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1 Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science.
The research has been conducted in the spring of 2018 at NTNU for the Department of Energy and
Process Engineering.
The formulation of the thesis was inspired by a set of meetings with Chassix Norway AS (former Bentler
Automotive Farsund), a Norwegian foundary who manufactures aluminum parts for the automotive
industry. The physical process of melting and solidification peaked an interest and remains the main
theme throughout this thesis. The problem formulation was developed by the author and supervisor
Reidar Kristoffersen.
The work condensed into developing a new numerical approach for solving solid-liquid phase transition
problems. Rather than delivering the thesis on a report format, an article based thesis was suggested.
A short introduction and documentation on the work done this semester is supplied, but the main body
of the thesis is two articles. A preprint of the first article has been submitted to Applied Mathematical
Modelling, and the second article will be submitted for publication at a later date.
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2 Abstract

A 3D model for solving convection dominated solid-liquid phase transitions has been developed. The
model for solving the fluid fields utilizes the projection method, which is also the basis for the iterative
strategy for solving the phase transition. Throughout this report a conjugate gradient method has been
used for solving the various sparse matrix equations encountered.
Comparisons are made to a square cavity melting experiment, which is a common example from the
literature demonstrating the influence convective currents have on the evolution of the solid-liquid inter-
phase.
Development of the code has its basis in an educational SOLA solver by Reidar Kristoffersen and the
previous master thesis by Arne Bøckmann utilizing the same fluid solver. The code has been manipulated
into handling the changing fluid domain, as the material changes phase.
The main body of the thesis is two articles followed by a section presenting, in detail, the numerical
discretization, boundary conditions, a preliminary verification of the fluid model and extension to phase
transition of mixtures.
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Abstract

A simple model for solving convection/diffusion phase transition problems
will be described. Pure substances are the focus of this paper, but extension
to more complex temperature dependent phase transitioning behavior is also
addressed. This method utilizes a non-deforming, staggered, cartesian grid.
A Boussinesq approximation is the driving force for the natural convection,
while the Poisson pressure-correction equation is solved with a conjugate
gradient method. A simple marking method for liquid and solid cells are
updated at every time step, such that the pressure-correction only needs to be
solved in the domain where the substance is liquid. Solving the thermal fields
(i.e. solid fraction and temperature) utilizes a projection method derived in
this paper. A description of the Darcy source term for handling fluid flow
in the solid region, as well as a Source-based method for solving the thermal
fields are also presented, and compared to the method derived in this paper.
Model validation is done by comparison with experimental results of a 2D
cavity convection/diffusion case with gallium.

Keywords: Phase Transition, Projection, Convection, 2D, Gallium,
Numerical Simulation

1. Introduction

Phase change occur in many natural and industrial processes. Melting and
formation of ice, boiling and condensation of water, welding and casting of
metals, drying and freezing food for conservation are but a few examples of
a wide range of situations where a phase transition occur. The scope of this

Preprint submitted to Applied Mathematical Modelling May 16, 2018



Nomenclature

∗ Non-Dimensional
α Thermal Diffusivity
β Thermal Expansion
ε Convergence Criterion
ˆ Preliminary
λ Porosity
µ Viscosity, Kinetic
ν Viscosity, Kinematic
ω Relaxation Factor
ρ Density
θ Temperature, Non-Dim
~( ) Vector
ξ() Correction Function
A Porosity Function
a Discretization Parameter
Ar Aspect Ratio
B Generic Vector
b Darcy Porosity Constant
C Cold, Subscript
C Darcy Porosity Constant
c Center Node
CP Volumetric Heat Capacity

Ratio
cp Heat Capacity
F () Function
FB Force, Buoyancy
FD Force, Darcy Porosity
FG Global Solid Fraction
fS Solid Fraction
Fo Time, Non-Dim
g Gravitational acceleration
H Hot, Subscript

H Length Scale
h, k # Steps in Spacial Direction
i, j Spacial Direction
K Thermal Conductivity Ratio
k Thermal Conductivity
L Laten Heat
l Liquid, Subscript
M Generic Matrix
m # Iterations
MG Global Mass Conservation
n # Discrete Time Steps
nb Neighbour Node
P Pressure, Non-Dim
p Pressure
PC Press-Corr, Subscript
Pr Prantl Number
r Residual Vector
Ra Rayleigh Number
ref Reference
res Residual Norm
s Solid, Subscript
Ste Stefan Number
T Energy, Subscript
T Temperature
t Time
TT Thermal, Subscript
U Velocity, Non-Dim
u Velocity
W Cavity Width
X Position, Non-Dim
x Position
z Unlimited Solid Fraction
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paper is the temperature driven phase change occurring when a substance
crosses the solid-liquid fusion temperature. Experiments have shown that
the shape and position of the solid-liquid interphase depend on the amount
of convection the material is able to induce [1] [2], hence the diffusive energy
transport alone is not enough to explain the behavior of the substance. Later
experiments and simulations by Ben-David et.al. [3] also points out the
importance of 3D flow structures.
The moving boundary, phase transitioning problems governed by the heat
equation is known as Stephan problems, and relatively few analytical solu-
tions are known [4]. When introducing a velocity field as well, a numerical
approach is needed. A review article by Voller et.al. [5], and later by König-
Haagen et.al. [6] recaps most work on fixed-grid methods for phase transition
problems. In general, numerical fixed grid solution methods of these kind of
problems can be categorized into Apparent Heat Capacity method, Enthalpy
method and Source method.
The idea behind the Apparent Heat Capacity method is to incorporate the
latent heat of fusion into the heat capacity. The released/absorbed heat
during phase change is accounted for in the heat capacity change and no
source term is needed. This method renders the source term obsolete and
deals with a temperature dependent heat capacity. Implementation with
existing code could be possible with some knowledge of the solid fraction-
temperature relationship. However, if the temperature range where material
solidifies is small (i.e. pure substances, where solid fraction and temperature
has a shock-like relationship), this method risk not accounting for the latent
heat added or removed during phase change.
Enthalpy methods substitutes temperature with enthalpy in the governing
heat equations. For a good choice of substitution the issues with a discon-
tinuity in the solid fraction-temperature relationship are bypassed [6] [7] [8]
[9].
For Source based methods the focus is to handle the source term occurring in
the energy equation due to the phase transition [10]. As a melting material
will absorb energy, and a solidifying material will release energy there is some
correct balance between change in solid fraction and change in temperature
that can be found by an iterative scheme at every time step. In general
the temperature field and the solid fraction is calculated and corrected iter-
ativly. This procedure is repeated until a prescribed convergence criterion is
satisfied.
As experiments have shown, the convective energy transport plays a signifi-
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cant role, thus the velocity field needs to be resolved such that this transport
is correctly accounted for. Key aspects of solving the velocity lies in knowing
the driving force of the fluid movement, how to simplify the Navier-Stokes
equations and how to handle velocities in solidified regions of the domain.
For a thermal cavity, as utilized in [3] [6] [8] [11] [12] [13], natural convection
is driven by the small density changes induced by temperature differences.
The Boussinesq approximation for coupled laminar flow and heat transfer
have shown to yield satisfactory results.
There are several techniques for solving the incompressible Navier-Stokes
equations, with FVM methods such as PISO and the family of SIMPLE-
algorithms to mention a few. The solution strategy chosen here is a FDM
Projection method similar to the one proposed by Chorin et.al. [14]. There
are a couple of methods utilized in the literature to ensure zero, or close-to-
zero velocity in the solidified regions of the calculation domain. One simple
approach utilized by Gartling [15] is to increase the viscosity such that any
calculated velocity in the solid region has a negligible influence. Morgan [13]
simply reduces the velocity to zero in the solid regions. However, a widely
adopted approach is the Darcy porosity source term resisting the flow in the
solid region [8] [11] [12]. The combination of enthalpy and porosity approach
is supported in both Fluent [16] and Comsol [3].
This paper presents an alternative phase transition solution strategy based
on the idea behind the projection method from [14]. The PhD thesis by N.R.
Morgan [17] presents a similar solution strategy for liquid-vapor film boiling
with a level-set method to separate the liquid and vapor phases. A source
based approach is also derived and compared to the experimental results. A
live-dead cell approach is utilized such that the known zero velocity in the
solid region is not calculated. Comparisons to the Darcy-porosity approach
is also presented. The focus areas of this paper are prediction accuracy,
computational efficiency and simplicity.

2. Model

For the mathematical formulation of convection and diffusion driven phase
transitioning model, the following assumptions are made:

1. The physics can be described in 2D.

2. Heat transfer is governed by convection and conduction.

3. The fluid flow is laminar and incompressible.
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4. Viscous dissipation is negligible.

5. Density changes only effect the free convection. Change in density are
only considered for the Boussinesq approximation.

6. Physical properties (cp, µ, k ...) only differ between solid and liquid
phases. They do not vary with temperature.

7. A phase field function is a sufficient representation of the average local
phase fraction.

8. The phase transition is isothermal.

9. Solidified material is in full contact with the boundary walls

2.1. Mathematical formulation

Based on the assumptions above, the governing fluid equations state

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂ (ujui)

∂xj
= −1

ρ

∂p

∂xi
+

1

ρ

∂

∂xj

(
µ
∂ui
∂xj

)
+

1

ρ
Fi (2)

where (1) is the incompressible mass continuity constraint, while (2) rep-
resents the momentum equations. ρ and µ is density and kinetic viscosity
respectively. Fi is the sum of volumetric forces acting on the fluid. The
Boussinesq approximation is one component of Fi:

FB = −ρgiβ(T − Tref ) (3)

A common method to accounting for the flow in the solid region is to estimate
the material as a porous medium governed by Darcy’s law. According to [11]
this is implemented by adding a volumetric force to Fi:

FD = −C (1− λ)2

λ3
ui = Aui (4)

where λ is the local porosity and C is a geometric constant. The focus of
this paper is a live-dead fluid cell methodology, but for comparison purposes
the Darcy term is included.
Accounting for conduction and convection, the energy equation states:

∂T

∂t
+
∂ (ujT )

∂xj
=

1

ρcp

∂

∂xj

(
k
∂T

∂xj

)
+

L

ρcp

∂fS
∂t

(5)
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where cp and k represents heat capacity and thermal conductivity, while L
and fS represents volumetric latent heat and local fraction of solid respec-
tively. The latent heat (L) enters the equation as a volumetric energy source
proportional to the temporal change in solid fraction. Depending on the na-
ture of the material, the relationship between solid fraction and temperature
can have different relationships. Pure substances have a distinct temperature
where the phase transition occurs. Wax, polymers and glass are examples
of materials that typically solidifies continuously over a temperature range.
The solidification of metal alloys have a phase change region where some
components of the mixture solidifies at higher temperature than others. The
solidifying region can consist of complicated crystalline micro structures. As
mentioned, this paper use a phase field function (fS) to represent the local
fraction of solid. This is further generalized to have some specific relation to
temperature:

fS = F (T ) (6)

Different forms of the function F (T ) is indicated in figure 1. Here the func-
tions are simplified, but other well known relationships are the Scheil equation
and the Lever Rule equation [18]
By utilizing the scaling proposed below,

Ui =
uiH

αl
θ =

T − Tref
∆T

P =
pH2

ρlα2
l

Xi =
xi
H

A∗ =
AH2

ρlαl
αl =

kl
cplρl

Fo =
tαl
H2

ν =
µ

ρl
∆T = TH − Tref

Pr =
ν

αl
Ra =

gβ∆TH3

ναl
Ste =

ρlcpl∆T

L

Ar =
W

H
K =

k

kl
CP =

cpρ

cplρl

the non dimensional form of the governing equations (1), (2), (5) and (6) are:

∂Ui
∂Xi

= 0 (7)
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Figure 1: Different examples of solid fraction (fS) and temperature (T ) relation.

∂Ui
∂Fo

+
∂ (UjUi)

∂Xj

= − ∂P
∂Xi

+ Pr
∂2Ui
∂X2

j

+RaPrθ
∂Xi

∂X2

+ A∗Ui (8)

∂θ

∂Fo
+
∂ (Ujθ)

∂Xj

=
∂

∂Xj

(
K

∂θ

∂Xj

)
+

1

Ste

∂fS
∂Fo

(9)

fS = F (θ) (10)

Note that for simplicity the dimensionless volumetric heat capacity (CP )
is not a part of the non dimensional equations, as ρscps

ρlcpl
≈ 1 for gallium.

However, ks
kl
≈ 1.46, thus the dimensionless thermal conductivity (K) will

have a significant impact on the solution. The convention used from now on
is the non-dimensional form of the governing equations (7) to (10). Three
dimensionless numbers appears (Pr, Ra, Ste), and a short description is
provided.
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The Prantl number (Pr) represents the proportion between viscous and ther-
mal diffusion rate. Liquid metals typically have a low Pr; good thermal
conductors and not particularly viscous. Oils typically have high Pr.
The Rayleigh number (Ra) relates to buoyancy flows. This can be seen in
the non-dimensional momentum equation (8) as it is appears in the Boussi-
nesq term. Ra indicates wether heat transfer in the fluid is convection, or
conduction dominated. Above some critical Ra, depending on the problem,
the fluid heat transfer is controlled by convection. Below that value thermal
conduction generally moves faster than the convective transport. The effect
of change in Ra for a cavity melting problem is indicated by Morgan [13].
Values of Ra are typically large for engineering purposes.
The Stefan number (Ste) is the ratio of sensible heat to latent heat. This
number relates to the change of phase. From (9) one can see that it controls
the influence of the change in solid fraction. For large Ste the heat released
(absorbed) during solidification (melting) is small relative to the thermal
capacity of the fluid. Thus, the change of solid fraction have a small impact
on the energy equation. For small Ste, the heat released/absorbed during
a phase change is relatively large in respect to the capacity of the material,
and the phase change have a large impact on the energy equation. In effect,
a large Ste would yield a quick phase transition, while a small Ste yields
slow phase transition.

2.2. Numerical Solution

As indicated by the mathematical formulation of a convection/conduction
phase transitioning problem, the rate of change in temperature effects the
rate of change in solid fraction, and visa versa. There are several techniques

Figure 2: Cell position and numbering for a staggered grid.
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developed for handling this coupled system of the thermal fields (fS and
θ). For comparison purposes the Source Method, together with the model
developed for this paper, are presented here. The momentum fields (P and
U) are handled numerically by the projection method [14]. The mesh is a
fixed cartesian staggered grid, where the velocity nodes are placed on the cell
sides, while intensive properties (i.e. temperature, pressure, solid fraction,
viscosity, heat capacity ect.) are placed in the cell centers, see figure 2.

2.2.1. Source Method

This method views the energy equation as a balance between the heat used to
change the local temperature and heat used to change the local solid fraction.
The energy equation stays as given in (9), but the interaction between energy
transport and the latent heat source at every time step will be handled by an
iterative scheme. The idea behind the solution algorithm presented here can
be found in the article by Voller et.al. [5]. Since the variables and parameters
defined in this paper differ from those defined in the literature, the method
is derived here as well. The discretized energy equation (9) is a good starting
point for Source based methods:

ac[θc]
n
m +

∑
anbθnb =

a1[θc]
n−1 + a0([fS]m − [fS]n−1)

(11)

Superscript n represents time step, while subscript m represents iteration.
Which time- and iteration step values used for the neighbouring nodes de-
pends on the discrete scheme utilized. Knowing that upon convergence (11)
should satisfy:

acF
−1([fS]n) +

∑
anbθnb =

a1[θc]
n−1 + a0([fS]n + ∆fS − [fS]n−1)

(12)

where ∆fS is the correction in solid fraction needed to reach convergence.
By subtracting (11) from (12) the solid fraction correction can be estimated
as:

∆fS ≈
ac
a0

(
F−1([fS]n)− [θc]m

)
(13)

The solid fraction is simply updated by
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[fS]m = [fS]m−1 + ω∆fS (14)

where ω typically represents an underrelaxation constant. Voller et.al. [5]
recommends ω between 0.5 and 0.7. A physical limitation for fS that the
solid fraction is limited between 0 and 1.

fS = 0, if fS < 0

fS = 1, if fS > 1
(15)

or
fS = min (1, max (0, fS)) (16)

For the source method, this limiting of the solid fraction is applied at every
iteration step. The iterative solution procedure for a single time step is as
follows:

1. Initiate the first solid fraction field [fS]1 by setting it equal to the solid
fraction from the previous time step [fS]n−1.

2. Calculate the updated temperature field according to (11).

3. Calculate a correction to the solid fraction according to (13).

4. Update the solid fraction according to (14).

5. Limit the solid fraction according to (16).

6. Check for convergence. If not, repeat step 2 - 6.

7. If convergence is reached, replace the old thermal fields ([θ]n−1, [fS]n−1)
with the calculated ones ([θ]m, [fS]m) and proceed to the next time step.

Here, (11) is discretized according to the BTCS scheme. This yields a system

on the form M~θ = ~B, where M is a diagonal matrix and ~B represents the
forcing term from the discretized system. ~θ represents the temperature nodes
for the whole domain ordered in a vector. This linear system is solved with
a conjugate gradient method.

2.2.2. A Projection Method for Phase Transitions

As for the Source method, the Projection method views the energy equation
as a balance between the heat used to change the local temperature and heat
used to change the local solid fraction. The algorithm is derived accordingly:
A temperature field θ̂ is estimated by discretizing (9), ignoring the phase
transition term:
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θ̂c − [θc]
n−1

∆Fo
= RHS (17)

where

RHS =
∂

∂Xj

(
K

∂θ

∂Xj

)
− ∂ (Ujθ)

∂Xj

(18)

This initial projection of the temperature field is obviously wrong. However,
with the right adjustment of the solid fraction, the final energy balance should
satisfy:

[θc]
n − [θc]

n−1

∆Fo
− 1

Ste

[fS]n − [fS]n−1

∆Fo
= RHS (19)

Subtracting (17) from (19) yields:

[θc]
n − θ̂c =

1

Ste

(
[fS]n − [fS]n−1

)
(20)

Substituting in (10) and rearranging (20) gives:

0 = [fS]n − [fS]n−1 − Ste
(
F−1 ([fS]n)− θ̂c

)
(21)

ξ(z) = z − [fS]n−1 − Ste
(
F−1 (z)− θ̂c

)
(22)

Thus, a simple, pointwise, 1D iterative scheme can be formulated as finding
the roots of the function ξ(z), where ξ is defined as the function in (22) where
z = [fs]n. Note that as for the Source method, the solution to ξ(z) = 0 could
yield unphysical values for fS. The limiter defined in (16) is applied after
the solution to (22) has converged. The solid fraction is then given directly.
The temperature field is corrected according to (20). To summarize:

1. Estimate a temperature field (θ̂) from (17).
2. Correct the solid fraction (fS) by finding the root of ξ from (22).
3. Limit the solid fraction to physical values according to (15)
4. Correct the temperature field according to (20)

Here, a BTCS-scheme is used for (17) and (18) and solved by a conjugate
gradient method. Finding the root of ξ in (22) is done by the Secant Method.
The Source Method iterativly corrects both temperature and solid fraction as
a coupled system. The Projection method proposed here, however, decouples
the system and corrects the temperature field after the solid fraction for
the new time step has been found. A more graphical explanation of the
Projection method derived here can be found in Appendix A.
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2.2.3. Fluid Model

Consider the Navier-Stokes equations (7) and (8). The first describes the
conservation of mass and the latter describes the momentum equation. How-
ever, the coupling between pressure and velocity is not clear. A projection
method on a staggared cartesian grid is utilized in this paper. A more thor-
ough derivation of a projection algorithm has been done in section 2.2.2.
In the literature, Chorin [14] presented the projection algorithm for Navier-
Stokes, while Harlow and Welch [19] presented the general MAC approach.
A summary of the method for Navier-Stokes is still done here. The idea is to
estimate the velocity and then correct both pressure and velocity, such that
mass is conserved. For every time step the method can be summarized as
follows:

1. Calculate a preliminary velocity field (Û) from (23) based on the pre-
vious pressure field. This velocity field does not necessarily fullfill con-
tinuity (7).

2. A version of (8) based on the current pressure field should however
fullfill continuity. The difference between these two equations will yield
the pressure change necessary to uphold the continuity constraint.

3. By further taking the divergence of the difference between the two
discrete velocity equations, (7) can be substituted in. This yields a
Poisson equation for the pressure correction (24).

4. The discretized Poisson equation for the pressure correction gives a
linear system of equations.

5. Velocity and pressure fields are corrected based on the calculated pres-
sure correction (26) (25).

Equations for the N-S projection method are as follows:

Ûi − [Ui]
n−1

∆Fo
=

−∂ (UjUi)

∂Xj

−
[
∂P

∂Xi

]n−1

+ Pr
∂2Ui
∂X2

j

+RaPrθ
∂Xi

∂X2

+ A∗Ui

(23)

∂2(∆P )

∂X2
i

=
1

∆Fo

∂Ûi
∂Xi

(24)

[P ]n = [P ]n−1 + ∆P (25)
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[Ui]
n = Ûi −∆Fo

∂(∆P )

∂Xi

(26)

Here, (23) discretized by a FTCS-scheme. Several techniques for solving the
diagonal matrix system from the Poisson pressure correction equation can
be found in the literature, but a conjugate gradient method is utilized here
[20].

2.2.4. Handling Flow in the Solid Region

Ideally, the velocity in the solid region should be zero. As mentioned, three
distinct methods are proposed by the literature. A simple but brute force
way is to increase the viscosity in the solidified material, thus being a func-
tion of the solid fraction [15]. Initial tests with this approach showed that
the difference in viscosity needed to be quite large, such that the velocity
field could be neglected in the solid region. Additionally, the viscos increase
also yielded a unfavorable stability criterion for the time step, ∆Fo. When
viscosity increase, the travel speed of shear force information also increases.
From a simulation perspective, the information cannot travel further than
the width of one cell in one time step, thus the time step must decrease such
that this is accounted for. This effect have a significant impact on the total
simulation time and the method was abandoned.
Viewing solidifying cells as a porous medium is another method for handeling
flow in the solid region. As mentioned in the mathematical formulation,
accounting for the resistance in the porosity, a force term A∗Ui is added to
the momentum equation as indicated in (8). A∗ is the dimensionless Darcy
porosity function. The definition of porosity is equal to the liquid fraction,
and a simple substitution makes the porosity function a function of the solid
fraction:

A∗ = −C∗ (fS)2

(1− fS)3
fS = 1− λ (27)

Note that (27) will not be consistent as the solid fractions approaches unity.
For simulation purposes a small constant, b, is added to the denominator.

A∗ = −C∗ (fS)2

(1− fS)3 + b
(28)

The constant b needs to be significantly small such that velocity approaches
zero in the solid region, but large enough to avoid resolution issues in the
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computer. Voller and Prakash [11] defined b = 0.001 and C = 1.6e3, which
is also used here.
Both the viscosity method and the porosity method solves the Navier-Stokes
equations in a region where the velocity is known to be zero. For a region
with a lot of solidified cells, this approach is unnecessarily inefficient. A
live/dead-cell method was implemented to account for this. The method can
be summarized accordingly:

1. If a cell has half of its volume solidified the cell is marked as a dead
fluid cell.

2. If a velocity node has both of its neighbouring cells marked as a dead
fluid cell, then the velocities are known to be zero. This is in effect a
no-slip boundary condition. The Neighbouring cells are defined as the
east and west cell for the first spacial direction, and north and south
cell for the second spacial direction.

3. If a pressure node has a neighbouring node marked as a dead fluid cell,
then the spacial derivative in that direction is known to be zero. This
is in effect a zero gradient boundary condition.

From an implementation aspect a new pressure-correction matrix needs to
be established at every time step, accounting for new live or dead fluid cells.
A high resolution is recommended, as the velocity and pressure boundary is
interpreted as a ”staircase” shaped interphase.

2.2.5. Model Verification Parameters

Model verification will be discussed in detail in section 3. However, a dis-
tinction is made between the different verification parameters in this section.
During the solution procedure, several Matrix-Vector equations on the form
M~x = ~B are solved. The iterative CG-method has been applied throughout
this paper. The L1 norm of the residual vector is used as a measurement for
convergence:

res = ||~r|| = || ~B −M~x|| (29)

Both the pressure-correction (24) and the energy equation from (17) and
(11) yields such linear systems solved by the CG-method. In addition, the
full thermal loop at every time step finds the correct balance of temperature
change and solid fraction change by iteration. The resulting residuals from
the thermal loop is defined as (30) for the Source method and as (31) for the
Projection method. The L1 norm is also utilized here.
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res = ||[θ]m − θm−1|| (30)

res = ||[z]m − [z]m−1|| (31)

The different residuals are separated by a distinct subscript listed in table 1

Label Procedure Eq. Method

resPC Pressure-Correction (29) CG

resT Energy Equation (BTCS) (29) CG

resTT Thermal (30)/(31) Source/Proj.

Table 1: Residual labels.

Global measurements are also utilized such as global mass conservation (MG)
and global solid fraction (FG). Independent of how well the residuals perform
under iteration, these global parameters should also yield satisfactory results.

MG =
n∑

1

hmax∑

h=1

kmax∑

k=1

∆Fo

HW
[∆U1∆X2 + ∆U2∆X1]h,k (32)

FG =
hmax∑

h=1

kmax∑

k=1

1

HW
[fS∆X1∆X2]h,k (33)

Mass conservation (32) should ideally equal zero, while global solid fraction
(33) should remain unchanged under grid- and time step refinement.

3. Results and Discussion

A 2D cavity melting case with gallium has been used as a validation test.
The domain is initially in solid state at a temperature (TC) below fusion
temperature (Tref ). The top and bottom walls are thermally insulated. The
right wall has a constant temperature equal to the initial temperature. At
time t = 0 the temperature at the left wall is raised to some temperature
(TH) above fusion temperature. Experimental results are taken from Gau
and Viskanta [1]. Experimental uncertainty was not available. Here, an
initial subcooling between 1 and 2 oC is indicated. Initial tests did not show
significant difference between 1 and 2 oC, so TC simply has a value of 1.5 oC
below fusion temperature. Momentum boundary values are no-slip for the
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Figure 3: Solid-liquid phase front at different times. 100x50 grid, Solid line = Case A,
Dashed line = Case B, Square = Case C, Circles = Experiment [1]. Note that Case A and
Case C overlap. Time intervals are indicated on dimensional form
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Figure 5: Monitor parameters for 100x50 grid as a function of dimensionless time (Fo).
Black = Case A, Light Gray = Case B, Square = Case C. Note that Case A and Case C
overlap in figure 5b.
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Figure 6: Case A: 100x50 grid, stream function iso-lines and solid fraction at different
times. White: fS < 0.05, light gray: 0.05 < fS < 0.95, gray: fS > 0.95. Stream function
iso-values: −7, −6, −5, −4, −3, −2, −1, 0.1, 0.5. Stream function iso-lines are dashed
for negative values. Note that X1 only shows the range 0.0 to 1.1, and not 0.0 to 2.0 as
indicated by the aspect ratio (Ar)
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velocities and zero gradient for the pressure. Initially velocities and pressure
are equal zero. The pressure has a fixed numerical value equal zero at the
first computational cell in the bottom left corner such that numerical drifting
is prevented. With these initial and boundary conditions three cases where
tested with different combination of fluid and thermal modeling. This is
listed and labeled in table 2. Simulation parameters are listed in table 3.
As indicated by table 3 a constant time step (∆Fo) has been utilized. The
time step was refined until dampening from the BTCS discretization of the
energy equation at the finest grid had minimal impact on the solution and
the Navier-Stokes solver was stable.

Case Thermal Model Solid Velocity Model

A Projection Live Dead Cells

B Source Live Dead Cells

C Projection Darcy Porosity

Table 2: Combination of thermal and fluid models.

The predicted phase front for case A, B and C together with experimental
results at different time intervals are plotted in figure 3. A study of grid
independence can be seen in figure 4b. Here, the global solid fraction (FG)
from (33) is plotted as a function of cell count. The solution was considered
grid independent for a 100x50 mesh. The duration of the simulation is also
an interesting parameter. This is plotted in figure 4a as a function of cell
count. It is worth pointing out that Case A is in the range ten times faster
than case B and C. Clearly, reducing the number of cells where the pressure
correction is solved, as done by the live/dead cell method, has a huge impact
on the simulation efficiency. Solving the discrete BTCS system for the energy
equation only once, as done by the Projection method is clearly faster than
the Source method, where the same discrete energy equation is solved multi-
ple times. It is worth pointing out that the Source method derived and used
here is a basic scheme. Faster converging implicit schemes and hybrid meth-
ods for the solid fraction correction have shown faster convergence [10]. The
strength of the Source based method is the solid fraction correction scheme
and no specific attention has been payed to optimize it in this paper.
Figures 5a and 5b shows the global mass conservation (MG) and solid fraction
(FG) respectively. MG shows result in the range of 10−18 throughout the
simulation, which is considered satisfactory. FG, however, shows a difference
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Property Value Dimensions

TH 38.300 oC

Tref 29.765 oC

TC 28.265 oC

ρl 6095.0 kg
m3

ρs 5910.0 kg
m3

cpl 373.66 J
kgoC

cps 396.40 J
kgoC

kl 27.82 W
moC

ks 40.60 W
moC

H 0.0445 m

∆Fo 3.0 ∗ 10−5 −
Ra 2.2 ∗ 105 −
Pr 0.021 −
Ste 0.042 −
Ar 2.0 −
εPC 10−7 −
εT 10−7 −
εTT 10−6 −

Table 3: Simulation parameters for the validation case.

between the Source method (Case B) and the Projection method (Case A
and C). This difference is also indicated by the phase fronts in figure 3.
Numerically this difference is approximately 6% at Fo = 4.5. The phase
fronts predicted by the Projection method seems to yield a more accurate
result than the Source method for the 2D case. However, it is worth pointing
out that Ben-David et.al. [3] also predicted a faster melting rate for the
2D simulations, like the Source method in Case B shows here. Ben-David
et.al. [3] did accomplished a more accurate result when the full 3D case was
simulated. Solid fraction field and stream function plot of case A at different
time intervals can be found in figure 6.
From an implementation aspect, the Darcy source term added for handling
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flow in the solid region is a simple method easy to implement into exist-
ing codes. The live/dead cell method is somewhat more complicated. This
method requires counting and marking the live fluid cells and a reconstruc-
tion of the pressure-correction matrix system at every time step. The Projec-
tion method and the Source method for phase transitions had no significant
difference from an implementation point of view. Both methods requires a
solution of the energy equation and an iterative procedure for finding the
solid fraction. This is done as a coupled system for the Source method and
as a decoupled system for the Projection method.
Interesting extensions of the Projection method presented here would be a
full 3D simulation, as pointed out by Ben-David et.al. [3]. A faster con-
verging iterative method for solving the different linear systems within the
code would yield a more time efficient simulation. Several preconditioning
algorithms for the CG-method is readily available in the literature [20]. A
simple Secant method was used for the pointwise iteration of the solid frac-
tion correction. This method is notoriously slow, but for a linear function ξ
this method converged in two iterations. Faster Newton-Raphson methods
could be necessary for more complicated versions of (10). Voller and Swami-
nathan [10] also presents several implicit- and hybrid methods for the solid
fraction correction scheme in the family of Source based methods. Similarly,
there could also be more efficient schemes for the solid fraction correction for
the Projection method worth exploring.

4. Conclusion

The Projection method for phase transition and the live/dead fluid cell
method shown here have a clear advantage with respect to simulation ef-
ficiency. For the 2D case presented here, the Projection method also shows
more accurate results that the Source method. However, according to Ben-
David et.al. [3] a full 3D case develops a significant different flow pat-
tern which again changes the evolution of the solid-liquid inter phase. The
live/dead fluid cell method yielded the same results as the Darcy porosity ap-
proach. This approach was somewhat more complicated to implement than
Darcy porosity, but had a significant advantage with respect to simulation
efficiency.
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Appendix A. A Graphical Interpretation

This section is a graphical interpretation of the Projection algorithm for solv-
ing solid-liquid phase transitions presented in this paper. One time step for
three different temperature nodes [θ1,θ2,θ3] are presented here. In this exam-
ple, node 1 is initially a solid node, node 2 is undergoing a phase transition,
while node 3 is fully liquid. For simplicity a pure substance melting at tem-
perature θm is used as an example, but the principle is the same for any
definition of the temperature-solid fraction relation.
Initially at a time step n, the temperature field from the previous time step
is given as θn−1. First, a guess of the temperature field is done by solving
(17). Solving this system yields the preliminary temperature field θ̂, as seen
in figure Appendix A.1.

Figure Appendix A.1: Initial estimation of
the temperature field θ̂.

Figure Appendix A.2: Finding the corrected
solid fraction by iteration.

The solution of the energy equation, (17), does not account for the change in
solid fraction. The iterative scheme developed in this paper can be viewed as
a search for the cross section between the solid fraction-temperature relation
function defined as F (θ) and the characteristic lines represented as diagonal
lines in figure Appendix A.2. Physically, these diagonal characteristic lines is
an energy balance, and represents what a change in temperature corresponds
to as a change in solid fraction. Mathematically, these characteristics is
represented by (20), but can be simplified into the relation ∆θ = ∆fS

Ste
. The

iterative procedure for finding the cross sectional points is the solution of
function ξ(z) = 0 from (22), and will yield a set of corrected solid fractions,
[z1, z2, z3].
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Notice from figure Appendix A.2 that z1 > 1.0 and z3 < 0.0. This result is
clearly not physical as a cell cannot be more than fully solid or fully liquid.
This is where the limiter from (16) is implemented. z1 is simply limited to
1.0, while z3 is limited to 0.0. The resulting z now correctly represents the
solid fraction for the current time step, [fS]n, and the new temperature field
θn can be calculated according to (20). The end result of one time step is
represented in figure Appendix A.3.

Figure Appendix A.3: Resulting solid fraction and temperature after one time step

It is worth noting that the resulting temperatures, θn, in node 1 and 3 stayed
the same as the initially estimated temperatures θ̂. This is due to the fact
that the local solid fraction at these nodes did not change (∆fS = 0). An
interesting advantage of this method is that there should not be any difficulty
for the local solid fraction to change from fully solid to fully liquid in one
time step. Another curiosity with this method is that the effect of the Stefan
number (Ste) becomes clear. As seen from Appendix A.2 and the relation
∆θ = ∆fS

Ste
, Ste clearly corresponds to slope of the characteristic lines, and

evidently the speed of the phase transition.
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Abstract
A projection method for solving solid-liquid phase transitions is uti-

lized for a 3D square cavity. This square cavity is compared to an exper-
imental study of pure gallium. The difference between 3D and 2D results
are also highlighted in this paper. In addition, a 2D study of the effects
of the governing non-dimensional parameters and a demonstration of the
importance of the convective currents are also done.

Keywords: Phase Transition, Dimensional parameters, Convection, 3D,
Gallium, Numerical Simulation

1 Introduction

The melting square cavity case is a widely researched topic. Early experimental,
analytical and numerical studies date back to the late 70’s early 80’s [1], [2], [3],
[4], [5], [6]. A later review paper by König-Haagen et.al. [7] recaps the common
numerical fixed grid methods for solving convection dominated solid-liquid phase
transition up to 2017. Work by Ben-David et.al. [8] and Niezgoda-Zelasko
[9] also demonstrates the most common method implemented in commercially
available software like Comsol and Fluent respectively.
Today, the most common methods are categorized into three main solution
strategies: Apparent Heat Capacity Method, Enthalpy Method and the Source
Method. Interested readers are referred to the article by König-Haagen et.al.
[7] and earlier review articles by Voller et.al. [10] [11].
This paper, however, investigates a new solution strategy developed by Rømcke
et.al. [12]. The overall strategy shows some resemblance to the Source Method,
but the idea behind the iterative scheme is based on the fractional step method
commonly used for solving the Navier-Stokes equations. This new method will
be summarized here, but for a thorough derivation and comparison to the Source
Method, the reader is referred to the original paper [12]. It is worth noting that
a similar solution strategy has been implemented in N.R Morgan’s PhD thesis
[13], a numerical study of film boiling utilizing the Level Set Method.

∗Corresponding Author: olavromc@stud.ntnu.no
†reidar.kristoffersen@ntnu.no
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Nomenclature

α Thermal Diffusivity
β Thermal Expansion
ε Convergence Criterion
ˆ Preliminary
µ Viscosity, Kinetic
ν Viscosity, Kinematic
Ω Calculation domain
ρ Density
θ Temperature, Non-Dim
ξ() Correction Function
Ar Aspect Ratio
C Cold, Subscript
c Center Node, Subscript
CP Volumetric Heat Capacity

Ratio
cp Heat Capacity
D Cavity Width
F () Function
FB Force, Buoyancy
FL Global Solid Fraction
fS Local Solid Fraction
Fo Time, Non-Dim
g Gravitational acceleration
H Cavity Height
H Hot, Subscript

i, j Spacial Direction
K Thermal Conductivity Ratio
k Thermal Conductivity
l Liquid, Subscript
M Melting, Subscript
MG Global Mass Conservation
n # Discrete Time Steps
P Pressure, Non-Dim
p Pressure
PC Press-Corr, Subscript
Pr Prantl Number
r Residual Vector
Ra Rayleigh Number
res Residual Norm
s Solid, Subscript
Ste Stefan Number
T Energy, Subscript
T Temperature
t Time
TT Thermal, Subscript
U Velocity, Non-Dim
u Velocity
x Position
X,Y, Z Position, Non-Dim
z Unlimited Solid Fraction

As indicated by experimental studies [1] [5] [8], the diffusive transport of energy
is not enough to explain the development of the solid-liquid phase front. De-
pending on the parameters of the experiment (spacial scale, temperature range,
material, ect.), the convective currents controls much of the development of the
solid-liquid inter phase. A good description of the fluid flow is thus necessary for
describing the physics involved. As indicated by Ben-David [8], 2D simulations
do not account for the 3D flow structures needed to explain the square cavity
melting case.
The main focus of this paper is to numerically describe the full 3D behavior
of the square cavity melting case and compare it to experiments by Ben-David
et.al. [8]. A numerical study of the role of the dimensionless numbers has
also been done together with 2D simulations of some interesting mould-melt
geometries.

2 Model

Similar to Rømcke et. al. [12] the physical assumptions which the mathematical
model will be based on are:
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1. Heat transfer is governed by convection and conduction.
2. The fluid flow is laminar and incompressible.
3. Viscous dissipation is negligible.
4. Density changes only effect the free convection. Change in density are

only considered for the Boussinesq approximation.
5. Physical properties (cp, µ, k ...) only differ between solid and liquid phases.

They do not vary with temperature.
6. A phase field function is a sufficient representation of the average local

phase fraction.
7. The phase transition is isothermal.
8. Solidified material is in full contact with the boundary walls

2.1 Mathematical formulation

The convention used throughout this paper is the non-dimensional form of the
governing equations. The scaling utilized here will be similar to that indicated
by Rømcke et.al. [12], with the exception that the reference values (ρl, kl, cpl...)
are values at TH . Note also that the temperature range is defined as TH − TC .
TH and TC represents hot and cold temperatures, respectively

Ui =
uiH

αl
θ =

T − TC
∆T

P =
pH2

ρlα2
l

Xi =
xi
H

CP =
cpρ

cplρl
αl =

kl
cplρl

Fo =
tαl

H2
ν =

µ

ρl
∆T = TH − TC

Pr =
ν

αl
Ra =

gβ∆TH3

ναl
Ste =

ρlcpl∆T

L

Ar =
D

H
K =

k

kl

the non dimensional form of the governing equations are:

∂Ui

∂Xi
= 0 (1)

∂Ui

∂Fo
+
∂ (UjUi)

∂Xj
= − ∂P

∂Xi
+ Pr

∂2Ui

∂X2
j

+RaPrθ
∂Xi

∂X2
(2)

∂θ

∂Fo
+
∂ (Ujθ)

∂Xj
=

∂

∂Xj

(
K

∂θ

∂Xj

)
+

1

Ste

∂fS
∂Fo

(3)

fS = F (θ) (4)

It is worth pointing out that X1 = X, X2 = Y and X3 = Z. The Navier-Stokes
equations, (1) and (2), represents conservation of mass and the momentum
equation respectively. (3) is the energy equation, while (4) is the solid fraction -
temperature relation. Note that the reference temperature in this case is the cold
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temperature, and not the melting temperature. As indicated in Rømcke et.al.
[12] the dimensionless volumetric heat capacity (CP ) is not a part of the non
dimensional equations, as it varies insignificantly over the relevant temperature
domain. However, the thermal conductivity ratio (K) has a significant difference
between solid and liquid state (ks

kl
= 1.46) and is thus accounted for in the

mathematics. The convention used in this paper is the non-dimensional form of
the governing equations (1) to (4). The dimensionless numbers Pr, Ra, Ste and
Fo are worth noting as they represent the key parameters of the simulation. In
addition, two derived parameters FL and MG represent global liquid fraction
and global conservation of mass respectively. They are defined accordingly:

MG =

∫ Fo

0

1

V ol

[∫

Ω

∇(~U)dΩ

]
dFo (5)

FL = 1− 1

V ol

∫

Ω

fSdΩ (6)

V ol =

∫

Ω

dΩ (7)

where Ω represent the calculation domain, while V ol is the total domain volume.
Ideally, FL should remain constant under grid- and time step refinement, while
MG should remain close to zero during the whole simulation.

2.2 Numerical Solution

The reader is referred to the article by Rømcke et.al. for a thorough explanation
of both the fluid and the thermal models. The same approach is utilized here
with the only exception that the code has been expanded to 3D.

2.2.1 Thermal Model

A projection method for solid-liquid phase transitions has been utilized for the
thermal modeling. For every discrete time step, this approach can be summa-
rized accordingly:

1. Estimate a temperature field (θ̂) from (8). The RHS is discretized ac-
cording to the BTCS-scheme. Note that for this initial estimation, it is
assumed that no material changes phase.

2. Correct the solid fraction (fS) by finding the root of ξ from (10). This is
done by iteration and the Secant method has been utilized.

3. Limit the solid fraction to physical values according to (11). The roots of
(10) does not necessarily yield physical values for the solid fraction, thus
the corrected solid fraction values needs to be limited between 0.0 and 1.0.

4. Correct the temperature field according to (12). The temperature [θ]n

now represents the temperature for the current time step.
The equations used are listed below. Here the discretized energy equation states:

θ̂c − [θc]
n−1

∆Fo
= RHS (8)

where

RHS =
∂

∂Xj

(
K

∂θ

∂Xj

)
− ∂ (Ujθ)

∂Xj
. (9)
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The correct solid fraction is the solution to ξ(z) = 0 where z represents the
corrected solid fractions for the next time step.

ξ(z) = z − [fS ]n−1 − Ste
(
F−1 (z)− θ̂c

)
(10)

The roots found from (10) need to be limited between 0 and 1, as values outside
this range do not represent physical values of the solid fraction.

fS = 0, if fS < 0

fS = 1, if fS > 1
(11)

When the solid fraction for the next time step has been found, the initially
estimated temperature field can be corrected according to:

[θc]
n − θ̂c =

1

Ste

(
[fS ]n − [fS ]n−1

)
(12)

The superscript n represents the time step. From an implementation aspect, it
is worth noting that expansion to 3D was trivial.

2.2.2 Fluid Model

A FD Projection method has been utilized to solve the Navier-Stokes equation.
For one time step, this method can be summarized accordingly:

1. Estimate a Velocity field (Û) from (13). This equation is discretized ac-
cording to the FTCS-scheme. Note that the pressure field from the pre-
vious time step is used for the initial velocity estimation.

2. Find the pressure correction from (14). By discretizing the Poisson pressure-
correction equation a linear system of equation can be formulated. This
matrix-vector system is then solved iteratively by a conjugate gradient
method.

3. Based on the pressure-correction, ∆P , the initially estimated velocities
are corrected according to (16). The pressure is simply updated by (15).

The equations used for the fluid modelling are listed below.

Ûi − [Ui]
n−1

∆Fo
= −∂ (UjUi)

∂Xj
−
[
∂P

∂Xi

]n−1

+ Pr
∂2Ui

∂X2
j

+RaPrθ
∂Xi

∂X2
(13)

∂2(∆P )

∂X2
i

=
1

∆Fo

∂Ûi

∂Xi
(14)

[P ]n = [P ]n−1 + ∆P (15)

[Ui]
n = Ûi −∆Fo

∂(∆P )

∂Xi
(16)

Flow in the solid region is simply handled by a live/dead fluid cell method [12].
For pure substances, a cell is marked as a dead fluid cell if the local solid fraction
is above 0.5. When a cell is marked as a dead fluid cell the velocities should be
zero and solving the Navier-Stokes equations for these cells is unnecessary. As
the MAC approach [14] for location of pressure and velocity nodes is used here,
the marking of live and dead fluid cells can be summarized accordingly:
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1. If a velocity node has both of its neighbouring cells marked as a dead
fluid cells, then the velocity is known to be zero (no-slip, no-penetration
boundary).

2. If a pressure node has a neighbouring cell marked as a dead fluid cell, then
the spacial derivative in that direction is known to be zero (zero gradient
boundary).

By utilizing the information above, the Poisson pressure correction matrix sys-
tem needs to be formulated at every time step. This has been shown more
computationally efficient than other common methods for handling fluid flow in
the solidified region [12].

3 Results and Discussion

Three main cases are presented in this section. As shown by previous work,
accounting for the full 3D physics can have a significant impact on the evolution
of the solid liquid interphase. A study of the governing dimensionless numbers
(Ra, Pr, Ste) is also presented. Additionally, two mould-melt systems have been
simulated with and without convective transport. The goal for this section
is to show the importance of the 3D effects, how the dimensionless numbers
qualitatively effect the physical system and the importance of the convective
currents.

Property Value Dimensions Property Value Dimensions

TH 40.0 oC H 0.06 m

TM 29.85 oC ∆Fo 2.0 ∗ 10−5 −
TC 25.0 oC Ra 3.712 ∗ 105 −
ρl 6089.0 kg

m3 Pr 0.0247 −
ρs 5910.0 kg

m3 Ste 0.07444 −
cpl 365.66 J

kgoC Ar 1.5 −
cps 396.40 J

kgoC εPC 10−6 −
kl 28.32 W

moC εT 10−6 −
ks 40.60 W

moC εTT 10−6 −

Table 1: Simulation parameters for the 3D validation case. Here, liquid physical
properties are taken at TH and solid properties at TM . Values are found in [8].

3.1 3D Simulation of the Cavity Melting Problem

As indicated by the literature [8] there is a difference in the flow field developed
in a full 3D simulation compared to the 2D case. The convective transport has
a significant impact on the shape and evolution of the solid liquid interphase,
thus a thorough description of the flow field is important. A 2D and a 3D case
have been simulated and compared to experimental results.
The system consists of a 0.09×0.06×0.06 m cavity with gallium at a temperature
TC below fusion temperature (TM ). The front, back, top and bottom walls are
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Figure 1: Solid-liquid phase front at different times. Circles: Experiment. Solid
line: 3D. Dashed line: 2D. Experimental results are taken from [8]. Time
intervals are indicated on dimensional form.

all thermally insulated, while the right wall has a constant temperature equal
TC . At time equal zero, the left wall has a sudden temperature rise to TH above
fusion temperature.
Simulation parameters for this case can be found in table 1. The experimental
results are taken from Ben-David et.al. [8]. Figure 1 presents the 3D and
2D cases together with the experimental results. Figure 2 shows the vertical
midplane crossection, while figure 3 presents the horizontal midplane crossection
at different times. The simulation has been done on a 100× 50× 50 grid. The
resulting residuals was ensured to never increase above the criterions indicated
in table 1 and the global conservation of mass never exceeded MG = 10−17.
A study of grid- and time step refinement was also done in order to verify a
convergent result. 40% more cells, and a 25% finer time-step had less than 1%
impact on the global solid fraction FL.
The difference between the 2D and the full 3D case becomes clear in figure
1. The obvious result is that the 3D case shows a significantly slower moving
interphase. Another key difference between the 2D and the 3D case is the devel-
opment of the 2D vortexes early in the simulation [8] [12]. These are not present
in the full 3D case. Both the 2D and the 3D case yielded significantly faster
moving interphases than the experimental values indicate. The only variation
in physical properties considered for this simulation is the thermal conductiv-
ity difference between solid and liquid state. How the properties vary with
temperature has not been accounted for. From the physical properties used in
Ben-David et.al. [8] viscosity and thermal conductivity shows some temperature
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Figure 2: Velocity vector field and the solid fraction at the XY - midplane
(Z = 0.5). (dark gray: fS > 0.95, light gray: 0.05 < fS < 0.95, white:
fS < 0.05) at different times.
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Figure 3: Velocity vector field and the solid fraction at the XZ - midplane
(Y = 0.5). (dark gray: fS > 0.95, light gray: 0.05 < fS < 0.95, white:
fS < 0.05) at different times.
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Property Value Property Value

θH 1.0 K 1.0

θM 0.5 εPC 10−6

θC 0.0 εT 10−6

∆Fo 2.0 ∗ 10−5 εTT 10−6

Ar 1.0

Table 2: Simulation parameters for the dimensional study.

Property A B C

Ra 104 105 106

Pr 0.1 0.01 0.001

Ste 0.1 0.05 0.01

Fo 2.5 1.2 0.5

Table 3: Different values for the dimensional constants.

dependence that could yield a significant difference from the results presented
here.

3.2 Effects of the Governing Dimensionless Parameters

Three dimensionless numbers (Ra, Pr, Ste) appear in the governing equations
(1) to (4). A small graphical study is presented in this section, followed by a
sensitivity analysis in section 3.3. Values utilized in the graphical study can
be found in table 2, where the dimensional constants used for the graphical
representation can be found in table 3. Here, the simulations are only done in
2D.
Figures 4 indicates that an increase in any of the dimensional constants also
increase the overall melting speed. However, both the Prantl number and the
Rayleigh number seem to have some part in controlling the shape of the solid
liquid interphase.

3.3 Sensitivity Analysis

A more extensive sensitivity analysis of the specific impact the dimensional
parameters have on the global liquid fraction (FL) has also been done. From
experimental studies [5] [15] correlation to some dimensional group (Π) have
been attempted. For the 2D case presented here, an attempt was made at
finding a dimensional group for the global liquid fraction. From equation (17),
the goal is to estimate the parameters c1 to c5.

FL = Π = c1Ra
c2Prc3Stec4Foc5 (17)

The author recognizes that the physics is not correctly described in 2D, as al-
ready shown in section 3.1. From a quantitative perspective, the values acquired
for equation (17) will naturally not reflect the reality. However, the analysis will
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(a) Effect of the Rayleigh number. Here, Ste = 0.1,
Pr = 0.1, Fo = 2.5.
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(b) Effect of the Prantl number. Here, Ra = 105,
Ste = 0.1, Fo = 2.5.
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(c) Effect of the Stefan number. Here, Ra = 105,
Pr = 0.1, Fo = 2.5.
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(d) Effect of the Fourier number. Here, Ra = 105,
Pr = 0.1, Ste = 0.1.

Figure 4: Isolated variation in the dimensional parameters. Simulation parame-
ters can be found in table 2. For the three different cases A, B and C details are
listed in table 3. The arrow indicates direction of increasing values of Rayleigh,
Prantl, Stefan and Fourier, respectively. Note that the same relative increase in
Fo and Ste results in almost equivalent evolution of the solid - liquid interphase.
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Parameter Min Max

Ra 103.5 106.5

Pr 10−2.3 10−0.8

Ste 10−3.3 10−0.8

Fo 0.0 2.5

Table 4: Range of the dimensional parameters used in the sensitivity analysis.

Property Value Property Value

θH 1.0 K 1.0

θM 0.01 εPC 10−6

θC 0.0 εT 10−6

Ar 1.0 εTT 10−6

Table 5: Simulation parameters for the sensitivity analysis.

reflect some of the qualitative aspects of the system. In total 15 simulations were
done on a 2D 50× 50 grid. Nine values of time (Fo) were chosen for each simu-
lation. In total 135 data points were acquired. All dimensional parameters were
chosen at random between the ranges indicated in table 4. In order to neglect
the dependence on the initial subcooling below fusion temperature, the melting
temperature was very close to the initial temperature. Further simulation pa-
rameters can be found in table 5. The time step chosen was small enough for
each simulation such that there were no issues with numerical instability. If the
solidifying front reached the right wall, the simulation ended.
From the resulting data acquired from the simulations it was sought to minimize
the Cost function defined by equation (18).

Cost = |c1Rac2Prc3Stec4Foc5 − FL| (18)

Figure 5a shows the simulated values together with a data fitted curve, while
5b presents the absolute deviation (∆) from the fitted curve. Π was found to
be:

Π = 0.577Ra0.106Pr0.068Ste0.529Fo0.619 (19)

Some similarities with the previously found correlations by Gau et.al. [5] are
worth noting (20). Gau et.al. tried to correlate the measured liquid fraction
with the dimensional group τ = SteFo, Ra and Ar. In this paper, the Stefan
and Fourier numbers are treated as separate variables. Fo and Ste seem to
have the largest impact on the liquid fraction in (19). The difference between
Gau et.al. and this analysis is the quantitative result. As Gau et.al. found
τ0.843 to correlate well with experimental result, the analysis undergone here
yielded Ste0.529 and Fo0.619 respectively. However, a somewhat larger depen-
dence on the Rayleigh number was found here (Ra0.106) compared to Gau et.al.
(Ra0.0504). The Liquid fraction seems to have a weak dependence on the Prantl
number (Pr0.068).
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(a) Global liquid fraction, FL, as a function of the
dimensional group Π. The fitted line follows the curve
FL = 1.009Π− 0.003. R2 = 0.97

(b) Point wise deviation from the fitted line. Note the
bump around Π = 0.4.

Figure 5: Results from the sensitivity analysis. Here, it was found that
Π = 0.577Ra0.106Pr0.068Ste0.529Fo0.62.

[FL]Gau = 2.708(SteFo)0.843Ra0.0504A−0.14
r (20)

It was observed that some simulations kept the solid liquid interphase a nearly
vertical line, while others had a more curved interphase. Examples of this can
be seen in figure 4. It is hypothesized, that the interphase shape says something
about how convection dominated the system is. The interphase length S was
used as a measure of this. It is wort pointing out that a perfectly conduction
dominated system would have a constant interphase length of 1. Figure 6d
shows that some of the simulations experience a sudden increase in interphase
length S. This transition from conduction to convection is here characterized as
the sudden increase in S. As seen in figure 6a, the point at which the transition
occurs seems to happen at lower values of Π for higher values of Ra. Thus,
large Rayleigh numbers would indicate a more convection dominated system, as
expected. With regards to the Prantl number, the connection between figure
4b and 6b is not obvious. Figure 6b plots Π when the transition to convection
dominated behaviour occurs as a function the Prantl number. Figure 4b on the
other hand plots the position of the interphase for changes in Pr only. The two
results (figure 4b and 6b) may seem contradictory, but no conclusive remark
can be made due to the low coefficient of determination (R2) in figure 6b. The
Stefan number seem to be independent on whether or not the system transitions
to a convection dominated behaviour, but again the low R2 value makes any
conclusive remarks difficult.
In summary, figure 4 in section 3.2 and figure 6 in section 3.3 states that Rayleigh
and Prantl numbers seem to control the shape of the solid-liquid interphase,
while the Stefan and Fourier numbers have a larger impact on the global liquid
fraction.
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(a) Transition to convective dominated heat transfer
as a function of the Rayleigh number

(b) Transition to convective dominated heat transfer
as a function of the Prantl number

(c) Transition to convective dominated heat transfer
as a function of the Stefan numbe

(d) Solid liquid interphase length S as a function of Π

Figure 6: Transition to convective dominated behaviour. Figure 6d shows the
sudden increase of the length (S) of the solid liquid interphase. S is a variable
attempting to say something about the shape of the solid liquid interphase.
Figures 6a, 6b and 6c plots the value Π at which the simulation experienced
a sudden increase in S as a function of Rayleigh, Prantl and Stefan numbers
respectively. Coefficient of determination is indicated by R2.
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Property Value Property Value

θH 1.0 Ra 2.0 ∗ 107

θM 0.5 Pr 50

θC 0.0 Ste 50

Mould Height 1.0 εPC 10−6

Mould Width 1.0 εT 10−6

∆Fo 7.0 ∗ 10−7 εTT 10−6

Table 6: Simulation parameters for the Mould - Melt systems.

3.4 Mould - Melt System

In casting technology it is important to control the evolution of the solid-liquid
phase front. Though not accounted for in this paper, materials typically experi-
ence shrinkage during solidification. If a portion of melt is encapsulated within a
solidified area, the solidified part will most lightly develop pores. Therefore, de-
signing mould shapes that keep the last solidifying material in non-crucial areas
of the mould is essential. This section utilizes the previously described model to
emphasis the importance of including the convective currents occurring during
solidification. The author recognizes that no attention has been paid to model
undercooling, crystal precipitation or other effects typically influencing a solidi-
fying material [16]. Two cross sectional shapes are represented here: a Pipe and
a H-Beam. The simulations are in 2D, which could arguably be valid for systems
that stretch far out in the third dimension, so end effects can be neglected. 3D
flow structures could still develop, depending on the system. Simulations are
carried out on a 75 × 75 grid. Simulations was also carried out on a 85 × 85
grid. Here, the time it took for the domain to fully solidify was within 2% of
the 75× 75 grid, and the simulation was considered grid independent.
The shape is encapsulated in a mould which has pragmatically been given the
same physical properties as the melt with the exception that it is fully solid
during the whole simulation, and never undergoes a phase transition. Initially,
the fluid is at rest with temperature θH and the mould has a temperature θC .
The outer mould wall is kept at a constant cold temperature θC . The material
is considered pure, with a melting temperature of θM . Two key parameters have
been monitored. First, the placement of the nodes solidifying last and secondly
the time taken for the mold cavity to be fully solidified. These two parameters
have been compared to a cases where natural convection have been neglected.
Figure 7 shows the evolution of the solid-liquid phasefront with and without

Shape Convection Solidification time (Fo) Final solid point (X, Y)

H −Beam Y es 0.032 (0.50, 0.59)

H −Beam No 0.040 (0.50, 0.50)

Pipe Y es 0.0284 (0.50, 0, 65)

Pipe No 0.0285 Concentric inner circle

Table 7: Results for the Mould - Melt systems.
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Figure 7: Solid liquid phase front (fS = 0.5) at different times. Dashed: Con-
duction only. Solid: Convection and conduction. The thick line indicates the
mould shape.
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natural convection. A clear difference is observed for all cases. Firstly, by
including convection, the final solidifying point tends to move upwards. This
is due to hot fluid being transported by convective currents in the positive Y-
direction. Secondly, another effect induced by convection is that the fluid tends
to solidify faster. For the tube, this effect is only marginally noticeable (less
than 2%), but quite significant for the H-beam. The numerical values are listed
in table 7.

4 Conclusion

Simulations shows that a full 3D description of the physics is necessary for
achieving accurate results as demonstrated here and by Ben-David et.al. [8].
From an implementation aspect, extending the original 2D algorithm presented
by Rømcke et.al. [12] to a full 3D model was straight forward. The 2D sensitiv-
ity analysis conducted here also revealed some similarities to previously found
correlations, but a notable numerical difference. Interestingly, for the domain
tested here, the Prantl and Rayleigh numbers had a relatively small influence
on the evolution of the global liquid fraction. The dominating parameters with
regards to the global liquid fraction were the Fourier and Stefan numbers. How-
ever, it is worth pointing out that Prantl and Rayleigh had an impact on the
shape of the solid liquid interphase. Notably the low R2 values when trying
to correlate the conduction-convection transition makes any conclusive remarks
difficult. However, the approach presented here might be a useful framework
for future studies. The importance of the convective currents has also been
demonstrated for some interesting mould - melt systems.
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5 Trails and Tribulations

This section aims at presenting the work not necessarily presented in the articles, but was key stepping
stones towards the development of the final model. The sparse matrix solver, choice of discretization and
boundary conditions are fundamental with regards to this. In addition, the fluid model was compared to
an analytic solution to the pressure driven channel problem and attempts at simulating more complex
phase transition behaviour other than pure materials was also done. For a thorough derivation of the
full model, the reader is referred to article 1.

5.1 Notes on the Buckingham-Π Theorem

The Buckingham-Π theorem loosely states that a system of v variables involving d physical dimensions
can be described by a set of p = v − d non-dimensional parameters. On its simplest form with constant
physical properties, the system studied in this thesis have v = 16 variables (t, ui, p, T , fS , xi, cpl,
kl, ρl, µ, g, β, H, D, ∆T , L) spanning d = 4 fundamental dimensions ([Distance], [Mass], [Time],
[Temperature]). By the Buckingham-Π theorem, the system should be described by p = 12 non-
dimensional groups. However, ignoring CP and K which account for changing physical properties, only
10 Π-groups are identified from the scaling of the governing equations in article 1 and 2:

Π1 =
uiH

αl
= Ui, Π2 =

T − TC
∆T

= θ, Π3 =
pH2

ρlα2
l

= P, Π4 =
xi
H

= Xi, Π5 =
tαl
H2

= Fo

Π6 =
ν

αl
= Pr, Π7 =

gβ∆TH3

ναl
= Ra, Π8 =

ρlcpl∆T

L
= Ste, Π9 =

D

H
= Ar, Π10 = fS

Here, αl = kl
cplρl

and ν = µ
ρl

. All these non-dimensional groups (Π1 - Π10) have an intuitive physical

meaning. Some questions arise:

• What are the two remaining groups; Π11 and Π12?

• How can they (e.i. Π11 and Π12) be defined in such a way that they have some physical intuitive
meaning?

• What effect do they have on the system?

• In article 2, the global liquid fraction FL and the non-dimensional group Π were defined. Are they
good candidates for Π11 and Π12? FL clearly represents the global liquid fraction, but are there
some intuitive physical interpretation of Π from article 2?

• Could some manipulation of the governing equation (derivation, integration, substitution, ect.)
reveal a Π-group that the current form does not show?

This thesis does not investigate these questions any further, but it is recognized that answering them
could potentially yield a deeper understanding of the physics involved.
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Figure 1: (Left) A 3D cell in a staggered grid. The velocity vectors (U , V , W ) are indicated on the cell
phases, while the intensive properties (P , θ, fS) are placed in the cell center. Superscript (n) indicates
discrete time step. Subscript (h, k, l) indicates discrete position in (X, Y , Z) direction respectively.
(Right) Neighbouring cell notation.

5.2 Discretization and Boundaries

The discretization of the energy equation and the momentum equation is only mentioned in article 1 and
2. To summarize, the domain is meshed as a staggered grid. The preliminary velocity field is discretized
by a FTCS scheme, while the preliminary temperature field is discretized by a BTCS scheme. Boundary
conditions handled throughout this report is constant temperature, zero gradient pressure, no-slip for
the velocity and zero gradient for pressure. Additionally, zero gradient for velocity and constant pressure
is addressed in the pressure driven channel case. This section only deals with the 3D discretization. A
single 3D grid cell is presented in figure 1. Note that the velocities are defined as U , V , W instead of
U1, U2, U3 which has been the convention used in article 1 and 2. In this section the equations will be
written out in its full form, thus it is easier to define the variables in terms of U , V , W to avoid a lot of
subscripts that would make the syntax difficult to read. Code snippets are included in the appendix.

5.2.1 FTCS - Momentum Equations

For the calculation of the preliminary velocity field in the projection method, a Forward-Time-Central-
Space (FTCS) scheme is used. The velocities are calculated accordingly:

X-Direction:
Ûh,k,l = Un−1h,k,l + ∆Fo (−∇PX − FUX − FUY − FUZ + Pr ∗ V iscU ) (1)

with

∇PX =
Pn−1h+1,k,l − Pn−1h,k,l

∆X

FUX =
(Un−1h,k,l + Un−1h+1,k,l)

2 − (Un−1h−1,k,l + Un−1h,k,l)
2

4∆X

FUY =
(V n−1h,k,l + V n−1h+1,k,l)(U

n−1
h,k,l + Un−1h,k+1,l)− (V n−1h,k−1,l + V n−1h+1,k−1,l)(U

n−1
h,k−1,l + Un−1h,k,l)

4∆Y

FUZ =
(Wn−1

h,k,l +Wn−1
h+1,k,l)(U

n−1
h,k,l + Un−1h,k,l+1)− (Wn−1

h,k,l−1 +Wn−1
h+1,k,l−1)(Un−1h,k,l−1 + Un−1h,k,l)

4∆Z

V iscU =
Un−1h+1,k,l − 2Un−1h,k,l + Un−1h−1,k,l

∆X
+
Un−1h,k+1,l − 2Un−1h,k,l + Un−1h,k−1,l

∆Y
+
Un−1h,k,l+1 − 2Un−1h,k,l + Un−1h,k,l−1

∆Z

Y-Direction:

V̂h,k,l = V n−1h,k,l + ∆Fo (−∇PY − FVX − FVY − FVZ + Pr ∗ V iscV + FB) (2)
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with

FB =
1

2
PrRa(θn−1h,k,l + θn−1h,k+1,l)

∇PY =
Pn−1h,k+1,l − Pn−1h,k,l

∆Y

FVX =
(Un−1h,k,l + Un−1h,k+1,l)(V

n−1
h,k,l + V n−1h,k+1,l)− (Un−1h−1,k,l + Un−1h−1,k+1,l)(V

n−1
h−1,k,l + V n−1h,k,l )

4∆X

FVY =
(V n−1h,k,l + V n−1h,k+1,l)

2 − (V n−1h,k−1,l + V n−1h,k,l )
2

4∆Y

FVZ =
(Wn−1

h,k,l +Wn−1
h,k+1,l)(V

n−1
h,k,l + V n−1h,k,l+1)− (Wn−1

h,k,l−1 +Wn−1
h,k+1,l−1)(V n−1h,k,l−1 + V n−1h,k,l )

4∆Z

V iscV =
V n−1h+1,k,l − 2V n−1h,k,l + V n−1h−1,k,l

∆X
+
V n−1h,k+1,l − 2V n−1h,k,l + V n−1h,k−1,l

∆Y
+
V n−1h,k,l+1 − 2V n−1h,k,l + V n−1h,k,l−1

∆Z

Z-Direction:

Ŵh,k,l = Wn−1
h,k,l + ∆Fo (−∇PZ − FWX − FWY − FWZ + Pr ∗ V iscW ) (3)

with

∇PZ =
Pn−1h,k,l+1 − Pn−1h,k,l

∆Z

FWX =
(Un−1h,k,l + Un−1h,k,l+1)(Wn−1

h,k,l +Wn−1
h+1,k,l)− (Un−1h−1,k,l + Un−1h−1,k,l+1)(Wn−1

h−1,k,l +Wn−1
h,k,l)

4∆X

FWY =
(V n−1h,k,l + V n−1h,k,l+1)(Wn−1

h,k,l +Wn−1
h,k+1,l)− (V n−1h,k−1,l + V n−1h,k−1,l+1)(Wn−1

h,k−1,l +Wn−1
h,k,l)

4∆Y

FWZ =
(Wn−1

h,k,l +Wn−1
h,k,l+1)2 − (Wn−1

h,k,l−1 +Wn−1
h,k,l)

2

4∆Z

V iscW =
Wn−1
h+1,k,l − 2Wn−1

h,k,l +Wn−1
h−1,k,l

∆X
+
Wn−1
h,k+1,l − 2Wn−1

h,k,l +Wn−1
h,k−1,l

∆Y
+
Wn−1
h,k,l+1 − 2Wn−1

h,k,l +Wn−1
h,k,l−1

∆Z

Note that the pressure field from the previous time step is used here. V isc denotes the viscous term, while
FU , FV and FW denotes the advective terms of U , V and W respectivly in their indicated directions.

5.2.2 Pressure Correction

After the preliminary velocities are calculated, the correct pressure field needs to be established. The
pressure correction also works as a basis for correcting the velocities. Discretizing the Poisson equation
for the pressure correction results in a linear system of equations. One line of this matrix system can be
presented accordingly:

[
aF aN aE aC aW aS aB

]




∆Ph,k,l+1

∆Ph,k+1,l

∆Ph+1,k,l

∆Ph,k,l
∆Ph−1,k,l
∆Ph,k−1,l
∆Ph,k,l−1




=
Ûh,k,l − Ûh−1,k,l

∆X
+
V̂h,k,l − V̂h,k−1,l

∆Y
+
Ŵh,k,l − Ŵh,k,l−1

∆Z

(4)
with

aE =
1

∆X2
aW =

1

∆X2

aN =
1

∆Y 2
aS =

1

∆Y 2

aF =
1

∆Z2
aB =

1

∆Z2

aP = − (aE + aW + aN + aS + aF + aB)
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The result is a sparse matrix system which is solved with a conjugated gradient method. When a
satisfactory convergence criterion is reached pressure and velocities are updated according to (5) (6) (7)
(8).

Pn = Pn−1h,k,l + ∆P (5)

Unh,k,l =Ûh,k,l −∆Fo
∆Ph+1,k,l −∆Ph,k,l

∆X
(6)

V nh,k,l =V̂h,k,l −∆Fo
∆Ph,k+1,l −∆Ph,k,l

∆Y
(7)

Wn
h,k,l =Ŵh,k,l −∆Fo

∆Ph,k,l+1 −∆Ph,k,l
∆Z

(8)

5.2.3 BTCS - Energy Equation

When calculating the preliminary temperature field (θ̂) in the projection method for phase transition
problems derived in article 1, a Backward-Time-Central-Space (BTCS) scheme is used. The result is
a linear system of equations. One line of the general form of this matrix system can be presented
accordingly:

[
aF aN aE aC aW aS aB

]




θ̂h,k,l+1

θ̂h,k+1,l

θ̂h+1,k,l

θ̂h,k,l
θ̂h−1,k,l
θ̂h,k−1,l
θ̂h,k,l−1




= a0θ
n−1
h,k,l (9)

with

aE =
Unh,k,l
2∆X

−
Kn−1
h,k,l

∆X2
−
Kn−1
h+1,k,l −Kn−1

h−1,k,l
4∆X2

aW = −
Unh−1,k,l

2∆X
−
Kn−1
h,k,l

∆X2
+
Kn−1
h+1,k,l −Kn−1

h−1,k,l
4∆X2

aN =
V nh,k,l
2∆Y

−
Kn−1
h,k,l

∆Y 2
−
Kn−1
h,k+1,l −Kn−1

h,k−1,l
4∆Y 2

aS = −
V nh,k−1,l

2∆Y
−
Kn−1
h,k,l

∆Y 2
+
Kn−1
h,k+1,l −Kn−1

h,k−1,l
4∆Y 2

aF =
Wn
h,k,l

2∆Z
−
Kn−1
h,k,l

∆Z2
−
Kn−1
h,k,l+1 −Kn−1

h,k,l−1
4∆Z2

aB = −
Wn
h,k,l−1
2∆Z

−
Kn−1
h,k,l

∆Z2
+
Kn−1
h,k,l+1 −Kn−1

h,k,l−1
4∆Z2

aP = 4Kn−1
h,k,l

(
1

∆X2
+

1

∆Y 2
+

1

∆Z2

)

a0 =
1

∆Fo
aC = aE + aW + aN + aS + aF + aB + aP + a0

Here, K represents the thermal heat conduction ratio defined in article 1. The result is a sparse matrix
system which is solved with a conjugated gradient method.

5.2.4 Solid Fraction Correction

The correction of the solid fraction is thoroughly explained in article 1. The Secant method will not be
explained further here, but how this method is implemented in the program can be found in appendix
A.7. A graphical interpretation of the overall thermal solution algorithm is presented in the appendix of
article 1, and the reader is referred there.
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(a) Node placement near boundary. e denotes a generic
property (i.e. P , fS , θ, ect.).

(b) ghost cell placement

Figure 2: Property value near boundary (a) and position of ghost cells (b).

5.2.5 Boundary Conditions

This model utilizes one layer of ghost cells outside the domain in order to enforce the different boundary
conditions. See figure 2b. This yields boundary conditions of the first order in space. Boundary conditions
encountered in this paper can be divided into two types: Neumann (known gradient) and Dirichlet (known
value). The Neumann boundaries are zero gradient for pressure at walls, zero gradient for temperature at
thermally insulated walls and zero gradient for velocities at outlet and inlet boundary conditions where
velocity is not necessarily known. The Dirichlet boundaries are no-slip and no penetration velocities
at walls, known temperature and known pressure. Using the convention from figure 2a, zero gradient
boundary conditions can be described by equation (10).

edomain − eghost
∆X

= 0

eghost = edomain

(10)

As an example the west node denoted W is a ghost node outside the domain. For a general linear system
with zero gradient boundary, this will result in:

[
aF aN aE (aC + aW ) aS aB

]




eh,k,l+1

eh,k+1,l

eh+1,k,l

eh,k,l
eh,k−1,l
eh,k,l−1




= Forcing term (11)

Say both the west (W ) and south (S) nodes are ghost nodes with zero gradient boundary, the linear
system reduces to:

[
aF aN aE (aC + aW + aS) aB

]




eh,k,l+1

eh,k+1,l

eh+1,k,l

eh,k,l
eh,k,l−1




= Forcing term (12)

This trend extends further if more neighbouring cells are ghost nodes with zero gradient boundary
condition. Following the convention in figure 2a, the Dirichlet boundary states:

1

2
(edomain + eghost) = ewall

eghost = 2ewall − edomain
(13)

As an example the west node denoted W is a ghost node outside the domain. For a general linear system
this will result in:
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[
aF aN aE (aC − aW ) aS aB

]




eh,k,l+1

eh,k+1,l

eh+1,k,l

eh,k,l
eh,k−1,l
eh,k,l−1




= Forcing term− 2aW ewall (14)

The extension is trivial if more neighbouring cells are a Dirichlet boundary. However, wall boundaries
are simplified for pressure (zero gradient). The ghost cells are initially simply defined as dead fluid
cells, and the live-dead fluid cell method described in article 1 is used. This upholds the zero gradient
condition for pressure, but the the wall will in effect be half a computational cell outside the actual wall
for the calculated velocities. Thus velocity boundary values at the wall for the FTCS scheme needs to be
calculated. As a staggered grid has been used, all tangential velocities will follow the convention in figure
2a for the no-slip boundary. These are calculated according to (18) with the known tangential velocity
at the wall equal zero. Due to the staggered grid, velocities normal to the wall are placed directly on the
wall phase. To uphold the no penetration boundary these normal velocities on the wall are simply equal
zero.
Constant pressure boundary is upheld by setting the pressure at the first computational cell inside the
domain equal the known pressure. Knowing that the pressure correction should equal zero in this node,
as pressure does not change, it is defined in the pressure correction sparse matrix by

[
0 0 0 aC 0 0 0

]




∆Ph,k,l+1

∆Ph,k+1,l

∆Ph+1,k,l

∆Ph,k,l
∆Ph−1,k,l
∆Ph,k−1,l
∆Ph,k,l−1




= 0, aC = −10−8 (15)

Notably, the method presented here needs no boundary conditions for the solid fraction. For cosmetic
purposes a zero gradient boundary condition has been applied to the solid fraction (fS) at the walls.
Code snippets are provided in appendix A.2 for the velocities and in appendix A.8 for the thermal
boundary conditions. Keep in mind that boundary conditions for pressure and temperature are hard
coded into the matrix-vector equations. The boundary conditions for temperature calculated in A.8 is
purely cosmetic.
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5.3 Conjugated Gradient and Storage Format

The conjugated gradient algorithm used here are in large part taken from the master thesis of A.
Bøckmann [1]. The main changes done to the CG-subroutine is to be able to monitor iterations and
residuals. Interested readers are also referred to [2]. By acknowledging that both the Poisson pressure
correction matrix system (4) and the BTCS formulation of the energy equation (9) yields symmetric and
positive definite matrices the conjugate gradient method is a viable solution strategy. The idea behind
the Krylov subspace methods, which includes the CG-method, is to solve the matrix equation

Ax = b (16)

by minimizing the function

f(x) =
1

2
xTAx− bTx+ c (17)

The CG algorithm only consists of a few line of code:

d0 = r0 = b−Ax

αm =
rTmrm
dTmAdm

xm+1 = xm + αmdm

rm+1 = rm −Adm

βm+1 =
rTm+1rm+1

rTmrm

dm+1 = rm+1 + βm+1dm

(18)

Here, the iterations are ended when a maximum number of iterations have been reached or the L1 norm
of the residual full fill some convergence criterion. An effect of this method is that if the eigenvalues of
A is clustered, the algorithm converges faster. One common method to exploit this effect is to alter the
system Ax = b by multiplying both sides by a matrix M−1, which is sought to approximate A−1. This is
called preconditioning and several algorithms for finding the conditioner matrix M has been developed.
Jacobi, Gauss-Seidel, Incomplete Cholesky factorization and Incomplete LU factorization are just a few.
Though not implemented in this algorithm, much of the efficiency of the Krylov subspace methods lies
in finding a good preconditioner matrix, M .
The largest sparse matrix systems generated during the simulations have been in the magnitude of 250000
by 250000. However, for such large systems, about 1 in 5000 entries of the matrix are occupied by non
zero entries. Storing all entries in the sparse matrix is very inefficient. A compressed row storage format
has thus been utilized. This format consists of one list of non-zero entries of the matrix A, one list
indicating the row indices (Ai) and another list for the column indices (Aj). An example is provided in
(19). This format might lead to some inefficiencies if one wants to extract a particular entry in A as a
search through the row and column indices lists is necessary. However, The CG- algorithm only needs
vector-vector and matrix-vector multiplications which is easily handled.

A =




0.0 2.8 5.2 0.0
0.0 3.6 0.0 2.5
7.1 8.5 1.9 0.0
0.0 0.0 0.0 2.6


 Ai =




1
1
2
2
3
3
3
4




Aj =




2
3
2
4
1
2
3
4




(19)

How the sparse matrix-vector system for the pressure correction is generated can be found in appendix
A.4 and how the matrix-vector system for the energy equation is generated can be found in appendix
A.6. The CG-algorithm, matrix-vector and vector-vector multiplications are found in appendix A.9.
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(a) Physical domain (b) Numerical domain

Figure 3: Physical (a) and numerical (b) domain. W represents channel length. Note the change in
origo.

5.4 Pressure Driven Channel

The pressure driven channel flow was used as an initial verification of the fluid model. Two parallel plates
serves as the channel boundaries, while a constant pressure gradient in the x - direction is the driving
force for the flow. The upper and lower walls have a no slip boundary for the velocity. This channel
flow can be reduced to a 1D problem governed by (20) on dimensional form and (21) on non-dimensional
form. An analytic solution to the 1D problem (21) is derived by R. Kristoffersen [3], and represented
here by equation (22). This analytic solution is treated as a finite sum of 200 summations and compared
to the simulated results.

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(20)

With the scaling,

U =
u

uref
, X =

x

h
, Y =

y

h
, P =

p

ρu2ref
, τ =

tν

h2
,

the non-dimensional form of equation (20) can be written as

∂U

∂τ
= a+

∂2U

∂Y 2
, a = − ∂P

∂X
Re (21)

with corresponding analytic solution

U(Y, τ) = 1− Y 2 +

∞∑

n=1

2a

λ3n
(−1)ncos(λnY )e−λ

2
nτ , λ = (2n− 1)

π

2
a = 2 (22)

The physical and numerical domains are shown graphically in figure 3. Numerically, this is solved as a
2D problem. Inlet and outlet have a constant pressures corresponding to the desired pressure gradient
and the velocities are handled as zero gradient. At the walls however, the velocities are treated as a
no-slip an no-penetration boundaries and the pressure as a zero gradient.
The simulation was conducted on a coarse 2 by 8 grid with a channel length of W = 0.5 and a total
channel height of 2h = 2.0. Simulation time was set to τ = 2.5 with a time step of ∆τ = 10−4 The inlet
and outlet pressure was set to uphold a = Re(Pin − Pout)/W = 2. Grid- and time step independence
was insured. Resulting velocities are plotted in figure 4. Global conservation of mass (MG, see article 1
and 2) stayed equal zero (smaller than the resolution of the floating point numbers) and residuals from
the pressure-correction equation was kept below the convergence criterion of εPC = 10−8. The result
was considered satisfactory.
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Figure 4: Resulting velocity profile at different time values indicated on the figure. Squares: Ana-
lytic, Line: Simulation. The Y values for the analytic solution is simply translated after calculation to
correspond to the numerical domain
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Figure 5: schematic representation of the calculation domain of the 1D unit bar.

5.5 Phase Transition of Mixtures

Both article 1 and article 2 deals with pure materials. For relatively pure materials the the inverse of
the solid fraction - temperature relation (F (θ)) is simply equal the constant melting temperature. In
both nature and industrial processes, pure materials are rarely encountered. For the phase transition
algorithm derived in this thesis to be of any practical use, extension more complex phase transition
behaviour needs to be addressed. Three different behaviours are studied in this section.

1. Linear (F1(θ)): The substance gradually transitions with a linear relation from fully solid at θS
to fully liquid at θL. From a numerical perspective, this should not have any significant difference
from the pure case, as ξ() remains a first order polynomial.

2. Linear-Eutectic (F2(θ)): At some constant temperature θS the material melts as if it behaved
like a pure material, but below some critical eutectic solid fraction fe, the material melts with a
linear relation with temperature until fully melted at θL. Numerically, the interesting aspect is the
transition between the two domains; eutectic transition (as if the material was a pure substance)
to mushy zone transition (estimated as a linear relation).

3. Exponential (F3(θ)): The substance gradually transitions from fully solid at θS to fully liquid at θL
with an exponential relation. The mathematical description does not necessarily reflect nature, but
from a numerical perspective the non-linear relation is an interesting test case for the algorithm.

The domain used to study the different solid fraction - temperature relations is a simple 1D unit length
bar with constant temperature boundaries. Right boundary has a temperature θC below, while the
left wall has a temperature θH above the fusion temperature range (θS to θL). Initially the bar is
fully solid and temperature is equal θC in the whole domain. Any fluid movement is ignored, so the
governing equations on non-dimensional form with constant physical properties is represented by the
energy equation (23) and material dependent relation (24). The dimensional scaling is similar to that
used in article 2.

∂θ

∂Fo
=

∂2θ

∂X2
+

1

Ste

∂fS
∂Fo

(23)

fS = F (θ) (24)

A schematic representation of the domain is presented by figure 5 and simulation parameters are listed
in table 1.
As indicated in article 1 the inverse function of (24) is used during the simulation. Here, no specific care
is taken towards modeling an actual physical substance other than being fully solid at θS and fully liquid
at θL. The three inverse variations of (24) are defined as:

F−11 (fS) = θL + (θS − θL)fS (25)

F−12 (fS) = max( θL + (θS − θL)
fS
fe
, θS ) (26)

F−13 (fS) = θL + (θS − θL)
eβfS − 1

eβ − 1
(27)
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Parameter Value

Cells 100

Ste 1.0

∆Fo 0.0001

θC 0.0

θH 1.0

θS 0.2

θL 0.8

fe 0.5

Table 1: Simulation parameters for the 1D bar.

(a) (b)

Figure 6: Solid fraction - Temperature relation. Dash-dot line/open square: linear, solid line/filled
square: linear-eutectic, dashed line/open triangle: exponential (β = −3.0), dotted line/filled triangle:
exponential (β = 3.0). 6a: Target fS-θ plot. Phase transition domain indicated by horizontal and
vertical lines. 6b: Simulated fS-θ plot. Note how the solid fraction limiter ensures fS in the range 0.0 -
1.0. Values are here taken at Fo = 0.02, 0.15 and 1.0. Not all nodes at all times are represented on the
figure, as it would make the figure difficult to read.

Here, fe indicates the eutectic solid fraction (26), while β controls the shape of the exponential relation
(27). By l’Hôpotal it can be shown that limβ→0 F

−1
3 (fS) = F−11 (fS). The different relations are plotted

in figure 6a. Note here that the only criterion is that the functions (25) to (27) passes through the points
[fS = 1.0, θ = θS ] and [fS = 0.0, θ = θL], respectively indicating fully solid and fully liquid. How F−1()
is defined in the program has been listed in appendix A.10.
For the preliminary calculation of the temperature field, θ̂, (23) is discretized by a BTCS scheme.
Following the algorithm outlined in article 1 the change in solid fraction is ignored during this step. The
solid fraction correction is found using the pointwise Secant method as described in article 1.
As suspected, figure 8 indicates that there is some added resistance to the evolution of temperature when
a material undergoes a change of phase. From (23) it is obvious that some of the energy is used to change
the temperature, while some is used to change to solid fraction. However, the amount of resistance seem
to greatly depend on the shape of function (24). Figure 6 shows the target and simulated values for the
fs-θ relation. The nodes seem to follow the solid fraction-temperature relation quite well.

Both the linearly transitioning case (25) and the exponential transitioning (27) had no difficulty converg-
ing with the Secant method. However, the linear-eutectic case (26) showed some issues with converging.
Both the purely transitioning and linearly transitioning parts of (26) by them selves only needs two
iterations in order to find a convergent result. When transitioning from one domain to the other how-
ever, the algorithm needs some additional iterations in order for these nodes to reach convergence. As
convergence is defined when a global convergence criterion is satisfied, this means that all nodes that
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(a) Linear (b) Linear-Eutectic

(c) Exponential (β = −3.0) (d) Exponential (β = 3.0)

Figure 7: Evolution of the local solid fraction in a 1D bar. Dimensionless time (Fo) is indicated on the
figures

62



Figure 8: Temperature evolution in the bar. Dimensionless time (Fo) is indicated on the figure. Open
square: linear, filled square: linear-eutectic, open triangle: exponential (β = −3.0), filled triangle:
exponential (β = 3.0), open circle: No phase change.
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had converged still iterated to find better solutions. By it self this is not necessarily a problem, but the
FORTRAN floating point numbers had some issues with dividing by close-to-zero values, which yielded
strange results. This issue was simply solved by defining a local convergence criterion for each node and
only iterating on nodes that had not satisfied this. The local convergence criterion was set to the global
criterion divided by the number of cells. As a result, the algorithm need up to six iterations, and not
two as in the linear case. However, this had no significant impact on simulation efficiency. Additionally,
the algorithm was tested with a linear eutectic case with a Stefan number of Ste = 100 and time step
of Fo = 0.2. This test showed that the algorithm, from a numerical point of view, had no problem with
transitioning several nodes from fully solid to fully liquid in one time step. The down side was that at
some stages about 150 iterations was needed for the solid fraction correction and the simulation time
was doubled.
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6 Concluding Remarks

A fairly simple algorithm for solving convection dominated phase transitions has been derived and
tested. The idea behind the phase transition algorithm is based on the Projection method used for
solving Navier-Stokes, and should be familiar to those who have worked with CFD. The algorithm has
been proven relatively accurate, efficient and robust. It has been expanded to 3D and yielded OK fit with
experimental results. Further, the nature of the phase transition algorithm and not solving Navier-Stokes
in the solid region had a significant impact on the computational efficiency. In addition, the algorithm
have been proven able to handle discontinuities in the solid fraction - temperature relation, and able to
fully transition several nodes in one time step.
Although the algorithm had its benefits, it still took a couple of days for a full 3D simulation on a
50 × 50 × 75 grid to finish. A large part of the computational time was spent on solving the pressure
correction equation. One idea was to extend the model such that a multiphase flow could be handled.
This could open the model to further use of industrial interest, such as mould filling during casting,
shrinkage during phase transition, ect. The master thesis by A. Bøckmann [1] is an extensive report on
a similar fluid model implemented with a level-set solver. Similarly, the conjugate gradient solver was
identified as one of the aspects that needed improvement for a more efficient simulation. If the model
is to be extended or larger calculation domain is required, it is recommended that the current matrix
equation solver is revised. This is one of the reasons why the extensive sensitivity analysis in article 2
was conducted in 2D.
A short literature study was conducted on solid - liquid interaction. Due to the success of the zeroth order
live-dead fluid cell method shown in article 1, no attempts were made at higher order interpolation scheme
for a better resolution of the solid-liquid interphase. However, it would be an interesting extension. There
are a lot of literature on the immersed boundary methods for solid liquid interaction on arbitrary shapes
or with non-conformal meshes [4], [5], [6], [7], [8], [9].
As briefly mentioned in article 2, the process of solidification can be a quite complex process. As
demonstrated in the literature, it was deemed difficult to get a consistent result for the solidifying cavity
case [10]. Crystal precipitation, growth of dendrites and undercooling are some of the effects that can
have a significant impact on the solution. This makes the over all transformation kinetics quite complex
and was considered beyond the scope of this thesis. However, the Avrami-equation [11] have been
identified as one possible way of expanding the solid fraction - temperature relation to include some of
this behaviour.
A final note on further work would be to point out the two ”missing” non-dimensional parameters, which
was identified in section 5.1. Answering the questions outlined there could yield a deeper understanding
of the physical process.
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A Code Snipppets

Selected subroutines from the Fortran program are listed in this appendix

A.1 Preliminary Velocities

SUBROUTINE VEL
! Purpose:Calculate tentative velocity field
! at current time level (FTCS)
USE FIELD
IMPLICIT NONE
DOUBLE PRECISION ::XFAC ,YFAC ,ZFAC ,FUX ,FUY ,FUZ ,FVX ,FVY ,FVZ ,FWX ,FWY ,FWZ ,&
VISU ,VISV ,VISW ,DIFFE ,DIFFW ,DIFFN ,DIFFS ,DIFFF ,DIFFB ,DPX ,DPY ,DPZ

DOUBLE PRECISION , DIMENSION(IMAX ,JMAX ,KMAX) :: DELTAU , DELTAV , DELTAW

XFAC = 1.0/( DELX*DELX)
YFAC = 1.0/( DELY*DELY)
ZFAC = 1.0/( DELZ*DELZ)

DELTAU (:,:,:) = 0.0
DELTAV (:,:,:) = 0.0
DELTAW (:,:,:) = 0.0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

! -------------U------------
!Convective terms

FUX = ((U(I,J,K)+U(I+1,J,K))**2 -(U(I-1,J,K)+U(I,J,K))**2)*0.25* RDX
FUY = ((V(I,J,K)+V(I+1,J,K))*(U(I,J,K)+U(I,J+1,K))-(V(I,J-1,K)&

+ V(I+1,J-1,K))*(U(I,J-1,K)+U(I,J,K)))*0.25* RDY
FUZ = ((W(I,J,K)+W(I+1,J,K))*(U(I,J,K)+U(I,J,K+1))-(W(I,J,K-1)&

+ W(I+1,J,K -1))*(U(I,J,K-1)+U(I,J,K)))*0.25* RDZ

!Viscous terms
DIFFN=U(I,J+1,K)-U(I,J,K)
DIFFS=U(I,J,K)-U(I,J-1,K)
DIFFE=U(I+1,J,K)-U(I,J,K)
DIFFW=U(I,J,K)-U(I-1,J,K)
DIFFF=U(I,J,K+1)-U(I,J,K)
DIFFB=U(I,J,K)-U(I,J,K-1)

! hardcode s-l BC
!North border

IF ((FNP(I,J+1,K).EQ.0).OR.(FNP(I+1,J+1,K).EQ.0)) THEN
DIFFN=-2*U(I,J,K)

ENDIF

!South border
IF ((FNP(I,J-1,K).EQ.0).OR.(FNP(I+1,J-1,K).EQ.0)) THEN

DIFFS =2*U(I,J,K)
ENDIF

!Front border
IF ((FNP(I,J,K+1).EQ.0).OR.(FNP(I+1,J,K+1).EQ.0)) THEN

DIFFF=-2*U(I,J,K)
ENDIF

!Back border
IF ((FNP(I,J,K-1).EQ.0).OR.(FNP(I+1,J,K-1).EQ.0)) THEN

DIFFB =2*U(I,J,K)
ENDIF
VISU=(DIFFE -DIFFW )*XFAC + (DIFFN -DIFFS )*YFAC + (DIFFF -DIFFB)*ZFAC

! Pressure forces
DPX=P(I+1,J,K)-P(I,J,K)

! -------------V------------
!Convective terms

FVX = ((U(I,J,K)+U(I,J+1,K))*(V(I,J,K)+V(I+1,J,K))-(U(I-1,J,K)&
+ U(I-1,J+1,K))*(V(I-1,J,K)+V(I,J,K)))*0.25* RDX

FVY = ((V(I,J,K)+V(I,J+1,K))**2 -(V(I,J-1,K)+V(I,J,K))**2)*0.25* RDY
FVZ = ((W(I,J,K)+W(I,J+1,K))*(V(I,J,K)+V(I,J,K+1))-(W(I,J,K-1)&

+ W(I,J+1,K -1))*(V(I,J,K-1)+V(I,J,K)))*0.25* RDZ

!Viscous terms
DIFFN=V(I,J+1,K)-V(I,J,K)
DIFFS=V(I,J,K)-V(I,J-1,K)
DIFFE=V(I+1,J,K)-V(I,J,K)
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DIFFW=V(I,J,K)-V(I-1,J,K)
DIFFF=V(I,J,K+1)-V(I,J,K)
DIFFB=V(I,J,K)-V(I,J,K-1)

! hardcode s-l BC
IF ((FNP(I+1,J,K).EQ.0).OR.(FNP(I+1,J+1,K).EQ.0)) THEN !East border

DIFFE=-2*V(I,J,K)
ENDIF
IF ((FNP(I-1,J,K).EQ.0).OR.(FNP(I-1,J+1,K).EQ.0)) THEN !West border

DIFFW =2*V(I,J,K)
ENDIF

IF ((FNP(I,J,K+1).EQ.0).OR.(FNP(I,J+1,K+1).EQ.0)) THEN !Front border
DIFFF=-2*V(I,J,K)

ENDIF
IF ((FNP(I,J,K-1).EQ.0).OR.(FNP(I,J+1,K-1).EQ.0)) THEN !Back border

DIFFB =2*V(I,J,K)
ENDIF
VISV=(DIFFE -DIFFW )*XFAC + (DIFFN -DIFFS )*YFAC + (DIFFF -DIFFB)*ZFAC

! Pressure forces
DPY=P(I,J+1,K)-P(I,J,K)

! -------------W------------
!Convective terms

FWX = ((U(I,J,K)+U(I,J,K+1))*(W(I,J,K)+W(I+1,J,K))-(U(I-1,J,K)&
+ U(I-1,J,K+1))*(W(I-1,J,K)+W(I,J,K)))*0.25* RDX

FWY = ((V(I,J,K)+V(I,J,K+1))*(W(I,J,K)+W(I,J+1,K))-(V(I,J-1,K)&
+ V(I,J-1,K+1))*(W(I,J-1,K)+W(I,J,K)))*0.25* RDY

FWZ = ((W(I,J,K)+W(I,J,K+1))**2 -(W(I,J,K-1)+W(I,J,K))**2)*0.25* RDZ

!Viscous terms
DIFFN=W(I,J+1,K)-W(I,J,K)
DIFFS=W(I,J,K)-W(I,J-1,K)
DIFFE=W(I+1,J,K)-W(I,J,K)
DIFFW=W(I,J,K)-W(I-1,J,K)
DIFFF=W(I,J,K+1)-W(I,J,K)
DIFFB=W(I,J,K)-W(I,J,K-1)

! hardcode s-l BC
IF ((FNP(I+1,J,K).EQ.0).OR.(FNP(I+1,J,K+1).EQ.0)) THEN !East border

DIFFE=-2*W(I,J,K)
ENDIF
IF ((FNP(I-1,J,K).EQ.0).OR.(FNP(I-1,J,K+1).EQ.0)) THEN !West border

DIFFW =2*W(I,J,K)
ENDIF
IF ((FNP(I,J+1,K).EQ.0).OR.(FNP(I,J+1,K+1).EQ.0)) THEN !North border

DIFFN=-2*W(I,J,K)
ENDIF
IF ((FNP(I,J-1,K).EQ.0).OR.(FNP(I,J-1,K+1).EQ.0)) THEN !South border

DIFFS =2*W(I,J,K)
ENDIF
VISW=(DIFFE -DIFFW )*XFAC + (DIFFN -DIFFS )*YFAC + (DIFFF -DIFFB)*ZFAC

! Pressure forces
DPZ=P(I,J,K+1)-P(I,J,K)

! Bouynacy forces
FB=0.5*RA*PR*(TEMP(I,J,K)+TEMP(I,J+1,K)) ! y-dir

!-------- Premliminary Velocities -------------
IF ((FNP(I,J,K).EQ.1).OR.(FNP(I+1,J,K).EQ.1)) THEN

DELTAU(I,J,K) = DELT*(-DPX*RDX - FUX - FUY - FUZ + PR*VISU)
ELSE

DELTAU(I,J,K)=0.0
U(I,J,K)=0.0

ENDIF

IF ((FNP(I,J,K).EQ.1).OR.(FNP(I,J+1,K).EQ.1)) THEN
DELTAV(I,J,K)=DELT*(-DPY*RDY - FVX - FVY - FVZ + PR*VISV + FB)

ELSE
DELTAV(I,J,K)=0.0
V(I,J,K)=0.0

ENDIF

IF ((FNP(I,J,K).EQ.1).OR.(FNP(I,J,K+1).EQ.1)) THEN
DELTAW(I,J,K)=DELT*(-DPZ*RDZ - FWX - FWY - FWZ + PR*VISW)

ELSE
DELTAW(I,J,K)=0.0
W(I,J,K)=0.0

ENDIF

ENDDO
ENDDO

ENDDO
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U(:,:,:) = U(:,:,:) + DELTAU (:,:,:)
V(:,:,:) = V(:,:,:) + DELTAV (:,:,:)
W(:,:,:) = W(:,:,:) + DELTAW (:,:,:)

RETURN
END

A.2 Velocity Boundary Conditions

SUBROUTINE BCVEL
! purpose:
! To give boundary conditions to
! the velocities around the domain
USE FIELD
IMPLICIT NONE

DO I=1,IM1
DO J=1,JM1

DO K=1,KM1

IF((FNP(I,J,K).EQ.0).OR.(FNP(I+1,J,K).EQ.0)) THEN
U(I,J,K) = 0.0

ENDIF

IF((FNP(I,J,K).EQ.0).OR.(FNP(I,J+1,K).EQ.0)) THEN
V(I,J,K) = 0.0

ENDIF

IF((FNP(I,J,K).EQ.0).OR.(FNP(I,J,K+1).EQ.0)) THEN
W(I,J,K) = 0.0

ENDIF

!At Boundary walls no slip , no pen
IF (I.EQ.(IM1)) THEN !East wall

U(I,J,K) = 0.0
V(I+1,J,K) = -V(I,J,K)
W(I+1,J,K) = -W(I,J,K)

ENDIF
IF (I.EQ.2) THEN !South wall

U(I-1,J,K) = 0.0
V(I-1,J,K) = -V(I,J,K)
W(I-1,J,K) = -W(I,J,K)

ENDIF
IF (J.EQ.(JM1)) THEN !North wall

U(I,J+1,K) = -U(I,J,K)
V(I,J,K) = 0.0
W(I,J+1,K) = -W(I,J,K)

ENDIF
IF (J.EQ.2) THEN !South wall

U(I,J-1,K) = -U(I,J,K)
V(I,J-1,K) = 0.0
W(I,J-1,K) = -W(I,J,K)

ENDIF
IF (K.EQ.(KM1)) THEN !Front wall

U(I,J,K+1) = -U(I,J,K)
V(I,J,K+1) = -V(I,J,K)
W(I,J,K) = 0.0

ENDIF
IF (K.EQ.2) THEN !Back wall

U(I,J,K-1) = -U(I,J,K)
V(I,J,K-1) = -V(I,J,K)
W(I,J,K-1) = 0.0

ENDIF

ENDDO
ENDDO

ENDDO
RETURN
END

A.3 Solve the Fluid Equations

SUBROUTINE PITER
! Purpose:To solve the Poissons equation of pressure
! and adjust velocity and pressure fields so that
! continuity is maintained for every time step.
USE FIELD
USE SOLVEFIELD
IMPLICIT NONE

69



!Calculate tentative velocity field
CALL VEL

! impose BC
CALL BCVEL

! main Momentum loop (not running if there are no fluid nodes)
IF (UCOUNT.GT.0) THEN

!Generate A matrix in Ax=b
CALL GEN_A_MAT(UCOUNT)

!Generate b vector in Ax=b
CALL GEN_B_VEC

!Solve system
CALL CGSOLVER(AVAL ,AI,AJ ,B,DELP ,UCOUNT ,ENTRIESA ,ITER_P ,&

RES_P ,EPSI_P ,ITMAX_P)

DO I=2,IM1 -1 ! Updating U-components , if fluid node
DO J=2,JM1

DO K=2,KM1
IF((FNP(I+1,J,K).EQ.1). AND.(FNP(I,J,K).EQ.1)) THEN

U(I,J,K) = U(I,J,K) + DELT*(DELP(NN(I,J,K)) &
- DELP(NN(I+1,J,K)))/ DELX

ENDIF
ENDDO

ENDDO
ENDDO

DO I=2,IM1 ! Updating V-components , if fluid node
DO J=2,JM1 -1

DO K=2,KM1
IF((FNP(I,J+1,K).EQ.1). AND.(FNP(I,J,K).EQ.1)) THEN

V(I,J,K) = V(I,J,K) + DELT*(DELP(NN(I,J,K)) &
- DELP(NN(I,J+1,K)) )/DELY

ENDIF
ENDDO

ENDDO
ENDDO

DO I=2,IM1 ! Updating W-components , if fluid node
DO J=2,JM1

DO K=2,KM1 -1
IF((FNP(I,J,K+1).EQ.1). AND.(FNP(I,J,K).EQ.1)) THEN

W(I,J,K) = W(I,J,K) + DELT*(DELP(NN(I,J,K)) &
- DELP(NN(I,J,K+1)) )/DELZ

ENDIF
ENDDO

ENDDO
ENDDO

DO I=2,IM1 ! Updating pressure field , if fluid node
DO J=2,JM1

DO K=2,KM1
IF (FNP(I,J,K).EQ.1) THEN

P(I,J,K) = P(I,J,K) + DELP(NN(I,J,K))
ENDIF

ENDDO
ENDDO

ENDDO

! impose BC
CALL BCVEL

! Deallocate (size is changing)
DEALLOCATE(AVAL ,AI,AJ)
DEALLOCATE(B,DELP)

ENDIF
RETURN
END

A.4 Generate the Pressure Correction Matrix System

SUBROUTINE GEN_A_MAT(UNKNOWNS)
! purpose:
! To construct the sparse coefficient matrix A
USE FIELD
IMPLICIT NONE

INTEGER :: UNKNOWNS ,N
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DOUBLE PRECISION :: AP ,AN,AS,AE ,AW,AF,AB

! Find entries in A so that A can be allocated
N = 0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

!current cell is a fluid cell
IF (FNP(I,J,K).EQ.1) THEN
N = N + 1 ! Add Center node

IF(FNP(I+1,J,K).EQ.1) THEN !fluid cell to the east
N = N + 1 ! Add East node

ENDIF
IF(FNP(I-1,J,K).EQ.1) THEN !fluid cell to the west

N = N + 1 ! Add West node
ENDIF
IF(FNP(I,J+1,K).EQ.1) THEN !fluid cell to the north

N = N + 1 ! Add North node
ENDIF
IF(FNP(I,J-1,K).EQ.1) THEN !fluid cell to the south

N = N + 1 ! Add South node
ENDIF
IF(FNP(I,J,K+1).EQ.1) THEN !fluid cell to the front

N = N + 1 ! Add Front node
ENDIF
IF(FNP(I,J,K-1).EQ.1) THEN !fluid cell to the back

N = N + 1 ! Add Back node
ENDIF

ENDIF
ENDDO

ENDDO
ENDDO

ENTRIESA = N
ALLOCATE(AVAL(ENTRIESA),AI(ENTRIESA),AJ(ENTRIESA ))
ALLOCATE(B(UNKNOWNS),DELP(UNKNOWNS ))
DELP (:) = 0.0

N = 0

AE = 1/( DELX **2)
AW = 1/( DELX **2)
AN = 1/( DELY **2)
AS = 1/( DELY **2)
AF = 1/( DELZ **2)
AB = 1/( DELZ **2)
AP = -(AE+AW+AN+AS+AF+AB)

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1
!Current node is a fluid node
IF (FNP(I,J,K).EQ.1) THEN

!center node
N = N + 1
AVAL(N) = AP
AI(N) = NN(I,J,K)
AJ(N) = NN(I,J,K)

!At Boundary wall/s-l interphase , grad(P)=0
IF (FNP(I+1,J,K).EQ.0) THEN !East node

Aval(N) = Aval(N) + AE
ENDIF
IF (FNP(I-1,J,K).EQ.0) THEN !West node

Aval(N) = Aval(N) + AW
ENDIF
IF (FNP(I,J+1,K).EQ.0) THEN !North node

Aval(N) = Aval(N) + AN
ENDIF
IF (FNP(I,J-1,K).EQ.0) THEN !South node

Aval(N) = Aval(N) + AS
ENDIF
IF (FNP(I,J,K+1).EQ.0) THEN !Front node

Aval(N) = Aval(N) + AF
ENDIF
IF (FNP(I,J,K-1).EQ.0) THEN !Back node

Aval(N) = Aval(N) + AB
ENDIF

! Neighbour nodes are fluid nodes
IF(FNP(I+1,J,K).EQ.1) THEN !East Node
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N = N + 1
Aval(N) = AE
Ai(N) = NN(I,J,K)
Aj(N) = NN(I+1,J,K)

ENDIF

IF(FNP(I-1,J,K).EQ.1) THEN !West Node
N = N + 1
Aval(N) = AW
Ai(N) = NN(I,J,K)
Aj(N) = NN(I-1,J,K)

ENDIF

IF(FNP(I,J+1,K).EQ.1) THEN !North Node
N = N + 1
Aval(N) = AN
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J+1,K)

ENDIF

IF(FNP(I,J-1,K).EQ.1) THEN !South Node
N = N + 1
Aval(N) = AS
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J-1,K)

ENDIF

IF(FNP(I,J,K+1).EQ.1) THEN !Front Node
N = N + 1
Aval(N) = AF
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J,K+1)

ENDIF

IF(FNP(I,J,K-1).EQ.1) THEN !Back Node
N = N + 1
Aval(N) = AB
Ai(N) = NN(I,J,K)
Aj(N) = NN(I,J,K-1)

ENDIF

ENDIF
ENDDO

ENDDO
ENDDO

! Setting the node at which the pressure will always be zero
PREFNODE = 1

DO N=1,ENTRIESA ! Setting reference pressure to zero
IF((Ai(N).EQ.PREFNODE ).AND.(Aj(N).NE.PREFNODE )) THEN

Aval(N) = 0.0
ENDIF
IF((Ai(N).EQ.PREFNODE ).AND.(Aj(N).EQ.PREFNODE )) THEN

Aval(N) = -1.0*10**8
ENDIF

ENDDO

RETURN
END

!--------------------------------------------------------------------------

SUBROUTINE GEN_B_VEC
! purpose:
! To construct b in Ax=b
USE FIELD
IMPLICIT NONE

DOUBLE PRECISION :: DIV
INTEGER :: N

N=0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

! Current node is a fluid node
IF (FNP(I,J,K).EQ.1) THEN

N=N+1
DIV = RDX*(U(I,J,K)-U(I-1,J,K)) + RDY*(V(I,J,K)-V(I,J-1,K)) &

+ RDZ*(W(I,J,K)-W(I,J,K-1))
B(NN(I,J,K))=DIV/(DELT)

ENDIF
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ENDDO
ENDDO

ENDDO

! Assigning reference pressure 0 to pressure reference cell
B(PREFNODE) = 0.0

RETURN
END

A.5 Solve the Thermal Equations

SUBROUTINE TITER
! Purpose: Calculate temperature field
! at current time level
USE FIELD
USE SOLVEFIELD
IMPLICIT NONE

!Store previous time step thermal fields
TEMP_P=TEMP
FS_P=FS

! second starting guess of secant method
FS_N=FS+0.1

!Generate system matrix
CALL GEN_T_MAT

!generate b-Vector
CALL GEN_TB_VEC

!Calculate tentative Temperature field
CALL CGSOLVER(TAVAL ,TI,TJ,TB ,TEMP_VEC ,UCOUNT_T ,&

ENTRIESA_T ,ITER_T ,RES_T ,EPSI_T ,ITMAX_T)

!Update tentative temperature field
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

TEMP(I,J,K) = TEMP_VEC(NNT(I,J,K))
ENDDO

ENDDO
ENDDO

!Solid fraction Correction
CALL CORR_FS

!Correct Temperature field
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

TEMP(I,J,K) = TEMP(I,J,K) + (FS(I,J,K) - FS_P(I,J,K))/STE
ENDDO

ENDDO
ENDDO

! Impose BC
CALL BCTEMP

RETURN
END

A.6 Generate the Temperature Matrix System

SUBROUTINE GEN_T_MAT
! purpose:
! To construct the sparse coefficient matrix A_T
! for solving temperature
USE FIELD
IMPLICIT NONE
INTEGER :: N
DOUBLE PRECISION :: APO ,AP ,AN,AS,AE ,AW,AF,AB

N = 0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1

APO = 1.0/ DELT
AE = 0.5*U(I,J,K)/DELX - KON(I,J,K)/DELX **2 &
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- (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)
AW = -0.5*U(I-1,J,K)/DELX - KON(I,J,K)/DELX **2 &

+ (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)
AN = 0.5*V(I,J,K)/DELY - KON(I,J,K)/DELY **2 &

- (KON(I,J+1,K)-KON(I,J-1,K))/(4* DELY **2)
AS = -0.5*V(I,J-1,K)/DELY - KON(I,J,K)/DELY **2 &

+ (KON(I,J+1,K)-KON(I,J-1,K))/(4* DELY **2)
AF = 0.5*W(I,J,K)/DELZ - KON(I,J,K)/DELZ **2 &

- (KON(I,J,K+1)-KON(I,J,K -1))/(4* DELZ **2)
AB = -0.5*W(I,J,K-1)/ DELZ - KON(I,J,K)/DELZ **2 &

+ (KON(I,J,K+1)-KON(I,J,K -1))/(4* DELZ **2)
AP = 2*KON(I,J,K)*(1.0/ DELX **2 + 1.0/ DELY **2 + 1.0/ DELZ **2)

! center node
N = N + 1
TAVAL(N) = APO + AE + AW + AN + AS + AF + AB + 2*AP
TI(N) = NNT(I,J,K)
TJ(N) = NNT(I,J,K)

!At Boundary walls , grad(T)=0
IF (J.EQ.(JM1)) THEN !North node

TAVAL(N) = TAVAL(N) + AN
ENDIF
IF (J.EQ.2) THEN !South node

TAVAL(N) = TAVAL(N) + AS
ENDIF
IF (K.EQ.(KM1)) THEN !Front node

TAVAL(N) = TAVAL(N) + AF
ENDIF
IF (K.EQ.2) THEN !Back node

TAVAL(N) = TAVAL(N) + AB
ENDIF

!At Boundary walls , T=Known
IF (I.EQ.(IM1)) THEN !East node

TAVAL(N) = TAVAL(N) - AE
ENDIF
IF (I.EQ.2) THEN !West node

TAVAL(N) = TAVAL(N) - AW
ENDIF

! Neighbour nodes in domain
IF(I.LT.IM1) THEN !East Node

N = N + 1
TAVAL(N) = AE
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I+1,J,K)

ENDIF

IF(I.GT.2) THEN !West Node
N = N + 1
TAVAL(N) = AW
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I-1,J,K)

ENDIF

IF(J.LT.JM1) THEN !North Node
N = N + 1
TAVAL(N) = AN
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J+1,K)

ENDIF

IF(J.GT.2) THEN !South Node
N = N + 1
TAVAL(N) = AS
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J-1,K)

ENDIF

IF(K.LT.KM1) THEN !Front Node
N = N + 1
TAVAL(N) = AF
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J,K+1)

ENDIF

IF(K.GT.2) THEN !Back Node
N = N + 1
TAVAL(N) = AB
Ti(N) = NNT(I,J,K)
Tj(N) = NNT(I,J,K-1)

ENDIF

TEMP_VEC(NNT(I,J,K))= TEMP(I,J,K)

ENDDO
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ENDDO
ENDDO

RETURN
END

!------------------------------------------------------------

SUBROUTINE GEN_TB_VEC
! purpose:
! To construct b in Ax=b
USE FIELD
IMPLICIT NONE

DOUBLE PRECISION :: APO ,AE ,AW

TB (:)=0.0
APO = 1.0/ DELT

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1
TB(NNT(I,J,K))= APO*TEMP_P(I,J,K)

!At Boundary walls , T=known
IF (I.EQ.IM1) THEN !East node

AE = 0.5*U(I,J,K)/DELX - KON(I,J,K)/DELX **2 &
- (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)

TB(NNT(I,J,K)) = TB(NNT(I,J,K)) - 2*AE*TC

ENDIF
IF (I.EQ.2) THEN !West node

AW = -0.5*U(I-1,J,K)/DELX - KON(I,J,K)/DELX **2 &
+ (KON(I+1,J,K)-KON(I-1,J,K))/(4* DELX **2)

TB(NNT(I,J,K)) = TB(NNT(I,J,K)) - 2*AW*TH
ENDIF

ENDDO
ENDDO

ENDDO

RETURN
END

A.7 Solid Fraction Correction

SUBROUTINE CORR_FS
! purpose:
! Correct solid fraction
USE FIELD
USE SOLVEFIELD
IMPLICIT NONE

DOUBLE PRECISION :: VAL1 , VAL2 , F_INV_PURE

! initial guesses for Xi
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

XI(I,J,K) = FS(I,J,K) - FS_P(I,J,K) &
- STE*( F_INV_PURE(FS(I,J,K),TM) - TEMP(I,J,K))

XI_N(I,J,K) = FS_N(I,J,K) - FS_P(I,J,K) &
- STE*( F_INV_PURE(FS_N(I,J,K), TM) - TEMP(I,J,K))

ENDDO
ENDDO

ENDDO

! Secant method
DO ITER_TT=1,ITMAX_TT

! reset residual
RES_TT =0.0

DO I=2,IM1
DO J=2,JM1

DO K=2,KM1
! Hold values for next iteration
VAL1=FS(I,J,K)
VAL2=XI(I,J,K)

! next value
FS(I,J,K) = FS(I,J,K) - XI(I,J,K)*&

(FS(I,J,K)-FS_N(I,J,K))/(XI(I,J,K)-XI_N(I,J,K))
XI(I,J,K) = FS(I,J,K) - FS_P(I,J,K) &

- STE*( F_INV_PURE(FS(I,J,K),TM) - TEMP(I,J,K))
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! Replace old values
FS_N(I,J,K) = VAL1
XI_N(I,J,K) = VAL2

! residual
RES_TT = RES_TT + ABS(XI(I,J,K)-XI_N(I,J,K))

ENDDO
ENDDO

ENDDO

! Convergence test
IF (RES_TT.LT.EPSI_TT) THEN

EXIT
ENDIF

ENDDO

! limit Solid Fraction
DO I=2,IM1

DO J=2,JM1
DO K=2,KM1

FS(I,J,K) = MIN( 1.0 , MAX( 0.0 , FS(I,J,K) ) )
ENDDO

ENDDO
ENDDO

RETURN
END

A.8 Thermal Boundary Conditions

SUBROUTINE BCTEMP
! purpose:
! To give boundary conditions to the temp and fs
USE FIELD
IMPLICIT NONE

!Impose boundary condition on X-planes
DO J=1,JMAX

DO K=1,KMAX
!Left
TEMP(1,J,K) = 2*TH - TEMP(2,J,K)
FS(1,J,K) = FS(2,J,K)
!Right
TEMP(IMAX ,J,K) = 2*TC - TEMP(IMAX -1,J,K)
FS(IMAX ,J,K)=FS(IM1 ,J,K)

ENDDO
ENDDO

!Impose boundary condition on Y-planes
DO I=1,IMAX

DO K=1,KMAX
!Bottom
TEMP(I,1,K)=TEMP(I,2,K)
FS(I,1,K)=FS(I,2,K)
!Top
TEMP(I,JMAX ,K)=TEMP(I,JM1 ,K)
FS(I,JMAX ,K)=FS(I,JM1 ,K)

ENDDO
ENDDO

!Impose boundary condition on Z-planes
DO I=1,IMAX

DO J=1,JMAX
!Back
TEMP(I,J,1)= TEMP(I,J,2)
FS(I,J,1)=FS(I,J,2)
!Front
TEMP(I,J,KMAX)=TEMP(I,J,KM1)
FS(I,J,KMAX)=FS(I,J,KM1)

ENDDO
ENDDO

RETURN
END

A.9 Conjugated Gradient

SUBROUTINE CGSOLVER(Aval ,Ai ,Aj,b,x,unknowns ,&
entriesA ,iter ,res ,epsi ,itmax)

! Solves the system Ax=b with the conjugate gradients method

IMPLICIT NONE
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INTEGER :: unknowns , entriesA ,itmax ,iter
DOUBLE PRECISION , DIMENSION (entriesA) :: Aval
INTEGER , DIMENSION (entriesA) :: Ai, Aj
DOUBLE PRECISION , DIMENSION (unknowns) :: tempvec , x, r, d, b

DOUBLE PRECISION :: alpha , beta , tempscal1 , tempscal2 ,epsi ,res

iter=0

x(:) = 0.0
r(:) = b(:)
d(:) = r(:)
res = sum(abs(r))

! Convergence test
IF(res.LT.epsi) THEN

RETURN
ENDIF

DO iter=1,itmax
! (r’*r)
CALL VECVEC(r,r,tempscal1 ,unknowns)

! (A*d)
CALL MATVEC(Aval ,Ai ,Aj,d,tempvec ,unknowns ,entriesA)

! (d’*A*d)
CALL VECVEC(d,tempvec ,tempscal2 ,unknowns)

! alpha = (r’*r)/(d’*A*d)
alpha = tempscal1/tempscal2

! x = x + alpha*d
x(:) = x(:) + alpha*d(:)

! r_new = r - alpha*A*d
tempvec (:) = r(:) - alpha*tempvec (:)

! (r_new ’*r_new)
CALL VECVEC(tempvec ,tempvec ,tempscal2 ,unknowns)

! beta = (r_new ’*r_new )/(r’*r)
beta = tempscal2/tempscal1

! r = r_new
r(:) = tempvec (:)
! d = r + beta*d
d(:) = r(:) + beta*d(:)

! Convergence test
res = sum(abs(r))
IF(res.LT.epsi) THEN

EXIT
ENDIF

ENDDO

RETURN
END

!-------------------------------------------------------------------

SUBROUTINE MATVEC(Aval ,Ai,Aj,u,x,m,n)
! Matrix -vector multiplication , x=Au
! A: matrix
! u: vector
! x: return vector
! m: length of u
! n: entries in A
IMPLICIT NONE
INTEGER :: i, m, n
DOUBLE PRECISION , DIMENSION(n) :: Aval
INTEGER , DIMENSION(n) :: Ai, Aj
DOUBLE PRECISION , DIMENSION(m) :: u,x

x(:) = 0
DO i=1,n

x(Ai(i)) = x(Ai(i)) + Aval(i)*u(Aj(i))
ENDDO

RETURN
END

!-------------------------------------------------------------------

SUBROUTINE VECVEC(u,v,x,m)
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! Vector -vector multiplication , x=uv
! u: vector1
! v: vector2
! x: return scalar
! m: size of u and v
IMPLICIT NONE
INTEGER :: i, m
DOUBLE PRECISION , DIMENSION(m) :: u, v
DOUBLE PRECISION :: x

x = 0.0
DO i=1,m

x = x + u(i)*v(i)
ENDDO

RETURN
END

A.10 Solid Fraction Temperature Relations

FUNCTION F_INV(x,ys,yl)
! Inverse of solid fraction temperature relation for substance
! Here: linear
! x = Solid fraction
! y = Melting temperature (s-solidus , l-liquidus)

DOUBLE PRECISION :: F_INV ,x,ys ,yl

F_INV = yl + (ys - yl)*x

RETURN
END FUNCTION F_INV

!-------------------------------------------------------------------

FUNCTION F_INV(x,xe,ys ,yl)
! Inverse of solid fraction temperature relation for substance
! Here: linear eutectic
! x = Solid fraction , (e-eutectic)
! y = Melting temperature (s-solidus , l-liquidus)

DOUBLE PRECISION :: F_INV ,x,xe ,ys,yl

F_INV = max(yl-x/xe*(yl-ys),ys)

RETURN
END FUNCTION F_INV

!-------------------------------------------------------------------

FUNCTION F_INV(x,xe,ys ,yl)
! Inverse of solid fraction temperature relation for substance
! Here: exponential
! x = Solid fraction
! y = Melting temperature (s-solidus , l-liquidus)
! eul = euler ’s number
! del = phase transition parameter

REAL , PARAMETER :: eul =2.71828182845904 , del=-3.0
DOUBLE PRECISION :: F_INV ,x,xe ,ys,yl

F_INV = yl + (ys - yl)*(eul**( del*x) - 1.0)/( eul**( del) - 1.0)

RETURN
END FUNCTION F_INV

!------------------------------------------------------------------

FUNCTION F_INV_PURE(x,ym)
! inverse of solid fraction temperature relation for pure substance
! x = Solid fraction
! ym = Melting temperature

DOUBLE PRECISION :: F_INV_PURE ,x,ym

F_INV_PURE = ym

RETURN
END FUNCTION F_INV_PURE
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