

0 0.5 1 1.5
0

0.5

1

Y

X

(a) t = 120 s

0 0.5 1 1.5
0

0.5

1

Y

X

(b) t = 300 s

0 0.5 1 1.5
0

0.5

1

Y

X

(c) t = 600 s

0 0.5 1 1.5
0

0.5

1

Y

X

(d) t = 1000 s

Figure 2: Velocity vector field and the solid fraction at the XY - midplane
(Z = 0.5). (dark gray: fS > 0.95, light gray: 0.05 < fS < 0.95, white:
fS < 0.05) at different times.

8

0 0.5 1 1.5
0

0.5

1
Z

X

(a) t = 120 s

0 0.5 1 1.5
0

0.5

1
Z

X

(b) t = 300 s

0 0.5 1 1.5
0

0.5

1
Z

X

(c) t = 600 s

0 0.5 1 1.5
0

0.5

1
Z

X

(d) t = 1000 s

Figure 3: Velocity vector field and the solid fraction at the XZ - midplane
(Y = 0.5). (dark gray: fS > 0.95, light gray: 0.05 < fS < 0.95, white:
fS < 0.05) at different times.

9

Property Value Property Value

θH 1.0 K 1.0

θM 0.5 εPC 10−6

θC 0.0 εT 10−6

∆Fo 2.0 ∗ 10−5 εTT 10−6

Ar 1.0

Table 2: Simulation parameters for the dimensional study.

Property A B C

Ra 104 105 106

Pr 0.1 0.01 0.001

Ste 0.1 0.05 0.01

Fo 2.5 1.2 0.5

Table 3: Different values for the dimensional constants.

dependence that could yield a significant difference from the results presented
here.

3.2 Effects of the Governing Dimensionless Parameters

Three dimensionless numbers (Ra, Pr, Ste) appear in the governing equations
(1) to (4). A small graphical study is presented in this section, followed by a
sensitivity analysis in section 3.3. Values utilized in the graphical study can
be found in table 2, where the dimensional constants used for the graphical
representation can be found in table 3. Here, the simulations are only done in
2D.
Figures 4 indicates that an increase in any of the dimensional constants also
increase the overall melting speed. However, both the Prantl number and the
Rayleigh number seem to have some part in controlling the shape of the solid
liquid interphase.

3.3 Sensitivity Analysis

A more extensive sensitivity analysis of the specific impact the dimensional
parameters have on the global liquid fraction (FL) has also been done. From
experimental studies [5] [15] correlation to some dimensional group (Π) have
been attempted. For the 2D case presented here, an attempt was made at
finding a dimensional group for the global liquid fraction. From equation (17),
the goal is to estimate the parameters c1 to c5.

FL = Π = c1Ra
c2Prc3Stec4Foc5 (17)

The author recognizes that the physics is not correctly described in 2D, as al-
ready shown in section 3.1. From a quantitative perspective, the values acquired
for equation (17) will naturally not reflect the reality. However, the analysis will

10

0.5

0.5

X

Y

A

C

B

(a) Effect of the Rayleigh number. Here, Ste = 0.1,
Pr = 0.1, Fo = 2.5.

0.5

0.5

X

Y

A

C
B

(b) Effect of the Prantl number. Here, Ra = 105,
Ste = 0.1, Fo = 2.5.

0.5

0.5

X

Y

AC B

(c) Effect of the Stefan number. Here, Ra = 105,
Pr = 0.1, Fo = 2.5.

0.5

0.5

X

Y

A

C
B

(d) Effect of the Fourier number. Here, Ra = 105,
Pr = 0.1, Ste = 0.1.

Figure 4: Isolated variation in the dimensional parameters. Simulation parame-
ters can be found in table 2. For the three different cases A, B and C details are
listed in table 3. The arrow indicates direction of increasing values of Rayleigh,
Prantl, Stefan and Fourier, respectively. Note that the same relative increase in
Fo and Ste results in almost equivalent evolution of the solid - liquid interphase.

11

Parameter Min Max

Ra 103.5 106.5

Pr 10−2.3 10−0.8

Ste 10−3.3 10−0.8

Fo 0.0 2.5

Table 4: Range of the dimensional parameters used in the sensitivity analysis.

Property Value Property Value

θH 1.0 K 1.0

θM 0.01 εPC 10−6

θC 0.0 εT 10−6

Ar 1.0 εTT 10−6

Table 5: Simulation parameters for the sensitivity analysis.

reflect some of the qualitative aspects of the system. In total 15 simulations were
done on a 2D 50× 50 grid. Nine values of time (Fo) were chosen for each simu-
lation. In total 135 data points were acquired. All dimensional parameters were
chosen at random between the ranges indicated in table 4. In order to neglect
the dependence on the initial subcooling below fusion temperature, the melting
temperature was very close to the initial temperature. Further simulation pa-
rameters can be found in table 5. The time step chosen was small enough for
each simulation such that there were no issues with numerical instability. If the
solidifying front reached the right wall, the simulation ended.
From the resulting data acquired from the simulations it was sought to minimize
the Cost function defined by equation (18).

Cost = |c1Rac2Prc3Stec4Foc5 − FL| (18)

Figure 5a shows the simulated values together with a data fitted curve, while
5b presents the absolute deviation (∆) from the fitted curve. Π was found to
be:

Π = 0.577Ra0.106Pr0.068Ste0.529Fo0.619 (19)

Some similarities with the previously found correlations by Gau et.al. [5] are
worth noting (20). Gau et.al. tried to correlate the measured liquid fraction
with the dimensional group τ = SteFo, Ra and Ar. In this paper, the Stefan
and Fourier numbers are treated as separate variables. Fo and Ste seem to
have the largest impact on the liquid fraction in (19). The difference between
Gau et.al. and this analysis is the quantitative result. As Gau et.al. found
τ0.843 to correlate well with experimental result, the analysis undergone here
yielded Ste0.529 and Fo0.619 respectively. However, a somewhat larger depen-
dence on the Rayleigh number was found here (Ra0.106) compared to Gau et.al.
(Ra0.0504). The Liquid fraction seems to have a weak dependence on the Prantl
number (Pr0.068).

12

(a) Global liquid fraction, FL, as a function of the
dimensional group Π. The fitted line follows the curve
FL = 1.009Π− 0.003. R2 = 0.97

(b) Point wise deviation from the fitted line. Note the
bump around Π = 0.4.

Figure 5: Results from the sensitivity analysis. Here, it was found that
Π = 0.577Ra0.106Pr0.068Ste0.529Fo0.62.

[FL]Gau = 2.708(SteFo)0.843Ra0.0504A−0.14
r (20)

It was observed that some simulations kept the solid liquid interphase a nearly
vertical line, while others had a more curved interphase. Examples of this can
be seen in figure 4. It is hypothesized, that the interphase shape says something
about how convection dominated the system is. The interphase length S was
used as a measure of this. It is wort pointing out that a perfectly conduction
dominated system would have a constant interphase length of 1. Figure 6d
shows that some of the simulations experience a sudden increase in interphase
length S. This transition from conduction to convection is here characterized as
the sudden increase in S. As seen in figure 6a, the point at which the transition
occurs seems to happen at lower values of Π for higher values of Ra. Thus,
large Rayleigh numbers would indicate a more convection dominated system, as
expected. With regards to the Prantl number, the connection between figure
4b and 6b is not obvious. Figure 6b plots Π when the transition to convection
dominated behaviour occurs as a function the Prantl number. Figure 4b on the
other hand plots the position of the interphase for changes in Pr only. The two
results (figure 4b and 6b) may seem contradictory, but no conclusive remark
can be made due to the low coefficient of determination (R2) in figure 6b. The
Stefan number seem to be independent on whether or not the system transitions
to a convection dominated behaviour, but again the low R2 value makes any
conclusive remarks difficult.
In summary, figure 4 in section 3.2 and figure 6 in section 3.3 states that Rayleigh
and Prantl numbers seem to control the shape of the solid-liquid interphase,
while the Stefan and Fourier numbers have a larger impact on the global liquid
fraction.

13

(a) Transition to convective dominated heat transfer
as a function of the Rayleigh number

(b) Transition to convective dominated heat transfer
as a function of the Prantl number

(c) Transition to convective dominated heat transfer
as a function of the Stefan numbe

(d) Solid liquid interphase length S as a function of Π

Figure 6: Transition to convective dominated behaviour. Figure 6d shows the
sudden increase of the length (S) of the solid liquid interphase. S is a variable
attempting to say something about the shape of the solid liquid interphase.
Figures 6a, 6b and 6c plots the value Π at which the simulation experienced
a sudden increase in S as a function of Rayleigh, Prantl and Stefan numbers
respectively. Coefficient of determination is indicated by R2.

14

Property Value Property Value

θH 1.0 Ra 2.0 ∗ 107

θM 0.5 Pr 50

θC 0.0 Ste 50

Mould Height 1.0 εPC 10−6

Mould Width 1.0 εT 10−6

∆Fo 7.0 ∗ 10−7 εTT 10−6

Table 6: Simulation parameters for the Mould - Melt systems.

3.4 Mould - Melt System

In casting technology it is important to control the evolution of the solid-liquid
phase front. Though not accounted for in this paper, materials typically experi-
ence shrinkage during solidification. If a portion of melt is encapsulated within a
solidified area, the solidified part will most lightly develop pores. Therefore, de-
signing mould shapes that keep the last solidifying material in non-crucial areas
of the mould is essential. This section utilizes the previously described model to
emphasis the importance of including the convective currents occurring during
solidification. The author recognizes that no attention has been paid to model
undercooling, crystal precipitation or other effects typically influencing a solidi-
fying material [16]. Two cross sectional shapes are represented here: a Pipe and
a H-Beam. The simulations are in 2D, which could arguably be valid for systems
that stretch far out in the third dimension, so end effects can be neglected. 3D
flow structures could still develop, depending on the system. Simulations are
carried out on a 75 × 75 grid. Simulations was also carried out on a 85 × 85
grid. Here, the time it took for the domain to fully solidify was within 2% of
the 75× 75 grid, and the simulation was considered grid independent.
The shape is encapsulated in a mould which has pragmatically been given the
same physical properties as the melt with the exception that it is fully solid
during the whole simulation, and never undergoes a phase transition. Initially,
the fluid is at rest with temperature θH and the mould has a temperature θC .
The outer mould wall is kept at a constant cold temperature θC . The material
is considered pure, with a melting temperature of θM . Two key parameters have
been monitored. First, the placement of the nodes solidifying last and secondly
the time taken for the mold cavity to be fully solidified. These two parameters
have been compared to a cases where natural convection have been neglected.
Figure 7 shows the evolution of the solid-liquid phasefront with and without

Shape Convection Solidification time (Fo) Final solid point (X, Y)

H −Beam Y es 0.032 (0.50, 0.59)

H −Beam No 0.040 (0.50, 0.50)

Pipe Y es 0.0284 (0.50, 0, 65)

Pipe No 0.0285 Concentric inner circle

Table 7: Results for the Mould - Melt systems.

15

0.5

0.5

Y

X
(a) Fo=0.01

0.5

0.5

Y

X
(b) Fo=0.009

0.5

0.5

Y

X
(c) Fo=0.02

0.5

0.5

Y

X
(d) Fo=0.015

0.5

0.5

Y

X
(e) Fo=0.03

0.5

0.5

Y

X
(f) Fo=0.025

Figure 7: Solid liquid phase front (fS = 0.5) at different times. Dashed: Con-
duction only. Solid: Convection and conduction. The thick line indicates the
mould shape.

16

natural convection. A clear difference is observed for all cases. Firstly, by
including convection, the final solidifying point tends to move upwards. This
is due to hot fluid being transported by convective currents in the positive Y-
direction. Secondly, another effect induced by convection is that the fluid tends
to solidify faster. For the tube, this effect is only marginally noticeable (less
than 2%), but quite significant for the H-beam. The numerical values are listed
in table 7.

4 Conclusion

Simulations shows that a full 3D description of the physics is necessary for
achieving accurate results as demonstrated here and by Ben-David et.al. [8].
From an implementation aspect, extending the original 2D algorithm presented
by Rømcke et.al. [12] to a full 3D model was straight forward. The 2D sensitiv-
ity analysis conducted here also revealed some similarities to previously found
correlations, but a notable numerical difference. Interestingly, for the domain
tested here, the Prantl and Rayleigh numbers had a relatively small influence
on the evolution of the global liquid fraction. The dominating parameters with
regards to the global liquid fraction were the Fourier and Stefan numbers. How-
ever, it is worth pointing out that Prantl and Rayleigh had an impact on the
shape of the solid liquid interphase. Notably the low R2 values when trying
to correlate the conduction-convection transition makes any conclusive remarks
difficult. However, the approach presented here might be a useful framework
for future studies. The importance of the convective currents has also been
demonstrated for some interesting mould - melt systems.

References

[1] E.M. Sparrow, J.W. Ramsey, and R.G. Kemink. Freezing controlled by
natural convection. Journal of Heat Transfer, 101:578–584, November 1979.

[2] K. Morgan. A numerical analysis of freezing and melting with convec-
tion. Computer Methods in Applied Mechanics and Engineering, 28:275–
284, 1980.

[3] V.R. Voller and M. Cross. Accurate solutions of moving boundary problems
using the enthalpy method. International Journal Heat and Mass transfer,
24:545–556, 1980.

[4] J.R. Ockedon and W.R. Hodgkins. Moving boundary problems in heat flow
and diffusion. Oxford Univ. Press, Oxford, 1975.

[5] C. Gau and R.Viskanta. Melting and solidification of a pure metal on a
vertical wall. Journal of Heat Transfer, 108:174–181, February 1986.

[6] V.R. Voller and C. Prakash. A fixed grid numerical modelling methodology
for convection-diffusion mushy region phase-change problems. International
Journal of Heat and Mass Transfer, 30:1709–1719, 1987.

[7] A. König-Haagen, E. Franquet, E. Pernot, and D. Brüggermann. A com-
prehensive benchmark of fixed-grid methods for the modelling of melting.
International Journal of Thermal Sciences, 118:69–103, 2017.

17

[8] O. Ben-David, A. Levy, B. Mikailovich, and A. Azulay. 3d numerical and
experimental study of gallium melting in a rectangular container. Interna-
tional Journal of Numerical Heat and Mass Transfer, 67:260–271, 2013.

[9] B. Niezgoda-Żelasko. The enthalpy-porosity method applied to the mod-
elling of the ice slurry process during tube flow. Procedia Engineering,
157:114–121, 2016.

[10] V.R. Voller, C.R. Swaminathan, and B.G. Thomas. Fixed grid techniques
for phase change problems: a review. International Journal for Numerical
Methods in Engineering, 30:875–898, 1990.

[11] V.R. Voller and C.R. Swaminathan. General source-based method for so-
lidification phase change. Numerical Heat Transfer, 19:175–189, 1991.

[12] O. Rø mcke. A projection method for convection dominated phase transi-
tions (unpublished). Preprint submitted to Journal of Applied Mathematical
Modelling, 2018.

[13] N.R. Morgan. A New Liquid-Vapor Phase Transition Technique For The
Level-Set Method. PhD thesis, Georgia Institute of Technology, 2005.

[14] F.H. Harlow and J.E Welch. Numerical calculation of time-dependent vis-
cous incompressible flow of fluid with free surface. The Physics of Fluids,
8:2182–2189, 1965.

[15] C.J. Ho and R. Viskanta. Heat transfer during melting from an isothermal
vertical wall. Journal of Heat Transfer, 106:12–19, 1984.

[16] D.A. Porter, K.E. Easterling, and M.Y. Sherif. Phase Transformation in
Metals and Alloys. CRC press, third edition, 2009.

18

5 Trails and Tribulations

This section aims at presenting the work not necessarily presented in the articles, but was key stepping
stones towards the development of the final model. The sparse matrix solver, choice of discretization and
boundary conditions are fundamental with regards to this. In addition, the fluid model was compared to
an analytic solution to the pressure driven channel problem and attempts at simulating more complex
phase transition behaviour other than pure materials was also done. For a thorough derivation of the
full model, the reader is referred to article 1.

5.1 Notes on the Buckingham-Π Theorem

The Buckingham-Π theorem loosely states that a system of v variables involving d physical dimensions
can be described by a set of p = v − d non-dimensional parameters. On its simplest form with constant
physical properties, the system studied in this thesis have v = 16 variables (t, ui, p, T , fS , xi, cpl,
kl, ρl, µ, g, β, H, D, ∆T , L) spanning d = 4 fundamental dimensions ([Distance], [Mass], [Time],
[Temperature]). By the Buckingham-Π theorem, the system should be described by p = 12 non-
dimensional groups. However, ignoring CP and K which account for changing physical properties, only
10 Π-groups are identified from the scaling of the governing equations in article 1 and 2:

Π1 =
uiH

αl
= Ui, Π2 =

T − TC
∆T

= θ, Π3 =
pH2

ρlα2
l

= P, Π4 =
xi
H

= Xi, Π5 =
tαl
H2

= Fo

Π6 =
ν

αl
= Pr, Π7 =

gβ∆TH3

ναl
= Ra, Π8 =

ρlcpl∆T

L
= Ste, Π9 =

D

H
= Ar, Π10 = fS

Here, αl = kl
cplρl

and ν = µ
ρl

. All these non-dimensional groups (Π1 - Π10) have an intuitive physical

meaning. Some questions arise:

• What are the two remaining groups; Π11 and Π12?

• How can they (e.i. Π11 and Π12) be defined in such a way that they have some physical intuitive
meaning?

• What effect do they have on the system?

• In article 2, the global liquid fraction FL and the non-dimensional group Π were defined. Are they
good candidates for Π11 and Π12? FL clearly represents the global liquid fraction, but are there
some intuitive physical interpretation of Π from article 2?

• Could some manipulation of the governing equation (derivation, integration, substitution, ect.)
reveal a Π-group that the current form does not show?

This thesis does not investigate these questions any further, but it is recognized that answering them
could potentially yield a deeper understanding of the physics involved.

51

Figure 1: (Left) A 3D cell in a staggered grid. The velocity vectors (U , V , W) are indicated on the cell
phases, while the intensive properties (P , θ, fS) are placed in the cell center. Superscript (n) indicates
discrete time step. Subscript (h, k, l) indicates discrete position in (X, Y , Z) direction respectively.
(Right) Neighbouring cell notation.

5.2 Discretization and Boundaries

The discretization of the energy equation and the momentum equation is only mentioned in article 1 and
2. To summarize, the domain is meshed as a staggered grid. The preliminary velocity field is discretized
by a FTCS scheme, while the preliminary temperature field is discretized by a BTCS scheme. Boundary
conditions handled throughout this report is constant temperature, zero gradient pressure, no-slip for
the velocity and zero gradient for pressure. Additionally, zero gradient for velocity and constant pressure
is addressed in the pressure driven channel case. This section only deals with the 3D discretization. A
single 3D grid cell is presented in figure 1. Note that the velocities are defined as U , V , W instead of
U1, U2, U3 which has been the convention used in article 1 and 2. In this section the equations will be
written out in its full form, thus it is easier to define the variables in terms of U , V , W to avoid a lot of
subscripts that would make the syntax difficult to read. Code snippets are included in the appendix.

5.2.1 FTCS - Momentum Equations

For the calculation of the preliminary velocity field in the projection method, a Forward-Time-Central-
Space (FTCS) scheme is used. The velocities are calculated accordingly:

X-Direction:
Ûh,k,l = Un−1h,k,l + ∆Fo (−∇PX − FUX − FUY − FUZ + Pr ∗ V iscU) (1)

with

∇PX =
Pn−1h+1,k,l − Pn−1h,k,l

∆X

FUX =
(Un−1h,k,l + Un−1h+1,k,l)

2 − (Un−1h−1,k,l + Un−1h,k,l)
2

4∆X

FUY =
(V n−1h,k,l + V n−1h+1,k,l)(U

n−1
h,k,l + Un−1h,k+1,l)− (V n−1h,k−1,l + V n−1h+1,k−1,l)(U

n−1
h,k−1,l + Un−1h,k,l)

4∆Y

FUZ =
(Wn−1

h,k,l +Wn−1
h+1,k,l)(U

n−1
h,k,l + Un−1h,k,l+1)− (Wn−1

h,k,l−1 +Wn−1
h+1,k,l−1)(Un−1h,k,l−1 + Un−1h,k,l)

4∆Z

V iscU =
Un−1h+1,k,l − 2Un−1h,k,l + Un−1h−1,k,l

∆X
+
Un−1h,k+1,l − 2Un−1h,k,l + Un−1h,k−1,l

∆Y
+
Un−1h,k,l+1 − 2Un−1h,k,l + Un−1h,k,l−1

∆Z

Y-Direction:

V̂h,k,l = V n−1h,k,l + ∆Fo (−∇PY − FVX − FVY − FVZ + Pr ∗ V iscV + FB) (2)

52

with

FB =
1

2
PrRa(θn−1h,k,l + θn−1h,k+1,l)

∇PY =
Pn−1h,k+1,l − Pn−1h,k,l

∆Y

FVX =
(Un−1h,k,l + Un−1h,k+1,l)(V

n−1
h,k,l + V n−1h,k+1,l)− (Un−1h−1,k,l + Un−1h−1,k+1,l)(V

n−1
h−1,k,l + V n−1h,k,l)

4∆X

FVY =
(V n−1h,k,l + V n−1h,k+1,l)

2 − (V n−1h,k−1,l + V n−1h,k,l)
2

4∆Y

FVZ =
(Wn−1

h,k,l +Wn−1
h,k+1,l)(V

n−1
h,k,l + V n−1h,k,l+1)− (Wn−1

h,k,l−1 +Wn−1
h,k+1,l−1)(V n−1h,k,l−1 + V n−1h,k,l)

4∆Z

V iscV =
V n−1h+1,k,l − 2V n−1h,k,l + V n−1h−1,k,l

∆X
+
V n−1h,k+1,l − 2V n−1h,k,l + V n−1h,k−1,l

∆Y
+
V n−1h,k,l+1 − 2V n−1h,k,l + V n−1h,k,l−1

∆Z

Z-Direction:

Ŵh,k,l = Wn−1
h,k,l + ∆Fo (−∇PZ − FWX − FWY − FWZ + Pr ∗ V iscW) (3)

with

∇PZ =
Pn−1h,k,l+1 − Pn−1h,k,l

∆Z

FWX =
(Un−1h,k,l + Un−1h,k,l+1)(Wn−1

h,k,l +Wn−1
h+1,k,l)− (Un−1h−1,k,l + Un−1h−1,k,l+1)(Wn−1

h−1,k,l +Wn−1
h,k,l)

4∆X

FWY =
(V n−1h,k,l + V n−1h,k,l+1)(Wn−1

h,k,l +Wn−1
h,k+1,l)− (V n−1h,k−1,l + V n−1h,k−1,l+1)(Wn−1

h,k−1,l +Wn−1
h,k,l)

4∆Y

FWZ =
(Wn−1

h,k,l +Wn−1
h,k,l+1)2 − (Wn−1

h,k,l−1 +Wn−1
h,k,l)

2

4∆Z

V iscW =
Wn−1
h+1,k,l − 2Wn−1

h,k,l +Wn−1
h−1,k,l

∆X
+
Wn−1
h,k+1,l − 2Wn−1

h,k,l +Wn−1
h,k−1,l

∆Y
+
Wn−1
h,k,l+1 − 2Wn−1

h,k,l +Wn−1
h,k,l−1

∆Z

Note that the pressure field from the previous time step is used here. V isc denotes the viscous term, while
FU , FV and FW denotes the advective terms of U , V and W respectivly in their indicated directions.

5.2.2 Pressure Correction

After the preliminary velocities are calculated, the correct pressure field needs to be established. The
pressure correction also works as a basis for correcting the velocities. Discretizing the Poisson equation
for the pressure correction results in a linear system of equations. One line of this matrix system can be
presented accordingly:

[
aF aN aE aC aW aS aB

]




∆Ph,k,l+1

∆Ph,k+1,l

∆Ph+1,k,l

∆Ph,k,l
∆Ph−1,k,l
∆Ph,k−1,l
∆Ph,k,l−1




=
Ûh,k,l − Ûh−1,k,l

∆X
+
V̂h,k,l − V̂h,k−1,l

∆Y
+
Ŵh,k,l − Ŵh,k,l−1

∆Z

(4)
with

aE =
1

∆X2
aW =

1

∆X2

aN =
1

∆Y 2
aS =

1

∆Y 2

aF =
1

∆Z2
aB =

1

∆Z2

aP = − (aE + aW + aN + aS + aF + aB)

53

The result is a sparse matrix system which is solved with a conjugated gradient method. When a
satisfactory convergence criterion is reached pressure and velocities are updated according to (5) (6) (7)
(8).

Pn = Pn−1h,k,l + ∆P (5)

Unh,k,l =Ûh,k,l −∆Fo
∆Ph+1,k,l −∆Ph,k,l

∆X
(6)

V nh,k,l =V̂h,k,l −∆Fo
∆Ph,k+1,l −∆Ph,k,l

∆Y
(7)

Wn
h,k,l =Ŵh,k,l −∆Fo

∆Ph,k,l+1 −∆Ph,k,l
∆Z

(8)

5.2.3 BTCS - Energy Equation

When calculating the preliminary temperature field (θ̂) in the projection method for phase transition
problems derived in article 1, a Backward-Time-Central-Space (BTCS) scheme is used. The result is
a linear system of equations. One line of the general form of this matrix system can be presented
accordingly:

[
aF aN aE aC aW aS aB

]




θ̂h,k,l+1

θ̂h,k+1,l

θ̂h+1,k,l

θ̂h,k,l
θ̂h−1,k,l
θ̂h,k−1,l
θ̂h,k,l−1




= a0θ
n−1
h,k,l (9)

with

aE =
Unh,k,l
2∆X

−
Kn−1
h,k,l

∆X2
−
Kn−1
h+1,k,l −Kn−1

h−1,k,l
4∆X2

aW = −
Unh−1,k,l

2∆X
−
Kn−1
h,k,l

∆X2
+
Kn−1
h+1,k,l −Kn−1

h−1,k,l
4∆X2

aN =
V nh,k,l
2∆Y

−
Kn−1
h,k,l

∆Y 2
−
Kn−1
h,k+1,l −Kn−1

h,k−1,l
4∆Y 2

aS = −
V nh,k−1,l

2∆Y
−
Kn−1
h,k,l

∆Y 2
+
Kn−1
h,k+1,l −Kn−1

h,k−1,l
4∆Y 2

aF =
Wn
h,k,l

2∆Z
−
Kn−1
h,k,l

∆Z2
−
Kn−1
h,k,l+1 −Kn−1

h,k,l−1
4∆Z2

aB = −
Wn
h,k,l−1
2∆Z

−
Kn−1
h,k,l

∆Z2
+
Kn−1
h,k,l+1 −Kn−1

h,k,l−1
4∆Z2

aP = 4Kn−1
h,k,l

(
1

∆X2
+

1

∆Y 2
+

1

∆Z2

)

a0 =
1

∆Fo
aC = aE + aW + aN + aS + aF + aB + aP + a0

Here, K represents the thermal heat conduction ratio defined in article 1. The result is a sparse matrix
system which is solved with a conjugated gradient method.

5.2.4 Solid Fraction Correction

The correction of the solid fraction is thoroughly explained in article 1. The Secant method will not be
explained further here, but how this method is implemented in the program can be found in appendix
A.7. A graphical interpretation of the overall thermal solution algorithm is presented in the appendix of
article 1, and the reader is referred there.

54

(a) Node placement near boundary. e denotes a generic
property (i.e. P , fS , θ, ect.).

(b) ghost cell placement

Figure 2: Property value near boundary (a) and position of ghost cells (b).

5.2.5 Boundary Conditions

This model utilizes one layer of ghost cells outside the domain in order to enforce the different boundary
conditions. See figure 2b. This yields boundary conditions of the first order in space. Boundary conditions
encountered in this paper can be divided into two types: Neumann (known gradient) and Dirichlet (known
value). The Neumann boundaries are zero gradient for pressure at walls, zero gradient for temperature at
thermally insulated walls and zero gradient for velocities at outlet and inlet boundary conditions where
velocity is not necessarily known. The Dirichlet boundaries are no-slip and no penetration velocities
at walls, known temperature and known pressure. Using the convention from figure 2a, zero gradient
boundary conditions can be described by equation (10).

edomain − eghost
∆X

= 0

eghost = edomain

(10)

As an example the west node denoted W is a ghost node outside the domain. For a general linear system
with zero gradient boundary, this will result in:

[
aF aN aE (aC + aW) aS aB

]




eh,k,l+1

eh,k+1,l

eh+1,k,l

eh,k,l
eh,k−1,l
eh,k,l−1




= Forcing term (11)

Say both the west (W) and south (S) nodes are ghost nodes with zero gradient boundary, the linear
system reduces to:

[
aF aN aE (aC + aW + aS) aB

]




eh,k,l+1

eh,k+1,l

eh+1,k,l

eh,k,l
eh,k,l−1




= Forcing term (12)

This trend extends further if more neighbouring cells are ghost nodes with zero gradient boundary
condition. Following the convention in figure 2a, the Dirichlet boundary states:

1

2
(edomain + eghost) = ewall

eghost = 2ewall − edomain
(13)

As an example the west node denoted W is a ghost node outside the domain. For a general linear system
this will result in:

55

[
aF aN aE (aC − aW) aS aB

]




eh,k,l+1

eh,k+1,l

eh+1,k,l

eh,k,l
eh,k−1,l
eh,k,l−1




= Forcing term− 2aW ewall (14)

The extension is trivial if more neighbouring cells are a Dirichlet boundary. However, wall boundaries
are simplified for pressure (zero gradient). The ghost cells are initially simply defined as dead fluid
cells, and the live-dead fluid cell method described in article 1 is used. This upholds the zero gradient
condition for pressure, but the the wall will in effect be half a computational cell outside the actual wall
for the calculated velocities. Thus velocity boundary values at the wall for the FTCS scheme needs to be
calculated. As a staggered grid has been used, all tangential velocities will follow the convention in figure
2a for the no-slip boundary. These are calculated according to (18) with the known tangential velocity
at the wall equal zero. Due to the staggered grid, velocities normal to the wall are placed directly on the
wall phase. To uphold the no penetration boundary these normal velocities on the wall are simply equal
zero.
Constant pressure boundary is upheld by setting the pressure at the first computational cell inside the
domain equal the known pressure. Knowing that the pressure correction should equal zero in this node,
as pressure does not change, it is defined in the pressure correction sparse matrix by

[
0 0 0 aC 0 0 0

]




∆Ph,k,l+1

∆Ph,k+1,l

∆Ph+1,k,l

∆Ph,k,l
∆Ph−1,k,l
∆Ph,k−1,l
∆Ph,k,l−1




= 0, aC = −10−8 (15)

Notably, the method presented here needs no boundary conditions for the solid fraction. For cosmetic
purposes a zero gradient boundary condition has been applied to the solid fraction (fS) at the walls.
Code snippets are provided in appendix A.2 for the velocities and in appendix A.8 for the thermal
boundary conditions. Keep in mind that boundary conditions for pressure and temperature are hard
coded into the matrix-vector equations. The boundary conditions for temperature calculated in A.8 is
purely cosmetic.

56

5.3 Conjugated Gradient and Storage Format

The conjugated gradient algorithm used here are in large part taken from the master thesis of A.
Bøckmann [1]. The main changes done to the CG-subroutine is to be able to monitor iterations and
residuals. Interested readers are also referred to [2]. By acknowledging that both the Poisson pressure
correction matrix system (4) and the BTCS formulation of the energy equation (9) yields symmetric and
positive definite matrices the conjugate gradient method is a viable solution strategy. The idea behind
the Krylov subspace methods, which includes the CG-method, is to solve the matrix equation

Ax = b (16)

by minimizing the function

f(x) =
1

2
xTAx− bTx+ c (17)

The CG algorithm only consists of a few line of code:

d0 = r0 = b−Ax

αm =
rTmrm
dTmAdm

xm+1 = xm + αmdm

rm+1 = rm −Adm

βm+1 =
rTm+1rm+1

rTmrm

dm+1 = rm+1 + βm+1dm

(18)

Here, the iterations are ended when a maximum number of iterations have been reached or the L1 norm
of the residual full fill some convergence criterion. An effect of this method is that if the eigenvalues of
A is clustered, the algorithm converges faster. One common method to exploit this effect is to alter the
system Ax = b by multiplying both sides by a matrix M−1, which is sought to approximate A−1. This is
called preconditioning and several algorithms for finding the conditioner matrix M has been developed.
Jacobi, Gauss-Seidel, Incomplete Cholesky factorization and Incomplete LU factorization are just a few.
Though not implemented in this algorithm, much of the efficiency of the Krylov subspace methods lies
in finding a good preconditioner matrix, M .
The largest sparse matrix systems generated during the simulations have been in the magnitude of 250000
by 250000. However, for such large systems, about 1 in 5000 entries of the matrix are occupied by non
zero entries. Storing all entries in the sparse matrix is very inefficient. A compressed row storage format
has thus been utilized. This format consists of one list of non-zero entries of the matrix A, one list
indicating the row indices (Ai) and another list for the column indices (Aj). An example is provided in
(19). This format might lead to some inefficiencies if one wants to extract a particular entry in A as a
search through the row and column indices lists is necessary. However, The CG- algorithm only needs
vector-vector and matrix-vector multiplications which is easily handled.

A =




0.0 2.8 5.2 0.0
0.0 3.6 0.0 2.5
7.1 8.5 1.9 0.0
0.0 0.0 0.0 2.6


 Ai =




1
1
2
2
3
3
3
4




Aj =




2
3
2
4
1
2
3
4




(19)

How the sparse matrix-vector system for the pressure correction is generated can be found in appendix
A.4 and how the matrix-vector system for the energy equation is generated can be found in appendix
A.6. The CG-algorithm, matrix-vector and vector-vector multiplications are found in appendix A.9.

57

(a) Physical domain (b) Numerical domain

Figure 3: Physical (a) and numerical (b) domain. W represents channel length. Note the change in
origo.

5.4 Pressure Driven Channel

The pressure driven channel flow was used as an initial verification of the fluid model. Two parallel plates
serves as the channel boundaries, while a constant pressure gradient in the x - direction is the driving
force for the flow. The upper and lower walls have a no slip boundary for the velocity. This channel
flow can be reduced to a 1D problem governed by (20) on dimensional form and (21) on non-dimensional
form. An analytic solution to the 1D problem (21) is derived by R. Kristoffersen [3], and represented
here by equation (22). This analytic solution is treated as a finite sum of 200 summations and compared
to the simulated results.

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(20)

With the scaling,

U =
u

uref
, X =

x

h
, Y =

y

h
, P =

p

ρu2ref
, τ =

tν

h2
,

the non-dimensional form of equation (20) can be written as

∂U

∂τ
= a+

∂2U

∂Y 2
, a = − ∂P

∂X
Re (21)

with corresponding analytic solution

U(Y, τ) = 1− Y 2 +

∞∑

n=1

2a

λ3n
(−1)ncos(λnY)e−λ

2
nτ , λ = (2n− 1)

π

2
a = 2 (22)

The physical and numerical domains are shown graphically in figure 3. Numerically, this is solved as a
2D problem. Inlet and outlet have a constant pressures corresponding to the desired pressure gradient
and the velocities are handled as zero gradient. At the walls however, the velocities are treated as a
no-slip an no-penetration boundaries and the pressure as a zero gradient.
The simulation was conducted on a coarse 2 by 8 grid with a channel length of W = 0.5 and a total
channel height of 2h = 2.0. Simulation time was set to τ = 2.5 with a time step of ∆τ = 10−4 The inlet
and outlet pressure was set to uphold a = Re(Pin − Pout)/W = 2. Grid- and time step independence
was insured. Resulting velocities are plotted in figure 4. Global conservation of mass (MG, see article 1
and 2) stayed equal zero (smaller than the resolution of the floating point numbers) and residuals from
the pressure-correction equation was kept below the convergence criterion of εPC = 10−8. The result
was considered satisfactory.

58

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

U

Y

2.5

0.4

0.2

0.1

0.05

Figure 4: Resulting velocity profile at different time values indicated on the figure. Squares: Ana-
lytic, Line: Simulation. The Y values for the analytic solution is simply translated after calculation to
correspond to the numerical domain

59

Figure 5: schematic representation of the calculation domain of the 1D unit bar.

5.5 Phase Transition of Mixtures

Both article 1 and article 2 deals with pure materials. For relatively pure materials the the inverse of
the solid fraction - temperature relation (F (θ)) is simply equal the constant melting temperature. In
both nature and industrial processes, pure materials are rarely encountered. For the phase transition
algorithm derived in this thesis to be of any practical use, extension more complex phase transition
behaviour needs to be addressed. Three different behaviours are studied in this section.

1. Linear (F1(θ)): The substance gradually transitions with a linear relation from fully solid at θS
to fully liquid at θL. From a numerical perspective, this should not have any significant difference
from the pure case, as ξ() remains a first order polynomial.

2. Linear-Eutectic (F2(θ)): At some constant temperature θS the material melts as if it behaved
like a pure material, but below some critical eutectic solid fraction fe, the material melts with a
linear relation with temperature until fully melted at θL. Numerically, the interesting aspect is the
transition between the two domains; eutectic transition (as if the material was a pure substance)
to mushy zone transition (estimated as a linear relation).

3. Exponential (F3(θ)): The substance gradually transitions from fully solid at θS to fully liquid at θL
with an exponential relation. The mathematical description does not necessarily reflect nature, but
from a numerical perspective the non-linear relation is an interesting test case for the algorithm.

The domain used to study the different solid fraction - temperature relations is a simple 1D unit length
bar with constant temperature boundaries. Right boundary has a temperature θC below, while the
left wall has a temperature θH above the fusion temperature range (θS to θL). Initially the bar is
fully solid and temperature is equal θC in the whole domain. Any fluid movement is ignored, so the
governing equations on non-dimensional form with constant physical properties is represented by the
energy equation (23) and material dependent relation (24). The dimensional scaling is similar to that
used in article 2.

∂θ

∂Fo
=

∂2θ

∂X2
+

1

Ste

∂fS
∂Fo

(23)

fS = F (θ) (24)

A schematic representation of the domain is presented by figure 5 and simulation parameters are listed
in table 1.
As indicated in article 1 the inverse function of (24) is used during the simulation. Here, no specific care
is taken towards modeling an actual physical substance other than being fully solid at θS and fully liquid
at θL. The three inverse variations of (24) are defined as:

F−11 (fS) = θL + (θS − θL)fS (25)

F−12 (fS) = max(θL + (θS − θL)
fS
fe
, θS) (26)

F−13 (fS) = θL + (θS − θL)
eβfS − 1

eβ − 1
(27)

60

Parameter Value

Cells 100

Ste 1.0

∆Fo 0.0001

θC 0.0

θH 1.0

θS 0.2

θL 0.8

fe 0.5

Table 1: Simulation parameters for the 1D bar.

(a) (b)

Figure 6: Solid fraction - Temperature relation. Dash-dot line/open square: linear, solid line/filled
square: linear-eutectic, dashed line/open triangle: exponential (β = −3.0), dotted line/filled triangle:
exponential (β = 3.0). 6a: Target fS-θ plot. Phase transition domain indicated by horizontal and
vertical lines. 6b: Simulated fS-θ plot. Note how the solid fraction limiter ensures fS in the range 0.0 -
1.0. Values are here taken at Fo = 0.02, 0.15 and 1.0. Not all nodes at all times are represented on the
figure, as it would make the figure difficult to read.

Here, fe indicates the eutectic solid fraction (26), while β controls the shape of the exponential relation
(27). By l’Hôpotal it can be shown that limβ→0 F

−1
3 (fS) = F−11 (fS). The different relations are plotted

in figure 6a. Note here that the only criterion is that the functions (25) to (27) passes through the points
[fS = 1.0, θ = θS] and [fS = 0.0, θ = θL], respectively indicating fully solid and fully liquid. How F−1()
is defined in the program has been listed in appendix A.10.
For the preliminary calculation of the temperature field, θ̂, (23) is discretized by a BTCS scheme.
Following the algorithm outlined in article 1 the change in solid fraction is ignored during this step. The
solid fraction correction is found using the pointwise Secant method as described in article 1.
As suspected, figure 8 indicates that there is some added resistance to the evolution of temperature when
a material undergoes a change of phase. From (23) it is obvious that some of the energy is used to change
the temperature, while some is used to change to solid fraction. However, the amount of resistance seem
to greatly depend on the shape of function (24). Figure 6 shows the target and simulated values for the
fs-θ relation. The nodes seem to follow the solid fraction-temperature relation quite well.

Both the linearly transitioning case (25) and the exponential transitioning (27) had no difficulty converg-
ing with the Secant method. However, the linear-eutectic case (26) showed some issues with converging.
Both the purely transitioning and linearly transitioning parts of (26) by them selves only needs two
iterations in order to find a convergent result. When transitioning from one domain to the other how-
ever, the algorithm needs some additional iterations in order for these nodes to reach convergence. As
convergence is defined when a global convergence criterion is satisfied, this means that all nodes that

61

(a) Linear (b) Linear-Eutectic

(c) Exponential (β = −3.0) (d) Exponential (β = 3.0)

Figure 7: Evolution of the local solid fraction in a 1D bar. Dimensionless time (Fo) is indicated on the
figures

62

Figure 8: Temperature evolution in the bar. Dimensionless time (Fo) is indicated on the figure. Open
square: linear, filled square: linear-eutectic, open triangle: exponential (β = −3.0), filled triangle:
exponential (β = 3.0), open circle: No phase change.

63

had converged still iterated to find better solutions. By it self this is not necessarily a problem, but the
FORTRAN floating point numbers had some issues with dividing by close-to-zero values, which yielded
strange results. This issue was simply solved by defining a local convergence criterion for each node and
only iterating on nodes that had not satisfied this. The local convergence criterion was set to the global
criterion divided by the number of cells. As a result, the algorithm need up to six iterations, and not
two as in the linear case. However, this had no significant impact on simulation efficiency. Additionally,
the algorithm was tested with a linear eutectic case with a Stefan number of Ste = 100 and time step
of Fo = 0.2. This test showed that the algorithm, from a numerical point of view, had no problem with
transitioning several nodes from fully solid to fully liquid in one time step. The down side was that at
some stages about 150 iterations was needed for the solid fraction correction and the simulation time
was doubled.

64

6 Concluding Remarks

A fairly simple algorithm for solving convection dominated phase transitions has been derived and
tested. The idea behind the phase transition algorithm is based on the Projection method used for
solving Navier-Stokes, and should be familiar to those who have worked with CFD. The algorithm has
been proven relatively accurate, efficient and robust. It has been expanded to 3D and yielded OK fit with
experimental results. Further, the nature of the phase transition algorithm and not solving Navier-Stokes
in the solid region had a significant impact on the computational efficiency. In addition, the algorithm
have been proven able to handle discontinuities in the solid fraction - temperature relation, and able to
fully transition several nodes in one time step.
Although the algorithm had its benefits, it still took a couple of days for a full 3D simulation on a
50 × 50 × 75 grid to finish. A large part of the computational time was spent on solving the pressure
correction equation. One idea was to extend the model such that a multiphase flow could be handled.
This could open the model to further use of industrial interest, such as mould filling during casting,
shrinkage during phase transition, ect. The master thesis by A. Bøckmann [1] is an extensive report on
a similar fluid model implemented with a level-set solver. Similarly, the conjugate gradient solver was
identified as one of the aspects that needed improvement for a more efficient simulation. If the model
is to be extended or larger calculation domain is required, it is recommended that the current matrix
equation solver is revised. This is one of the reasons why the extensive sensitivity analysis in article 2
was conducted in 2D.
A short literature study was conducted on solid - liquid interaction. Due to the success of the zeroth order
live-dead fluid cell method shown in article 1, no attempts were made at higher order interpolation scheme
for a better resolution of the solid-liquid interphase. However, it would be an interesting extension. There
are a lot of literature on the immersed boundary methods for solid liquid interaction on arbitrary shapes
or with non-conformal meshes [4], [5], [6], [7], [8], [9].
As briefly mentioned in article 2, the process of solidification can be a quite complex process. As
demonstrated in the literature, it was deemed difficult to get a consistent result for the solidifying cavity
case [10]. Crystal precipitation, growth of dendrites and undercooling are some of the effects that can
have a significant impact on the solution. This makes the over all transformation kinetics quite complex
and was considered beyond the scope of this thesis. However, the Avrami-equation [11] have been
identified as one possible way of expanding the solid fraction - temperature relation to include some of
this behaviour.
A final note on further work would be to point out the two ”missing” non-dimensional parameters, which
was identified in section 5.1. Answering the questions outlined there could yield a deeper understanding
of the physical process.

65

References

[1] A. Bøckmann. Efficiency improvement of numerical flow simulation. Master thesis, The Norwegian
University of Science and Technology, Department of Energy and Process Engineering, 2007.

[2] J.R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. 1994.

[3] R. Kristoffersen. A navier-stokes solver using the multigrid method. Dissertation, The Norwegian
Institute of Technology, Department of Applied Mechanics, Thermo- and Fluid Dynamics, 1994.

[4] E. Khalili. Fluid-structure interaction and immersed boundary method for the compressible navier-
stokes equations using high order methods. Phd thesis, The Norwegian University of Science and
Technology, Department of Energy and Process Engineering, 2018.

[5] A. A. Skøien. Cartesian grid methods for the compressible navier-stokes equations. Master thesis,
The Norwegian University of Science and Technology, Department of Energy and Process Engineer-
ing, 2012.

[6] Y. Tseng and J. H. Ferziger. A ghost cell immersed boundary method for flow in complex geometry.
Journal of Computational Physics, 192:593–623, 2003.

[7] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics,
37:239–261, 2005.

[8] D. Z. Noor, M. Chern, and T. Horng. An immersed boundary method to solve fluid-solid interaction
problems. Annual Review of Fluid Mechanics, 37:239–261, 2005.

[9] D. V. Le, B. C. Khoo, and K. M. Lim. An implicit-forcing immersed boundary method for simu-
lating viscous flows in irregular domains. Computer methods in applied mechanics and engineering,
197:2119–2130, 2008.

[10] C. Gau and R.Viskanta. Melting and solidification of a pure metal on a vertical wall. Journal of
Heat Transfer, 108:174–181, February 1986.

[11] D.A. Porter, K.E. Easterling, and M.Y. Sherif. Phase Transformation in Metals and Alloys. CRC
press, third edition, 2009.

66

A Code Snipppets

Selected subroutines from the Fortran program are listed in this appendix

A.1 Preliminary Velocities

SUBROUTINE VEL
! Purpose:Calculate tentative velocity field
! at current time level (FTCS)
USE FIELD
IMPLICIT NONE
DOUBLE PRECISION ::XFAC ,YFAC ,ZFAC ,FUX ,FUY ,FUZ ,FVX ,FVY ,FVZ ,FWX ,FWY ,FWZ ,&
VISU ,VISV ,VISW ,DIFFE ,DIFFW ,DIFFN ,DIFFS ,DIFFF ,DIFFB ,DPX ,DPY ,DPZ

DOUBLE PRECISION , DIMENSION(IMAX ,JMAX ,KMAX) :: DELTAU , DELTAV , DELTAW

XFAC = 1.0/(DELX*DELX)
YFAC = 1.0/(DELY*DELY)
ZFAC = 1.0/(DELZ*DELZ)

DELTAU (:,:,:) = 0.0
DELTAV (:,:,:) = 0.0
DELTAW (:,:,:) = 0.0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

! -------------U------------
!Convective terms

FUX = ((U(I,J,K)+U(I+1,J,K))**2 -(U(I-1,J,K)+U(I,J,K))**2)*0.25* RDX
FUY = ((V(I,J,K)+V(I+1,J,K))*(U(I,J,K)+U(I,J+1,K))-(V(I,J-1,K)&

+ V(I+1,J-1,K))*(U(I,J-1,K)+U(I,J,K)))*0.25* RDY
FUZ = ((W(I,J,K)+W(I+1,J,K))*(U(I,J,K)+U(I,J,K+1))-(W(I,J,K-1)&

+ W(I+1,J,K -1))*(U(I,J,K-1)+U(I,J,K)))*0.25* RDZ

!Viscous terms
DIFFN=U(I,J+1,K)-U(I,J,K)
DIFFS=U(I,J,K)-U(I,J-1,K)
DIFFE=U(I+1,J,K)-U(I,J,K)
DIFFW=U(I,J,K)-U(I-1,J,K)
DIFFF=U(I,J,K+1)-U(I,J,K)
DIFFB=U(I,J,K)-U(I,J,K-1)

! hardcode s-l BC
!North border

IF ((FNP(I,J+1,K).EQ.0).OR.(FNP(I+1,J+1,K).EQ.0)) THEN
DIFFN=-2*U(I,J,K)

ENDIF

!South border
IF ((FNP(I,J-1,K).EQ.0).OR.(FNP(I+1,J-1,K).EQ.0)) THEN

DIFFS =2*U(I,J,K)
ENDIF

!Front border
IF ((FNP(I,J,K+1).EQ.0).OR.(FNP(I+1,J,K+1).EQ.0)) THEN

DIFFF=-2*U(I,J,K)
ENDIF

!Back border
IF ((FNP(I,J,K-1).EQ.0).OR.(FNP(I+1,J,K-1).EQ.0)) THEN

DIFFB =2*U(I,J,K)
ENDIF
VISU=(DIFFE -DIFFW)*XFAC + (DIFFN -DIFFS)*YFAC + (DIFFF -DIFFB)*ZFAC

! Pressure forces
DPX=P(I+1,J,K)-P(I,J,K)

! -------------V------------
!Convective terms

FVX = ((U(I,J,K)+U(I,J+1,K))*(V(I,J,K)+V(I+1,J,K))-(U(I-1,J,K)&
+ U(I-1,J+1,K))*(V(I-1,J,K)+V(I,J,K)))*0.25* RDX

FVY = ((V(I,J,K)+V(I,J+1,K))**2 -(V(I,J-1,K)+V(I,J,K))**2)*0.25* RDY
FVZ = ((W(I,J,K)+W(I,J+1,K))*(V(I,J,K)+V(I,J,K+1))-(W(I,J,K-1)&

+ W(I,J+1,K -1))*(V(I,J,K-1)+V(I,J,K)))*0.25* RDZ

!Viscous terms
DIFFN=V(I,J+1,K)-V(I,J,K)
DIFFS=V(I,J,K)-V(I,J-1,K)
DIFFE=V(I+1,J,K)-V(I,J,K)

67

DIFFW=V(I,J,K)-V(I-1,J,K)
DIFFF=V(I,J,K+1)-V(I,J,K)
DIFFB=V(I,J,K)-V(I,J,K-1)

! hardcode s-l BC
IF ((FNP(I+1,J,K).EQ.0).OR.(FNP(I+1,J+1,K).EQ.0)) THEN !East border

DIFFE=-2*V(I,J,K)
ENDIF
IF ((FNP(I-1,J,K).EQ.0).OR.(FNP(I-1,J+1,K).EQ.0)) THEN !West border

DIFFW =2*V(I,J,K)
ENDIF

IF ((FNP(I,J,K+1).EQ.0).OR.(FNP(I,J+1,K+1).EQ.0)) THEN !Front border
DIFFF=-2*V(I,J,K)

ENDIF
IF ((FNP(I,J,K-1).EQ.0).OR.(FNP(I,J+1,K-1).EQ.0)) THEN !Back border

DIFFB =2*V(I,J,K)
ENDIF
VISV=(DIFFE -DIFFW)*XFAC + (DIFFN -DIFFS)*YFAC + (DIFFF -DIFFB)*ZFAC

! Pressure forces
DPY=P(I,J+1,K)-P(I,J,K)

! -------------W------------
!Convective terms

FWX = ((U(I,J,K)+U(I,J,K+1))*(W(I,J,K)+W(I+1,J,K))-(U(I-1,J,K)&
+ U(I-1,J,K+1))*(W(I-1,J,K)+W(I,J,K)))*0.25* RDX

FWY = ((V(I,J,K)+V(I,J,K+1))*(W(I,J,K)+W(I,J+1,K))-(V(I,J-1,K)&
+ V(I,J-1,K+1))*(W(I,J-1,K)+W(I,J,K)))*0.25* RDY

FWZ = ((W(I,J,K)+W(I,J,K+1))**2 -(W(I,J,K-1)+W(I,J,K))**2)*0.25* RDZ

!Viscous terms
DIFFN=W(I,J+1,K)-W(I,J,K)
DIFFS=W(I,J,K)-W(I,J-1,K)
DIFFE=W(I+1,J,K)-W(I,J,K)
DIFFW=W(I,J,K)-W(I-1,J,K)
DIFFF=W(I,J,K+1)-W(I,J,K)
DIFFB=W(I,J,K)-W(I,J,K-1)

! hardcode s-l BC
IF ((FNP(I+1,J,K).EQ.0).OR.(FNP(I+1,J,K+1).EQ.0)) THEN !East border

DIFFE=-2*W(I,J,K)
ENDIF
IF ((FNP(I-1,J,K).EQ.0).OR.(FNP(I-1,J,K+1).EQ.0)) THEN !West border

DIFFW =2*W(I,J,K)
ENDIF
IF ((FNP(I,J+1,K).EQ.0).OR.(FNP(I,J+1,K+1).EQ.0)) THEN !North border

DIFFN=-2*W(I,J,K)
ENDIF
IF ((FNP(I,J-1,K).EQ.0).OR.(FNP(I,J-1,K+1).EQ.0)) THEN !South border

DIFFS =2*W(I,J,K)
ENDIF
VISW=(DIFFE -DIFFW)*XFAC + (DIFFN -DIFFS)*YFAC + (DIFFF -DIFFB)*ZFAC

! Pressure forces
DPZ=P(I,J,K+1)-P(I,J,K)

! Bouynacy forces
FB=0.5*RA*PR*(TEMP(I,J,K)+TEMP(I,J+1,K)) ! y-dir

!-------- Premliminary Velocities -------------
IF ((FNP(I,J,K).EQ.1).OR.(FNP(I+1,J,K).EQ.1)) THEN

DELTAU(I,J,K) = DELT*(-DPX*RDX - FUX - FUY - FUZ + PR*VISU)
ELSE

DELTAU(I,J,K)=0.0
U(I,J,K)=0.0

ENDIF

IF ((FNP(I,J,K).EQ.1).OR.(FNP(I,J+1,K).EQ.1)) THEN
DELTAV(I,J,K)=DELT*(-DPY*RDY - FVX - FVY - FVZ + PR*VISV + FB)

ELSE
DELTAV(I,J,K)=0.0
V(I,J,K)=0.0

ENDIF

IF ((FNP(I,J,K).EQ.1).OR.(FNP(I,J,K+1).EQ.1)) THEN
DELTAW(I,J,K)=DELT*(-DPZ*RDZ - FWX - FWY - FWZ + PR*VISW)

ELSE
DELTAW(I,J,K)=0.0
W(I,J,K)=0.0

ENDIF

ENDDO
ENDDO

ENDDO

68

U(:,:,:) = U(:,:,:) + DELTAU (:,:,:)
V(:,:,:) = V(:,:,:) + DELTAV (:,:,:)
W(:,:,:) = W(:,:,:) + DELTAW (:,:,:)

RETURN
END

A.2 Velocity Boundary Conditions

SUBROUTINE BCVEL
! purpose:
! To give boundary conditions to
! the velocities around the domain
USE FIELD
IMPLICIT NONE

DO I=1,IM1
DO J=1,JM1

DO K=1,KM1

IF((FNP(I,J,K).EQ.0).OR.(FNP(I+1,J,K).EQ.0)) THEN
U(I,J,K) = 0.0

ENDIF

IF((FNP(I,J,K).EQ.0).OR.(FNP(I,J+1,K).EQ.0)) THEN
V(I,J,K) = 0.0

ENDIF

IF((FNP(I,J,K).EQ.0).OR.(FNP(I,J,K+1).EQ.0)) THEN
W(I,J,K) = 0.0

ENDIF

!At Boundary walls no slip , no pen
IF (I.EQ.(IM1)) THEN !East wall

U(I,J,K) = 0.0
V(I+1,J,K) = -V(I,J,K)
W(I+1,J,K) = -W(I,J,K)

ENDIF
IF (I.EQ.2) THEN !South wall

U(I-1,J,K) = 0.0
V(I-1,J,K) = -V(I,J,K)
W(I-1,J,K) = -W(I,J,K)

ENDIF
IF (J.EQ.(JM1)) THEN !North wall

U(I,J+1,K) = -U(I,J,K)
V(I,J,K) = 0.0
W(I,J+1,K) = -W(I,J,K)

ENDIF
IF (J.EQ.2) THEN !South wall

U(I,J-1,K) = -U(I,J,K)
V(I,J-1,K) = 0.0
W(I,J-1,K) = -W(I,J,K)

ENDIF
IF (K.EQ.(KM1)) THEN !Front wall

U(I,J,K+1) = -U(I,J,K)
V(I,J,K+1) = -V(I,J,K)
W(I,J,K) = 0.0

ENDIF
IF (K.EQ.2) THEN !Back wall

U(I,J,K-1) = -U(I,J,K)
V(I,J,K-1) = -V(I,J,K)
W(I,J,K-1) = 0.0

ENDIF

ENDDO
ENDDO

ENDDO
RETURN
END

A.3 Solve the Fluid Equations

SUBROUTINE PITER
! Purpose:To solve the Poissons equation of pressure
! and adjust velocity and pressure fields so that
! continuity is maintained for every time step.
USE FIELD
USE SOLVEFIELD
IMPLICIT NONE

69

!Calculate tentative velocity field
CALL VEL

! impose BC
CALL BCVEL

! main Momentum loop (not running if there are no fluid nodes)
IF (UCOUNT.GT.0) THEN

!Generate A matrix in Ax=b
CALL GEN_A_MAT(UCOUNT)

!Generate b vector in Ax=b
CALL GEN_B_VEC

!Solve system
CALL CGSOLVER(AVAL ,AI,AJ ,B,DELP ,UCOUNT ,ENTRIESA ,ITER_P ,&

RES_P ,EPSI_P ,ITMAX_P)

DO I=2,IM1 -1 ! Updating U-components , if fluid node
DO J=2,JM1

DO K=2,KM1
IF((FNP(I+1,J,K).EQ.1). AND.(FNP(I,J,K).EQ.1)) THEN

U(I,J,K) = U(I,J,K) + DELT*(DELP(NN(I,J,K)) &
- DELP(NN(I+1,J,K)))/ DELX

ENDIF
ENDDO

ENDDO
ENDDO

DO I=2,IM1 ! Updating V-components , if fluid node
DO J=2,JM1 -1

DO K=2,KM1
IF((FNP(I,J+1,K).EQ.1). AND.(FNP(I,J,K).EQ.1)) THEN

V(I,J,K) = V(I,J,K) + DELT*(DELP(NN(I,J,K)) &
- DELP(NN(I,J+1,K)))/DELY

ENDIF
ENDDO

ENDDO
ENDDO

DO I=2,IM1 ! Updating W-components , if fluid node
DO J=2,JM1

DO K=2,KM1 -1
IF((FNP(I,J,K+1).EQ.1). AND.(FNP(I,J,K).EQ.1)) THEN

W(I,J,K) = W(I,J,K) + DELT*(DELP(NN(I,J,K)) &
- DELP(NN(I,J,K+1)))/DELZ

ENDIF
ENDDO

ENDDO
ENDDO

DO I=2,IM1 ! Updating pressure field , if fluid node
DO J=2,JM1

DO K=2,KM1
IF (FNP(I,J,K).EQ.1) THEN

P(I,J,K) = P(I,J,K) + DELP(NN(I,J,K))
ENDIF

ENDDO
ENDDO

ENDDO

! impose BC
CALL BCVEL

! Deallocate (size is changing)
DEALLOCATE(AVAL ,AI,AJ)
DEALLOCATE(B,DELP)

ENDIF
RETURN
END

A.4 Generate the Pressure Correction Matrix System

SUBROUTINE GEN_A_MAT(UNKNOWNS)
! purpose:
! To construct the sparse coefficient matrix A
USE FIELD
IMPLICIT NONE

INTEGER :: UNKNOWNS ,N

70

DOUBLE PRECISION :: AP ,AN,AS,AE ,AW,AF,AB

! Find entries in A so that A can be allocated
N = 0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

!current cell is a fluid cell
IF (FNP(I,J,K).EQ.1) THEN
N = N + 1 ! Add Center node

IF(FNP(I+1,J,K).EQ.1) THEN !fluid cell to the east
N = N + 1 ! Add East node

ENDIF
IF(FNP(I-1,J,K).EQ.1) THEN !fluid cell to the west

N = N + 1 ! Add West node
ENDIF
IF(FNP(I,J+1,K).EQ.1) THEN !fluid cell to the north

N = N + 1 ! Add North node
ENDIF
IF(FNP(I,J-1,K).EQ.1) THEN !fluid cell to the south

N = N + 1 ! Add South node
ENDIF
IF(FNP(I,J,K+1).EQ.1) THEN !fluid cell to the front

N = N + 1 ! Add Front node
ENDIF
IF(FNP(I,J,K-1).EQ.1) THEN !fluid cell to the back

N = N + 1 ! Add Back node
ENDIF

ENDIF
ENDDO

ENDDO
ENDDO

ENTRIESA = N
ALLOCATE(AVAL(ENTRIESA),AI(ENTRIESA),AJ(ENTRIESA))
ALLOCATE(B(UNKNOWNS),DELP(UNKNOWNS))
DELP (:) = 0.0

N = 0

AE = 1/(DELX **2)
AW = 1/(DELX **2)
AN = 1/(DELY **2)
AS = 1/(DELY **2)
AF = 1/(DELZ **2)
AB = 1/(DELZ **2)
AP = -(AE+AW+AN+AS+AF+AB)

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1
!Current node is a fluid node
IF (FNP(I,J,K).EQ.1) THEN

!center node
N = N + 1
AVAL(N) = AP
AI(N) = NN(I,J,K)
AJ(N) = NN(I,J,K)

!At Boundary wall/s-l interphase , grad(P)=0
IF (FNP(I+1,J,K).EQ.0) THEN !East node

Aval(N) = Aval(N) + AE
ENDIF
IF (FNP(I-1,J,K).EQ.0) THEN !West node

Aval(N) = Aval(N) + AW
ENDIF
IF (FNP(I,J+1,K).EQ.0) THEN !North node

Aval(N) = Aval(N) + AN
ENDIF
IF (FNP(I,J-1,K).EQ.0) THEN !South node

Aval(N) = Aval(N) + AS
ENDIF
IF (FNP(I,J,K+1).EQ.0) THEN !Front node

Aval(N) = Aval(N) + AF
ENDIF
IF (FNP(I,J,K-1).EQ.0) THEN !Back node

Aval(N) = Aval(N) + AB
ENDIF

! Neighbour nodes are fluid nodes
IF(FNP(I+1,J,K).EQ.1) THEN !East Node

71

N = N + 1
Aval(N) = AE
Ai(N) = NN(I,J,K)
Aj(N) = NN(I+1,J,K)

ENDIF

IF(FNP(I-1,J,K).EQ.1) THEN !West Node
N = N + 1
Aval(N) = AW
Ai(N) = NN(I,J,K)
Aj(N) = NN(I-1,J,K)

ENDIF

IF(FNP(I,J+1,K).EQ.1) THEN !North Node
N = N + 1
Aval(N) = AN
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J+1,K)

ENDIF

IF(FNP(I,J-1,K).EQ.1) THEN !South Node
N = N + 1
Aval(N) = AS
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J-1,K)

ENDIF

IF(FNP(I,J,K+1).EQ.1) THEN !Front Node
N = N + 1
Aval(N) = AF
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J,K+1)

ENDIF

IF(FNP(I,J,K-1).EQ.1) THEN !Back Node
N = N + 1
Aval(N) = AB
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J,K-1)

ENDIF

ENDIF
ENDDO

ENDDO
ENDDO

! Setting the node at which the pressure will always be zero
PREFNODE = 1

DO N=1,ENTRIESA ! Setting reference pressure to zero
IF((Ai(N).EQ.PREFNODE).AND.(Aj(N).NE.PREFNODE)) THEN

Aval(N) = 0.0
ENDIF
IF((Ai(N).EQ.PREFNODE).AND.(Aj(N).EQ.PREFNODE)) THEN

Aval(N) = -1.0*10**8
ENDIF

ENDDO

RETURN
END

!--

SUBROUTINE GEN_B_VEC
! purpose:
! To construct b in Ax=b
USE FIELD
IMPLICIT NONE

DOUBLE PRECISION :: DIV
INTEGER :: N

N=0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

! Current node is a fluid node
IF (FNP(I,J,K).EQ.1) THEN

N=N+1
DIV = RDX*(U(I,J,K)-U(I-1,J,K)) + RDY*(V(I,J,K)-V(I,J-1,K)) &

+ RDZ*(W(I,J,K)-W(I,J,K-1))
B(NN(I,J,K))=DIV/(DELT)

ENDIF

72

ENDDO
ENDDO

ENDDO

! Assigning reference pressure 0 to pressure reference cell
B(PREFNODE) = 0.0

RETURN
END

A.5 Solve the Thermal Equations

SUBROUTINE TITER
! Purpose: Calculate temperature field
! at current time level
USE FIELD
USE SOLVEFIELD
IMPLICIT NONE

!Store previous time step thermal fields
TEMP_P=TEMP
FS_P=FS

! second starting guess of secant method
FS_N=FS+0.1

!Generate system matrix
CALL GEN_T_MAT

!generate b-Vector
CALL GEN_TB_VEC

!Calculate tentative Temperature field
CALL CGSOLVER(TAVAL ,TI,TJ,TB ,TEMP_VEC ,UCOUNT_T ,&

ENTRIESA_T ,ITER_T ,RES_T ,EPSI_T ,ITMAX_T)

!Update tentative temperature field
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

TEMP(I,J,K) = TEMP_VEC(NNT(I,J,K))
ENDDO

ENDDO
ENDDO

!Solid fraction Correction
CALL CORR_FS

!Correct Temperature field
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

TEMP(I,J,K) = TEMP(I,J,K) + (FS(I,J,K) - FS_P(I,J,K))/STE
ENDDO

ENDDO
ENDDO

! Impose BC
CALL BCTEMP

RETURN
END

A.6 Generate the Temperature Matrix System

SUBROUTINE GEN_T_MAT
! purpose:
! To construct the sparse coefficient matrix A_T
! for solving temperature
USE FIELD
IMPLICIT NONE
INTEGER :: N
DOUBLE PRECISION :: APO ,AP ,AN,AS,AE ,AW,AF,AB

N = 0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

APO = 1.0/ DELT
AE = 0.5*U(I,J,K)/DELX - KON(I,J,K)/DELX **2 &

73

- (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)
AW = -0.5*U(I-1,J,K)/DELX - KON(I,J,K)/DELX **2 &

+ (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)
AN = 0.5*V(I,J,K)/DELY - KON(I,J,K)/DELY **2 &

- (KON(I,J+1,K)-KON(I,J-1,K))/(4* DELY **2)
AS = -0.5*V(I,J-1,K)/DELY - KON(I,J,K)/DELY **2 &

+ (KON(I,J+1,K)-KON(I,J-1,K))/(4* DELY **2)
AF = 0.5*W(I,J,K)/DELZ - KON(I,J,K)/DELZ **2 &

- (KON(I,J,K+1)-KON(I,J,K -1))/(4* DELZ **2)
AB = -0.5*W(I,J,K-1)/ DELZ - KON(I,J,K)/DELZ **2 &

+ (KON(I,J,K+1)-KON(I,J,K -1))/(4* DELZ **2)
AP = 2*KON(I,J,K)*(1.0/ DELX **2 + 1.0/ DELY **2 + 1.0/ DELZ **2)

! center node
N = N + 1
TAVAL(N) = APO + AE + AW + AN + AS + AF + AB + 2*AP
TI(N) = NNT(I,J,K)
TJ(N) = NNT(I,J,K)

!At Boundary walls , grad(T)=0
IF (J.EQ.(JM1)) THEN !North node

TAVAL(N) = TAVAL(N) + AN
ENDIF
IF (J.EQ.2) THEN !South node

TAVAL(N) = TAVAL(N) + AS
ENDIF
IF (K.EQ.(KM1)) THEN !Front node

TAVAL(N) = TAVAL(N) + AF
ENDIF
IF (K.EQ.2) THEN !Back node

TAVAL(N) = TAVAL(N) + AB
ENDIF

!At Boundary walls , T=Known
IF (I.EQ.(IM1)) THEN !East node

TAVAL(N) = TAVAL(N) - AE
ENDIF
IF (I.EQ.2) THEN !West node

TAVAL(N) = TAVAL(N) - AW
ENDIF

! Neighbour nodes in domain
IF(I.LT.IM1) THEN !East Node

N = N + 1
TAVAL(N) = AE
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I+1,J,K)

ENDIF

IF(I.GT.2) THEN !West Node
N = N + 1
TAVAL(N) = AW
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I-1,J,K)

ENDIF

IF(J.LT.JM1) THEN !North Node
N = N + 1
TAVAL(N) = AN
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J+1,K)

ENDIF

IF(J.GT.2) THEN !South Node
N = N + 1
TAVAL(N) = AS
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J-1,K)

ENDIF

IF(K.LT.KM1) THEN !Front Node
N = N + 1
TAVAL(N) = AF
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J,K+1)

ENDIF

IF(K.GT.2) THEN !Back Node
N = N + 1
TAVAL(N) = AB
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J,K-1)

ENDIF

TEMP_VEC(NNT(I,J,K))= TEMP(I,J,K)

ENDDO

74

ENDDO
ENDDO

RETURN
END

!--

SUBROUTINE GEN_TB_VEC
! purpose:
! To construct b in Ax=b
USE FIELD
IMPLICIT NONE

DOUBLE PRECISION :: APO ,AE ,AW

TB (:)=0.0
APO = 1.0/ DELT

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1
TB(NNT(I,J,K))= APO*TEMP_P(I,J,K)

!At Boundary walls , T=known
IF (I.EQ.IM1) THEN !East node

AE = 0.5*U(I,J,K)/DELX - KON(I,J,K)/DELX **2 &
- (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)

TB(NNT(I,J,K)) = TB(NNT(I,J,K)) - 2*AE*TC

ENDIF
IF (I.EQ.2) THEN !West node

AW = -0.5*U(I-1,J,K)/DELX - KON(I,J,K)/DELX **2 &
+ (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)

TB(NNT(I,J,K)) = TB(NNT(I,J,K)) - 2*AW*TH
ENDIF

ENDDO
ENDDO

ENDDO

RETURN
END

A.7 Solid Fraction Correction

SUBROUTINE CORR_FS
! purpose:
! Correct solid fraction
USE FIELD
USE SOLVEFIELD
IMPLICIT NONE

DOUBLE PRECISION :: VAL1 , VAL2 , F_INV_PURE

! initial guesses for Xi
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

XI(I,J,K) = FS(I,J,K) - FS_P(I,J,K) &
- STE*(F_INV_PURE(FS(I,J,K),TM) - TEMP(I,J,K))

XI_N(I,J,K) = FS_N(I,J,K) - FS_P(I,J,K) &
- STE*(F_INV_PURE(FS_N(I,J,K), TM) - TEMP(I,J,K))

ENDDO
ENDDO

ENDDO

! Secant method
DO ITER_TT=1,ITMAX_TT

! reset residual
RES_TT =0.0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1
! Hold values for next iteration
VAL1=FS(I,J,K)
VAL2=XI(I,J,K)

! next value
FS(I,J,K) = FS(I,J,K) - XI(I,J,K)*&

(FS(I,J,K)-FS_N(I,J,K))/(XI(I,J,K)-XI_N(I,J,K))
XI(I,J,K) = FS(I,J,K) - FS_P(I,J,K) &

- STE*(F_INV_PURE(FS(I,J,K),TM) - TEMP(I,J,K))

75

! Replace old values
FS_N(I,J,K) = VAL1
XI_N(I,J,K) = VAL2

! residual
RES_TT = RES_TT + ABS(XI(I,J,K)-XI_N(I,J,K))

ENDDO
ENDDO

ENDDO

! Convergence test
IF (RES_TT.LT.EPSI_TT) THEN

EXIT
ENDIF

ENDDO

! limit Solid Fraction
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

FS(I,J,K) = MIN(1.0 , MAX(0.0 , FS(I,J,K)))
ENDDO

ENDDO
ENDDO

RETURN
END

A.8 Thermal Boundary Conditions

SUBROUTINE BCTEMP
! purpose:
! To give boundary conditions to the temp and fs
USE FIELD
IMPLICIT NONE

!Impose boundary condition on X-planes
DO J=1,JMAX

DO K=1,KMAX
!Left
TEMP(1,J,K) = 2*TH - TEMP(2,J,K)
FS(1,J,K) = FS(2,J,K)
!Right
TEMP(IMAX ,J,K) = 2*TC - TEMP(IMAX -1,J,K)
FS(IMAX ,J,K)=FS(IM1 ,J,K)

ENDDO
ENDDO

!Impose boundary condition on Y-planes
DO I=1,IMAX

DO K=1,KMAX
!Bottom
TEMP(I,1,K)=TEMP(I,2,K)
FS(I,1,K)=FS(I,2,K)
!Top
TEMP(I,JMAX ,K)=TEMP(I,JM1 ,K)
FS(I,JMAX ,K)=FS(I,JM1 ,K)

ENDDO
ENDDO

!Impose boundary condition on Z-planes
DO I=1,IMAX

DO J=1,JMAX
!Back
TEMP(I,J,1)= TEMP(I,J,2)
FS(I,J,1)=FS(I,J,2)
!Front
TEMP(I,J,KMAX)=TEMP(I,J,KM1)
FS(I,J,KMAX)=FS(I,J,KM1)

ENDDO
ENDDO

RETURN
END

A.9 Conjugated Gradient

SUBROUTINE CGSOLVER(Aval ,Ai ,Aj,b,x,unknowns ,&
entriesA ,iter ,res ,epsi ,itmax)

! Solves the system Ax=b with the conjugate gradients method

IMPLICIT NONE

76

INTEGER :: unknowns , entriesA ,itmax ,iter
DOUBLE PRECISION , DIMENSION (entriesA) :: Aval
INTEGER , DIMENSION (entriesA) :: Ai, Aj
DOUBLE PRECISION , DIMENSION (unknowns) :: tempvec , x, r, d, b

DOUBLE PRECISION :: alpha , beta , tempscal1 , tempscal2 ,epsi ,res

iter=0

x(:) = 0.0
r(:) = b(:)
d(:) = r(:)
res = sum(abs(r))

! Convergence test
IF(res.LT.epsi) THEN

RETURN
ENDIF

DO iter=1,itmax
! (r’*r)
CALL VECVEC(r,r,tempscal1 ,unknowns)

! (A*d)
CALL MATVEC(Aval ,Ai ,Aj,d,tempvec ,unknowns ,entriesA)

! (d’*A*d)
CALL VECVEC(d,tempvec ,tempscal2 ,unknowns)

! alpha = (r’*r)/(d’*A*d)
alpha = tempscal1/tempscal2

! x = x + alpha*d
x(:) = x(:) + alpha*d(:)

! r_new = r - alpha*A*d
tempvec (:) = r(:) - alpha*tempvec (:)

! (r_new ’*r_new)
CALL VECVEC(tempvec ,tempvec ,tempscal2 ,unknowns)

! beta = (r_new ’*r_new)/(r’*r)
beta = tempscal2/tempscal1

! r = r_new
r(:) = tempvec (:)
! d = r + beta*d
d(:) = r(:) + beta*d(:)

! Convergence test
res = sum(abs(r))
IF(res.LT.epsi) THEN

EXIT
ENDIF

ENDDO

RETURN
END

!---

SUBROUTINE MATVEC(Aval ,Ai,Aj,u,x,m,n)
! Matrix -vector multiplication , x=Au
! A: matrix
! u: vector
! x: return vector
! m: length of u
! n: entries in A
IMPLICIT NONE
INTEGER :: i, m, n
DOUBLE PRECISION , DIMENSION(n) :: Aval
INTEGER , DIMENSION(n) :: Ai, Aj
DOUBLE PRECISION , DIMENSION(m) :: u,x

x(:) = 0
DO i=1,n

x(Ai(i)) = x(Ai(i)) + Aval(i)*u(Aj(i))
ENDDO

RETURN
END

!---

SUBROUTINE VECVEC(u,v,x,m)

77

! Vector -vector multiplication , x=uv
! u: vector1
! v: vector2
! x: return scalar
! m: size of u and v
IMPLICIT NONE
INTEGER :: i, m
DOUBLE PRECISION , DIMENSION(m) :: u, v
DOUBLE PRECISION :: x

x = 0.0
DO i=1,m

x = x + u(i)*v(i)
ENDDO

RETURN
END

A.10 Solid Fraction Temperature Relations

FUNCTION F_INV(x,ys,yl)
! Inverse of solid fraction temperature relation for substance
! Here: linear
! x = Solid fraction
! y = Melting temperature (s-solidus , l-liquidus)

DOUBLE PRECISION :: F_INV ,x,ys ,yl

F_INV = yl + (ys - yl)*x

RETURN
END FUNCTION F_INV

!---

FUNCTION F_INV(x,xe,ys ,yl)
! Inverse of solid fraction temperature relation for substance
! Here: linear eutectic
! x = Solid fraction , (e-eutectic)
! y = Melting temperature (s-solidus , l-liquidus)

DOUBLE PRECISION :: F_INV ,x,xe ,ys,yl

F_INV = max(yl-x/xe*(yl-ys),ys)

RETURN
END FUNCTION F_INV

!---

FUNCTION F_INV(x,xe,ys ,yl)
! Inverse of solid fraction temperature relation for substance
! Here: exponential
! x = Solid fraction
! y = Melting temperature (s-solidus , l-liquidus)
! eul = euler ’s number
! del = phase transition parameter

REAL , PARAMETER :: eul =2.71828182845904 , del=-3.0
DOUBLE PRECISION :: F_INV ,x,xe ,ys,yl

F_INV = yl + (ys - yl)*(eul**(del*x) - 1.0)/(eul**(del) - 1.0)

RETURN
END FUNCTION F_INV

!--

FUNCTION F_INV_PURE(x,ym)
! inverse of solid fraction temperature relation for pure substance
! x = Solid fraction
! ym = Melting temperature

DOUBLE PRECISION :: F_INV_PURE ,x,ym

F_INV_PURE = ym

RETURN
END FUNCTION F_INV_PURE

78

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

