is used as the search key, while the pointer points to the database record

associated with the key. GiST has the following properties:

• Each node contains between min and max index entries unless it is the root

• For each index entry (p,ptr) in a leaf node, p is true when instantiated with

the values from the indicated tuple (i.e., p holds for the tuple).

• For each index entry (p, ptr) in a non-leaf node, p is true when instantiated

with the values of any tuple reachable from ptr.

• The root has at least two children unless it is a leaf

• All leaves in the tree appear on the same level

A.2 PostGIS

PostGIS is an open source extension for postgres which adds support for geographic

objects and spatial queries to the PostgreSQL database system that was initially

released April 19, 2001. Geographical features that are supported are: Points,

LineStrings, Polygons, MultiPoints, MultiLineStrings, MultiPolygons and Geome-

tryCollections.

Furthermore, spatial predicates for determining interaction of geometries and spa-

tial operators, such as area, distance, union and di↵erence measurements are pro-

vided.
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A.3 Geospatial Data Abstraction Library (GDAL)

GDAL is a software library used to read, write and process both raster and vector

formats that have been georeferenced. GDAL is used by a large quantity of com-

puter programs, such as ArcGIS and QGIS, and holds support for 154 raster and

93 vector geospatial data formats [24].

In order to support the large variety of formats the library converts the data into

a single raster abstract data model [23] or a single vector abstract data model [25],

before it is presented to the calling application.

Typical use cases for GDAL are:

A.4 Tensorflow

Tensorflow is an open source software library used for dataflow programming, and

it is used for easy implementation of machine learning applications such as neural

networks. Tensorflow was developed by the Google Brain team for internal use at

Google, but was later released under the Apache 2.0 open source license2 in 2015.

Tensorflow has the ability to run on multiple CPUs and GPUs, and its computations

are expressed as a stateful dataflow graph, which is suitable for numeric processing.

A.5 Keras

Keras is an open source neural network library written in Python, designed to

enable fast experimentation with deep neural networks. The library runs on top

of Tensorflow and contains numerous implementations of commonly used neural

network building blocks.

2Link: https://www.apache.org/licenses/LICENSE-2.0
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Appendix B

SQL queries

This appendix present the SQL queries that is used to generate the di↵erent

datasets.

B.1 Binary Buildings

WITH area AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope ({
min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y

} : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) , ’ 8BUI ’ , {
c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM bygn i n g f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y } ,
{max x} , {max y} , 25833) ) AND c o l o r = 4

) ,

empty as (

SELECT s t a s r a s t e r (

st makeenvelope ({min x } , {min y } , {max x} , {max y} , 25833 ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {
max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , 0 , 0) as r a s t

)

SELECT ST AsGDALRaster ( s t un i on ( foo . rast , ’max ’ ) , ’ GTiff ’ )

FROM (
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SELECT r a s t FROM area

UNION SELECT r a s t FROM empty ) foo
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B.2 Binary Roads

WITH area AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope ({
min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y

} : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM v e g f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y } ,
{max x} , {max y} , 25833) ) AND c o l o r = 1

) ,

empty as (

SELECT s t a s r a s t e r (

st makeenvelope ({min x } , {min y } , {max x} , {max y} , 25833) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y

} : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , 0 , 0) as r a s t

)

SELECT ST AsGDALRaster ( s t un i on ( foo . rast , ’max ’ ) , ’ GTiff ’ )

FROM (

SELECT r a s t FROM area

UNION SELECT r a s t FROM empty ) foo
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B.3 Binary Vegetation

WITH area AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope ({
min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y

} : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM a r 5 f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y } ,
{max x} , {max y} , 25833) ) AND c o l o r = 3

) ,

area2 AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope ({
min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y

} : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM a r e a l b r u k f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y } ,
{max x} , {max y} , 25833) ) AND c o l o r = 3

) ,

empty as (

SELECT s t a s r a s t e r (

st makeenvelope ({min x } , {min y } , {max x} , {max y} , 25833) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y

} : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , 0 , 0) as r a s t

)

SELECT ST AsGDALRaster ( s t un i on ( foo . rast , ’max ’ ) , ’ GTiff ’ )

FROM (

SELECT r a s t FROM area

UNION SELECT r a s t FROM area2

UNION SELECT r a s t FROM empty ) foo
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B.4 Binary Water

WITH area AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope ({min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM vann f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y } , {max x} , {max y} , 25833)) AND c o l o r = 2

) ,

empty as (

SELECT s t a s r a s t e r (

st makeenvelope ({min x } , {min y } , {max x} , {max y} , 25833) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , 0 , 0) as r a s t

)

SELECT ST AsGDALRaster ( s t un i on ( foo . rast , ’max ’ ) , ’ GTiff ’ )

FROM (

SELECT r a s t FROM area

UNION SELECT r a s t FROM empty ) foo



140 APPENDIX B. SQL QUERIES

B.5 Multiclass Dataset

WITH area AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope

({min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT
, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 ,

25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM a r 5 f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y

} , {max x} , {max y} , 25833) ) AND c o l o r = 3

) ,

areatype AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope

({min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT
, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 ,

25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM a r e a l b r u k f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y

} , {max x} , {max y} , 25833) ) AND c o l o r = 3

) ,

roads AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope

({min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT
, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 ,

25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM v e g f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y

} , {max x} , {max y} , 25833) ) AND c o l o r = 1

) ,

bu i l d i n g s AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope

({min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT
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, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 ,

25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM bygn i n g f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y

} , {max x} , {max y} , 25833) ) AND c o l o r = 4

) ,

water AS (

SELECT s t a s r a s t e r ( s t i n t e r s e c t i o n (geom , st makeenvelope

({min x } , {min y } , {max x} , {max y} , 25833) ) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x } : :FLOAT
, {max y } : :FLOAT, { x s c a l e } , { y s c a l e } , 0 , 0 ,

25833) ,

’ 8BUI ’ , { c o l o r a t t r i b u t e } : :INTEGER, 0) as r a s t

FROM vann f l a t e

WHERE s t i n t e r s e c t s (geom , st makeenvelope ({min x } , {min y

} , {max x} , {max y} , 25833) ) AND c o l o r = 2

) ,

empty as (

SELECT s t a s r a s t e r (

st makeenvelope ({min x } , {min y } , {max x} ,
{max y} , 25833) ,

ST MakeEmptyRaster ({ x r e s } , { y r e s } , {min x

} : :FLOAT, {max y } : :FLOAT, { x s c a l e } , {
y s c a l e } , 0 , 0 , 25833) ,

’ 8BUI ’ , 0 , 0) as r a s t

)

SELECT ST AsGDALRaster ( s t un i on ( foo . rast , ’max ’ ) , ’ GTiff ’ )

FROM (

SELECT r a s t FROM area

UNION SELECT r a s t from areatype

UNION SELECT r a s t from roads

UNION SELECT r a s t from bu i l d i n g s

UNION SELECT r a s t from water

UNION SELECT r a s t from empty ) foo
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