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Abstract

Based on a notion proposed in Dagens Næringsliv 15th of May 2017 we test if

low correlations between sector returns can predict an upcoming recession. Using

sector returns from the S&P 500, with weekly and monthly observations from 1989

to 2018, we calculate average sector correlation through time.

The explanatory variable, average sector correlation, is tested for significant

marginal effects and the models are tested for predictive powers. We use three

different model structures. First, a simple probit model with one explanatory

variable. The second structure adds a lagged dependent variable. The third and

final structure adds the yield spread as an explanatory variable, which is a proven

recession predictor. Model selection for all structures are based on the highest

pseduo − R2. We find that low average sector correlation, even though it has

a negative and significant marginal effect, is not a reliable recession predictor.

Adding a lagged dependent variable result in unrealistic high goodness-of-fit and

makes the average sector correlation insignificant. Adding the yield spread im-

proves the goodness-of-fit and slightly improves the predictive power of the model.

Still, the predictive powers are unreliable.

Simulating investment strategies using average sector correlation as a buy or

sell indicator results in little or no gain relative to a buy & hold strategy.
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Abstrakt

Med utgangspunkt i Dagens Næringslivs artikkel, publisert 15. mai 2017, tester vi

om lav sektorkorrelasjon kan predikere resesjoner. For å teste hypotesen, bruker

vi avkastningen til sektorene p̊a S&P 500. Datasettet best̊ar av ukentlige og

månedlige observasjoner fra 1989 til 2018. Forklaringsvariabelen vi bruker, gjen-

nomsnittlig sektorkorrelasjon, er spesifisert med ulike prognosehorisonter og ulike

korrelasjonsintervaller.

Vi tester for signifikante marginaleffekter til forklaringsvariabelen og prediktive

egenskaper til modellene. Den første modelstrukturen er en enkel probit model

med én forklaringsvariabel. I den andre modellen legger vi til en lagget avhengig

variabel. I den tredje og siste modelstrukturen legger vi til avkastningsforskjellene

mellom 10-̊arig og 3-m̊anedlig statsobligasjoner. For å velge de beste modelspesi-

fikasjonene, m̊aler vi forklaringskraft med pseduo−R2. Vi finner at lav gjennom-

snittlig sektorkorrelasjon, selv om den har negativ og signifikant marginaleffekt,

ikke er en god prediktor for resesjoner. N̊ar vi legger til en lagget avhenig variabel,

f̊ar vi urealistisk høy forklaringskraft og insignifikant marginal effekt. Avkastnings-

forskjellene mellom statsobligasjonene forbedrer forklarings- og prediksjonskraften

til modellen. Prediksjonskraften er likevell ikke til å stole p̊a.

Simulerte investeringsstrategier viser at gjennomsnittlig sektorkorrelasjon ikke

gir noen nevneverdig meravkastning enn en ”buy & hold” strategi.
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1. Introduction

During downturns, sector correlations have a tendency to be high, everything falls

at the same time. In Dagens Næringsliv 15th of May 2017, Harper claims that low

correlation between sector returns, increases the probability of a subsequent fall

in the market (Havnes 2017). Figure 1 illustrates the notion of low average sector

correlation before a recession (Harper 2018).

Figure 1.1: MSCI Nordic Countries Index and average Nordic sector correlation
with the MSCI Nordic index. The y-axis on the right side, specify the correlation
level at a descending order, while the y-axis on the left specify the value of the
MSCI Nordic index. (Harper 2018)

The last time sector correlations in the Nordic countries was observed as low

as in 2017 and early 2018, was prior to the global financial crisis of 2007-2008. A

possible explanation presented in the article, argues that this is caused by investors’

interpretations of the market. When correlations are low, investors tend to consider
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firm-specific news rather than macroeconomic events. (Havnes 2017)

This speculation drives the stock price. There are several possible macroeco-

nomic events that can affect Nordic and worldwide stock markets. A possible war

between the U.S and North Korea, a hard “landing” in China or a black swan,

are some examples of plausible recession drivers. Nielsen (Havnes 2017) rejects

that low correlation between sectors are a concern. He claims that correlations are

stochastic and have no predictive power for the return of the stock market.

Low correlations between sectors have also drawn attention in the US stock

market. In an interview with CNBC, Xu (2017) reports that average correlation

between sectors on the S&P 500 is at its lowest since the onset of the tech bubble.

Changes in physical policies is the main factor that effect sector correlation, which

becomes evident with the fall in correlation after the 2016 presidential election.

After this election, where the Republicans took over both the White House and

Congress, possibilities for significant changes in physical policies are anticipated.

It becomes increasingly more important to evaluate policies to pick winners and

losers. For example, at the start of 2017, there was a demand-increase in the

financial and industrial sector. At the same time there was a decrease in energy

and IT, where energy and IT are “non-Trump” related sectors. Average sector

correlation during 2017 and early 2018 was at a similar level as prior to the tech

bubble. However, the difference is that during the tech bubble there was one sector

that stood out, whereas in 2017 and early 2018 there are several. (Xu 2017)

Both Harper (Havnes 2017) and Xu (2017) agrees that when sector correlations

are high, the stock market is driven by macroeconomic conditions. When sector

correlations are low, they both agree that the stock market is driven by firm-specific

speculations. Like Nielsen(Havnes 2017), Xu(2017) disagrees with Harper(Havnes

2017) that low sector correlations are a concern.

Based on Dagens Næringsliv’s article and CNBC news report, the aim of our

master thesis is to examine if average sector correlation can be a recession pre-

dictor. Our paper consider the average correlation between sector indices on the

S&P 500. We choose to examine the U.S stock market because the data is easily

accessible and complete for a long period. Econometric modelling and testing,

inspired by earlier literature, are done with probit models. We investigate several

model specifications to search for any predictive power. This include adding an

2



autoregressive variable, using different correlation lengths and in combination with

another explanatory variable. We investigate our models using both weekly and

monthly observations. Further we will simulate and test investment strategies,

where average sector correlation is used as a buy or sell signal. If average sector

correlation is able to foresee big movements in the stock market, it should be a

useful tool to utilize.
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2. Earlier literature

Econometric work on predicting recessions have attracted a lot of attention. Fornari

and Lemke (2010) see this as no surprise. Expected future economic activity is im-

portant information for both public and private organizations. Fornari and Lemke

(2010) mention central banks, financial system surveillance authorities, banks and

investments funds as organization that have great interest in such information.

There are several studies where the objective is to identify a predictor that can

forecast business cycles. Estrella and Mishkin (1998) finds that the yield spread

between 10-year and 3-month Treasury bonds is the superior predictor. The yield

spread predicts best 4 quarters before a recession starts. Their results shows

that good prediction models with the yield spread can also be done with forecast

horizons between 2 and 6 quarters.

Their approach to find the superior predictor is to estimate simple probit mod-

els. In total they estimate 27 models. To decide on the best model, Estrella

and Mishkin (1998) compare goodness-of-fit for their models. Goodness-of-fit is

measured with pseudo− R2 developed in Estrella (1998). Further, they find that

combining yield spread with another variable, like NYSE index, improves the good-

ness of fit for forecast horizons shorter than 4 quarters. They use quarterly data

from 1959 to 1995 for the U.S.

Dueker (1997) adds a lagged dependent variable to Estrella and Mishkins (1998)

model and confirms their conclusion that the yield spread is the superior predic-

tor. His addition eliminates the possibility of autocorrelation and adds dynamic

structure to the prediction model. Dueker (1997) writes that many time-series ap-

plications violate the assumption of the error term being i.i.d. His opinion is that

it is implausible for the mean of the error term to be zero if there is no reference
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in the model to whether the economy is in a recession or not. He use the same

data as Estrella and Mishkin (1998), but with monthly observations.

Moneta (2003) finds that the superior predictor in the Euro area is also the

yield spread between 10-year and 3-month Treasury bonds, four quarters ahead

of a recession. Predicting the probabilities with the in-sample results, Moneta

(2003) follows Stock and Watson (1990) method of false positive and false negative

rate and finds that the yield spread rarely predict recessions that does not occur.

However, the yield spread fails to predict 70% of recessions. He is using quarterly

data from 1970 to 2003 in the euro area.

Wang (2017) investigates if low sector correlation can be used as an investment

strategy to trade the S&P 500. Wang (2017) forms a correlation strategy where she

invests in a S&P 500 tracker if correlations are increasing and sells if correlations

are decreasing. Wang(2017) finds that the correlation strategy yields an average

annual return of 11.9 %, from the period 2003 to 2016. In comparison, a buy &

hold for the same period yields an average annual return of 8.7 %.
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3. Data

3.1 Raw Data

Raw data is obtained from Thomson Reuters Eikon, the National Bureau of eco-

nomic research and the Federal Reserve Bank of ST. Louise. The data set includes

monthly and weekly observations of the S&P 500 index, S&P 500 sector indices,

the 10 year and 3 months yield spread and recession dates. The data set ranges

from September 1989 to May 2018.

To calculate average correlation, we need to obtain sector returns. S&P 500

are divided into 11 sectors by the Global Industry Classification Standard (GICS).

Companies that compose these sectors are categorized according to their main

business profile (S&PGlobal 2016). These 11 S&P 500 sectors are reported with

their relative weightings in Table 3.1.

Table 3.1: The Global Industry Classification Standard sectors and their S&P500-
weights. (“S&P 500 sector weightings 1979-2018.” 2018)

Sector Weights
Consumer Discretionary 12.21%

Consumer Staples 8.20%
Energy 6.08%
Finance 14.79%

Health Care 13.78%
Industry 10.27%

Information Technology 23.78%
Materials 2.99%

Real Estate 2.89%
Telecommunication Services 2.06%

Utilities 2.94%
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To estimate average correlation together with another explanatory variable, we

collect the yield spread. This data is obtained from the Federal Reserve Bank of

St. Louise. The yield spread is calculated as the difference in return between a 10

year Treasury bond and a 3 months Treasury bill, both with constant maturity.

To determine whether sector correlations can predict recessions we need to

define the periods of recessions. We use the National Bureau of Economic Research

(NBER) standard start and through dates (NBER 2012). For periods of U.S

recessions within the time span of our data set, see Table 3.2. There are several

methods to determine recessions, but the NBER method is considered to be the top

historical performer (Boldin 1994). A drawback with the NBER methodology is

that the start and through dates are not confirmed quickly. They are determined

by a committee in hindsight, thus it takes time for an ongoing recession to be

defined.

Table 3.2: National Bureau of Economic Research standard start and end dates
of U.S recessions from 1989.

Start date Through date
July 1990 March 1991

March 2001 November 2001
December 2007 June 2009

3.2 Processed Data

The sector indices of Materials, Real Estate, Telecommunication Services and Util-

ities are omitted. This is to make the estimation of correlation coefficients more

manageable. The remaining sectors comprise roughly 90% of the value of the

S&P500 index, which should be sufficient for correlation estimations. By omitting

the four smallest sectors, we reduce correlation coefficients from 55 pairs to 28

pairs. A drawback with studies using correlation is that it is easy for statisticians

to compute many correlations coefficients and only include those that are signifi-

cant (Boldin 1994). Note that we have not computed any significant tests prior to

cutting the four sectors.

For the seven sectors we estimate weekly and monthly logarithmic returns. The
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logarithmic returns are estimated as

R = ln(
Vt
Vt−1

), (3.1)

where Vt is the sector index value at time t and Vt−1 is the value of the sector index

in the previous period. Logarithmic returns are chosen over arithmetic returns,

because logarithmic returns are closer to normal distribution. Normality tests on

weekly data shows that only the arithmetic returns for the energy sector is closer

to normal distribution than the logarithmic returns. For the six remaining sectors,

logarithmic returns are closer to normal distribution.

We calculate Pearson‘s r, also called the product-moment correlation coeffi-

cient. The correlation coefficient between two sector index returns, denoted r, is

given by

r =

∑
(xt − x̄)(yt − ȳ)√∑

(xt − x̄)2
∑

(yt − ȳ)2
, (3.2)

where xt and yt are the logarithmic returns for sector x and sector y at time

t. (Altman 1991, p.293). To estimate Pearseons correlation coefficients, Altman

(1991) writes that is preferable that both variables in a correlation pair are ap-

proximately normally distributed. Figure 7.1 and 7.2 in the Appendix shows that

all logarithmic sector returns are approximately normally distributed. All distri-

butions are more pointed (leptokurtic) than normal distribution. Some tend to

have negative skewness. Hypothesis testing shows that all correlation coefficients

between sectors are significant.

For weekly logarithmic returns we estimate correlation coefficients with rolling

windows of 12, 24 and 36 weeks. Monthly logarithmic return correlation coefficients

are estimated with rolling windows of 3, 6 and 9 months. In total, 28 different

correlation coefficients are calculated for each correlation interval. The average

sector correlations, which we are testing as a predictor, are estimated at each time

t. Average correlations are calculated arithmetically,

avgcorrt =
1

28

28∑
x,y=1

rxy,t. (3.3)

Where avgcorrt is the average correlation at time t and r, x and y are defined as

9



in Equation 3.2. Note that correlation coefficients are only estimated when x 6= y.

Names of the variables and descriptive data statistics are found in Table 3.3.

3.3 Descriptive data

Table 3.3: Summarize of the data set variables. Includes total observations (N),
mean, standard deviation, min and max values.

Variable Obs Mean Std. Dev. Min Max
avgCorr12w 1,486 0.570 0.216 -0.037 0.968
avgCorr24w 1,474 0.582 0.198 0.043 0.952
avgCorr36w 1,462 0.589 0.189 0.078 0.935

recessionWeekly 1,497 0.098 0.298 0 1
spreadWeekly 1.49 1.78 1.12 -0.78 3.87
avgCorr3m 342 0.548 0.198 -0.058 0.878
avgCorr6m 339 0.522 0.251 -0.056 0.932
avgCorr9m 336 0.542 0.216 -0.044 0.894

recessionMonthly 345 0.107 0.310 0 1
spreadMonthly 345 1.77 1.12 -0.77 3.82

The first five variables in Table 3.3 are calculated with weekly data. avgCorr12w,

avgCorr24w and avgCorr36w refers to the average correlation over the past 12,

24 and 36 weeks, respectively. recesionWeekly is a dummy variable taking on a

value of 1 if there is a NBER defined recession that week, 0 otherwise (see Table

3.2 for recession dates). The variable spreadWeekly is the yield spread that week,

expressed in percentage points.

The latter five variables are calculated with monthly data. avgCorr3m, avgCorr6m

and avgCorr9m refers to the average correlation over the past 3, 6 and 9 month,

respectively. recessionMonthly is a dummy variable taking on a value of 1 if there

is a NBER defined recession that week, 0 otherwise. spreadMonthly is the yield

spread that month, expressed in percentage points.

Weekly data are reported every Monday. If Monday is a holiday, values are

reported on Tuesday. Monthly data are reported on the 11th day of each month.

From the mean in Table 3.3 we can see that 9.8% of weekly observations are weeks

in a recession while 10.7% of monthly observations are months in a recession. For
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weekly data, the first observation in a recession is the 43rd. For monthly data, it

is the 10th. Therefore, observations omitted by increasing correlation intervals are

non-recession periods, resulting in a higher proportion of recessions. For longer

correlation windows, the number of usable observations decreases.

avgCorr6m is the most volatile variable with the highest standard deviation,

while avgCorr36w is the least volatile. All average correlation variables have

a minimum value close to 0, which means that at times there are no linear as-

sociation between the sectors. Maximum values are close to 1 for all variables,

meaning that at times sectors vary almost perfectly together. The minimum value

for spreadWeekly and spreadMonthly are -0.78 and -0.77, respectively. This im-

plies that at times, short term interest rates, yields higher returns than long term

interest rates and the yield curve is inverted.

Figure 3.1: Average weekly sector correlation through time. Correlation estimated
with 12, 24 and 36 weeks rolling window. Grey bars are U.S recession periods.

11



Correlations with weekly observations are volatile, see Figure 3.1. Fluctuations

for 12, 24 and 36 weeks correlation follow a similar pattern. As Xu (2017) point out,

there is a period of low correlation prior to the recessions in 2001 and 2007-2009.

Also, we see that the correlation was low at the time Dagens Næringsliv’s article

(Havnes 2017) were published. Current correlation (May 2018) is higher. There

are no periods of abnormal low correlation prior to the recessions in 1990-1991.

There are two spikes of low correlation in 1994 and 1996, but no recessions.

Figure 3.2: Average monthly sector correlation through time. Grey bars are U.S
recession periods.

Monthly average correlations looks to follow similar patterns as well. Average

correlation over six months, the green line in Figure 3.2, is clearly more volatile

with larger spikes than three and nine month average correlations. The six month

average correlation graph contradicts Harper (Havnes 2017) and Xu(2017) asser-

tion that average correlations are at its lowest since before the 2001 and 2007-2009
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recessions. Average correlations have been at the same and lower level several

times after 2001 and 2007-2009 recessions.
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4. Methodology

4.1 Model specification

We are using a probit model to predict recessions in the U.S economy. Earlier

studies, such as Estrella and Mishkin (1998), Dueker (1997) and Moneta (2003),

use a probit model. The probit model defines the dependent variable as a binary

outcome, where

recessiont =

1, if there is a recession at time t

0, if there is not a recession at time t.
(4.1)

By formulating the dependent variable as a dummy, we achieve a more accurate

date and length of the recessions. If the dependent variable was defined as the

return of the S&P 500 index, corrections in the stock market could be interpreted

as a start or an end of a recession. (Dueker 1997)

Specifying the dependent variable as a binary outcome allows us to explore how

each explanatory variable affects the probability for a recession to occur (Long and

Freese 2006).

To understand the logic behind the probit model, we follow Long and Freese

(2006, p.132-135) derivation of binary models.

Assume that there is a latent variable recession∗t which is unobserved. The

latent variable can be expressed with one independent variable and form the struc-

tural model,

recession∗t = β0 + β1 ∗ avgCorrt−k + εt, (4.2)

which is identical to a linear regression except that the dependent variable is

15



not observed. We can however observe recessiont, which is the positive (1) or

the negative (0) outcome. The link between recessiont and recession∗t can be

expressed as

recessiont =

1, if recession∗t > 0

0, if recession∗t ≤ 0
(4.3)

, where unobserved recession∗t greater than 0 will result in observed value of

recessiont = 1.

The relation between the probability for recessiont = 1 given an explanatory

variable, avgCorrt−k, can be written

Pr(recessiont = 1|avgCorrt−k) = Pr(recession∗t > 0|avgCorrt−k), (4.4)

and inserting (4.2) and rearranging terms gives us

Pr(recessiont = 1|avgCorrt−k) = Pr(ε > −[β0 + β1avgCorrt−k]|avgCorrt−k).
(4.5)

We see that the probability for recession depends on the value of ε. For probit

models, ε is assumed to have standard normal distribution with mean = µ = 0

and a variance fixed at 1 (V ar(ε) = 1).

This leads to the probit model (4.5) to become

Pr(recessiont = 1|avgCorrt−k) =

∫ β0+β1∗avgCorrt−k

− inf

1√
2π
∗ e−

t2

2 dt, (4.6)

and is be expressed graphically in Figure 4.1.

Shaded areas in Figure 4.1 accumulate into the cumulative density function;

Pr(recessiont = 1|avgCorrt−k) = G(β0 + β1avgCorrt−k), (4.7)

where G is the normal cumulative distribution function.
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Figure 4.1: Linear regression (Equation 4.2) graph for the unobserved recession∗t
as y∗ and x is the independent variable. E(β1) < 0. Graphed is the normal
distribution of ε at three different values of x. The shaded area over T is when
y∗ > 0 and corresponds to Pr(recessiont = 1|avgCorrt−k).

4.2 Marginal effects

Because the model is non-linear, the magnitude of avgCorrt−k’s coefficient (β1),

is not very useful (Wooldridge 2008, p.582). However, the sign tells us if it has

a positive or negative effect. To interpret the magnitude of avgCorrt−k’s coef-

ficient on the probability of a recession, we need to consider the marginal effect

of avgCorrt−k. A consequence of the non-linearity is that the marginal effect is

not constant. The magnitude is determined by the initial value of average sector

correlation and on the values of other included explanatory variables. Marginal

effects can therefore be reported at several levels, often reported on average or

at means. Because the differences are small between the two, we choose to only

report marginal effects on average. When we look at the change in probability

given a change in average sector correlation, we consider a unit decrease of one

standard deviation which is reported in Table 3.3.

4.3 Maximum Likelihood Estimations

Another consequence of the probit model being non-linear, is that it cannot be esti-

mated with OLS. Instead it is estimated with maximum likelihood (MLE). This es-

timation process utilizes the distribution of the dependent variable recessiont given
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the explanatory variable avgCorrt−k, which automatically accounts for the het-

eroscedastic variance. For our sample size n, we express the density of recessiont

given avgCorrt−k as

f(recessiont|avgCorrt−k; β1) = [G(avgCorrt−kβ1)]recessiont [1−G(avgCorrt−kβ1)]1−recessiont ,

(4.8)

where recessiont = 0 or 1. For recessiont = 1 we get

f(recessiont|avgCorrt−kβ1) = [G(avgCorrt−kβ1)] (4.9)

and for recession = 0 we get

f(recessiont|avgCorrt−kβ1) = [1−G(avgCorrt−kβ1)]. (4.10)

We then obtain the log-likelihood estimation by taking the log of the density-

function

`t(β1) = recessiontlog[G(avgCorrt−kβ1)]+(1−recessiont)log[1−[G(avgCorrt−kβ1)].

(4.11)

G(avgCorrt−kβ1) takes on values between 0 and 1 in a probit model, which makes

`t(β1) defined given the value of β1. For our sample size n, the log-likelihood is

obtained by summing up `t(β1) for all observations

L(β1) =
n∑
t=1

`t(β1). (4.12)

The MLE of β1 is obtained by maximizing this log-likelihood. (Wooldridge 2008,

p.578-579)

4.4 Autoregressive model

A simple probit model with no lagged dependent variable lacks dynamic structure

(Dueker 1997). We estimate models where we add a lagged dependent variable
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with the same forecast horizon, k, avgCort−k. The model is written

P (recessiont = 1|avgCorrt−k, recessiont−k) = G(β0 +β1avgCorrt−k+β2recessiont−k),

(4.13)

where β2 is the coefficient for the lagged dependent variable. t and k is the same

as before.

4.5 Multiple regression model

Estimating with lagged dependent variables are not useful in practice (Boldin

1994), because recession dates are only available with very long lags. Following

Estrella and Mishkin (1998), we estimate models with two explanatory variables.

We look at the predictive power of average sector correlation combined with the

yield spread. The yield spread is associated with the steepness and direction of

the yield curve, which is considered as an accurate predictor of real activity in

the economy, especially between 2 and 6 quarters ahead (Estrella and Mishkin

1998). Including an additional relevant explanatory variable should increase the

predictive power of the model and may help against autocorrelation and omitted

variable bias.

The multiple response probability model is specified ass

P (recessiont = 1|avgCorrt−k, yieldSpreadt−k) = G(β0 + β1avgCorrt−k + β2yieldSpreadt−k),

(4.14)

4.6 Alternative model specification

In the process of selecting a probability model, both the linear probability model

(LPM) and the logit model are prominent alternatives. Because the linear prob-

ability model is linear, we can estimate it with OLS. This makes the estimation

simpler and the model becomes easier to work with. The drawback with the LPM,

is that because it is linear, the fitted probabilities can be less than 0 or greater

than 1. This was also the case when we used this model for our data set. For this

reason, a probit or logit model is a better choice.
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The logit model is very similar to the probit model and estimating our data set

with a logit model yield similar probabilities. However, economists tend to favor

the probit model because the error term has a standard normal distribution, while

the logit model has a standard logistic distribution. Considering previous studies

on U.S recessions have favored the probit model, it is the obvious choice between

the two. (Wooldridge 2008, p.577)

4.7 Stationarity

One of the criteria for a well-estimated model is that variables are stationary (En-

ders 2015, p.112). With a Dickey-Fuller test, we find that all variables except

avgCorr36w are stationary. Using first difference, avgCorr36w becomes station-

ary, which mean that the variable is integrated by order 1. Therefore, our mod-

els are estimated with avgCorr12w, avgCorr24w, avgCorr3m, avgCorr6m and

avgCorr9m and the first difference of avgCorr36w.

We find that spreadWeekly and spreadMonthly are non-stationary. By taking

first-differences, they become stationary and are integrated by order 1.

Because recession is a dummy-variable, there is no need to test for stationarity.

By definition, E(dummy) = p and V ar(dummy) = p(1 − p), where p is the

probability, same as the mean, for the dummy to be true. This implies that a

dummy variable cannot be a random walk.

4.8 Testing the probit model

To test the significance of our explanatory variable, average sector correlation, we

conduct likelihood ratio (LR) tests. This test exploits the difference in the log-

likelihood functions for the restricted and unrestricted model. Where the unre-

stricted model includes average sector correlation and the restricted omits average

sector correlation as an explanatory variable. In the same way that R2 decreases

when we drop a variable, the log-likelihood also decreases. Therefore, the LR test

checks if the decrease in log-likelihood is large enough to conclude that the effect
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of the variable is significant. The LR statistic is given by

LR = 2(Lur − Lr), (4.15)

where Lur is the log-likelihood function for the unrestricted model and Lr is for the

restricted model. Note that the log-likelihood function is always a negative value,

but because the unrestricted model is always greater or equal to the restricted

model, the LR statistic is always greater or equal to zero. Under H0, LR is

approximately chi-squared distributed. Thus, we use the table for the chi-square

distribution to determine the critical value.

To determine the goodness-of-fit and compare our estimated models, we can

use various pseudo − R2 measures. The most popular, which is also reported in

programs such as Stata, is the McFadden’s (1974) pseudo−R2, given by

pseudo−R2 = 1− Lur/Lr. (4.16)

Where Lur is the log-likelihood function for the estimated model and Lr is the

log-likelihood function for a model with only a constant. Given no explanatory

power, the term Lur/Lr = 1 and thus R2 = 0.

In the earlier literature, pseudo − R2 was measured by the one developed by

Estrella (1998). Because Estrellas (1998) pseudo−R2 is defined

pseudo−R2 = 1− Lur
Lr

−2
n
∗Lr

, (4.17)

where n is the number of observations, will the values differ from the Statas

reported McFadden pseudo − R2. For simplicity, we only use the McFadden

pseudo − R2 to choose between our model specifications. We expect to get lower

pseudo−R2 with Mcfaddens specification than with Estrellas (Walker and Smith

2016).
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4.9 Testing for predictive power

To test the predictive power of the models, we run predictions in Stata. Values

predicted are the probabilities for a positive outcome, P (recessiont = 1). Proba-

bilities are calculated from 1989 to 2018. Stata use the selected model and iterate

through time using observed values of the explanatory variables. The predicted

probabilities are obtained as the probability for a recession at time t + k. The

forecast formulas are

P (recessiont+k = 1|avgCorrt) = G(β0 + β1avgCorrt), (4.18)

P (recessiont+k = 1|avgCorrt) = G(β0 + β1avgCorrt + β2(recessiont) (4.19)

and

P (recessiont+k = 1|avgCorrt) = G(β0 + β1avgCorrt + β2yieldSpreadt), (4.20)

where avgCorrt, recessiont and yieldSpreadt are actual observations of each vari-

able at time t.

The predicted probabilities are measured on how often they become true. Fol-

lowing Stock and Watson (1990) we estimate the false positive and false negative

rate. False positive rate is the average fraction of times when a recession is fore-

casted and no recession happens. False negative rate measures the average fraction

of times a recession is not forecasted, but a recession occurs. By default, Stata uses

a prediction threshold of 0.5. This indicate that whenever the predicted probability

values goes over 0.5, a recession is forecasted.

Altman (1991) divides binary results into true positive, false positive, false

negative and true negative. Table 4.1 illustrates how these are defined.
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Table 4.1: Defining true positive, false positive, false negative and true negative
for model estimations.

Estimated Recession Status Actual Recession Status Name
1 1 True positive
1 0 False positive
0 1 False negative
0 0 True negative

The rates are calculated as

Falsepositiverate =
Falsepositive

FalsePositive+ TruePositive
(4.21)

and

Falsenegativerate =
FalseNegative

FalseNegative+ TrueNegative
, (4.22)

where falsepositive + truepositive are total recession = 1 predictions and

falsenegative+ truenegative are total recession = 0 predictions.

Wooldridge (2008, p.581) defines a similar prediction measure called “percent

correctly predicted”. This is calculated by dividing correct recession prediction

and correct non recession prediction on total observations. Some have criticized

this measurement for using a threshold value of 0.5. Threshold values for testing

predictive powers are called cut-off values. Often one of the outcomes is much less

likely than the other. As for this thesis. Only 9.8% of weekly data and 10.7%

of monthly data are observations made in recessions (recession = 1). It could

happen that with a cut-off value of 0.5, prediction of recessions never occur in

our models. One alternative is to use the percentage of success in the data set

(Wooldridge 2008, p.581). Thresholds for testing our models predictive power are

therefore 9.8% for weekly data and 10.7% for monthly data.

Percentage correctly predicted is a useful measure of predictive power. It can

however be misleading (Wooldridge 2008, p.581). A high percentage of correctly

predicted values can be found when the least likely outcome is very poorly pre-

dicted. If one of our models never predicts a recession, it will still predict correct

90.2% for weekly data and 89.3% for monthly data. This is because 90.2% and

89.3% of the observations in the data set are not recessions (recession = 0). These

percentages are not the same for all models predicted. This is because of the
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omitted observations caused by the increasing of forecast horizons and correlation

intervals. They do not change more than 1 percentage point.

4.10 Heteroscedasticity

Heteroscedasticity in probit models are largely discussed. A problem with mea-

suring and accounting for heteroscedasticity is that the variance of the error term

(ε) must be assumed rather than measured. Thus, a model is undefined unless we

make an assumption about the variance of the error term. For probit models, the

assumption is V ar(ε) = 1. (Long and Freese 2006, p.134, Williams 2009)

The assumption of V ar(ε) = 1 implies homoscedasticity. Under this restric-

tive assumption, MLE is consistent and asymptotically efficient. However, if this

assumption is violated, then the MLE will not be consistent. Ginker and Lieber-

man (2017) shows that coefficients, in the presence of heteroscedasticity, will be

misspecified. Predictions will be unaffected by heteroscedastic misspecification.

Several methods to cope for heteroscedasticity have been proposed. One of

which is the heteroskedastic probit model recommended by Wooldridge (2015).

This methodology is a suggestion on how to cope and check for heteroscedasticity

in probit models (Stata-Press 2013). This methodology is not acknowledged as a

solution to the problem, but will provide useful information under the presence of

heteroscedasticity.

Unlike the regular probit model, the variance of the error term is not fixed at

1. The variance vary as a function of the independent variables,

var(εi) = σ2
i = e(xi∗g)2 (4.23)

where xi = (avgCorr12wt−k, avgCorr24wt−k, avgCorr36wt−k, avgCorr3mt−k,

avgCorr6mt−k, avgCorr9mt−k, recessiont−k, yieldSpreadt−k) and i represent each

variable included in the model.

In the Stata code they also have included a LR-test for the presence of het-

eroscedasticity, where under the null hypothesis the variance of the error is ho-

mosedastic. Full derivation of the model is found in Stata-Press 2013.
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4.11 Investment strategy

Predicting recessions have practical possibilities. We conduct back-testing to ex-

amine if average sector correlation can be used as an indicator to trade the S&P

500. We use two different strategies.

Similarly to Wang (2017), the first strategy uses change in average sector cor-

relation as a buy or sell signal. If average sector correlation increase, we buy a

position (or hold if we already have invested) in the S&P500 and if correlation

decrease, we sell (or hold if we have no investment in the S&P 500) the position.

We impose a threshold value on the change in average sector correlation to make

the strategy less susceptible to small changes in correlation, which might not cor-

respond to a subsequent fall in the market. We measure the change in average

sector correlation for different time intervals, where we look at the change between

two dates.

The second strategy, sells the position in the S&P 500 when average sector

correlation decrease below a threshold. If correlation increase above the threshold,

we buy a position in S&P 500. We simulate with several threshold values, all of

which are below one standard deviation from the mean.

For both strategies, selling a position is the equivalent of investing in a risk

free asset. For simplicity we assume a 0% interest rate and all investments are

done with a 100 % of the capital. The simulation of the investment strategies are

done for the entire period of our data set. We assume an initial investment sum

of a 100,000, which is invested in the first period and automatically sold in the

last. We compare both our strategies with a simple buy & hold strategy, where

we invest in the first period and sell in the last.
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5. Empirical results

5.1 Probit model with one explanatory variable

Table 5.1: Measures of fit, pseudo−R2, for the probit models.
P (recessiont = 1|xt−k) = G(β0 + β1xt−k)

k = weeks/months ahead
xt−k variables k=1 k=3 k=6 k=9 k=12
avgCorr12wt−k 0.0051 0.0039 0.0022 0.0012 0.0003
avgCorr24wt−k 0.0001 0.0003 0.000 0.0001 0.0006
avgCorr36wt−k 0.0022 0.0012 0.0005 0.0002 0.000
avgCorr3mt−k 0.0081 0.0321 0.0651 0.0700 0.0591
avgCorr6mt−k 0.0059 0.0003 0.0210 0.0276 0.0253
avgCorr9mt−k 0.000 0.0058 0.032 0.0492 0.0464

Table 5.2: Marginal effects for probit model variables by themselves. The LR
statistics are reported in the parenthesis.

P (recessiont = 1|xt−k) = G(β0 + β1xt−k)
k = weeks/months ahead

xt−k variables k=1 k=3 k=6 k=9 k=12
avgCorr12wt−k 0.081 (7.48**) 0.070 (6.62*) 0.052 (5.66*) 0.038 (5.28*) 0.020 (5.1*)
avgCorr24wt−k 0.034 (5.76*) 0.020 (5.68*) 0.002 (6.06*) -0.011 (6.76**) -0.030 (7.92**)
avgCorr36wt−k 0.494 (9.8**) 0.364 (9.28**) 0.231 (9.24**) 0.158 (22.82**) 0.053 (36.56**)
avgCorr3mt−k -0.112 (2.82) -0.219 (8.88**) -0.310 (17.24**) -0.313 (30.9**) -0.275 (41.6**)
avgCorr6mt−k 0.079 (2.96) -0.016 (2.12) -0.136 (20,14**) -0.149 (35.14**) -0.134 (48.76**)
avgCorr9mt−k 0.001 (6.5*) -0.083 (16.78**) -0183 (36.24**) -0.212 (53.32**) -0.211 (53.32**)

(*) notes significant at the 5 % level and (**) at the 1 % level.

Based on pseudo − R2 reported in Table 5.1, we find that a model including the

variable avgCorr3mt−9 is the best predictor. This model has a pseudo − R2 of

0.070, which means that it explains 7.0 % of the variation in recession.
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The marginal effects are reported in Table 5.2. We find that the marginal

effect of avgCorr3mt−9 is -31,3 %, which means that a decrease of one standard

deviation, 0.198, in average sector correlation will increase the probability of a

recession in 9 months by 6.20 percentage points. This result supports the notion

of low correlation as a predictor of recessions. The LR-test shows that the effect

of avgCorr3mt−9 is significant at the 1%-level.

Figure 5.1: Blue line is the predicted probability when using avgCorr3mt−9 as a
predictor for recession. Recessions are grey areas in the graph.

The graph in Figure 5.1 shows the predicted probabilities through time of the

data set. Optimally, the graph should go towards 1 when there is a recession.

Predicted probabilities have several spikes that peaks between 0.3 and 0.4. Just

after the 1990 recession the probability is at its highest, reaching its peak at 0.421

(see Table 7.1 in Appendix). This peak occurs just after the recession is through,

which means that the recession is predicted too late. The same pattern can be
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seen for the 2001 recession, where probability peaks just after. For the 2007-2009

recession, there are two peaks close together. The first peak is premature and the

second occurs at the start of the recession, suggesting that the second predicts the

recession.

From 1989 to 2007 predicted probabilities have bigger fluctuations than in

the period after 2007. In the latter period, predicted probabilities are low with

much smaller fluctuations. The predicted probability suddenly rises at the end of

our data set, suggesting that the probability for a recession in the near future is

increasing.

We follow Wooldridge’s (2008, p.581) suggestion and set the prediction thresh-

old to 10.7%. The results are reported in Table 5.3 and 5.4. False positive and

false negative rate reveals that 32.78% of the recessions predicted are not recessions

and 38.24 % of recession periods are not predicted. The model fails to predict 12

recession months that occurs and 98 of the recession months it predicts are in-

correct (see table 5.2). This model correctly predicts 66.67% of the observations.

Compared to a model that never predicts recessions, which will predict 89.3% of

the observations, this is low.

The LR-test for the heteroskedastic probit model keeps the null hypothesis of

homoscedasticity (see Appendix 7.2).

Table 5.3: Predictions of recession using avgCorr3mt−9 as a predictor vs true
recessions.

recession = 1 recession = 0 Total
Pr(recession = 1) 21 98 119
Pr(recession = 0) 13 201 214

Total 34 299 333

Table 5.4: False positive rate and false negative rate for avgCorr3mt−9 prediction
of recessions. Threshold 10.7%.

False Positive Rate 32.78%
False Negative Rate 38.24%
Correctly Classified 66.67%
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5.2 Probit model including an autoregressive term

Table 5.5: Measures of fit, pseudo−R2, for the probit models
P (recessiont = 1|xt−k, recessiont−k) = G(β0 + β1x1t−k + δrecessiont−k)

k = weeks/months ahead
x1t−k variables k=1 k=3 k=6 k=9 k=12
avgCorr12wt−k 0.9252 0.8173 0.6881 0.5799 0.4867
avgCorr24wt−k 0.9254 0.8181 0.5812 0.5817 0.4883
avgCorr36wt−k 0.9248 0.8174 0.6880 0.5980 0.5172
avgCorr3mt−k 0.7912 0.5367 0.2735 0.1199 0.0791
avgCorr6mt−k 0.7791 0.5044 0.2819 0.0984 0.0596
avgCorr9mt−k 0.8184 0.5791 0.3270 0.1350 0.0793

Table 5.6: Marginal effects of probit model variables by themselves. The LR
statistics are reported in the parenthesis.

P (recessiont = 1|xt−k, recessiont−k) = G(β0 + β1x1t−k + δrecessiont−k)
k = weeks/months ahead

xt−k variables k=1 k=3 k=6 k=9 k=12
avgCorr12wt−k -0.003 (0.24) -0.009 (0.68) -0.019 (1.58) -0.029 (3.80) -0.043 (4.00*)
avgCorr24wt−k -0.005 (0.60) -0.017 (1.92) -0.031 (3.44) -0.43 (6.04*) -0.59 (6.76**)
avgCorr36wt−k -0.02 (0.22) -0.154 (1.80) -0.281 (3.08) -0.340 (28.56**) -0.420 (48.52**)
avgCorr3mt−k -0.078 (5.66*) -0.199 (14.14**) -0.292 (18.40**) -0.305 (31.28**) -0.272 (27.30**)
avgCorr6mt−k -0.046 (3.00) -0.114 (6.72**) -0.1963 (30.02**) -0.181 (39.10**) -0.158 (36.88**)
avgCorr9mt−k -0.050 (13.06**) -0.125 (29.78**) -0.2144 (49.30**) -0.231 (59,14**) -0.226 (41.14**)

(*) notes significant at the 5 % level and (**) at the 1 % level.

Adding a lagged dependent variable removes the potential problem of autocorrela-

tion (Dueker 1997). The best fitted model is obtained with avgCorr24wt−1, which

has a pseudo−R2 of 0.9254. From Table 5.6, we can see that all marginal effects

have negative signs, which supports the notion of low correlation as a predictor of

a recession. The marginal effect of avgCorr24wt−1 is -0.5 %, which means that

a standard deviation decrease, 0.198, in avgCorr24wt−1, increases the chance of

recession with −0.1 percentage points. The LR-test shows that the effect is not

significant at any conventional level.

From the graph in Figure 5.2, we can clearly see that this model yields high

pseudo − R2. The graph follows the three recessions almost perfectly. Table 5.8

shows that the false positive rate, false negative rate and percentage correctly
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classified are close to perfect as well. Six times throughout the data set does the

model predict wrong. All three recessions are predicted one week too late and one

week to long. This is because the model only forecast a recession in one week if

current week is in a recession.

Most of the models report in Table 5.5 have relatively high pseudo−R2. Such

high goodness-of-fit values indicate that the lagged dependent variable explains

almost all the variation of the dependent variable, recessiont. Further, it indicate

that the values are decaying when the forecast horizon increases. From Table 5.7

we see that the false positive rate is 0.23%, the false negative rate is 2.04 % and

the percentage correctly classified is 99.57 %. These predictions are unrealistically

accurate, which derives from the high explanatory power of the autoregressive

variable.

The high goodness-of-fit values are not a surprise. Only six times in the data

set does an observation of the dependent variable change from 0 to 1 and from 1

to 0 in the next observation. These changes occurs at the start and the end of the

three recessions.

Opinions on adding a lagged dependent variable to a prediction model differs.

Estrella and Mishkin(1998) combined predictors in a model rather than adding a

lagged dependent variable. They argue that recessions are defined long after the

economy starts declining, thus making this information unavailable when predict-

ing in the future.

As well as in the last model, according to the heteroskedastic probit model,

there is not a problem with heteroscedasticity(see Table 7.2 in Appendix).

Table 5.7: Predictions of recession using avgCorr24wt−1 and recessiont−1 as a
predictor vs true recessions.

recession = 1 recession = 0 Total
Pr(recession = 1) 144 3 147
Pr(recession = 0) 3 1324 1327

Total 147 1327 1474
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Figure 5.2: Blue line is the predicted probability when using avgCorr24w and
a lagged dependent variable, Recessiont−1, as a prediction model for Recession.
Recessions are grey areas in the graph.

Table 5.8: False positive rate and false negative rate for avgCorr24wt−1 and
recessiont−1 prediction of recessions. Threshold 9.8%.

False Positive Rate 0.23%
False Negative Rate 2.04%
Correctly Classified 99.57%
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5.3 Probit model including yield spread

Table 5.9: Measures of fit, pseudo−R2, for the probit models.
P (recessiont = 1|xt−k, yieldSpreadt−k) = G(β0 + β1xt−k + β2yieldSpreadt−k).

k = weeks/months ahead
xt−k variables k=1 k=3 k=6 k=9 k=12
avgCorr12wt−k 0.0155 0.0126 0.0093 0.0057 0.0067
avgCorr24wt−k 0.0112 0.0091 0.0071 0.0046 0.007
avgCorr36wt−k 0.0125 0.01 0.0076 0.0056 0.0066
avgCorr3mt−k 0.0509 0.0701 0.1150 0.0840 0.0647
avgCorr6mt−k 0.0532 0.0407 0.0669 0.0376 0.0284
avgCorr9mt−k 0.0537 0.0482 0.0821 0.0596 0.0494

Table 5.10: Marginal effects of probit model variables by themselves. The LR
statistics are reported in the parenthesis.

P (recessiont = 1|xt−k, yieldSpreadt−k) = G(β0 + β1xt−k + β2yieldSpreadt−k).
k = weeks/months ahead

xt−k variables k=1 k=3 k=6 k=9 k=12
avgCorr12wt−k 0.083 (7.18**) 0.070 (5.80*) 0.054 (4.26*) 0.040 (3.28) 0.021 (2.38)
avgCorr24wt−k 0.037 (5.52*) 0.022 (4.96*) 0.005 (4.64*) -0.008 (4.70*) -0.027 (5.18*)
avgCorr36wt−k 0.486 (9.48**) 0.360 (8.58**) 0.231 (7.90**) 0.154 (21.52*) 0.044 (33.86**)
avgCorr3mt−k -0.103 (2.06) -0.209 (7.44**) -0.304 (15.96**) -0.313 (25.22**) -0.276 (21.98**)
avgCorr6mt−k 0.095 (3.24) -0.005 (1.24) -0.132 (17.30**) -0.150 (28.44**) -0.135 (28.54**)
avgCorr9mt−k 0.020 (8.00**) -0.067 (15.82**) -0.173 (33.44**) -0.211 (46.58**) -0.211 (33.08**)

(*) notes significant at the 5 % level and (**) at the 1 % level.

By adding the explanatory variable yieldSpreadt−k to the original model, we

achieve a model with higher explanatory power. The best fitted model is found

with the variable avgCorr3mt−6 and yieldSpreadt−6. This result is similar to

the findings of Estrella and Mishkin (1998), Dueker (1997) and Moneta (2003),

which finds that a forecast horizon between 6 and 18 months, yields the highest

pseudo−R2 for a model with the yield spread. The pseudo−R2 is 0.1150, which

means that it explain 11.5 % of the variation in recessiont. We achieve consid-

erably lower pseudo − R2 than the studies mentioned, even though we have one

additional explanatory variable. This could be a result of differing data sets.

The marginal effect is −0.304, which means that on average a decrease in

average correlation of one standard deviation, 0.198, will increase the probability

of a recession by 6.02 percentage points.
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The graph in Figure 5.3 shows that the predicted recessions are more timely

now than the probit model with just avgCorr3mt−9 as the predictor. Still the same

pattern emerges. Predicted probabilities have more and greater spikes before the

2007-2009 recession than after. The highest peak is in the 2001 recession. As in

Figure 5.1, the predicted probabilities rises at the end of this data set.

The model fails to predict 11 recession months that occurs and 92 of the re-

cession months it predicts are incorrect. False positive rate is 30.77% and false

negative rate is 29.73%. Percentage correctly classified is 69.35 %, which means

that it increase slightly when we include yield Spread in the model. It is still much

lower than a model which never predict recessions.

A LR-test reveals that this model suffers from heteroscedasticity(see Table 7.2

in Appendix). Running a heteroskedastic probit model shows that the marginal

effect of avgCorr3mt−6 is now −0.282. A decrease by one standard deviation will

increase the probability by 5.58 percentage points. We see that the original esti-

mates of the marginal effect changes slightly as a consequence of the heteroscedas-

ticity. Predictions are unchanged.

Table 5.11: Predictions of recession using avgCorr3mt−6 and yield spread as a
predictor vs true recessions.

recession = 1 recession = 0 Total
Pr(recession = 1) 26 92 118
Pr(recession = 0) 11 207 218

Total 37 299 336

Table 5.12: False positive rate and false negative rate for avgCorr3mt−6 and
spreadt−6 prediction of recessions. Threshold 10.7%.

False Positive Rate 30.77%
False Negative Rate 29.73%
Correctly Classified 69.35%
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Figure 5.3: Predicted probabilities combining avgCorr3mt−6 and yieldSpreadt−6

for recessions.
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5.4 Investment strategy

Table 5.13: Annual returns using the change in average sector correlation as a buy or sell
signal. All investments are in the S&P 500 for the entire period of our data set, with monthly
data. The top axis specify the threshold value on the change in correlation required for a buy
or sell to be executed. The left vertical axis specify the time interval, which is the number of
weeks back in time, the change in correlation is measured against. All returns are reported in
percentage.

0.2 0.4 0.6 0.8
1 month 5.88 6.07 6.30 6.78
2 months 6.26 7.09 7.11 7.62
3 months 5.92 7.07 6.93 7.67
6 months 5.21 7.17 7.31 7.62

Table 5.13 reports the results of an investment strategy using the change in cor-

relation as buy or sell signal. The highest annual return is 7.67 %, obtained with

a threshold of 0.8 and a time interval of 3 months. This is marginally better than

a buy & hold strategy, which yield an annual return of 7.62 %. The similarity is

no surprise, considering a change in correlation of 0.8 is rare, resulting in only 4

transactions. Using a 0.8 threshold value with a time interval of 2 and 6 months,

results in no transactions. All results obtained with a threshold value lower than

0.8, underperform relative to the buy & hold strategy. There seems to be little to

gain from this strategy and in most circumstances we achieve a lower return than

the buy & hold strategy.

Table 5.14: Annual returns using the change in average sector correlation as a buy or sell
signal. All investments are in the S&P 500 for the entire period of our data set, with weekly
data. The top axis specify the threshold value on the change in correlation required for a buy
or sell to be executed. The left vertical axis specify the time interval, which is the number of
weeks back in time, the change in correlation is measured against. All returns are reported in
percentage.

0.2 0.4 0.6 0.8
1 week 5.64 6.64 7.43 7.65
4 weeks 5.81 7.04 7.99 7.67
8 weeks 6.63 6.53 8.78 7.64
12 weeks 4.32 7.60 6.96 7.56
24 weeks 6.49 6.19 6.39 7.66
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Using the same strategy with weekly data allows us to execute transactions

more frequently. From Table 5.14 we see that the highest annual return was 8.78

%. This return was achieved with a threshold of 0.6 and a time interval of 8 weeks.

Relative to a buy & hold strategy with a return of 7.66 %, it achieves 33.52 %

higher return for the period. 12 transactions were executed during the period, all

during the 2001 recession and in 2017 and 2018. We see that for a threshold value

of 0.8, returns are very similar to a buy & hold strategy. This is because a change

in correlation of 0.8 occurs very rarely, resulting in few transactions. None of the

returns produced with a threshold value of 0.2 and 0.4 managed to beat the buy

& hold strategy. Even though some combinations of threshold values and time

intervals beat the buy & hold strategy, there is little consistency and the results

appears to be random.

Table 5.15: Annual returns using the level of average sector correlation as a buy or sell signal.
All investments are in the S&P 500 for the entire period of our data set, with monthly data. The
top axis specify the threshold value. If correlation decrease below this value, the position in the
S&P 500 is sold and placed in a risk free asset. When correlation increase above this threshold,
a position in the S&P 500 is bought. All returns are reported in percentage.

Threshold Return
0.34 8.01
0.32 8.20
0.30 8.25
0.28 8.70
0.26 7.82
0.24 7.62
0.22 7.47
0.20 7.43
0.1 7.91
0.05 8.05

Table 5.15 report the results of an investment strategy using the level of average

sector correlation as a buy or sell signal. The highest annual return is 8.70 % and

is achieved with a threshold value of 0.28. Compared to the return of a buy &

hold strategy with a return of 7.62 %, this strategy achieve 32.26 % higher return

for the period. 20 transactions were executed during the period. We see that

subtle differences in threshold values yields different results. Both the highest and

the lowest threshold value outperformed the buy & hold strategy, while several
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of the values in between, did not. This volatility in the returns makes it difficult

to determine whether the correlation level actually has any significance on return

from the S&P 500.

Table 5.16: Annual returns using the level of average sector correlation as a buy or sell signal.
All investments are in the S&P 500 for the entire period of our data set, with monthly data. The
top axis specify the threshold value. If correlation decrease below this value, the position in the
S&P 500 is sold and placed in a risk free asset. When correlation increase above this threshold,
a position in the S&P 500 is bought. All returns are reported in percentage.

Threshold Return
0.34 6.67
0.32 6.96
0.30 6.98
0.28 7.53
0.26 7.67
0.24 7.37
0.22 7.71
0.20 7.70
0.1 8.21
0.05 7.74

Table 5.16 report the same strategy using weekly data. The highest annual

return is 8.21 %, achieved with a threshold value of 0.1. This results outperform

the buy & hold strategy with 15.25 % for the period. Using weekly data, there

seem to be a tendency of lower threshold values yielding higher returns, with a

peak at 0.1. The returns are still quite sensitive to small changes in the threshold

value. As we see when the threshold value decreases from 0.1 to 0.05. Because

the returns are still sensitive to small changes in the threshold value and are quite

similar to the yield of the buy & hold strategy, we cannot draw any conclusions.
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6. Conclusion

This paper examines low average sector correlation as a recession predictor. As

Estrella and Mishkin (1998), Dueker (1997) and Moneta (2003) we use a probit

model. We find that for two of our model structures, a decrease in average sector

correlation will increase the probability for a recession. Based on low explanatory-

and predictive powers of these two model structures, we conclude that low average

sector correlation cannot be used as a recession predictor.

The first model we explore is the simple probit model with only average sector

correlation as the independent variable. Estimating with different forecast horizons

and correlation lengths, we find that the superior model has a forecast horizon of

9 months and a correlation length over the previous 3 months. A decrease in

average sector correlation by one standard deviation will increase the probability

for a recession in 9 months by 6.20 percentage points. Using this specification as

a predictor, we predict correctly 66.67 % of the binary outcomes.

Following Dueker (1997), we add a lagged dependent variable to remove poten-

tial autocorrelation. The model with highest goodness-of-fit is estimated with a

forecast horizon of 1 week and a correlation length of 24 weeks. The autoregressive

variable renders the marginal effect of average sector correlation insignificant. An-

other issue to consider is that the performance of this model is not realistic. This

is because it takes time for an economy to realize and determine that a recession

has started.

By adding another explanatory variable, the yield spread, we achieve a better

fitting model with slightly better predictive properties. We find that the best

fitting model is estimated with a forecast horizon of 6 months and correlation over

the previous 3 months. A decrease in average sector correlation by one standard
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deviation, increases the probability of a recession by 6.02 percentage points.

Diagnostic testing reveals that this model suffers from heteroscedasticity. Run-

ning a heteroscedastic probit model produce a different marginal effect. A decrease

by one standard deviation will now affect the probability for a recession by 5.58

percentage points. The model predicts 69.35 % of the binary outcomes.

We simulate investment strategies using average sector correlation as a buy or

sell indicator for the S&P 500. Results show that there are little or no gain to

these strategies, relative to a buy & hold strategy.
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7. Appendix

Figure 7.1: Sectors distribution of weekly logarithmic returns vs normal distribu-
tion.
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Figure 7.2: Sectors distribution of monthly logarithmic returns vs normal distri-
bution.

Table 7.1: Summarize of predicted probabilities. 3Months.
Variable Obs Mean Std. Dev. Min Max

pravgCo mL1 342 0.109 0.023 0.074 0.191
pravgCo mL3 342 0.109 0.047 0.048 0.297
pravgCo mL6 342 0.111 0.070 0.030 0.409
pravgCo mL9 342 0.104 0.072 0.024 0.421
pravgC mL12 342 0.097 0.064 0.025 0.375

Table 7.2: LR-tests for heteroscedasticity.
One explanatory variable 1.47

Lagged dependent variable 0.57
Yield spread 6.57∗

(*) notes significant at the 5 % level.
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