Amplifiers

In the realm of instrumentation, signals coming from sensor outputs can be quite
weak, and in such cases some signal enhancement clearly may be desirable. That
is, signal amplification is needed. Indeed, amplification is one of the fundamental
manipulations that can be performed on a signal. Amplifiers have played a key
role throughout the history of electronics, appearing first in vacuum tube form,
then as transistor-based designs, and most recently packaged into integrated
circuits.

The advent of integrated circuit amplifiers has transformed the world of ap-
plied electronics (including instrumentation) because these amplifiers are com-
plete units. The amplifier embedded within a package might contain dozens of
transistors in a complex circuit, but the user need not be troubled by the de-
tails of the design. The “chip” only requires simple power supply connections
and is promptly up and running. Consistency of performance and reliability are
hallmarks of modern integrated circuits.

In its ideal form, an amplifier generates an output that is A times the in-
put, regardless of the input signal strength or frequency. Real amplifiers have
limitations in both respects, but for the moment we shall assume ideal behavior.

A differential amplifier (see Fig. 5.1) has two inputs, usually labelled + and
—, or equivalently, noninverting and inverting.

The output voltage is given by the fundamental relationship

Vouw = A (V4 — V_)| 5.1

where A is the amplifier gain. Of course, if the inverting input is grounded, then
Vour = A V4, so the behavior reverts to a conventional single-channel amplifier.
In other words, the single-input amplifier can be thought of as simply a special
case of the more general differential amplifier.
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inverting
output

noninverting

FIGURE 5.1. Symbol for a differen-
tial amplifier with intrinsic gain A.

An equivalent circuit model for a differential amplifier is shown within the
dashed rectangle in Fig. 5.2. A source feeding the amplifier “sees” an input
resistance rj,. Looking into the output terminal, the amplifier appears as a source
equal to A Vi, feeding a series output resistance r,. For an ideal amplifier,
rin = 00 and rgy — O.

The differential form of the amplifier has assumed preeminence because so
many differential amplifiers are commercially available as integrated circuits.
As a matter of fact, it is a rather special form of differential amplifier that is
in widespread use: the so-called operational amplifier. An ideal op-amp is just
an ideal differential amplifier with an exceedingly large gain (A — 00). Actual
integrated circuit op-amps have typical gains of 104106,

In use, a differential amplifier must be connected to the required power sup-
plies. For many if not most IC devices, bipolar supplies are needed, say £15 V,
and so three pins on the IC package are assigned to + Vijas, — Viias, and ground.
Reality dictates that the amplifier output cannot exceed the positive supply level
(sometimes termed the positive “rail™), nor can the output fall below the neg-
ative rail. This means, for example, that with £15 V supplies, a differential
input of 2 V coupled with a gain of A = 100 would only generate an output
of approximately 15 V, not 100 x 2 = 200 V. For most applications, this sat-
urating behavior must be avoided in order for the output to remain a linear
function of the input. Nonlinearities generally lead to the undesirable effects of
distortion.

Given the earlier remark about the enormous gain of operational amplifiers,
and the observation concerning power supplies and saturation, it might seem that
an op-amp would be almost useless for conditioning all but the tiniest signals.
This would indeed be the case, except that op-amps are not normally employed

FIGURE 5.2. Equivalent internal cir-
cuit for the differential amplifier.
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in bare form. With the addition of a few resistors, amplifiers possessing improved
performance and reasonable overall gain can be achieved, as we shall now see.

5.1 NONINVERTING AMPLIFIER

Consider the schematic in Fig. 5.3. The combination of R; and Rr acts as a
simple voltage divider on Vg, s0

Ry

= —— Vour
RI+RF out

Vi
Also, from the fundamental relationship for a differential amplifier,
Vou = A [Via — V11.

Combining these two expressions,

Ry
Vo =A | Vip——— V,
out [ m Rl +RF out]

or

R,

FIGURE 5.3. Noninverting amplifier based
on a single op-amp.
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and finally
1
Vou = Vin T, R n R . 5.2)
A R1t+RF

The square bracket in this equation is a numerical factor relating output to input
voltage for the particular configuration selected here. If the circuit in Fig. 5.3 is
taken as a single entity with an input and an output, then this numerical factor
is its gain, To distinguish this gain from the parameter A, which is an intrinsic
property of the bare differential amplifier, A is termed the open-loop gain, and
the amplification factor for the complete configuration is called the closed-loop
gain, G. Hence,

G=——5—. (5.3)

As noted earlier, an op-amp is a differential amplifier with enormous open-loop
gain, in which case Eq. (5.3) has the limiting form

RF
1 = -— 5.4
Ai)ngoG 1+ Rl (54)

so the closed-loop gain is set by the ratio of the two resistors. For a real op-amp,
the open-loop gain might be something like 100,000 (an almost useless value,
as was noted earlier), but the closed-loop gain can easily be set to more desirable
levels such as 5, 10, or 50.

Because the square bracket in Eq. (5.2) is always a positive quantity, the
polarity of the output voltage is the same as the polarity of the input. Hence, this
configuration is referred to as a noninverting amplifier.

Input Resistance

Combining the schematic for the noninverting amplifier (Fig. 5.3) with the equiv-
alent circuit for an op-amp (Fig. 5.2), we obtain as a composite representation

Fig. 5.4. The driving source feeding Vi, must also supply an appropriate input
current ;. The effective input resistance is thus

_ Va

B Iin-

Rin (5.5)
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—AAA——-0 Vmu

i % Fin
V. A(K,' V;)

-~

FIGURE 5.4, Combination of external wiring and in-
ternal equivalent circuit for a complete noninverting
configuration.

The input current may be expressed

Vin = V|
Iin — ——ln . l . (5'6)
Fin
Furthermore, if rj, is large compared to both R, and RF,
R
Vi=——V 5.7
1 RF + R out ( )

and, using Eq. (5.2) for Vo,

R ] 1
V) = Vin] —m——|. (5.8
1 [RF +Ri " l:% + R.in. ] )

Substituting this expression for V; into Eq. (5.6) and simplifying,

R,
Rp=rinll+A—-——|. 5.9
in rm[ R+ RF] (5.9)

As this equation makes clear, the effective input resistance (Rj,) of the non-
inverting configuration is increased over the input resistance (rj,) of the bare
op-amp, and if the open-loop gain A is large, the increase in this resistance will
be substantial.
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FIGURE 5.5. Preliminary considera-
tion for determining amplifier output
impedance.

Output Resistance

Suppose a battery and a resistor are connected in series, as indicated in Fig. 5.5.
The output voltage will drop to exactly one-half if a load resistor equal in value
to the internal resistance is added. This observation provides a method for deter-
mining output resistance:

« the output resistance is equal to that value of external load which will cause
the ouput signal to drop by 50%.

Now apply this concept to the noninverting amplifier. As a first step, note

that the equations leading to Eq. (5.2) must be modified when there is a load
resistance.

VOlll

as before, but

A [Vln "‘ Vl] — Vou — Vout + Vou — V1 ) (5.10)
ta RL R F

Equation (3.10) expresses current conservation at the output node (see Fig. 5.6).

From this pair of relations, the noninverting amplifier closed-loop gain can be

derived:

G= L . (5.11)

Y (S I U BTN SIS S
[Rl-l-RF + A] + ARL + A(R1+RpF)

Comparing this to Eq. (5.3), it is apparent that the addition of a finite load
resistance (Rz) on the amplifier output causes the closed-loop voltage gain to
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—) V;m!

FIGURE 5.6. Addition of load resistance to the nonin-
verting amplifier.

diminish. Incidentally, this expression differs slightly from Eq. (5.3), even when
the limit Ry — oo is reimposed. This is because the op-amp output resistance
ro is now accounted for, whereas it was not included in the slightly simplified
derivation of Eq. (5.3).

Now let us determine the special value for a load resistance R; such that
the closed-loop gain from Eq. (5.11) becomes just half the value it has when
Ry — oo—this will of course then equal the output resistance we are seeking.
The algebra is a little tedious, but straightforward, and leads to

1
Row=Rp =1 |:—AR " } (5.12)
L+ Rl-}-;ff‘

Neglecting r, compared to AR, we arrive at

1
Rowt = 1o [—_—R ] s (5.13)
1+A_L—R|+Rr

which is the required expression for the output resistance of the noninverting
amplifier. Clearly, a large open-loop gain A will cause the output resistance to
become even smaller than the bare op-amp value of .

Remarks

Equations (5.9} and (5.13) show that the input resistance is raised whereas the
output resistance is lowered in the noninverting configuration. Both effects, if
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anything, are desirable in an amplifier. The origin of this behavior is the feedback
provided by resistor Rr. Note that in the limit Rr — o0, these equations lead
to Rip = rip and Ry = 1o, as expected.

Now, reconsider Eq. (5.8):

R, 1
Vi= [ :| Vin.
R + Ry |:% + R1§-RF] "’

It is immediately apparent from this expression that

im Vi = Vin. (5.14)
A—o0

Therefore, the potential at the inverting input to the op-amp is held continuously
to almost exactly match the potential at the noninverting input.

Vo~ V, | (5.15)

This property is also a direct consequence of the negative feedback provided
by R F-

5.2 INVERTING AMPLIFIER

The second standard configuration for an op-amp is shown in Fig. 5.7, As always,
Vou = A [V.,. - V_], and since V. = 0 here,

Vomw = —AV1.
Re
Ay
W Vi
I/;ﬂ RI

out

—0
+ AI;V

FIGURE 5.7. Component arrangement for an
inverting amplifier based on a single op-amp.
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Also, from current conservation at the inverting node,

Vin - Vl _ Vl - Vout
Ry Rp

From these two expressions is obtained

—Re
R
Vou = Vin I:H_—L—[R—IH_'K]} . (5.16)

Hence, the closed-loop gain is

RFr 1
G=—-|— . 517
[Rr] [1 +-};[—R',;RF]] -17)

The negative sign here means that a positive input becomes a negative output, and
conversely. Thus, this configuration is called an inverting amplifier. For op-amps,
the limiting gain is

lim G = — [&] ; (5.18)
A—00 Ry

Once again, the closed-loop gain is set by just the ratio of two resistors.

Input Resistance

The equivalent circuit for an inverting configuration is shown in Fig. 5.8. The
input resistance is defined by

Vin
Rin = —.
n Im

But
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FIGURE 5.8. Inverting amplifier with internal equivaient
circuit for the op-amp included.

Also, neglecting the voltage drop across ry,

V1=—@
A

and Vou is given by Eg. (5.16). From these three relationships and assuming ri,
to be very large compared to Rr, one obtains

Ry = Ry [#] , (5.19)
which can also be written
Ro=Ri+ AR: -l (5.20)
In the limit of large open-loop gain,
Rin = Ry. (5.21)

Thus the internal resistance of the op-amp, r;y, is not present in the net input
resistance of this configuration.

Output Resistance

The output resistance can be obtained by first determining the closed-loop voltage
gain when an external resistance Ry is added to the output and then finding what
value of this load will drop the output amplitude by half. The result of this process
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is that the output resistance of the inverting configuration is

1
S
I+ Agir;

(5.22)

=3

which is identical to the expression [Eq. (5.13)] for the output resistance in the
noninverting amplifier.

Remark

In the previous sections on the noninverting and inverting amplifiers, the closed-
loop gains [Egs. (5.3) and (5.17)], input resistances [Egs. (5.9) and (5.19}], and
output resistances [Eqs. (5.13) and (5.22)] all contained a common term

Ry 1

R1+RF‘=1+%}5

g

; (5.23)

which is often called the feedback factor, since it quantifies the proportional
amount of negative feedback.

5.3 DIFFERENCE AMPLIFIER

A third important configuration is shown in Fig. 5.9. Current conservation at the
inverting and noninverting nodes gives

Vo—V_ Vo —Vou

= 5,24
R Ry (5.24)
Ry
AAA~
Ry
Vo o—AWN =
°y
Vo o—AM- + out
R,
R3

FIGURE 5.9. Difference amplifier based on a
single op-amp.
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or
V.
= RiRe [_i + ﬂ] , (5.25)
Ri+Rr | Ry Ry
and
Vy,~V. V
b (5.26)
R, R;
ar
R;R; W,
= 22, 527
* T R+ Rs R G.27)

Let us explicitly include at this point the assumption of a virtually ideal op-amp
having extremely large open-loop gain and nearly infinite internal input resis-
tance (7in). Then, as we saw in the general result given in Eq. (5.15), negative feed-
back causes the potential at the inverting input to track the potential at the nonin-
verting input: V. = V_. Equating the right-hand sides of Eqs. (5.25) and (5.27),

1"‘%5 RF
Vo = LIV, — | — |V, | 5.28
out |:1+% b [Rl] a ( )

Hence, the output voltage is a weighted difference of the input voltages. If we
make the particular choice

Rr Rs
— = = =k, 5.29
R " R, (5.29)
then
Vomw =k (Vp, — V). (5.30)

In other words, this specific condition on the resistor ratios yields an output
which is just a constant times the difference in the input voltages.

5.4 SUMMING AMPLIFIER

As a final important and useful configuration, consider the circuit shown in
Fig. 5.10. Equating currents entering and leaving the connection node at the
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Ry
AW
b, o—
R,
Vb o Vum
R,
V.
R;

FIGURE 5.10. Sum-ming amplificr based on a
single op-amp.

inverting input,

V(l - V_ Vb - V— VL' V— V— - ‘/OLI[
Ry R> R3 RF ( )

Again, the equality of potentials at the inverting and noninverting inputs is in-
voked: Vi = V_. But V4 = 0 in this circuit, so

Va Vb Vc Voul

El— Ry R_ss: Rf’

(5.32)

Finally,

e (e () ()]

Therefore, the output voltage is a weighted sum of the input voltages (with a
final inversion). By choosing appropriate resistor ratios, the weights can be set
to any desired values, including unity.

This example included three input voltages, V,, Vj, V., but the choice was
arbitrary. In other words, any number of input voltages may be summed, and the
extension of Eq. (5.33) is obvious.

(5.33)

5.5 FREQUENCY RESPONSE

In the previous sections of this chapter, the op-amp open-loop gain A has been
treated as a constant. However, in reality this parameter varies with signal fre-
quency. As might be expected of any ac function, a harmonic input signal of
given frequency will experience both amplitude and phase changes in its passage
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FIGURE 5.11. Guin and phase response for an
inverting amplifier with R, = 1 kQ and Rr =
15kR.

through the op-amp. Figure 5.11 depicts these properties as they might be en-
countered for an inverting configuration based on a representative op-amp. The
data were generated by a CAD circuit simulator package which accurately pre-
dicts real op-amp behavior.

In this sample design, R; was chosen to be 1 k2, and Ry was 15 kQ. The
expected closed-loop gain [Eq. (5.18)] would be —15. The gain magnitude is
indeed equal to 15 for frequencies up to about 4000 Hz, after which there is a
decided rolloff with increasing frequency. At f ~ 5 x 10° Hz, the gain equals
unity. Above this frequency, G < 1.0 and the circuit actually attenuates the input
signal rather than amplifying it.

Notice also that the phase shift begins at —180 degrees. This is due to the
external conditions of the circuit, namely that it is in this case an inverting con-
figuration (a noninverting circuit would initially exhibit 0 degrees). Figure 5.11
also reveals that additional amounts of shift develop as the frequency is changed.
At high frequencies, the phase drops by an additional 90 degrees, resulting in
a net value of about —270 degrees. This effect is caused by internal circuit
characteristics of the op-amp itself.

Itis common practice to express amplifier gain in units of decibels (dB), where
the definition is contained in

G(dB) = 20log [‘:}’“‘] : (5.34)

m
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Volts

Time
FIGURE 5.12. [Ilustration of relative ma-
gnitudes of a hypothetical ac signat in-
creased and decreased in 5 dB increments.

As a visual aid to the decibel scale, Fig. 5.12 shows a hypothetical reference
signal (in boldface), which serves as the 0 dB level, together with waveforms at
+35dB, —5dB, and —10 dB. These units are quite nonlinear, as can be appreciated
from the fact that 20 dB corresponds to & voltage ratio of 10, whereas 40 dB
indicates a ratio of 100.

For the present example, the magnitude of the gain at low frequencies would
be 20 log(15) = 23.5 dB.

As Fig. 5.13 illustrates, the high-frequency rolloff of the gain becomes almost
linear when the vertical scale is in dB and the frequency axis is logarithmic.

The dashed line that approximates this linear limit has a slope of 20 dB/decade;
that 1s, for each increase in frequency by a factor of 10 there is a corresponding
drop in gain by a factor of 10. This line intercepts the low-frequency gain level
(23.5 dB) at a value of f called the corner frequency, f.;here f. ~ 4 x 10* Hz.
Whereas the specific numbers that appear in Figs. 5.11 and 5.13 are particular to
a given type of operational amplifier (324 in this example), the slope of the linear
asymptote is the same for all op-amps. The reason for such a rate of decrease of
gain will be made clear in the next section.

From the preceding discussion, it can be seen that o a first approximation
amplifier gain is flat to a corner frequency, after which it rolls off at 20 dB/
decade.

To push this illustrative example a little further, we now examine the effects
of changing the feedback resistor in the inverting configuration, first to 5 kQ2
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FIGURE 5.13. Gain versus frequency of
the inverting amplifier using a vertical
scale m decibels. The high-frequency
rolloff is 20 dB per decade.

and then to 1 k2. In the first case, the magnitude of the low-frequency gain
[Eq. (5.18)] should be SK/1 K = 5, which is 20 log(5) = 13.9 dB. In the second
case, the gain is unity, which is equivalent to 20 log(1) = 0 dB. These two cases
are combined with the previous example in Fig. 5.14.

Note that for designs possessing a smaller closed-loop gain, the corner fre-
quency is higher. The corner frequency at unity gain (0 dB) can be estimated
from the graph at about 2 x 10° Hz, an increase by a factor of nearly 5 over
fe when the gain was 15. Put another way, circuits with lower gain postpone
rollover until higher frequencies. This can be viewed as a tradeoff of closed-loop
gain for increased bandwidth.

The inverse of all of this is also true: higher closed-loop gains are matched
by reduced bandwidth. The ultimate limit of this process is the bare op-amp
itself, where the gain reverts to the open-loop value A. To quote a real-world
example, the ubiquitous type 741 op-amp is listed as having A ~ 2 x 10° and
fe = 8 Hz! The exceptionally small open-loop corner frequency coupled with
the unmanageable gain (meaning its output will saturate with almost any input
signal) makes an isolated op-amp fairly restricted in application.

Negative feedback therefore has at least two (there are actually more) bene-
ficial effects: (1) reduction of net gain to more desirable levels; (2) increase in
bandwidth to more usable levels,
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FIGURE 5.14. The previous example of an

inverting amplifier, but with several differ-

ent choices for the feedback resistor (and

hence the gain). Notice that reduced gain is

accompanied by increased bandwidth,

Complex Gain

To model the frequency dependence of an op-amp, the open-loop gain can be
written as a complex function.

1
01+j(%)'

Here, Ag is the gain amplitude, f is the signal frequency, and f. is a second
constant, which will turn out to be a corner frequency. In complex notation, a
harmonic signal is of the general form Vye/“'*®) Suppose then we take the
product of an input signal Vi, = Vje/*! with a gain as expressed in Eq. (5.35):

1

1+j(%)'

A=A (5.35)

Vou = V1€/?" Ap (5.36)

Observing that

v jl(%) o o
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with
a= -——1-—2 (5.38)
I
1+(£)
¢ = tan™! [—i:] . (5.39)
fe
Then,
Vo = Vi | -2 _ | ofers, (5.40)
1+ (afﬁ)

This demonstrates that the magnitude of the amplified signal at low frequency is
equal to V3 Ag and that it rolls off with increasing frequency (as the square root
in the denominator becomes increasingly large). Additionally, the output leads
the input by the phase angle ¢ given in Eq. (5.39). The two functions a and ¢ are
plotted in Fig. 5.15. The similarity to Fig. 5.11 is obvious. Note that the phase

1.2 [ m

1.0 [T Y=

2=
—

i
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0.8 45
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| \\\\M\
\
04 I 45
\

p=tan"'(- {/ 1)
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f/1,

FIGURE 5.15. Magnitude and phase res-

ponse expected from the complex repre-

sentation of the op-amp open-loop gain

function.
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shift here, which reaches —90 degrees at high frequencies, is an intrinsic property
of the amplifier model. The phase shift in Fig. 5.11 includes an additional —180
degrees because of the external inverting connection.

In the high-frequency limit, Eq. (5.38) becomes simplya — y = (x)~!, where
x = (f/f.). In decibels, this is

y(dB) = 20log[x~'] = —201og[x],

soatx = 1 (the corner frequency) y = 0dB;atx = 10,y = —-20dB;atx = 100,
y = —40 dB, and so on. This function, plotted on a graph with a logarithmic
X axis, is a straight line beginning at the corner frequency and dropping at a rate
of 20 dB/decade. In other words, it is the same type of high-frequency rolloff
that was illustrated in Fig. 5.13.

Clearly, the complex gain given in Eq. (5.35) successfully replicaies both the
amplitude and phase transformations inherent in real op-amps.

Gain Bandwidth

As a further insight, suppose the noninverting configuration is reexamined with
the formerly fixed A replaced with expression (5.35). We begin with Eq. (5.3)
and for convenience use the feedback factor 8 as defined in Eq. (5.23). Hence,

1

G =

; .
ath
which becomes
_ 1
144
% tB
or
A
G = 0 : (5.41)
(1 +408)+ (£)
This equation may be rewritten in the standard form
1
G = Gy (5.42)

1+ (£)



56

PROBLEMS
with
Ag
Go = , 5.43
0= T A 5 (5.43)
fl =04 AoB) fe. (5.44)

Comparing Eq. (5.35) for the open-loop-condition and Eq. (5.42) for the closed-
loop configuration, it is apparent that the closed-loop gain has been reduced from
Ap to Ag/(1 + AppB), while the corner frequency has been increased from f. to
(14 AoB) fc. An important observation we can make from these results is that

«_ Ao _
Gof, = 1+A0ﬁ(1 + AoB) fe = Ao fe. (5.45)

In other words, the product of gain and bandwidth is the same for the bare op-amp
as it is for the complete noninverting configuration.

As an exercise, the preceding procedures could be repeated for the inverting
configuration, beginning with Eq. (5.17).

PROBLEMS

Problem 5.1. A noninverting amplifier has a feedback resistor Rr = 5 K and
has the inverting input coupled to ground through a 20 K resistor. The op-amp has
an open-loop gain A = 20,000, an input resistance rj, = 100 K, and an output
resistance ro, = 5 Q2.

1. What is the voltage gain? [Ans. 1.2499].

2. What is the overall input resistance? [Ans. 1600 Meg].

3. What is the net output resistance? {Ans. 0.000312 Q1.

Problem 5.2. An op-amp is specified as having an open-loop gain of 150,000
and an open-loop bandwidth (corner frequency) of 10 Hz.

1. What is the approximate open-loop gain at 10 kHz? [Ans. 150].

2. If this op-amp is used in a noninverting configuration with Ry = 40 K and
R; = 10 K, what will be the closed-loop gain and bandwidth? [Ans. 5 and
300,000 Hz].



Special-Purpose
Circuits

In the previous chapter, the basic properties of operational amplifiers were sum-
marized, and a number of standard configurations were discussed. It was shown,
for example, that very simple arrangements of a few resistors in combination
with an op-amp could provide noninverting or inverting amplification. These
circuits are actually both usable and useful for boosting weak sensor signals and
for performing analog addition and subtraction.

Many other special-purpose circuits exist that are capable of performing
unique transformations on analog signals. Several of these are discussed in the
following sections.

6.1 UNITY-GAIN BUFFER

The noninverting configuration was discussed in the previous chapter; the
schematic is repeated here (Fig. 6.1). Assuming a very large open-loop gain,
the closed-loop gain was found to be

Rp
G=14+—.
R

Suppose now this arrangement is forced to the limit R — O and R} — 0. A

schematic incorporating these limits is depicted in Fig. (6.2). The closed-loop
gain obviously becomes

G=10| 6.1)

57
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FIGURE 6.1.- Noninverting amplifier.

Hence, output equals input. This may seem a rather pointless achievement until
the input and output resistances are considered.
The input resistance is given by Eq. (5.9) in the appropriate limit, which is

Ry =rn[l + Al| (6.2)

Typically, this will be extremely large, since i, is large and A is very large. The
output resistance is given by Eq. (5.13) in the appropriate limit. It is

1
Rout = rom [m] . (6.3)

For 7oy small and A very large, clearly Ry is extremely small.

This circuit thus has unity gain, extremely high input resistance, and extremely
small output resistance. These properties make it ideal for use as a buffer toisolate
one section of a circuit from another.

As an example, consider the schematic in Fig. 6.3. The circuitry (the purpose
of which we are not concerned with here) contained in the box labeled B has some
input resistance ri;. Now, if the value of ry, is not very large compared to the resis-
tor Ry, then directly attaching box B across R, (omitting the buffer) would pro-
duce a parallel combination, R, and ri,, whose resistance would certainly be less

L. o
n.°—>_ Fow

FIG-URE 6.2, Unity-gain buffer.
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Rq -

~

Vbia.r = +

T in
R,

FIGURE 6.3. Use of a buffer to isolate one circuit from a
second circuit whose input resistance is not large.

than the original R,. This would decrease the voltage V, so the subsequent signal
transformations produced by B would not reflect the original signal across R,.
On the other hand, if the buffer is inserted as shown, then R, would be shunted

only by a nearly infinite input resistance. Virtually no alteration in the signal V,
would occur.

6.2 INSTRUMENTATION AMPLIFIER

A special circuit with very useful properties is illustrated in Fig. 6.4.

Because the input pair of op-amps, 4| and A,, each have negative feedback
resistors R, the potential at each noninverting input approximately equals the
potential at the corresponding inverting input, as seen earlier in Eq. (5.15). This
implies that the potential at the top of Rg is V}, while the potential at the bottom
of Rg is Va.

Now, either V; > V5 or V5 > V). The operation of the circuit does not depend
on which case applies, so without loss of generality we choose the situation
Vi > V,. Consequently, v, > v, and there will be a current flow ! from v,
toward v, down through the chain R, Rg, R.

FIGURE 6.4. Instrumentation amplifier constructed from three
op-amps. R is a single gain-setiing resistor.
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With these points in mind, the circuit operation may be derived as follows.
Clearly,

IRg=V, -V,
or
V, —
=%
Rg
Thus, since v, — V| = IR,
R R
=Vi[l+—|-Va| —]|. 6.4
=1+ ] %) 64)
Likewise, Vo — v, = IR, so
R R
—p=V|=—|-WV|1+—]. 6.5
Up II:RS] 2[ +Rs] (6.5)

Amplifier Az is configured in a standard difference arrangement and has an
output given by Eq. (5.30),

VOU[ =k (vb - Ua) ’

where k = R/R = 1 in this case. Using Eqgs. (6.4) and (6.5),

Vour = [1 +2-5] Va— o) 6.6)
Rs

Thus, the overall circuit action is to provide differential amplification of the two
inputs and to do so with a gain that is set by the resistor values R and Rj.

In an instrumentation amplifier, op-amps A;, A3, A3 together with all resis-
tors R are considered as internal to the device, whereas Rg may be viewed as
the single external component: a gain-setting resistor. (Instrumentation amps are
available commercially packaged as single-chip integrated circuits; in this form,
Rg literally is an external component.) With this technique, gains of several hun-
dred are easily achieved. Because the signal voltages V; and V; are fed directly

to op-amp noninverting terminals, the input impedance of an instrumentation
amplifier is very large (~10% Q).
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Finally, it should be noted that any common voltage that might be present in
both inputs V; and V; will be canceled in the output because of the differencing
action in Eq. (6.6). For this reason, difference amplifiers, and instrumentation
amplifiers in particular, are very useful when the signals of interest are superim-
posed on large, shared baselines.

Because of the imperfections of real circuits and amplifiers, the amplified
output is better expressed by something like

Vy 4+ V
Vou = Gp(Va — V1)+GC( 2 > '). (6.7)

That is, there is both a differential gain Gp, as in Eq. (6.6), and a common gain
G, which operates on the average input. Ideally, G¢ should be near zero, but
a finite value implies that the output voltage will be contaminated by a buried
component whose origin is not the signal of interest.

The ability to cancel shared baselines is quantified by a parameter known as
the common-mode rejection ratio (CMRR). It is defined as

CMRR = —, (6.8)

Obviously, in the ideal case with G = 0, CMRR would be infinite. Actual
instrumentation amps can achieve CMRRs of about 10° or larger.

6.3 LOG AND ANTILOG AMPLIFIERS

Suppose an instrumentation application generates a signal which at times is
quite small, whereas at other times it is comparatively large. This property is
known as wide dynamic range. Audio signals often fall in this category, rang-
ing from very soft to very loud. Wide dynamic range poses difficulties when
further electronic processing of the signal is planned because either the low
levels may drop out or the high levels may overload the electronics. A work-
around is found in the technique of compression, where the signal is in effect
rescaled, say with a logarithmic converter. After processing, an inverse scaling,
or decompression, is applied. Clearly, an antilog converter would be needed for
this task.

Alternatively, suppose that a transducer signal (transducers will be treated in
Part III) is an exponential function of the physical parameter being monitored.
This could, for example, apply to a thermistor temperature sensor. In such a
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case, the transducer output can be linearized by passing it through a circuit with
inverse scaling properties—a logarithmic converter.

The key to obtaining the desired nonlinear output from an op-amp circuit is
the use of an appropriate nonlinear feedback element. A semiconductor diode is
described by an expression of the form

=LV 1], (6.9)

where [ is the current flowing through the diode, I is the so-called reverse bias
saturation current (a constant for any particular device), 4 is the electronic charge,
V is the voltage across the diode, & is Boltzmann’s constant (1,38 x 10~2 joule
per kelvin), and T is the diode temperature expressed in absolute degrees (kelvin).
At or near room temperature (7 = 300 K), the factor kT /q is approximately
0.025 V. Hence, for even modest diode voltages

= AL (6.10)

Log

When a diode is placed as illustrated in Fig. 6.5, the voltage output may be
derived as follows. Clearly, V_ = Oand so I = V;;,/R. But this current also flows
through the diode, and furthermore the diode voltage is expressed by V = — V.
Hence,

Vin
— =1 e—anu:/kT
R 0

or

kT [V,
Vour = 7 In (—’5'-) , (6.11)

FIGURE 6.5. Log ampiifier.
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R _'Vmu

FIGURE 6.6. I_-.og amplifier using an
NPN transistor in place of a diode.

and finally

Vour = — Iik?T] In(Vip) + [k?T In (IgR)] . (6.12)

This expression is of the form Vo, = —aln Vi, + b, so the output voltage is a
logarithmic function of the input voltage.

It is also possible to use an NPN transistor connected as shown in Fig. 6.6 to
achieve essentially the same behavior. Note that the collector and base are both
at ground potential, and that with positive Vi, and consequently negative Vi,
the base-emitter junction is forward-biased.

Antilog

For antilog operation, the resistor and diode are simply interchanged as indicated
in Fig. 6.7. Now the equation for V,; is derived as follows. The forward diode

drop is Vi,. Hence,

9Vin

I ~Iyer (6.13)

Vig ———p—o
- Vour

FIGURE 6.7. Antilog amplifier.
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Also,

IR = _Vou[. (6‘14)
Thus,

Vou = — [IoR]} e(fr)Va | (6.15)

In this case, the output voltage is an exponential (antilog) function of the input.

6.4 CONSTANT CURRENT SOURCE

Figure 6.8 shows an op-amp circuit that provides a current I to asoad Rz.
Because V_ & V. is assured by the negative feedback and V.. = 0, the current
through the input resistor is just

= Ya
.

Virtually all of this current then flows through the load on account of the ex-
tremely high inpedance at the input terminals of the op-amp. In other words, the
load current I is set only by V. and R and is independent of the particular value
of the load resistance. Hence, the circuit depicted in Fig. 6.8 acts as a constant
current source.

I (6.16)

6.5 VOLTAGE AND CURRENT CONVERSION

Voltage-to-Current Converter

If the dc voltage input to Fig. 6.8 is replaced by a variable source as in Fig. 6.9,
then the output current becomes

Vi
Iow = f . (6.17)

I_

...T_.R RL
L1

Ve

FIGURE 6.8. Constant current source.
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R ) I out
V,",, }

FIGURE 6.9. Volage-to-current con-
version circuit.

Thus, the input voltage has been transformed into an output curtent flowing
through the load resistor.

Another possibility for voltage-to-current conversion is the arrangement in
Fig. 6.10. For this circuit, the current 7, flows through R; and R, so

A
out = R
But V_ - V+ = Vin,
Vi
Tow = f (618)

This is exactly the same as expression (6.17), so the two variants provide identical
voltage-to-current conversion.

Differences exist in other aspects of the circuits. The input impedance of
Fig. 6.10 is very high—a desirable condition for a voltage sensor in the same
way that an ideal voltmeter has high input impedance, whereas the design of
Fig. 6.9 is basically an inverting amplifier with an input impedance [see Eq. (5.21)]

of only R. On the other hand, the dynamic range of the inverting configuration
is larger.

Current-to-Voitage Converter

The inverse of the operation discussed in the previous section is current-to-
voltage conversion. Analyzing the circuit shown in Fig. 6.11, and observing that

" N

|4

n

FIGURE 6.10. A second arrangement
for voltage-to-current conversion.

IOIH
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¥
FIGURE- 6.11. Current-to-voltage
conversion.

Vt)ﬂl

the input current flows through the output resistor R,

Vou = —IinR |, (6.19)

where V_ = V, = 0 has been applied. This configuration can be regarded as a
limiting form of the standard inverting amplifier (Chapter 5) for which the input
impedance was [Eq. (5.21)] Ry, which is zero in this case. Thus, the impedance
that this converter presents to the source of current I, is extremely small—a desir-
able property in the same sense that an ideal ammeter has nearly zero impedance.

6.6 ANALOG INTEGRATION AND DIFFERENTIATION

In the earlier section on log and antilog circuits, it was seen how the equiv-
alent of either of two particular mathematical operations could be performed
on given input voltages. Summing and differencing amplifiers, discussed in the
previous chapter, are of course the analogs of addition and subtraction. Electronic
counterparts of other mathematical operators also exist, including the functions
of multiplication, division, and square root. In this section, we consider integra-
tion and differentiation.

Integrators

The quantity of charge on a capacitor and the potential difference across the
capacitor are related: Q = C V. Therefore,

P

But the rate of change of the charge residing on the capacitor plates is simply a
current flowing onto or off of those plates, so

av,
dQ_C_c

Ir=C—— 6.20
c 7 (6.20)
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c
M
/1

Vie NAN—
o Vnur

FIGURE 6.12. Analog integrator.

is the capacitor current. Notice that in the steady state (i.e., dc conditions) Ic = 0,
which means simply that a capacitor can “carry” only ac currents.
Considering Fig. 6.12, this capacitor current is seen to be just Vi,/ R because,
as usual, V_ = V; = 0. Hence,
Yi_l‘_l- —_ —C dv()l.ll ,
R dt

(6.21)

where we have used the fact that Vy,; = — V. From Eq. (6.21), it is evident that

- 1
Vomw = ——% Vin dt |,

6.22
RC (6.22)

so the output voltage is a time integration of the input voltage.

To illustrate the operation of an integrator, the circuit shown in Fig. 6.13
was created in the software simulation package PSpice (a product of MicroSim
Corporation). Notice that a second op-amp has been added—it has a gain of 1
and is included simply to invert the integrator output. In this particular case, the
overall response should be

1
Vout = "éz,'f Vin dt.

The voltage input was chosen to be a pulse sequence of amplitude 1.0 V, pulse
width of 1.5 sec, and period of 2.5 sec. Figure 6.14 is a plot of the PSpice circuit
simulation results. The output voltage is clearly seen to be just the integral of
the input signal. Two further comments are in order. First, the PSpice schematic
includes a timed switch which is placed across the integrating capacitor. This
switch opens 0.01 sec after the simulation begins and guarantees that C; is ini-
tially discharged. Second, it should be remembered that op-amp output voltages
cannot exceed power supply levels. With certain input waveforms it is quite easy
to saturate the integrator output.
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u3
tOpen = 0.01s
1 2

input
? "

VATARY

v, 1Meg
output
—0
LMI124
UlA LM124

0 0 0 U2A

FIGURE 6.13. PSpice schematic of an analog integration circuit. The second op-amp is
simply acting as an inverter.

Differentiators

By simply interchanging the resistor and capacitor in the integrator, a differen-
tiator is formed. To see this, consider Fig. 6.15. As before, the capacitor current
is the rate of change of charge buildup on the capacitor, so

dVin

I (6.23)

In=C

3.0 -

2.5 -

1.5 r £

input

1.0 -

VY (velts)

0.5 -

0.0

0 1 2 3 4 5

Time (seconds)
FIGURE 6.14. PSpice simulation results for the
integrator.
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VI:" _)

FIGURE 6.1 é Analog differen-

ml K‘mr

tiator.
But
Vout = _IinR ’
and thus
av;
Voul = —RC d;n .

Therefore, this circuit “differentiates” the input signal.

69

(6.24)

As with the integrator, the operation can be demonstrated with the aid of a
PSpice simulation. The schematic for this example is shown in Fig. 6.16. The
1 nF capacitor across R; is included to prevent ringing oscillations at the output
of the first op-amp which otherwise occur when the input voltage pulse reaches
its corner points. Here, too, an inverting stage has been added for convenience in

Com
| L
1
input
2 Cr
|
T
Yy
LM124
UlA
0 0

Vo

—0

LMI24
U2A

outpue

FIGURE 6.16. PSpice schematic for an analog differentiator. The second op-amp func-

tions simply as an inverter.
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V (volts)

0 1 2 3 4 5

Time (seconds)

FIGURE 6.17. PSpice simulation results for the analog
differentiator.

representing the output, which is plotted in Fig. 6.17. Where the input signal is
flat (constant), the derivative is zero and the output is zero. During the linear ramp
phases of the input, the slope is constant, and the output rises or falls abruptly to
the value 2.5 V.

PROBLEMS

Problem 6.1. Consider the sawtooth waveform shown in Fig. 6.18. The vertical
axis is in volts and the horizontal axis is in seconds.

1. If this signal is fed to an integrator circuit with R = 1 Meg and C = 5 uF, de-
scribe the resulting output waveform. Caution: the integral of a linear function
is not itself a linear function.

2. If this signal is fed to a differentiator circuit with R = 1 Meg and C = 5 uF,
describe the resulting output waveform.

3 13 18
FIGURE 6.18. Problem 6.1.
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Problem 6.2. The PSpice circuit shown in Fig. 6.19 is made up of three stages:
a log amplifier, an inverter, and an antilog amplifier. Suppose the input waveform
is the same as shown in the previous problem. Calculate and plot the expected
waveforms at Outl and Out2.

Log D1N4004
input
? "
VAN
v, 1k
0 0

DiN4004
D,
D
Lo out2
AntiLog
LM124
U3A
0

FIGURE 6.19. Problem 6.2.



Waveform Generators

Instrumentation systems frequently require a source of repetitive voltage wave-
forms. The repetition rate, stated in cycles per second, or Hz, can range from
one waveform in many seconds, minutes, or hours, to hundreds, thousands,
or millions of waveforms per second. At the extreme ends of the spectrum—
that is, exceptionally slow or fast signals—specialized generating circuits and
techniques may be required. This chapter deals primarily with the more com-
mon intermediate range of approximately a few cycles per second to nearly one
megahertz.

Any periodic waveform satisfies the condition v(t + T) = v(¢), where T 1s
the repeat interval, or period. There are a number of standard waveform shapes
that are encountered in applications. The most common is certainly a sinusoidal
voltage signal of the general form v(t) = A sin(2n ft + ¢), where A 1s the am-
plitude, f is the frequency, and ¢ is a phase shift indicating a displacement in
time between the zero point of the “clock” and the sine wave itself. The period
and frequency are of course related through w = 27 f. In addition to the sine
wave, there are rectangular pulses and square waves, as well as triangular and
sawtooth shapes, and finally so-called arbitrary waveforms.

The next section deals with the generation of sinusoidal voltage signals. Other
shapes are then discussed.

7.1 OSCILLATORS

Feedback is the process of routing a portion of the output of a circuit back to the

input. In Fig. 7.1, the block represents a network, which introduces an attenuation
« and a phase shift ¢ in the feedback loop.

73
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[~
|A/ out

a/g

FIGURE 7.1. Amplifier with
feedback loop. The feedback
network introduces an attenu-
ation & and phase shift ¢.

In the two preceding chapters, the feedback path in the various amplifiers
was purely resistive. Because of this, the associated external phase shift was
zero. The feedback path terminated at the op-amp inverting input, so the net
effect was a form of partial signal cancellation. This arrangement constitutes
negative feedback and was an essential aspect of the inverting and noninverting
configurations discussed previously. Negative feedback reduces the overall gain,
improves stability, and increases bandwidth.

The opposite situation, in which some portion of the output is returned in-
phase to the amplifier, would be expected to have correspondingly opposite
results: decreased stability and increased gain. The most common situation where
instability is actually a target of the design process is that of electronic oscillators.
Positive feedback is thus the key to insuring that oscillations occur in circuits.
An oscillator is specified by a number of attributes, such as frequency range,
output, stability, and so forth. In many instances, enhancements in one attribute
can only be achieved at the expense of others, or in overall circuit complexity.
Because of this, no single oscillator design emerges as “best.”” On the other hand,
a few designs have achieved the status of standards because they represent good
compromises among the competing requirements. Several of these classics will
now be presented as a means of illustrating oscillator fundamentals.

Wien-Bridge Oscillator

The schematic depicted in Fig. 7.2 represents a Wien-bridge oscillator.

The network in the box labeled Z will pass an attenuated and phase-shifted
portion of the output back to the noninverting op-amp input. For sustained os-
cillations to occur, the losses induced in Z must be just compensated by the
closed-loop gain of the amplifier. Too little gain and the oscillations will damp
away; too much gain and the oscillations will grow uncontrollably. In addition,
the phase shift brought about by passage through Z must equal 0 or destructive
interference will occur. This process is analogous to the synchronized pumping
required to maintain the periodic motion of a swing.
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Ry

_ V:ml

g

A —

FIGl-JRE 7.2, Oscillator using pos-
itive feedback to the noninverting
input.

The signal returned through Z may be viewed simply as the voltage input
to the noninverting configuration comprised of the op-amp, R; and R,. Thus
[see Eq. (5.4)],

Ry
Vout = [1 + E;} V+.

In a Wien-bridge oscillator, Z is aso-called lead-lag network of the type shown
in Fig. 7.3, where V,, and V. match the symbols in the previous diagram.
In complex notation,

V Z
o _Zb (1.1)
Vout Za + Zb
with
Z,=R—j(= (7.2)
@ J wC '
e,

FIGURE 7.3. Lead-lag network used
in the feedback path of the Wien-
bridge oscillator.



76

7. WAVEFORM GENERATORS

and
Zy=[R7' + jwC]7. (7.3)

After a little algebra, one finds for the magnitudes

el 1 . (1.4)
wl  fo4 (RoC - 2L
and for the phase between V. and Vi,
1
= — RwC
¢ = arctan [&93—} ) (7.5)

The right-hand sides of Eqs. (7.4) and (7.5) are obviously frequency-dependent.
At very low or high frequencies, the phase shift has limiting values of +% (V.
leads Vou) and —% (V4 lags Vou), respectively. The relative amplitude drops

away at both low and high frequencies and reaches a maximum at the special
value

1

= %C (7.6)

Wy

for which |V, | = % | Vout|. This can easily be seen by rewriting Eq. (7.4) as

:;* = ! -. (7.7)
out \/9 + (ﬁ . %)
Similarly,
@ _ @
¢==arctan|:w 3 woi|, (7.8)

and it is evident that the phase shift is zero at w = wy.

The lead-lag circuit thus displays resonance at the frequency wg. The Wien
bridge of Fig. 7.2 will exhibit sinusoidal oscillations at this same frequency if,
as discussed earlier, the amplifier closed-loop gain equals 3. This requirement is
casily met by choosing R, = 2R,.

The properties of the lead-lag network can be illustrated by a specific example.
The schematic in Fig. 7.4 was drawn in PSpice. The resulting simulation data
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Vin R, ¢ Vout
O—¢ A { | $ ¢ 0
10K In l
R‘D
v v, c 2

i lln 10k
0 0 0

FIGURE 7.4. PSpice schematic of a lead-lag network.

are plotted in Fig. 7.5, and it is clear that a resonance occurs at f = 15.9 kHz,

in agreement with Eq. (7.6). Also, as expected, at this frequency the phase shift
of the network is 0.

Improved Wien-Bridge Oscillator

The preceding discussion assumed ideal behavior from the components, includ-
ing the op-amp itself. In reality, deviation of resistor values from nominal, op-amp
imperfections, and thermal drift, all imply that the Wien bridge might not actually
generate stable oscillations at the resonant frequency. Revising basic oscillator
designs so that stability ensues is a subject in itself. The following discussion is
meant only to illustrate the process.

The filament in an incandescent bulb is a resistive element chosen for its ability
to operate at elevated temperatures. An ideal resistor is described by constant R.
In conirast, self-heating causes the filament resistance to increase in a manner

04

o
w

bt
[N}

amplitude
phase

=

0-0 i L s L] L L L 1 I 1 3 1 A (] & . 1 i _80
0 10 20 30 40 50 60 70 80 S0 100

Frequency (kHz)
FIGURE 7.5. Results of a PSpice simulation of the lead-lag network.
The vertical dotted line marks the resonant frequency at which the
network is most transparent and the phase shift is zero.
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Resistance
g

%

Filament Voltage
FIGURE7.6. Hypothetical character-
istic of the filament in an incandescent
lamp. Points along the curve cor-
respond to higher filament tempera-
tures, and hence higher resistances.

depicted in Fig. 7.6. Suppose the operating point Ry, V; lies on the characteristic
of a particular bulb, as indicated.

The bulb can now be substituted for one of the gain-setting resistors of the
Wien bridge oscillator, as shown in Fig. 7.7.

With the nominal resistance of Ry, the closed-loop gain is 3, as required.

When the circuit is first turned on, the bulb is cold and its resistance Rejamen:
is at a minimum well below Ry. The closed-loop gain (1 + 2Ry / Rflamen:) is thus
greater than 3, which overcompensates for the lead-lag attenuation of % This
means that inevitably some small fluctuation will be amplified into larger and
larger oscillations, so the circuit is self-starting.

Now, consider what happens if the system begins to drift away from the
conditions for sustained oscillation. Suppose the net gain climbs above 3. Then,
the oscillator output will increase, and so will the voltage appearing across the
bulb. This in turn will result in an increase in filament resistance Fig. 7.6, and

2R, | out
[ +
173
L

FIGURE 7.7. Improved Wien-
bridge oscillator employing an
incandescent lamp as a form of
automatic gain control for self-
starting and stability.




7.1 OSCILLATORS 79

hence a decrease in closed-loop gain, so the output will drop and the system will
move back to its intended bias point.

If, instead, the gain drifted below 3, then the oscillator output would temporar-
ily drop, Rgjamen: Would become less than its target value Rg, and the closed-loop
gain would increase, bringing the system back to its intended bias point.

Hence, this improved design for the Wien-bridge oscillator is thus both self-
starting and stable.

Phase-Shift Oscillator

In the Wien-bridge oscillator, a portion of the output was fed back to the nonin-
verting amplifier input. This then required that the network phase shift be zero
for positive signal reinforcement. It is also possible to direct the feedback signal
to the inverting amplifier input, provided the phase shift is, in such a case, 180
degrees. This is necessary because the inverting input itself introdces a further
180 degrees, bringing the combined total up to the positive feedback target of
360 degrees. Such an approach is taken in the phase-shift oscillator (Fig. 7.8).

The oscillator output is fed back to the inverting amplifier consisting of the
op-amp together with R and Ry. The closed-loop gain is —-ER-IL [see Eq. (5.18)].

The feedback network is the chain of resistors and capacitors. An analysis of
the R — C ladder yields

Vou - 1
V; 5 N_: 6 | ’
" (1 (2JrfRC)2) J (2rrfRC (2nfRC)‘)

where Vi, is the voltage at the input to the ladder (i.e., the op-amp output). The
factor in brackets following j is zero for

(7.9}

(7.10)

=0

Vou

R
> Rj R R%
11

FIGURE 7.8, Phase-shift oscillator.
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Vin ¢ c Cs Vo
o——} {| — | o
In 1n In
by R, 210k R, < 10k R; S 10k
Vi
0 0 0 0

FIGURE 7.9. PSpice schematic of the R-C ladder from a phase-shift
oscillator.

At this frequency, the relative output is

Vout 1

Vi 29

(7.11)

Therefore, the phase-shift oscillator will run at the frequency given by Eq. (7.10)
when the compensating amplifier gain is set by

Ry 1
—_ =, 7.12
R 29 ( )

As an example, consider the PSpice schematic in Fig. 7.9. The simulation
results (Fig. 7.10) indicate a phase shift of 180 degrees at a frequency of 6.5 kHz,
in agreement with Eq. (7.10). The relative output at this frequency is %, again
as expected.

Phase

Amplitude

Frequency (kHz)
FIGURE 7.10. PSpice simulation results for the R-C ladder. The dotted
vertical line marks the oscillator frequency f, at which the amplitude is
% and the phase shift is 180 degrees.
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7.2 PULSE GENERATORS

As already noted, the Wien-bridge and phase-shift circuits produce sinusoidal
voltage oscillations at the design frequencies. Continuous streams of square
pulses are another commonly needed format. Such pulses may be unipolar,
ranging up and down between a baseline of zero and some peak value, or bipolar,
where the excursions are bounded between & Vpex. The repeat time for each
pulse cycle is the period, and the ratio of time in the high-voltage state to the
total period is the duty cycle of the pulse stream.

To illustrate the process of pulse generation, we now examine two well-known
circuits.

Relaxation Oscitlator

In the circuitshown in Fig. 7.11, the op-amp output is applied as positive feedback
through the voltage divider composed of R; and Rs3. Because of the positive
feedback, the op-amp output will be driven rapidly to positive saturation V,,, =
+Vmax when V. > V. and will jump to negative saturation Vou = — Vinax When
V+ < V_.

The voltage at the noninverting input is

R3

Vi = Vou—.
+ outR2+R3

(7.13)

FIGURE 7.11. PSpice schematic of a relaxation oscillator.
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To begin, suppose that Vo is at 4+ Vpax. Then V. will be the fraction of Via,
specified by Eq. (7.13). The output voltage is also applied to the combination
Ry, €y, with the result that the capacitor charges through R;. The time constant
for this process is T = R;C}. The capacitor voltage Veop (Which is just V_) will
increase until it reaches Viay 55— R R , at which time the op-amp output will almost
instantaneously switch down to — Vjp,x. The voltage at the noninverting input
to the op-amp is still given by Eq. (7.13) but is now a negative quantity, and
the capacitor will begin to discharge through R;. This process will connnue
until the capacitor voltage has dropped from +{Vinax g3%s; + R ] to —[Vinax yo Ra]
Then, the op-amp will again be driven into positive saturation and its output will
switch to + Vpax, and so on.

Thus, the capacitor voltage appears as a sequence of alternating charge and
discharge intervals, and the op-amp output is a matching series of pulses with
amplitude £ Viax.

Consider a charging segment. The equation for the capacitor voltage as a
function of time is

R3
Ry + R3

2

+ Vmu] R (7.14)

Vcap(t) = Vimax — [me

As required, the initial voltage is Vi,,(0) = —[Vipax 523 otk ], while the limiting
value is Viap(t = 00) = Viax. The time (T7) requlred for Viap 1O rise to the
upper switching value is obtained by setting the left-hand side of Eq. (7.14) to
+[VmaxR_£—3}E]‘ The result is

Vinax [1 __FR ]
T = Ratks (7.15)
Vimax [1 + R2+R3]
or
R 2
ot o Rt 2R (7.16)
Ry
From this, the period of the square waves, T = 2T}, is obtained:
2R
T=2(RiC)In (1 + T) X 717
2

The resuits from a PSpice simulation are plotted in Fig. 7.12. The capacitor
charging and discharging cycles are clearly seen. The expected period of the
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FIGURE 7.12. PSpice simulation results for the relaxation os-
cillator. An initial start-up phase lasts about a millisecond.

oscillations would be

2x20K

T=2(12 002uF) In{ 14+ ———
(12K x u)n(+ 0K

) = 0.407 msec,
which agrees reasonably with the data in the figure.

555 Timer

For straightforward applications requiring square waves, the so-called 555 chip
has become the integrated circuit of choice. This device is available from a
number of manufacturers, one or two to a DIP package, and in both bipolar and
CMOS versions. It is very economical and easy to use.

As depicted in Fig. 7.13, the 555 contains a pair of op-amp comparators, a
flip-flop, an output amplifier, and a discharge transistor. There are in addition
three matched resistors (5 KQ) running from the positive power supply V..
to ground. The external connections and components shown in this figure are
particular to operating the 555 in its astable mode—that is, in a free-running
state.

Basically, the oscillations are the result of repeated charge and discharge
cycles of capacitor C. Charging toward V. through R)and R; takes place when
the transistor is “off.” Discharging toward ground through just Ry occurs when
the transistor is “on.”

Suppose a charging interval is in progress. The transistor is “off” and Vg, is
rising. Due to the internal resistor chain, the comparators are set to trip at %Vcc
and %VCC. When Viyp finally reaches %Vcc, the output of the upper comparator
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FIGURE 7.13. Block diagram of a 555
timer. The shaded boundary frames the chip
contents; the remaining components are ex-
ternal to the IC.

will switch positive, thus resetting the flip-flop and causing O = 1. The resulting
positive voltage on the base of the transistor switches it “on,” initiating a discharge
sequence.

The capacitor voltage will decay until it reaches % Vec, at which point the lower
comparator output will abruptly go positive, setting the flip-flop to Q = 0. This
low voltage on the base of the transistor will turn it “off,” thus initiating a new
charge cycle.

The equation for the capacitor voltage as it rises from % Ve towards a limiting
value of V. is

1 —L
Veap(#) = Ve — l:""gvcc + Vcc] e 1, (7.13)

where the charging time constant is T} = (R; + Rz) C. But of course the process
abruptly terminates at the upper trip point of %V“. Hence, the time, 71, for a
charging segment can be obtained from

2 1 .0
§Vcc = Vee — I:‘_'.'?"Vcc + Vcc] e .

Thus,

T = [(R1 + Ry) C] In(2). (7.19)
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Similarly, the discharge through R, follows
2 -
VCap(I) = 3 VC'(.' e ", (?.20)

This terminates when Veap reaches %VCC and the time required is
T =[R:C] In(2). (7.21)

The time T for a complete charge/discharge cycle for the 555 is then

T = [(R| + 2Ry C) n(2)] (7.22)

The 555 output will be high while O = 0; that is, during charging intervals.
The ratio of the time during which the output is high to the total period of the
repetitive square waves is the duty cycle.

h  R+R
T\+ T, R +2Ry

duty cycle = (7.23)
Since 71 > T3, as is evident from Eqs. (7.19) and (7.21), the duty cycle can never
fall below 50%, whatever the values of the two resistors may be.

A PSpice simulation with components R} =22 K, Ry =47 K, and C =
22 nF produced the waveforms shown in Fig. 7.14. For these values, we expect
7T} = 0.105 msec, T) = 0.072 msec, and T = 0.177 msec, in good agreement
with the observed data.

Yolts

0 cra— — Semnand

00 01 0.2 0.3 04 05 06 07

Time (msec)
FIGURE 7.14. PSpice simulation results for a free-running
555 oscillator. The square wave is the final chip ouput; the
other waveform is taken from the capacitor and shows charg-
ing and discharging cycles.
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FIGURE 7.15. Sawtooth waveform generator composed of a Schmitt trigger, an integrator, and
an inverter.

Sawtooth Waveform

When a dc voltage is applied to an integrator (see previous chapter), the output
will be a linear ramp. This property can serve as the basis of a sawtooth waveform
generator. Consider the PSpice schematic shown in Fig. 7.15.

As in the relaxation oscillator, the first op-amp acts as what is called a Schmitt
trigger, its output rapidly switching to £ Vj,,, whenever the inverting input either
just drops below or just rises above the fraction R—ffR—3 of the present output. Thus,
there are two trip points

R
UTP = +——— Vs,
+R2+R3 max

R;
L'TP= - —mm— V..
Ry+Ry ™

The net result is that the output will remain at +Vp,ax as long as the inverting
input remains below the upper trip point (UTP). Once UTP is exceeded at the
inverting input, the output will switch to — Vi, and remain at that value until
the inverting input drops below the lower trip point (LTP). Again, the output is
constant as long as the inverting input remains below UTP, when switching once
more will take place. The voltage interval between UTP and LTP is known as
the Aysteresis of the Schmitt trigger.
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Let us suppose that the first op-amp is delivering 4 Vi,ax to the second op-
amp, which is wired as an integrator. The output of this second op-amp satisfies
Eq. (6.21), which after inversion by the third unit becomes

dVout — Vmax
dt Ry C2,

(7.24)

so Vo ramps up lincarly with slope -};—'4‘!&"‘— This rising output will ultimately
reach the upper trip point (UTP), and when it does the first op-amp will switch
10 -- Vmax and the final output will ramp down according to

dVou — Vinax
dt R4Cy )

(7.25)

When the lower trip point (LTP) is reached, the first op-amp will return to 4 Vipax
and ramping up will occur. Thus, the V,,,; will consist of alternating up and down
ramps, which range from UTP to LTP. The time T, or Tyown required for either
up or down ramping can be determined from the slopes.

| 2R
Tup = Thown = [_3‘] R4C> . (7.26)

For the example shown in the schematic, this gives
Tup = Tdown = 0.8 S€C.

The results of a PSpice simulation of the circuit are plotted in Fig. 7.16.

12
r— " -
8r ‘ i
i
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> !
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-8+
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(] 1 2 3 4 5 6 7 8 9 10

Time (seconds)
FIGURE 7.16. PSpice simulation results for the sawtooth gen-
crator. Both the Schmitt cutput (square) and final output (saw-
tooth) are shown. A start-up transient is present.
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After an initial start-up, the expected triangular output waveform is observed.
This sawtooth ranges between the upper and lower trip points, which for this
example are at £40% of the op-amp saturation voltage. The circuit also provides
a square wave at the output terminal of the first op-amp, as illustrated in Fig. 7.16.

7.3 CRYSTAL OSCILLATORS

The oscillators discussed earlier in this chapter shared at least one important
feature—a frequency-selective element placed in a feedback loop. For the
Wien-bridge circuit, this element was a lead-lag network. Generally speaking,
oscillators perform best when the frequency selection is “sharp.” This usnally
results in precise tuning and stability.

Quartz crystals are a common choice for the required frequency-selective
devices in oscillators. As a material, quartz is piezoelectric. This means that
its particular atomic structure results in the generation of an electric potential
whenever the crystal is mechanically deformed. The reverse is also true: the
application of an electric field across the crystal results in a mechanical defor-
mation. A consequence of these two properties is that a quartz crystal may be
shaped by cleaving, cutting, grinding, and polishing until its precise dimensions
support an electromechanical resonance. That is, for some specific frequency
of electrical excitation, the wavelength of the mechanical oscillations induced
by the piezoelectric effect matches a physical dimension of the crystal. Like the
acoustic waves in an organ pipe, the system is “tuned” by its shape.

A quartz crystal for use in electronics is a two terminal device—a pair of
leads emerge from the package. An equivalent circuit that captures most of the
essential electrical properties of a crystal is shown in Fig. 7.17.

This consists of a series branch with resistance, capacitance, and inductance,
together with a capacitive parallel branch. The component values for this equiv-
alent circuit are of course dependent on the specific crystal.

As an example, the device model QZS32768 from the PSpice simulation
library was examined; its impedance properties are shown in Fig, 7.18. There is
a series resonance at 32,768 Hz and a parallel resonance slightly above that, as

R; C] L
! A I
/1
C;

FIGURE 7.17. Equivalent cir-
cuit of a quartz crystal.
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FIGURE 7.18. Impedance of PSpice library mode! QZS32768
crystal.

indicated in the figure. Note the sharpness of the resonances. (Figure 7.18 has a
considerably expanded horizontal scale.)

In Fig. 7.19, this crystal is embedded in the positive feedback loop of an op-
amp. For this PSpice simulation, the pulse generator V3 was found necessary
to kick-start the oscillator. Only a very brief single pulse was required for this
purpose.

The results of the simulation are shown in Fig. 7.20. Both the signal V4
(light trace) and V,,, (bold trace) are shown. As expected, the oscillations occur
at the resonance of 32,768 Hz (period of 30.52 usec).

7.4 REMARKS

The preceding sections have described just a few typical sine wave and sawtooth
waveform generators. Many other circuits serve as the basis of both custom and
commercial designs, and there are a number of books that provide more depth on
this topic. These references can be sources of valuable technical detail, including
coverage of specialized areas such as high-frequency and low-frequency oscil-
lators, as well as techniques for improving stability, particularly with respect to
thermal drift.

The advent of microprocessors and custom integrated circuits has drastically
altered the face of instrumentation, especially in terms of the range of commercial
products now available. These are in reality complex systems (although they are
not necessarily costly), and not the sort of simple circuit that could easily be
replicated on a workbench.
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FIGURE 7.19. Example of an oscillator employing a quartz crystal in a positive feedback loop.
The pulse generator was needed to initiate oscillations.

Arbitrary waveform generators fall within this category. As the name implies,
an arbitrary waveform generator is able to create a repetitive signal of any desired
shape. The user must deliver to the instrument a prescription of the waveform,
usually as a string of perhaps thousands of numbers representing a discrete sam-
pling of the waveshape. This data array then resides in system memory within the

130,52 psec |

Output
Crystal

0 100 200 300
Time (microsec)

FIGURE 7.20. PSpice simulation of a crystal oscillator. The circuit
output is the bold waveform. Also indicated is the time-dependent
voltage at the top of Rs.
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instrument and is used in combination with digital-to-analog converters (DAC)
and controllers to synthesize the final signal.

Performance is dependent upon the speed of the DACs, the number of bits
allocated to each memory location, and the size of memory. For example, suppose
an instrument has a memory array consisting of 1024 8-bit words. The vertical
resolution of any synthesized waveform will then be 1 part in 28 = 256, or better
than %%. Further, suppose for this example that the maximum conversion speed
of the DACs is 100 nsec. One complete sweep of the stored waveform would
then take at least 1024 x 107 = 0.1024 msec. This corresponds to 2 maximum
output frequency from the generator of 9765 Hz.

PROBLEMS

Problem 7.1. Choose component values for the lead-lag network shown in

Fig. 7.4 so that it can be used in a Wien-bridge oscillator with a target frequency
of 50 kHz.

Problem 7.2. Choose component values for the R-C ladder shown in Fig. 7.9
so that it can be used in a phase-shift oscillator intended to run at 25 kHz.

Problem 7.3. Select new component values in the relaxation oscillator shown
in Fig. 7.11 so that the output has a period of 1.00 msec.

Problem 7.4. Select external components for the 555 timer so that it oscillates
with a period of 0.50 msec .

Problem 7.5. Using the schematic of Fig. 7.15, design a sawtooth waveform
generator that will run at 5 Hz.






