
A Flexible Way to Dynamically Visualize
Spatiotemporal Data in a Geographic
Information System

Soma Das

Master of Science in Telematics - Communication Networks and Networked

Supervisor: Peter Herrmann, IIK
Co-supervisor: Ergys Puka, IIK

Tomas Levin, Statens vegvesen

Department of Information Security and Communication Technology

Submission date: July 2018

Norwegian University of Science and Technology

A Flexible Way to Dynamically Visualize
Spatiotemporal Data in a Geographic
Information System

Soma Das

Submission date: July 3, 2018
Responsible professor: Peter Herrmann, IIK (NTNU)
Supervisor: Ergys Puka, IIK (NTNU)
Co-supervisor: Tomas Levin, Statens vegvesen

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: A Flexible Way to Dynamically Visualize Spatiotemporal
Data in a Geographic Information System

Course: TTM4905 - Communication Technology, Master’s Thesis
Student: Soma Das

Problem description:

The purpose of this thesis is to collect location-specific information from Android
devices and to transfer that data to a remote server where it will be stored in
a database (SQL,MYSQL,PostgreSQL, etc.). Moreover, the server will have the
capability to analyze the data and to transform them into a format that makes
the easily understandable visualization on maps possible.The amended data will be
forwarded to the open source geographical information system, QGIS where they can
be displayed on moving maps in real time. Further, the server respectively QGIS
shall be able to analyze the location-aware data further and to predict certain results.
Initially, we will mainly visualize collected cellular network information, but the
system shall be scalable and flexible to deal with other kinds of geographic data as
well.

The main tasks to be performed in this master thesis are as follows:

– Create a server for storing and analyzing location-specific data and making
predictions out of that.

– Allow the reception of data coming from various Android devices by the server.

– Integrate the server with QGIS such that the two systems can communicate in
real time.

– Display various geographical patterns using QGIS for the data gathered and
stored in the database.

Responsible professor: Peter Herrmann, IIK (NTNU)
Supervisor: Ergys Puka, IIK (NTNU)
Co-supervisor: Tomas Levin, Statens vegvesen

Abstract

We massively make practical and effective use of particular information
in our day-to-day lives. We persistently keep an eye on weather pattern
which affects what we wear, or traffic pattern information gleaned from
various resources. This instinctive need to get from one point to another
keeps us constantly in motion and this very ever-changing positions on
the globe influence the specifics of what information we almost every day
personally consume. So, how do we get along with this volume of data?
How to extract the necessary information from the position based on raw
data? In reality, it is too complex and simply not possible without help.

Fortunately, we live in an era where we have developed performant ways
that allow us to visualize complex data and see important fragments in
that information. And one in many ways is Geovisualization using diverse
Geographical Information System (GIS) technologies available today.

One such area which is rapidly scaling and require serious attention is the
analysis of road traffic data. Data visualization is a graphical approach
to discover hidden patterns out from complicated data format such as
geospatial or spatiotemporal which contain both time and space qualities
and its logical interpretation is not possible with a bare human eye.
Besides, it adds valuable aid in the exploration and fetching meaningful
conclusion.

In this thesis, we establish an application for the integration of real-time
road traffic data with can be dynamically visualized on geographical maps
using various attributes present in the data. To this end, we explore
various hidden traffic patterns by executing various specific analysis which
will eventually be of service in making better decisions in the sector such
as road and traffic management or cellular network management.
For this purpose, we choose to work with QGIS, a wide-spread GIS tech-
nology which is flexible and user-friendly for Geovisualization purposes.
It provides multiple support GIS features to work in both its desktop as
well as its server application. Initially, we have worked extensively on
both QGIS Desktop platform and QGIS Server which allow static data
visualization.

The major advantage of using QGIS is its accessible repositories offering
support to design own application using different GIS features. In order
to provide flexible and dynamic support in data visualization, we develop
a standalone application which incorporates both static and dynamic

capabilities to analyze and display varied spatial patterns over maps using
the captured data from various spatially enabled devices. The data is
mostly associated with the location and therefore can be represented on
the map. This approach will help in accumulating necessary data for
various analysis and allow us to access the visualized data from anywhere
in the world.
Currently, the system can illustrate a map of any region and top of
that display an informative layer locating various car objects as Points
including its all geographical positions, in addition with other cellular
and car information present in the traffic data. The visual display
automatically adjusts itself and will appear as long as data is continuously
provided to the system.

The usefulness of this application is only limited by the data which is
provided to it. Data gathered is dependent on the application used to
gather data such as mobile device (Android/ios). That is why we need
an efficient system at a place to fulfill considering varied future needs.
Henceforth, the developed application of our system is not limited with
traffic analysis, yet can be used to gather other data with user-specific
GPS data vehicle tracking, etc. and allow performing the necessary
analysis which will eventually help decision makers in making a smarter
decision for future development.

Preface

This master thesis, “A Flexible Way to Dynamically Visualize Spatiotem-
poral Data in a Geographic Information System” was performed by Soma
Das for the course TTM4905 - Communication Technology, Master’s
Thesis. This project was carried out for 22 weeks from February 6 - July
3 in the spring semester of 2018 at the Intelligent Transportation Systems
(ITS) lab as a part of my 2-years International Masters of Science study
in Telematics-Communication Networks and Networked Services at the
Department of Information Security and Communication Technology at
Norwegian University of Science and Technology (NTNU), Trondheim.

This master thesis report is my original research work except the references
and acknowledgments being used.

Soma Das

July 2018
Trondheim, Norway

Acknowledgement

I would like to thank my responsible professor, Prof. Peter Herrmann
for introducing me to this project and continuously supervising my work.
He has been very helpful in providing me guidance and right directions
throughout the accomplishment of this project. He has always been very
appreciative towards my achievements and progress in this project.
I would also like to thank my supervisor, Ph.D. student Ergys Puka and
my co-supervisor, Thomas Levin from Statens vegvesen for support, Prof.
Frank Alexander Kraemer for being my project chairperson during oral
presentation of Communication Technology, Master’s Thesis and, Prof.
David F Palma for wonderfully giving me an overview for the structuring
of thesis.

Laurent Paquereau, Mona Nordaune and Pål Sturla Sæther, the staff
members at the Department of Information Security and Communica-
tion Technology (IIK) were very kind and cooperative in facilitating
administrative guidance, providing workspace and trouble-free access
in Intelligent Transportation System lab and, also allocating required
technical resources.

A deep gratitude for my family to be always present showing unbreakable
trust and faith in my capability. Special thanks to my friends who were
encouraging me to work harder and constantly reminding to accomplish
quality work.

Contents

List of Figures xiii

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

1 Introduction 1
1.1 Objectives . 3
1.2 Methodology . 3
1.3 Motivation . 3
1.4 Publication . 4
1.5 Statens vegvesen Collaboration . 4
1.6 Thesis Contribution . 4
1.7 Thesis Structure . 4

2 Background and Literature Review 7
2.1 Terminologies . 7

2.1.1 What is Spatiotemporal data? 7
2.1.2 What are Spatiotemporal Databases? 7
2.1.3 What is Geospatial Data? . 8
2.1.4 What is Geovisualization? . 10

2.2 Geographic Information System (GIS) Technologies 10
2.2.1 What is GIS? . 10
2.2.2 GIS Tools for Geovisualization 10

2.3 Quantum- Geographic Information System (QGIS) 12
2.3.1 QGIS- Desktop Application 13

2.3.1.1 QGIS- Desktop GUI 13
2.3.2 QGIS- Browser Application 14
2.3.3 QGIS- Server Application . 15

2.4 Background Work . 15
2.5 Summary . 16

viii

3 Environment Setup for Dynamic Visualization System 17
3.1 System Blueprint for Flexible & Dynamic Visualization of Spatiotem-

poral Data . 17
3.2 Setting up Development Tools for Building Python Standalone Appli-

cation . 19
3.2.1 Setting up Python 2.x . 19
3.2.2 Setting up IDE or Editor . 20
3.2.3 Setting up Qt/PyQt4 . 20
3.2.4 Setting up Linux . 21

3.3 How to make Python and QGIS work together? 21

4 NTNU-QGIS Web Application & QGIS Server Setup 23
4.1 Apache server . 23
4.2 Implementation of QGIS-NTNU Web-Application 24

4.2.1 NTNU-QGIS Web-Application Setup 24
4.2.1.1 Framework Architecture: MVC model 25
4.2.1.2 Login- Web Page . 26
4.2.1.3 Uploading file to QGIS Database Web Page 26
4.2.1.4 Dashboard Web Page 27

4.3 QGIS Server . 28
4.3.1 QGIS Server Setup . 28
4.3.2 How Web-Application interacts with QGIS Server 29

4.4 Brief Introduction to NTNU-QGIS Web API 32
4.5 Summary . 33

5 Spatial Database Setup 35
5.1 Why PostgreSQL? . 36
5.2 PostgreSQL Setup . 36

5.2.1 PostgreSQL Installation . 36
5.2.2 Creating a Postgres Database User 36
5.2.3 Creating a new Database . 37
5.2.4 Creating a Data Table . 38

5.2.4.1 Making a table using Postgres-Bash Prompt 39
5.2.4.2 Alternate option to create table : Postgres GUI . . 40

5.3 PostGIS: Creating Spatiotemporal Databases 40
5.3.1 What is PostGIS? . 41
5.3.2 Setting Up PostGIS . 42

5.3.2.1 Installation of PostGIS 42
5.3.2.2 Implementation of PostGIS on ntnu-qgis Database . 42

5.3.3 Testing PostGIS Functionality 42

6 Spatial Reference System in Visualization 47

6.1 What is Spatial Reference System (SRS) or Coordinate Reference
Systems (CRS)? . 47
6.1.1 Projected Coordinate Systems 49
6.1.2 Coordinate Reference System (CRS)- Formats 51

6.2 Implementation of Storing and Representation of Geographical Fea-
tures in Database . 52
6.2.1 Simple Feature Model for SQL 52
6.2.2 Adding spatial geometry field to table 55

6.3 Summary . 58

7 Design Implementation of Dynamic Visualization of Spatiotem-
poral Data using PyQGIS 59
7.1 PyQGIS- Application Overview . 59
7.2 Blueprint of Standalone Script using PyQGIS 60

7.2.1 Skeleton of PyQGIS Script 60
7.2.2 First GUI View of PyQGIS Application 61

7.3 Implementation of PyQGIS Application 62
7.3.1 Static Visualization & Analysis 62

7.3.1.1 Static Data Visualization Process 63
7.3.1.2 Analysis: Specific Patterns in Spatiotemporal Data 65

7.3.2 Dynamic Visualization & Analysis 67
7.3.2.1 Flow 1: Uploading & Storing Spatiotemporal Data

to the Database . 67
7.3.2.2 Flow 2: Dynamic Visualization of Data on Map Canvas 69
7.3.2.3 Stage 1: Creating WMS Layer (Basemap) 70
7.3.2.4 Stage 2: Creating Vector Layer from Database data 71
7.3.2.5 Stage 3: Checking for Data Updates 74
7.3.2.6 Flow 3: Analysis of the Data 74
7.3.2.7 Find out Position Coordinate of random Car Feature 77
7.3.2.8 Creating Connection with the QGIS Server 77
7.3.2.9 Downloading Map- Progress bar 78
7.3.2.10 Quit Button . 78

8 Discussion and Conclusion 81
8.1 Discussion . 81
8.2 Limitation and Challenges in Current Work 82
8.3 Conclusion . 83

References 85

Appendices

A Source Code: Dynamic Visualization System 89

.1 Source Code: Static Visualization 89

.2 Source Code: Dynamic Visualization 91

.3 Source Code: PyQGIS-Application 93

List of Figures

1.1 This figure shows the various visualization patterns of spatial form of
Road Traffic Data using GIS, the reference from [Hen, Gro, NEW] . . . 2

2.1 This image shows a pictorial representation of Vector and Raster forms
of data, adopted from [Uni] . 9

2.2 This image shows various components forming a GIS System, adopted
from Source: https://www.cdc.gov/gis/ 11

2.3 The figure shows the available three types of QGIS Applications 12
2.4 The figures shows the five Components of QGIS-GUI Desktop Application 13
2.5 The QGIS-GUI Browser Application . 14

3.1 Blueprint of Dynamic Visualization System Architecture 18

4.1 This image shows a basic Apache Web Server Architecture, adopted from
source:https://guidespratiques.traduc.org/guides/vo/solrhe/images/ . . . 23

4.2 This image shows the basic interaction overview between a Web-client
with a Web Server . 24

4.3 This image shows an interaction diagram within MVC (Model View
Controller) Model pattern, adopted from [ore] 25

4.4 The image shows the NTNU-QGIS web application- Login web page . . 26
4.5 The image shows the NTNU-QGIS web application- Uploading files web

page . 27
4.6 The image shows the NTNU-QGIS web application- Dashboard web page 27
4.7 This figure is the outline of NTNU-QGIS Web-Application interacting

with QGIS Server [Liz] . 30
4.8 This figure is the image of the QGIS Server response in the form of XML

Document to GetCapabilities HTTP Request 31
4.9 This figure is the Static image of the QGIS Server response to GetMap

HTTP Request . 32
4.10 This image shows the central Web API Architecture holding all the

business logic, adopted from [Mic] . 33

xiii

5.1 A Basic Architecture of Database System 35
5.2 The Various PostgreSQL Permissions to Database User [Qgia] 37
5.3 The image shows the screenshot image of Verification of becoming Postgres

User . 38
5.4 Creation of ntnu-qgis Database . 38
5.5 The view of route table schema . 39
5.6 The view of pgAdmin GUI on Apache- Localhost 40
5.7 Configuration of PostGIS on ntnu-qgis Database 42
5.8 PostGIS Point function on ntnu-qgis Database 43
5.9 PostGIS Point function testing at Position 1,1 44
5.10 An example reference image showing how PostGIS- Point function is

used to display location using data records. source: mrbool.com/how-to-
track-users-registration-location-in-g oogle-maps/33562 45

6.1 This image shows a basic Coordinate System known as Cartesian sys-
tem.Source: https://svn.osgeo.org/qgis/docs/ 48

6.2 A CRS defined conversion of location on a 3-Dimensional plane to a
2-Dimensional plane.Source: http://ayresriverblog.com 48

6.3 The two types of CRS . 49
6.4 A CRS defined three Coordinate locations (Oslo, Boulder and Mallorca)

on a 2D Map.Source: https://www.earthdatascience.org/ 50
6.5 A reference figure with CRS translation of 3-Dimensional Globe to a

2-Dimensional flat surface Map. Source: CA Furuti, progonos.com/furuti 51
6.6 A Simple Feature for SQL (SFS) Model defining various geo-spatial data

from Point, Lines, and Polygons . 53
6.7 A schema of Spatial Reference System Table 54
6.8 EPSG:4326 - the geographic lat/lon reference system using the WGS 84

ellipsoid . 55
6.9 A SQL command to Alter "route" table by adding Geomtery field 56
6.10 Performing Point Constraint on table "route" 56
6.11 An addition of Geometry field with "Point" constraint on table "route" . 56
6.12 A Geometry fields with Latitude and Longitude object values 57
6.13 A PostgreSQL GUI having Spatial object field "the_geom" in table "route" 57

7.1 This figure will be referenced as Python Standalone Application Overview,
some images adopted from [ESR] . 59

7.2 This figure shows Logic behind Flexible and Dynamic Visualization of
Spatiotemporal-Data in PyQGIS Application 60

7.3 This figure shows PyQGIS- GUI View, the background Google map image
adopted from source: http://mirafra.com/tripsy/2214585-google-maps-
wallpaper/ . 61

7.4 This figure shows "About"-Menu Bar Option, providing description of the
PyQGIS Application . 62

7.5 This figure shows "File"-Menu Bar Option, providing access to local
computer file system to upload Data file 63

7.6 This figure shows Flow Diagram for "Static Visualization and its Analysis" 63
7.7 This figure shows the Static Visualization of Spatiotemporal data stored

in local CSV file . 65
7.8 This figure shows "Select Vector Layer"- ToolBar Option, providing access

to select any layer from all the layers created and make query 66
7.9 This figure shows the zoom out Map-View for Queried data (Signal

Strength > 20) . 66
7.10 This figure shows Flow Diagram for "Dynamics Visualization and its

Analysis" . 67
7.11 The flow 1: Uploading and Storing Spatiotemporal Data to the Database 68
7.12 This figure shows "Connect to NTNU-QGIS webpage"-ToolBar Icon,

providing direct access to NTNU-QGIS login webpage to upload data . 68
7.13 This figure shows "Connect to PostgreSQL database"- ToolBar Icon,

providing access to (ntnu-qgis) Database 69
7.14 The flow 2: Dynamic Visualization of spatiotemporal database data on

Map-view process . 69
7.15 The figure shows the WMS/WFS basic architecture for serving map over

the cloud adopted from [fSHE] . 70
7.16 This figure shows "Add WMS Map"-ToolBar Icon, to create and display

Norge BaseMap Layer . 71
7.17 This figure shows "Create vector layer"-Toolbar Option, creating vector

layer from data stored in "ntnu-qgis" Database 72
7.18 This figure shows Dynamic Vector Layer Visualization on the Map Canvas 73
7.19 This figure shows the flow diagram for (database) Data Analysis using

"Select vector Layer"-Toolbar Option . 74
7.20 This figure shows the Analysis Result obtained using "Select Vector

Layer"-Toolbar Option on Database Vector-Layer 75
7.21 This figure shows flow of analysis process directly on the database data 75
7.22 This figure shows "Make a deeper Analysis"- ToolBar Option, and steps

to make query . 76
7.23 This figure shows "Make a deeper Analysis"- ToolBar Option, Analysis

result . 76
7.24 This figure shows "Where AM I??"-Toolbar Option, to capture specific

Position Coordinate(Longitude,Latitude) by click of a Mouse 77
7.25 This figure shows Map view capturing specific car feature Position Coor-

dinates (Longitude,Latitude) . 77

7.26 This figure shows "Connect to QGIS Server"- ToolBar Option, providing
access to QGIS Server . 78

7.27 This figure shows "Download Map"-Progress Bar Option, creating PDF
of layers Displayed on Map-Canvas . 78

List of Tables

6.1 A table contain various SRID . 54

7.1 An Attribute table containing all Car Features saved in a CSV file . . . 64

xvii

List of Algorithms

7.1 Logic to create Vector Layer from CSV file 64
7.2 Requesting Norge WMS services and creating Basemap Raster Layer 72
7.3 Basic logic to create database Vector layer 73
7.4 Basic logic to print the Map Canvas in PDF 79

xix

List of Acronyms

API Application Programming Interface.

CRS Coordinate Reference System.

CSS Cascading Style Sheets.

CSV Comma Separated Values.

DBMS Database-Management System.

EPSG European Petroleum Survey Group.

GCD Greatest Common Divisor.

GDAL Geospatial Data Abstraction Library.

GIS Geographic Information System.

GPL General Public License.

GPS Global Positioning System.

GUI Graphical User Interface.

HTML Hypertext Markup Language.

HTTP Hyper Text Transfer Protocol.

IDE Integrated Development Environment.

IGNF Institut Geographique National de France.

IIK Department of Information Security and Communication Technology.

ITS Intelligent Transportation Systems.

KML Keyhole Markup Language.

xxi

MVC Model View Controller.

NTNU Norwegian University of Science and Technology.

OGC Open Geospatial Consortium.

ORDBMS Object-Relational Database Management System.

PHP Hypertext Preprocessor.

QGIS Quantum-Geographic Information System.

RDBMS Relational Database Management System.

RTD Round Trip Delay.

SFS Simple Feature for SQL.

SQL Structured Query Language.

SRID Spatial Reference System Identifier.

SRS Spatial Reference System.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

UTM Universal Transverse Mercator.

WCS Web Coverage Service Interface Standard.

WFS Web Feature Services.

WGS World Geodetic System.

WKB Well-Known Binary.

WKT Well-Known Text.

WMS Web Map Services.

XML Extensible Markup Language.

Chapter1Introduction

Before the birth of linguistics, there was drawing. Prehistoric sketches, paintings
shared out history, plans, and ideas. When something gets too difficult to understand,
occasionally resorting to this uncomplicated and straightforward language of data
visualization simplifies to a concept one can comprehend effortlessly.

Utilizing Data visualization approach puts complex data into a pictorial or graphical
format, allowing more ease in understanding the state of the system and identify
hidden patterns to produce significant result for decision makers.
In the early phase of data visualization, one of the foremost ways existed to visualize
data was using capabilities within Microsoft Excel. Starting from an easy-to-use
spreadsheet and gradually painstakingly create a simple and comprehensive graphic
to assist in conveying an idea or a message and providing a better understanding
of a business trend. Excel was considered to be the best tool until data evolved
to an extent that it was not possible for Excel to handle size and in addition to
professionals growing demand for more complex visualization than a simple line, pie,
or bar graphs. This is when the modern era of data visualization began [THE].

In recent years, curiosity in visualizing and analyzing the spatiotemporal1 data has
grown noticeably in the scientific research community. Researchers in the diverse
field of studies such as Ecology, Environmental-health, Traffic Network Analysis, and
Climatology are more and more encountering with the task of analyzing complex
data that are highly multivariate, georeferenced2, often represented as Maps, and
temporally correlated, as in longitudinal/latitudinal or other some more series of time
structures [BCG14].

This reflected the existence of well-formulated uncertainties in mind or hypothesis
where location plays a paramount role, of spatiotemporal data with sufficient features
and, of significant statistical methodology.

1of or relating to both together spatial (space) and temporal (time) qualities
2geographically referenced, associated with locations in physical space

1

2 1. INTRODUCTION

All possible data visualization is interactive and its analysis can be a starting point
for exploration to out of sight patterns which can be revealed and questions receive
meaningful answered. It is very important as part of the process of understanding
the results acquired in spatiotemporal data analysis, for interpreting the association
between actual geography and how that real-world reality is captured in a software
database converted into data matrix containing both locations specific as well as
attribute data. With the increasing demands on complex data visualization, there
is now widely available and easily accessible Geographic Information System (GIS)
software which are continuously been used to handle spatiotemporal data. Further-
more, implementing a program for varied spatial data analysis is highly encouraged
if supporting software is available [HH03].

Statistics governs to a great extent of what we do in reality. Since over the years,
traffic data aggregation has been a serious and far-reaching factor of inaccuracy in
nearly all road safety studies.
So far it has been estimated that approximately 40% of people every day on an
average spend one hour on the roads [dvi]. Therefore, traffic data analysis is of
high-priority. Using data visualization techniques helps to discover hidden valuable
information present in the data providing aid in exploration and narrative after
specific analysis. The figure Figure 1.1 below gives an illustration of analyzing
various pattern present in road traffic data of spatial form facilitated by using GIS
software.

Figure 1.1: This figure shows the various visualization patterns of spatial form of
Road Traffic Data using GIS, the reference from [Hen, Gro, NEW]

1.1. OBJECTIVES 3

1.1 Objectives

The main objectives of this thesis work are as follows:

– Create a server for storing and analyzing location-specific data and making
predictions out of that.

– Allow the reception of data coming from various Android devices by the server.

– Integrate the server with QGIS3 such that the two systems can communicate
in real-time.

– Display various geographical patterns using QGIS for the data gathered and
stored in the database.

1.2 Methodology

To achieve the above-mentioned objectives, the agile methodology was used. In the
start, we assemble theoretical knowledge and understanding of the various tools being
used. The main source of gathering materials were Google, QGIS API Libraries,
PyQGIS Programming Books and IEEE Xplore.
Based on the knowledge acquired, the tasks performed as:

– To allow the reception of data from various devices, a user interface is developed
in the form of web application using HTML5/CSS, JavaScript and PHP.

– To store the data, the database is created using PostgreSQL. In addition,
PostGIS functionality is implemented to convert the data into spatial form.

– A standalone python script is developed using QGIS libraries, PyQT and QT
creator to integrate with the database to capture data in real-time.

– Data is displayed using QGIS modules and analyzed making specified SQL
queries.

1.3 Motivation

This thesis is a research part to the previous project work performed by Prof. Peter
Herrmann and Ph.D. Ergys Puka in the development of the Android application to
collect cellular traffic road data attached with location information capturing together
in the form of spatiotemporal data. Previously data was presented in a static way
but this thesis inclination was to provide flexibility, scalability and dynamic approach

3open source free software used to view, edit and manipulate geographical data

4 1. INTRODUCTION

to data visualization.
This work is vital in the area where complex data objects are to be visualized and
analyzed to gather result for managing better road traffic. Performance is the main
issue with this sort of complex information, so developing a system that is light-weight
and powerful to handle a large amount of data and make a fast deeper analysis with
dynamic support.

1.4 Publication

The previous work related to the literature part of this thesis has been published
in the 2018, 10th International Conference on Communication Systems & Networks
(COMSNETS)4 at Bengaluru, India under the title; A way to measure and analyze
cellular network connectivity on the Norwegian road system.

1.5 Statens vegvesen Collaboration

The Norwegian Government Agency is popularly known as Statens vegvesen5

(English: Norwegian Public Roads Administration) which is responsible for the state
including county public roads in Norway. The idea behind this thesis was first born
after getting an introduction behind Norwegian road traffic data collection and its
attributes, and its static visualization using the QGIS-Desktop platform.

1.6 Thesis Contribution

The details of the achieved contribution will be demonstrated in the later chapters
of this thesis report. The main contribution can be summarized as:
A graphical user interface generated with python standalone application has been
developed using various QGIS Libraries which incorporates both static and dynamic
visualization capabilities. Along with that, a PostgreSQL database has been created
with addition extending core capabilities using PostGIS to handle spatiotemporal
data. The system is flexible and scalable to visualize any sort of raw data over the
maps and gather useful graphical patterns during diverse analysis. In addition to this,
a web application is designed in providing an ease to push data into the database
from anywhere using any device.

1.7 Thesis Structure

This project thesis contains total of 8 chapters including this current introductory
first chapter. A brief description of further chapters in this report are as follows:

4https://www.comsnets.org
5https://www.vegvesen.no/

https://www.comsnets.org
https://www.vegvesen.no/

1.7. THESIS STRUCTURE 5

– Chapter 2: Background and Literature Review
This chapter give an overview of the previous related work and describing
various terminologies used in this project.

– Chapter 3: Environment Setup for Dynamic Visualization System
This chapter provides a complete installation process to setup environment
needed to build Dynamic Visualization system.

– Chapter 4: NTNU-QGIS Web Application & QGIS Server Setup
This chapter provide the implementation of project web application, Apache
web server and QGIS web server and, demonstrating there purposes for this
project.

– Chapter 5: Spatial Database Setup
This chapter demonstrate the complete process in creating PostgreSQL database
with implementing PostGIS functionality.

– Chapter 6: Spatial Reference System in Visualization
This chapter provide a complete insight view over spatial objects creation and
there formation over geographic maps.

– Chapter 7: Design Implementation of Dynamic Visualization of Spa-
tiotemporal Data using PyQGIS
This chapter describes the implementation process in developing PyQGIS
application.

– Chapter 8: Discussion and Conclusion
This chapter summarizes the complete project thesis along with challenges and
limitation occur in the process.

Chapter2Background and Literature Review

This chapter will provide a brief introduction of the previous work which brought the
idea behind this thesis. This chapter also provides a general introduction to briefly
understand about terms and technologies used to accomplish the goals.

2.1 Terminologies

2.1.1 What is Spatiotemporal data?

To understand this word Spatiotemporal lets break down it into two parts as
"Spatial" and "Temporal". For the term Temporal, its characterization appears
when a series of images are taken at a distinctive time. The interrelationship between
the captured images is generally used to monitor the dynamic changes of the object
within the course of time. The Spatial characterization come to pass when image is
analyzed.

Spatial and Temporal features form a significant portion in the vast amount of data
produced by various mobile devices, Geographic Information System (GIS) systems,
data monitoring applications and many other processes. The "spatial" is associated
with direction, shape, direction, etc. and "temporal" is related to duration, occurrence
time, etc. These parameters have to be extracted from the raw form of data thereby
useful conclusions can be drawn [Quo].

2.1.2 What are Spatiotemporal Databases?

A Spatiotemporal Database is a database that is responsible for dealing with data
which encloses both space and time information. The word "deal" here implies to the
managing, creation, editing and/or updating of data. The most common examples
include:

– Historical tracking of activities of the Tectonic Plates on the Earth’s surface.

7

8 2. BACKGROUND AND LITERATURE REVIEW

– An index of species in a particular region, where with time new species are
introduced or existing species are extinct or migrated.

– A wireless communication network database, which may occur for a short time
specifically to one particular geographic region.

– Tracking of moving objects e.g. car, plans, etc., which in most cases occupy
one single position at a given time.

Spatiotemporal Databases are basically an extension of Spatial Databases. A spa-
tiotemporal database encompasses spatial, temporal, and spatiotemporal database
concepts, and capturing complex spatial and temporal aspects of data from raw
information and deals with:

– Location of moving objects over unvarying geometry known differently as
real-time tracking systems or moving objects databases [GS05] and/or

– dealing with gradually changeable geometries over time.

However there exist various relational databases1 providing spatial extensions, but
for practical reasons the spatiotemporal databases are not based on relational models.
Primarily, because the data is multi-dimensional, and capturing complex structures
and behaviors. By 2008, there was no RDBMS2 product with spatiotemporal
functionality but now the PostgreSQL 3 a powerful ORDBMS product and the
first among various popular Database-Management System (DBMS) to provide
spatiotemporal functionality. PostGIS4 is a spatial database extender which extends
the core capabilities of PostgreSQL. This extender provides support for geographical
objects which allow location based queries to be run in SQL [en.].

2.1.3 What is Geospatial Data?

Geospatial data as sometime known as Spatial data, is an information which has
geographical aspect to it. In other words, it is a subset of spatial data which is
simply a data which contains records indicating location of objects within a given
coordinate system and/or city, an address, postal code or zip code included with it.
The most evident example is a road map. What we see is the rendered result, but
the features on the map are stored containing this type of information [Mat].

1https://www.sisense.com/glossary/relational-database/
2https://database.guide/what-is-an-rdbms/
3https://www.postgresql.org/about/
4https://postgis.net

https://www.sisense.com/glossary/relational-database/
https://database.guide/what-is-an-rdbms/
https://www.postgresql.org/about/
https://postgis.net

2.1. TERMINOLOGIES 9

Geospatial data comes in many forms (shapes) and formats, and its structure is
highly complicated to understand than simple tabular and/or even non-geographical
geometric data. It is different because here data refers to as objects which contain
complex figures like Points, Lines, Polygons and many other forms of shapes including
scale parameters and elevation etc. located in geographic space [stu].

There exists two fundamental types or forms of geospatial data for computer storage
and application and, for its representation as shown in Figure 2.1 are:

– Vector Data: This type of data make use of Point, Lines, Polygons to create
and represent spatial features such as roads, cities, positioning moving objects
like car, etc along with using other attributes on the map.

– Raster Data: On the other hand, this type uses cells to represent spatial
features. In computer these cells are dots or pixels. Cities are single cells,
road as linear sequence of cells. The most common example of raster form are
Satellite images.

Figure 2.1: This image shows a pictorial representation of Vector and Raster forms
of data, adopted from [Uni]

Both form of data are processed by using different methods for its representation.
The raster is faster but vector is a corrector. How it is implemented is demonstrated
in Chapter 7.

10 2. BACKGROUND AND LITERATURE REVIEW

2.1.4 What is Geovisualization?

Geographic Visualization in short Geovisualization. It is a process that modifies
and display complex geographical information (geospatial data) to make it in human
understandable presentation.

For example, we consider a table containing Trondheim´s temperature information
for the month of June. Would the table be more capable of providing as much insight
like a visual image as a map of the same information? Probably not! Besides to the
values, the map will also show the various patterns of the temperatures. This is one
of the basic examples of the Geovisualization process. This complex raw information
becomes knowledge by converting location-dependent information to visual patterns.
In this thesis, we are using cellular traffic data collected from tracking moving car on
Norwegian roads and analyzing various spatial patterns present inside the data [stu].

2.2 Geographic Information System (GIS) Technologies

2.2.1 What is GIS?

GIS stands forGeographic Information System. A simple interpretation implies
as a computer system which is capable to store and use data for describing places
on the Earth´s surface. However, GIS encloses more than just a simple computer
system.

A GIS is a framework which is designed for capturing, storing, managing, displaying
and analyzing data. As GIS integrates many types/forms of data, it can analyze
spatial location and organizes layers of information (layer can be thought of card in
a deck) into visualizations using various maps and/or 3D scenes. With this unique
capability, the strength of GIS lies in its ability to reveals deeper insights into data,
such as relationships, patterns between layers. Furthermore, situations—helping
people make smarter decisions by using GIS to answer particular data-related
questions [ESR].
The Figure 2.2 shows the various components in GIS as learned above.

2.2.2 GIS Tools for Geovisualization

Nowadays, thousands of organizations in practically every field are using GIS to de-
velop maps that communicate, perform analysis and solve complex problems around
the globe.GIS helps individual and organizations to better understand complex spatial
structures and patterns as is has got great capability for visualizing many different
kinds of data on one single map [Geoa].

2.2. GEOGRAPHIC INFORMATION SYSTEM (GIS) TECHNOLOGIES 11

Figure 2.2: This image shows various components forming a GIS System, adopted
from Source: https://www.cdc.gov/gis/

There are many GIS tools available today for creating and analyzing Geovisualzation
images. Some of the most popular ones include [Glo]:

– ArcGIS: This is platform-based commercial tool developed by ESRI5 in 1999
and written in C++ . It dominates in the GIS area because it is simple to use,
cloud functionality and providing exceptional maps.

– QGIS: A free open source cross-platform tool6 developed by Quantum-Geographic
Information System (QGIS) Development Team in July, 2002 and, written in
C++, Python and Qt. It allows viewing, editing/updating, and analysis of
geospatial data.

– Mapbox: Is is an open source mapping platform-based tool7 founded in 2010
for custom designing both web and mobile maps.

– Carto: This is Service cloud computing platform-based tool8 released on
September, 2011 and written in Ruby, JavaScript that offers drag-and-drop
features capabilities for quickly creating both simple and sophisticated visual-
izations.

5https://www.esri.com/en-us/home
6https://qgis.org/en/site/about/index.html
7https://www.mapbox.com/about/
8https://carto.com

https://www.esri.com/en-us/home
https://qgis.org/en/site/about/index.html
https://www.mapbox.com/about/
https://carto.com

12 2. BACKGROUND AND LITERATURE REVIEW

2.3 Quantum- Geographic Information System (QGIS)

Quantum-Geographic Information System (QGIS), also sometimes known as Quantum-
GIS. It is a free available and open-source cross-platform GIS application. QGIS
was developed by QGIS Development Team in July 2002 and released under License
GNU General Public License (GPL) v2 [gnu]. The development of QGIS under this
license means that it can be freely inspected and modify the source code to perform
different or more specified tasks [ow].

Currently, QGIS is available to run on multiple operating systems including Mac
OS X, most Unix platforms, and Microsoft Windows. It is written in C++ and
development made extensive use of the Qt toolkit9. This makes QGIS look well
structured, and along with that providing pleasing, easy-to-use Graphical User
Interface (GUI). In addition to Qt, it integrates with various other open-source GIS
packages. Mainly including GDAL10, GRASS GIS, SQLite, PostgreSQL/PostGIS
and MapServer which provide access to the additional data formats. Plugins and
Standalone Application are written in C++ and also Python which extends QGIS
capabilities. Many plugins are available and can also be extended to dynamically
add new functionality.

There are three types of QGIS applications in use today but the a mobile version of
QGIS in under development process for Android since 2014:

Figure 2.3: The figure shows the available three types of QGIS Applications

9https://www.qt.io
10http://www.gdal.org

https://www.qt.io
http://www.gdal.org

2.3. QUANTUM- GEOGRAPHIC INFORMATION SYSTEM (QGIS) 13

2.3.1 QGIS- Desktop Application

QGIS aims to be more advanced, comprehensive and a user-friendly desktop GIS
application in open source world, providing some common functions and features.
However, the initial goal of the project in the early development phase was to provide
a GIS data viewer. But QGIS has reached to the point in its evolution today
where it is being used by many organizations for their daily Geospatial data-viewing
needs [JOU].

QGIS- Desktop allows users to create, edit, view and analyze the geospatial data,
in addition to just creating and exporting geographical maps. It provides support
for both raster and vector formats of data, including spatially enabled tables in
PostgreSQL using its spatial extension PostGIS.
The GIS vector data is either stored as Point, Lines, or Polygons features and its
format is Shapefiles with an extension .shp. While, raster forms of data are geo-
referenced and multiple formats are supported including PNG, GEOTIFF, TIFF,
etc. [Sou] as seen in Figure 2.1. In addition, it offer support for generates layer view
using other files with CSV,.xlsx, XML formats and also support the use of data
from external Web services sources, like Web Map Services (WMS) and Web Feature
Services (WFS).

Figure 2.4: The figures shows the five Components of QGIS-GUI Desktop Applica-
tion

2.3.1.1 QGIS- Desktop GUI

When QGIS-Desktop application starts, it appears with the GUI presentation as
shown in Figure 2.4. The look of the GUI differs depending on the operating system
and window manager [opc].

14 2. BACKGROUND AND LITERATURE REVIEW

The Desktop-GUI is divided into five different functional components as marked in
red circle on the above figure:

1. Menu Bar
2. Toolbars (top/left vertical corner)
3. Panels

a) Top- Browser Panel
b) Bottom- Layers Panel

4. Map View (Map Canvas)
5. Status Bar

The Menu bar and Toolbars provide various GIS functionalities for creating different
patterns from the spatial data. The Top- Browser panel is the shortcut to navigate in
the local platform file system while the Bottom- Layer panel is responsible for listing
all the raster or vector data layers created. The Map view is like a canvas where
these generated layers are displayed on the map. The last, Status panel gives details
about the position coordinated of the spatial objects as well the projection used to
display them accurately on the 2D globe. This is further described in Section 6.1.1.

2.3.2 QGIS- Browser Application

The QGIS- Browser application provides easy navigation to the filesystem in your
computer and databases for managing geosptial data as shown in its GUI representa-
tion Figure 2.5. A quick access to vector data files (e.g. MapInfo files or Shapfiles),
databases (e.g. SpatiaLite, PostgreSQL/PostGIS, or Oracle) and for raster file mak-
ing WMS/WFS11 connections [opb]. The shortcut to it is also available in Desktop
Application.

Figure 2.5: The QGIS-GUI Browser Application

11http://www.opengeospatial.org/standards/wms

http://www.opengeospatial.org/standards/wms

2.4. BACKGROUND WORK 15

2.3.3 QGIS- Server Application

QGIS Server Application is an open source WMS 1.3, WFS 1.0.0 and WCS 1 1.1.1
implementation which, in addition, implements most advanced cartographic features
for thematic mapping [opa].

The QGIS Server usually run as a FastCGI/CGI (Common Gateway Interface)
module, coded in C++ within a web server (e.g., Apache, Lighttpd). It uses QGIS-
Desktop as a backend for its GIS logic, meaning both the applications uses same
visualization Libraries for map rendering. This makes the appearance of the maps
on QGIS- Desktop look alike as published on the web using QGIS Server.
QGIS server provides support for Python plugin facilitating fast and efficient devel-
opment and deployment of new features and also integrating with existing features.
The detailed description about the use and purpose of QGIS Server, along with its
installation for this project design is provided in Chapter 4 Section 4.3.

2.4 Background Work

The information we are using to work with in this project consists of two elements,
specifically spatial features and attributes data. As previously described about
geospatial (spatial data) in Section 2.1.3, the examples of spatial features which you
might find on a map including city, zip code,etc. In this case, it is data from moving
car object whose changing position over time is its spatial feature. On the other
hand, "attribute data" provides detail description about the characteristics of the
spatial features which may be discrete or continuously value and/or quantitative or
qualitative.

The previous work contribution to this project is to provide data. Here, it is cellular
car traffic data gathered using Android application developed by my responsible
professor Prof. Peter Herrmann along with my supervisor Ph.D Ergys Puka.

The Android device when placed inside the car, it starts gathering the details about
the car as it moves forward. After a certain time-stamp usually taken after a second
interval, it updates and stores the new information by sending to a remote server. The
data being collected was later fetched into a form of a CSV file containing all records.
These records are basically the attributes about each car feature changing over time.
A car is treated as a spatial object here because it carries geographical aspect which
is included with the other cellular information collected. The important thing to
notice here, the geographical aspect imply here only to the geographic coordinates of
the car positioning at a specific time mainly as a combination of Latitude, Longitude,
and Altitude, and the other attribute data is the cellular information (Communication
Protocol, Signal Strength), Server connection information (Round trip delay), along

16 2. BACKGROUND AND LITERATURE REVIEW

with other categories including Speed, Bearing, Accuracy and, Total number of
Satellites and Satellites in fix.

The Android application collects information and sends to the server where server
collects data using either UDP or TCP connection. The server is implemented using
Reactive blocks 12 which is an Eclipse IDE plugin. The time in which data send to
the server and acknowledged is recorded as "Round trip delay" as the record in the
attribute data.

2.5 Summary

When working with a spatiotemporal form of a data normally we are interested in the
properties of that data which can make the interpretation of data simple, easy and
intuitive. This data contains information and patterns of complex form so it requires
manipulation and visualization techniques for human understanding for extracting
useful information and making smarter decisions [Quo].

As acquired knowledge from above descriptions, QGIS is available in three different
types of GIS functional applications, but considering the objective of this project
to provide flexibility and dynamism for which desktop version has some limitation
to work with. It only provides a Static view of the spatial data. With the word
"static" here implies to images presented on the Map canvas (Map view) is constant.
As QGIS-Desktop stores data in the form of table temporary into its own database
and during visualization process once the image is displayed on the map canvas and
simultaneously the same data is updated it makes no difference on the map view.
We have to restart the same process of upload the entire data and make a new layer.
The other most important drawback of using desktop version was slow performance
according to the size of data. The computer system has to devote its maximum
core processor to bring efficiency and increase its performance. This makes it highly
unsuitable to run other application simultaneously with QGIS Desktop.

In order to overcome this limitation we designed separate Python standalone applica-
tion which is light weight and easily adoptable to run in other operating system using
various QGIS Libraries. The system design is more salable and flexible to handle
spatiotemporal data which will be describe in later chapters. The next Chapter 3
describes the environment setup for system designing.

12http://reference.bitreactive.com

http://reference.bitreactive.com

Chapter3Environment Setup for Dynamic
Visualization System

The system architecture is designed to bring scalability and flexibility in real-time
geospatial data visualization. The main aim is to capture meaningful results accord-
ing to specific requirements for making smarter decision from the data collected.
The system architecture consists of four components listed below and this chapter
demonstrates the process to setup tools for building Python Standalone application.

1. Android Application
2. NTNU-QGIS Web- Application
3. Spatial Database
4. Python Standalone Application

3.1 System Blueprint for Flexible & Dynamic Visualization
of Spatiotemporal Data

The designing of system architecture is shown in Figure 3.1. The flow of the system
is shown by 8 yellow markings and each marking performs some function to create
dynamic visualization of data collected and for further deeper analysis. An overview
of the working of the system:

– In marking 1: Firstly, the data is gathered by using Android application
which was described in Section 2.4. Its not a restriction the data can be
collected from any device or application but in this work data from Android
app is considered.

– In marking 2: The next step is the second main component of the system,
a Web Application named "NTNU-QGIS" is created which is basically a re-
sponsive web interface to upload the data of any format from anywhere. This
application is compatible to run in any operating system. Its implementation
is detailed in the following Chapter 4 under Section 4.2.

17

18 3. ENVIRONMENT SETUP FOR DYNAMIC VISUALIZATION SYSTEM

– In marking 3: The data which is uploaded by user using a web-application
is stored directly in PostgreSQL database. The database created is named
"ntnu-qgis". It is the third important component in the system architecture
and its complete installation and working process is described in Chapter 5
and Chapter 6.

– In marking 4: It is the backbone of the whole system, development of Python
Standalone Application. It makes the connection with the database to
receive continuous data and also the web-application API is embedded. The
implementation of this application is elaborated in Chapter 7.

Figure 3.1: Blueprint of Dynamic Visualization System Architecture

– In marking 5 and marking 6: The Python Standalone Application requests
the database for vector data and to form vector layer for visualization respec-
tively.

– In marking 7 and marking 8: The application requests for web services for
providing with raster data and to create geographic base map view to place

3.2. SETTING UP DEVELOPMENT TOOLS FOR BUILDING PYTHON
STANDALONE APPLICATION 19

the data at correct locations respectively.

– The further involves various analysis processes by making a query on the data
which is demonstrated in Section 7.3.2.6.

3.2 Setting up Development Tools for Building Python
Standalone Application

The Python Standalone Application is the backbone of the entire system and
in GIS terms is the called a "PyQGIS" script. The standalone application means a
separate computer process which is not a part of any packed together software. This
PyQGIS script is a potable interactive GUI application written in python and uses
various different QGIS modules for producing GIS functionalities. That is why it is
named as PyQGIS.
In order to develop a robust PyQGIS script, a proper development environment is
a must. The next following sections describes the tools used for building this GUI-
standalone application for dynamic visualization of spatial data.

3.2.1 Setting up Python 2.x

Depending on which operating system is used, python might be pre-installed. The
main key point to be noted here is that QGIS is only compatible working with
Python version number 2.x. The installation of Python 2.7 version on Ubuntu
has been executed using following steps [Teca]:

– Step 1: Prerequisites Installation

$ sudo apt-get update
$ sudo apt-get install build-essential checkinstall
$ sudo apt-get install libreadline-gplv2-dev libncursesw5-dev
libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2
-dev

– Step 2: Download Python 2.7.14

$ cd /usr/src
$ sudo wget https://www.python.org/ftp/python/2.7.14/
Python-2.7.14.tgz

Extract the downloaded package:
$ sudo tar xzf Python-2.7.14.tgz

20 3. ENVIRONMENT SETUP FOR DYNAMIC VISUALIZATION SYSTEM

– Step 3: Commands to Compile Python Source code

$ cd Python-2.7.14
$ sudo ./configure --enable-optimizations
$ sudo make altinstall

– Step 4: Check the Python version before using QGIS

$ python2.7 -V

3.2.2 Setting up IDE or Editor

This is a matter of personal choice of using either IDE or an editor. For this project,
the best suitable was "PyDev". It is a free available IDE for the development of
python scripts. Benefit in using IDE as it helps in providing an ease to navigate
through the code, suggestion to errors and display classes, methods, and attributes
which makes the process easier during debugging. These two commands used to
install PyDev:

$ sudo apt-get install eclipse
$ sudo apt-get install eclipse-pydev

3.2.3 Setting up Qt/PyQt4

PyQt is one of the favoured cross-platform Python API interface to QT1, the C++
framework on which QGIS is build on. To produce some output GUI from our
PyQGIS script, we use PyQt to provide all the GUI elements as QGIS is based on
this QT framework.
There are different installation process for different operating systems. For Linux,
use package manager to install Qt designer and PyQt. It is important to install both
for the development of interactive user interface and for this script we installed PyQt
version 4. The setup commands as follows:

$ sudo apt-get update
$ sudo apt-get install python-qt4
$ sudo apt-get install libxml2-dev libxslt1-dev python-dev
$ sudo apt-get install python-lxml
$ sudo apt-get install xvfb

1is the GUI application development framework owned by Nokia

3.3. HOW TO MAKE PYTHON AND QGIS WORK TOGETHER? 21

3.2.4 Setting up Linux

The entire system is implemented on Linux Operating system. The instability
occurring in executing various QGIS Libraries on Windows and Mac OS was crashing
the script after few seconds of start which in a way affecting the whole system.
This was bringing stability and performance issues in visualization. Installation and
implementation of other tools were quick and robust after testing on Linux operating
system but stability was gained using only previous version of latest tools. This may
be due to a reason that QGIS is not flexible enough to work with new environments.

3.3 How to make Python and QGIS work together?

The QGIS is written in C++ and it encompass nearly over 4000 core classes that
together make up this GIS application. And among these around 75 % are Python
enabled by the use of SIP2. SIP tool helps to ease the process of creating Python
binding for C and C++ libraries. The "sip" files being compiled as a part of QGIS
to support and provide the Python interface to the C++ coded core classes [She14].
The main QGIS modules3 used for this application are:

– qgis.core (Core classes to use QGIS functionality in script)
– qgis.gui (Graphical User Interface classes for providing QGIS Map view)
– qgis.networkanalysis (classes for network analysis)
– qgis.analysis (classes for analysis related purposes)
– qgis.utils (classes for interacting with Map Layers)

2https://www.3cx.com/pbx/sip/
3https://qgis.org/api/2.0/

https://www.3cx.com/pbx/sip/
https://qgis.org/api/2.0/

Chapter4NTNU-QGIS Web Application &
QGIS Server Setup

This chapter is about the implementation of NTNU-QGIS web page and describes
its purpose in this project thesis . In addition, the brief introduction to QGIS Server
and its installation process along with its usage.

4.1 Apache server

The Apache, formally known as Apache HTTP Server, is a well-known free available,
open-source cross-platform web server. It was designed 23 years ago by Robert McCool
and initially released in 1995 under terms of Apache License 2.0 and, maintained
by Apache Software Foundation. The basic architecture of Apache web server is
shown in Figure 4.1 and the installation has been implemented referring to its online
resource https://httpd.apache.org. We will be using Apache as our web server for
this project work. As Apache is an establish and popular tool and commonly used as
a web server for the various academic project which makes its resources availability
easy.

Figure 4.1: This image shows a basic Apache Web Server Architecture, adopted
from source:https://guidespratiques.traduc.org/guides/vo/solrhe/images/

23

https://httpd.apache.org

24 4. NTNU-QGIS WEB APPLICATION & QGIS SERVER SETUP

When a web client (e.g. browser) makes an HTTP request for any webpage or content
from the Web Server, the Apache will receive this request and interprets the content.
By the word "interpret" here implies to determining whether the requested resource is
of static type e.g. a basic webpage stored in an HTTP file format, or an application
for example in the form of PHP file. The Apache will then determine the location
of the content based on the path specified in the HTTP Request and give back a
response to the browser as seen in Figure 4.2 [web].
The capabilities of web server are limited as it only waits for requests to arrive and
later execute those requests. The web server does not allow web-client to directly
interact with the application server and/or database and also with other resources. It
is responsible to serve only specific information as specified in the web-client request.

Figure 4.2: This image shows the basic interaction overview between a Web-client
with a Web Server

4.2 Implementation of QGIS-NTNU Web-Application

The basic idea behind creating this "NTNU-QGIS" Web Application is to provide a
graphical interface where with an ease the spatiotemporal data gathered by various
devices can use it to push the data directly to stored into a PostgreSQL/PostGIS
database created (refer Section 5.2.3). The further sections give a detail description
about this web application.

4.2.1 NTNU-QGIS Web-Application Setup

Instead of starting developing the web application from scratch, an open source
framework, CodeIgniter1 is used which provides an environment including the boil-
erplate code for making an interactive web application. The framework adopts a
Model View Controller (MVC)architecture which is described below Section 4.2.1.1.

1https://codeigniter.com

https://codeigniter.com

4.2. IMPLEMENTATION OF QGIS-NTNU WEB-APPLICATION 25

4.2.1.1 Framework Architecture: MVC model

Model View Controller (MVC) is a software architecture pattern, commonly used
for implementing user interfaces, this makes it a popular choice for architecting web
applications in major programming languages.
In general, it divides an application logic into three separate yet interconnecting parts,
contributing to modularity and an ease of collaboration and reuse. Moreover, it makes
applications more flexible and acceptable to iterations. A Figure 4.3 illustrates an
interaction diagram within MVC pattern. The most popular programming languages
which have MVC frameworks that are used for developing web applications include
C#, Java, PHP and we used PHP for this web application implementation [ew].

Figure 4.3: This image shows an interaction diagram within MVC (Model View
Controller) Model pattern, adopted from [ore]

The three components of a MVC Model are:

– The Model: It is the central component in the Model. It manages the logic,
data and controls the operation of an application.

– A View: It is the representation of the data output which can be a image,
diagram or a chart.

– The Controller: This part is responsible for receiving the input and trans-
forming it into set of commands for the Model and/or a View.

The interaction between the three components of a MVC Model:

– The Model: Itis basically accountable for managing the application data. It
receives the input from the Controller which was given by the user.

– A View: It is only responsible for specific format presentation of the Model.

26 4. NTNU-QGIS WEB APPLICATION & QGIS SERVER SETUP

– The Controller: it receives and responds to the user input, and also validates
it and then forwards the input to perform interaction with the Model.

The designing of this web application, NTNU-QGIS consists of collection of three
different web pages which are interlinked following MVC pattern. The three pages
include:

– Login Web Page
– Uploading file to QGIS Database Web Page
– Dashboard Web Page (Data loaded Preview Page)

4.2.1.2 Login- Web Page

The Log-in page provides access to only authorized user at the moment. New users
cannot sign-up. This is a temporary functional implementation for security reasons
in this project but this is not the limitation. Using the specified email and password,
a authorized user can log-in to the NTNU-QGIS web application. The view of the
log-in page is shown below in Figure 4.4.

Figure 4.4: The image shows the NTNU-QGIS web application- Login web page

4.2.1.3 Uploading file to QGIS Database Web Page

After the successful log-in comes the next page, Uploading file web page as shown in
Figure 4.5. The Upload interface where a user can upload spatiotemporal data in any
file format into "ntnu-qgis" database (refer Section 5.2.3). The page is user-friendly,
just by the mouse click on the "Browse" button will open the platform-dependent
Windows Explorer to easily navigate through the local files system.

4.2. IMPLEMENTATION OF QGIS-NTNU WEB-APPLICATION 27

Figure 4.5: The image shows the NTNU-QGIS web application- Uploading files
web page

4.2.1.4 Dashboard Web Page

The Dashboard web page shows the preview of the data uploaded by the user as
shown in Figure 4.6. Here without externally connecting separately to the database,
we can see and go through the uploaded data which is available inside the database at
that time. When the new file or old file is updated this page automatically refreshes
and display preview again of the current present data in the database. This play
a good role during analysis process which will be seen later in Chapter 7 under
Section 7.3.2.6.

Figure 4.6: The image shows the NTNU-QGIS web application- Dashboard web
page

As we have learned from the previous Chapter 2 that the QGIS application is available
in three various forms. The two forms which are Desktop and Browser we have
already discussed in detail (refer Section 2.3). A short description about the third
form that is QGIS server was done in Section 2.3.3. Now let us see in detail about
its implementation process along with its purpose.

28 4. NTNU-QGIS WEB APPLICATION & QGIS SERVER SETUP

4.3 QGIS Server

QGIS Server is an open source WMS 1.3, WFS 1.0.0 and WCS 1 1.1.1 implementation
that, in addition, implements advanced cartographic features for thematic mapping.
The QGIS Server is a FastCGI/CGI (Common Gateway Interface) application which
is written in C++ and works together with a web server (e.g. Apache) [sitb].
QGIS-Desktop is used as a back-end for the GIS logic and for map representation by
QGIS Server this makes the map visualization on both the application look similar
during presentation.

4.3.1 QGIS Server Setup

QGIS Server allows the created project from the Desktop version to be published
and can be visualized on browser using the Apache Server. In addition, it also
allows to configure the properties of Geographic Web services e.g. WMS/WFS.
Installation has been done only using the packages provided by QGIS development
organization [sitc, os] and the steps followed includes:

– First, adding the Debian QGIS repository:

$ cat /etc/apt/sources.list.d/debian-gis.list
deb http://qgis.org/debian trusty main
deb-src http://qgis.org/debian trusty main

$ # Add keys
$ sudo gpg --recv-key DD45F6C3
$ sudo gpg --export --armor DD45F6C3 | sudo apt-key add -

$ # Update package list
$ sudo apt-get update
$ sudo apt-get dist-upgrade

– Installing QGIS Server
After the successful installation of the packages, now installing QGIS Server
which should be used along with X server and without any interference with the
QGIS Desktop with both installed on the same platform. Both the application
work independently except using some common visualization modules.

$ sudo apt-get install qgis-server python-qgis

– QGIS Server- Executable
The QGIS Server executable defines the set of commands needed for its opera-
tion and, as it is a FastCGI/CGI (Common Gateway Interface) application, the

4.3. QGIS SERVER 29

QGIS Server executable is qgis_mapserv.fcgi. The installed location usually
is /usr/lib/cgi-bin/qgis_mapserv.fcgi but could be different purely based on
which operating system used.

– Create Apache Server Virtual Host
In order to access the QGIS server on the web browser, we require a web server
and we are using Apache as a web server here as described in Section 4.1.
We created "qgis.ntnu" as a virtual host.

– Testing the QGIS Server by making a HTTP Request
By writing the following command and getting this output below shows that
HTTP request for accessing QGIS Server works correctly. As we have not asked
for any map web services to create geographical map therefore, the output
shows Service unknown or unsupported.

$ curl http://qgis.ntnu/cgi-bin/qgis_mapserv.fcgi

Output:

<ServiceExceptionReport version="1.3.0"
xmlns="http://www.opengis.net/ogc">
<ServiceException code="Service configuration error">
Service unknown or unsupported</ServiceException>
</ServiceExceptionReport>

In the later section we will see the usage of this QGIS Server application.

4.3.2 How Web-Application interacts with QGIS Server

The QGIS Server uses the same visualization modules as used by the QGIS Desktop.
So the images produced by both are similar. From the Figure 4.7 below we can have
an idea about the connection process between NTNU-QGIS web application and
QGIS Server.

Due to the time constraint there was not enough time to incorporate this additional
feature on the NTNU-QGIS web-application but it is tested in other ways to produce
the similar result. When the HTTP request is made from the internet browser it is
send to the QGIS Server to access it. The QGIS Server request the various Web Map
server for the geographical map and later display the GIS features on the browser
containing the WMS services along with the data.

30 4. NTNU-QGIS WEB APPLICATION & QGIS SERVER SETUP

Figure 4.7: This figure is the outline of NTNU-QGIS Web-Application interacting
with QGIS Server [Liz]

A Web Map Service (WMS) is a standard protocol developed by the Open Geospatial
Consortium (OGC) in 1999 for serving georeferenced map images over the Internet.
These images are typically produced by a map server from data provided by a GIS
database. - Wikipedia

The map requests are made in two forms:

– WMS GetCapabilities Request
In this request, by pointing to any WMS web-client to the GetCapabilities
URL, the response receive is in the form of a XML document stating Web Map
Server´s Metadata as shown in Figure 4.8. In the Metadata information it
includes, the number of layers being served, the geographical coverage area,
the WMS version, etc. The Request is placed in this format:

http://qgis.ntnu/cgi-bin/qgis_mapserv.fcgi
?SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetCapabilities
&map=/path/to/qgis/projects/nameofproject.qgs

4.3. QGIS SERVER 31

Figure 4.8: This figure is the image of the QGIS Server response in the form of
XML Document to GetCapabilities HTTP Request

– WMS- GetMap Request
To have a response in the form of an image, instead of using GetCapabilities,
GetMap Request is made by web-client to the QGIS Server as shown in
Figure 4.9. The image display is static visualization of data and cannot be
modified.

http://qgis.ntnu/cgi-bin/qgis_mapserv.fcgi
?MAP=/path/to/qgis/projects/nameofproject.qgs
&SERVICE=WMS
&VERSION=1.3.0
&REQUEST=GetMap
&BBOX=-432786,4372992,3358959,7513746
&SRS=EPSG:3857
&WIDTH=665
&HEIGHT=551
&LAYERS=jonsvatnet
&FORMAT=image/jpeg

32 4. NTNU-QGIS WEB APPLICATION & QGIS SERVER SETUP

Figure 4.9: This figure is the Static image of the QGIS Server response to GetMap
HTTP Request

In the above two requests the command line stating,
"?MAP=/path/to/qgis/projects/nameofproject.qgs", this implies to the already cre-
ated and stored project. This makes QGIS Server capable of producing only "Static"
images meaning the data represented cannot be updated automatically. Due to this
reason it is not suitable to use for this project where the major concern is creating
flexible and dynamic visualization of spatiotemporal data. The only advantage of
using QGIS Server over QGIS Desktop is that it can produce static visualization to
view and analyze from anywhere on the globe and not restricted to the extent of the
local platform. For achieving the dynamic visualization a standalone application is
developed which is further described in detail in Chapter 7.

4.4 Brief Introduction to NTNU-QGIS Web API

A Web API stand for an Application Programming Interface for either a web server or
a web browser. It is a web development concept, usually limited to a web application’s
client-side (including any web frameworks being used), and thus usually does not
include web server or browser implementation details unless publicly accessible by a
remote web application. - Wikipedia

The diagram Figure 4.10 below gives a brief illustration about the working of the
central web API.

In addition to the above development of NTNU-QGIS web application incorporating
three web pages, the web application also provides an Web API interface to all the
external devices (Android/ios) which contain this application. This API gathers

4.5. SUMMARY 33

Figure 4.10: This image shows the central Web API Architecture holding all the
business logic, adopted from [Mic]

all the data from its users and send it to the system. Instead of authorizing an
user and doing log-in, simply an authorized device can directly upload data into
the PostgreSQL database table for monitoring purposes. Data will be specific to
particular device which is helpful to track details of an individual device.

4.5 Summary

The main purpose for developing this web application was to give an ease to the users
to upload the spatiotemporal data in any file format, which can easily be pushed
into created PostgreSQL database described in next Chapter 5. The updated file
can be anytime re-uploaded which will automatically update the data stored inside
the database. The web application is platform independent and consists of collection
of responsive web pages therefore it is suitable for any device to open it and upload
the data in whichever format.
The implementation of QGIS Server was an addition to provide an additional feature
to the system but its static limitation makes it unsuitable to make further development
using it with respect to this project. In the future work, the development of web API
support is useful for providing direct way to connect with external devices.

Chapter5Spatial Database Setup

There is an innumerable definition for data but for our basic understanding we can
say: A data is an information which can be in the form of images, audio/video clips,
software programs, text documents, etc.

A database is basically a collection of various sort of data which is organized in a
manner that make simple and easy access to the large data sets. Most databases
contain data stored in the form of tables with different attributes information.

On the other hand, the Database-Management System (DBMS) is a software
application which interacts with various other application, end-users and also with the
database itself. A DBMS serves as an interface between the applications or end-users
and the database facilitating the easy managing, storing, editing and analyzing of
the data [Tecb].

Figure 5.1: A Basic Architecture of Database System

Using a DBMS provides not only storage and easy data accessibility but also advan-
tageous facilities like data backup, robust data integrity and data security which is

35

36 5. SPATIAL DATABASE SETUP

one of the topmost concern for everyone to protect their information. Some most
widely used DBMS are PostgreSQL, MySQL, Microsoft Access, SQL Server, Oracle.

5.1 Why PostgreSQL?

PostgreSQL is a powerful and free open source Object-Relational Database Man-
agement System (ORDBMS) which is released under a BSD-style license1. It has
earned a strong reputation for providing reliability, data integrity, and its proven
architecture to facilitate with performant and innovative solutions. The standard
Structured Query Language (SQL) is the interface language used by PostgreSQL
which allows storing, edit/update and to query the stored data inside the tables of
the database. In addition to use, it also extends the capabilities of SQL language by
combining it with many robust feature sets that not only safely store but also safely
scale the most complicated data workloads [posb].

For this thesis, considering the formation of Spatial databases, the PostgreSQL is best
suitable DBMS because it was one of the first databases to adopt the spatial databases.
Being one of the first and extending its capabilities for easy handling of spatial objects
by doing a major implementation of spatial functions by using PostGIS which is
highly optimized for spatial queries. The further chapter describe in detail about
PostGIS in Section 5.3.1 and about Spatial databases refer Section 2.1.2.

5.2 PostgreSQL Setup

Here, in this section we will go through all the process needed to implement our
database including creation of tables and push the data into it which was gathered
for visualization. As mentioned in Section 3.2.4, all the installation of the software is
done under Ubuntu [Qgib].

5.2.1 PostgreSQL Installation

We need to first install the PostgreSQL by executing the following command on the
terminal. The version of the PostgreSQL should be 9.x or latest. The development
of the system has been done using Postgres version 9.6.

$ sudo apt-get install postgresql-9.6

5.2.2 Creating a Postgres Database User

After the successful installation of PostgreSQL, we need to become a Postgres user
in order to use the DBMS.

1it is commonly called as a permissive software license, which is a free software license with
keeping nominal requirements on how the software be redistributed.

5.2. POSTGRESQL SETUP 37

– This command below is used to become Postgres User.

$ sudo su - postgres

– After finishing the first step, it will take you to the postgres user´s bash prompt.
The below command is used to create a own database user account and later
enter the password when prompted which is required for security purposes. For
this thesis, Database User Account : soma is created, as the username
should be matched with the unix-login name which will help in automatic
authentication when a user is logged in.

$ createuser -d -E -i -l -P -r -s soma

The -d -E -i -l -P -r -s options are the various roles that can be assigned
to the database user. By using this we can secure our database from other
users who have access to the database by limiting there role by giving specific
permission on using the data inside the database. The Figure 5.2 below gives
details about various options a database user can be granted in a PostgreSQL
database system.

Figure 5.2: The Various PostgreSQL Permissions to Database User [Qgia]

– Verify the created new user account by running the following command below
on the postgres user´s bash prompt and the Figure 5.3 should be resulted.

$ psql -l

5.2.3 Creating a new Database

As mention before in the introduction of this chapter, the database is used for storing,
creating/updating and analyzing the data. So we need a database for our system,
which can store or create data for our project. This data in the PostgreSQL will be
used further to analyze through visualization techniques. The visualization technique

38 5. SPATIAL DATABASE SETUP

Figure 5.3: The image shows the screenshot image of Verification of becoming
Postgres User

implies here as the various GIS technologies available but in this project we will be
working with QGIS as described in Section 2.3. The process of creating new database
are:

– The new database is created using createdb command. The below command
should be run on the postgres bash prompt and later verify the existence of
the created database under soma which is Postgres user account as shown in
the Figure 5.4.
Created database name: ntnu-qgis

$ createdb ntnu-qgis -O soma
$ psql -l

Figure 5.4: Creation of ntnu-qgis Database

5.2.4 Creating a Data Table

As we are dealing with Norwegian road traffic data which have information about
car objects containing geographic coordinates as well as cellular network information.

5.2. POSTGRESQL SETUP 39

So we need to create a table which will store all these attributes information as
presented in user input file inside a database.

Under Section 2.4, the Android application generates records containing various car
attributes information. After a particular time interval, a new position is captured by
the application and added as a new record in the data. When the application finishes
capturing information related to a particular tour, the entire data captured by the
device is converted to a Comma Separated Values (CSV) file format. Henceforth, it is
pushed into the database table using the NTNU-QGIS webpage (refer Section 4.2.1.3).

There are two ways of making a table either using SQL in postgres bash prompt or
by using the created postgres GUI as later described in Section 5.2.4.2.

5.2.4.1 Making a table using Postgres-Bash Prompt

– Firstly, connect to the created database ntnu-qgis by typing the following
command:

$ psql ntnu-qgis

– Creating a table using create table command. For this project, table of
name route is created and the table schema2 are the attributes according to
the header field in user input file. The view of the table schema is shown in
Figure 5.5 below.

Figure 5.5: The view of route table schema

2is the organization of data as how it is logically structured inside the database meaning a
column which is linked to one particular data-type

40 5. SPATIAL DATABASE SETUP

5.2.4.2 Alternate option to create table : Postgres GUI

Everyone is not comfortable in creating a table using SQL, so the best alternate way
to create and manage data inside the table is using postgre user interface. After
setting up the Apache web server as mention in Section 4.1, we can open Postgre-GUI
from the browser to create, alter or manage the tables much easily. Run the following
command to install it:

$ psql apt-get install phppgadmin

The thing which is important here to notice is that, depending on operating system´s
version the command is also modified by mentioning the php version while using
the command. The Figure 5.6 below gives the view of the postgreSQL GUI called
pgAdmin which is however a simpler and quicker way to create, edit, drop tables by
click of a mouse. The previous created table implemented from bash prompt using
SQL Section 5.2.4.1 can be seen on the GUI.

Figure 5.6: The view of pgAdmin GUI on Apache- Localhost

5.3 PostGIS: Creating Spatiotemporal Databases

Conventionally, databases were designed to organize and structure data of any format.
However, as the size of the database is increasing and to optimize database in the
Geospatial domain we use Spatial Databases. In order words, the Spatial database
arises when it has to manages and deal with data which is collected across space as
well as time as previously described under Section 2.1.2.

Using Spatial Databases allows the storing of the geometries of records refer to
as Geospatial objects inside a Database. In addition, it provides functionality
to retrieve and query the records with improved response time on these stored
heavy geometries by creating light-weight spatial index (similar to hashMaps in Java

5.3. POSTGIS: CREATING SPATIOTEMPORAL DATABASES 41

domain). These Geometries can be of different shapes in the form of points, line or
polygons and the requirements evolve as the size of the data increases depending
on the scenario where Spatial Database can limit the potential use by making a
constraint.

The one most prominent example of spatial databases are the Satellite images. As we
know spatial objects are complex (Section 2.1.3), so to extract the spatial information
out from the satellite images, it needs to be processed on the spatial frame of reference
where 3D images are converted to 2D images will be described in more detail later
under Section 6.2. However, another most prominent example of spatial databases
are Maps. Maps objects are also stored in the Spatial databases [Spr].

This forthcoming sections provides a detail description on:

– Section 5.3.1 : What is PostGIS?
– Section 5.3.2 : Setting Up PostGIS
– Section 5.3.3 : Testing PostGIS Functionality

5.3.1 What is PostGIS?

PostGIS extends PostgreSQL with robust spatial database management capabili-
ties which allows Geographic Information System (GIS) objects to be stored in the
database [posa] [Bou].

PostGIS is freely available, and fairly an Open Geospatial Consortium (OGC)
compliant software and being used as an extender for PostgreSQL, which is a form
of Object-Relational Database Management System (ORDBMS). While PostGIS is
a free and open source software, it is used on both GIS sectors, public (e.g., QGIS)
and commercial (e.g., ArcGIS). In PostgreSQL with this PostGIS extension brings
the most comprehensive geo-functionalities with over one thousand in-built spatial
functions (Section 6.2) which enhances the handling of spatial data within relational
database structure [Alt].

Advantageous Features for PostGIS:

– The language of PostGIS is similar to SQL which is the also an common inter-
face language used by PostgreSQL which allows performing complex queries
and spatial analysis on the spatial data with an ease.

– It supports different types of geometries like Lines, Points, Polygons, LineStrings,
etc.

42 5. SPATIAL DATABASE SETUP

– PostGIS supports spatial indexes3 for making fast spatial queries on the big
databases.

– As the implementation of PostGIS is based on light-weight indexes and ge-
ometries which optimizes the use of disk memory for storing heavy data.

– The analytical and various processing function are simply performed within
PostGIS on the vector and raster data allowing an easy generation of maps
view which have the desired analytical output.

5.3.2 Setting Up PostGIS

Implementation of PostGIS functionality will provide the access to the spatial
functions from within PostgreSQL.

5.3.2.1 Installation of PostGIS

Run the following command on the terminal using the already installed version of
PostgreSQL.

$ sudo apt-get install postgis
$ sudo apt-get install postgresql-9.6-postgis

5.3.2.2 Implementation of PostGIS on ntnu-qgis Database

When the PostGIS is installed we need to configure our database to use the extensions
provided by the PostGIS. The figure below shows the configuration of PostGIS on our
database ntnu-qgis which makes it geo-spatially enabled. In the upcoming sections
it will be more clear about what does PostGIS offer and why its a requirement in
spatial domain.

Figure 5.7: Configuration of PostGIS on ntnu-qgis Database

5.3.3 Testing PostGIS Functionality

PostGIS basically is a collection of in-built database functions which extends the
core capabilities of PostgreSQL so that it can store, retrieve, query and alter spatial

3is a type of extended light-weight index which allows to index a spatial column, to improve
performance on spatial query over spatial feature

5.3. POSTGIS: CREATING SPATIOTEMPORAL DATABASES 43

data. In order to make this happen, various different functions are installed into the
database [qgie].
Now as our database "ntnu-qgis" is geo-spatially enabled which means that our
database has the functionality to create the various forms of spatial objects on the
map according to the various records present in the data gathered.

In this thesis, we will be only considering Point Function as we are dealing with
coordinate geometries acquired from road traffic data where each records in data
implies to Point car object. Run this below command from the Postgres bash prompt
after connecting to "ntnu-qgis" database which will show all the functions related to
Point geometries as shown in Figure 5.8:

\df *point*

Figure 5.8: PostGIS Point function on ntnu-qgis Database

44 5. SPATIAL DATABASE SETUP

There will be list of other available functions related to Point geometry but we test
using command st_pointfromtext [qgic]. After executing the command, it will
show the result as depicted in Figure 5.9 of the testing of PostGIS functionality
based on text based "Point" function. The resulted row is in the OGC format called
as Well-Known Binary (WKB) described in next chapter under Section 6.2:

select st_pointfromtext(‘POINT(1 1)’);

Figure 5.9: PostGIS Point function testing at Position 1,1

Here, the main purpose of testing Point function is to demonstrate the complex
structure of these spatial objects. This text (record) contained in the data is converted
into spatial form to make it in a QGIS understandable format. Later, this is used in
visualization process to present these complex form as a Point shape objects displayed
on Maps in order to make a humanly understandable presentation.

– The command states that, a visual point on the map is created at position 1,1
using POINT (1,1) and assuming standard coordinate projection EPSG:43264.
(The EPSG stands for European Petroleum Survey Group and in detail
described in next Section 6.2.)

– Here position 1,1 implied to geometric fields, x and y values which in spatial
terms means longitude and latitude respectively to located accurately over
maps. (To understand how it is performed refer Section 6.1)

– The Figure 5.10 below is a reference example to bring some clarity on how this
point function is used in real life to see positioning of objects on the map-view.

4http://www.epsg.org

5.3. POSTGIS: CREATING SPATIOTEMPORAL DATABASES 45

Figure 5.10: An example reference image showing how PostGIS- Point function
is used to display location using data records. source: mrbool.com/how-to-track-
users-registration-location-in-g oogle-maps/33562

The next Section 6 gives the detail description on, how the point objects accurately
placed over various geographical maps just with position coordinates and visualized
over flat surface like maps.

Chapter6Spatial Reference System in
Visualization

In addition to the various PostGIS functions, the extension also provide with a
collection of Spatial Reference System (SRS) definitions which are defined by the
European Petroleum Survey Group (EPSG) which helps in the Coordinate Reference
System (CRS) conversions. These SRS definitions are stored in our database after
installation of PostGIS. But what is SRS? and how this work? In the previous
Chapter 5 we have seen how the spatial function "Point" is used to create a point
object using the position 1,1 and projection ESPG: 84. This chapter gives a better
understanding on how the coordinates system is used by PostGIS over PostgreSQL
and, also how various forms of geometries are formed using values from our spatial
dataset which are accuracy visualized on the map surface.

This chapter comprises of three sections:

– Section 6.1 : What is Spatial Reference System (SRS) or Coordinate
Reference Systems (CRS)?

– Section 6.2 : Implementation of Storing and Representation of Geo-
graphical Features in Database

– Section 6.3 : Summary

6.1 What is Spatial Reference System (SRS) or Coordinate
Reference Systems (CRS)?

A spatial reference system (SRS) or coordinate reference system (CRS) is a coordinate-
based local, regional or global system used to locate geographical entities. – Wikipedia

When any object has to be located we often refer to a "Coordinate System". This
system uses X and Y values (and sometimes Z values) in order to specify location of
the objects within a 2D or 3D space domain as shown in Figure 6.1.

47

48 6. SPATIAL REFERENCE SYSTEM IN VISUALIZATION

Figure 6.1: This image shows a basic Coordinate System known as Cartesian
system.Source: https://svn.osgeo.org/qgis/docs/

We live in a 3-Dimensional plane, Earth which is considered as oblate spheroid, or
oblate ellipsoid in shape. To locate any object accurately on the Earth which is an
approximately a "round" figure, we need to follow a coordinate system that adapts
to the shape of the Earth. When we define map on a paper or any flat surface, we
move from 3-Dimensional space (Globe) to a 2-Dimensional space, this conversion in
geo-spatial domain is define by CRS. The components of CRS is used to define the
translation between the data that exists in a 3-Dimensional space (a round-Earth) to
on a "Flattened" 2-Dimensional Coordinate system [oCa]. The reference Figure 6.2
gives an overview of how the center of the Earth, called Origin is transformed and
placed from the round-3D plane onto a flat map surface.

Figure 6.2: A CRS defined conversion of location on a 3-Dimensional plane to a
2-Dimensional plane.Source: http://ayresriverblog.com

Some key components of CRS:

– Coordinate System: The X,Y or Z grid to define the location of data in
space.

– Horizontal and vertical units: These units are used to define the grid along
the x,y or z axes.

6.1. WHAT IS SPATIAL REFERENCE SYSTEM (SRS) OR COORDINATE
REFERENCE SYSTEMS (CRS)? 49

– Projection Information: This is a mathematical equation used for flattening
the objects which exists on a 3-Dimensional plane (e.g. Earth), so that they
can be viewed on a flat surface (paper maps, QGIS map canvas, etc.)

– Datum: This is a modeled version of the Earth shape that defines the origin
for the placing of coordinate system in space.

There are two types of Coordinate Reference System (CRS) as shown in Figure 6.3:

Figure 6.3: The two types of CRS

– 1) Geographic Coordinate Systems:
This coordinate systems basically stretches to the extend of the entire globe
(e.g. Latitude, Longitude). Below Figure 6.4 is a reference example showing the
three coordinate locations on a 2-Dimensional Map using one of the CRS com-
ponent "Coordinate System". (Note: the UNITS are in Decimal Degrees
(Latitude/Longitude):

Oslo, Norway: 59.95001, 10.75003
Boulder, Colorado: 40.02744, -105.25195
Mallorca, Spain: 39.61674, 2.983333

– 2) Projected Coordinate Systems: This coordinate system is localized to
a particular region (e.g. UTM, State Plane) on the globe to minimize the
visual distortion. This is further described in next Section 6.1.1

6.1.1 Projected Coordinate Systems

From above section, one of the type of CRS, Geographic Coordinate Systems
are mainly used for creating global maps as it span over the entire globe using
Latitude/Longitude. However, when it comes to quantifying scale or distance they
are prone to errors. To overcome this limitation, various spatial projections have
been developed gradually that can be used to more precisely define and capture
shape, scale/distance and area of any spatial objects on the map [oCc].

This coordinate system uses spatial projection to minimize the distortion to provide
more accuracy in locating objects by optimizing the relative shape and size of a

50 6. SPATIAL REFERENCE SYSTEM IN VISUALIZATION

Figure 6.4: A CRS defined three Coordinate locations (Oslo, Boulder and Mallorca)
on a 2D Map.Source: https://www.earthdatascience.org/

particular region on the globe. By the word "region" it implies to using either
Universal Transverse Mercator (UTM), Robinson or, State plane. Spatial projection
refers to as the mathematical calculations which are performed to translate the
data existed in the 3-D plane onto a 2-D plane by flatten the data. During this
conversion process to provide result in visualization format on the surface map, some
area is expanded and some are compressed. The Figure 6.5 show the translation
of 3-dimensional globe onto a flat surface 2-Dimensional map, demonstrating the
various projections performed eventually bring changes in the appearance of the
round figure.

Note: The Universal Transverse Mercator (UTM) system is normally used
for spatial projection coordinate system. UTM divided the entire globe into region
(North and South), and Zones which are numbered 0-60 which is equivalent to
Longitude. The default origin (0,0) and region for each UTM zone is located at the
intersection of the Equator.

To rephrase Datum again in the coordinate systems, it describes the vertical and
the horizontal reference point to optimize the scale on the Map.

– The Vertical Datum, states the relationship between the Earth centre and a
specific "ellipsoid" which is refer to as the top of the earth’s surface.

– The Horizontal Datum defines the Longitude.

6.1. WHAT IS SPATIAL REFERENCE SYSTEM (SRS) OR COORDINATE
REFERENCE SYSTEMS (CRS)? 51

Figure 6.5: A reference figure with CRS translation of 3-Dimensional Globe to a
2-Dimensional flat surface Map. Source: CA Furuti, progonos.com/furuti

– The datum also defines the origin (0,0) the "center of Earth" of a coordinate
system.

6.1.2 Coordinate Reference System (CRS)- Formats

To store a CRS information there exists numerous formats. The commonly used are
Well-Known Text (WKT), Proj4 and EPSG. Our GIS tool- QGIS gathers all the
CRS information after certain translations which is in the form of string. The string
contains all of the CRS components which QGIS needs for accurate projections. Each
components is specifies using a "+" sign [oCb].

In this project, we will be using European Petroleum Survey Group (EPSG) format
for CRS. The EPSG codes are 4-5 digit number code that represents a particular CRS
information. List of ESPG code are available on http://spatialreference.org/ref/epsg/.

An example of an EPSG string:

proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

When the string is broken down into individual components of CRS, it is defined as
follows:

– +proj=longlat: the data are in a geographic coordinate system (Latitude
and Longitude)

http://spatialreference.org/ref/epsg/

52 6. SPATIAL REFERENCE SYSTEM IN VISUALIZATION

– +ellps=WGS84: the ellipsoid (refers to as how the earth’s roundness is
determined), which is WGS84 for this data.

– datum= WGS84: the default value of datum is taken, WGS 84 refer as
origin (0,0)

6.2 Implementation of Storing and Representation of
Geographical Features in Database

As from previous sections we have learned how the spatial dataset are located
accurately on the flat Map surface by forming a string using CRS components. Here,
we see its implementation on our database. In order words, the database created
contains data stored in the form records in a table which only saves the data loaded
by the users file. This table has no spatial field configured yet which can be used to
draw spatial objects to view on the map.

This section gives will describe the various forms of geometries exists and how it is
configured into our "ntnu-qgis" database, so that we can plot the spatial objects using
the information gathered and visualize precisely in order to fetch out meaningful
information when data is queried. Before going into the detail we should know about
OGC which stands for Open Geospatial Consortium.

The OGC’s Simple feature model defines a Spatial Reference System using WKT,
and the support has been implemented using several standards-based Geographic
Information System (GIS) e.g. QGIS, ArcGIS.

The Open Geospatial Consortium (OGC), an international voluntary consensus
standards organization, originated in 1994. In the OGC, more than 370+ commer-
cial, governmental, nonprofit and research organizations worldwide collaborate in an
open consensus process encouraging development and implementation of standards
for geospatial content and services, GIS data processing and data sharing. - Wikipedia

6.2.1 Simple Feature Model for SQL

The Simple Feature for SQL (SFS) Model is a non-topological way for storing and
defining function for accessing, creating and operating the geospatial data in a
database. The Figure 6.6 show the representation model defining various geospatial
objects like Point, Lines, Polygons etc. from spatial reference system [qgid].

6.2. IMPLEMENTATION OF STORING AND REPRESENTATION OF
GEOGRAPHICAL FEATURES IN DATABASE 53

Figure 6.6: A Simple Feature for SQL (SFS) Model defining various geo-spatial
data from Point, Lines, and Polygons

Firstly, lets see how the schema appear for spatial reference system in a database.
Type the following command and it will result something like as shown in Figure 6.7:

\d spatial_ref_sys

As per the schema in the figure, we see there are four columns holding various
details about various projections. The srid columns contains the various European
Petroleum Survey Group (EPSG) codes while the proj4text column is the complete
CRS strings including its various components. By default, spatial reference check is
implemented where srid cannot be NULL otherwise without it spatial objects will
not be given any projection to be visible over the map.

54 6. SPATIAL REFERENCE SYSTEM IN VISUALIZATION

Figure 6.7: A schema of Spatial Reference System Table

We can also see the entire table in Table 6.1 with all the possible reference system
available with the SRID string used for projection during spatial visualization.

Table 6.1: A table contain various SRID

In this thesis, as we are designing a system to visualize spatiotemporal data in real-
time so the best approach to locate the object in the dataset is by using Coordinate
Reference System. As each CRS is optimized to give the best representation of
the shape, scale and area of features in a data-set. The coordinate system includes
Latitude and Longitude, units are Decimal Degrees and the Datum used is
WGS841.

1is a standard U.S. Department of Defense definition created in 1984 for the use in geodesy,
cartography and for navigation(including GPS)

6.2. IMPLEMENTATION OF STORING AND REPRESENTATION OF
GEOGRAPHICAL FEATURES IN DATABASE 55

The World Geodetic System (WGS) 84 is frequently used Datum and referred to as
"The origin" which is the center of the Earth..

To see how this work, we can do a quick check on one of the SRID which we are
interested in using for this work is EPSG:4326 - the geographic lat/lon reference
system using the WGS 84 ellipsoid. Run the following SQL query command below
and it will result something like in Figure 6.8:

select * from spatial_ref_sys where srid=4326;

A Spatial Reference System Identifier (SRID) is a unique value used to unambiguously
identify projected, unprojected, and local spatial coordinate system definitions. These
coordinate systems form the heart of all GIS applications. – Wikipedia

Figure 6.8: EPSG:4326 - the geographic lat/lon reference system using the WGS
84 ellipsoid

6.2.2 Adding spatial geometry field to table

The created "route" table as mention in Section 5.2.4.1, is a simple PostgreSQL table
but as we have installed additional functionality i.e. PostGIS which facilitates to
make spatial geometries to be stored into a database. We have discussed two ways of
creating and modifying the data fields inside a database either by using PostgreSQL
bash shell prompt or by pgAdmin GUI Section 5.2.4.

56 6. SPATIAL REFERENCE SYSTEM IN VISUALIZATION

The Figure 6.9 shows the addition of geometry field using SQL bash prompt which
later will be seen on pgAdmin GUI.

Figure 6.9: A SQL command to Alter "route" table by adding Geomtery field

As for our project, we are only interested in one type of geometry "Point", so we add
a constraint on our table that it will only accept Point geometries from data-set. The
Figure 6.10 below show how to perform this Point constraint and the only advantage
of doing this is to narrow the dataset entry to the table for better systematic storage
of same type of data during visualization which will in way increase performance.
The Figure 6.11 below shows how the addition of geometry field in the table "route"
with constraint appear.

Figure 6.10: Performing Point Constraint on table "route"

Figure 6.11: An addition of Geometry field with "Point" constraint on table "route"

After performing the above steps, now when the data of any format is uploaded using
uploading web page, the database will quickly add the coordinate system columns
and convert in into spatial format and place records in the "the_geom" column
created for this purpose. More specifically, because of the implementation of PostGIS
functionality, the coordinate fields (Latitude and Longitude) are directly converted

6.2. IMPLEMENTATION OF STORING AND REPRESENTATION OF
GEOGRAPHICAL FEATURES IN DATABASE 57

to a OGC format using SRID:ESPG 4326. There was a limitation in QGIS desktop
where everything has to be done manually but now the user when using this database
will set everything automatically to create spatial objects which can be visualized on
the Map.

To bring more clarity, The Figure 6.12 below shows the cellular road traffic data
uploaded by user with latitude and longitude values in the table "route".

Figure 6.12: A Geometry fields with Latitude and Longitude object values

The next Figure 6.13 shows the conversion of latitude and longitude coordinate
fields automatically by the database now in OGC format by considering all the CRS
components and placing under "the_geom" field of the route table. If this is not
evaluated correctly by the system there will no meaningful output on the map. By
looking at the OGC format of spatial objects, we can see its complexity for human to
understand with bare eyes. This is where GIS techniques helps so in order to make
it human understandable and presentable.

Figure 6.13: A PostgreSQL GUI having Spatial object field "the_geom" in table
"route"

58 6. SPATIAL REFERENCE SYSTEM IN VISUALIZATION

6.3 Summary

The creation of the database using PostgreSQL was made enabled to store and handle
spatial object by implementing PostGIS functionalities to extend its core capabilities.
The PostGIS documentation providing by QGIS Development Team [ug] is referred
for installing PostGIS over PostgreSQL. When the data is uploaded directly by the
users using the designed NTNU-QGIS webpage, the information contained in the file
as a collection of road traffic records updated after a particular interval of time is
stored directly in the "route" table. The Postgres GUI can be used to view and alter
the table if required. The database is designed in a way that it automatically make
use of Spatial Reference System (SRS) for providing accuracy in locating spatial
Point objects on the maps. As seen the Open Geospatial Consortium (OGC) format
is a complex string of numbers to understand but visualization makes is simpler.
The GIS technology, QGIS which we are using in our system development, supports
around 2,700 known CRS definitions. The CRS definitions available is defined by
the Institut Geographique National de France (IGNF) and the European Petroleum
Survey Group (EPSG) [qgif].

Chapter7Design Implementation of Dynamic
Visualization of Spatiotemporal

Data using PyQGIS

The chapter gives detailed description about implementation of GUI Application
using PyQGIS. It is the backbone of the entire system design for flexible and dynamic
visualization of spatiotemporal data. The PyQGIS-GUI is developed using python
and PyQt4, while to visualize various spatial data on Map view is performed using
various QGISmodules. The data is stored on PostgreSQL/PostGIS as described in
Section 6.2.2 and so the analysis process is performed on the data by making SQL
queries and later presented in the Map-View. The PyQT4 acts as binding for python
and QGIS Modules.

7.1 PyQGIS- Application Overview

Figure 7.1: This figure will be referenced as Python Standalone Application
Overview, some images adopted from [ESR]

59

60 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

7.2 Blueprint of Standalone Script using PyQGIS

In this section, we will see how the various GIS functionalities have been encompass
in the standalone script using PyQGIS (Section 3.2). The main idea behind this is to
bring flexibility and scalability for the real-time visualization of various spatial data.
Moreover, make analysis and bring meaningful conclusions in practical developments.

7.2.1 Skeleton of PyQGIS Script

The logic behind creating the PyQGIS script is to incorporate both static and
dynamicity in the visualization and analysis process of spatiotemporal data as shown
in Figure 7.2. This application is the backbone of the entire system architecture
which was outlined in Section 3.1 and, additionally it offers direct connectivity with
PostgreSQL/PostGIS and NTNU-QGIS web-application.

Figure 7.2: This figure shows Logic behind Flexible and Dynamic Visualization of
Spatiotemporal-Data in PyQGIS Application

7.2. BLUEPRINT OF STANDALONE SCRIPT USING PYQGIS 61

7.2.2 First GUI View of PyQGIS Application

The execution of the application has NTNU-logo as the start-icon followed by the
GUI display named as Visualization of GIS Norge Data consisting of different
features including access to various QGIS features for creating and interacting with
the map as shown in Figure 7.3. Hovering over the options will display a short
description of the icon´s purpose. The following chapter give a working of the entire
application and how it was implemented. The application GUI consists of:

– First Top-Level: Menu Bar
◦ Menu Option: File
◦ Menu Option: About

– Second Middle-Level: ToolBars
◦ Web Option: Connect to NTNU-QGIS Webpage
◦ Web Option: Connect to PostgreSQL/PostGIS Database GUI
◦ QGIS Option: Add WMS Map
◦ QGIS Option: Create Vector Layer
◦ QGIS Option: Where Am I ??
◦ QGIS Option: Select Vector Layer
◦ QGIS Option: Make a deeper Analysis
◦ QGIS Option: Connect to QGIS Server

– Third Bottom-Level: Buttons
◦ Progress Bar: Download Map
◦ Button: Quit Application Button

Figure 7.3: This figure shows PyQGIS- GUI View, the background Google map im-
age adopted from source: http://mirafra.com/tripsy/2214585-google-maps-wallpaper/

62 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

The Menu option About, this feature gives brief explanation about the motivation
behind the Visualization of GIS Norge Data application development. The
illustration of the About feature in Figure 7.4 below.

Figure 7.4: This figure shows "About"-Menu Bar Option, providing description of
the PyQGIS Application

7.3 Implementation of PyQGIS Application

This PyQGIS application when executed a GUI appears as seen in Figure 7.3. This
application is designed to perform both "Static" and "Dynamic" Visualization of
spatiotemporal data stored on local machine and/or data captured from "ntnu-qgis"
database (Section 5.2.3) respectively.

7.3.1 Static Visualization & Analysis

The "Static" word here implied to the visualization which is not changing automatically.
Now when the menu-option File is clicked, there is a description stating "Add a CSV
file" as seen in Figure 7.5. This when further clicked the local platform´s file system
window pop-up which provides an ease in navigating to select the spatiotemporal
data file in CSV1 format. Here is the limitation using this option, with respect to
this thesis it is build to accept only one defined file format because the Android
device (Section 2.4) provides data stored only in CSV file format, but this can be
expanding later including more formats to the code with future needs in static data
visualization.

1comma-separated values file, which allow the data to be stored in a tabular format

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 63

Figure 7.5: This figure shows "File"-Menu Bar Option, providing access to local
computer file system to upload Data file

The flow diagram below in Figure 7.6 shows the toolbar features responsible for
"Static" visualization and its analysis in yellow rectangular boxes (File and Select
Vector Layer). In addition, also shows the further processes. The Static visualization
of Spatiotemporal data process are categorized into two flows:

– Flow 1: Static Data Visualization Process
– Flow 2: Analysis: Specific Patterns in Spatiotemporal Data

Figure 7.6: This figure shows Flow Diagram for "Static Visualization and its
Analysis"

7.3.1.1 Static Data Visualization Process

There are three processes for creating visualization under this flow 1:

– Spatiotemporal-Data File Selection
In this project, the CSV file contains various position coordinates along with
cellular road traffic information of the car object as shown in Table 7.1. The
spatial data information is stored under header Longitude, Latitude, Altitude
while the other details about the car features encompassing cellular details
in presents under header categories as Communication Protocol, RTD, Signal
Strength, Speed, Accuracy, Bearing, Total number of satellites and Satellites
in fix. Any Spatiotemporal CSV file can be used in this static part of the
application.

64 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

Table 7.1: An Attribute table containing all Car Features saved in a CSV file

– Creation of Basemap Layer (WMS Layer)
This is the first layer created at the bottom called the basemap layer. The
formation of this layer is made using raster data as described Section 2.1.3 and
is displayed by requesting WMS services. The logic for developing this layer
is same as used by QGIS server Section 4.3.2 and logic implementation using
PyQGIS approach is illustrated in later Section 7.3.2.3. This layer acts as a
reference to position car objects over the map.

– Creating Vector Layer from the data file
This Layer is called a Vector Layer because it contains spatial object in the
form of "Point" representing various car features. The layer is formed using
various records in the data file as car feature objects and every car object is
positioned on the basemap using spatial information (Longitude, Latitude) by
using CRS string notation. See a part of logic used in the formation of the
spatial features incorporating all on a single layer in Algorithm 7.1.

Algorithm 7.1 Logic to create Vector Layer from CSV file

path = "//path/to/file/filename.csv?type=csv&crs=epsg:4726&
xField=Longitude&yField=Latitude&spatialIndex=yes&
subsetIndex=yes&watchFile=yes"

vlayer = iface.addVectorLayer(path, "static vector layer",
"delimitedtext")

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 65

– Result: The Static Visualization
In the Figure 7.7, the Norwegian Map layer is the WMS-Basemap layer and
the dotted (Points) is the vector layer describing various car features captured
every 1 second (approximately).

Figure 7.7: This figure shows the Static Visualization of Spatiotemporal data stored
in local CSV file

7.3.1.2 Analysis: Specific Patterns in Spatiotemporal Data

Flow 2 is the analysis process of static visualization and various useful patterns
captured using toolbar feature developed using PyQGIS. The flow consists of following
steps:

– Toolbar Option: Select Vector Layer
This option is developed to provide flexibility in selection of any layer which
has been created previously by using various data files.

– The Figure 7.8 below illustrates the two QGIS functionality (green Marked
circles) present in this option to generate specific patterns while performing
analysis over data.

The two functionalities of this option are as follows:

◦ Mark 2: Select a Layer: After clicking on the "Select vector Layer" icon
(mark 1) the window will pop-up which will give all the options of the
layer already created in the drop down menu seen in the bottom-right
side image of the figure below.

66 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

Figure 7.8: This figure shows "Select Vector Layer"- ToolBar Option, providing
access to select any layer from all the layers created and make query

◦ Mark 3: Write a Query: After making a selection of the layer, in the
text-box (inside orange rectangular space), type a SQL query.
For example:
"Signal Strength" > 20.

– Analysis Result: The Specific data Map-view
The Figure 7.9 below shows only the specific data which was queried on the
selected layer. We can do any query on the data using the information present
inside the file and, the map can been zoomed and panned for detail viewing.

Figure 7.9: This figure shows the zoom out Map-View for Queried data (Signal
Strength > 20)

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 67

We can select another layer and make query by clicking the toolbar option again and
it will display using another color Point object on the same Map-view. This can help
during comparison data analysis.

7.3.2 Dynamic Visualization & Analysis

This section describes the development and execution process to achieve a flexible and
dynamic visualization of spatiotemporal data using PyQGIS in standalone application.
The flow diagram below in Figure 7.10 illustrates the toolbar features (depicted
in yellow rectangular boxes) responsible for creating "Dynamic Visualization" and
Analysis of the data. The entire process is outlined in three different flows:

– Flow 1: Uploading & Storing Spatiotemporal Data to the Database
– Flow 2: Dynamic Visualization of Data on Map Canvas
– Flow 3: Analysis of the Data

Figure 7.10: This figure shows Flow Diagram for "Dynamics Visualization and its
Analysis"

7.3.2.1 Flow 1: Uploading & Storing Spatiotemporal Data to the
Database

This section describes the process to gather data and storing it to the database as
shown in flow 1 diagram Figure 7.11 below.

The flow consists of the use of two web options embodied in the PyQGIS application-
GUI which are responsible for managing and providing the data for visualization:

68 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

Figure 7.11: The flow 1: Uploading and Storing Spatiotemporal Data to the
Database

– Process 1: Upload the Spatiotemporal Data
By clicking on "Connect to NTNU-QGIS Webpage" toolBar option as shown
Figure 7.12, the login page pop-up on the browser. By log-in to the page the
data of any format is uploaded to the database table and can also be view on
the dashboard web page (described in Section 4.2). But this data can also be
uploaded from outside and not necessary to use this toolbar option, its only to
provide addition support to reach every component in the system architecture
present inside one application.

Figure 7.12: This figure shows "Connect to NTNU-QGIS webpage"-ToolBar Icon,
providing direct access to NTNU-QGIS login webpage to upload data

– Process 2: Store the Spatiotemporal Data to "ntnu-qgis" Database
The data uploaded of any format not restricted to coming from a CSV file is
stored into the "ntnu-qgis" database. This data is saved under "route" table
and can be seen from PgAdmin GUI where it can be updated or altered. The

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 69

PyQGIS- GUI offers the direct access to the PostgreSQL- GUI, by clicking on
the "Connect to PostgreSQL database" toolbar option as shown in Figure 7.13.
When clicked pgAdmin webpage is open on the browser using Apache web
server, where authorized PostgreSQL database user can login and see the data
stored.

Figure 7.13: This figure shows "Connect to PostgreSQL database"- ToolBar Icon,
providing access to (ntnu-qgis) Database

7.3.2.2 Flow 2: Dynamic Visualization of Data on Map Canvas

This section describes the development process of creating dynamic layer according
the data coming directly from the database and placing the position of every car
object accurately over the basemap layer. As seen in the flow diagram Figure 7.14
below, the execution process includes three stages:

– Stage 1: Creating WMS Layer (Basemap)
– Stage 2: Creating Vector Layer from Database data
– Stage 3: Checking for Data Updates

Figure 7.14: The flow 2: Dynamic Visualization of spatiotemporal database data
on Map-view process

Let us see in the following sections how various stages are implemented to achieve
flexible and dynamic system to visualize the spatiotemporal data being stored into
the database table by flow 1.

70 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

7.3.2.3 Stage 1: Creating WMS Layer (Basemap)

In the previous Chapter 3 from the blueprint of system architecture Section 3.1,
we see the PyQGIS application is requesting WMS/WFS Services from the the
cloud2. We used WMS services in our system implementation for creating basemap
Layer. The Web Map Services (WMS), is a standard protocol which is developed
in 1999 by the Open Geospatial Consortium (OGC) for providing georeferenced3

map images which are served by various map servers over the internet as seen in
Figure 7.15 [HKKM14]. The images served is in the form of raster data which a
computer depicts as cells (pixels) consider referring Section 2.1.3 [dLBD02].

Figure 7.15: The figure shows the WMS/WFS basic architecture for serving map
over the cloud adopted from [fSHE]

When the "Add WMS Map" toolbar option is clicked a Norge WMS Raster map
using QGIS window pop-up and which displays a zoom-out image view of the
Norwegian Geographical map as shown in Figure 7.16, which can be zoomed-in and
panned for detail viewing. This image is the bottom-most layer (referred as Basemap
Layer) which is created from the raster Data collected by requesting WMS services
over the Internet. We have seen in previous section the two ways of requesting
WMS services (Section 4.3.2). For this project the WMS service is requested from
"GEONORGE" web server [GEOb] using python script to serve Norway map as
we are dealing with data gathered from "Trondheim" we do not need the entire
world map which will in a way slow the performance. But there is no limitation is
choosing WMS services, this can replaced with other WMS services offering different
geographical map images over the Internet by various web map servers.

2is also phrased as "cloud" and used as a metaphor for the "Internet"
3https://en.wikipedia.org/wiki/Georeferencing

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 71

Figure 7.16: This figure shows "Add WMS Map"-ToolBar Icon, to create and
display Norge BaseMap Layer

The logic used for capturing raster data is illustrated in Algorithm 7.2 contain three
steps to create and visualize the Norway map. First, we request the Web server using
"GetMap" to serve the map image by providing its content in the form of raw raster
data. The raw raster data captured is then converted by using various QGIS module
to generate a raster layer in the form of image (collection of pixels) and lastly the
layer is added to the "Map Registry4" to display on the map canvas with CRSas
EPSG: 4326 to appear accurately on the 2D map surface. The zoom-out map image
can be panned or zoom-inside/zoom-out.

7.3.2.4 Stage 2: Creating Vector Layer from Database data

When the spatiotemporal data is uploaded from webpage and stored into the database
as previously described Section 7.3.2.1. The database layer is created in the form of
vector layer as the information stored in the table of "ntnu-qgis" database contains
the road traffic record which is a spatial object. The records are represented as
"Points" car object which is referred as vector point together forming a vector layer.
The Layer is created by using the "Create vector layer" toolbar option present in the
PyQGIS- GUI as seen in Figure 7.17.

4is the repository that stores all the vector/raster layer in the organized one over the other as
displayed

72 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

Algorithm 7.2 Requesting Norge WMS services and creating Basemap Raster Layer
Requesting WMS serves to serve Norge Map- Raster Data

urlWithParameters ="contextualWMSLegend=0&crs=EPSG:4326&
dpiMode=7&featureCount=10&format=image/png&layers=
topografiskraster&styles=&GetMap&
url=https://openwms.statkart.no/skwms1/wms.toporaster3?
version%3D1.3.0%26"

Creating the Bottom-most Raster-map layer

raster_layer = QgsRasterLayer(urlWithParameters, "WMS Norge",
"wms")

Checking if the Raster Layer developed & adding to Map Registry

if not raster_layer.isValid():
raise IOError, "Failed to load WMS raster Layer"
QMessageBox.warning(None,"Invalid WMS", "WMS raster layer

failed to load!")
else:

QgsMapLayerRegistry.instance().addMapLayer(raster_layer)

Figure 7.17: This figure shows "Create vector layer"-Toolbar Option, creating
vector layer from data stored in "ntnu-qgis" Database

When this icon is clicked in perform some functions coded in standalone application.
Firstly, it makes the connection with the "ntnu-qgis" database and check the connec-
tivity is stable. Secondly, it captures the data from the database which is in the form
of vector format. By using some QGIS modules, the vector layer is formed and as the
vector layer contains various car features represented in the spatial form as "Point"
on the layer. As we know these spatial forms are complex structure to understand by
looking in the vector data (Open Geospatial Consortium format) so they represented
in as visual Points to make understandable presentation. The location of each car
feature (as "Point" spatial object) is decided by using the "the_geom" column from
the "route" table which was geo-spatially converted using PostGIS. The conversion is

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 73

important to make the spatial car features placed accurately on the vector layer.

After creating the vector layer it is then ready to add to the Map Registry to place
in an orderly format to display on the map canvas as shown in Figure 7.18. The
layer in the Map Registry are placed one over the other as the are formed just like in
a stack, for instance the basemap is created first so it is the first layer (bottom layer)
then the vector layer is the second layer created (top layer) and so on.
Furthermore, as this vector layer sits on the top of the basemap layer created
previously using WMS service, the basemap acts as a geo-reference for understanding
the vector data layer placing on the map. If the CRS (ESPG : 4326) for both layers is
not the same then each vector points will be projected somewhere else on the globe.
The basic logic for making connection with the PostgreSQL database and the dynamic
visualization of the vector data is briefed in Algorithm7.3.

Figure 7.18: This figure shows Dynamic Vector Layer Visualization on the Map
Canvas

Algorithm 7.3 Basic logic to create database Vector layer
database_uri = QgsDataSourceURI()
database_uri.setConnection("localhost", "5432", "ntnu-qgis",

"soma", "***")
database_uri.setDataSource("public", "route", "the_geom")
.
.
.
QgsMapLayerRegistry.instance().addMapLayer(QgsVectorLayer

(database_uri.uri(True), "database layer", "postgres"))

74 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

7.3.2.5 Stage 3: Checking for Data Updates

This part play a very crucial role in the development of the flexible and dynamic visu-
alization process. After achieving the first database data visualization, it is possible
that data might be altered or new data might be uploaded simultaneously. So in order
to have real-time visualization we maintaining a continuous connectivity with the
"ntnu-qgis" database which means that the standalone scripts is build in a way that in
every short intervals, is checks the connectivity with the database. In addition, it also
compares the old data with the data present in the "route" table at that time. If there
is any update in the data then the new vector is formed and replace the old vector layer
displayed on the map automatically. This is shown in above flow diagram Figure 7.14.

7.3.2.6 Flow 3: Analysis of the Data

The process of doing analysis is very important to find hidden patterns and make
future prediction for better development of any system. The analysis of the data
which is stored in the database table can be analyzed in using two different approaches.
The two approaches are as follows:

– Analysis 1: Select Vector Layer(Toolbar Option)
The process of using this feature is same as described in the previous Sec-
tion 7.3.1.2. The Figure 7.19 shows the flow of this analysis process.

Figure 7.19: This figure shows the flow diagram for (database) Data Analysis using
"Select vector Layer"-Toolbar Option

The only difference here is that the database vector layer will also be displayed
along with the queried data layer which is appearing on the top with new
color as seen in Figure 7.20. And this is happening because the data is be-
ing fetch continuous from the database and making simultaneously visualization.

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 75

Figure 7.20: This figure shows the Analysis Result obtained using "Select Vector
Layer"-Toolbar Option on Database Vector-Layer

– Analysis 2: Make a Deeper Analysis (Toolbar Option)
In this analysis process, the data is first queried directly on the data stored in
"route" table and then layer is performed according to the data captured. The
Figure 7.21 shows a flow diagram for making a direct query onto the database
data.

Figure 7.21: This figure shows flow of analysis process directly on the database
data

The process of this analysis is demonstrated in three green markings. When the
"Make a deeper Analysis" toolbar is clicked (mark 1) as shown in Figure 7.22,
immediately the "Vector Layer Analsis!" dialog box pop-up and as from the
figure (mark 2) which has two option either yes or no. If option "no" is selected
no analysis is performed but if clicked "yes", the " Make a deeper analysis" Query
Box appears. In the text box (mark 3) write a SQL query as same performed
in Section 7.3.1.2. Here the advantage is that the data can be referred by
seeing on the dashboard web page Section 4.2.1.4 to make meaningful query

76 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

and obtaining visual patterns.

Figure 7.22: This figure shows "Make a deeper Analysis"- ToolBar Option, and
steps to make query

The benefit of using this process for data analysis is, it enhances performance
in making faster data query and quicker visualization on the map canvas than
performed by above Analysis 1 process. As the data is directly queried from
the database table which result in gathering specific amount of data before
visualizing on the map view. So instead of making first all the thousand(s)
spatial objects appear over the map, now it has to locate few among them
and create specific patterns. In addition, while this process is executing and
suddenly data in the table is changed then a notification will appear notifying
the change in data and after few seconds of waiting it will refresh the screen
and ask to make new query. The Figure 7.23 shows the result displayed the
specific queried data in the dynamic visualization process.

Figure 7.23: This figure shows "Make a deeper Analysis"- ToolBar Option, Analysis
result

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 77

There are various other features available in the PyQGIS- GUI. Which includes:

7.3.2.7 Find out Position Coordinate of random Car Feature

This QGIS functionality is very useful in order to find out the position coordinate
of the random selected car feature. The toolbar option "where am I" when clicked
as shown in figure Figure 7.24, a cross arrow mouse pointer is generated that hover
over the map [She14].

Figure 7.24: This figure shows "Where AM I??"-Toolbar Option, to capture specific
Position Coordinate(Longitude,Latitude) by click of a Mouse

When the cross arrow pointer is clicked on any car feature or any location over the
map, the window box "where am I" is pop-up which displays the Longitude and
Latitude of that selected location as shown in Figure 7.25. This toolbar option can
been used anytime during both static and dynamic data visualization process.

Figure 7.25: This figure shows Map view capturing specific car feature Position
Coordinates (Longitude,Latitude)

7.3.2.8 Creating Connection with the QGIS Server

This toolbar option "Connect to QGIS Sever", it is the additional QGIS functionality
present in PyQGIS - GUI application. When clicked, the QGIS server is accessible
through opening on the browser using Apache web server. The layers generated
during static visualization process can be seen using QGIS server from other part of
the globe. But here the data layers will be displayed as a fixed image and cannot be
changed.

78 7. DESIGN IMPLEMENTATION OF DYNAMIC VISUALIZATION OF
SPATIOTEMPORAL DATA USING PYQGIS

Figure 7.26: This figure shows "Connect to QGIS Server"- ToolBar Option, provid-
ing access to QGIS Server

7.3.2.9 Downloading Map- Progress bar

This "Download Map" progress option button as shown in Figure 7.27 is very helpful
in case we want to save any of the visualized images in the form of PDF version for
later examination. Like during the case of making query directly on the database
table and when the notification received about data updated, this can be useful
in saving the pattern to compare with new patterns. The file is directly saved by
default in the download folder of the local platform. The basic logic is defined
in Algorithm7.4 [SITa]. Basically when this button (Download Map) is pressed it
captures the current view on the map canvas.

Figure 7.27: This figure shows "Download Map"-Progress Bar Option, creating
PDF of layers Displayed on Map-Canvas

7.3.2.10 Quit Button

This button when clicked closes the application at any point of time and no matter
of any process is running. This when executed everything is shut.

7.3. IMPLEMENTATION OF PYQGIS APPLICATION 79

Algorithm 7.4 Basic logic to print the Map Canvas in PDF
#caoturing the map canvas

map_render = QgsMapRenderer()
layer_list = [layer.QgsMapLayerRegistry.instance().mapLayers()]
map_render.setLayerSet(layer_list)
rect = QgsRect(map_render.fullExtent())
rect.scale(1.1)
map_render.setExtent(rect)
.
.
.

#Set painter
print = QPrinter()
print.setOutputFormat(QPrinter.PdfFormat)
print.setOutputFileName("ntnu_qgis_Map_canvas.pdf")
print.setPaperSize(QSizeF(c.paperWidth(), c.paperHeight()),
QPrinter.Millimeter)
print.setFullPage(True)
print.setColorMode(QPrinter.Color)
print.setResolution(c.printResolution())
.
.
.
map_render.render(print)
pdf_print = QPainter(print)
paperRect_mm_size = print.pageRect(QPrinter.Millimeter)
paper_RectPixel = print.pageRect(QPrinter.DevicePixel)
c.render(pdf_print, paper_RectPixel, paperRect_mm_size)
pdf_print.end()

This chapter gave a detailed implementation process description on the development
of PyQGIS application and its functionalities. The PyQGIS application source code
is provided in appendix .3. The next Chapter 8 is the summarization of this entire
thesis process.

Chapter8Discussion and Conclusion

8.1 Discussion

Setting up the dynamic visualization of spatiotemporal data was the main objective
of this thesis work. The implementation of the main dynamic system application has
been described in the previous Chapter 7 which embodies other system components
as demonstrated in the blueprint of system architecture diagram Section 3.1.

The complete project comprises of three most important developments in creating
a flexible and dynamic visualization for Norwegian road traffic data. The first was
designing and implementing the system which will interact with external devices
which are responsible to gather the data. For this purpose, the web application is
created which is a collection of three web pages performing different operations. The
next important component of the system was to create something which can store
the captured data for visualization. But this data is not a normal form of data which
can be understood and interpreted by glancing. This is location-dependent data
and in the form of spatial data. These data are basically complex structure storing
various shaped like a point, line, etc. In order to handle spatial datasets, we choose
to work with PostgreSQL for designing a separate database. These data contain
records and each record implies the information about the spatial object which in
this thesis is a car. As records collected after certain time interval so it is a discrete
data which in the spatial domain is called as a vector data. We created a spatial
database to handle these complex values by extending the core capabilities of the
PostgreSQL using PostGIS which is not commonly offered by other DBMS.

We have designed the uploading web page in a manner that when the data reaches
the database, the position coordinates automatically get converted into the form
which is recognized by QGIS to create a visual object for human understanding. The
position coordinates of car feature which are latitude and longitude are in decimal
units and in order to make it QGIS language it has to be converted into OGC format
which is a string of number formed together using coordinated, correct projection

81

82 8. DISCUSSION AND CONCLUSION

information which is called CRS conversion. The conversion is necessary because the
data captured is from the 3D world and we need to display on 2D map by locating
correctly on flat surface maps and this is enabled using CRS conversion algorithms.

By this time, we have gathered the data and stored in a spatial format, and now it is
ready to get visualized. There are many GIS tools available in the market today, out
of them some are developed for free use and some are commercially bounded. We
used QGIS and the main benefit of using this as it is freely available and it provides
easy access to use its repository in creating more flexible and intelligent visualizations.
Using QGIS libraries we created a python application which is the backbone of
the entire system, which gives greater speed and performance. In addition, the
qgis.core and qgis.gui libraries help to produce excellent spatial data visualization
image according to our required purpose.
The map canvas used to visualize the vector is developed to produce a dynamic
graphical representation of the data. Which means the visualization process auto-
matically changes with the data supplied. This is also a way of tracking various
objects.

An analysis is the main process for exploration of data and gathers meaningful
pattern which is hidden. Of course, the analyzing process influence on the data
visualization. The python application is developed to make SQL queries directly
from the database which in a way increases the performance of data visualization
speed. We have already created light-weight spatial indexes in the database which
makes querying on the data faster. The patterns obtained as results gives decision
makers to makes useful predictions for future developments in the cellular network
management.

8.2 Limitation and Challenges in Current Work

By considering the complexity of the spatial structures, we managed to create a
dynamic system for visualization purposes in the spatial domain. Some challenges
faced during environmental setup are previously described in Chapter 3 but one
major challenge that affected the performance of entire system design was overlaying
the layers one over the other. The Qgis modules are not flexible to any modification.
Every defined visualization modules have to be used in a certain way for creating a
layer from the dataset The vector layer in comparison to the raster layer was quick
in the formation. So during the entire testing of the application, this was the major
challenge to control the display of various layer. The raster layer needs continuous
connectivity with the specified map server for its formation. And sometimes, the
connectivity is slow which automatically affects the process of base map layer
generation. While on the other hand, the vector layer is formed using datasets from
the database. Here also it makes continuous connectivity but comparing to the size of

8.3. CONCLUSION 83

both data, the size of objects is smaller than gathering cells of the raster image. This
creates spatial objects sometimes before collecting all the pixels for forming raster
image even though the code is arranged systematically according to the displaying
order for the layers. It was overcome by producing inbuild delay between both layer
formation. Once the stability and overlaying of the layer are achieved correctly, the
analysis process could be performed with an ease.

8.3 Conclusion

In this project thesis, with the development of the dynamic system, we have shown
that it is possible to visualize spatiotemporal data flexibly in real-time and which can
also be examined from anywhere. The achieved system is capable to store any form of
data and convert it to specific format automatically. Along with that the development
of NTNU-QGIS web API will provide access to various devices to simultaneous collect
and store data in the database to visualize at the same time. The entire system is
scalable and is also detachable to integrate with other applications in the future. The
various spatial patterns resulted in analysis process by making queries aid in giving
a deeper understanding of the road traffic system which in a way provide answers to
some questions related to improving the cellular network in road traffic.

References

[Alt] Mark Altaweel. The PostGIS. https://www.gislounge.com/what-is-postgis/
[Accessed: 15-05-18].

[BCG14] Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. Hierarchical modeling
and analysis for spatial data. CRC press, 2014.

[Bou] Boundless. Introduction to PostGIS. http://workshops.boundlessgeo.com/
postgis-intro/# [Accessed: 15-05-18].

[dLBD02] Jeff de La Beaujardière and Allan Doyle. Web map service implementation
specification, version 1.1. 0. Open Geospatial Consortium Inc, 2002.

[dvi] dvisualization. Traffic Data Visualization. https://dvisualization.wordpress.com/
2017/03/27/hello-world/ [Accessed: 19-06-18].

[en.] en.wikipedia.org. Spatiotemporal database. https://en.wikipedia.org/wiki/
Spatiotemporal_database [Accessed: 16-05-18].

[ESR] ESRI. What is GIS? https://www.esri.com/en-us/what-is-gis/overview [Accessed:
19-05-18].

[ew] en wiki. Model-view-controller. https://en.wikipedia.org/wiki/Model\T1\
textendashview\T1\textendashcontroller [Accessed: 30-05-18].

[fSHE] Cartography for Swiss Higher Education. OGC, WMS and WFS.
http://www.e-cartouche.ch/content_reg/cartouche/webservice/en/html/
webservice_LSummary.html [Accessed: 25-05-18].

[Geoa] National Geographic. GIS (geographic information system). https://www.
nationalgeographic.org/encyclopedia/geographic-information-system-gis/ [Ac-
cessed: 19-05-18].

[GEOb] GEONORGE. Toporaster 3. https://kartkatalog.geonorge.no/metadata/
kartverket/toporaster-3/13e15833-8d94-4b89-a53d-eb8da289677b [Accessed: 25-
05-18].

[Glo] David Gloag. Geovisualization: Tools Techniques. https://study.com/academy/
lesson/geovisualization-tools-techniques.html [Accessed: 18-05-18].

85

https://www.gislounge.com/what-is-postgis/
http://workshops.boundlessgeo.com/postgis-intro/#
http://workshops.boundlessgeo.com/postgis-intro/#
https://dvisualization.wordpress.com/2017/03/27/hello-world/
https://dvisualization.wordpress.com/2017/03/27/hello-world/
https://en.wikipedia.org/wiki/Spatiotemporal_database
https://en.wikipedia.org/wiki/Spatiotemporal_database
https://www.esri.com/en-us/what-is-gis/overview
https://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller
https://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller
http://www.e-cartouche.ch/content_reg/cartouche/webservice/en/html/webservice_LSummary.html
http://www.e-cartouche.ch/content_reg/cartouche/webservice/en/html/webservice_LSummary.html
https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
https://kartkatalog.geonorge.no/metadata/kartverket/toporaster-3/13e15833-8d94-4b89-a53d-eb8da289677b
https://kartkatalog.geonorge.no/metadata/kartverket/toporaster-3/13e15833-8d94-4b89-a53d-eb8da289677b
https://study.com/academy/lesson/geovisualization-tools-techniques.html
https://study.com/academy/lesson/geovisualization-tools-techniques.html

86 REFERENCES

[gnu] gnu.org. GNU General Public License. https://www.gnu.org/licenses/old-licenses/
gpl-2.0.txt [Accessed: 19-05-18].

[Gro] PTV Group. Fusion and visualization of map data and historical traffic
data . http://vision-traffic.ptvgroup.com/nl/products/ptv-visum-data-analytics/
use-cases/fusion-and-visualization-of-map-data-and-historical-traffic-data/ [Ac-
cessed: 19-06-18].

[GS05] Ralf Hartmut Güting and Markus Schneider. Moving objects databases. Elsevier,
2005.

[Hen] Max Henderson. Traffic Analytics. http://maxwellhenderson.com/traffic.html
[Accessed: 19-06-18].

[HH03] Robert Haining and Robert P Haining. Spatial data analysis: theory and practice.
Cambridge University Press, 2003.

[HKKM14] Andreas Hackeloeer, Klaas Klasing, Jukka M Krisp, and Liqiu Meng. Georef-
erencing: a review of methods and applications. Annals of GIS, 20(1):61–69,
2014.

[JOU] LINUX JOURNAL. Getting Started With Quantum GIS. https://www.
linuxjournal.com/content/getting-started-quantum-gis [Accessed: 20-05-18].

[Liz] LizMap. Lizmap 3.0. https://docs.3liz.com/en/introduction.html [Accessed:
28-05-18].

[Mat] MathWorks. What Is Geospatial Data? https://www.mathworks.com/help/map/
what-is-geospatial-data.html [Accessed: 18-05-18].

[Mic] Microsoft|Developer. Introduction to REST and .net Web
API. https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/
introduction-to-rest-and-net-web-api/ [Accessed: 31-05-18].

[NEW] GPS BUSINESS NEWS. HERE Issues Open Source Specs to Share
Road Data From Car Sensors. https://www.gpsbusinessnews.com/
HERE-Issues-Open-Source-Specs-to-Share-Road-Data-From-Car-Sensors_
a5539.html [Accessed: 19-02-18].

[oCa] Earth Lab-University of Colorado. Coordinate Reference System and Spa-
tial Projection. https://www.earthdatascience.org/courses/earth-analytics/
spatial-data-r/geographic-vs-projected-coordinate-reference-systems-UTM/ [Ac-
cessed: 16-05-18].

[oCb] Earth Lab-University of Colorado. GIS in R: Understand EPSG, WKT and other
CRS definition styles. https://www.earthdatascience.org/courses/earth-analytics/
spatial-data-r/understand-epsg-wkt-and-other-crs-definition-file-types/ [Ac-
cessed: 16-05-18].

https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
http://vision-traffic.ptvgroup.com/nl/products/ptv-visum-data-analytics/use-cases/fusion-and-visualization-of-map-data-and-historical-traffic-data/
http://vision-traffic.ptvgroup.com/nl/products/ptv-visum-data-analytics/use-cases/fusion-and-visualization-of-map-data-and-historical-traffic-data/
http://maxwellhenderson.com/traffic.html
https://www.linuxjournal.com/content/getting-started-quantum-gis
https://www.linuxjournal.com/content/getting-started-quantum-gis
https://docs.3liz.com/en/introduction.html
https://www.mathworks.com/help/map/what-is-geospatial-data.html
https://www.mathworks.com/help/map/what-is-geospatial-data.html
https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/introduction-to-rest-and-net-web-api/
https://blogs.msdn.microsoft.com/martinkearn/2015/01/05/introduction-to-rest-and-net-web-api/
https://www.gpsbusinessnews.com/HERE-Issues-Open-Source-Specs-to-Share-Road-Data-From-Car-Sensors_a5539.html
https://www.gpsbusinessnews.com/HERE-Issues-Open-Source-Specs-to-Share-Road-Data-From-Car-Sensors_a5539.html
https://www.gpsbusinessnews.com/HERE-Issues-Open-Source-Specs-to-Share-Road-Data-From-Car-Sensors_a5539.html
https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/geographic-vs-projected-coordinate-reference-systems-UTM/
https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/geographic-vs-projected-coordinate-reference-systems-UTM/
https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/understand-epsg-wkt-and-other-crs-definition-file-types/
https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/understand-epsg-wkt-and-other-crs-definition-file-types/

REFERENCES 87

[oCc] Earth Lab-University of Colorado. GIS With R: Projected vs Geographic
Coordinate Reference Systems. https://www.earthdatascience.org/courses/
earth-analytics/spatial-data-r/intro-to-coordinate-reference-systems/ [Accessed:
16-05-18].

[opa] QGIS offical page. QGIS as OGC Data Server. https://docs.qgis.org/2.8/en/
docs/user_manual/working_with_ogc/ogc_server_support.html [Accessed: 20-
05-18].

[opb] QGIS offical page. QGIS Browser. https://docs.qgis.org/2.8/en/docs/user_
manual/qgis_browser/qgis_browser.html [Accessed: 20-05-18].

[opc] QGIS offical page. QGIS GUI. https://docs.qgis.org/2.18/en/docs/user_manual/
introduction/qgis_gui.html [Accessed: 20-05-18].

[ore] oreilly.com. What is MVC? https://www.safaribooksonline.com/library/view/
laravel-design-patterns/9781783287987/ch01s02.html [Accessed: 28-05-18].

[os] QGIS official site. Lesson: Install QGIS Server. https://docs.qgis.org/2.18/fi/
docs/training_manual/qgis_server/install.html [Accessed: 28-05-18].

[ow] QGIS official website. Foreword. https://docs.qgis.org/2.18/en/docs/user_
manual/preamble/foreword.html [Accessed: 19-05-18].

[posa] postgres.net. The PostGIS Development Group. http://postgis.net/docs/
manual-2.4/ [Accessed: 15-05-18].

[posb] postgresql.org. WHAT IS POSTGRESQL? https://www.postgresql.org/about/
[Accessed: 15-05-18].

[Qgia] Qgis.org. Documentation QGIS 2.18. https://docs.qgis.org/testing/en/docs/
training_manual/database_concepts/data_model.html [Accessed: 15-05-18].

[Qgib] Qgis.org. Documentation QGIS 2.18: Database Concepts with Post-
greSQL. https://docs.qgis.org/testing/en/docs/training_manual/database_
concepts/index.html [Accessed: 15-05-18].

[qgic] qgis.org. PostGIS setup. https://docs.qgis.org/testing/en/docs/training_manual/
spatial_databases/spatial_functions.html [Accessed: 15-05-18].

[qgid] qgis.org. Simple Feature Model. https://docs.qgis.org/testing/en/docs/training_
manual/spatial_databases/simple_feature_model.html [Accessed: 17-05-18].

[qgie] qgis.org. Spatial Database Concepts with PostGIS. https://docs.qgis.org/testing/
en/docs/training_manual/spatial_databases/index.html [Accessed: 15-05-18].

[qgif] qgis.org. Working with Projections. https://docs.qgis.org/2.8/en/docs/user_
manual/working_with_projections/working_with_projections.html [Accessed:
17-05-18].

https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/intro-to-coordinate-reference-systems/
https://www.earthdatascience.org/courses/earth-analytics/spatial-data-r/intro-to-coordinate-reference-systems/
https://docs.qgis.org/2.8/en/docs/user_manual/working_with_ogc/ogc_server_support.html
https://docs.qgis.org/2.8/en/docs/user_manual/working_with_ogc/ogc_server_support.html
https://docs.qgis.org/2.8/en/docs/user_manual/qgis_browser/qgis_browser.html
https://docs.qgis.org/2.8/en/docs/user_manual/qgis_browser/qgis_browser.html
https://docs.qgis.org/2.18/en/docs/user_manual/introduction/qgis_gui.html
https://docs.qgis.org/2.18/en/docs/user_manual/introduction/qgis_gui.html
https://www.safaribooksonline.com/library/view/laravel-design-patterns/9781783287987/ch01s02.html
https://www.safaribooksonline.com/library/view/laravel-design-patterns/9781783287987/ch01s02.html
https://docs.qgis.org/2.18/fi/docs/training_manual/qgis_server/install.html
https://docs.qgis.org/2.18/fi/docs/training_manual/qgis_server/install.html
https://docs.qgis.org/2.18/en/docs/user_manual/preamble/foreword.html
https://docs.qgis.org/2.18/en/docs/user_manual/preamble/foreword.html
http://postgis.net/docs/manual-2.4/
http://postgis.net/docs/manual-2.4/
https://www.postgresql.org/about/
https://docs.qgis.org/testing/en/docs/training_manual/database_concepts/data_model.html
https://docs.qgis.org/testing/en/docs/training_manual/database_concepts/data_model.html
https://docs.qgis.org/testing/en/docs/training_manual/database_concepts/index.html
https://docs.qgis.org/testing/en/docs/training_manual/database_concepts/index.html
https://docs.qgis.org/testing/en/docs/training_manual/spatial_databases/spatial_functions.html
https://docs.qgis.org/testing/en/docs/training_manual/spatial_databases/spatial_functions.html
https://docs.qgis.org/testing/en/docs/training_manual/spatial_databases/simple_feature_model.html
https://docs.qgis.org/testing/en/docs/training_manual/spatial_databases/simple_feature_model.html
https://docs.qgis.org/testing/en/docs/training_manual/spatial_databases/index.html
https://docs.qgis.org/testing/en/docs/training_manual/spatial_databases/index.html
https://docs.qgis.org/2.8/en/docs/user_manual/working_with_projections/working_with_projections.html
https://docs.qgis.org/2.8/en/docs/user_manual/working_with_projections/working_with_projections.html

88 REFERENCES

[Quo] Quora. What is the difference between spatial-temporal
data with other type of data? https://www.quora.com/
What-is-the-difference-between-spatial-temporal-data-with-other-type-of-data
[Accessed: 18-05-18].

[She14] Gary Sherman. The PyQGIS Programmer’s Guide. Locate Press, 2014.

[SITa] QGIS OFFICIAL SITE. Map Rendering and Printing. https://docs.qgis.org/2.
14/en/docs/pyqgis_developer_cookbook/composer.html [Accessed: 25-05-18].

[sitb] QGIS Official site. QGIS as OGC Data Server. https://docs.qgis.org/2.8/en/
docs/user_manual/working_with_ogc/ogc_server_support.html [Accessed: 28-
05-18].

[sitc] QGIS Official site. QGIS Installers. https://qgis.org/en/site/forusers/
alldownloads.html#linux [Accessed: 28-05-18].

[Sou] Sourceforge. Quantum GIS. http://freshmeat.sourceforge.net/projects/qgis/
?branch_id=31471&release_id=274022 [Accessed: 20-05-18].

[Spr] K. S. Rajan SpringerLink, Sarthak Agarwal. Performance analysis of MongoDB
versus PostGIS/PostGreSQL databases for line intersection and point contain-
ment spatial queries. https://link.springer.com/article/10.1007/s41324-016-0059-1
[Accessed: 15-05-18].

[stu] study.com. Geospatial Data: Definition Example. https://study.com/academy/
lesson/geospatial-data-definition-example.html [Accessed: 19-05-18].

[Teca] TechAdmin. How to Install Python 2.7.14 on Ubuntu LinuxMint. https://
tecadmin.net/install-python-2-7-on-ubuntu-and-linuxmint/ [Accessed: 20-05-18].

[Tecb] TechTarget. database management system (DBMS). https://searchsqlserver.
techtarget.com/definition/database-management-system [Accessed: 19-06-18].

[THE] THEKINIGROUP. Importance of data visualization. https://thekinigroup.com/
importance-data-visualization/ [Accessed: 19-02-18].

[ug] Boston GIS user group. PostGIS ver. 2.1 Geometry/Geography Quick Guide -
Cheatsheet. http://www.bostongis.com/postgis_quickguide.bqg [Accessed: 15-05-
18].

[Uni] Humboldt State University. Raster To Vector. http://gsp.humboldt.edu/OLM_
2015/Lessons/GIS/08%20Rasters/RasterToVector.html [Accessed: 21-05-18].

[web] webapplicationBodvoc. An Overview of Internet connection. https://bodvoc.
wordpress.com/2010/07/02/an-overview-of-a-web-server/ [Accessed: 28-05-18].

https://www.quora.com/What-is-the-difference-between-spatial-temporal-data-with-other-type-of-data
https://www.quora.com/What-is-the-difference-between-spatial-temporal-data-with-other-type-of-data
https://docs.qgis.org/2.14/en/docs/pyqgis_developer_cookbook/composer.html
https://docs.qgis.org/2.14/en/docs/pyqgis_developer_cookbook/composer.html
https://docs.qgis.org/2.8/en/docs/user_manual/working_with_ogc/ogc_server_support.html
https://docs.qgis.org/2.8/en/docs/user_manual/working_with_ogc/ogc_server_support.html
https://qgis.org/en/site/forusers/alldownloads.html#linux
https://qgis.org/en/site/forusers/alldownloads.html#linux
http://freshmeat.sourceforge.net/projects/qgis/?branch_id=31471&release_id=274022
http://freshmeat.sourceforge.net/projects/qgis/?branch_id=31471&release_id=274022
https://link.springer.com/article/10.1007/s41324-016-0059-1
https://study.com/academy/lesson/geospatial-data-definition-example.html
https://study.com/academy/lesson/geospatial-data-definition-example.html
https://tecadmin.net/install-python-2-7-on-ubuntu-and-linuxmint/
https://tecadmin.net/install-python-2-7-on-ubuntu-and-linuxmint/
https://searchsqlserver.techtarget.com/definition/database-management-system
https://searchsqlserver.techtarget.com/definition/database-management-system
https://thekinigroup.com/importance-data-visualization/
https://thekinigroup.com/importance-data-visualization/
http://www.bostongis.com/postgis_quickguide.bqg
http://gsp.humboldt.edu/OLM_2015/Lessons/GIS/08%20Rasters/RasterToVector.html
http://gsp.humboldt.edu/OLM_2015/Lessons/GIS/08%20Rasters/RasterToVector.html
https://bodvoc.wordpress.com/2010/07/02/an-overview-of-a-web-server/
https://bodvoc.wordpress.com/2010/07/02/an-overview-of-a-web-server/

AppendixASource Code: Dynamic
Visualization System

.1 Source Code: Static Visualization

1 # adding CSV Layer
2

3 from PyQt4 . QtCore import ∗
4 from PyQt4 . QtGui import ∗
5 from qg i s . core import ∗
6 from qg i s . u t i l s import ∗
7 from qg i s . gu i import ∗
8 import numpy
9 import r eque s t s

10 import sys
11 import os
12 import psycopg2
13 import time
14

15

16 # con f i gu r e your the p r e f i x path
17 QgsAppl icat ion . s e tPre f i xPath (" / usr " , True)
18

19 #cr ea t i n g a r e f e r e n c e to the QgsAppl icat ion
20 csv_qgs= QgsAppl icat ion ([] , True)
21

22 # load ing the data prov ide r o f QGIS and l ay e r r e g i s t r y
23 QgsAppl icat ion . i n i tQg i s ()
24

25 " " " c r e a t i n g Map canvas " " "
26 canvas = QgsMapCanvas ()
27 canvas . setCanvasColor (Qt . green)
28 canvas . enab l eAnt iA l i a s ing (True)
29 canvas . setWindowTitle ("Norway Road T r a f f i c v i s u a l i s a t i o n in QGIS")
30

31

32 " " " c r e a t i n g a vec to r l a y e r " " "
33 f i lename_path = QFileDia log . getOpenFileName (None , " S e l e c t CSV f i l e " , os

. getenv ("HOME") , "CSV(∗ . csv) ")
34 i f f i lename_path :

89

90 A. SOURCE CODE: DYNAMIC VISUALIZATION SYSTEM

35 pr in t ("The f i l e csv path i s " , f i lename_path)
36 pr in t (f i lename_path)
37 e l s e :
38 # Give a warning QMessageBox i f f i l e does not e x i s t s
39 QMessageBox . warning (None , " I nva l i d F i l e " , " This CSV f i l e i s not

va l i d . ")
40

41 # the path
42 csv_path = fi lename_path
43 c s v_ f i l t e r = " ? type=csv&xFie ld=Longitude&yFie ld=Lat i tude&spa t i a l I nd ex=

yes&subset Index=yes&watchFi le=yes "
44 fu l l_path = " f i l e : // " + csv_path + c s v_ f i l t e r
45

46 # make the QGIS vec to r l ay e r
47 csv_layer = QgsVectorLayer (fu l l_path , " Vector Layer 1 " , " d e l im i t ed t ex t "

)
48

49 # check i s l a y e r va l i d
50 i f not csv_layer . i sVa l i d () :
51 r a i s e IOError , " Fa i l ed to open the Vector Layer "
52 QMessageBox . warning (None , " I nva l i d Layer " , " This QGIS Vector l a y e r

i s not va l i d . ")
53

54 # change the symbol in the csv l ay e r
55 symbol = QgsMarkerSymbolV2 . c reateS imple ({ "name" : " c i r c l e " , " c o l o r " : "

ye l low " })
56 csv_layer . rendererV2 () . setSymbol (symbol)
57 QgsMapLayerRegistry . i n s t ance () . addMapLayer (csv_layer)
58

59 l a y e r s = QgsMapLayerRegistry . i n s t ance () . mapLayers ()
60 map_canvas_layer_list = [QgsMapCanvasLayer (i) f o r i in l a y e r s . va lue s ()]
61

62 canvas . setExtent (csv_layer . extent ())
63 canvas . s e tLayerSet (map_canvas_layer_list)
64

65 canvas . show ()
66

67 csv_qgs . exec_ ()

.2. SOURCE CODE: DYNAMIC VISUALIZATION 91

.2 Source Code: Dynamic Visualization
1 # cr ea t i n g l ay e r from tak ing GIS data from

Toolbar_Connect_to_PostgreSQL
2

3 from PyQt4 . QtCore import ∗
4 from PyQt4 . QtGui import ∗
5 from qg i s . core import ∗
6 from qg i s . u t i l s import ∗
7 from qg i s . gu i import ∗
8 import numpy
9 import r eque s t s

10 import sys
11 import os
12 import psycopg2
13 import time
14

15

16 # con f i gu r e your the p r e f i x path
17 QgsAppl icat ion . s e tPre f i xPath (" / usr " , True)
18 #cr ea t i n g a r e f e r e n c e to the QgsAppl icat ion
19 db_qgs= QgsAppl icat ion ([] , True)
20 # load ing the data prov ide r o f QGIS and l ay e r r e g i s t r y
21 QgsAppl icat ion . i n i tQg i s ()
22

23 " " " c r e a t i n g Map canvas " " "
24 db_canvas = QgsMapCanvas ()
25 db_canvas . setCanvasColor (Qt . white)
26 db_canvas . enab l eAnt iA l i a s ing (True)
27 db_canvas . setWindowTitle ("Norway Road T r a f f i c v i s u a l i s a t i o n us ing QGIS−

PostGIS ")
28

29 urlWithParameters = " contextualWMSLegend=0&&cr s=EPSG:4326&dpiMode=7&
featureCount=10&format=image/png&l a y e r s=t o p o g r a f i s k r a s t e r&s t y l e s=&
ur l=https : // openwms . s t a t k a r t . no/skwms1/wms. t opo ra s t e r 3 ? ve r s i on%3D1
.3.0%26 "

30 wms_raster_layer = QgsRasterLayer (urlWithParameters , "WMS Norge " , "wms"
)

31

32 i f not wms_raster_layer . i sVa l i d () :
33 r a i s e IOError , " Fa i l ed to load WMS ra s t e r Layer "
34 QMessageBox . warning (None , " I nva l i d WMS" , "WMS r a s t e r l a y e r f a i l e d to

load ! ")
35

36 QgsMapLayerRegistry . i n s t ance () . addMapLayer (wms_raster_layer)
37

38

39 time . s l e e p (4)
40

41

42 " " " c r e a t i n g a vec to r l a y e r us ing PostGIS " " "
43

44 # making connect ion with ntnu−qg i s database

92 A. SOURCE CODE: DYNAMIC VISUALIZATION SYSTEM

45

46 u r i = QgsDataSourceURI ()
47 #se t host name , port , database name , username , password
48 u r i . setConnect ion (" l o c a l h o s t " , " 5432 " , " ntnu−qg i s " , " soma " , " ∗∗∗∗∗ ")
49

50 cho i c e = QMessageBox . ques t i on (None , " Vector Layer Ana lys i s ! " ,
51 "Do you wish to do ana l y s i s by

putt ing Query on Database ? " ,
52 QMessageBox . Yes | QMessageBox .No)
53

54 i f cho i c e == QMessageBox . Yes :
55 pr in t ("Yes , do Query on database ! ! ")
56 # put the query box
57

58 (query , ok)= QInputDialog . getText (None , "Make a query " ,
59 "Query : " , QLineEdit . Normal ,
60 " ex . s i gna l_s t r ength =15")
61

62 i f ok :
63 n = query
64 pr in t ("Your Query i s : " + query)
65

66 # make a query database l ay e r
67 u r i . setDataSource (" pub l i c " , " route " , " the_geom" , query)
68 db_layer = QgsVectorLayer (u r i . u r i () , " database_layer " , "

po s t g r e s ")
69 # adding to the map r e g i s t r y f o r d i sp l ay
70 QgsMapLayerRegistry . i n s t ance () . addMapLayer (db_layer)
71 e l s e :
72 pr in t (" You can c e l l e d Query ! Try again ! ! ")
73

74 e l s e :
75

76 # making l ay e r with no QUERY
77 u r i . setDataSource (" pub l i c " , " route " , " the_geom")
78 db_layer = QgsVectorLayer (u r i . u r i () , " database_layer " , " po s tg r e s ")
79 QgsMapLayerRegistry . i n s t ance () . addMapLayer (db_layer)
80

81 " " " adding l a y e r s to map canvas " " "
82

83 l a y e r s = QgsMapLayerRegistry . i n s t ance () . mapLayers ()
84 map_canvas_layer_list = [QgsMapCanvasLayer (i) f o r i in l a y e r s . va lue s ()]
85 db_canvas . setExtent (db_layer . extent ())
86 db_canvas . s e tLayerSet (map_canvas_layer_list)
87

88 db_canvas . show ()
89 db_qgs . exec_ ()

.3. SOURCE CODE: PYQGIS-APPLICATION 93

.3 Source Code: PyQGIS-Application
1 from PyQt4 . QtWebKit import QWebView
2 from PyQt4 import QtGui , QtCore
3 from PyQt4 . QtCore import ∗
4 from PyQt4 . QtGui import ∗
5 from qg i s . core import ∗
6 from qg i s . u t i l s import ∗
7 from qg i s . gu i import ∗
8 import numpy
9 import r eque s t s

10 import webbrowser
11 import sys
12 import os
13

14 c l a s s Gui_Window(QtGui .QMainWindow) :
15 de f __init__(s e l f) :
16 super (Gui_Window , s e l f) . __init__ ()
17 s e l f . setGeometry (50 ,50 ,550 ,200)
18 s e l f . setWindowTitle (" V i s u a l i s a t i o n o f Norge GIS Data ")
19 s e l f . setWindowIcon (QtGui . QIcon (" . / i c on s /ntnu−l ogo . png "))
20 background_img = QtGui . QImage(" . / i c on s / goog le1 . jpg ")
21 bg_palette = QtGui . QPalette ()
22 r o l e 2 = QtGui . QPalette . Background
23 bg_palette . setBrush (ro l e2 , QtGui . QBrush (background_img))
24 s e l f . s e tPa l e t t e (bg_palette)
25

26 # f i l e menu
27 ext rac tAct ion = QtGui . QAction ("& Add CSV f i l e ! ! " , s e l f)
28 ext rac tAct ion . s e tShor t cu t (" Ctr l+Q")
29 ext rac tAct ion . se tStatusTip (" Leave the App")
30 ext rac tAct ion . t r i g g e r e d . connect (s e l f . add_csv_window)
31 i con = QtGui . QIcon ()
32 i con . addPixmap (QtGui .QPixmap(" . / i c on s /ntnu−l ogo . png "))
33 s e l f . s tatusBar ()
34 mainMenu = s e l f . menuBar ()
35 f i l eMenu = mainMenu . addMenu("&F i l e ")
36 f i l eMenu . addAction (ext rac tAct ion)
37 f i l eMenu . s e t I c on (i con)
38

39 # AboutMenu
40 extractAction_aboutMessageBox = QtGui . QAction ("& What i s NTNU−

QGIS ! ! " , s e l f)
41 extractAction_aboutMessageBox . se tStatusTip ("About the App")
42 extractAction_aboutMessageBox . t r i g g e r e d . connect (s e l f .

about_messageBox)
43 i con_qgis = QtGui . QIcon ()
44 i con_qgis . addPixmap (QtGui .QPixmap(" . / i c on s / qg i s . png "))
45 s e l f . s tatusBar ()
46 mainMenu = s e l f . menuBar ()
47 f i l eMenu = mainMenu . addMenu("&About ")
48 f i l eMenu . addAction (extractAction_aboutMessageBox)
49 f i l eMenu . s e t I c on (icon_qgis)

94 A. SOURCE CODE: DYNAMIC VISUALIZATION SYSTEM

50 s e l f . home ()
51

52 # new func t i on
53

54 de f home(s e l f) :
55

56 btn = QtGui . QPushButton (" Quit " , s e l f)
57 btn . c l i c k e d . connect (s e l f . c l o s e_app l i c a t i on)
58 #btn . r e s i z e (100 ,100)
59 btn . r e s i z e (btn . minimumSizeHint ())
60 btn .move (400 ,150)
61

62 # Toolbar
63 ext rac tAct ion2 = QtGui . QAction (QtGui . QIcon (" . / i c on s / icon11 . i c o "

) , "Where am I ? " , s e l f)
64 ext rac tAct ion2 . t r i g g e r e d . connect (s e l f . whereami_toolbar)
65 s e l f . too lBar = s e l f . addToolBar (" whereamiToolbar ")
66 s e l f . too lBar . addAction (ext rac tAct ion2)
67

68 extractAction_webpage = QtGui . QAction (QtGui . QIcon (" . / i c on s /web .
png ") , " Connect to NTNU−QGIS Webpage " , s e l f)

69 extractAction_webpage . t r i g g e r e d . connect (lambda : webbrowser .
open_new_tab (" http : / / 1 2 7 . 0 . 0 . 1 / qgisweb/ l o g i n "))

70 s e l f . too lBar = s e l f . addToolBar ("
Toolbar_Upload_your_data_at_NTNU−QGIS_webpage ")

71 s e l f . too lBar . addAction (extractAction_webpage)
72

73 extractAction_DB = QtGui . QAction (QtGui . QIcon (" . / i c on s /postGIS .
png ") , " Connect to PostgreSQL " , s e l f)

74 extractAction_DB . t r i g g e r e d . connect (lambda : webbrowser .
open_new_tab (" http :// l o c a l h o s t /phppgadmin/ "))

75 s e l f . too lBar = s e l f . addToolBar (" Toolbar_Connect_to_PostgreSQL ")
76 s e l f . too lBar . addAction (extractAction_DB)
77

78 ext rac tAct ion_qg i sSe rve r = QtGui . QAction (QtGui . QIcon (" . / i c on s /
logo−qgis−s e r v e r . png ") , " Connect to QGIS Server " , s e l f)

79 ext rac tAct ion_qg i sSe rve r . t r i g g e r e d . connect (lambda : webbrowser .
open_new_tab (" http :// qg i s . ntnu . soma/ cgi−bin /qgis_mapserv . f c g i "))

80 ext rac tAct ion_qg i sSe rve r . t r i g g e r e d . connect (s e l f .
c l o s e_app l i c a t i on)

81 s e l f . too lBar = s e l f . addToolBar (" Connect to QGIS Server ")
82 s e l f . too lBar . addAction (ext rac tAct ion_qg i sSe rve r)
83

84 extractAction_wms = QtGui . QAction (QtGui . QIcon (" . / i c on s / g lobe .
png ") , " Norge WMS Map" , s e l f)

85 extractAction_wms . t r i g g e r e d . connect (s e l f . norge_wms_display)
86 s e l f . too lBar = s e l f . addToolBar (" Extract WMS Norge ")
87 s e l f . too lBar . addAction (extractAction_wms)
88

89 extractAction_addLayer = QtGui . QAction (QtGui . QIcon (" . / i c on s /
layer−add . png ") , " Create CSV vecto r l ay e r " , s e l f)

90 extractAction_addLayer . t r i g g e r e d . connect (s e l f . add_csv_window)

.3. SOURCE CODE: PYQGIS-APPLICATION 95

91 s e l f . too lBar = s e l f . addToolBar (" Create vec to r l a y e r ")
92 s e l f . too lBar . addAction (extractAction_addLayer)
93

94 ext rac tAct ion3 = QtGui . QAction (QtGui . QIcon (" . / i c on s / l aye r s−
i con3 . png ") , " Create PostGIS Vector l a y e r s " , s e l f)

95 ext rac tAct ion3 . t r i g g e r e d . connect (s e l f . create_db_layer)
96 s e l f . too lBar = s e l f . addToolBar (" Extract PostGIS Data ")
97 s e l f . too lBar . addAction (ext rac tAct ion3)
98

99 s e l f . p r og r e s s = QtGui . QProgressBar (s e l f)
100 s e l f . p r og r e s s . setGeometry (20 , 230 , 250 , 20)
101

102 s e l f . btn_progress = QtGui . QPushButton ("Download Map" , s e l f)
103 s e l f . btn_progress . r e s i z e (s e l f . btn_progress . minimumSizeHint ())
104 s e l f . btn_progress . move (20 ,250)
105 s e l f . btn_progress . c l i c k e d . connect (s e l f . download)
106

107

108 pr in t (s e l f . s t y l e () . objectName ())
109

110 comboBox = QtGui .QComboBox(s e l f)
111 comboBox . addItem (" s i g n a l s t r ength ")
112 comboBox . addItem (" Lat i tude ")
113 comboBox . addItem (" cde ")
114 comboBox .move (400 ,300)
115 comboBox . a c t i va t ed [s t r] . connect (s e l f . s t y l e_cho i c e)
116

117 # to d i sp l ay the GUI window on the screen , we use show ()
118 s e l f . show ()
119

120

121 de f c l o s e_app l i c a t i on (s e l f) :
122 pr in t ("Hey ! bye−bye ! ! ")
123 sys . e x i t ()
124

125 # About Dialog func t i on
126 de f about_messageBox (s e l f) :
127 QMessageBox . about (
128 None ,
129 "About NTNU−QGIS" ,
130 " PostgreSQL/Pos tg i s i s used as a c e n t r a l i z e d geo−spat io tempora l

\
131 data warehouse . Other databases and data sour c e s are r e p l i c a t e d

\
132 at a r e gu l a r i n t e r v a l i n to PostgreSQL , us ing var i ous t o o l s such

as \
133 OGR and FME. In the beg inn ing NTNU−QGIS was mainly used as a

viewer \
134 o f geodata on the geog raph i ca l Maps and l a t e r more

f u n c t i o n a l i t i e s \
135 added f o r doing deeper v i s u a l data ana l y s i s . \

96 A. SOURCE CODE: DYNAMIC VISUALIZATION SYSTEM

136 The system i s f l e x i b l e and s c a l a b l e to v i s u a l i s e data in r ea l−
time \

137 connect ing to ntnu−qg i s database ")
138

139 de f norge_wms_display (s e l f) :
140 os . system (" python norge_wms_display . py ")
141

142 # add vecto r l a y e r
143 de f add_csv_window(s e l f) :
144 os . system (" python add_csv_layer . py ")
145

146 # cr ea t i n g l ay e r from database
147 de f create_db_layer (s e l f) :
148 os . system (" python add_db_layer . py ")
149

150 de f s ty l e_cho i c e (s e l f , t ex t) :
151 QtGui . QApplication . s e t S t y l e (QtGui . QStyleFactory . c r e a t e (t ex t))
152

153 de f enlarge_window (s e l f , s t a t e) :
154 i f s t a t e == QtCore . Qt . Checked :
155 s e l f . setGeometry (50 ,50 ,2000 ,1000)
156 e l s e :
157 s e l f . setGeometry (50 ,50 ,800 ,800)
158

159 de f download (s e l f) :
160 s e l f . completed = 0
161 whi le s e l f . completed <100:
162 s e l f . completed += 0.0001
163 s e l f . p r og r e s s . setValue (s e l f . completed)
164

165

166 de f close_messageBox (s e l f) :
167 cho i c e = QtGui . QMessageBox . ques t i on (s e l f , " Vector Layer

Ana lys i s ! " ,
168 "Which Vector Layer f o r

data ana l y s i s ? " ,
169 QtGui . QMessageBox . Yes |

QtGui . QMessageBox .No)
170

171 i f cho i c e == QtGui . QMessageBox . Yes :
172 pr in t ("Yes ! ! ")
173 sys . e x i t ()
174 e l s e :
175 pass
176

177 de f make_query (s e l f) :
178 (name , ok)= QInputDialog . getText (None , "Make a deeper an a l y s i s !

" ,
179 "Query : " , QLineEdit . Normal ,
180 " wr i t e a query to f i l t e r data ")
181

182

.3. SOURCE CODE: PYQGIS-APPLICATION 97

183 de f main () :
184 app = QtGui . QApplication (sys . argv)
185 GUI = Gui_Window()
186 app . exec_ ()
187

188

189 main ()

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Objectives
	Methodology
	Motivation
	Publication
	Statens vegvesen Collaboration
	Thesis Contribution
	Thesis Structure

	Background and Literature Review
	Terminologies
	What is Spatiotemporal data?
	What are Spatiotemporal Databases?
	What is Geospatial Data?
	What is Geovisualization?

	Geographic Information System (GIS) Technologies
	What is GIS?
	GIS Tools for Geovisualization

	Quantum- Geographic Information System (QGIS)
	QGIS- Desktop Application
	QGIS- Desktop GUI

	QGIS- Browser Application
	QGIS- Server Application

	Background Work
	Summary

	Environment Setup for Dynamic Visualization System
	System Blueprint for Flexible & Dynamic Visualization of Spatiotemporal Data
	Setting up Development Tools for Building Python Standalone Application
	Setting up Python 2.x
	Setting up IDE or Editor
	Setting up Qt/PyQt4
	Setting up Linux

	How to make Python and QGIS work together?

	NTNU-QGIS Web Application & QGIS Server Setup
	Apache server
	Implementation of QGIS-NTNU Web-Application
	NTNU-QGIS Web-Application Setup
	Framework Architecture: MVC model
	Login- Web Page
	Uploading file to QGIS Database Web Page
	Dashboard Web Page

	QGIS Server
	QGIS Server Setup
	How Web-Application interacts with QGIS Server

	Brief Introduction to NTNU-QGIS Web API
	Summary

	Spatial Database Setup
	Why PostgreSQL?
	PostgreSQL Setup
	PostgreSQL Installation
	Creating a Postgres Database User
	Creating a new Database
	Creating a Data Table
	Making a table using Postgres-Bash Prompt
	 Alternate option to create table : Postgres GUI

	PostGIS: Creating Spatiotemporal Databases
	What is PostGIS?
	Setting Up PostGIS
	Installation of PostGIS
	Implementation of PostGIS on ntnu-qgis Database

	Testing PostGIS Functionality

	Spatial Reference System in Visualization
	What is Spatial Reference System (SRS) or Coordinate Reference Systems (CRS)?
	Projected Coordinate Systems
	 Coordinate Reference System (CRS)- Formats

	Implementation of Storing and Representation of Geographical Features in Database
	Simple Feature Model for SQL
	Adding spatial geometry field to table

	Summary

	Design Implementation of Dynamic Visualization of Spatiotemporal Data using PyQGIS
	PyQGIS- Application Overview
	Blueprint of Standalone Script using PyQGIS
	Skeleton of PyQGIS Script
	First GUI View of PyQGIS Application

	Implementation of PyQGIS Application
	Static Visualization & Analysis
	Static Data Visualization Process
	Analysis: Specific Patterns in Spatiotemporal Data

	Dynamic Visualization & Analysis
	Flow 1: Uploading & Storing Spatiotemporal Data to the Database
	Flow 2: Dynamic Visualization of Data on Map Canvas
	Stage 1: Creating WMS Layer (Basemap)
	Stage 2: Creating Vector Layer from Database data
	Stage 3: Checking for Data Updates
	Flow 3: Analysis of the Data
	Find out Position Coordinate of random Car Feature
	Creating Connection with the QGIS Server
	Downloading Map- Progress bar
	Quit Button

	Discussion and Conclusion
	Discussion
	Limitation and Challenges in Current Work
	Conclusion

	References
	Source Code: Dynamic Visualization System
	Source Code: Static Visualization
	Source Code: Dynamic Visualization
	Source Code: PyQGIS-Application

