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Filters

For our purposes, a filter is any electrical network through which passes a com-
plex time-varying signal F'(¢) and acts on this signal to selectively alter its har-
monic makeup.

Fourier’s theorem was briefly mentioned at the beginning of Chapter 3. The
theorem shows how any periodic waveform [F(t 4+ T) = F(¢)] can be synthe-
sized from a sum of appropriately chosen harmonics of the fundamental period-
icity [, = nwg = n 2%’]. Because of this, any signal may be thought of in terms
of its equivalent Fourier spectrum—the frequency distribution of amplitudes C,
and phase shifts 8, as implied by Eq. (3.4).

A filter, then, effectively modifies the C’s and 8°s in some prescribed manner.
The standard filter categories are: low-pass, high-pass, band-pass, and band-stop.

As the names suggest (see Fig. 8.1), certain frequencies are either blocked or
passed through.

From an instrumentation point of view, there are many reasons for filtering a
raw signal. A common motivation is the need to remove noise. Because noise
is typically broadband and particularly noticeable at high frequencies, carefully
chosen low-pass filtering can clean up the signal in situations where the infor-
mation content is primarily at the low end of the spectrum. Low-pass filtering
can also reveal slow trends that may be masked by clutter at higher frequencies.
Band-pass filters can be useful in isolating a specific frequency interval within
which some phenomenon is expected to occur, such as mechanical resonances
in a vibrating structure monitored by strain gages.

Ideal filters usually have abrupt transitions (“brick walls) at the edges of
pass and stop bands. That is, frequencies are either completely passed through
or totally blocked. Such perfection can never be achieved in practice. Designs
that manage to produce relatively sharp transitions in the frequency domain
are accompanied by ripple just below and just above the edge. The sharper the
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Low-Pass ® High-Pass

L,

®
Band-Pass Band-Stop
FIGURES8.1. Four filter types: low-pass,
high-pass, band-pass, and band-stop.

©

transition, the more the ripple. Improved sharpness without increased ripple can
only be achieved with increased complexity in the filter design and with the
addition of more reactive components to the filter (higher “order™). The essence
of filter design is in balancing the tradeoffs between these competing factors
and in assessing which attributes are most important for a given instrumentation
application.

Electrical filters constructed entirely from resistors, capacitors, and inductors
are termed passive, in contrast to filters employing transistors or op-amps, which
are active.

8.1 PASSIVE FILTERS

Passive filters can be assembled from as few as two components, although
increasingly complex designs permit more precise control of the frequency
response.

First-Order Filters
Low-pass RC filter

Consider a series RC circuitas shown in Fig. 8.2. The voltage across the capacitor
is given by the complex expression

Vip ! (%)
= —, (8.1)
Vin I(R + L
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in _

HGURE 8.2. First-order low-pass RC
filter.

where [ is the ac current flowing around the loop and Vj, represents the input
source voltage. This equation may be arranged to

1% i
2= : (8.2)
Vin 1 + jwCR
or, in complex form with amplitude and phase,
Vcap i
—P = A (8.3)
Vin
In this equation,
J 1
A= (8.4)
| V1 + w?C?*R?
and
¢ = —tan"! (WCR)| (8.5)

Two limits are of interest. At low frequency, A ~~ 1, whereas at high frequencies
A — (wCR)™L.

In the section on frequency response in Chapter 3, the concept of decibels was
introduced. In these units, the limits are A ~ 0 dB, and A — —20 log(:*) dB.
The corner frequency is defined as ‘

1

CDC—_—R—C.

(8.6)

As an example, let R = 1 k€ and C = 0.1 uF. Then, @, = 10* radians/sec,
which corresponds to a corner frequency of f. = 1592 Hz. PSpice results are
plotted in Fig. 8.3, where this corner point is marked with a solid square. Note
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FIGURE 8.3. Frequency response for the RC low-pass filter.
The vertical scale is logarithmic (decibels).

that at f the first-order response (gain) has dropped by 3 dB. The nearly linear
rolloff well above f, is quite apparent.

Clearly, this simple RC network functions as a low-pass filter. Well below
the corner frequency, there is almost no attenuation of the input. Note, however,
that there is no abrupt cutoff, but rather high frequencies are increasingly atten-
uated at the rate of 20 dB per decade. This means that any jump in frequency
by a factor of 10 is accompanied by a matching drop of amplitude also by a
factor of 10. This rate of 20 dB per decade can also be stated in equivalent terms
as a rolloff of 6 dB per octave, an octave being any frequency jump by a fac-
tor of 2. These attenuation features are characteristic of a so-called first-order
response.

Equation (8.5) describes the frequency-dependent phase shift that accom-
panies the filter attenuation. This behavior for the same PSpice simulation is
illustrated in Fig. 8.4. In the limit @ — 0, the phase shift approaches zero. At
high frequencies, this equation yields ¢ — —90 degrees. The negative sign in
the phase angle indicates that the output from the low-pass filter lags the input.
At the comner frequency of 1592 Hz, the phase shift is —45 degrees.

Low-pass RL filter

A simple two-component first-order low-pass filter can also be constructed from
a resistor and an inductor. In this case, the positions of resistor and inductor are
as illustrated in Fig. 8.5.

An analysis similar to that of the preceding section leads to the expression

v 1
N (8.7)
Vin 1+]Q§‘
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FIGURE 8.4. Phase response of first-order low-pass RC filter.

and thus
1% .
=Al 8.8)
mn
with
1
A= == (8.9)
TE
I+ %5
and
| L
\qb = —tan™"! (%) | (8.10)
The corner frequency will be
we = % . (8.11)

As an example, let R = 1 k2 and L = 0.1 H. This choice will set the corner
frequency at the same value, f, = 1592 Hz, as for the previous RC filter. It is

L

Y Y™

in R out

1

FIGURE 8.5. First-order low-pass
LR filter.
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FIGURE 8.6. Frequency response of the RL filter.

immediately evident in the PSpice simulation results of Fig. 8.6 that the response
characteristics of a low-pass RL filter are identical to those of a low-pass RC
circuit (Fig. 8.3).

High-pass RC filter

Suppose the two components in the circuit of Fig. 8.2 are interchanged as in
Fig. 8.7. The output voltage taken across the resistor is

1% 1
L - (8.12)
Vo T 1o
As in the previous cases, let
Vr :
— =Ae°. 8.13
Ve (8.13)
Then,
1
A= ——u—— (8.14)
1+ Zomge
C
\|
o
in éR out

FIGURE 8.7. First-;rder high-pass
RC filter.
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FIGURE 8.8. Frequency response of the first-order high-pass fil-
ter. As with the low-pass characteristic, the response is down
3 dB at the corner frequency.

and

— !
¢ = tan (a)CR)' (8.15)

These two expressions can be compared to Egs. (8.4) and (8.5), which applied
to the low-pass filter. Note that in the present situation, the limits are the reverse
of those previously found—that is, now at high frequencies A > 1, whereas in
the limit of low frequencies A — @CR, which drops towards zero. Data from a
PSpice simulation with R = 1 k2 and C = 0.1 uF are plotted in Fig. 8.8, where
it is clear that this is a high-pass filter with the same corner frequency w, = 7}5
as for the earlier low-pass circuit (see Fig. 8.3).

The phase shift as expressed by Eq. (8.15) approaches 90 degrees asw — 0
and drops towards zero at very high frequencies, as if the curve in Fig. 8.4 were
displaced vertically by 90 degrees. Because the phase factor ¢ is positive, the
output from the high-pass filter leads the input.

Band-pass filter

It is readily apparent that a bandpass filter can be simply constructed from the
product of suitable low-pass and high-pass filters, as indicated in Fig. 8.9. To
illustrate this procedure, consider the circuit shown in Fig. 8.10.

Here, a high-pass filter made up of R; and C; is followed by a low-pass filter
made up of R, and Cs. The order of the two does not matter. To choose a specific
example, let Ry = 1 K, Cy = 1.0 uF, R; = 1K, and C; = 0.1 uF In this case,
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Tm_

m

FIGURE 8.9. Synthesis of a band-pass
filter from the product of a low-pass fil-
ter and a high-pass filter.

the lower corner frequency is set by the high-pass relationship

for = = 159.2 Hz,

27 R Cy
and the upper corner point determined from the low-pass components is at

1

= 1592 Hz.
251'R2C2

ch =

A PSpice simulation produced the data plotted in Fig. 8.11. The expected
band-pass behavior is clearly evident with dropoffs of 20 dB per decade at
low and high frequencies.

The resulting phase shift from this composite filter is seen in Fig. 8.12. Because
of the series connection, the phase shifts from each of the two filter blocks will
simply add. Thus, it is expected that the overall phase shift of the band-pass
design will be the sum of the phases expressed by Eqs. (8.5) and (8.15). At
low frequencies, the phase-shifting properties of the high-pass filter dominate,
while at high frequencies the phase shift is controlled by the low-pass section.
As the figure demonstrates, below the passband midpoint the filter output signal
leads the input signal; above the passband midpoint, the opposite is true. The

s Oy
~

% ==C, out
L

FIGURE 8.10. First-order band-pass filter us-
ing a combination of low-pass and high-pass
sections.
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FIGURE 8.11. Frequency response of the band-pass filter.

Poaet 0t

neighborhood near the center of the passband is characterized by small phase
shifts—clearly a desirable attribute.

Band-stop filter

The idea underlying the band-pass design was illustrated in Fig. 8.9. The pro-
duct (series connection) of a low-pass and a high-pass filter generates an overall
band-pass characteristic. A similar argument shows that a sum (parallel con-
nection) of a low-pass module and a high-pass module can create a band-stop
design, as suggested in Fig. 8.13.

In principle, this is straightforward, but in practice there is a complication. This
arises from the need for an electronic summing operation to link the two filters.

Ioutput leads input l Ioutput lags input I

| NI

Phase (degrees)

.90 e
e a . i
1ot 23 0223 ot vy ot 108

Frequency
FIGURE 8.12. Phase response of the band-pass filter.
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FIGURE 8.13. Synthesis of a band-stop
filter from the sum of a low-pass filter and
a high-pass filter.

But recall the summing amplifier (see Fig. 5.10) that was discussed in Chapter
5. Asillustrated by the example in Fig. 8.14, this circuit allows the realization of
the band-stop function. The combination R;, C is a low-pass first-order filter,
whereas R; and C, comprise a high-pass first-order filter. The filter outputs
are buffered by UlA and U2A and then summed by U3A. The corner points
fe=Q@rRC y~1 for these two filters are, for this example, 15.92Hzand 3183 Hz,
respectively. PSpice simulation results are shown in Fig. 8.15.

Note that for this plot a linear rather than logarithmic (decibel) amplitude
scale has been chosen. This more clearly indicates the connection between the
low-pass, high-pass, and band-stop (sum) characteristics. The center frequency

of this filter is 226 Hz,
13
R, %,’“’
A

10k ¢

c Viu'gh
NAGHLZ s ?
0
0

FIGURE 8.14. PSpice schematic showing a low-pass filter and a high-pass filter being combined
in a summing amplifier to form a band-stop filter.
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FIGURE 8,15, PSpice results for the band-stop filter.

Second-Order Filters
Cascaded filters

The band-pass filter discussed earlier was composed of a pair of RC units con-
nected in series to form a composite network. It is, of course, possible to chain
together any number of filter modules, just as one may chain together amplifier
modules to increase gain. Suppose we have a series array of elements as depicted
in Fig. 8.16.

Each unit operates on its input in the usual manner so that

Vi = Vin (A1 €j¢')

V2 = Vl (A2 ejqbg)

Vs =V, (43 /%)
etc.

S0

Vout
Vi

= (A1 Az43......) e/ @1ttt (8.16)

This expression shows that the final magnitude is determined by the product of
the individual gains, while the net phase shift is the sum of the individual phase

v, A v,
Va— (4¢4), (44), (A8), (48),

FIGURE 8.16. Cascaded modules, each with gain A
and phase shift ¢.
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FIGURE 8.17. Cascaded first—order low-pass RC
filters.

shifts. Noting that
20log (A1 A2A3.....) =20log A1 + 20log Az + 20log A3 + ..., (8.17)

it is apparent that if the voltage ratio is measured in decibels, as defined by
Eq. (5.34), then the effective gain for the chain is

GAB)=G1+ G2+ G3 +..... . (8.18)

Therefore, when measured in dB, the amplification (or attenuation) factors sim-
ply add.

Let us now apply these ideas using simple low-pass RC filter modules. To
select a specific example, choose R = 1 k§2 and C = 0.1 uF as in Fig. 8.2, and
link the units together as in Fig. 8.17.

Actually, there is a slight problem here that must be addressed. As drawn
in Fig. 8.17, any given segment will be loaded by the effect of the succeeding
stages. In other words, the filters are not acting as a purely multiplicative chain
in the spirit of Eq. (8.16) because each A is modified by the fact that additional
circuitry is placed across its output. This can be corrected by inserting buffers
between filter segrments, as illustrated in Fig. 8.18.

v

LMi24
v, 2
Ry R, o R;3
WA AW :
1k 1k

Ve
1k
C; T 0.1u C; = 0.1u

FIGURE 8.18. PSpice schematic of three cascaded first-order low-pass RC filters. The sections
are separated by unity-gain buffers.
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FIGURE 8.19. PSpice simulation results for the cascaded low-

pass filters.

The PSpice outputs from each of the three stages V,, Vj,, and V, are plotted
in Fig. 8.19. The rolloffs are as anticipated, 20, 40, and 60 dB per decade (or 6,
12, and 18 dB per octave), indicating first-order, second-order, and third-order
filter characteristics. Thus, the edges of the characteristic can be sharpened by
adding filter stages.

Low-pass RLC filter

A second-order filter is created when two independent reactive components are
present. In the last example, this was caused by the pair of capacitive blocks.
A slightly different filter can be formed from series R and L, together with a
shunting capacitance, as in Fig. 8.20. Then,

Voul — ""Z,JZ"
Vin R+_].COL—ﬁ

(8.19)

in

FIGURE 8.20. Second_-order RLC filter.
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or
Vou = 1 - i (8.20)
Vie (1 -a?LC)+ j(®RC)
Suppose we define
1 /L
= =) = 8.21
o Ve (8.21)
and
on = — (8:22)
VLIC | '
Then, Eq. (8.20) becomes
Vou _ : (8.23)

(el (s

In this form, it is clear that although the circuit has three components, in fact there
are only two independent variables: wp and Q. The magnitude of the complex
voltage ratio in Eq. (8.23) is

VOUI
Vin

= \/(1 B [%]2)2 - (.36_5)2' (8.24)

The behavior of this function at high frequencies is dominated by the factor
[%]4, which occurs in the square root, and hence

= (@)2. (8.25)

w

Vout
Vi

lim
L=>00

Noting then that 20 log |%ﬂ| tends to 40log (£2), the high-frequency rolloff is
seen to be 40 dB per decade. Hence, this is a second-order low-pass filter.

For the components used in this example (R = 1K, L = 0.1H, C = 0.1 uF),
Q = 1and wp = 10* (fp = 1592 Hz). The results from a PSpice simulation are
shown in Fig. 8.21. Both decibel (left scale; solid curve) and linear (right scale;
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FIGURE 8.21. Frequency response of the RLC second-order low-pass
filter showing the peak for @ = 1. The dashed curve is the same function
but plotted with a linear scale (right) to bring out detail around the peak.

dashed curve) representations are given. The linear plot emphasizes the resonant
peak in the filter function, whereas the logarithmic scaling reveals the expected
rolloff at high frequencies.

8.2 ACTIVE FILTERS

Most of the passive filters just discussed were first-order—they utilized a single
reactive element and possessed rolloffs of 20 dB per decade. More sharply defined
pass- and stop-bands require higher-order circuits, which typically are of the
active type. This is an extensive and complex topic, and we proceed by narrowing
our focus to a single class of active filter named after R.P. Sallen and E.L. Key
[1] but also commonly referred to as VCVS (voltage-controlled-voltage-source)
circuits. First, the operating principles of a second-order active filter of this type
will be developed, and then higher-order configurations will be presented.

Second-Order Filters
Low-pass

The basic arrangement of a second-order low-pass Sallen and Key active filter
is shown in Fig. 8.22. From the schematic,

Vo — Vi = LR, (8.26)
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FIGURE 8.22. Second-order Sallen and Key low-
pass active filter.

where I, denotes the current flowing through resistor R, from node a towards
the noninverting op-amp input. Because of the nearly infinite input impedance at
this + node, I, is constrained to flow through C,, so I, = I,. Furthermore,
the op-amp is wired as a unity-gain buffer, so Vo = V,. Then, Eq. (8.26)
becomes

Va — Vou = LRy 8.27)
The current I, in resistor R; satisfies
Vin — Vo = InRy. (8.28)
But also
Lh=Igy+ 1. (8.29)
Combining Eqgs. (8.27)-(8.29),
Vin = Vou — 1R1 + L (Ry + R2). (8.30)

To complete the derivation of the filter response, suitable expressions are needed
for I and . These are easily obtained. The current in C; obeys

Vouw — Vo =1L (—jXy) (8.31)

with X| = ;. Comparing Eq. (8.27) with Eq. (8.31),

R
L=5L (— ,fl-) . (8.32)
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Likewise, the current in C3 obeys
Vou=Vy =h(—jX2), (8.33)
0}
VOlll
I = 8.34
2= X, (3.34)
where X, = "‘c““ is the capacitive reactance.
Finally, subst1tut1ng Egs. (8.32) and (8.34) into Eq. (8.30),
R1R; (R + R\
Vou = V; 1 — . 8.35
o [( X1X2)+J( X )] (8.35)
Thus,
V. 1
M = > : . (8.36)
Vin [1 ~ w*RiR:C1Ca} + jlowCa (R + R2))

Notice the exact correspondence in form between this equation and Eq. (8.20),
which was developed from a second-order passive RLC filter. In other words, this
active low-pass filter, which contains only resistors and capacitors, effectively
simulates an equivalent inductance. Generally speaking, capacitors are preferred
over inductors as circuit components because of their wide availability, low cost,

and small size.

Equations (8.20) and (8.36) point to the correspondences

LC & RiR,Ci(Cy
RC & Cy (R + R)

from which, and employing Eqgs. (8.21) and (8.22),

0= — RiRCy : (8.37)
VG2 (R + Ry)
o= (8.38)
°T VRRCIC | '

The circuit of Fig. 8.22 is commonly generalized by the addition of gain-
setting resistors Ry and Ry, as shown in Fig. 8.23. Now, the op-amp is wired as
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FIGURE 8.23. Second-order active low-pass filter
with gain-setting resistors added.

a noninverting amplifier with closed-loop gain G =1 + ﬁ—‘;. This changes the
result of Eq. (8.36) to [2]

Voul - G
Vin [l —@?RiRyC1C2] + j[@RIC1 (1 — G) + wCs (Ry + Ro)Y
(8.39)

which of course returns to the earlier result when G = 1. The filter wy is still
given by Eq. (8.38), but the Q changes somewhat to

_ R R C1C,
RiICi(1—G)+ Co(Ry + Ry)’

Q

(8.40)

In a practical sense, there are too many adjustable parameters in these equa-
tions. That is, there are seemingly infinitely many ways of achieving any given
filter response. A usable design process must narrow the options in some rea-
sonable fashion.

Normalized filters

The following is one of several standardized schemes for defining a canonical
Sallen and Key low-pass filter [3]. Let R, = R, = 1 . Specify the corner fre-
quency of the normalized filter as w. = 1 radian/sec (w, will equal wyp in some
cases, but not generally). Let R3 = 00 and R4 = 0, so that G = 1. Even with
all these restrictions, there remain infinitely many acceptable pairs Cy, C», but
certain precise combinations lead to especially desirable filter characteristics.
The significance of some choices is illustrated in Fig. 8.24. The curve that re-
sults from C; = 1.414 F and C, = 0.707 F rolls off smoothly, dropping to %
(.., =3 dB) at the corner frequency f, = 1/27 = 0.159 Hz. In fact, these par-
ticular component values happen to satisfy the criterion of maximal flatness
within the passband; this is known as a Butterworth filter. The detailed pro-
cedures for deducing capacitance and/or resistance values from conditions on
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FIGURE 8.24, Frequency response of second-order active low-
pass filter illustrating Butterworth (smooth lower curve) and
Chebyshev (peaked) characteristics.

flatness, or from polynomial properties (next paragraph), constitute a lengthy
and specialized topic for which the reader is directed to other sources [3, 4, 5].

The two other curves in the figure exhibit a peaked response. For the capac-
itance values selected, these are second-order Chebyshev filter characteristics
(also known as equal ripple), and they achieve an increased abruptness in falloff
by paying the price of ripple in the passband. By permitting larger ripple, the
transition region can be narrowed, as the figure illustrates.

For these two cases, as shown in the logarithmically scaled plot of Fig. 8.25,
the peak amplitude is 0.5 dB when €y = 1.403Fand C; = 0.470F, andis 1.0dB
when C; = 1.822 Fand C; = 0.498 F. As expected for second-order filters, the

5
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FIGURE 8.25. Decibel plot of second-order Butterworth and
Chebyshev filter characteristics. Well beyond the corner fre-
quency, the rolloff is 40 dB per decade.
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FIGURE 8.26. Phase shift in a second-order Butterworth low-
pass filter.

high-frequency rolloff is 40 dB per decade. Note that for the Chebyshev filter, the
frequency f; is not the place at which the rolloff has dropped the amplitude by
3 dB, as is the case for second-order Butterworth and first-order passive filters,
but rather it marks the end of the ripple zone.

To be more precise, f; is defined for the Chebyshev characteristic as the
frequency at which the response drops below the ripple band. For even-order
filters (2nd order, 4th order, etc.), the ripple consists of one or more peaks which
lie entirely above the 0 dB level. In odd-order Chebysheyv filters (3rd order, 5th
order, etc.), the ripple lies entirely below the 0 dB level. An example illustrating
this property is given in the section on third-order filters.

The phase response of a second-order Butterworth filter is shown in Fig. 8.26.

The following table summarizes results from this section (remember that
Ri=R;=10Q).

CiF) | C(F) |wosec )| ©Q
Butterworth 1.41421 | 0.70711 1.0 0.7071

Chebyshev 0.5dB | 1.40259 | 0.47013 | 1.2315 | 0.8636

Chebyshev 1.0dB | 1.82192 | 0.49783 | 1.0500 | 0.9565

Design example

All of the preceding capacitor combinations C, C3 in Farads are for normal-
ized filters with a corner frequency of 1 radian/sec and Ry = R; = 1 Q. Sup-
pose a second-order low-pass Butterworth filter is desired, which has a corner
frequency of 1500 Hz. The filter characteristic can be scaled appropriately up-
ward in frequency if the normalized Butterworth capacitors C; = 1.41421 F and
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FIGURE 8.27. Second-order high-pass active filter.
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C, = 0.70711 F are each made smaller by the desired factor of 27 (1500). This
gives new values C; = 1.501 x 107# Fand C; = 7.503 x 10~° F. At this point,
it is possible to rescale the two resistors from their original 1 € values to some-
thing more reasonable, such as perhaps 10 kS2. The new corner frequency can
be left unaffected after magnifying the resistors if the capacitors are divided by
the same numerical factor (in this case 10%). Hence, we arrive at the final filter
values: Ry = 10K, R, = 10K, C, = 15.01 nF, C; = 7.503 nF.

High-pass

High-pass active filters can be created simply by interchanging the roles of
resistors and capacitors in a manner reminiscent of the passive RC circuit.
Thus, Fig. 8.27 represents a second-order, high-pass Sallen and Key design.
The following table gives the component values for several filter types. In
these cases, C; = C3 = 1.0 F and the corner frequency is again normalized
0 @, = 1.0 radian/sec.

RiQ) | Ry(Q) |an(sec™) | Q
Butterworth 0.70711 | 1.41421 1.0 0.4714

Chebyshev 0.5dB | 0.71281 | 2.12707 { 0.8121 | 0.4336

Chebyshev 1.0 dB | 0.54586 | 2.00872 | 0.9550 | 0.4099

As an example of an active high-pass circuit, Fig, 8.28 shows the frequency
response of the normalized 1.0 dB Chebyshev filter as specified by the resistor
values in the third line of the table.

Band-pass

The general layout for a second-order Sallen and Key band-pass filter is shown in
Fig. 8.29. One normalizing scheme [3] that is suitable is to set C; = C; = 1 OF
Further, set R1 = 1.0 2. The gain of the amplifier is of course G =1 + R , 8O
only the ratlo * together with R and Rj remain as undetermined quantities.



114

8. FILTERS

1.2

10] /

=
= 0.8 [ /:
=
—
E‘ 0.6 [ l
< 0.4
i i
0.2 v
- p% fc
0.0 |
102 107! 10° 10!
Frequency

FIGURE 8.28. Second-order 1.0 dB Chebyshev high-pass fil-
ter frequency response.

Choose R4 = Rs. Itis desired to have the center frequency of the passband equal
to unity: w, = 1.0 radian/sec. The following table shows some possible choices
for the remaining resistors and the resulting values of Q.

Ra(2) | Ra(S2) | @
0.74031 | 2.35078 | 2
0.63439 | 2.57630 | 5
0.60471 | 2.63567 | 10

The parameter Q measures the sharpness of the peak and is defined as the
ratio 1<, where w,, as above, is the center frequency and Aw is the peak width.
Design example

Using the first line in the table, we can design a filter with a center frequency
of, say, 500 Hz and a Q of 2 as follows. The normalized filter has a center

HGURE 8.29. Second-order Sallen and Key band-
pass filter.
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FIGURE 8.30. Second-order active band-pass characteristic
with center frequency at f, = 500 Hz.

frequency of f, = ;"—; with w, = 1. Thus, to raise the center frequency to 500, the
capacitors should be scaled by m so Cy = Cy = 318.31 uF. To maintain the
new center frequency but adjust the capacitors to somewhat more realistic values,
let us divide the C’s by 1000 and at the same time multiply the resistors by 1000.
The filter now is specified by C; = C> = 0.31831 uF, Ry = 1 k@, R, =740 Q,
R3 = 2.351 k2. Only the ratio of the gain-setting resistors matters, so choose
R4 = Rs = 1 k2. The resulting filter characteristics are plotted in Fig. 8.30.

The dashed lines indicate the linear 20 dB per decade rolloff of the filter at
low and high frequencies. For this design, G = 2, which is 6.02 dB. Note that
the two linear extrapolations intersect at the point (500 Hz, 6.02 dB). The actual
filter characteristic rises above this in a 0 = 2 peak.

The effect of higher @ filters is illustrated in Fig. 8.31, where progressively
narrower pass-bands appear. A linear vertical scale has been chosen here so
that the peak effect is clearly revealed. These frequency response characteristics
could appropriately be considered as defining *“slot” filters (the inverse of notch
filters), which are transparent to only a very restricted range of frequencies.
Such a property can in fact be useful in particular applications where a nearly
monochromatic “signal” is surrounded by extraneous noise.

Third-Order Filters

A third-order Sallen and Key low-pass filter is illustrated in Fig. 8.32. Adopting,
as before, a normalized filter (corner frequency w, = 1.0)withR; = Ry = R3 =
1.0 €2, the required capacitor values are given in the following table.
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PSpice simulations for both Butterworth and 1.0 dB Chebyshev filters using
component values as specified in the table produce the results plotted in Fig. 8.33.
As expected for a third-order low-pass filter, the high-frequency rolloff is quite

151
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=
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FIGURE 8.31. Second-order active band-pass filters with
center frequency of 500 Hz and ( values of 2, 5, and 10.

CiE) | GE) | CE)
Butterworth 0.20245 | 3.5465 | 1.3926
Chebyshev 1 dB | 0.05872 | 14.784 | 2.3444

steep at 60 dB per decade (18 dB per octave).

As might be anticipated, a third-order high-pass filter can be derived from
the low-pass circuit (Fig. 8.32) by interchanging the roles of resistor and capa-
citor. Hence, with C; = C; = C3 = 1.0 F, the design table for normalized

characteristics is

Ri(2) | Ry(2) | Rs(2)
Butterworth | 4.93949 | 0.28194 | 0.71808
Chebyshev 1 dB | 17.0299 | 0.06764 | 0.42655

==,
Vin A R, o
Lo,

— Vour

FIGURE 8.32. Third-order active Sallen and Key low-pass

filter.
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FIGURE 8.33. Frequency response of third-order active low-
pass filter. Both Butterworth (dashed) and 1 dB Chebyshev
(solid) characteristics are shown.

8.3 REMARKS

This chapter has provided an introduction to the basic concepts of analog filters.
For all but the simplest applications, active filters are probably the best choice.
Second- or third-order designs are generally sufficient.

The decision regarding tradeoffs is not always cut-and-dried, although in many
instances the instrumentation application itself will dictate some choices—low
ripple versus narrow transition region, low-order filter design versus sharply
defined bands.

Active filter circuits are typically overdetermined in the sense that there are
more variables (component values) than constraints. This allows some compo-
nents to be preset to convenient values while the remaining ones are determined
so that the real filter behaves as much as possible like the ideal target. The
component values presented in the previous tables were specific to a particu-
lar normalizing scheme. The appropriate values were simply quoted (see [3])
without proof.

The actual method of determining correct component values is a complicated
business, and the reader is referred to specialized texts for details. However, a
simple example will at least illustrate the process.

Consider the general second-order active low-pass filter, as illustrated in
Fig. 8.23. From Eq. (8.39) the circuit response can be written in the form

Vout ___ G
Vin  [RIR2C1C2] 24+ [RICIA—-G)+ (R +R)Cy) s +1

(8.41)
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with s = jw. In more compact form,

where
o= — (8.43)
R\ Ry C1Cy
and
p =BGl Ri)e E’é‘z T R)C (8.44)
A Butterworth polynomial of nth order can be expressed
T(s)= : (8.45)

AnS" + Ap 15"V o aps ast + 1

The coefficients of these polynomials have been tabulated (see [5], p. 69) and
are, for the case n = 2, a; = +/2 and a; = 1. To produce a Butterworth filter,
the circuit response function [Eq. (8.41) or Eq. (8.42)] must be made to match
the polynomial, term by term.

For a normalized filter with G = 1, we wish to have wg = 1, and this just
requires by = 1 or

RiR,C1Cr = 1. (8.46)

The remaining condition needed to guarantee a match with the Butterworth
polynomial is a; = b, = /2, which forces

(Ri+ Ry) G2 = V2. (8.47)

Notice that there are only two constraints-—Eqs. (8.46) and (8.47)—but four
components to be determined. In the earlier discussion of this second-order low-
pass filter, an additional arbitrary but convenient choice was made: R} = R; =
1.0 2. With the resistors fixed, the capacitors must then be C; = ¥ = 070711
and C) = C% = 1.41421. These are precisely the component values listed in

the table accompanying the earlier discussion of the low-pass Butterworth
filter.
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FIGURE 834, Configurations for second-order multiple feedback (MFB) active filters.

A third-order filter can be analyzed in a similar fashion knowing that the
Butterworth coefficients are a; = 2, a; = 2, and a3 = 1 (see [5], Table 8-3,
p. 69).

Higher-order filters, as well as other types (Chebyshev, Elliptic, Bessel, etc.)
based on different polynomials, require much more algebraic effort. These tasks
are normally carried out on computers, and specialized software is now available
to facilitate interactive filter design. Although such methods may be necessary
for demanding applications, standard reference texts which are available in most
engineering libraries provide concise summaries of design data that are usually
adequate for most situations.

Although the discussion has beenrestricted to Sallen and Key (VCV S) circuits,
it should be noted that other active filter designs are possible. The most common
alternative to VCVS is the so-called Multiple Feedback (MFB) arrangement
shown in Fig. 8.34. These filters are discussed in [3, 4, 5, 2, 7].

PROBLEMS

Problem 8.1. The discussion of passive first-order filters included low-pass
RC, low-pass RL, and high-pass RC. A fourth possibility would be a high-pass
RL filter. Design such a filter with the following characteristics: f. = 2 kHz and
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R = 1k§. If possible, verify the final design with PSpice or a similar simulation
package,

Problem 8.2. Design an active second-order, low-pass 1.0 dB Chebyshev filter
using 5 k<2 resistors such that the corner frequency is 2 kHz. If possible, verify
the final design with PSpice or a similar simulation package.
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