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A digital computer based controller is concerned with processing of
number sequences. These sequences are discrete time signals gener-
ated by sampling a continuous signal at constant time intervals. In
order to analyse and design such a control system it is necessary to
have a mathematical model of these signals, the digital control system
components, and the controlled power electronics plant.

This chapter contains a review of the theoretical aspects concerning
discrete and sampled system and signals. No attempt is made to
present the complete theory in this report. Rather, attention is focused
on a limited number of topics which can serve as an adequate back-
ground necessary for the understanding and guiding of practical
design of a digital control system in power electronics.

The introduction of the discrete time concept is done as a logical and
gradual extension of the classical philosophy for continuous systems.
The presentation is based both on the input-output model approach
for mono-variable systems, where the transform technique is used,
and the state space representation.

3.1 System overview, terminology, and basic assumptions
This section serves two purposes.   The first is to give an overview of
a power electronic system controlled by a digital computer. The sec-
ond is to identify system characteristics and to introduce terminology
related to signals and systems. The discussion will be done with refer-
ence to Figure 3.1, which is a revision of figure 1.1 where the basic
element and signals in the closed loop control system are highlighted.

The part of the system that contains the manipulated and measured
variables is called the process or plant. In this text we are dealing with
processes in connection with power electronics.

The process/plant in a power electronic system is most often some
kind of energy conversion equipment. Depending on the actual appli-
cation, the manipulated variables may be rotating speed, current, volt-
age, temperature,   etc. In some applications it is convenient to
include the electrical power converter as part of the process while in
other applications it can be regarded as a separate unit.

The measured output from the process y(t) is a continuous time sig-
nal. A computer is  able to work with digital coded information only.
The output from the process must therefore be converted into digital
form by some kind of analog to digital (A/D) converter. The digital
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output signal from the A/D converter is discrete in both time and
amplitude level. The discretizing in time is called sampling. The dis-
cretizing in amplitude level is called quantizing.

Figure 3.1  Schematic diagram illustrating the interface signal between the system
elements.

The computer interprets the converted signal y(kTs) as a sequence of
numbers. These discrete signals are manipulated by the computer
algorithm which solves a difference equation implementing the
desired control law. This algorithm generates a new sequence of num-
bers u(kTs). This sequence is passed on to the process through some
kind of a reconstruction device represented here by a digital to analog
(D/A) converter. The D/A converter must produce a continuous-time
signal. This is normally done by keeping the control signal constant
between the conversions (zero order hold). Note that the system runs
open loop between the sampling instants.

Ideally the A/D and D/A conversions are done at the sampling
instants t = kTs where k = 0,1,2.... The time interval between these
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instants are usually constant and are denoted by the sampling period
Ts. The inverse of Ts is the sampling frequency

(3.1)

The execution of the control program may be started by a clock which
gives an interrupt signal to the computer at each sampling instant.

The events that takes place in the system are illustrated in figure (3.2)
and and figure (3.3).

Figure 3.2  Graphical illustration of the events that take place in a program that
represents a digital controller.

Since the computer is performing the tasks in sequence, there will be
always a time delay due to the computing time. The A/D and D/A
conversion also takes time. These time delays must often be taken
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into account when designing the control system. We will show later
how this can be done.

Figure 3.3  Synchronizing input and output. y(kTs) and u(kTs) are numbers stored
in the computer.

In order to be concise, let us give the applied definition of the various
type of signals and systems that will be used in the  following sec-
tions:

Continuous-time signals (CT-signals) are defined over a continuous
span of time. The amplitudes of these signals range either over a con-
tinuous range of values or a finite number of possible values. Some-
times one will use the term analog signals to denote CT-signals.

Discrete-time signals or sequences (DT-signals) are defined over
only a particular set of discrete values of time, which   means   that
such signals can be represented as sequences of numbers. A sequence
of numbers, x, is denoted as

(3.2)

Although this implies that x(kTs) is actually the k'th member, it is con-
venient to denote the sequence itself by x(kTs). The short form of
notation
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(3.3)

 will also be used interchangeably throughout the text.

Sampled signals represent discretized version of CT-signals. They
are a special case of DT-signals which are pulse amplitude modulated
and denoted as

Digital signals are signals where the information is in some kind of
coded form. They are quantized in amplitude and discrete in time.
Thus, they are a special case of DT-signals.

Systems are classified by the same criteria as signals.

Continuous (or analog) systems are systems where both input and
output signals are CT-signals.

Discrete-time systems are systems whose input and output are DT-
signals.

Sampled-data systems contain both discrete- and continuous time
signals.

Digital Control system is a system that contains both digital and con-
tinuous time signals.

From the previous discussion we have seen that a power electronic
system that contains a computer for control, operates on signals that
are of digital and continuous nature. It may therefore be characterized
as a digital control system.

If we assume that the computer and the signal converters have a suffi-
ciently large word length, we may neglect the effect of amplitude
quantizing. With this approximation our system can be said to be a
sampled system consisting of a purely discrete component, (the com-
puter algorithm), and a continuous system component, (the process or
plant). Between these two sub-systems there must be some kind of
signal conversion component, logically represented by the A/D and
the D/A converters.

In order to analyse this system, we must have a mathematical repre-
sentation of the various system elements. The aim of this chapter is to

x kTs( ) x k( ) xk= =

x* t( ) x kTs( )δ t kTs–( )

k 0=

n

∑=



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

3 - 6 SIE10AH Elektronikk for Energistyring 

appropriately model each element in order to connect these in an
overall representation of the complete system.

We will assume that the system components can be modelled as linear
and time invariant components.    Components in power electronic
systems are, as will be shown, not all linear. A first approximation of
the system's behaviour may be considered essentially linear, or at
least having a linear working domain. Because of this approximation
it is necessary to do computer simulations of the designed system to
check the behaviour outside the linear domain.

3.2 Modelling of discrete time systems - The computer control 
algorithm represented as a difference equation
Assume that the input to the digital processor up to the time t=kTs has
been e(0), e(Ts), e(2Ts), ..., e(kTs) and the output sequence prior to
that time was u(0), u(Ts), u(2Ts), ..., u((k-1)Ts). The next output at
t=kTs is written as:

We will assume that the computer algorithm performs a linear combi-
nation of the input and the past control output. Thus we write:

(3.4)

This is a linear difference equation. If the coefficients are constant it
is said to be time invariant.   The order of the equation is n if the sig-
nals from only the last n sampling instants enter the equation. If not
all fi are zero the equation is said to be recursive because it specifies a
recursive procedure for determining the output in terms of the inputs
and previous outputs. If all fi are zero the equation is said to be non-
recursive.

The algorithm of the general form (3.4) can adequately perform most
control tasks in power electronic systems. The aim of the control sys-
tem design procedure is to select the order of the equation, the sam-
pling rate, and give values to gi and fi. This must be done in such a
way that the overall system attains the desired dynamic properties.

3.2.1 A discrete PI-control algorithm
One of the most common control algorithms in power electronic sys-
tems is the proportional-integral (PI) control action. As an example of
the origins of a difference equation we will consider a discrete
approximation to the continuous PI-control law. Suppose we have a
continuous input signal, e(t), of which a segment is sketched in figure

uk f ek ek 1– ek 2– …ek n– uk 1– uk 2– …uk n–,;, , ,( )=

uk g0ek g1ek 1– … gnek n– f1uk 1–– … f– nuk n––+ + +=
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(3.4), and we wish to compute an approximation to the continuous PI
control law given by

 (3.5)

with the transfer function

(3.6)

Using only the discrete values e(0),......,e(k-1), e(k) the output of the
discrete PI controller can be written as

(3.7)

where I(k) is the approximation to the integral up to the time t = kTs.
We will assume that we have an approximation of the integral up to
the time t=(k-1)Ts and we call it I(k-1) the integral then can be written

(3.8)

The problem is to obtain I(k) from this information. By interpreting
the integral as the area under the curve e(t) the problem reduces to
finding an approximation to the area under the curve between (k-1)Ts
and kTs. See figure  (3.4). By the trapezoid approximation we can
write:

(3.9)
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Figure 3.4  Trapezoid approximation of the integral.

By observing that 

(3.10)

and combining equations (3.7) through (3.10) we find

(3.11)

By collecting terms, this recursive differential equation describing a
discrete PI control algorithm can be expressed as

(3.12)

where the coefficients are

(3.13)
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If we approximate the area under the curve e(t) in the time interval
from t=(k-1)Ts to t=kTs by the rectangle of height e(k-1) the resulting
formula for the integral is called the Forward Rectangular Rule of
integration and is given by 

(3.15)

A third possible integration method is the Backward Rectangular
Rule, given by

(3.16)

A block diagram representation of equation (3.12) is shown in Figure
3.5. Note that the data storage is represented by a time delay which
delays the input data for one sampling period.

Figure 3.5  Block diagram representation of equation (3.12)

Recall that in a block diagram representation of CT-systems the basic
element is the integrator. In DT-systems the basic element is the time
delay (or storage) of Ts seconds.

3.2.2 Discretizing of a continuous system
We have seen that the computer control algorithm can be represented
as a difference equation. As another example of the origins of a dif-
ference equation we will consider the situation where we have a time-
discrete input control of a continuous plant. Suppose we have a con-
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tinuous input signal, u(t), and the output signal from the CT-plant, y(t)
as shown in Figure (3.6).

 

Figure 3.6  Block diagram representation of a first order plant.

The system differential equation is given by 

(3.17)

The solution to this equation is known to be

(3.18)

We will now assume that the input signal to the plant is generated by a
computer which work with a sampling period of Ts seconds. We will
further assume that the computer has a A/D converter which holds the
value u(t) constant between the sampling instants. The output signal
y(t) is sampled at the same instants as placement of a new input takes
place. The situation is illustrated in Figure (3.7)
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Figure 3.7  Input output signals in a continuous plant.

If we are not interested in the variables between the sampling instants
but we want to focus on the values at the sampling instants we may
define the following time discrete variables which are marked in the
figure.

  ; k = 0, 1, 2, 3, ...

     ; 

By inserting  t0 = kTs and t = (k + 1)Ts in equation (3.18) we find:

(3.19)

Where

(3.20)

(3.21)

The difference equation (3.19) represents the result from discretizing
of the continuous plant given by (3.17). The discretizing was carried
out based on constant sampling period Ts and constant input u(t) dur-
ing the sampling interval. 

0

2

4

6

8

1 7 8 9

1 2 3

k-1 k+1k k
t

u(k-1) u(k) u(k+1)

y(k-1) y(k) y(k+1)

Tssek

kTs

y k( ) y kTs( )=

u k( ) u t( )= kTs t k 1+( )Ts<≤

y k 1+( ) ay k( ) bu k( )+=

a e

1
T
---⎝ ⎠
⎛ ⎞–⎝ ⎠

⎛ ⎞Ts
=

b K e

1
T
---⎝ ⎠
⎛ ⎞ τ–

τd
0

Ts

∫

K 1 e

1
T
---⎝ ⎠
⎛ ⎞Ts–

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1
T
---

------------------------------------= =



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

3 - 12 SIE10AH Elektronikk for Energistyring 

One particular simple approximate method for discretizing differen-
tial equations which work fine for short sample intervals, is the Eulers
method (also called the forward rectangular rule).

 (3.22)

The approximation given in equation (3.22) will be used in place of
all derivatives that appear in the differential equation. 

Applying Eulers method to equation (3.17) we arrive to a difference
equation given by (3.19) where the constant coefficients are given by:

(3.23)

(3.24)

By comparing (3.23) with (3.20) and (3.24) with (3.21), we see that
the coefficients calculated by  the approximate method are similar to
the result we get if we take only the first two terms in the series
expansion of the exponential function of the exact solution.

Example  3.1  

Given a first order low-pass analog passive filter with low frequency
gain 1 and time constant 1s. The filter topology and the transfer func-
tion is given in figure (3.8) 

Figure 3.8  Analog low-pass filter 

The output signal is sampled 3 times in a second. . The input

signal is constant during the sampling interval Ts. Find the difference
equation describing the filter.
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3.2.3 Difference equations
We have seen that discrete systems can be modelled in the time
domain by difference equations. We have seen that the difference
equation can be  evaluated directly by a computer and that they can
also represent discrete models of physical processes defined at the
sampling instants. If the system is linear and time invariant the equa-
tion will be a constant coefficients difference equation (CCDE).

A general linear difference equation of order n with constant coeffi-
cients can be written as:

+...+ +...+  (3.25)

For solving linear time-invariant difference equation there are differ-
ent techniques that can be used. One approach consists of finding the
complementary and the particular parts of the solution, in a manner
similar to that used in the classical solution of linear differential equa-
tions. We will not take that approach here, but  use a direct method
which is a sequential procedure simular to the method used in the dig-
ital computer solution of difference equations. The method will be
illustrated by examples. 

To solve a specific CCDE we need a starting time (value of k) and a
number of initial values depending on the order of the equation. The
initial conditions represents the state of the system characterized by
the computer memory at that time. For a physical process (for exam-
ple a power electronics plant) the initial state may represent the
energy stored in the system at starting time.

Example  3.2  First order difference equation

It is desired to find the unit step response y(k) for the differenc equa-
tion

    for  

Compared with the general equation (equation 3.25) we see that
a1=-0.5 and b1=1.

y k( ) a1y k 1–( )+ any k n–( ) b1u k 1–( )= bnu k n–( )

y k( ) 1
2
---y k 1–( ) u k 1–( )+= k 0≥
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The y(k) can be determined by solving the difference equation first for
k=0, then for k=1, k=2 and so on. Thus

Note the sequential nature of the solution process. Continuing this
procedure we can find y(k) for any value of k. This technique is not
practical except when implemented on a digital computer.  For this
example a matlab script which solve the equation is :

k=0:10;  % 11 samples
u=ones(size(k)); % step input
bcoeff=[0 1];
acoeff=[1 -0.5];
y=filter(bcoeff,acoeff,u);
[k' y'] % display values of k and y
stem(k,y,); % plot responce
xlabel(’Sample number, k’);
ylabel(’y(k)’);
grid;

Plot from the above code is:

Table 3.1

k u(k-1) 0.5y(k-1) y(k)

0 0 0 0

1 1 0 1

2 1 0.5 1.5

3 1 0.75 1.75

4 1 0.875 1.875

5 1 0.975 1.9375
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Example  3.3  Second order difference equation 

Consider the difference equation

(3.26)

Calculate the impulse response ( u(0)=1; u(k)=0 for  )

A matlab script for the solution is given below

k=0:10;
u=zeros(size(k));

Table 3.2

k u(k-2) y(k-1)-y(k-2) y(k)

0 0 0 0

1 0 0 0

2 1 0 1

3 0 1 1

4 0 0 0

5 0 -1 -1

6 0 -1 -1
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u(1)=1;
bcoeff=[0 0 1];
acoeff=[1 -1 1];
y=filter(bcoeff,acoeff,u);
[k' y'] % display values of k and y
stem(k,y,); % plot responce
xlabel(’Sample number, k’);
ylabel(’y(k)’);
grid;

Plot from the above code is:

 We see from the last examples that the solution to  difference equa-
tions, simular to  differential equations, can have stable response and
approach a specific limit (the limit is 2 in example (3.2) ) or be oscil-
lating with a constant amplitude. In some case the response can be
growing without bound. If the response of a dynamic system to any
finite initial conditions can grow without bound, we call the system
unstable. We would like to be able to examine equations like (3.25)
and, without having to solve them explicitly, see if the response will
be stable and even understand the general shape of the solution.
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SOLUTION OF CCDE

The classical methods for solving difference equation is similar to the
methods of differential equations. These methods  require the prior
determination of the homogeneous solution. The homogeneous differ-
ence equation give us the characteristic equation of the corresponding
difference equation.

The solution to the characteristic equations describes the natural
behaviour of the solution and predicts the stability of the solution to
the difference equation.

Given the CCDE

(3.27)

The homogeneous equation is 

(3.28)

Assuming  we get the equation

(3.29)

(3.30)

The characteristic equation is:

(3.31)

Note that  plays the same role in DE as  in LTI differential
equations.

The geneal solution to the CCDE is a linear combination of solutions,
based on the roots of the characteristic equation.

For example

(3.32)

The homogeneous equation

(3.33)

The roots are
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 and 

and the solution is

(3.34)

Since both roots are inside the unit circle, equation (3.32) is stable.
The value of the roots describe the natural behaviour of the solution

.

Assuming that one of the roots is real.

(3.35)

The numerical value of  is summarized in table 3.3.

Complex or imaginary roots always occur in conjugate pairs and give
solution of the form:

(3.36)

where

Table 3.3

value of  for 
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constant
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decreasing, alternating sign

oscillating between +A and -A
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λ1 0,5= λ2 0,4=

y k( ) A1 0,5( )k A2 0,4( )k+=

y k( )

y k( ) Aλk=

y k( )

λ y k( ) k 0 1 2…, ,=

λ 1>

λ 1=

0 λ 1< <

1 λ 0< <–

λ 1–=

λ 1–<

y k( ) A1 λ( )k A2 λ'( )k+=

λ a jb+=

λ' a jb–=



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

SIE10AH Elektronikk for Energistyring 3 - 19

Multiple real roots generate behaviour which consists of the term
.  In general, if the repeated roots are indicated by the factor

, terms of the form:

 

will appear in the solution.

A practical method of finding the particular solution to the difference
equation is to use the z-transform approach which will be presented
later.

3.3 Z-transform representation of discrete systems.
So far we have treated the DT-system in the time domain. We will
now introduce the Z-transform which is a convenient tool when deal-
ing with problems of a discrete nature. The role of the Z-transform
(ZT) in discrete systems is similar to that of the Laplace transform in
continuous systems.

3.3.1 Definition of the Z-transform.
The Z-transform maps a time sequence into the complex z-plane.

Given a time sequence {x(kTs)}. The basic one sided Z-transform is
defined as [15]:

(3.37)

x(kTs) = 0 for k < 0. 

That is a causal sequence. Since in practical situations the sequence is
causal, this one-sided ZT will be satisfactory for most engineering
applications. To assure that the ZT exists we assume that

  exists in some region in the complex z-plane.

A fundamental property of the ZT is that there is a one-to-one corre-
spondence between the sequence {x(kTs)}, and its ZT. That is,    given
x(z) we can recover {x(kTs)} via the inverse Z-transform (IZT) which
we denote as:

kλk

λ rk–( )q

A1kq 1– rk( )k A2kq 2– rk( )k … Aq rk( )k+ + +

x z( ) Z x kTs( ){ } x kTs( )z k–

k 0=

∞
∑= =

x kTs( )z k–∑k ∞→
lim
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(3.38)

where the integral is taken along a closed path, C, in the complex z-
plane which must contain the origin. FT and IFT form a transform
pair.

If the sequence  is the result of sampling a CT function 
we must observe that there is no a unique correspondence    between

 and . This occurs because many CT-signals can give the
same  and therefore . The ZT represents a sampled CT-

signals , with samples , at the sampling instants only.

From the definition of the ZT, equation (3.37), many useful properties
of the ZT can be derived. The most importants ones are summarized
in appendix A.

3.3.2 The Z-transform of some elementary time functions/sequences.
For larger reference we will in this section calculate the ZT for some
elementary time sequences. The calculations will be based on the ZT-
definition.

(a) The unit impulse.

(b) The unit step.

(c) The discrete ramp function = 

x kTs( ){ } Z 1– x z( ){ } 1
2πi
-------- zk 1– x z( )dz

C
∫= =

x kTs( ) x t( )

x x( ) x t( )
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⎨
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=

Z k( )δ[ ] 1z k–
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u k( ) 1= for 0 k ∞≤ ≤

Z u k( )[ ] 1 z 1– z 2– …+ + +

1
1 z 1––
---------------- z

z 1–
-----------

=

= = z 1>
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(3.39)

To express  in closed form, we first multiply both sides by ,
resulting in

(3.40)

Subtracting the last equation from the first we get

(3.41)

(3.42)

(d) The discrete exponential function

(3.43)

Another form of the discrete exponential function is:

 where a is a real constant.
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(3.44)

This infinite series converges for all values of z that satisfy

for 

(e) The discrete sinusoidal function

(3.45)

It is convenient to express  in the exponential form

(3.46)

Since the z transform of the exponential function is:

then we get:
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Therefore:

(3.47)

.

.

.

3.3.3 The transfer function for discrete time systems.
We know that for CT-systems the Laplace transform (LT) enables us
to represent these systems in terms of transfer functions. We will now
show that difference equations and the ZT enable us to do so for DT-
systems.

We have seen that the computer algorithm in Figure 3.1 represents a
DT-system expressed by the following input-output relationship:

(3.48)

Assume that the system is initially at rest, that is, all initial conditions
are zero.

If we multiply (3.48) by zk and sum over k we get:
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For a general term which is of the form: 

(3.49)

Using the definition of the ZT which defines xi = 0 for i < 0

and letting k-j = i we obtain

(3.50)

 Thus (3.48) is now transformed to an algebraic equation in the z-
domain

(3.51)

Rearranging the terms gives:

(3.52)

This result could also been obtained directly by the backward shift
theorem.

The ratio 

(3.53)

is defined as the transfer function  which also can be written as
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(3.54)

The causality condition, or practical realization of equation (3.54)
requires that no future values can be used for calculation of uk. This is
reflected in the ZT function (3.54) by the fact that the order of the
numerator must be less than or equal to the order of denominator.

Factoring the polynomials in the numerator and denominator of
, we obtain

(3.55)

where zi and pi denote the ith zero and pole, respectively, of hR(z).

The impulse response of a DT-system is the output that results when
the input is the unit impulse sequence {δ(k)} =1 for k = 0 and zero
elsewhere.

The ZT of the unit impulse is:

(3.56)

The corresponding output is:

        y(z) = h(z) * 1 = h(z)

Upon inverting the z-transform the result is

        h(k) = Z-1 h(z)

Thus the inverse transform of the transfer function is the impulse
response sequence.

hR z( )
g0zn g1zn 1– …gn+ +

zn f1zn 1– …fn+ +
------------------------------------------------------=
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hR z( )
g0 z z1–( ) z z2–( )… z zn–( )

z p1–( ) z p2–( )… z pn–( )
-------------------------------------------------------------------=

Z δ k( )[ ] 1z k–

k 0=

∞

∑ 1= =
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Figure 3.9  The impulse response of a discrete time invariant system

3.4 Representation of the conversion   between discrete and    
continuous signals
Special electronic devices are necessary to make the digital controller
able to exchange information with the CT-system which   is to be con-
trolled. These devices are logically represented in Figure 3.1 as D/A
and A/D converters. The aim of this section is to present a mathemat-
ical representation of these conversion processes.

The D/A converter acts on the DT-sequence from the computer.

This signal, uk, represented as a numerical content of some register in
the processor, is converted to a CT-signal u(t) by keeping the ampli-
tude constant between the sampling instants.

That is to say:

From a functional viewpoint it may be regarded as a device which
consists of a decoder and a zero order hold unit as shown in Figure
3.10. The decoder acts simply as a constant gain.

k0

δ(k) h(k)

k

h(z)

LTI-system with trans-
fer function h(z)z[δ(k)]=1

u t( ) u kTs( )= kTs t k 1+( )Ts≤ ≤
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Figure 3.10  Functional block diagram representation of D/A conversion

The A/D conversion process is the transformation of information con-
tained in a CT-signal into a digital-coded word. This involves the fol-
lowing sequential operations: sample, quantizing, and encoding.

Figure 3.11  Functional block diagram representation of A/D conversion

If we assume that the resolution of the A/D conversion is very high,
quantizing can be neglected.   The encoder also acts simply as a con-
stant gain, normally a unity gain. Thus for analytical purposes the
block diagram can be reduced to a sampler.

We are now going to establish a mathematical model for the basic ele-
ments sampler and hold element.

The sampler can be considered as a switch, which is closed in a very
short time interval, of equal length, at every sampling instant. The

u(t)
Zero order holdDecoder

analog outputdigital input

u(kTs)

y(kTs)
Sampler

analog input digital output
y(t)

Quantizer Encoder
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pulses thus generated will have a strength or area proportional to the
magnitude of the input signal at the sampling instants.

We can model this process by a mathematical idealization where the
CT signal, x(t), is amplitude modulated by the impulse train

(3.57)

as shown in Figure 3.12.

Figure 3.12  Representation of ideal sampling

The output from this ideal sampler is a train of impulses with
strengths equal to x(kTs):

 (3.58)
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k ∞–=

∞
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t

x* t( )

t

x t( )

t

δTs
t( )

x t( ) x* t( )

x* t( ) x t( ) δ t kTs–( )
k ∞–=

∞

∑ x kTs( )δ t kTs–( )
k ∞–=

∞
∑= =



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

SIE10AH Elektronikk for Energistyring 3 - 29

The symbol (*) is a common way of denoting a signal sampled by
ideal impulse sampling. Later in the text, a switch with the sampling
period indicated below, will be used to represent an ideal sampler.

Since the train of impulses is a periodic function with period Ts and

angular frequency  the function can be represented by the

complex Fourier series

(3.59)

where the complex Fourier coefficient is given by

(3.60)

   Thus the infinite train of impulses may be written as:

(3.61)

If we substitute (3.61) for the impulse train in (3.58), for the sampled
signal we get:

(3.62)

From the definition of the Laplace transform we can now calculate
the LT of the signal x*(t)

(3.63)

 which is equal to
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(3.64)

where x(s) is the LT of the CT signal x(t).

Another expression for the LT of the sampled signal x*(t) can be
derived directly from (3.58)

(3.65)

The expressions (3.64) and (3.65) have many interesting implications.
We will return to eq. (3.65) in a later section. One of the most interest-
ing implications of (3.64) is the important sampling theorem which
we are now going to discuss.

The operation of sampling a CT signal gives a sampled frequency
domain function which can be evaluated by simply evaluating (3.64)
on the s=jω axis. This gives:

(3.66)

where x(jω) is the Fourier transform of the unsampled function x(t).

The equation (3.66) makes the connection between the FT of x(t) and
the FT of x*(t) very clear. Consider a band limited signal x(t) which
has a amplitude spectrum |x(jω)| and a cut off frequency ω0 as shown
in Figure 3.13.
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Figure 3.13  The effect of sampling on the amplitude spectrum of a band limited
signal.

As we see from the figure and equation (3.66) the amplitude spectrum
of x(t) is repeated with period ωs along the  ω-axis. When   the sam-
pling frequency ωs > 2ω0 the spectrum | x*(jω)| will be periodic with
no overlap. The sampler acts as a harmonic generator.

If we lower the sampling frequency so that ωs < 2ω0 we get overlap
between the base band and the frequency shifted bands. This is called
aliasing. The higher frequencies are folded back into the low frequen-
cies. Information in the CT signal spectrum is now lost.   It is not pos-
sible to reconstruct the original frequency spectrum. Figure 3.14
clearly shows what happens when a single frequency signal is sam-
pled at a rate which is too low (i.e. aliasing occurs).

1
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We will recall here that the derivation of the frequency spectrum
|x*(jω)| was based on ideal sampling. Non-ideal sampling (i.e. finite-
width pulse amplitude sampling) will give the same frequency distri-
bution of |Χ*(jω)|, but the amplitudes will have a factor

 instead of  where p is the pulse width. [16].

Figure 3.14  The higher frequency signal is folded down to a low frequency signal
due to sampling

We can now conclude with the Shannon's Sampling Theorem which
states: If a signal contains no frequency higher than  ω0 radians per
second, it is completely characterized by the values of the signal sam-

pled with a frequency ωs > 2ω0. The frequency  is often

called the Nyquist frequency.

In practice however, stability of the closed-loop system and other
practical considerations may make it necessary to sample at a rate
higher than this theoretical minimum.

p
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Strictly speaking, a band-limited signal rarely exists in a physically
control system. Only approximate band limited signals are found.
Therefore, in practice when sampling a CT signal one must:

1. Choose a sampling frequency ωs>2ωb where ωb is the highest fre-
quency of interest in the CT signal.

2. Implement a low pass analog pre-sampling filter with cross-over 

frequency, ωf where 

The highest frequency of interest is related to the bandwidth of the
close-loop system. The selection of sampling rate can then be based
on bandwidth, or equivalently, on the rise time of the closed loop sys-
tem. A rule of thumb often used is to choose the sampling frequency
about 10 times the bandwidth, or 3-4 samples during the rise time
[17].

Because of the high frequency components inherently present, it is
not desirable to apply the pulse sampled or discrete signal directly to
an analog system. An equivalent time domain explanation is that
these short pulses are not able to control the continuous plant without
some sort of a reconstruction device. It is the strength of these pulses
that are of interest.    In a practical situation the sampled signal must
therefore be followed by some sort of data hold, most often a zero-
order hold, which is integrating each pulse.

The purpose of the zero order hold reconstruction filter is to hold the
u(kTs) value until the succeeding sampling instant, as illustrated in
Figure 3.15.

ωb ωf
ωs
2

------< <
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Figure 3.15  Reconstruction with a zero order hold

The impulse response of the zero order hold filter can be written as:

(3.67)

where u(t) denotes a unit step function.

Figure 3.16  The impulse response of zero order hold.

u0

u1

u2

u t( ) u t( ) u kTs( )=

for kTs t k 1+( )≤ ≤ Ts

t

kTs (k+1)Ts

h t( ) u1 t( ) u1 t Ts–( )–=

u1 t( )

h t( )

Ts

u1– t Ts–( )

t

1



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

SIE10AH Elektronikk for Energistyring 3 - 35

For the LT we have:

(3.68)

And the frequency response is:

(3.69)

 The amplitudes and phase plots are shown in Figure 3.17.

Figure 3.17  Frequency response of the zero order hold
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We observe that the magnitude becomes zero at the frequency equal
to the sampling frequency and at integral multiples of the sampling
frequency.  Notice that the steady-state gain of the zero order hold is
hh(s=0)=Ts. We have seen, eq. (3.64), that the ideal sampling process

has a gain . Thus the combination of a sampler and a zero order

hold has unit steady state gain. We also observe that for very fast sam-

pling, , a series connection of a sampler and zero order hold

element act as a CT system with unit transfer function.

The ideal sampler is not a physical device but a mathematical approx-
imation. In a physical situation the sampler is always followed by a
hold element. Thus the combination of the ideal sampler and the zero
order hold element accurately models a physical transfer operation.
See Figure 3.18.

Figure 3.18  Representation of sampler and data hold 

As can be seen from equation (3.65) sampling is a linear but time-var-
iant operation. Many different input signals can result in the same out-
put signal.

Thus it is not possible to find a transfer function for the ideal sampler.
These properties complicate the analysis of a discrete control system,
especially if we are interesting in the exact behaviour between sam-
pling instants.

We have now found the LT, x*(s), of a sampled signal x*(t). In section
3.3 we introduced the ZT for a discrete time sequence {x(kTs)}.

We may now ask tourselves: Is there a connection between these two
transforms? 

If we can establish such a relationship then the DT and the CT system
models can be linked together. The CT-system part may then be mod-
elled as a discretized or sampled system. In this way we may consider
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the complete Control System as discrete, and use the ZT representa-
tion.

The similarities between the transforms X(z) and x*(s) is obvious. In
fact, if we assume the number sequence {x(kTs)} is obtained from

sampling a time function x(t) and  in (3.65), then it becomes
the z-transform. In this case we have

(3.70)

 We will use the following change in variable:

(3.71)

In general, the ZT instead of the LT* in our analysis of digital control
system will be used.

One advantage of this approach is that according to equation (3.64)
x*(s) has an infinity number of poles and zeroes in the s-plane. How-
ever, x(z) has a limited number of poles and zeroes. In this way analy-
sis or design procedures that utilize a pole-zero approach are greatly
simplified through the use of the ZT.

3.5 MATHEMATICALREPRESENTATION OF THE 
CONTINUOUS PLANT BY    DISCRETIZATION
Now that we have described the conversion of signals between the
computer and the CT-plant we turn to the fundamental problem of
finding a discrete time equivalent representation of the CT-plant.

This representation will give the relation between the output sequence
of the plant {y(kT} and the input {u(kT)}. Using this model represen-
tation the system variables are considered only at the sampling
instants because the system is the time invariant.

We will consider the situation when a sample and hold device is con-
nected to a LTI-system with the transfer function hp(s).

e
sTs z=

x z( ) x*= s( )
e

sTs z=

e
sTs z= s, 1

Ts
-----lnz=



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

3 - 38 SIE10AH Elektronikk for Energistyring 

Figure 3.19  Forward loop for CT-process driven through zero order hold.

If we let hhp(s) be the transfer function of the zero-order hold and the
process, i.e.

(3.72)

The LT of the sampled input signal u*(t) is given by

The LT of the CT-output signal from the process is:

(3.73)

Thus we have calculated the LT of the CT-output signal. As (3.73)
shows, it is not possible to factor out the LT of the CT-signal u(t). So,
we cannot find a transfer function between the input u(t) and the out-
put y(t). This is because the system is not time invariant.

If we are interested in the output signal only at the sampling instants
then we are able to define a transfer function. By adding a fictive syn-
chronous sampler to the system as shown in the figure, the input out-
put relation is then given by:

        y*(s) = [hhp(s) u*(s)]*

1 e sTs––
s

---------------------
u s( )

Ts

u* s( )

Hold

hp s( )

CT -plant

y* s( )

y s( )

Ts
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hhp s( ) 1
s
--- 1 e

sTs–
–⎝ ⎠

⎛ ⎞ hp s( )=

u* s( ) u kTs( )e
skTs–

k 0=

∞

∑=

y s( ) hhp s( ) u kTs( )e
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From (3.64) we know

Because u*(s+jnωs) = u*(s) we can write

(3.74)

By using the relationship between x*(s) and x(z) equation we may
write

        y(z) = u(z) hhp(z)

and       

(3.75)

We have now seen that when sampling a CT-plant which is driven by
a zero order hold reconstruction device, the discretized plant can be
represented by the pulse transfer function hhp(z). This is a very impor-
tant relation for the digital control of a CT plant.

3.6 COMPUTING THE PULSE TRANSFER FUNCTION FROM 
THE CT-TRANSFER FUNCTION hp(s).
The pulse transfer function, hhp(z), can be derived directly from the
CT transfer function hp(s) by the following argumentation:

The signal at the output of the zero order hold could be decomposed
into a series of gate functions as indicated in Figure 3.15. Each of
these gate function could be further decomposed into step function as
shown in Figure 3.16. The continuous time response to the first step
of magnitude u0 is 

where L-1 is inverse Laplace transform. The ZT of the output sampled
sequence y(k) in Figure 3.16 is given by:

y* s( ) 1
Ts
----- y s jnωs+( )

n
∑

1
Ts
----- hhp s jnωs+( )u* s jnωs+( )

n
∑= =

y* s( ) u* s( ) 1
Ts
----- hhp s jnωs+( )

n
∑=

y* s( ) u* s( )hhp* s( )=

y z( )
u z( )
---------- hhp z( )=

y t( ) u0L 1– hp s( )

s
-------------=
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the response due to the negative step increment is similar except for
the delay of one sampling period. The total ZT due to the first gate
function is:

where z-1 represents the delay of one sample period. Extending this
procedure to the entire series   of gate functions representing u(t), the
ZT of the sampled output y(kT) is:

We recognize the first term as the ZT of the {u(kT)} sequence, so the
DT transfer function between input and output, the pulse transfer
function, is:

(3.76)

We can summarize the method for obtaining the Pulse transfer func-
tion by the following steps:

1. Determine the time function corresponding to 
2. Determine the corresponding ZT (Usually from a table which can 

be found in many text-books [16].)

3. Multiply by (1 - z-1) to get the pulse transfer function including the 
zero order hold.

Another method for calculating an approximate value of the pulse
transfer function hhp(z) is to use the so-called Tustin transformation

An evaluation of this approximation is given in [18].
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3.7 MATHEMATICAL REPRESENTATION OF A DC-MACHINE

As we have seen, the starting point for determining the discrete pulse
transfer function for a continuous plant is a model representation of
the plant given by the state space equations or the CT transfer func-
tion of the plant.

As the DC-machine will be used in the case studies that follow, the
dynamic equations of this machine will be reviewed in this section.
The power converter feeding the machine which is assumed to be a
thyristor or transistor converter is also a part of the CT plant. The
mathematical representation of the converter is discussed in the next
section.

The dynamic state equations and the CT transfer function block dia-
gram representation of the DC machine is shown in Figure 3.20. The
model is linearized and no connection between the armature and field
windings is assumed.

In the block diagram and equations, all voltages, currents, and torque
are referenced to their rated values. The speed n is referenced to the
value that appears when an unloaded machine is fed with rated volt-
age. Thus, the electro-mechanical system is characterized by the gain
and the time constant of the armature circuit and by the integration
time of the mechanical inertia:

is the ratio of nominal armature voltage and voltage drop across the
armature resistance carrying rated current Ian. This is equal to the
ratio of the current Iak and Ian. Iak is the current we get when the
armature voltage is equal to Uan at zero speed. Ka can also be
expressed as the ratio of nominal input armature terminal    power and
armature power loss. Typical values of Ka are in the range 8 to 15.

is the mechanical run up time of the machine. It is the time the
machine will use to reach the unloaded or rated speed n0 when it
starts at zero speed and the torque is equal to the rated value Mn. J is
the moment of inertia and includes all masses involved in the turning
motion.

Ka
Uan

Ian Ra∑
---------------------

Iak
Ian
-------

UanIan

Ian
2 Ra∑

---------------------= = =

Tr
2πn0J

Mn
---------------=
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Figure 3.20  Mathematical representation of a DC-machine

Sometimes Tm will be used instead of Tr. It is called the mechanical
time constant because of its physical background: when the electrical
time constant Ta is neglected and the machine thereby becomes a first
order system, the time constant Tm characterizes all transient behav-
iour of the machine.

The given block diagram representation of the armature circuit of the
DC machine is in accordance with the representation given in most
text books on electrical machines [19], [20] and [21].

The discussion which follows will be concerned with the field cir-
cuits.

The effect of a rapid changing excitation voltage, which produces
eddy currents in the iron laminations is not reflected in the diagram.
The effects of eddy currents are often accounted for by means of a
resistance Rω in parallel with the inductance Le of the field circuits
[20]. In this case the corresponding transfer function also includes a
differentiation term giving a phase advance:
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(3.77)

Due to the saturation of the iron, the magnetic flux in the machine is a
non-linear function of the excitation current. The slope at each point
of the magnetization curve is the effective amplification in the field
circuit. This slope is also a measure of the permeability of the iron
and also the winding inductance. The following relationship is
obtained for any point on the magnetization characteristic:

(3.78)

Since the winding resistance is almost constant, the ratio of the ampli-
fication factor and the time constant is approximately constant over
the operating range:

(3.79)

 For the purpose of an excitation current controller design the mean
value of the excitation time constant is usually adequate. As will be
shown later, the correct controller coefficients can be chosen on the
basis of the relation between loop amplification and time constant
(symmetrical optimum). Thus, in these cases the variation of the time
constant has no influence.

3.8 MATHEMATICAL REPRESENTATION OF THE POWER 
CONVERTER
We will now face the problem of developing a mathematical model
for a power converter. For the purpose of closed loop control this
model should be linear and represent the converter as a CT transfer
function. The input will be a coded digital word representing the
wanted mean value of the voltage at the output terminal of the con-
verter.

if
Ifn
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1 s
Le
Rω
-------+

1 sLe
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-------------------+
--------------------------------------=
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Let us first consider a DC chopper converter. The input reference to
the chopper is the sequence {u(kTs)}. The mean value of the output
voltage of the chopper is a CT voltage with the mean value

(3.80)

where Ub is the DC-supply voltage, ton is the on-time of the switching
element and Tch is the chopper period. 

The system is normally designed so that ton is proportional to the last
input reference value, at the start of the chopper period. Assume that
the start of chopper period is synchronized to the sampling interval.
Thus:

For the mean value of output voltage we have:

(3.81)

ud t( ) Ub
ton nTch( )

Tch
------------------------= nTch t n 1+( )Tch<≤

ton t( )
Tch

-------------- Kch
u kTs( )

ucmax
----------------= for kTs t k 1+( )Ts<≤

ud t( )
Ub

------------ Kch
u kTs( )

ucmax
----------------= for kTs t k 1+( )Ts<≤
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Figure 3.21  DC-chopper operation

The chopper will be latched to this value until the next sampling inter-
val, as illustrated in Figure 3.21. We see that the PWM chopper acts
as a zero order hold. As described in section 3.4 a dynamic model can
then be developed as for the ZOH element.

If the sampling instant is not synchronized to the moment for switch-
ing of the chopping element, we will get a dead time with the average

value equal to . The complete transfer function of the chopper is

then:

(3.82)

t
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Similar development can be carried out for a six pulse thyristor

bridge. The gain of the bridge  is not linear, but depends on the

actual firing delay α. It will be shown in detail in chapter 7 how a gate
firing algorithm can be designed to compensate for this non-linearity.
The stationary gain, Kbr, of the bridge can then be considered con-
stant.

To establish the dynamic part of the transfer function the following
argument will be used:

Assume that the sampling period of the input sequence is Ts=T/6
where T is the period of the power line voltages. The bridge will
receive a new firing reference, α, every 1/6 of the power line period.
Between the sampling instants the mean value of the output voltage,
ud(t), will be kept constant according to the firing delay given at the
last sampling instant. This is illustrated in Figure 3.22.

dud
dα
---------
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Figure 3.22  Thyristor bridge waveforms.

The thyristor bridge rectifier is inherently a sample and hold element
in the control loop. It may, therefore be modelled as a ZOH element.

The thyristors are not necessarily fired at the sampling instant, but the
firing is delayed according to the actual α. This can be modelled by a

dead time with mean value  Thus the complete

transfer function for the rectifier bridge is:

uTS uRS uRT uST uSR uTR uTS uRS

uRS t( ) uR t( ) us t( )–=
u(kTS)

ud

TS

Tt T/12
Ts
2
-----= =
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(3.83)

3.9 PULSE TRANSFER FUNCTION FOR SYSTEMS WITH DEAD 
TIME
The method to determine the pulse transfer function of discrete or dis-
cretized systems so far does not apply to systems containing dead
time.

As we have seen in previous sections dead times are encountered in
digital power electronic control systems due to:

        - computation time of the digital control algorithm

        - dead time in the power electronic converter

In order to analyse system with dead time, a modification of the ZT is
necessary.   A continuous system containing a dead time element can
be written as:

(3.84)

where h(s) is a rational function. In general, the dead time Td can be
expressed by an integer multiple of the sampling period Ts and a dif-
ference term εTs:

 (3.85)

where m = 1, 2, 3.... and 0 < ε ≤ 1 as illustrated in Figure 3.23.

Figure 3.23  Expression of dead time 
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If we include the hold element, the CT transfer function is:

(3.86)

Let the step response for the rational part be

Then we may write:

Using equation (3.85) and the shift theorem for ZT  we get

(3.87)

This z-transform will be denoted by 

       (3.88)

This new transform now introduced for the sequence {v(kTs+εTs)}
will be called the advanced ZT. In general we write

(3.89)

Tables of this transform can be found in [22]. It is not necessary to
consider this transform as a new transform since all the rules of the
ordinary ZT also apply to this transform.
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In most literature on sampled data systems the modified ZT is intro-
duced and denoted as:

(3.90)

 for 

Note that m has another meaning than used earlier. Here m is a nym-
ber between 0 and 1. Tables of the modified ZT can be found in [23]
and [24]. 

The advanced ZT can be calculated from the modified ZT by the sub-
stitution m=1+ε or equivalently, multiplication by the factor z-1 and
use of the substitution m=ε. 

For ε=0 or m=1 both transforms become the ordinary ZT.

X z m,( ) Zm x t( ){ } z 1– x kTs mTs+( )z k–
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∞
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For later reference we will calculate the pulse transfer function for the
plant:

(3.91)

where Td = (m-ε)Ts   m = 1, 2,..., and 0 < ε ≤ 1.

This CT transfer function can represent a power converter feeding a
inductive load with time constant T (example, field circuit of a DC
motor). For the pulse transfer function we have

From a table giving the advanced-ZT or from a table giving the modi-
fied-ZT we find:

Thus we have:

(3.92)

3.10 MATHEMATICAL MODEL OF THE COMPLETE CLOSED 
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LOOP SYSTEM INCLUDING THE DISCRETIZED 
CT-PLANT
We have now established the necessary theoretical tool to represent a
complete model for the closed loop digital system. This model will be
used for analysis and design of the digital control system.

To assemble the different system elements into the complete model
the following systematic approach will be given.    Again Figure 3.1 is
used as a starting point.

From the physical representation, we identify the elements that repre-
sent the signal conversion between the analog and digital parts of the
system. These elements have been logically described as AD- and
DA-converters.

- The AD converters are represented by ideal samplers.
- The DA converters are represented by ideal samplers followed by

zero-order-hold elements.
- It is assumed that the samplers are perfectly synchronized.

We then get the block diagram representation given in Figure 3.24.

Figure 3.24  Model of the system. The computer algorithm must be described by
impulse modulated signal.

- In this model the computer must be represented as a system com-
ponent that transforms an impulse modulated signal to another
impulse modulated signal.

- The analog parts are the zero order hold and the process.

Computer
algorithm

hR(z)
Clock

1
s
--- 1 e

sTs–
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The transfer function of the analog part is

The LT y(s) of the output y(t) is

        y(s) = hhp(s)*u(s)*

The sampled output has the LT

        y*(s) = [hhp(s)u*(s)]* = h*hp (s) u*(s)

If we represent the sampled signals as sequences we get a block dia-
gram of the system as shown in Figure 3.25.

Figure 3.25  Model of the system, represented by pulse transfer functions and
sequences.

- In this model the calculations in the computer are modelled by the Pulse 
transfer function hR(z).

- The CT part is represented by the Pulse transfer function

This block diagram gives the properties of the system as seen by the
computer.

It   is an   input-output   representation that gives the relationship
between the system variables at the sampling instants only.
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Based on this representation we are able to find the transfer function
from the input w(k), and the output y(k), and the characteristic equa-
tion of the system, valid at the sampling instants.

At the summation point we have

        e(z) = w(z) - y(z)

Substituting the equation u(z) = hR(z)e(z) for the controller, and y(z)
= hhp(z)u(z) for the plant we get:

(3.93)

The characteristic equation of the system is defined as:

(3.94)

where h0(z) is the open loop transfer function. In this case we have 

(3.95)

When the system contains cascaded elements, care must be taken
when deriving DT transfer function for the complete system. It is not
always possible to write a transfer function between variables [25].

The following rules may be helpful:

- The ZT of two CT elements separated by a sampler is the product of the 
two Z-transforms.

(3.96)

- In general no transfer function can be found for a system if the input is 
applied to a CT element before being sampled.

(3.97)

In complex situations with feedback and many samplers the algebraic
manipulations can be tedious.   In such situations the signal flow
graph method [23] may be used.
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3.11 TRANSIENT BEHAVIOUR OF THE CLOSED LOOP SYSTEM
The roots of the characteristic equation (3.94) are the poles of the
closed loop transfer function.The location of the roots of the charac-
teristic equation in the z-plane determine the dynamic characteristic
of the closed loop system. Thus the controller hR(z) must be designed
so that the roots receive preferable locations.

For the output of the system we may write    

(3.98)

If the input sequence wk is the unit impulse at k=0 the output y(z) can
be expressed by using a partial fraction expansion:

The system is stable if the output sequence {y(k)} approaches zero as
time increases. By taking the IZT of y(z) we find: 

(3.99)

for |pi| < 1 we see that y(k) converges to zero. 

Thus, the system is stable if all the roots of the characteristic equation

        1 + h0(z) = 0

lie inside the unit circle in the z-plane. The output sequence {y(k)}
will then be bounded if the input is a bounded signal. We see that the
unit circle in the complex z-plane is the stability boundary, similar to
the imaginary axis of the s-plane for CT systems.

Valuable insight into the dynamic behaviour of a discrete or discre-
tized system can be gained by studying the locations of the system
poles in the z-plane. As can be seen from equation (3.99) each pole in
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the transfer function contribute separate dynamic modes to the result-
ing response sequence at the sampling instants.

If we have a real pole pi < -1 the associated time sequence will oscil-
late and increase in an oscillatory fashion. If 0 < pi   < 1 it will decay
in an exponential manner as k become large. If pi > 1, the associated
sequence will grow exponential without bound.

If the characteristic equation has complex roots, p and p* similar
results can be derived. In both cases the decay for |p| < 1 will be faster
if the poles lies close to zero.

A summary of various pole locations in the z-plane and the type of
response sequences they represent is given in Figure 3.26.

Figure 3.26  Pole locations and associated response.
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For   subsequent reference and to illustrate the methods presented we
will investigate the digital control system shown in Figure 3.27. The
block diagram shows a microprocessor controlled power converter
driving a passive inductive load with time constant T. Assume a cur-
rent controller with proportional control law and negligible dead time
of the converter.

The pulse transfer function of the power converter, including the load,
is given according to equation (3.76) and (3.82).

(3.100)

From a ZT table we get:

(3.101)

This pulse transfer function could also been obtained by letting m=1
and ε=1 in equation (4.49).

Choosing Ts/T=1/3 we get:

hhp z( ) 1 z 1––( )Z L 1– K
s 1 sT+( )
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

hhp z( ) K

z 1– 1 e

Ts
T
-----–

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1 e

Ts
T
-----–

z 1––

---------------------------------=

hhp z( ) K 0,2835z 1–

1 0,7165z 1––
---------------------------------=



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

3 - 58 SIE10AH Elektronikk for Energistyring 

Figure 3.27  Block diagram of a microprocessor based current control system

The characteristic equation of the system is then:

The root of this equation is

where K0 = KpK is the total loop gain.
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As K0 increases from zero, the system pole p moves to left from the
location z=0.7165 for K0=0 and eventually leaves the unit circle as
illustrated in Figure 3.28. The value of the gain Kcrit for which the
system become unstable is of interest. The system is marginal stable
for p=-1. We have Kocrit = 6.05.

Figure 3.28  Root locus of the system

Important properties of a digital control system can be seen from this
simple example:

- Note that the pole at s= - 1/T of the CT plant is transformed to a

pole  in the discretized plant transfer function. The rela-

tion  between s-domain poles and poles of the pulse
transfer function in the z-plane is generally valid. This sort of rela-
tionship does not necessarily hold for the zeros.

- The z domain poles location are in addition to the original s-
domain location also dependent of the sampling interval Ts poles
close to z=1 correspond to fast sampling or a short time constant
for the plant.

- Another interesting observation is that though this system, can be
unstable, the same plant under action of a CT control is always sta-
ble. The reason for this is the basic nature of a digital control sys-

unit circle

Re[z]

Im[z]

K0=6.05

x

z e

Ts
T
-----–

=

zp e
spTs=



MATHEMATICAL MODELLING OF DIGITAL CONTROL SYSTEMS FOR ELECTRONIC ENERGY CONVERTERS 
(30.10.01)

3 - 60 SIE10AH Elektronikk for Energistyring 

tem. The digital controller receives only samples of the error signal
at discrete time instances. Thus the control action must be per-
formed based on a limited amount of information while for a CT
control system an infinite amount of information about the error
signal is available. As the DT system runs open loop between sam-
pling instants, when the controller does take action it overcompen-
sates by generating too high gain.

- Higher gain in the loop can be tolerated by increasing the sampling
frequency before the system becomes unstable.

The relation given in equation (3.71) is a transformation between the
s-plane pole locations and between the z-plane locations. To gain fur-
ther insight into the characteristics of pole locations in the z-plane,
several mappings will be considered.

The complex variable s may be written as s=α+jω. Hence, according
to (3.71) we have:

(3.102)

From equation (3.64) we see that the poles on the s-plane, whose fre-
quencies differ in integral multiple of the sampling frequency, are
transformed to the same position on the z-plane. So studying the so-
called primary strip in the s-plane (n=0) is sufficient.

The mapping of the left half plane portion of the primary strip is
mapped into the interior of the unit circle (since α<0, magnitude is
less than 1). The imaginary axis in the s-plane (α=0) corresponds to
|z|=1.

The right half portion maps into the exterior of the unit circle. (See
Figure 3.29). This result is in agreement with the stability boundaries
of the two planes. Figure 3.29 also shows how poles with constant
damping, constant frequency, and constant relative damping factor
are mapped into the z-plane.
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Figure 3.29  Mapping of s-plane into the z-plane
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Complex poles on the s-plane can be written in the standard form:

(3.103)

The constant relative damping factor (ξ = constant) path on the z-
plane is a family of logarithmic spirals, except for ξ = 0 and ξ = 1.
This can be seen as follows: From equation (3.103), if we let ωd be

defined as , then in the z-plane, the line with con-
stant ξ becomes:

Hence,

 This implies that magnitude of z decreases and the angle of z
increases as ωd increases.  The locus becomes a logarithmic spiral in

the z-plane.The path for ξ = 0.5 and   is shown in Figure 3.26
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3.12 STEADY STATE BEHAVIOUR OF THE CLOSED LOOP 
SYSTEM

The steady state performance of the digital control system can be
determined through use of the final value theorem of the ZT.

The steady state error at the sampling instants is defined as:

(3.104)

where we assumed that (1 - z-1) e(z) does not have any pole on/or out-
side the unit circle. For the system given in Figure 3.25 the ZT of the
error signal is:

(3.105)

Thus we have

(3.106)

This equation shows that the steady state error depends on the refer-
ence input w(z), as well as the open loop transfer function h0(z). In
the following we will calculate the steady state error for three basic
type of input signals: step sequence, ramp sequence and parabolic
sequence. The results are presented in table 4.1.

The limit as z → 1 of the open loop transfer function h0(z) can always
be expressed as:
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where     is the open loop dc gain when all

poles of z = 1 are removed

The above calculations illustrate that, in general, increased system
gain and/or addition of poles at z = 1 in the open loop transfer func-
tion h0(z) decreases the steady state error. It will also be noted that the
designer must find a compromise between small steady state error and
system stability because in general, both large system gain and poles
of h0(z) at z = 1 have destabilizing effects on the system.

Table 3.4 Steady state error of a plant with N poles of h0(z) at z = 1
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3.13 QUANTIZATION ERROR NOISE MODEL

When a band limited CT-signal is sampled and then converted to an
N-bit digital signal by an ADC, an uncertainty in the signal level
exists. This statistical uncertainty in the digital signal amplitude can
be considered to be equivalent to a broadband quantization noise
added to the CT-signal input before sampling. The CT input signal is
assumed to digitized by an infinite-bit ADC. 

To illustrate the properties of quantization noise, refer to the quantiza-
tion error generating model of Figure 3.30. An analog signal, x(t), is
sampled and digitized by an N-bit DAC of the round-off type. 

Figure 3.30  Block diagram of the system used to model quantization error for an
ideal N-bit ADC driving an N-bit ideal DAC 

The ADC’s numerical output, x*(k), is the input to an N-bit DAC.
The quantization error, e(k), is defined at sampling instants as the dif-
ference between the sampled analog input signal, x(k), and the analog
DAC output, y(k). The ADC/DAC channel has unity gain. Thus the
quantization error is:

e(k) = x(k) - y(k) (3.107)

Figure 3.31 shows a bipolar rounding quantization process relating
analog sampler output, x(k), to the binary DAC output, x*(k). In this
example, N = 4. 
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Figure 3.31  A 4-bit rounding quantizer I/O function

When y(k) is compared to the direct path, the error, e(k), can range
over ±q/2 in the center of the range, where q is the voltage step size of
the ADC/DAC. It is easy to see that for full dynamic range, q should
be:
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(3.108)

where  is the maximum (peak-to-peak) valtage value of the input,
x(t), to the ADC/DAC system. For example, if a 10-bit ADC is used
to convert a signal ranging from -5 to +5 V,  then by (3.108), q =
9.775 mV. 

Figure 3.32  The rectangular probability density function generally assumed for
quantization noise.

If x(t) has zero mean and its probability density function has a stand-
ard deviation , then the probability density function of e(n) can
be modeled by a rectangular density, p(e), for e = ±q/2. This rectangu-
lar density function is shown in Figure 3.32; it has a peak of 1/q. The
mean-squared error voltage is found from the expectation value:

(3.109)

Equationit (3.109) shows that it is possible to treat the quantization
error as a zero-mean broad-band noise with a standard deviation of

  added to the input signal x(k). The quantization noise
spectral bandwidth is assumed to be flat over ±fs/2, where fs is the
sampling frequency. 

In order to minimize the effects of quantization noise for an N-bit
ADC, it is important that the analog input signal, x(t), span the full
dynamic range of the ADC. In the case of a zero-mean, time-varying
signal that is Nyquist band limited, gains and sensitivities should be
chosen so that the peak expected x(t) does not exceed the input range
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of the ADC. If x(t) has a Gaussian probability density function with
zero mean, the dynamic range of the ADC should be about ±3 stand-
ard deviations (rms value) of the signal. Under this particular condi-
tion, it is possible to derive an expression for the mean-squared
signal-to-noise ratio of the ADC and its quantization noise. 

Let the signal have a rms value or standard deviation equal to
. From (3.108) the quantization step size can be written:

(3.110)

 The mean-squared or the variance of output noise is:

(3.111)

The signal-noise ratio (SNR) is the ratio of the signal power and noise
power. Thus,  the signal-to-noise ratio of the N-bit rounding quantizer
is:

(3.112)

Expressed i n dB we have:

(3.113)

Table 3.5 on page 68 summarizes the SNR the quantizer for different
bit values. 

Table 3.5 SNR Values for an N-Bit ADC Treated as a Quantizer.
Input span is assumed to be 
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Note: Input span is assumed to be 
About 6 dB of SNR improvement occurs for every bit added to
the ADC word length.

The equivalent quantization noise is added to the ideal sampled signal
at the input to some digital filter, H(z). Note that the quantization
error sequence, e(k), is assumed to be from a stationary white-noise
process, where each sample, e(k), is uniformly distributed over the
quantization error. The error sequence is also assumed to be uncorre-
lated with the corresponding input sequence, x(k). Furthermore, the
input sequence is assumed to be a sample sequence of a stationary
random process, {x}. 

Figure 3.33  Block diagram of a model in which quantization noise is added to a
noise-free sampled signal at the input to a digital filter.

Note that e(k) is treated as white sampled noise (as opposed to sam-
pled white noise). The auto-power density spectrum of e(k) is

assumed to be flat (constant) over the Nyquist range:   
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As e(k) propagates through the digital filter; in the time domain this
can be written as a real discrete convolution:

(3.114)

 is the standard deviation (rms value) of the white quanti-
zation noise and the variance of the filter’s output noise can be  to be
expressed as:

(3.115)
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