Chapter

|nllPocJucjlion to EmlsechlecJ quj[ems

What We Will Learn

In this chapter, we will learn the following:

Section 1.1

1. Definitions of system and embedded system.
2. Classification of embedded systems into three types.
3. Skillsneeded in designing an embedded system.

Section 1.2 The processing unit (s) of the embedded system

1. Processor in an Embedded System A processor is an important unit in the embedded system
hardware. A microcontroller is an integrated chip that has the processor, memory and several
other hardware units in it; these form the microcomputer part of the embedded system. An
embedded processor is a processor with special features that allow it to be embedded into a
system. A digital signal processor (DSP) is a processor meant for applications that process
digital signals. [For example, filtering, noise cancellation, echo elimination, compression and
encryption].

2. Commonly used microprocessors, microcontrollers and DSPsin the small-, medium-and large-
scale embedded systems.

3. A recently introduced technology that additionally incorporates the application-specific system
processors (ASSPs) in the embedded systems.

4. Multiple processors in a system.

@ Embedded Systems

Section 1.3

1. Embedded system power source(s) and the need for controlled power-dissipation.

2. Embedded system Clock oscillator circuit and clocking unit. It lets a processor execute and
process instructions.

3. Real time clock (RTC), timers and various timing needs of the system.

4. Reset circuit and watchdog timer.

5. System memories. [In the second part of Chapter 2, we will learn the system memories in
detail].

6. System Input Output (10) ports, serial Universal Asynchronous Receiver and Transmitter
(UART) and other ports, multiplexers and demultiplexers and interfacing buses. [These will be
dealt with in detail in Chapter 3].

7. Interrupt Handler [The latter part of Chapter 4 has the details].

8. Interfacing units- DAC (Digital to Analog Converter) using PWM (Pulse Width Modulation),
ADC (Analog to Digital Converter), LED and LCD display units, keypad and keyboard, pulse
diaer, modem and transceiver

9. Hardware required for exemplary embedded systems.

Section 1.4 Different levels of languages that are used to develop the embedded software for a
system [Chapter 5 details the high-level programming aspects, ‘C’ and ‘ C++' language structures and
the application of these for coding embedded software].

1.

w N

System device drivers, device management and multitasking using an operating system (OS)
and real time operating system (RTOS). [RTOS (s) are dealt with in detail in Chapters 9 and
10, and case studies using RTOSs in Chapter 11].

Software tools in system designing.

Software tools required in six exemplary cases.

Programming models for software designing. [Software designing models are detailed in
Chapter 6].

Section 1.5 Exemplary applications of each type of embedded system.

Section 1.6 Designing an embedded system on a VLS| chip.

1.

2.

Embedded SoC (System on Chip) and ASIC (Application Specific Integrated Circuit) and
examples of their applications. These use (i) Application Specific Instruction Processor (ASIP),
(ii) Intellectual Property (IP) core, (iii) Field Programmable Gate Arrays (FPGA) core with
single or multiple processor units on an ASIC chip.

Smart card, an example of the units of an embedded system on a chip (SoC).

Introduction to Embedded Systems @

—(1.1 AN EMBEDDED SYSTEM)

1.1.1 System

A system is a way of working, organizing or doing one or many tasks according to a fixed plan,
program, or set of rules. A system is aso an arrangement in which all its units assemble and work
together according to the plan or program. Let us examine the following two examples.

Consider awatch. It is atime-display system. Its parts are its hardware, needles and battery with
the beautiful dial, chassis and strap. These parts organize to show the real time every second and
continuously update the time every second. The system-program updates the display using three
needles after each second. It follows a set of rules. Some of these rules are as follows: (i) All needles
move clockwise only. (i) A thin and long needle rotates every second such that it returns to same
position after a minute. (iii) A long needle rotates every minute such that it returns to same position
after an hour. (iv) A short needle rotates every hour such that it returns to same position after twelve
hours. (v) All three needles return to the same inclinations after twelve hours each day.

Consider a washing machine. It is an automatic clothes-washing system. The important hard-
ware parts include its status display panel, the switches and dials for user-defined programming, a
motor to rotate or spin, its power supply and control unit, an inner water-level sensor, a solenoid valve
for letting water in and another valve for letting water drain out. These parts organize to wash clothes
automatically according to a program preset by a user. The system-programisto wash the dirty clothes
placed in atank, which rotates or spins in pre-programmed steps and stages. It follows a set of rules.
Some of these rules are asfollows: (i) Follow the steps strictly in the following sequence. Step |: Wash
by spinning the motor according to a programmed period. Step I1: Rinse in fresh water after draining
out the dirty water, and rinse a second time if the system is not programmed in water-saving mode.
Step 11: After draining out the water completely, spin fast the motor for a programmed period for
drying by centrifuging out water from the clothes. Step IV: Show the wash-over status by a blinking
display. Sound the alarm for a minute to signal that the wash cycle is complete. (ii) At each step,
display the process stage of the system. (iii) In case of an interruption, execute only the remaining part
of the program, starting from the position when the process was interrupted. There can be no repeti-
tion from Step | unless the user resets the system by inserting another set of clothes and resets the
program.

1.1.2 Embedded System

A computer is a system that has the following or more components.
1. A microprocessor
2. A large memory comprising the following two kinds:

(@) Primary memory (semiconductor memories - RAM, ROM and fast accessible caches)

(b) Secondary memory (magnetic memory located in hard disks, diskettes and cartridge tapes
and optical memory in CD-ROM)

Input units like keyboard, mouse, digitizer, scanner, etc.

Output units like video monitor, printer, etc.

Networking units like Ethernet card, front-end processor-based drivers, etc.

gk w

@ Embedded Systems

6. 1/O units like a modem, fax cum modem, etc.

An embedded system is one that has computer-hardware with software embedded in it as one of
its most important component. It is a dedicated computer-based system for an application(s) or
product. It may be either an independent system or a part of alarger system. As its software usually
embeds in ROM (Read Only Memory) it does not need secondary memories as in a computer. An
embedded system has three main components:

1. It has hardware. Figure 1.1 shows the units in the hardware of an embedded system.

2. It hasmain application software. The application software may perform concurrently the series
of tasks or multiple tasks.

3. Ithasareal timeoperating system (RTOS) that supervises the application software and provides
a mechanism to let the processor run a process as per scheduling and do the context-switch
between the various processes (tasks). RTOS defines the way the system works. It organizes
access to aresource in sequence of the series of tasks of the system. It schedules their working
and execution by following a plan to control the latencies and to meet the deadlines. [Latency
refers to the waiting period between running the codes of atask and the instance at which the
need for the task arises.] It sets the rules during the execution of the application software. A
small-scale embedded system may not need an RTOS.

An embedded system has software designed to keep in view three constraints: (i) available system-
memory, (ii) available processor speed and (iii) the need to limit power dissipation when running the
system continuously in cycles of wait for events, run, stop and wake-up.

There are several definitions of embedded systems given in books published recently. Given below
isaseries of definitions from othersin the field:

Wayne Wolf author of Computers as Components — Principles of Embedded Computing System
Design:. “What is an embedded computing system? Loosely defined, it is any device that includes a
programmable computer but is not itself intended to be a general-purpose computer” and “a fax ma-
chine or a clock built from a microprocessor is an embedded computing system”.

Todd D. Morton author of Embedded Microcontrollers: “ Embedded Systems are el ectronic systems
that contain a microprocessor or microcontroller, but we do not think of them as computers - the
computer is hidden or embedded in the system.”

David E. Simon author of An Embedded Software Primer: “People use the term embedded system to
mean any computer system hidden in any of these products.”

Tim Wilmshurst author of An Introduction to the Design of Small Scale Embedded System with
examples from PIC, 80C51 and 68HC05/08 Microcontrollers: (1) “An embedded systemis a system
whose principal function isnot computational, but which is controlled by acomputer embedded within
it. The computer is likely to be a microprocessor or microcontroller. The word embedded implies that
it liesinside the overall system, hidden from view, forming an integral part of greater whole”. (2) “An
embedded system is a microcontroller-based, software-driven, reliable, real time control system, au-
tonomous, or human- or network-interactive, operating on diverse physical variables and in diverse
environments, and sold into a competitive and cost-conscious market”.

Introduction to Embedded Systems @

Input Devices
Interfacing/
Driver Circuits

2
3
5 Program g
e Memory o
o =
g Processor and Data 5
§ Memory P
& g
2 (7]
© c
] Serial -%
o . Communi- O
i Timers cation —&
= Ports <
=3 £
(]
? B
g &
& Interrupt Parallel
Controller Ports

Outputs Interfacing/
Driver Circuits

Figure 1.1

The components of an embedded system hardware.

1.1.3 Classification of Embedded Systems

We can classify embedded systemsinto three types as follows. [Section 1.5 will give examples of each
typelater]:

1. Small Scale Embedded Systems: These systems are designed with a single 8- or 16-hit
microcontroller; they have little hardware and software complexities and involve board-level
design. They may even be battery operated. When devel oping embedded software for these, an
editor, assembler and cross assembler, specific to the microcontroller or processor used, are
the main programming tools. Usually, ‘C’ is used for developing these systems. ‘C’ program
compilation is done into the assembly, and executable codes are then appropriately located in
the system memory. The software has to fit within the memory available and keep in view the
need to limit power dissipation when system is running continuously.

2. Medium Scale Embedded Systems: These systems are usually designed with a single or few
16- or 32-bit microcontrollers or DSPs or Reduced Instruction Set Computers (RISCs). These
have both hardware and software complexities. For complex software design, there are the
following programming tools: RTOS, Source code engineering tool, Simulator, Debugger and
Integrated Development Environment (IDE). Software tools also provide the solutions to the

@ Embedded Systems

hardware complexities. An assembler is of little use as a programming tool. These systems may
also employ thereadily available ASSPs and | Ps (explained later) for the various functions—for
example, for the bus interfacing, encrypting, deciphering, discrete cosine transformation and
inverse transformation, TCP/IP protocol stacking and network connecting functions. [ASSPs
and IPs may also have to be appropriately configured by the system software before being
integrated into the system-bus.]

3. Sophisticated Embedded Systems. Sophisticated embedded systems have enormous
hardware and software complexities and may need scalable processors or configurable
processors and programmable logic arrays. They are used for cutting edge applications that
need hardware and software co-design and integration in the final system; however, they are
constrained by the processing speeds available in their hardware units. Certain software
functions such as encryption and deciphering algorithms, discrete cosine transformation and
inverse transformation algorithms, TCP/IP protocol stacking and network driver functions are
implemented in the hardware to obtain additional speeds by saving time. Some of the functions
of the hardware resources in the system are also implemented by the software. Development
toolsfor these systems may not be readily available at areasonable cost or may not be available
at al. In some cases, a compiler or retargetable compiler might have to be developed for these.
[A retargetable compiler is one that configures according to the given target configurationin a
system.]

1.1.4 Skills required for an Embedded System Designer

An embedded system designer has to develop a product using the available tools within the given
specifications, cost and time frame. [Chapters 7 and 12 will cover the design aspects of embedded
systems. See also Section 1.5.]

1. Sillsfor Small Scale Embedded System Designer: Author Tim Wilmshurst in the book referred
above (see page 4), has said that the following skills are needed in the individual or team that is
developing a small-scale system: “Full understanding of microcontrollers with a basic
knowledge of computer architecture, digital electronic design, software engineering, data
communication, control engineering, motors and actuators, sensors and measurements, analog
electronic design and IC design and manufacture”. Specific skills will be needed in specific
situations. For example, control engineering knowledge will be needed for design of control
systems and analog electronic design knowledge will be needed when designing the system
interfaces. Basic aspects of the following topics will be described in this book to prepare the
designer who already has a good knowledge of the microprocessor or microcontroller to be
used. (i) Computer architecture and organization. (ii) Memories. (iii) Memory allocation. (iv)
Interfacing the memories. (v) Burning (a term used for porting) the executable machine codes
in PROM or ROM (Section 2.3.1). (vi) Use of decoders and demultiplexers. (vii) Direct memory
accesses. (viii) Ports. (ix) Device drivers in assembly. (x) Simple and sophisticated buses. (xi)
Timers. (xii) Interrupt servicing mechanism. (xiii) C programming elements. (xiv) Memory
optimization. (xv) Selection of hardware and microcontroller. (xvi) Use of ICE (In-Circuit-
Emulators), cross-assemblers and testing equipment. (xvii) Debugging the software and
hardware bugs by using test vectors. Basic knowledge in the other areas—data communication,
control engineering, motors and actuators, sensors and measurements, analog electronic design
and IC design and manufacture—can be obtained from the standard textbooks available.

Introduction to Embedded Systems @

A designer interested in small-scale embedded systems may not need at all concepts of interrupt
latencies and deadlines and their handling, the RTOS programming tools described in Chapters
9 and 10 and program designing models given in Chapter 6.

2. Sills for Medium Scale Embedded System Designer: ‘C’ programming and RTOS
programming and program modeling skills are a must to design a medium-scale embedded-
system. Knowledge of the following becomes critical. (i) Tasks and their scheduling by RTOS.
(i) Cooperative and preemptive scheduling. (iii) Inter processor communication functions. (iv)
Use of shared data, and programming the critical sections and re-entrant functions. (v) Use of
semaphores, mailboxes, queues, sockets and pipes. (vi) Handling of interrupt-latencies and
meeting task deadlines. (vii) Use of various RTOS functions. (viii) Use of physical and virtual
device drivers. [Refer to Chapters 8 to 10 for detailed descriptions of these seven along with
examples and to Chapter 11 to learn their use with the help of case studies.] A designer must
have access to an RTOS programming tool with Application Programming Interfaces (APIs)
for the specific microcontroller to be used. Solutions to various functions like memory-
allocation, timers, device drivers and interrupt handing mechanism are readily available as the
APIs of the RTOS. The designer needs to know only the hardware organization and use of
these APIs. The microcontroller or processor then represents a small system element for the
designer and alittle knowledge may suffice.

3. Skills for Sophisticated Embedded System Designer: A team is needed to co-design and solve
the high level complexities of the hardware and software design. An embedded system hardware
engineer should have full skillsin hardware units and basic knowledge of ‘C’, RTOS and other
programming tools. Software engineer should have basic knowledge in hardware and a
thorough knowledge of ‘C’, RTOS and other programming tools. A final optimum design
solution is then obtained by system integration.

_(1.2 PROCESSOR IN THE SYSTEM)
A processor is the heart of the embedded system. For an embedded system designer, knowledge of
microprocessors and microcontrollersis a prerequisite. In the following explanations, too, it has been
presumed that the reader has a thorough understanding of microprocessors or microcontrollers. [The
reader may refer to a standard text or the texts listed in the ‘ References’ at the end of this book for an
in-depth understanding of microprocessors, microprocessors and DSPs that are incorporated in em-
bedded system design.]

1.2.1 Processor in a System

A processor has two essential units: Program Flow Control Unit (CU) and Execution Unit (EU). The
CU includes a fetch unit for fetching instructions from the memory. The EU has circuits that imple-
ment the instructions pertaining to data transfer operations and data conversion from one form to
another. The EU includes the Arithmetic and Logical Unit (ALU) and also the circuits that execute
instructions for a program control task, say, halt, interrupt, or jump to another set of instructions. It
can also execute instructions for a call or branch to another program and for a call to a function.

A processor runs the cycles of fetch and execute. The instructions, defined in the processor in-
struction set, are executed in the sequence that they are fetched from the memory. A processor is

@ Embedded Systems

mostly in the form of an IC chip; alternatively, it could bein core forminan ASIC or at a SoC. Core
means a part of the functional circuit on the VLSI chip.
An embedded system processor chip or core can be one of the following.
1. General Purpose Processor (GPP):
a. Microprocessor. [Refer to Section 1.2.2.]
b. Microcontroller. [Refer to Section 1.2.3.]
c. Embedded Processor. [Refer to Section 1.2.4.]
d. Digital Signal Processor (DSP). [Refer to Section 1.2.5.]
e. Media Processor. [Refer to Appendix E Section E.1.]
2. Application Specific System Processor (ASSP) as additional processor [Refer to Section
1.2.6]
3. Multiprocessor system using General Purpose processors (GPPs) and Application Specific
Instruction Processors (ASIPs) [Refer to Section 1.2.7.]
4. GPP core (s) or ASIP core (s) integrated into either an Application Specific Integrated Circuit
(ASIC), or a Very Large Scale Integrated Circuit (VLSI) circuit or an FPGA core integrated
with processor unit(s) in a VLS| (ASIC) chip. [Refer to Section 1.6.]
For a system designer, the following are important considerations when selecting a processor:
1. Instruction set.
2. Maximum bitsin an operand (8 or 16 or 32) in asingle arithmetic or logical operation.
3. Clock frequency in MHz and processing speed in Million Instructions Per Second (MIPS).
[Refer to Appendix B for an alternate metric Dhyrystone for processing performance.]
4. Processor ability to solve the complex algorithms used in meeting the deadlines for their
processing.

4/\ general-purpose processor is used because of the following: (i) Processing by the known
instructions available at predefined General-Purpose Instruction-Set results in fast system
development. (i) Once the board and 1/0 interfaces are designed for a GFFP, these can be used
for a new system by just changing the embedded software in the board ROM. (iii) Ready availabil-
ity of a compiler facilitates embedded software development in high-level language. (iv) Ready
availability of well-tested and debugged processor-specific APls and the codes previously de-
signed for other applications results in fast development of a new system.

1.2.2 Microprocessor

The CPU isaunit that centrally fetches and processes a set of general-purpose instructions. The CPU
instruction set (Section 2.4) includes instructions for data transfer operations, ALU operations, stack
operations, input and output (1/0) operations and program control, sequencing and supervising opera-
tions. The general purpose instruction set (refer to Appendix A, Section A.1) is always specific to a
specific CPU. Any CPU must possess the following basic functiona units.
1. A control unit to fetch and control the sequential processing of a given command or instruction
and for communicating with the rest of the system.
2. An ALU for the arithmetic and logical operations on the bytes or words. It may be capable of
processing 8, 16, 32 or 64 hit words at an instant.

Introduction to Embedded Systems @

A microprocessor is a single VLS chip that has a CPU and may also have some other units (for
examples, caches, floating point processing arithmetic unit, pipelining and super-scaling units) that
are additionally present and that result in faster processing of instructions. [Refer to Section 2.1.]

The earlier generation microprocessor’s fetch-and-execute cycle was guided by clock frequency
of the order of ~1 MHz. Processors now operate at clock frequency of 2 GHz. [Intel released a2 GHz
processor on August 25, 2001. This also marked the twentieth anniversary of the introduction of the
IBM PC. Intel released 3 GHz Pentium 4 on April 14, 2003.] Since early 2002, a few highly sophisti-
cated embedded systems (for examples, Gbps transceiver and encryption engine) have incorporated
the GHZ processor. [Gbps means Giga bit per second. Transceiver means a transmitting cum receiv-
ing circuit with appropriate processing and controls, for example, for bus-collisions.]

One example of an older generation microprocessor is Intel 8085. It is an 8-bit processor. Another
isIntel 8086 or 8088, which isa 16-hit processor. Intel 80x86 (also referred as x86) processors arethe
32-bit successors of 8086. [The x here means extended 8086 for 32 bits.] Examples of 32-bit proces-
sors in 80x86 series are Intel 80386 and 80486. Mostly, the IBM PCs use 80x86 series of processors
and the embedded systems incorporated inside the PC for specific tasks (like graphic accelerator, disk
controllers, network interface card) use these microprocessors.

An example of the new generation 32- and 64-bit microprocessor is the classic Pentium series of
processors from Intel. These have superscalar architecture [Section 2.1]. They also possess powerful
ALUs and Floating Point Processing Units (FLPUs) [Table 2.1]. An example of the use of Pentium I11
operating at 1 GHz clock frequency in an embedded system is the ‘Encryption Engine'. This gives
encrypted data at the rate of 0.464 Gbps.

Table 1.1.lists the important microprocessors used in the embedded systems. The microprocessors
are among the following streams of families:

Table 1.1
Important Microprocessors used in the Embedded Systems

Stream Microprocessor Family Source CISC or RISC or Both features
Stream 1 B68HCXxX Motorola CIsC
Stream 2 (a) 80x86 Intel CIsC

(b) 1860 Intel CISC with RISC
Stream 3 SPARC Sun RISC
Stream 4 (a) PowerPC 601, 604 IBM RISC

(b) MPC 620 Motorola

The microprocessors from Streams 1 and 2 have Complicated Instruction Set Computer (CISC)
architecture [Section A.1]. Microprocessors form Streams 3 and 4 have Reduced Instruction Set
Computer (RISC) architecture [Section A.1.4]. An RISC processor provides speedy processing of the
instructions, each in asingle clock-cycle. Further, besides the greatly enhanced capabilities mentioned
above, there is great enhancement of the speed by which an instruction from a set is processed.
Thumb- Instruction set is a new industry standard that also gives a reduced code density in a RISC
processor. [The concepts of architecture features of the processor in an embedded system, CISC and

@ Embedded Systems

RISC processors and processor instruction-set will be explained later in Appendices A and B.] RISCs
are used when the system needs to perform intensive computation, for example, in a speech process-
ing system.

How does a system designer select a microprocessor? This will be explained in Section 2.2.

A microprocessor is used when large embedded software is to be located in the external memory
chips. RISC core microprocessor is used when intensive computations are to be performed.

1.2.3 Microcontroller

Just as a microprocessor is the most essential part of a computing system, a microcontroller is the
most essential component of a control or communication circuit. A microcontroller is a single-chip
VLS| unit (also called ‘microcomputer’) which, though having limited computational capabilities,
possesses enhanced input-output capabilities and a number of on-chip functional units. [Refer to
Section 1.3 for various functional units.] Microcontrollers are particularly suited for use in embedded
systems for real-time control applications with on-chip program memory and devices.

Figure 1.2 shows the functional circuits present (in solid boundary boxes) in a microcontroller. It
also shows the application-specific units (in dashed boundary boxes) in a specific version of a given
microcontroller family. A few of the latest microcontrollers also have high computational and
superscalar processing capabilities. [For the meaning of superscalar architecture, refer to Section
2.1.] Appendix C gives the comparative functionalities of select microcontroller representatives from
these families.

Important microcontroller chips for embedded systems are usually among the following five
streams of families givenin Table 1.2.

Table 1.2
Important Microcontrollers® Used in the Embedded Systems

Stream Microcontroller Family Source CISC or RISC or Both features
Stream 1 68HC11xx, HC12xx, HC16xX Motorola CISC

Stream 2 8051, 80251 Intel CIsC

Stream3 | 80x86° Intel CISC

Stream 4 PIC 16F84 or 16C76, 16F876 Microchip CISC

and PIC18
Stream 5’ Enhancements of ARM9, ARM7 ARM, Texas, etc. CISC with RISC Core

@ Other popular microcontrollers are asfollows. (i) Hitachi H8x family and SuperH 7xxx. (ii) Mitsubishi 740, 7700,
M16C and M32C families. (iii) National Semiconductor COP8 and CR16 /16C. (iv) Toshiba TLCS 900S (v) Texas
Instruments M SP 430 for low voltage battery based system. (vi) Samsung SAMS8. (vii) Ziglog Z80 and eZ80
$80x86 Microcontroller versions (typically 80188 eight bit processor or 80386 sixteen bit processor) with each, there
are the 64 kB memory, 3 timers and 2 DMA channels.

" Refer Sections 1.2.4 and B.1

Figure 1.3 shows commonly used microcontrollers in the small-, medium- and large-scale embed-
ded systems. In Section C.1 (refer to Tables C.1.1 to C.1.3 therein) those features will be described
that have to be considered by a system designer before choosing a microcontroller as a processing
unit.

Introduction to Embedded Systems

Cin)

A microcontroller is used when a small or part of the embedded software has to be located in

internal memory and when t
and PWM are needed.

he on-chip functional units like interrupt-handler, port, timer, ADC

Functional Circuits in a Chip or Core of Microcontroller (Microcomputer)

Non Volatile I/O Ports
Prom/Rom/Eprom Control and
Interfaces/
Drivers
Data and External Memories
Stack in Internal Interface
RAM Serial UART
Communication
Timers and Port
Watchdog Timer
Serial
Interrupt Synchronous
Controller Communication
L] Port
Application Specific Circuits in Specific Versions
DI\EAj . AD | PV\L/M‘ M£ DTJMF
lControIIer} } Converter | ; Circuit ! ! e | Circuit 1|
e e . for + | T R !
| DIA |
i Network i | LAN i | Printer i
w Driver | i Controller ! i Controller !
} Stack e e
! and ;
|___Interface |
Figure 1.2

Various functional circuits (solid

boundary boxes) in a microcontroller chip or core in an embedded system.

Also shown are the application-specific units (dashed boundary boxes) in a specific version of a

microcontroller.

1.2.4 Embedded Processor for a Complex System

For fast, precise and intensive cal culations and for complex real time applications, the microcontrollers
and microprocessors mentioned above do not suffice. An electronics warfare system, for example, an
Advanced Warning and Control System (AWACS), which also associates tracking radar, is an exam-
ple of acomplex real-time system. Special microprocessors and microcontrollers, often called embed-

@ Embedded Systems

ded processors, are required.When a microcontroller or microprocessor is specialy designed such
that it has the following capabilities, then the term embedded processor is preferred instead of
microcontroller or microprocessor.
1. Fast context switching and thus lower latencies of the tasks in complex real time applications.
[Refer to Section 4.6]
2. Atomic ALU operationsand thus no shared data problem. Thelatter occurs due to an incompl ete
ALU (non-atomic) operation when an operand of a larger number of bits is placed in two or
four registers. [Refer to Section 2.1.]
3. RISC core for fast, more precise and intensive calculations by the embedded software.

Calculations for real time image processing and for aerodynamics are two examples where there is
a need for fast, precise and intensive calculations and fast context-switching. Important embedded
processor chips for embedded systems belong to the following two streams of families.

y Stream 1: ARM family ARM 7" and ARM 9
Y Stream 2: Intel family i960.
Y Stream 3: AMD family 29050.

* Appendix B describes ARM family processors. These are available in single chip CPU version as
well in file version for embedding on a VLSI chip or for a SoC solution for the embedded system.
Refer to Section 1.6.

Intel family 1960 microcontrollers are also called embedded processors, as these possess the re-
quired features including CISC and RISC (Section A.1.4). In one of the versions, these also have a 4-
channel DMA controller (Section 2.6). An 80960 includes an 8-channel, 248-vector programmable
interrupt controller.

An embedded processor is used when besides fast processing fast context-switching and
atomic ALU operations are needed.

Small Scale Embedded System
Microcontroller

68HCO05 PIC 8051
68HCO08 16F8X

Medium Scale Embedded System
Microcontroller

8051 80 x 86 68HC11xx 80196
80251 68HC12xx

Large Scale Embedded System Microcontroller

Intel ARM7 Power PC
80960CA MPC 604

Figure 1.3

Commonly used microcontrollers in small-, medium- and large-scale embedded systems.

Introduction to Embedded Systems @

1.2.5 Digital Signal Processor (DSP)

Just as a microprocessor is the most essential unit of a computing system, a digital signal processor
(DSP) isan essentia unit of an embedded system for alarge number of applications needing process-
ing of signals. Exemplary applications are in image processing, multimedia, audio, video, HDTV, DSP
modem and telecommunication processing systems. DSPs also find use in systems for recognizing an
image pattern or a DNA sequence fast. Appendix D describes in detail the embedded system DSPs.

The DSP as a GPP is a single chip VLSI unit. It possesses the computational capabilities of a
microprocessor and also has a Multiply and Accumulate (MAC) unit(s). Nowadays, atypical DSP has
al6 x 32 MAC unit.

A DSP provides fast, discrete-time, signal-processing instructions. It has Very Large Instruction
Word (VLIW) processing capabilities; it processes Single Instruction Multiple Data (SIMD) instruc-
tions fast; it processes Discrete Cosine Transformations (DCT) and inverse DCT (IDCT) functions
fast. The latter are a must for fast execution of the algorithms for signal analysing, coding, filtering,
noise cancellation, echo-elimination, compressing and decompressing, €tc.

Important DSPs for the embedded systems are from three streams as given in Table 1.3.

Table 1.3
Important Digital Signal Processor® Used in the Embedded Systems
Stream DSP Family Source
Stream 1 TMS320Cxx* Texas
Stream 2 SHARC Analog Device
Stream 3 5600xx Motorola

* For example, TMS320C62X X for fixed point DSP at clock speed of 200 MHz. Refer to Section D.4 for a detailed
description.

4/% DSP is used when signal-processing functions are to be processed fast.

1.2.6 Application Specific System Processors (ASSPs)
in Embedded Systems

Lately anew class of embedded systems has emerged. Systems additionally incorporates the Applica-
tion Specific System processor ASSP chip(s) or core (s) in its design. These have been recently
becomeavailable.

Assume that there is an embedded system for real-time video processing. Real-time processing
need in embedded systems arises for digital television, high definition TV decoders, set-up boxes,
DVD (Digital Video Disc) players, Web phones, video-conferencing and other systems. The process-
ing needs a video compression and decompression system, which incorporates an MPEG 2 or MPEG
4 standard. [MPEG stands for Motion Picture Expert Group.] MPEG 2 or MPEG 4 compression of
signals is done before storing or transmitting; decompression is done before retrieving or receiving
these signals. For MPEG compression algorithms, if a GPP embedded software is run, separate
DSP(s) are required to achieve real-time processing. An ASSP that is dedicated to these specific tasks

@ Embedded Systems

alone provides afaster solution. The ASSP is configured and interfaced with the rest of the embedded
system.

Assume that there is an embedded system that interconnects using a specific protocol the system
units through a specific bus architecture to another system. Also, assume that there is a need for
suitable encryption and decryption. [The output bit stream encryption protects the messages or design
from passing to an unknown external entity.] For these tasks, besides embedding the software, it may
also be necessary to embed some RTOS features. [Section 1.4.6]. If the software alone is used for the
abovetasks, it may take alonger time than ahardwired solution for application-specific processing. An
ASSP chip provides such a solution. For example, an ASSP chip [from i2Chip (http://
www.i2Chip.com)] has a TCP, UDP, IP, ARP, and Ethernet 10/100 MAC (Media Access Control)
hardwired logic included into it. The chip from i2Chip, W3100A, is a unique hardwired Internet con-
nectivity solution. Much needed TCP/IP stack processing software for networking tasks is thus avail-
able as a hardwired solution. This gives output five times faster than a software solution using the
system’s GPP. It is also an RTOS-less solution. Using the same microcontroller in the embedded
system to which this ASSP chip interfaces, Ethernet connectivity can be added. [For terms TCP,
UDP, IP, ARP, Ethernet 10/100 and MAC, refer to a suitable reference book on computer networking.
Refer to Internet and Web Technologies by RajKamal, Tata McGraw-Hill, 2002, to understand the
meaning of each bit in these protocols.]

Anocther ASSP exampleis‘ Serial-to-Ethernet Converter’ (I1M7100). It does real-time data process-
ing by a hardware protocol stack. It needs no change in the application software or firmware and
provides the economical and smallest RTOS sol ution.

4/% ASSP is used as an additional processing unit for running the application specific tasks in
place of processing using embedded software.

1.2.7 Multi-processor Systems using General Purpose Processors (GPP)

In an embedded system, several processors may be needed to execute an algorithm fast and within a
strict dead line. For example, in real-time video processing, the number of MAC operations needed per
second may be more than is possible from one DSP unit. An embedded system then may have to
incorporate two or more processors running in synchronization.

In a cell-phone, a number of tasks have to be performed: (a) Speech signal-compression and cod-
ing. (b) Dialing. (c) Modulating and Transmitting. (d) Demodulating and Receiving. (e) Signal decod-
ing and decompression. (f) Keypad interface and display interface handling. (g) Short Message Serv-
ice (SMS) protocol-based messaging. (h) SMS message display. For all these tasks, a single processor
does not suffice. Suitably synchronized multiple processors are required.

Consider a video conferencing system. In this system, a quarter common intermediate format—
Quarter-CIF)—is used. Image pixel isjust 144 x 176 as against 525 x 625 pixelsin avideo picture on
TV. Even then, samples of the image have to be taken at arate of 144 x 176 x 30 = 760320 pixels per
second and have to be processed by compression before transmission on a telecommunication or
Virtual Private Network (VPN). [Note: The number of frames should be 25 or 30 per second (as per
the standard adopted) for real-time displays and in motion pictures and between 15 and 10 for video
conferencing.] A single DSP-based embedded system does not suffice to get real-time images. Real-
time video processing and multimedia applications most often need a multiprocessor unit in the

Introduction to Embedded Systems @

embedded system. [A Media processor, described in Appendix E, isan alternate solution in place of use
of multiprocessors for real time video processing.]

4Multiple processors are used when a single processor does not meet the needs of the different
tasks that have to be performed concurrently. The operations of all the processors are syn-
chronized to obtain an optimum performance.

—(1.3 OTHER HARDWARE UNITS)

1.3.1 Power Source and Managing the Power
Dissipation and Consumption

Most systems have a power supply of their own. The supply has a specific operation range or arange
of voltages. Various units in an embedded system operate in one of the following four operation
ranges:

(i) 5.0V +0.25V

(i) 3.3v+0.3v

(i) 20+0.2v

(iv) 1.5V +0.2V

Additionaly, a12V + 0.2V supply is needed for aflash (a memory form used in systems like latest
digital cameras) or Electrically Erasable and Programmable Read Only memory (EEPROM) when
present in the microcontroller of an embedded system and for RS232C serial Interfaces (Section 2).
[Lately, flash memory needed supply voltages are 5V or less.]

Voltage is applied on the chips of an embedded system as follows. The flow of voltage and the
connections depend on the number of supply pins provided within the processor plus the pinsin the
associated chipsand circuits. The pinsarein pairs, consisting of the supply in and the ground line. The
following points have to be taken care of while connecting the supply rails (lines):

1. A processor may have more than two pins of Vp and V ¢s. This distributes the power in al the
sections and reduces interference between sections. There should be a separate radio frequency
interference bypassing capacitor as close as possible to each pair of Vyp and Vg pinsin the
system processor as well as in other units.

2. Supply should separately power the (a) external 1/O driving ports (b) timers and (c) clock and
reset circuits. Clock and reset circuits (Sections 1.3.2 and 1.3.3) need to be specially designed
to be free from any radio frequency interference. An 1/O device may dissipate more power than
the other internal units of the processor. A timer may dissipate a constant power even in Wait
state. Hence, these three circuits are powered separately.

3. From the supply, there should be separate interconnections for pairs of Vp, and Vg pins,
analog ground, anal og reference and anal og input voltage lines, the ADC unit digital ground and
other analog parts in the system. An ADC needs stringent noise-free supply inputs.

Certain systems do not have a power source of their own: they connect to an external power supply
or are powered by the use of charge pumps. (1) Network Interface Card (NIC) and Graphic Accelera-
tor are examples of embedded systems that do not have their own power supply and connect to PC
power-supply lines. (2) A charge pump consists of a diode in the series followed by a charging
capacitor. The diode gets forward bias input from an external signal; for example, from an RTS signal

@ Embedded Systems

in the case of the mouse used with a computer. Charge pumps bring the power from a non-supply line.
[Ninepins COM port hasasignal called Request To Send (RTS). It isan active low signal. Most of the
timeitisininactive statelogic ‘1’ (~5V). The charge pump inside the mouse usesiit to store the charge
when the mouseisin anidle state; the pump dissi pates the power when the mouse is used]. A regulator
circuit getting input from this capacitor gives the required voltage supply. A charge pump in a contact-
less smart card uses the radiations from a host machine when inserted into that [Section 1.6.6].

Low voltage systems are built using LVCMOS (Low Voltage CMOS) gates and LVTTL (Low
Voltage TTL). Use of 3.3V, 2.5V, 1.8V and 1.5 Volt systems and 10 (Input-Output) Interfaces other
than the conventional 5V systems results in significantly reduced power-consumption and can be
advantageously used in the following cases:

(&) In portable or hand-held devices such as a cellular phone [Compared to 5V, a CMOS circuit
power dissipation reduces by half, ~(3.3/5)? in 3.3V operation. This also increases the time intervals
needed for recharging the battery by a factor of two]. (b) In a system with smaller overall geometry,
the low voltage system processors and |10 circuits generate lesser heat and thus can be packed into a
smaller space.

Thereisgenerally an inverse rel ationship between the propagation delay in the gates and operational
voltage. Therefore, the 5V-system processor and units are also used in most systems.

An embedded system may need to be run continuously, without being switched off; the system
design, therefore, is constrained by the need to limit power dissipation whileit isrunning. Total power
consumption by the system in running, waiting and idle states should also be limited. The current
needed at any instant in the processor of an embedded system depends on the state and mode of the
processor. The following are the typical valuesin six states of the processor.

(i) 50 mA when only the processor is running:that is, the processor is executing instructions.

(i) 75 mA when the processor plus the external memories and chips are in running: state: that is,

fetching and execution are both in progress.

(i) 15mA when only the processor is in stop state: that is, fetching and execution have both
stopped and the clock has been disabled from all structural units of the processor.

(iv) 15 mA when the processor plus the external memories and chips are in stop state: that is,
fetching and execution have both stopped and the clock disabled from all system units.

(v) 5 mA when only the processor is in waiting state: that is, fetching and execution have both
stopped but the clock has not been disabled from the structural units of the processor, such as
timers.

(vi) 10 mA when the processor, the external memories and the chips are in waiting state. Waiting
state now means that fetching and execution have both stopped; but the clock has not been
disabled from the structural units of the processor and the external 10 units and dynamic RAMs
refreshing also has not stopped.

An embedded system has to perform tasks continuously from power-up and may also be left in
power-ON state; therefore, power saving during execution isimportant A microcontroller used inthe
embedded system must provide for executing Wait and Stop instructions and operation in power-down
mode. One way to do thisis to cleverly incorporate into the software the Wait and Sop instructions.
Another isto operate the system at the lowest voltage levelsin the idle state by selecting power-down
mode in that state. Y et another method is to disable use of certain structura units of the processor—
for example, caches—when not necessary and to keep in disconnected state those structure units that
are not needed during a particular software-portion execution, for example timers or 10 units. In a

Introduction to Embedded Systems @

CMOS circuit, power dissipates only at the instance of change in input. Therefore, unnecessary
glitches and frequent input changes increase power dissipation. VLS| circuit designs have a unique
way of avoiding power dissipation. A circuit design is made such that it eliminates all removable
glitches, thereby eliminating any frequent input changes.

Notel The processor goes into a stop state when it receives a Stop instruction. The stop state also
occursin the following conditions: (1) On disabling the clock inputs to the processor. (2) On stopping
the external clock circuit functions. (3) On the processor operating in auto-shutdown mode. When in
stop state, the processor disconnects with the buses. [Buses become in tri-state.] The stop state can
change to a running state. The transition to the running state is either because of a user interrupt or
because of the periodically occurring wake-up interrupts.

Note 2 The processor goes into a waiting state either on receiving (i) an instruction for Wait, which
slows or disables the clock inputs to some of the processor units including ALU, or (ii) when an
external clock-circuit becomes non-functional. The timers are still operating in the waiting state. The
waiting state changes to the running state when either (i) an interrupt occurs or (ii) areset signals.

Note3 Power dissipation reducestypically by 2.5 mW per 100 kHz reduced clock rate. So reduction
from 8000 kHz to 100 kHz reduces power dissipation by about 200 mW, which is nearly similar to
when the clock is non-functional. [Remember, total power dissipated (energy required) may not re-
duce. Thisis because on reducing the clock rate the computations will take alonger time at the lower
clock rate and the total energy required equal s the power dissipation per second multiplied by thetime.]
The power 25 mW istypically the residual dissipation needed to operate the timers and few other units.
By operating the clock at lower frequency or during the power-down mode of the processor, the
advantages are as follows: (i) Heat generation reduces. (ii) Radio frequency interference also then
reduces due to the reduced power dissipation within the gates. [Radiated RF (Radio Frequency) power
depends on the RF current inside a gate, which reduces due to increase in ‘ON’ state resistance
between the drain and channel when there is reduced heat generation.]

Lately, anew technology isthe use of clock manager circuitsin conjunction with oscillator circuits.
It is used in sophisticated embedded systems on chips (SoCs). Two to sixteen synchronous clocks are
created by the combination of clock doublers and clock dividers (by 2) . Further, incoming clock
signals at the bus may be divided first and then multiplied before being applied to a fast operation
circuit. This reduces the power consumption between gates. The clock manager circuit is configured
for the smart delivery of the appropriate frequency clock to each section of the circuit being managed
during real-time processing. [Note: A sophisticated technology— phased delay locked loops—has to
be used. When using the common logic gates of counters, there are continuously varying delays at the
gates (say, for example, 10 ns plus minus 2 ns). The synchronous clocks cannot be designed by using
the counters alone.]

4/%1 internal power source or a charge pump is essential in every system. An embedded system
has to perform tasks continuously from power-up to power-off and may even be kept ‘on’
continuously. Clever real-time programming by using ‘Wait” and ‘Stop’ instructions and disabling
certain units when not needed is one method of saving power during program execution.
Operations can also be performed at reduced clock rate when needed in order to control power
dissipation; yet all the tasks must execute within the set deadlines and all tasks needing full

@ Embedded Systems

speed processing must process fast. [For a definition of ‘deadline’, refer to Section 4.6.] For
embedded system software, a performance analysis during its design phase must also include
the analysis of power dissipation during program execution and during standby. Good design
must optimize the conflicting needs of low power dissipation and fast and efficient program
execution.

1.3.2 Clock Oscillator Circuit and Clocking Unit (s)

After the power supply, the clock is the next important unit of a system. A processor needs a clock
oscillator circuit. The clock controls the various clocking requirements of the CPU, of the system
timers and the CPU machine cycles. The machine cycles are for

(i) fetching the codes and data from memory and then decoding and executing at the processor,

and

(ii) transferring the results to memory.

The clock controls the time for executing an instruction. The clock circuit uses either a crystal
(external to the processor) or a ceramic resonator (internally associated with the processor) or an
external oscillator |C attached to the processor. (a) The crystal resonator gives the highest stability in
frequency with temperature and drift in the circuit. The crystal in association with an appropriate
resistance in parallel and a pair of series capacitance at both pins resonates at the frequency, which is
either double or single times the crystal-frequency. Further, the crystal is kept as near as feasible to
two pins of the processor. (b) Theinternal ceramic resonator, if available in a processor, saves the use
of the external crystal and gives a reasonable though not very highly stable frequency. [A typica drift
of the ceramic resonator is about ten minutes per month compared to the typical drift of 1 or 5 minutes
per month of a crystal]. (c) The external |C-based clock oscillator has a significantly higher power
dissipation compared to the internal processor-resonator. However, it provides a higher driving capa-
bility, which might be needed when the various circuits of embedded system are concurrently driven.
For example, a multiprocessor system needs the clock circuit, which should give a high driving capa-
bility and enables control of all the processors concurrently.

ﬁ:or the processing unit(s), a highly stable oscillator is required and the processor clock-out
signal provides the clock for synchronizing all the system units.

1.3.3 Real Time Clock (RTC) and Timers for Various Timing and
Counting Needs of the System

A timer circuit suitably configured is the system-clock, also called real-time clock (RTC). An RTC is
used by the schedulers and for real-time programming. An RTC is designed as follows: Assume a
processor generates a clock output every 0.5 ms. When a system timer is configured by a software
instruction to issue timeout after 200 inputs from the processor clock outputs, then there are 10000
interrupts (ticks) each second. The RTC ticking rate isthen 10 kHz and it interrupts every 100 ms. The
RTC is also used to obtain software-controlled delays and time-outs.

More than one timer using the system clock (RTC) may be needed for the various timing and
counting needs in a system. Refer to Section 3.2 for a description of timers and counters.

Introduction to Embedded Systems @

ﬁ:or scheduling the various tasks and for real-time programming, a system clock (RTC) is needed.
The system clock also drives the timers for various timing and counting needs in a system.

1.3.4 Reset Circuit, Power-up Reset and Watchdog-Timer Reset

Reset means that the processor starts the processing of instructions from a starting address. That
addressis one that is set by default in the processor program counter (or instruction pointer and code
segment registers in x86 processors) on a power-up. From that address in memory, the fetching of
program-instructions starts following the reset of the processor. [In certain processors, for example,
68HC11 and HC12, there are two start-up addresses. One is as per power-up reset vector and other is
as per reset vector after the Reset instruction or after a time-out (for example from a watchdog
timer)].

The reset circuit activates for a fixed period (afew clock cycles) and then deactivates. The proces-
sor circuit keeps the reset pin active and then deactivates to let the program proceed from a default
beginning address. The reset pin or the internal reset signal, if connected to the other units (for
example, /0O interface or Serial Interface) in the system, is activated again by the processor; it be-
comes an outgoing pin to enforce reset state in other sister units of the system. On deactivation of the
reset that succeeds the processor activation, a program executes from start-up address.

Reset can be activated by one of the following:

1. Anexternal reset circuit that activates on the power-up, on switching-on reset of the system or
on detection of alow voltage (for example < 4.5V when what is required is 5V on the system
supply rails). This circuit output connects to a pin called the reset pin of the processor. This
circuit may be asimple RC circuit, an external 1C circuit or a custom-built IC. The examples of
the ICsare MAX 6314 and Motorola MC 34064.

2. By (@) software instruction or (b) time-out by a programmed timer known as watchdog timer
(or on an internal signal called COP in 68HC11 and 68HC12 families) or (c) a clock monitor
detecting a slowdown below certain threshold frequencies due to a fault.

The watchdog timer is atiming device that resets the system after a predefined timeout. This time
is usually configured and the watchdog timer is activated within the first few clock cycles after
power-up. It has a number of applications. In many embedded systems reset by a watchdog timer is
very essential because it helps in rescuing the system if a fault develops and the program gets stuck.
On restart, the system can function normally. Most microcontrollers have on-chip watchdog timers.

Consider a system controlling the temperature. Assume that when the program starts executing, the
sensor inputs work all right. However, before the desired temperature is achieved, the sensor circuit
develops some fault. The controller will continue delivering the current nonstop if the system is not
reset. Consider another example of a system for controlling a robot. Assume that the interfacing motor
control circuit in the robot arm develops a fault during the run. In such cases, the robot arm may
continue to move unless there is a watchdog timer control. Otherwise, the robot will break its own
arm!

4/%1 important circuit that associates a system is its reset circuit. A program that is reset and
runs on a power-up can be one of the following: (i) A system program that executes from the
beginning. (if) A system boot-up program. (iii) A system initialization program.

The watchdog timer reset is a very useful feature in control applications.

Embedded Systems

)

1.3.5 Memories

In a system, there are various types of memories. Figure 1.4 shows a chart for the various forms of
memories that are present in systems. These are as follows: (i) Internal RAM of 256 or 512 bytesin a
microcontroller for registers, temporary data and stack. (ii) Internal ROM/PROM/EPROM for about
4 kB to 16 kB of program (in the case of microcontrollers). (iii) External RAM for the temporary data
and stack (in most systems). (iv) Internal caches (in the case of certain microprocessors). (V)
EEPROM or flash (in many systems saving the results of processing in nonvolatile memory: for
example, system status periodically and digital-camera images, songs, or speeches after a suitable
format compression). (vi) External ROM or PROM for embedding software (in aimost all non-
microcontroller-based systems). (vii) RAM Memory buffers at the ports. (viii) Caches (in superscaler
microprocessors). [Refer to Sections 2.1 and 2.3 for further details of these]
Various Forms of System Memory

Internal RAM at Internal External Flash/ ROM/ Memory
RAM at System- Caches RAM EEPROM PROM Addresses
Micro- on- at Chip(s) at
Controller Chip Microprocessor the System
or [Hold Copies External Ports
External of System and/or
RAM Memory Internal
pages]
Figure 1.4

The various forms of memories in the system.
Table 1.4 gives the functions assigned in the embedded systems to the memories. ROM or PROM
or EPROM embeds the embedded software specific to the system.

Table 1.4
Functions Assigned to the Memories in a System

Memory Needed Functions

ROM or EPROM

Storing Application programs from where the processor fetches the instruction
codes. Storing codes for system booting, initializing, Initial input data and Strings.
Codes for RTOS. Pointers (addresses) of various service routines.

RAM (Internal and
External) and RAM
for buffer
EEPROM or Flash
Caches

Storing the variables during program run and storing the stack. Storing input or
output buffers, for example, for speech or image.

Storing non-voltile results of processing.
Storing copies of instructions and datain advance from external memories and
storing temporarily the results during fast processing.

4/% system embeds (locates) the following either in the microcontroller's internal ROM, PROM or
in an external ROM or PROM: boot-up programs, initialization data, strings for an initial screen-
display or initial state of the system, the programs for various tasks, ISRs and kernel. The
system has RAMs for saving temporary data, stack and buffers that are needed during a
program run. The system also has flash for storing non-volatile results.

Introduction to Embedded Systems @

1.3.6 Input, Output and I/O Ports, IO Buses and IO Interfaces

The system gets inputs from physical devices (such as, for example, the key-buttons, sensors and
transducer circuits) through the input ports. A controller circuit in a system gets the inputs from the
sensor and transducer circuits. A receiver of signals or a network card gets the input from a commu-
nication system. [A communication system could be afax or modem, a broadcasting service]. Signals
from anetwork are also received at the ports. Consider the system in an Automatic Chocolate Vending
Machine. It getsinputs from a port that collects the coins that a child inserts. Presume that only a child
would use this wonder machine! Consider the system in a mobile phone. The user inputs the mobile
number through the buttons, directly or indirectly (through recall of the number from its memory). A
panel of buttons connects to the system through the input port or ports. Processor identifies each input
port by its memory buffer address(es), called port address(es). Just as a memory location holding a
byte or word is identified by an address, each input port is also identified by the address. The system
gets the inputs by the read operations at the port addresses.

The system has output ports through which it sends output bytesto the real world. An output may
betoan LED (Light Emitting diode) or LCD (Liquid Crystal Display) panel. For example, acalculator
or mobile phone system sends the output-numbers or an SM'S message to the LCD display. A system
may send output to a printer. An output may be to a communication system or network. A control
system sends the outputs to alarms, actuators, furnaces or boilers. A robot is sent output for its
various motors. Each output port is identified by its memory-buffer address(es) (called port address).
The system sends the output by a write operation to the port address.

There are also general-purpose ports for both the input and output (I/0O) operations. For example, a
mobile phone system sends output as well as gets input through a wireless communication channel.
Each 1/0 port is aso identified by an address to which the read and write operations both take place.

Refer to Section 3.1 for the details regarding ports. There are two types of 1/O ports. Parallel and
Serial. From a seria port, a system gets a seria stream of bits at an input or sends a stream at an
output. For example, through a serial port, the system gets and sends the signals as the bits through a
modem. A serial port also facilitates long distance communication and interconnections. A serial port
may be aSerial UART port, aSerial Synchronous port or some other Serial I nterfacing port. [UART
stands for Universal Asynchronous Receiver and Transmitter].

A system port may get inputs from multiple channels or may have to send output to multiple
channels. A demultiplexer takes the inputs from various channels and transfers the input from a select
channel to the system. A multiplexer takes the output from the system and sends it to another system.

A system might have to be connected to a number of other devices and systems. For networking
the systems, there are different types of buses: for example, 1°C, CAN, USB, ISA, EISA and PCI.
[Refer to Sections 3.3, 3.4 and Appendix F for buses in detail .]

4/% system connects to external physical devices and systems through parallel or serial 1/0
ports. Demultiplexers and multiplexers facilitate communication of signals from multiple chan-
nels through a common path. A system often networks to the other devices and systems
through an 1/0 bus: for example, I°C, CAN, USB, ISA, EISA and PCl bus.

@ Embedded Systems

1.3.7 Interrupts Handler

A system may possess a number of devices and the system processor has to control and handle the
requirements of each device by running an appropriate Interrupt Service Routine (ISR) for each. An
interrupts-handling mechanism must exist in each system to handle interrupts from various proc-
esses in the system: for example, to transfer data from a keyboard or a printer. [Refer to Chapter 4 for
adetailed description of the interrupts and their control (handling) mechanism in a system]. |mportant
points regarding the interrupts and their handling by programming are as follows:

1. There can be a number of interrupt sources and groups of interrupt sources in a processor.
[Refer to Section 4.5.] An interrupt may be a hardware signal that indicates the occurrence of
an event. [For example, areal-time clock continuously updates a value at a specified memory
address; the transition of that value is an event that causes an interrupt.] An interrupt may also
occur through timers, through an interrupting instruction of the processor program or through
an error during processing. The error may arise due to an illegal op-code fetch, a division by
zero result or an overflow or underflow during an ALU operation. An interrupt can also arise
through a software timer. A software interrupt may arise in an exceptional condition that may
have devel oped while running a program.

The system may prioritize the sources and service them accordingly [Section 4.6.5].

3. Certain sources are not maskable and cannot be disabled. Some are defined to the highest
priority during processing.

4. The processor’s current program has to divert to a service routine to complete that task on the
occurrence of the interrupt. For example, if a key is pressed, then an ISR reads the key and
stores the key value in the processor memory address. If a sequence of keys is pressed, for
instance in a mobile phone, then an I SR reads the keys and also calls atask to dial the mobile
number.

5. Thereisaprogrammable unit on-chip for theinterrupt handling mechanismin amicrocontroller.

6. The application program or scheduler is expected to schedule and control the running of

routines for the interrupts in a particular application.

The scheduler always gives priority to the ISRs over the tasks of an application.

N

4/\ system must have an interrupt handling mechanism for executing the ISRs in case of the
interrupts from physical devices, systems and software exceptions.

1.3.8 DAC (Using a PWM) and ADC

Suppose a system needs to give an anal og output of a control circuit for automation. The analog output
may be to a power system for a d.c. motor or furnace. A Pulse Width Modulator (PWM) unit in the
microcontroller operates as follows: Pulse width is made proportional to the analog-output needed.
PWM inputs are from 00000000 to 11111111 for an 8-bit DAC operation. The PWM unit outputsto an
external integrator and then provides the desired analog output.

Suppose an integrator circuit (external to the microcontroller) gives an output of 1.024 Volt when
the pulse width is 50% of the total pulse time period, and 2.047V when the width is 100%. When the
width is made 25% by reducing by half the valuein PWM output control-register, the integrator output
will become 0.512 Valt.

Introduction to Embedded Systems @

Now assume that the integrator operates with a dual (plus-minus) supply. Also assume that when
an integrator circuit gives an output of 1.023 Volt, the pulse width is 100% of total pulse time period
and —1.024 Volt when the width is 0%. When the width is made 25% by reducing by half the valuein
an output control register, the integrator output will be 0.512 Volt; at 50% the output will be 0.0 Volt.

From this information, finding the formulae to obtain converted bits for a given PWM register bits
ranging from 00000000 to 11111111 in both the situations is left as an exercise for the reader.

The ADC in the system microcontroller can be used in many applications such as Data Acquisition
System (DAS), analog control system and voice digitizing system. Suppose a system needs to read an
analog input from a sensor or transducer circuit. If converted to bits by the ADC unit in the system,
then these bits, after processing, can also give an output. This provides a control for automation by a
combined use of ADC and DAC features.

The converted hits can be given to the port meant for digital display. The bits may be transferred to
amemory address, a serial port or a parallel port.

A processor may process the converted bits and generate a Pulse Code Modulated (PCM) output.
PCM signals are used digitizing the voice in the digital format].

Important points about the ADC are as follows:

1. Either asingle or dual analog reference voltage source is required in the ADC. It sets either the
analog input’ s upper limit only or the lower and upper limits both. For asingle reference source,
the lower limit is set to OV (ground potential). When the analog input equals the lower limit the
ADC generates all bits as Os, and when it equals the upper limit it generates all bitsas 1s. [Asan
example, suppose in an ADC the upper limit or reference voltage is set as 2.255 Volt. Let the
lower limit reference Voltage be 0.255V. Difference in the limits is 2 Volt. Therefore, the
resolution will be (2/256) Volt. If the 8-bit ADC analog-input is 0.255V, the converted 8 bits
will be 00000000. When the input is (0.255V + 1.000V) = 1.255V, the bits will be 10000000.
When the analog input is (0.255V + 0.50V), the converted bits will be 01000000. [From this
information, finding aformulato obtain converted bits for a given analog input = v Volt is left
as an exercise for the reader].

2. An ADC may be of eight, ten, twelve or sixteen bits depending upon the resolution needed for
conversion.

3. The start of the conversion signal (STC) signal or input initiates the conversion to 8 bits. In a
system, an instruction or atimer signals the STC.

4. Thereisan end of conversion (EOC) signa. In asystem, aflag in aregister is set to indicate the
end of conversion and generate an interrupt.

5. Thereisaconversion time limit in which the conversion is definite.

6. A Sampleand Hold (S/H) unitisused to sampletheinput for afixed timeand hold till conversion
is over.

An ADC unit in the embedded system microcontroller may have multi-channels. It can then take the
inputs in succession from the various pins interconnected to different analog sources.

%or automatic control and signal processing applications, a system must provide necessary
interfacing circuit and software for the Digital to Analog Conversion (DAC) unit and Analog to
Digital Conversion (ADC) unit. A DAC operation is done with the help of a combination of PWM
unit in the microcontroller and an external integrator chip. ADC operations are needed in sys-
tems for voice processing, instrumentation, data acquisition systems and automatic control.

@ Embedded Systems

1.3.9 LCD and LED Displays

A system requires an interfacing circuit and software to display the status or message for a line, for
multi-line displays, or flashing displays. An LCD screen may show up amulti-line display of charac-
ters or also show a small graph or icon (called pictogram). A recent innovation in the mobile phone
system turns the screen blue to indicate an incoming call. Third generation system phones have both
image and graphic displays. An LCD needs little power. It is powered by a supply or battery (a solar
panel in the calculator). LCD is adiode that absorbs or emits light on application of 3V to 4V and 50
or 60 Hz voltage-pulses with currents less than ~50 mA. The pulses are applied with the same polarity
on crystal front and back plane for no light, or with opposite polarity for light. Here polarity at an
instance means logic ‘1’ or ‘0']. An LSl (Lower Scale Integrated Circuit) display-controller is often
used in the case of matrix displays.

For indicating ON status of the system there may be an LED, which glows when it is ON. A
flashing LED may indicate that a specific task is under completion or isrunning. It may indicate await
status for a message. The LED is a diode that emits yellow, green, red (or infrared light in a remote
controller), on application of a forward voltage of 1.6 to 2 V. An LED needs current up to 12 mA
above 5 mA (lessin flashing display mode) and is much brighter than the LCD. Therefore, for flashing
display and for display limited to few digits, LEDs are used in a system.

%or displaying and messaging, the LCD matrix displays and LED arrays are used in a system.
The system must provide necessary interfacing circuit and software for the output to LCD
display controller and LED interfacing ports.

1.3.10 Keypad /Keyboard

The keypad or keyboard is an important device for getting user inputs. The system must provide the
necessary interfacing and key-debouncing circuit as well as the software for the system to receive
input from a set of keys or from a keyboard or keypad. A keypad has up to a maximum of 32 keys. A
keyboard may have 104 or more keys. The keypad or keyboard may interface serially or as parallel to
the processor directly through a parallel or serial port or through a controller.

ﬁ:or inputs, a keypad or board may interface to a system. The system must provide necessary
interfacing circuit and software to receive inputs directly from the keys or through a controller.

1.3.11 Pulse Dialer, Modem and Transceiver

For user connectivity through the telephone line, wireless or a network, a system provides the neces-
sary interfacing circuit. It also provides the software for pulse dialing through the telephone line, for
modem interconnection for fax, for Internet packets routing, and for transmitting and connecting a
WAG (Wireless Gateway) or cellular system. A transceiver is a circuit that can transmit as well as
receive byte streams.

Introduction to Embedded Systems @

ﬁn communication systems, the Fulse Dialer, Modem or Transceiver are used. A system must
then provide the necessary interfacing circuit and software for dialing, for the modem and
transceiver, directly or through a controller.

1.3.12 GPIB (IEEE 488) Link

A system may need linking to another instrument or system. The |EEE 488 GPIB (General Purpose
Interface Bus) link is a standard bus originally developed by HP [Hewlett Packard] that links the
measuring and instrumentation systems. The embedded system used in the instrumentation systems
uses this interfacing standard.

1.3.13 Linking and Interfacing Buses and Units of the Embedded
System Hardware

The buses and unitsin the embedded system hardware need to be linked and interfaced. One way to do
thisisto incorporate aglue logic circuit. [Instead of using individual gates, buffers and decoders, we
use the glue logic circuit.] A glue circuit is acircuit that is placed (glued) for all the bus logic actions
between circuits and between al chips and main chips (processors and memories). The glue logic
circuit of an embedded system may be a circuit for interconnecting the processor to external memo-
ries so that the appropriate chip-select signals, according to the system memory, map each of the
memory chips [Section 2.5]. The glue logic circuit aso includes a circuit to interconnect the parallel
and serial portsto the peripherals. [Refer to Chapter 3 for more information on ports.] The glue circuit
simplifies the overall embedded system circuit greatly. An example of the use of the glue circuit isto
connect the processor, memories and the ports interfacing the LCD display matrix and the keypad.

Programming and configuring one of the followings gives a glue circuit. (i) PAL (Programmable
Array Logic). (ii) GAL (Generic Array Logic). (iii) PLD (Programmable Logic Device). (iv) CPLD
(Combined PLD). (v) FPGA. These devices are configurable and programmable by a system called
device programmer.

PAL hasthe AND-OR logic arrays. PAL implements only the combinational logic circuit. GAL is
another array logic, an advanced version of PAL, which provides sequential circuit implementation. It
thus provides the latches, counters and register circuits also. PLD is another logic device that is
programmable. A ROM is also a PLD. CPLD is a combination circuit integrated with a PLD. It isa
logic device for implementing mixed functions, analog and digital. A CPLD also helps in the control
functions and designing a PLC (Programmable Logic Controller). FPGA has a macro cell, which isa
combination of gates and flip-flops. An array has number of macro cells. The links within the array or
in between macro cells are fusable by a device programmer in these devices.

4/\ glue-circuit designed by configuring and programming FAL, GAL or CPLD or FFGA links pro-
vides the interfaces for the buses as well as for all the units of the embedded system hardware
in a single chip.

1.3.14 Hardware Units Required in Exemplary Cases

Table 1.5 lists the hardware units that must be present in the embedded systems. Six examples have
been chosen to represent systems of varying sophistication. These are:

@ Embedded Systems
Y Automatic chocolate vending machine (Case study for its programming has been given in
Section 11.1),
Y Data acquisition System,
Y Robot,
Y MobilePhone,
Y Adaptive Cruise Control (ACC) system with car string stability (Case study for its programming
has been given in Section 11.3) and
Y Voice-Processor and Storage System (input, compression, store, decompression, recording
and replay).
Remember, RTCs, Timers, Idle-mode, Power-down mode, Watchdog timer and Serial 10 Port,
UART port and glue-logic circuit are needed practically in all the applications and have, therefore, not
listed in the Table. The values given here refer to atypical system only.

Table 1.5
Hardware Required in Six Exemplary Embedded Systems with Typical Values
Hardware Automatic Data Robot Mobile Adaptive Voice
Required Chocolate Acquisition Phone Cruise Processor
Vending System Control
Machine® System
with String
Stability”
Processor Micro- Micro- Micro- Multi- Micro- Micro-
controller controller controller processor processor processor
System on +DSP
aChip
Processor 8 8 8 32 32 32
Internal Bus
Width in Bits
CISCorRISC |CISC CIsC CIsC RISC RISC RISC
Processor
Architecture
Cachesand No No No Yes No Yes
MMU
PROM or 4kB 8 kB 8kB 1 MB 64 kB 1 MB
ROM
Memory
EEPROM No 512B 256 B 32kB 4kB 4MB*
+ Flash
RAM 256 B 256B 2568 1MB* 4kB 1MB®
Interrupts On-chip On-chip On-chip On SoC Off-chip Off-chip
Handler
Input—output | Multiple Multiple Multiple Ports| Keypad and | Switch Buttons| Input Port
Ports ports- Input | Ports for for Motors Display Ports |and Display |for Speech
for coin sensors and and for angle Ports and output
sorter port, Actuators encoders port for
delivery port replay
and display
port

Introduction to Embedded Systems @

Hardware Automatic Data Robot Mobile Adaptive Voice
Required Chocolate Acquisition Phone Cruise Processor

Vending System Control

Machine & System

with String
Stability”
Transceiver No No No Yesfor Yesfor No
connection tracking
tocell service |radar

GPIB Interface| No Yes No No No No
Red time No Yes No Yes Yes Yes
detection of
an event or
signal (Capture
and Compare
timeon an
event)
Pulse Width | No Yes Yes Yes Yes Yes
Modulation
for DAC
Anaogto No Yes Yes Yes Yes Yes
Digital
conversion
(bits)
Modulation No No No Yes No No
Demodulation
Digital Signal | No No No Yes No Yes
Processing
Instructions
Non linear No No No No Yes No
controller
Instructions

& Refer to case study in Section 11.1. # Refer to case study 11.2. String stability means maintaining a constant
distance between the cars. A radar and transceiver pair isused to measurein-front car distance. EEPROM in needed
to store adaptive algorithm parameters.

@ Excessive need of RAM is due to buffer memory RAM for voice inputs being processed.

" Excessive need of RAM is due to buffer memory RAM for voice inputs and outputs being processed
&Buffer-memory for the speech signals

+ For storing the voice

%mbeddad systems for a wide spectrum of applications may need different processing hardware
platform. However, it is also true that by changing the embedded software, the same hardware
platform can be used for entirely different applications or for new upgrades of the same
system.

Embedded Systems

(28

——{1.4 SOFTWARE EMBEDDED INTO A SYSTEM |

The software is the most important aspect, the brain of the embedded system.

1.4.1 Final Machine Implementable Software for a Product

An embedded system processor and the system need software that is specific to a given application of
that system. The processor of the system processes the instruction codes and data. In the final stage,
these are placed in the memory (ROM) for all the tasks that have to be executed. The final stage
software is also called ROM image. Why? Just as an image is a unique sequence and arrangement of
pixels, embedded software is also a unique placement and arrangement of bytes for instructions and
data.

Each code or datum is available only in bits and byte(s) format. The system requires bytes at each
ROM -address, according to the tasks being executed. A machine implement-able software file is
therefore like a table of address and bytes at each address of the system memory. The table has to be
readied as a ROM image for the targeted hardware. Figure 1.5 shows the ROM image in a system
memory. The image consists of the boot up program, stack (s) address pointer(s), program counter
address pointer(s), application tasks, 1SRs (Section 4.12), RTOS, input data, and vector addresses.
[Refer to Section 2.5 for the details.]

2 Bytes for
Address
Where System
Starts
2 Bytes for Execution on
Address of Power Up
Stack SP-ADDR E (Not Needed in
on 80x86,8051,80196,
Reset - .)
ADDR-1
° ~
Interrupt Service ADDR-2 - Bytes for
Routine Vector ° D);ta as
Addresses of ADDR-3 Inputs
2 Bytes each M to
ADDR-4 Program
L]
ADDR-5 —~
o -
g Bytes for
Boot up ADDR-6 . Machine Specific
Program -~ — Codes for
Codes ADDR-7 -) ~ each
""" =7\ Program,
ADDR-8 e Task and
Interrupt
ADDR-9 Service
Bytes for Machine Routine
Codes for real
Time Operating
System (RTOS)
ADDR-10 \—‘
System ROM
Memory
Figure 1.5

System ROM memory embedding the software, RTOS, data, and vector addresses.

Introduction to Embedded Systems @

%inal stage software is also called the ROM image. The final machine implement-able software
for a product embeds in the ROM (or PROM) as an image at a frame. Bytes at each address
must be defined for creating the ROM image. By changing this image, the same hardware plat-
form will work differently and can be used for entirely different applications or for new upgrades
of the same system.

1.4.2 Coding of Software in Machine Codes

During coding in this format, the programmer defines the addresses and the corresponding bytes or
bits at each address. In configuring some specific physical device or subsystem, machine code-based
coding is used. For example, in atransceiver, placing certain machine code and bits can configure it to
transmit at specific Mbps or Gbps, using a specific bus protocol and networking protocol. Another
example is using certain codes for configuring a control register with the processor. During a specific
code-section processing, the register can be configured to enable or disable use of its internal cache.
However, coding in machine implement-able codes is done only in specific situations: it is time
consuming because the programmer must first understand the processor instructions set and then
memorize the instructions and their machine codes.

1.4.3 Software in Processor Specific Assembly Language

When a programmer understands the processor and its instruction set thoroughly, a program or a
small specific part can be coded in the assembly language. An exemplary assembly language program
in ARM processor instruction set will be shown in Example given in Section A.2.

Coding in assembly languageis easy to learn for a designer who has gone through a microprocessor
or microcontroller course. Coding is extremely useful for configuring physical devices like ports, a
line-display interface, ADC and DAC and reading into or transmitting from a buffer. These codes can
also be device driver codes. [Section 4.1]. They are useful to run the processor or device specific
features and provide an optimal coding solution. Lack of knowledge of writing device driver codes or
codes that utilize the processor-specific features-invoking codes in an embedded system design team
can cost a lot. Vendors may not only charge for the API but also charge intellectual property fees for
each system shipped out of the company.

To do all the coding in assembly language may, however, be very time consuming. Full coding in
assembly may be done only for a few simple, small-scale systems, such as toys, automatic chocolate
vending machine, robot or data acquisition system.

Figure 1.6 shows the process of converting an assembly language programinto the machine imple-
ment-able software file and then finally obtaining a ROM imagefile.

1. An assembler translates the assembly software into the machine codes using a step called
assembling.

2. In the next step, called linking, a linker links these codes with the other required assembled
codes. Linking is necessary because of the number of codesto be linked for the final binary file.
For example, there are the standard codes to program a delay task for which thereis areference
in the assembly language program. The codes for the delay must link with the assembled codes.
The delay code is sequential from a certain beginning address. The assembly software code is
also sequential from a certain beginning address. Both the codes have to at the distinct addresses
aswell as available addresses in the system. Linker linksthese. The linked filein binary for run

@ Embedded Systems

Machine ® Machine
Machine Codes @ Codes
Specific | Assembler| o the 2 ready for
Assembly Programs 5 Loading
Language at 2 at
Program Various ol Various
Addresses B Addresses
U ¥
©
&':
From f
library Linker | Bytes for ?;éﬁ?
Linked
nmeaecﬁr?e Programs | Loader Programmer
codes (Burner)
Data Bytes
Embedded System
ROM Memory
Figure 1.6

The process of converting an assembly language program
into the machine codes and finally obtaining the ROM image

on acomputer is commonly known as executable file or simply ‘.exe’ file. After linking, there
has to be re-allocation of the sequences of placing the codes before actually placement of the
codes in the memory.

3. Inthe next step, the loader program performs the task of reallocating the codes after finding
the physical RAM addresses available at a given instant. The loader is a part of the operating
system and places codes into the memory after reading the ‘.exe’ file. This step is necessary
because the available memory addresses may not start from 0x0000, and binary codes have to
be loaded at the different addresses during the run. The loader finds the appropriate start
address. In a computer, the loader is used and it loads into a section of RAM the program that
is ready to run.

4. The final step of the system design process is locating the codes as a ROM image and
permanently placing them at the actually available addressesin the ROM. In embedded systems,
there is no separate program to keep track of the available addresses at different times during
the running, as in a computer. The designer has to define the available addresses to load and
create files for permanently locating the codes. A program called locator reallocates the linked
file and creates afile for permanent location of codes in a standard format. This format may be
Intel Hex file format or Motorola S-record format. [Refer to Appendix G for details.]

ﬂ'he locator locates the /0 tasks and hardware device driver codes at the unchanged ad-
dresses. This is because the port addresses for these are fixed for a given system.

5. Lastly, either (i) alaboratory system, called device programmer, takes asinput the ROM image
fileand finally burnstheimageinto the PROM or EPROM or (ii) at afoundry, amask is created
for the ROM of the embedded system from the image file. [The process of placing the codesin

Introduction to Embedded Systems @

PROM or EPROM is also called burning.] The mask created from the image gives the ROM in
IC chip form.

%or configuring some specific physical device or subsystem like transceiver, the machine codes
can be straightaway used. For physical device driver codes or codes that utilize the processor-
specific features-invoking codes, ‘processor-specific’ assembly language is used. A file is then
created in three steps using ‘Assembler’, ‘Linker” and ‘Locator’. The file has the ROM image in a
standard format. A device programmer finally burns the image in FROM or EPROM. A mask
created from the image gives the ROM in IC chip form.

1.4.4 Software in High Level Language

To do all the coding in assembly language may be very time consuming in most cases. Software is
therefore developed in a high-level language, ‘C’ or ‘C++' or ‘Java’. Most of the times, ‘'C’ is the
preferred language. [Refer to Sections 5.1, 5.8 and 5.9 to understand the advantages available in each
and to Section 5.11 for the use of ‘C’ source-code programming tools.] For coding, thereislittle need
to understand assembly language instructions and the programmer does not have to know the machine
code for any instruction at al. The programmer needs to understand only the hardware organization.
As an example, consider the following problem:

Add 127, 29 and 40 and print the square root.

An exemplary C language program for all the processorsisasfollows: (i) #include <stdio.h> (ii) #
include <math.h> (iii) void main (void) { (iv) intil,i2, i3, a; float result; (v) i1=127;i2 =29; i3 =40,
a=il+i2+i3; result = sgrt (a); (vi) printf (result);}

It isevident, then, that coding for square-root will need many lines of code and can be done only by
an expert assembly language programmer. To writethe program in ahigh level languageisvery simple
compared to writing it in the assembly language. ‘C' programs have a feature that adds the assembly
instructions when using certain processor-specific features and coding for the specific section, for
example, port device driver. Figure 1.7 shows the different programming layersin atypical embedded

Preprocessor Commands

Main Function

Interrupt Service Routines

Tasks 1....N

Kernel and Scheduler

Standard Library
Functions Including
Network Protocol
Functions for
Sending Stack and
Receiving Stack

Figure 1.7

The different program layers in the embedded software

@ Embedded Systems

‘C’' software. [Refer to appropriate sections in Chapters 3 to 5.] These layers are as follows. (i)
Processor Commands. (ii) Main Function. (iii) Interrupt Service Routine. (iv) Multiple tasks, say, 1 to
N. (v) Kernel and Scheduler. (vi) Standard library functions, protocol functions and stack allocation
functions.

Figure 1.8 shows the process of converting a C program into the ROM image file. A compiler
generates the object codes. The compiler assembles the codes according to the processor instruction
set and other specifications. The ‘C’ compiler for embedded systems must, as a final step of compi-
lation, use a code-optimizer. It optimizes the codes before linking. After compilation, the linker links
the object codes with other needed codes. For example, the linker includes the codes for the functions,
printf and sgrt codes. Codes for device management and driver (device control codes) also link at this
stage: for example, printer device management and driver codes. After linking, the other steps for
creating a file for ROM image are the same as shown earlier in Figure 1.6.

C Machine
Program Codes in
Functions Tpiler Object File _
3
£
a
@]
3
From o}
Liborary | ———— Bytes for O
Needed Linked
Machine Linker Programs
Codes

Same steps as in
Figure 1.6

Embedded System
ROM Memory

Figure 1.8
The process of converting a C program into the file for ROM image

ﬁ:or most systems, software codes are developed in 'C. 'C' program has various layers; proces-
sor commands, main function, task functions and library functions, interrupt service routines
and kernel (scheduler). The compiler generates an object file. Using linker and locator, the file for
ROM image is created for the targeted hardware. C++ and Java are other languages used for
software coding.

1.4.5 Software for the Device Drivers and Device Management
using an Operating System

In an embedded system, there are a number of physical devices. Exemplary physical devices are
keyboard, display, disk, parallel port and network-card.

Introduction to Embedded Systems @

An innovative concept is use of virtual devices during programming. A virtual device exampleisa
file (for reading and writing the stream of bytes or words) or a pipe (for buffering a stream of bytes).
Theterm virtual device follows from the analogy that just as akeyboard gives an input to the processor
on aread, afile aso gives an input to the processor. The processor gives an output to a printer on a
write. Similarly, the processor writes an output to the file. Most often, an embedded system is de-
signed to perform multiple functions and has to control multiple physical and virtual devices.

A device for the purpose of control, handling, reading and writing actions can be taken as consist-
ing of three components. (i) Control Register or Word — It stores the hits that, on setting or resetting
by adevice driver, control the device actions. (ii) Status Register or Word — It provides the flags (bits)
to show the device status. (iii) Device Mechanism that controls the device actions. There may be input
data buffers and output data buffers at a device. Device action may be to get input into or send output
from the buffer. (The control registers, input data buffers, output data buffers and status registers
form part of the device hardware.)

A devicedriver is software for controlling, receiving and sending a byte or a stream of bytes from
or to adevice. In case of physical devices, adriver uses the hardware status flags and control register
bits that are in set and reset states. In case of virtual devices also, a driver uses the status and control
words and the bits that exist in set and reset states.

Driver controls three functions (i) Initializing that is activated by placing appropriate bits at the
control register or word. (ii) Calling an ISR on interrupt or on setting a status flag in the status register
and run (drive) the ISR (also called Interrupt Handler Routine). (iii) Resetting the status flag after
interrupt service. A driver may be designed for asynchronous operations (multiple times use by tasks
one after another) or synchronous operations (concurrent use by the tasks). This is because a device
may get activated when an interrupt arises and the device driver routine services that.

Using Operating System (OS) functions, a device driver coding can be made such that the underly-
ing hardware is hidden as much as possible. An API then defines the hardware separately. This makes
the driver usable when the device hardware changes in a system.

A devicedriver accesses aparallel port or serial port, keyboard, mouse, disk, network, display, file,
pipe and socket at specific addresses. An OS may also provide Device driver codes for the system-
port addresses and for the access mechanism (read, save, write) for the device hardware.

Device Management software modules provide codes for detecting the presence of devices, for
initializing these and for testing the devices that are present. The modules may also include software
for allocating and registering port (in fact, it may be a register or memory) addresses for the various
devices at distinctly different addresses, including codes for detecting any collision between these, if
any. It ensures that any device accesses to one task at any given instant. It takes into account that
virtual devices may have addresses that can be relocated by alocator (for PROM). [The actual physi-
cal or hardware devices have predefined fixed addresses (the addresses are not relocated by the
locator)].

An OS also provides and executes modules for managing devices that associate with an embedded
system. The underlying principle isthat at an instant, only one physical device should get access to or
from one task only. The OS also provides and manages the virtual devices like pipes and sockets
[Section 8.3].

@ Embedded Systems

%or designing embedded-software, two types of devices are considered: physical and virtual.
Physical devices include keypads, printers or display matrix. A virtual device could be a file (for
reading and writing the stream of bytes or words) or pipe (for buffering the stream of bytes).
Device drivers and device management software are needed in the system. The operating sys-
tem has modules for the device driver and for device management functions.

1.4.6 Software Design for Scheduling Multiple Tasks
and Devices Using an RTOS

Most often, an embedded system is designed to perform scheduling of multiple functions while con-
trolling multiple devices. An embedded system program is therefore designed as a multitasking system
program. [Refer to Section 8.1 for definitions of the tasks (functions) and task-states.]

In amultitasking OS, each process (task) has a distinct memory allocation of its own and a task has
one or more functions or procedures for a specific job. A task may share the memory (data) with other
tasks. A processor may process multiple tasks separately or concurrently. The OS software includes
scheduling features for the processes (tasks, | SRs and Device Drivers) An OSor RTOS has a kernel.
[Refer to Section 9.2 for understanding kernel functions in detail.] The kernel’s important function is
to schedule the transition of a task from a ready state to a running state. It also schedules the transition
of atask from a blocked state to the running state. The kernel may block atask to let a higher priority
task be in running state. [It is called preemptive scheduling]. The kernel coordinates the use of the
processor for the multiple tasks that are in ready state at any instant, such that only one task among
many isin the running state. Thisis so because there is only one processor in the system. The kernel
schedules and dispatches a task to a different state than the present. [For multiprocessor systems,
scheduling and synchronization of various processors are also necessary]. The kernel controls the
inter process (task) messaging and sharing of variables, queues and pipes.

RTOS functions can thus be highly complex. Chapters 9 to 11 will describe the RTOS functionsin
an embedded system. In an embedded system, RTOS has to be scalable. Scaleable OSis onein which
memory is optimized by having only that part of features that are needed associate with the final
system software.

There are a number of popular and readily available RTOSs. Chapters 9 and 10 will describe these.
Case studies employing these RTOSs will be taken up in Chapter 11.

@mbedded software is most often designed for performing multiple actions and controlling
multiple devices and their ISRs. Multitasking software is therefore essential. For scheduling
multiple tasks, popular, readily available RTOS kernel with functions (like device-drivers) are
most often used.

1.4.7 Software Tools in Designing of an Embedded System

Table 1.6 lists the applications of software tools for assembly language programming, high level
language programming, RTOS, debugging and system integration tools.

Introduction to Embedded Systems @

Table 1.6

Software Modules and Tools for the Detailed Designing of an Embedded System

Software Tool

Application

Editor

Interpreter
Compiler

Assembler

Cross Assembler

Simulator

Source-code
Engineering Software
RTOS

Stethoscope

Trace Scope

Integrated
Development
Environment

Prototyper”

Locator”

For writing C codes or assembly mnemonics using the keyboard of the PC for entering the
program. Allows the entry, addition, deletion, insert, appending previously written lines
or files, merging record and files at the specific positions. Createsasourcefilethat stores
the edited file. It also has an appropriate name [provided by the programmer].

For expression-by-expression (line-by-line) translation to the machine executabl e codes.

Uses the complete sets of the codes. It may also include the codes, functions and
expressions from the library routines. It creates afile called object file.

For translating the assembly mnemonicsinto binary opcodes (instructions), i.e., into an
executablefilecalled abinary file. It also createsalist file that can be printed. Thelist file
has address, source code (assembly language mnemonic) and hexadecimal object codes.
Thefile hasaddressesthat adjust during the actual run of the assembly language program.

For converting object codes or executable codesfor aprocessor to other codesfor another
processor and vice versa. The cross-assembler assembles the assembly codes of target
processor as the assembly codes of the processor of the PC used in the system
development. Later, it providesthe object codesfor the target processor. These codeswill
be the ones actually needed in the finally developed system.

Tosimulate all functions of an embedded system circuit including additional memory and
peripherals. It isindependent of aparticular target system. It also simulates the processes
that will execute when the codes execute on the targeted particular processor.

For source code comprehension, navigation and browsing, editing, debugging, configuring
(disabling and enabling the C++ features) and compiling.

Refer Chapters 9 and 10.

For dynamically tracking the changesin any program variable. It tracksthe changesin any
parameter. It demonstrates the sequences of multiple processes (tasks, threads, service
routines) that execute. It also records the entire time history.

To help intracing the changesin the modul es and tasks with time on the X-axis. A list of
actions also produces the desired time scales and the expected times for different tasks.

Software and hardware environment that consists of simulators with editors, compilers,
assemblers, RTOS, debuggers, stethoscope, tracer, emulators, logic analyzers, EPROM
EEPROM application codes’ burners for the integrated development of a system.

For s mulating, source code engineering including compiling, debugging and, on aBrowser,
summarizing the compl ete status of thefinal target system during the devel opment phase.

Uses cross-assembler output and a memory allocation map and provides the locator
program output. It isthe final step of software design process for the embedded system.

For locator refer to Section 2.5. Locator program output is in the Intel hex file or Motorola S- record format.
~ An Exampleis Tornado Prototyper from WindRiver- for integrated cross-development environment with a set

of tools.

@ Embedded Systems

%he assembler codes in assembly language. For high-level language programming, a special
source code engineering tool may be needed while designing sophisticated systems. RTOS is
necessary in most embedded systems, as a system, in most cases, has to schedule multiple
tasks to meet their deadline, drive a number of physical and virtual devices and handle many
ISRs. Debugging tools like stethoscope and trace scope are needed for debugging. It is an
important step in the system development. A sophisticated tool—Integrated Development
Environment or Prototype development tool—is needed for integrated development of system
software and hardware.

1.4.8 Needed Software Tools in the Exemplary Cases

Table 1.7 gives the various tools needed to design exemplary systems.

Table 1.7
Software Tools Required in Exemplary Systems
Software Automatic | Data Robot | Mobile | Adaptive Voice
Tools Chocolate | Acquisition Phone Cruise Control | Processor
Vending System System with
Machine® String
Stability®
Editor Yes Yes Yes NR NR NR
Interpreter Yes NR Yes NR NR NR
Compiler NR Yes No Yes Yes Yes
Assembler Yes Yes Yes No No No
Cross Assembler | NR Yes No No No No
L ocator” Yes Yes Yes Yes Yes Yes
Simulator NR Yes Yes Yes Yes Yes
Source-code NR NR NR Yes Yes Yes
Engineering
Software
RTOS MR MR MR Yes Yes Yes
Stethoscope NR NR NR Yes Yes Yes
Trace Scope NR NR NR Yes Yes Yes
Integrated NR Yes Yes Yes Yes Yes
Development
Environment
Prototyper™ NR No No Yes Yes Yes

~ An Exampleis Tornado prototyper WindRiverafor integrated cross-development environment with a set of tools.
Note: NR means not required. MR means may be required in specific complex system but not compulsorily needed.
For locator, refer to Section 2.5.

4!@06 is needed in most embedded systems, as a system may have to schedule multiple tasks,
drive a number of physical and virtual devices and handle many ISRs. Embedded systems for
medium scale and sophisticated applications may need a number of sophisticated software tools.

Introduction to Embedded Systems @

1.4.9 Models for Software Designing

In complex or multiprocessor systems, there are different models that are employed during the design
processes of the embedded software and its RTOS. The models are as following. (i) Finite State
Machine (FSM). (ii) Petrinet model. (iii) Control and Data flow graph. (iv) Activity diagrams based
UML Model. For multiprocessor systems, the following additional models are needed. (i) Synchro-
nous Data Flow (SDF) Graph. (ii) Timed Petri Nets and Extended Predicate/Transition Net. (iii) Multi
Thread Graph (MTG) System. These models are explained in Chapter 6.

—(1.5 EXEMPLARY EMBEDDED SYSTEMS)

1.5.1 Exemplary Applications of Each Type of Embedded System

Embedded systems have very diversified applications. A few select application areas of embedded
systems are Telecom, Smart Cards, Missiles and Satellites, Computer Networking, Digital Consumer
Electronics, and Automotive. Figure 1.9 shows the applications of embedded systems in these areas.

Smart Missiles and
Cards Satellites

| |

Telecom
g

- Mobile Computing - Banking - Defence
- Wireless - Telephone - Aerospace
- Networking - Security - Communication
(a) (b) (c)
Computer Networking Digital Automotive
Systems and Peripherals Consumer
Electronics

- Motor Control System

- Networking Systems - DVDs N
- Image processing - Set top boxes i Crw_se Control
)) i - Engine/Body Safety
- Printers - High definition TVs - Robotics in Assembly Line
- Networks Cards - Digital cameras . Y
; - Car Entertainment
- Monitors and Car Multimedi
Displays - Car Mu timedia
- Mobile and E-Com
Access
(d) (e) ®)
Figure 1.9

Applications of the three types of embedded systems in various areas

@ Embedded Systems

A few examples of small scale embedded system applications are as follows:

Y Automatic Chocolate VVending Machine

Y Stepper motor controllers for a robotics system

Y Washing or cooking system

Y Multitasking Toys

Y Microcontroller-based single or multi-display digital panel meter for voltage, current, resistance
and frequency

Y Keyboard controller

Y Seria port cards

y Computer Mouse

Y CD drive or Hard Disk drive controller

Y The peripheral controllers of a computer, for example, a CRT display controller, a keyboard
controller,aDRAM controller,aDMA controller, aprinter-controller, alaser printer-controller,
aLAN controller, adisk drive controller

Y Fax or photocopy or printer or scanner machine

Y Digital diary

Y Remote (controller) of TV

Y Telephone with memory, display and other sophisticated features

Y Motor controls Systems - for example, an accurate control of speed and position of d.c. motor,
robot, and CNC machine; automotive applications such as a close loop engine control, a
dynamic ride control, and an anti-lock braking system monitor

Y Electronic data acquisition and supervisory control system

Y Electronic instruments, such as an industrial process controller

Y Electronic smart weight display system and an industrial moisture recorder cum controller

Y Digital storage system for a signal wave form or Electric or Water Meter Readings

Y Spectrum analyzer

Y Biomedical systems such as an ECG LCD display-cum-recorder, a blood- cell recorder cum
analyzer, and a patient monitor system

Some examples of medium scale embedded systems are as follows:

Y Computer networking systems, for example, a router, a front-end processor in a server, a
switch, a bridge, a hub and a gateway

Y For Internet appliances, there are numerous application systems (i) An intelligent operation,
administration and maintenance router (IOAMR) in a distributed network and (ii) Mail Client
card to store e-mail and personal addresses and to smartly connect to a modem or server

Y Entertainment systems — such as a video game and a music system

Y Banking systems for example, Bank ATM and Credit card transactions

Y Signal Tracking Systems for example, an automatic signal tracker and a target tracker

Y Communication systemssuch as a mobile-communication SIM card, anumeric pager, acellular
phone, a cable TV terminal, and a FAX transceiver with or without a graphic accelerator

Y Image Filtering, Image Processing, Pattern Recognizer, Speech Processing and Video
Processing

Y A system that connects a pocket PC or PDA (Persona Digital Assistant) to the automobile
driver mobile phone and a wireless receiver. The system then connects to a remote server for
Internet or e-mail or to a remote computer at an ASP (application Service Provider). This
system forms the backbone of m-commerce (mobile e-commerce) and mobile computing.

Introduction to Embedded Systems @

Y A persona information manager using frame buffers in hand-held devices

Y ThinClient [A Thin Client provides disk-less nodes with remote boot capability]. Application of
thin-clients accesses to a data center from a number of nodes; in an Internet Laboratory
accesses to the Internet leased line through a remote Server.

Y Embedded Firewall/ Router using ARM7/ 1386 multi-processor and 32 MB of Flash ROM. The
load balancing and two Ethernet interfaces are its other important functions. These interfaces
support PPP, TCP/IP and UDP protocols.

Y DNA Sequence and pattern storage card and DNA pattern recognizer

Examples of sophisticated embedded systems are as follows:

Y Embedded systems for wireless LAN and for convergent technology devices

Y Embedded systems for real time video and speech or multimedia processing systems

Y Embedded Interface and Networking systems using high speed (400 MHz plus), ultra high
speed (10 Gbps) and large bandwidth: Routers, LANS, switches and gateways, SANs (Storage
Area Networks), WANSs (Wide Area Networks), Video, Interactive video and broadband |Pv6
(Internet Protocol version 6) Internet and other products

Y Security products and High-speed Network security. Gigabit rate encryption rate products

Y Embedded sophisticated system for space lifeboat (NASA’s X-38 project) under devel opment.
It is for a rescue lifeboat that will be used in the future with the ISS (International Space
Station). In an emergency, it will bring the astronauts and crewmembers back to the Earth from
the ISS. With a press of a button this lifeboat will detach from ISS and travel back to Earth
resisting all the climatic/atmospheric conditions and meeting exact timing constraints. Thiswill
also be afault tolerant system.

—(1.6 EMBEDDED SYSTEM-ON-CHIP (SOC) AND IN VLSI CIRCUIT)i

Lately, embedded systems are being designed on a single silicon chip, called System on chip (SoC).
SoC is a new design innovation for embedded systems. An embedded processor is a part of the SoC
VLSI circuit. A SoC may be embedded with the following components: multiple processors, memo-
ries, multiple standard source solutions, called IP (Intellectual Property) cores and other logic and
analog units. A SoC may also have a network protocol embedded into it. It may also embed an
encryption function unit. It can embed discrete cosine transforms for signal processing applications. It
may embed FPGA (Field Programmable Gate Array) cores [Section 1.6.5].

For a number of applications, the GPP (microcontrollers, microprocessors or DSPs) cores may not
suffice. For security applications, killer applications, smart card, video game, palm top computer, cell-
phone, mobile-Internet, hand-held embedded systems, Gbps transceivers, Gigabits per second LAN
systems and satellite or missile systems, we need special processing unitsinaVLSI designed circuit to
function as a processor. These specia units are called Application Specific Instruction Processors
(ASIP). For an application, both the configurable processors (called FPGA cum ASIP processors) and
non-configurable processors (DSP or Microprocessor or Microcontrollers) might be needed on a
chip. One example of a killer application using multiple ASIPs is high-definition television signals
processing. [High definition means that the signals are processed for a noise-free, echo-canceled
transmission, and for obtaining a flat high-resolution image (1920 x 1020 pixels) on the television
screen.] A cell-phoneisanother killer application. [A killer application isonethat isuseful to millions of
users.]

@ Embedded Systems

Recently, embedded SoCs have been designed for functioning as DNA chips. Consider an FPGA
with a large number of gate arrays. Now, using VLS| design techniques, we can configure these
arrays to process the specific tasks on an SoC. This gives an SoC as a DNA chip. Each set of arrays
has a specific and distinct DNA complex structure. These structures as well as the processor embeds
on the DNA chip.

1.6.1 Exemplary SoC for Cell-Phone

Figure 1.10 shows an SoC that integrates two internal ASICs, two internal processors (ASIPs), shared
memories and peripheral interfaces on a common bus. Besides a processor and memories and digital
circuits with embedded software for specific application (s), the SOC may possess analog circuits as
well]. An exemplary application of such an ASIC embedded SoC is the cell-phone. One ASIP iniit is
configured to process encoding and deciphering and another does the voice compression. One ASIC
dias, modulates, demodul ates, interfaces the keyboard and multiple line LCD matrix displays, stores
datainput and recalls data from memory. ASICs are designed using the VLS| design tools with proc-
essor GPP or ASIP and analog circuits embedded into the design. The designing is done using the
Electronic Design Automation (EDA) tool. [For design of ASIC digital circuits, a‘High Level Design
Language (HDL)’ is used].

A SYSTEM ON CHIP

BUSES
r |
| PROGRAM |
! ADDRESS ;
| GENERATOR | PROGRAM,
***************** DATA
e . AND PORT
! MULTK- } MEMORY Lo T |
. PROCESSOR | ||| ||
;L DSP ; ; ANALOG |
777777777777777 I
r,,,Lﬁ i CIRCUITS, !
| RISC i . AD
3 PROCESSOR |
,,,,,,,,,,,,,,,,, r7777777 77771‘
| |
' E?PROM 1
———————————— T e M e
~15-20% ~60% ~20-25%
AREA AREA AREA
Figure 1.10

A SoC embedded system and its common bus with two internal ASICs,
two internal processors, shared memories and peripheral interfaces.

Introduction to Embedded Systems @

1.6.2 ASIP

Using VLS tools, a processor itself can be designed. A system specific processor (ASIP) is the one
that does not use the GPP (standard available CISC or RISC microprocessor or microcontroller or
signal processor). The processor on chip incorporates a section of the CISC or RISC instruction set.
This specific processor may have especially configurable instruction-set for an application. An ASIP
can also be configurable. Using appropriate tools, an ASIP can be designed and configured for the
instructions needed in the following exemplary functions. DSP functions, controller signals processing
function, adaptivefiltering functions and communication protocol—implementing functions. OnaVLSI
chip, an embedded ASIP in a special system can be a unit within an ASIC or SoC.

1.6.3 1IP Core

On a VLSl chip, there may be high-level components. These are components that possess gate-level
sophisticationin circuits above that of the counter, register, multiplier, floating point operation unit and
ALU. A standard source solution for synthesizing a higher-level component by configuring FPGA core
or acore of VLSI chip may be available as an Intellectual Property, called (IP). The copyright for the
synthesized design of a higher-level component for gate-level implementation of an IP is held by the
designer or designing company. One has to pay royalty for every chip shipped. An embedded system
may incorporate an 1P(s) .
Y An IP may provide hardwired implement-able design of a transform or of an encryption
algorithm or a deciphering algorithm.
Y An P may provide a design for adaptive filtering of a signal.
Y An P may provide full design for implementing Hyper Text Transfer Protocol (HTTP) or File
Transfer Protocol (FTP) to transmit a web page or a file on the Internet.
Y An IP may be designed for the PCI or USB bus controller. [Sections 3.3 and 3.4]

1.6.4 Embedding a GPP

A General Purpose Processor (GPP) can be embedded on a VSLI chip. Recently, exemplary GPPs,
called ARM 7 and ARM 9, which embed onto a VLSI chip, have been developed by ARM and their
enhancements by Texas Instruments. [Refer to http:/www.ti.com/sc/ docs/asic/modules/arm7.htm
and arm9.htm]. An ARM-processor VL Sl-architectureisavailable either asa CPU chip or for integrat-
ing it into VLSI or SoC. [The instruction set features of the ARM is given in Section A.1.] ARM
provides CISC functionality with RISC architecture at the core. An application of ARM embed circuit
isICE [Section 12.3.2]. ICE is used for debugging an embedded system. Exemplary ARM 9 applica-
tions are setup boxes, cable modems, and wireless devices such as mobile handsets.

ARMO9 [Section 2.2.5] has asingle cycle 16 x 32 multiply accumulate unit. It operates at 200 MHz.
It uses 0.15mm GS30 CMOSs. It has a five-stage pipeline. It incorporates RISC. It integrates with a
DSP when designing an ASIC solution having multiprocessors’ architecture [Section 6.3]. An exam-
ple is its integration with DSP with TMS320C55x. A lower capability but very popular version of
ARMO9 is ARM7. It operates at 80 MHz clock. It uses 0.18 mm based GS20 CMOSs. Using ARM7, a
large number of embedded systems have recently become available. One recent application isin inte-
grating the operating system Linux Kernel 2.2 and the device driversinto an ASIC.

@ Embedded Systems

1.6.5 FPGA (Field Programmable Gate Arrays] Core with a Single
or Multiple Processor

A new innovation is Field Programmable Gate Arrays (FPGA) core with a single or multiple processor
unitson chip. Oneexampleis Xilinx Virtex-11 Pro FPGA XC2V P125. Other exampleis 90 nm Spartan-
3 FPGA released on April 14, 2003 by Xilinx. [An FPGA consists of alarge number of programmable
gates on a VLS| chip. There is a set of gates in each FPGA cell, called ‘macro cell’. Each cell has
several inputs and outputs. All cellsinterconnect like an array (matrix). Each interconnection isfusible
(detachable) using a FPGA programming tool.] The interested reader can refer to the recent articlesin
‘Xcell Journal’ 2002 and ‘ Xcell Journal’ 2003.

Consider the algorithms for the following: an SIMD instruction, Fourier transform and its inverse,
DFT or Laplace transform and its inverse, compression or decompression, encrypting or deciphering,
a specific pattern-recognition (for recognizing a signature or finger print or DNA sequence). We can
configure (fuse) an algorithm into the logic gates of the FPGA. It gives us hardwired implementation
for a processing unit. It is specific to the needs of the embedded system. An agorithm of the embed-
ded software can implement in one of the FPGA section and another algorithm in its other section.

An exemplary latest SoC design is on the XC2VP125 system. It has 125136 logic cellsin the FPGA
core with four IBM PowerPCs. It has been very recently used for developing embedded systems
integrated with programmable logic. For example, there is a solution reported for data security with
encryption engine and data rate of 1.5 gigabits per second. Other exemplary embedded systems inte-
grated with logic arrays are DSP-enabl ed, real -time video processing systems and line echo eliminators
for the Public Switched Telecommunication Networks (PSTN) and packet switched networks. [A
packet isaunit of amessage or aflowing data such that it can follow a programmabl e route among the
number of optional open routes available at an instance].

1.6.6 Components in an Exemplary SoC-Smart Card

Figure 1.11 shows embedded-system hardware components on an SoC for a contact-less smart card.
Its components are as follows: [Section 11.4 will describe a case study of embedded software design.]
Y ASIP (Application Specific Instruction Processor)
Y RAM for temporary variables and stack
Y ROM for application codes and RTOS codes for scheduling the tasks
Yy EEPROM for storing user data, user address, user identification codes, card number and expiry
date
Y Timer and Interrupt controller
Y A carrier frequency ~16 MHz generating circuit and Amplitude Shifted Key (ASK) Modulator.
ASK modulator gives 10% excess amplitude of carrier pulses for bit ‘1" and 10% less for bit
‘0. A load modulation sub-carrier has one-sixteenth of this frequency and modulates the 1s
and Os by Binary Phase Shifted Keying (BPSK).
Y Interfacing circuit for the I/Os
Y Charge pump for delivering power to the antenna (of ~5 mm range) for transmission and for
system circuits. The charge pump stores charge from received RF (radio frequency) at the
card antenna hear its host in vicinity. [The charge pump is a simple circuit that consists of a
diode and a high value ferroel ectrics material-based capacitor.]

Introduction to Embedded Systems

An Embedded System

Contact-less Smart Card Components

RAM ROM EEPROM
(Temporary (Application (Application
Variables) and RTOS) Variables)

/
Data, Address, Control Internal Buses . \dentifications

Account Number, Expiry Date, Card Number S " v DataFlow
Processor | Tl
77 |
Interfacing
\— 110
Timer and 16 MHz Charge Circuit
Interrupt Controller Amp_lltude P_ump
Shifted Circuit
Key Modulator ?
Circuit Y

Transceiver Antenna
on Silicon

System Power Supply

Figure 1.11

An embedded-system hardware components in a contact-less smart card.

B SUMMARY B

Y The embedded system is a sophisticated system consisting of several hardware and software
components, and its design may be several times more complex than that of a PC and the
programs running on a PC.

Y The embedded system processor can be a general-purpose processor chosen from number of
families of processors, microcontrollers, embedded processors and digital signal processors
(DSPs). Alternatively, an application specific instruction processor (ASIP) may be designed
for specific application on aVLSI chip. An ASSP may be additionally used for fast hardwired
implementation of a certain part of the embedded software. A sophisticated embedded system
may use a multiprocessor unit also.

Y Embedded system embeds (locates) a software image in the ROM. The image mostly consists
of the following: (i) Boot up program. (ii) Initialization data. (iii) Strings for an initial screen-
display or system state. (iv) Programs for the multiple tasks that the system performs. (v)
RTOS kernel.

@ Embedded Systems

Y The embedded system needs a power source and controlled and optimized power-dissipation
from the total energy requirement for given hardware and software. The charge pump provides
a power-supply-less system in certain embedded systems.

Y The embedded system needs clock and reset circuits. Use of the clock manager is a recent
innovation.

Y The embedded system needs interfaces: Input Output (10) ports, serial UART and other potsto
accept inputs and to send outputs by interacting with the peripherals, display units, keypad or
keyboard.

Y The embedded system may need bus controllers for networking its buses with other systems.

Y The embedded system needs timers and a watchdog timer for the system clock and for real-
time program scheduling and control.

Y The embedded system needs an interrupt controlling unit.

Y The embedded system may need ADC for taking analog input from one or multiple sources. It
needs DAC using PWM for sending analog output to motors, speakers, sound systems, etc.

Y The embedded system may need an LED or LCD display units, keypad and keyboard, pulse
diaer, modem, transmitter, multiplexers and demultiplexers.

Y Embedded software is usually made in the high-level languages C or C++ or Java with certain
features added, enabled or disabled for programming. ‘C’ and C++ also facilitates the
incorporation of assembly language codes.

Y Theembedded system most often needs areal -time operating system for real-time programming
and scheduling, device drivers, device management and multitasking.

Y There are a number of software tools needed in the development and design phase of an
embedded system. [Refer to Table 1.7.]

Y There are alarge number of applications and products that employ embedded systems.

Y A VLSl chip can embed IPs for the specific applications, besides the ASIP or a GPP core.
A system-on-chip is the latest concept in embedded systems, for example, a mobile phone.
A contact-less smart card is one such application, the detail units of which were shown in
Figure 1.11.

B LIST OF KEYWORDS AND THEIR DEFINITIONS ©&

Y System: A way of working, organizing or doing some task or series of tasks by following the
fixed plan, program and set of rules

Y Embedded system: A sophisticated system that has a computer (hardware with application
software and RTOS embedded in it) as one of its components. An embedded system is a
dedicated computer-based system for an application or product.

Y Processor: A processor implements a process or processes as per the command (instruction)
giventoit.

Y Process: A program or task or thread that has a distinct memory allocation of its own and has
one or more functions or procedures for specific job. The process may share the memory (data)
with other tasks. A processor may run multiple processes separately or concurrently.

Y Microcontroller: A unit with aprocessor. Memory, timers, watchdog timer, interrupt controller,
ADC or PWM, etc. are provided as required by the application.

Introduction to Embedded Systems @

Y GPP (General-purpose processor): A processor from a number of families of processors,
microcontrollers, embedded processors and digital signal processors (DSPs) having a general-
purpose instruction set and readily available compilers to enable programming in a high level
language.

Yy ASSP (Application Specific System Processor): A processing unit for specific tasks, for
example, image compression, and that is integrated through the buses with the main processor
in the embedded system.

Y ASIP (Application specific Instruction processor): A processor designed for specific application
onaVLSl chip.

Y FPGA: These are Field Programmable Gate Arrays on a chip. The chip has alarge number of
arrays with each element having fusable links. Each element of array consists of several XOR,
AND, OR, multiplexer, demultiplexer and tristate gates. By appropriate programming of the
fusable links, a design of a complex digital circuit is created on the chip.

Y Registers: These are associated with the processor and temporarily store the variable values
from the memory and from the execution unit during processing of an instruction (s).

Y Clock: Fixed frequency pulsesthat an oscillator circuit generates and that controls all operations
during processing and all timing references of the system. Frequency depends on the needs of
the processor circuit.A processor, if it needs 100 MHz clock then its minimum instruction
processing time is a reciprocal of it, which is 10 ns.

Y Reset: A processor state in which the processor registers acquire initial values and from which
starts an initial program; this program is usually the one that also runs on power up.

Y Reset circuit: A circuit to force reset state and that gets activated for a short period on power
up. When reset is activated, the processor generates a reset signal for the other system units
needing reset.

Y Memory: This stores all the programs, input data and output data. The processor fetches
instructions from it to execute and gives the processed results back to it as per the instruction.

Y ROM: A read only memory that locates the following in its ROM- embedded software, initial
data and strings and operating system or RTOS.

Y RAM: This is a Random Access Read and Write memory that the processor uses to store
programs and data that are volatile and which disappear on power down or off.

Y Cache: A fast read and write on-chip unit for the processor execution unit. It stores a copy of
apage of instructions and data. It has these fetched in advance from the ROM and RAM so that
the processor does not have to wait for instruction and data from external buses.

Y Timer: A unit to provide the time for the system clock and real-time operations and scheduling.

Y Watchdog timer: A timer the timeout from which resets the processor in case the program gets
stuck for an unexpected time.

Y Interrupt controller: A unit that controls the processor operations arising out of an interrupt
from a source.

Y ADC: A unit that converts, as required, the analog input between + and — pins with respect to
the reference voltage (s) to digital 8 or 10 or 12 hits.

Yy PWM: Pulse width modulator to provide a pulse of width scaled to the analog output desired.
On integrating PWM output, the DAC operation is achieved.

Y DAC: Digital bits (8 or 10 or 12) converted to analog signal scaled to a reference voltage (s).

@ Embedded Systems

Y Input Output (10) ports: The system gets the inputs and outputs from these. Through these, the
keypad or LCD units attach to the system.

Y UART: Universal Asynchronous Receiver and Transmitter.

Y LED: Light Emitting diode—a diode that emits red, green, yellow or infrared light on forward
biasing between 1.6V to 2V and currents between 8 - 15mA. Multi-segment and multi-line LED
units are used for bright display of digits, characters, charts and short messages.

Y LCD: Liquid Crystal diode—adiode that absorbs or emits light on application of 3to 4V 50 or
60 Hz voltage pulses with currents ~ 50 mA. Multi-segment and multi-line LCD units are used
for adisplay of digits, characters, charts and short messages with very low power dissipation.

Y Modem: A circuit to modulate the outgoing bits into pulses usually used on the telephone line
and to demodulate the incoming pulses into bits for incoming messages.

Y Multiplexer: A digital circuit that has digital inputs from multiple channels. It sends only one
channel output at atime. The channel at the output has the same address as the channel address
bitsinitsinput.

Y Demultiplexer: A digital circuit that hasdigital outputs at any instancein multiple channels. The
channel that is connected is the one that has the same address as the channel address bitsin its
input.

y Compiler: A program that, according to the processor specification, generates machine codes
from the high level language. The codes are called object codes.

Y Assembler: A program that translates assembly language software into the machine codes placed
inafilecalled ‘.exe’ (executable) file.

Y Linker: A program that links the compiled codes with the other codes and provides the input for
aloader or locator.

Y Loader: It is a program that reallocates the physical memory addresses for loading into the
system RAM memory. Reallocation is necessary, as available memory may not start from
0x0000 at a given instant of processing in a computer. The loader is a part of the OS in a
computer.

Y Locator: It isaprogram to reallocate the linked files of the program application and the RTOS
codes at the actual addresses of the ROM memory. It creates afile in a standard format. Fileis
called ROM image.

Y Device Programmer: It takes the inputs from a file generated by the locator and burns the
fusable link to actually store the data and codes at the ROM.

Y Mask and ROM mask: Created at afoundry for fabrication of achip. The ROM mask is created
from the ROM imagefile.

Y Physical Device: A device like a printer or keypad connected to the system port.

Y Virtual Device: A file or pipe that is programmed for opening and closing and for reading and
writing, such as a program for attaching and detaching a physical device and for input and
output.

Y Pipe: A data structure (or virtual device) which is sent a byte stream from a data source (for
example, a program structure) and which delivers the byte stream to the data sink (for example,
a printer).

Y File: A data structure (or virtual device) which sends the records (characters or words) to a
data sink (for example, a program structure) and which stores the data from the data source
(for example, a program structure). A file in computer may also be stored at the hard disk.

Introduction to Embedded Systems @

Y Device Driver: Interrupt Service routine Software, which runs after the programming of the
control register (or word) of a peripheral device (or virtual device) and to let the device get the
inputs or outputs. It executes on an interrupt to or from the device.

Y Device manager: Software to manage multiple devices and drivers.

Y Multitasking: Processing codes for the different tasks as directed by the scheduler.

Y Kernel: A program with functions for memory allocation and de-allocation, task scheduling,
inter-process communication, effective management of shared memory access by using the
signals, exception (error) handling signals, semaphores, queues, mailboxes, pipes and sockets
[See Section 8.3], 1/0 management, interrupts control (Handler), device drivers and device
management.

Y Real-time operating system: Operating System software for real-time programming and
scheduling, process and memory manager, device drivers, device management and
multitasking.

Y VLS chip: A very large-scale integrated circuit made on silicon with ~ 1M transistors.

Y System on Chip: A system on a VLSI chip that has al of needed analog as wells as digital
circuits, for example, in a mobile phone.

B REVIEW QUESTIONS =&

=

Define a system. Now define embedded system.

2. What are the essential structural units in (a) microprocessor (b) Embedded processor (c)
Microcontroller (d) DSP (e) ASIP (f) ASIP? List each of these.

3. How does a DSP differ from a general-purpose processor (GPP)? Refer Sections 1.2.5 and
D.2.

4. What are the advantages and disadvantages of (a) a processor with only fixed-point arithmetic

unit and (b) a processor with additional floating-point arithmetic processing unit?

5. A new innovation is media processors [Section E.1.] Refer Sections 1.2.5, D.2 and E.1. How

does a media processor differ from a DSP?

6. Explain the media processor use in convergence technology embedded system like mobile

phone with mail client, Internet connectivity and image-frame downloads.

7. Compare features in an exemplary family chip (or core) of each of the following:

Microprocessor, Microcontroller, RISC Processor, Digital Signal Processor, ASSP, Video

processor and media processor. Refer Section 1.2 and Appendices A to E.

Why does late generation systems operate processor at low voltages (<2 V) and 10 at (~3.3V)?

What are the techniques of power and energy management in a system?

What is the advantage of running a processor at reduced clock speed in certain section of

instructions and at full speed in other section of instructions?

11. What isthe advantage of the followings? (a) Stop instruction (b) Wait instruction (c) Processor
idle mode operation (d) Cache-use disable instruction (€) Cache with multi-ways and blocksin
an embedded system.

12. What do we mean by charge pump? How does a charge pump supply power in an embedded
system without using the power supply lines?

13. What do you mean by ‘real time' and ‘real time clock’?

©©®

@ Embedded Systems

14.
15.
16.
17.

18.
19.
20.
21
22.

23.
24.
25.
26.

27.
28.
29.
30.
31
32.

33.
34.

35.

36.

37.

38.

39.

What istherole of processor reset and systemreset?

Explain the need of watchdog timer and reset after the watched time.

Wheat is the role of RAM in an embedded system?

Why do we need multiple actions and multiple controlling tasks for the devices in an embedded
system? Explain it with an example of the embedded system, a remote of color TV.

When do we need multitasking OS?

When do we need an RTOS?

Why should be embedded system RTOS be scal able?

Explain the terms I P core, FPGA, CPLD, PLA and PAL

What do you mean by System-on-Chip (SoC)? Examine the designed table in Question 1.3
above. How will the definition of embedded system change with System-on-Chip?

What are the advantages offered by an FPGA for designing an embedded system?

What are the advantages offered by an ASIC for designing an embedded system?

What are the advantages offered by an ASIP for designing an embedded system?

Real time video processing needs sophisticated embedded systems with hard rea time
constraints. Why? Explain it.

Why does a processor system always need an ‘ Interrupts Handler (Interrupt Controller)’?
What doesrolelinker play?

Why do we use loader in a computer system and locator in an embedded system?

Why does a program reside in ROM in the embedded system?

Define ROM image and explain each section of an ROM image in an exemplary system.
When will you use the compressed program and datain ROM? Give five examples of embedded
systems having these in their ROM images.

When will you use SRAM and when DRAM? Explain your replies.

What do we mean by the following: Physical device, Virtual device, Plug and Play device, Bus
self-powered device, device Management and Device Specific Processor.

H PRACTICE EXERCISES H

Search definitions of embedded system from books referred in ‘ References' and tabul ate these
with definitions in column 1 and reference in column 2.

Classify the embedded systems into small scale, medium scale and sophisticated systems.
Now, reclassify these embedded systems with and without real-time (response time
constrained) systems and give 10 examples of each.

An automobile cruise control systemisto be designed in aproject. What will be skillsneeded in
the team of hardware and software engineers?

Take a vaue, x = 1.7320508075688. It is squared once again by a floating-point arithmetic
processor unit. Now X is squared by a 16-bit integer fixed point arithmetic processing unit.
How doestheresult differ? [Note: Fixed-point unit will multiply only 17320 with 17320, divide
the result by 10000 and then again divide the result by 10000.]

Design four columns table two examples of embedded systemsin each row’s columns 2 and 3.
Column 1: the type of processor needed among the followings: Microprocessor,
Microcontroller, Embedded Processor, Digital Signal Processor, ASSP, Video-processor and
Media processor. Give reasoning in column 4.

Introduction to Embedded Systems @

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

Why does a CMOS IO circuit power dissipation reduces by compared to 5V, factor of half,
~(3.3/5)%, in 10 3.3V operation?

How much shall be reduction in power dissipation for a processor CMOS circuit when V
reduces from 5V to 1.8V operation?

Refer Sections 1.3.5 and G.1 to G.3. List various type of memories and application of each in
the followings: Robot, Electronic smart weight display system, ECG LCD display-cum-
recorder, Router, Digital Camera, Speech Processing, Smart Card, Embedded Firewall/ Router,
Mail Client card, and Transreceiver system with acollision control and jabber control [Collision
control means transmission and reception when no other system on the network is using the
network. Jabber control means control of continuous streams of random data flowing on a
network, which eventually chokes a network.]

Tabulate hardware units needed in each of the system mentioned in Question 42 above.

Give two examples of embedded systems, which need one or more of following units. (a) DAC
(Using aPWM) (b) ADC (c) LCD display (d) LED Displays (€) Keypad (f) Pulse Dialer (g)
Modem (h) Transceiver (i) GPIB (IEEE 488) Link

AnADCisal0-bit ADC?It hasreference voltages, V 4. = 0.0V and V , = 1.023V. What will
be the ADC outputs when inputs are (a) — 0.512 V (b) + 0.512 V and (c) +2047V? What shall
be ADC outputsin three situationswhen (i) V. = 0.512V and V , = 1.023V (ii) V. = 1.024
VandV 4, = 2.047V and (i) V,y. = -1.024 V and V ., = +2.047V.

Refer Sections 1.4, 5.1, 5.8 and 5.9. Tabul ate the advantages and disadvantages of using coding
language as following: (a) Fina Machine Implementable (b) ALP (Assembly Language
Programming (c) ‘C’ (d) C++ (e) Java

List the software tools needed in designing each of the Embedded System examples in
Question 42.

Justify the importance of device drivers in an embedded system. Refer to Section 1.4.5 and
4.1.3.

Cost of designing an embedded system may be thousands of times the cost of its processor and
hardware units. Explain this statement.

FPGA (Field Programmable Gate Arrays) core integrated with a single or multiple processor
units on chip and FPSLIC (Field Programmable System Level Integrated Circuits) are recent
novel innovations. How do these help in the design of sophisticated embedded systems for real
time video processing?

