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ABSTRACT 
DNA methylation is an important contributor for prostate cancer development and 

progression. It has been studied experimentally for years, but, lately, high-throughput 

technologies are able to produce genome-wide DNA methylation data that can be analyzed 

using various computational approaches. Thus, this study aims to bioinformatically 

investigate different DNA methylation and gene expression patterns in prostate cancer. DNA 

methylation data from three datasets (TCGA, Absher and Kirby) was correlated with gene 

expression data in order to distinguish different regulation patterns. Classically, increased 

DNA methylation in promoter regions is being associated with gene expression 

downregulation. Although, results of the present project demonstrate another robust pattern, 

where DNA hypermethylation in promoter regions of 1,058 common genes is accompanied 

by upregulated expression. 

After analyzing expression and methylation values in the same samples from TCGA 

dataset, expression overcompensation in a dataset as an explanation for upregulation was 

excluded. Further reasons behind the pattern were investigated using TCGA DNA 

methylation data with extended list of probes and includes the presence of methylated 

positions in CpG islands, distance to transcription start sites and alternative TSSs. As 

compared with the downregulated genes in the classical pattern, upregulated genes were 

shown to have more positions in CpG islands and closer to TSSs. Moreover, the presence of 

alternative TSS in prostate was demonstrated, also disclosing the limitations of methylation 

detection systems. 

In conclusion, indications from a present study suggest a possible DNA methylation 

role in gene expression upregulation in prostate cancer, which prompts to reconsider the 

classical believe that DNA methylation always leads to gene suppression. 
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1. INTRODUCTION 
Prostate cancer (PCa) is the second most common type of cancer worldwide and the 

most common in Norway [1, 2]. Survival rates of the local tumor are known to be high, but 

aggressive forms are especially dangerous and difficult to treat. PCa is very heterogenic and 

there is much to be discovered. Research of DNA methylation and gene expression is an 

upcoming field since it can provide new insights on a development and progression of the 

cancer. 

DNA methylation is often described as an epigenetic switch for turning gene 

expression on or off — when expression is needed, methylation marks are removed, and 

when a gene needs to be suppressed, DNA is methylated. Computational methods allow to 

perform a genome-wide analysis of gene expression and many methylation positions, which 

gives an overview of DNA methylation and gene expression status, possible interactions 

between two processes in PCa. 

Aim of the research project — using computational methods investigate the 

relationship between the gain of methylation and upregulated expression in prostate cancer 

and compare with other DNA methylation and gene expression patterns. 

Objectives: 

1. Analyze available literature on DNA methylation in prostate cancer and find available 

DNA methylation datasets in prostate cancer and normal prostate tissue. 

2. Process and prepare the data, calculate statistical differences in prostate cancer, 

compared with normal tissue samples. Distinguish DNA methylation and gene 

expression patterns and analyze genes that consistently follow the patterns in all 

datasets. 

3. Compare DNA methylation and gene expression values derived from the same 

samples for genes following ‘Gain of methylation — upregulated expression’ 

regulation pattern in order to confirm or deny overcompensation of expression due to 

DNA methylation. 

4. Perform detailed structural and functional analysis of methylation in genes following 

only ‘Gain of methylation — upregulated expression’ regulation pattern and compare 

the findings with genes from ‘Gain of methylation — downregulated expression’ 

regulation pattern only. 
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1.1. Prostate cancer 

1.1.1. Prostate cancer problem and epidemiology 
According to the most recent worldwide statistics in 2012, there were 1.1 million new 

cases of prostate cancer (PCa) estimated (15% of all new cancer cases in men worldwide) and 

307,000 deaths registered (6.6% of all deaths of cancer in men) [1]. Prostate cancer is the 

second most common cancer type among men worldwide after lung cancer, but PCa is 

detected more frequently in developed countries and is the most common type in men [1]. 

The occurrence rates are higher in Northern and Western Europe, as well as Australia, New 

Zealand and Northern America [1]. Worldwide, PCa is the 5th deadliest cancer among men 

[1]. 

Statistical data is more recent for the population of United States. Prostate cancer is 

the most common type of cancer among men here (Figure 1) [3-5]. It accounts for almost 1 in 

5 new cancer cases diagnosed [5]. PCa rates increases with age — 1 in 12 men older than 70 

will get prostate cancer, while 1 in only 403 men younger than 50 will get prostate cancer [5]. 

In average 1 in 9 men develop prostate cancer in their lifetime [5]. 

 
Figure 1 Incidence rates for different cancer types in men in United States (US) from years 1975 
to 2014. The most common type of cancer in men is prostate cancer. The peak of prostate cancer rate 
in early 1990s was caused by the widespread testing of prostate-specific antigen (PSA). Adapted from 
[5]. 
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In United States 180,890 new prostate cancer cases (21.5% of all cancers in men) 

were estimated for 2016, while for 2017 and 2018 161,360 (19.3% of all cancers in men) and 

164,690 (19.2% of all PCa cases estimated) new cases respectively [3-5]. Despite the drop in 

a number of new estimated cases in 2017 and 2018 (compared with 2016) the death rate 

increases. In 2016, 26,120 deaths estimated (8.3% of all male deaths of cancer estimated), 

while in 2017 and 2018 — 26,730 (8.5% of all male deaths of cancer estimated) and 29,430 

(9.1% of all male deaths of cancer estimated) deaths respectively [3, 4]. Prostate cancer 

remains the second (after lung and bronchus) deadliest cancer in men [3-5]. 

In Norway, 5,118 new cases of prostate cancer were registered in 2016. It is also the 

most common type of cancer (nearly 30% of all cancers in men in 2016) [2]. In 2016, 957 

men died from PCa in Norway [2]. 

Fortunately, prostate cancer survival rate is highest of all cancer types, but sometimes 

survival statistics are difficult to interpret because of the differences in detection practice [5]. 

As mentioned before, prostate cancer is more common in developed countries mostly because 

of the PSA testing [1]. In the late 1980s and early 1990s prostate cancer detection rates 

increased because of the widespread prostate-specific antigen (PSA) testing [5]. PSA test 

became the main method for early diagnostics and cancer monitoring. The procedure is low 

invasiveness, low cost and can be repeated many times, but, unfortunately, PSA testing can 

also lead to overdiagnosis and overtreatment [6]. Because of that US Preventive Services 

Task Force recommended to reduce the testing in men older than 75 [5, 6]. General screening 

using PSA test is also not recommended in Norway, but it still remains the main test that is 

performed before scheduling the biopsy [2]. 

Problems of the PSA testing prompt scientists to look for other promising methods to 

diagnose and monitor prostate cancer. DNA methylation in cancer is one such potential area 

of research. 

Other reason why prostate cancer research is important today is that even if survival 

rates of localized cancer are high, aggressive forms of prostate cancer are still highly 

dangerous, spread fast, are difficult to predict and thus difficult to treat. Furthermore, because 

of the high heterogeneity PCa, it complicates the studies of this type of cancer and unify the 

findings [7]. DNA methylation studies in prostate cancer could potentially reveal the 

important changes that would help to differentiate aggressive disease from localized cancer 

and shed the light on gene regulation patterns. 



	4 

1.1.2. Prostate gland and prostate cancer development 
Prostate is an exocrine gland, part of the male reproductive system, main function of 

which is to produce semen fluid [8, 9]. The gland can be divided into three zones: central, 

peripheral and transitional zones. The tissue of prostate consists of fibromuscular stroma and 

epithelial glands, that is a start point for the development of prostate adenocarcinoma [8, 9]. 

Glandular epithelium has three different cell types: neuroendocrine, luminal secretory and 

basal [8]. Luminal cells are responsible for androgen receptor (AR) and prostate-specific 

antigen (PSA) secretion. Expression of AR and PSA is regulated by androgens [8]. The 

fibromuscular stroma is made up of fibroblasts, endothelial cells, dendritic cells, nerves, 

smooth muscle cells as well as mast cells and lymphocytes [8]. Stroma cells are responsible 

for androgen-dependent production of growth factors [8]. Particularly interesting is a stromal-

epithelial crosstalk in prostate. This event is an important factor for regulation of growth and 

development of the prostate and hormonal responses in a gland [8, 10]. It means that stroma 

also plays an important role in cancer development, despite the fact that cancer evolves from 

epithelial cells. Alterations of paracrine interactions in a tumor microenvironment — stroma 

— creates a microenvironment for tumor growth [9, 10]. 

Changes in prostate gland epithelium cells usually leads to a formation of pre-

cancerous phase, known as prostatic intraepithelial neoplasia (PIN). In PIN benign prostatic 

acini and ducts are lined by cytological atypical cells [11]. PIN is being considered as a 

precursor for cancer and high-grade PIN is associated with prognosis of aggressive PCa [11]. 

Proliferative inflammatory atrophy (PIA) is also a contributor to high-grade PIN formation 

and/or prostate carcinogenesis (Figure 2) [11]. PIA contains highly proliferative, but failed-

to-differentiate prostate epithelial cells in periphery of the prostate — hotspot for PCa [12]. 
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Figure 2 From normal prostate to prostate cancer. Proliferative inflammatory atrophy (PIA) and 
prostatic intraepithelial neoplasia (PIN) are precursory lesions to prostate cancer. Adapted from [12]. 

Prostate adenocarcinoma more frequently develops in the peripheral zone of the gland 

(80-85%). Transitional zone, together with central zone, are less common sites of origin for 

PCa (10-15% and 5-10%, respectively) [13]. 

Benign prostatic hyperplasia (BPH) is a very common non-malignant prostate lesion 

that may lead to increased chances to develop prostate cancer, but today this statement is 

debatable due to the differences in histology and localization [9, 14]. Prostate size increases 

from an approximate normal size of 30 g to larger than 150 g in older men [9]. BPH creates 

unpleasant symptoms, such as urinary incontinence and reduces the quality of life, but it is 

not lethal [14]. There are some overlapping features between PCa and BPH: hormone-

independent growth and response to antiandrogen therapy (a type of drug-based androgen-

deprivation therapy) [14]. Furthermore, shared risk factors for both diseases are chronic 

inflammation, genetic variation and metabolic disruption [14]. In conclusion, PCa and BPH 

share common features rather than BPH causes PCa (Figure 3). 
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Figure 3 Benign prostatic hyperplasia (BPH) and prostate cancer share risk factors, but 
whether BPH is a premalignant condition is still unclear. Inflammation, hormonal influences, 
metabolic and genetic factors are shared features in BPH and prostate cancer. Adapted from [14]. 

Aggressive forms: metastatic and castration-resistant prostate cancer 
Prostate cancer might be the most common type of cancer in men, as mentioned 

before, but, fortunately, not the deadliest. Localized and not progressing PCa does not require 

a treatment at many times, but aggressive forms, such as metastatic and castration-resistant 

prostate cancer (CRPC), are especially hard to treat. It is critical to develop procedures for 

distinguishing advanced and aggressive prostate cancer from indolent cancer to be able to 

prescribe the best treatment strategy [15]. Various genetic and epigenetic changes are 

responsible for development of aggressive PCa forms (Figure 4). Unfortunately, because of 

the wide variety of molecular changes, PCa differs from one individual to another and even 

in different lesions of the same case [12]. 
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Figure 4 Molecular pathogenesis of prostate cancer. Somatic mutations, gene deletions and 
amplifications, chromosomal rearrangements, all together with aberrant DNA methylation and other 
epigenetic alterations are involved in cancer development and progression. Adapted from [12]. 

First site of spreading of prostate cancer is bones (osteoblastic metastases, causing the 

overproduction of bone cells) and it is often the only clinically detectable site of metastasis 

for PCa [13, 16]. PCa patients, as well as breast cancer patients, are the most severely 

affected by bone metastasis [17]. Reasons why PCa metastasizes to the bones and 

mechanisms behind osteoblastic metastases are not well known in comparison with another 

type of bone metastases, called osteolytic metastases. Higher Gleason score, a loss of PTEN 

gene, gain of mitogen-activated protein kinase (RAS/MAPK) signaling, increased levels of 

N-telopeptide of collagen (NTX) are believed to contribute to osteoblastic disease [17]. 

Process, such as reverse hematopoiesis, where red marrow tissue collects disseminated tumor 

cells (DTCs), occurs and makes bone metastases uniquely dangerous [17]. 

Metastases of any organ are dangerous, but bone metastases are exceptional. They are 

life-threatening and, unfortunately, in most cases incurable, frequently followed by hardly 

manageable pain [17, 18]. Challenging progressive prostate cancer forms encourage scientists 

to study early PCa and investigate molecular changes could lead to metastatic or castrate-

resistant prostate cancer. 
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Androgen receptor (AR) 
Androgen receptor (AR) is extremely important for a healthy prostate development 

and functioning, but alterations in a pathway of androgens and AR contribute to cancer 

initiation and progression, as well as CRPC [8, 19]. In a healthy cell, testosterone triggers the 

ligand-dependent transactivation of AR, leading to cell proliferation, differentiation and 

survival [20]. Expression activation pathway for genes, responsible for those functions, is 

described in detail in Figure 5. 

 
Figure 5 Ligand-dependent gene expression activation by androgen receptor. Testosterone (T) 
enters prostate gland epithelium cell and is converted to dihydrotestosterone (DHT) by 5a-reductase 
(5a-R2). Heat shock proteins dissociate from androgen receptor (AR) and DHT bind to AR, which 
leads to dimer formation and interaction with androgen response elements (ARE). Other co-activators 
are recruited, and gene expression is activated. Adapted from [20]. 

Continued transactivation of AR is a cause of CRPC, also known as androgen-

independent prostate cancer (AIPC) [16, 19]. This phenotype of PCa is lethal and 

characterized by increasing tumor size, new metastatic spread and rising levels of prostate-

specific antigen (PSA) [19]. Inappropriate activity of AR can be caused by AR amplification 

due to overexpression, gain-of-function AR mutations, overexpression of AR co-factors, 

ligand-independent AR activation by growth factors or cytokines, intracrine AR production 

or constitutively active AR splice variants [19, 20]. 

One of the ways to use defects in the AR pathway as an advantage is androgen-

deprivation therapy (ADT), where for chemical castration luteinizing-hormone-releasing 

hormone (LRHR) agonist is used (drug-based ADT) [19]. Furthermore, ADT can also be 

achieved by medical or surgical castration (surgery-based ADT), which is a primary way to 



	9 

manage progressive PCa as well as a therapy for androgen-dependent tumors [8, 16]. 

Unfortunately, many patients develop CRPC and fail the therapy, causing the death of the 

patient [8]. 

Genomic rearrangements 
Chromosomal rearrangements are common events in prostate cancer development. In 

PCa, rearrangements result in gene fusions, amplifications and deletions [21]. The most well-

defined fusion in PCa is TMPRSS2-ERG, which, according to Perner et al. occurs in almost 

50% of PCa cases [21, 22]. During the fusion event 5’-UTR of androgen-driven TMPRSS2 

gene fuses with the oncogenic transcription factors from ETS TF family (ERG, ETV1 or 

ETV4) [22]. Fusion leads to aberrant ERG gene expression and drives prostate tumorigenesis 

[22]. Amplification of oncogenes MYC, AR and PIK3CA is also a signature rearrangement for 

PCa, as well as PTEN tumor suppression gene deletion [21]. 

Genomic rearrangement can also occur in a much larger scale, causing chromosomal 

instability (CIN), where whole chromosomes or arms of chromosomes are being altered 

(Figure 4) [21]. 

Telomeres 
As it is common in other types of cancer, prostate cancer also activates telomerase to 

maintain telomeres, but the difference in PCa is that telomeres are unusually short in cancer 

cells compared with normal prostate tissue (average length of 5.4 kb in cancer compared with 

6.6 kb in normal tissue) [23]. Shortened telomeres can affect genome integrity, as well as 

drive aneuploidy and somatic copy number alterations [23]. Such alterations has been 

associated with deletions of 8p and amplification of 8q (Figure 4) [21]. Shortening of the 

telomeres can result in genomic alterations, such as chromothripsis — “multiple translocation 

events occurring in a single catastrophic event leading to imperfect rearrangement and repair 

of one or a few shattered chromosomes” [23]. Kovtun et al. observed chromotripsis in around 

30% of different grade PCa samples with more incidents among the lower grade tumors, 

suggesting the role of chromotripsis in cancer initiation [24].  

Diet 
It was shown that a diet might also influence the development of prostate cancer. For 

example, lycopene and other carotenoids, vitamin E, selenium, marine omega-3 fatty acids, 

soy, polyphenols and isoflavones are considered as protective dietary elements, while milk, 

calcium, high doses of zinc, saturated fat, grilled meats and heterocyclic amines contribute to 

the increased risk of PCa [25]. Diet’s role in the process of cancer development is still a 

controversial topic, partially because of the lack of research projects in this field. 
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1.1.3. Current methods for diagnosis of prostate cancer. Pros and cons 
of methods for early diagnosis 
Prostate-specific antigen (PSA) test 
PSA is a serine protease that helps to liquefy the seminal fluid by proteolyzing gel 

proteins of seminal fluid [26]. PSA is a part of a glandular kallikrein-related peptidases. 

Genes for all 15 kallikreins are clustered together in human genome (280 kb locus of 

chromosome 19q133-4) [26]. PSA is encoded by KLK3 and transcription is regulated by 

androgens [26]. Most of the times, PSA concentration in blood increases significantly 

because of the prostate cancer, which makes the molecule a suitable biomarker for PCa 

detection [27]. But other conditions, such as BPH or prostatitis, as well as older age, can also 

lead to increased levels of PSA [6, 26]. It is important to know that PSA levels in blood 

escalate not due to a higher expression of PSA, but probably because of the disruption of the 

basement membrane and loss of basal cell layer, epithelial cell polarity and ductal lumen 

architecture [26]. 

PSA test is the most frequently used test for early diagnosis for PCa [28]. During 

testing, concentration of PSA in blood is measured, where it varies from <0.1 to 104 ng/ml 

with a median of around 0.6 ng/ml [26]. In men with advanced PCa, high concentrations 

(above 102 ng/ml) are observed [26]. 4 ng/ml is considered a threshold for prostate cancer 

detection [26, 28]. If PSA concentration increases after radical prostatectomy (RP) by 0.4 

ng/ml and another increase follows, metastatic progression is suspected, and such condition is 

defined as a biochemical recurrence (BCR) of PCa [29]. 

PSA test is relatively non-invasive, cheap and easy to perform, so can be repeated 

many times. However, it lacks sensitivity to detect early carcinogenesis, causing false-

negative and false-positive results, and PSA levels can, unfortunately, vary independently 

from prostate carcinogenesis — increase when there is no cancer and decrease or stay 

unchanged with the cancer in presence [6, 26, 28, 30]. 

Digital rectal examination (DRE) 
Before PSA test, digital rectal examination (DRE) was the most used screening 

method for prostate cancer [31]. During DRE a specialist is feeling the peripheral zone of 

prostate and can detect abnormalities of the prostate. One of the main drawbacks of this 

technique is high variability in results and poor correlation with biopsy results— each test is 

performed by a different expert and conclusions might differ significantly [31]. However, 

DRE is still being used as an additional test in order to gain more information about the 

particular tumor that is being treated. 
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Biopsy 

If after DRE, PSA (with the result ³4 ng/ml) and other possible tests, prostate cancer 

is suspected, needle biopsies are recommended [13, 28]. Procedure is considered as the gold 

standard for PCa diagnosis and is usually necessary to confirm PCa diagnosis. Prostate 

biopsy can be performed transrectally or guided by transrectal ultrasound (TRUS) — 

transperineally [32, 33]. During a biopsy 10 samples are usually taken, based on various 

recommendations [32]. 

Biopsies in cancer diagnostics raise concerns, because procedure is invasive and can 

cause serious side effects, such as infections, erectile dysfunction, urinary incontinence [6]. A 

biopsy can also be false-negative, leading to a repetitive biopsy [34]. 

Radical prostatectomy (RP) 
After the diagnosis of prostate cancer, radical prostatectomy (RP) is usually chosen as 

a treatment (together with radiation). RP is a procedure, during which prostate is completely 

removed [33]. Robot-assisted radical prostatectomy (RARP) is a more innovative, less 

invasive procedure, allowing shorter hospital stay and decreasing blood loss [33]. Radical 

prostatectomy, like biopsies, has post-operative side effects — possible erectile dysfunction 

and urinary incontinence [33]. 

Evaluation of the tumor 
Prostate cancer can be classified clinically by assigning a stage T1-4, based on the 

amount of cancer cells found [13]. For example, if the cancer is found in less than 5% of 

tissue, T1a stage is assigned, while T4 means that the tumor is fixed or invades adjacent 

structures. Another parameter for PCa — pathological T (pT) category— can be determined 

from radical prostatectomy (RP) samples in combination with the clinical staging [13]. There 

are three categories: pT2, pT3 and pT4, with pT3 having two subcategories pT3a and pT3b. 

pT2 means that tumor is organ-confined, while pT4 tumor is fixed or invasive. 

American Joint Committee on Cancer (AJCC) and the Union for International Cancer 

Control (UICC) have developed a system to determine the stage of the cancer that is called 

the tumor-node-metastasis (TNM) cancer staging system [13]. It is based on the extent of the 

tumor, which is described by the value T, that uses clinical and pathological categorization. 

The system also assigns values N, for involvement of nearby lymph nodes (N0 meaning ‘no 

positive regional nodes’ and N1 meaning ‘metastases in regional nodes’), and value M, for 

presence of metastases (M0 meaning ‘no’ and M1 meaning ‘yes’) [13]. 
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Gleason score is a grading system specific to prostate carcinoma, based on the 

architectural pattern of the tumor [35]. It was created by Donald F. Gleason in 1966 and 

modified several times: in 1974-1977, 2005 and with slight updates in prognostic evaluation 

in 2013 [35, 36]. Gleason grading system intends to group tumors into four groups with some 

cases (for example, clear cells) falling into separate pattern (pattern 5) [35]. A pathologist 

identifies one of five patterns, gives a primary grade and later assigns a secondary grade to 

the observed pattern of the sample. The final Gleason score is a sum of primary and 

secondary grades, for instance, 4 + 3 = 7. Score 2 means that the tumor is well-differentiated 

or low-grade, while grade 10 tumor is poorly differentiated. 

Gleason score has also an ability to predict the outcome of PCa, which made this 

grading system widely-used for decades, but today the accuracy is arguable. Usually, patterns 

3, 4 and 5 (Gleason score 8-10) are considered as high grade cancers with poor outcome [35]. 

In 2013, prognostic grade groups were proposed after correlating data with biochemical 

recurrence: prognostic grade group I with Gleason score £6, group II with score 3 + 4 = 7, III 

with score 4 + 3 = 7, IV with score 4 + 4 = 8 and, finally, prognostic grade group V with 

Gleason scores 9 and 10 [36]. Particularly important are prognostic groups II and III, since 

the final score is 7 for both groups, but the architecture of tumor is, in fact, different. The 

separation of these two groups allows to reflect tumor behavior more accurately [36]. 

After summarizing the methods, currently used for the detection of prostate cancer, it 

is clear that the search for new approaches is urgent to avoid unnecessary surgical procedures 

caused by false positive diagnosis and to make PCa surveillance easier and more accurate. 

Scientists are looking for new ways to detect and monitor PCa with non-invasive procedures 

(for example, testing urine samples). DNA methylation biomarkers could be that new way. 

To find PCa-specific DNA methylation biomarkers, studies of DNA methylation patterns in 

prostate cancer are needed. 

1.2. DNA methylation 

1.2.1. General concepts of DNA methylation 
DNA methylation in a cell is used as an epigenetic control mechanism of the 

information encoded by DNA [37]. It is one of the key mechanisms for the regulation of gene 

expression, genetic imprinting, X chromosome inactivation, embryogenesis and aging [37, 

38]. Various cell functions can be affected by altered gene expression and DNA methylation 

[11]. 
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DNA is methylated by transferring a methyl group from S-adenosyl-L-methionine 

(SAM) to 5’ carbon atom of a cytosine, usually located in CpG dinucleotide, creating 5-

methylcytosine (5mC) (Figure 6) [37, 38]. Around 70-80% of all cytosine residues in CpG 

dinucleotides are methylated and are found in repetitive, non-transcribed DNA regions [11]. 

Methylated cytosine not in the context of CpG dinucleotides is found in embryonic stem cells 

and plants [39].  

 
Figure 6 DNA methylation. (A) DNA is methylated at 5’ position of cytosine residue by DNA 
methyltransferase (DNMT) transferring methyl group from a donor S-adenosyl-L-methionine (SAM). 
(B) DNA can be methylated either de novo or adding methyl groups at the complementary strand of 
hemi-methylated DNA. Adapted from [40]. 

Methyl groups are added by the DNA methyltransferases (DNMTs) [37]. The main 

DNMT is DNMT1, which is expressed at high levels and maintains cytosine methylation in 

the cell cycle [37]. DNMT1 maintains methylation by using hemi-methylated DNA as a 

template [38]. DNMT3a and DNMT3b are responsible for de novo methylation during early 

development (Figure 6) [37, 38]. Unfortunately, 5-methylcytosine (5mC) can mutate, because 

of the spontaneous deamination, but these mutations are recognized by the repair machinery 

and repaired [37]. 

CpG islands 
CpG islands (CGIs) are defined as regions with high density of CpG dinucleotides, 

between 300 and 3000 bp long with greater than 50% GC content and observed/expected 

ratio of CpG to GpC greater than 0.6 [37, 41, 42]. Depending on the definition, there are 

around 50,000 CGIs in human genome [37]. Around 15% of the CpG sites are found in 
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islands, located in promoter regions (70% of them are promoters of protein-coding genes, 

usually housekeeping genes) [37, 43]. 

It is important not to forget the regions around CpG islands — the shores and the 

shelves — which can carry information no less important for gene regulation. For example, 

methylation of CpG shores is associated with reduced gene expression in highly conserved 

tissue-specific manner [44]. It is known that shore and shelve regions are more variable in 

different cancers, such as colon cancer [37, 44]. 

CpG islands in intergenic regions are usually methylated in normal cells, but the 

variation in methylation patterns is most significant in different tissues [43]. Intergenic 

regions contain transposable (such as LINE) and viral elements (such as HERVs) that are 

largely inactivated by bulk methylation in human genome [45]. This is done in order to 

repress potentially dangerous transcription of this genetic material. 

DNA methylation and gene expression 
DNA methylation may affect gene regulation by several different possible 

mechanisms. Firstly, 5mCs in CpG islands can physically block the access for transcription 

factors (TFs), which results in a suppressed initiation of gene expression. Secondly, 

methylated regions can be recognized by various proteins, containing methyl-CpG binding 

domains (MBDs), such as Methyl-CpG Binding Protein 2 (MeCP2), Methyl-CpG Binding 

Domain Protein 1 (MBD1), MBD2, MBD3, and MBD4 [37, 46, 47]. Although it is important 

to note that methylated sequences can be recognized and bound by proteins without MBDs, 

for instance, zinc-finger domain proteins. [47]. These proteins help to recruit other proteins to 

the site of methylation, which, for example, can lead to gene suppression, mediated by 

histone deacetylases (HDACs) or Polycomb proteins [37, 46, 47]. 

Particularly, gene promoter/TSS region methylation is being associated with gene 

expression regulation. The classical relationship between promoter DNA methylation and 

gene expression is gene silencing due to DNA methylation [48]. Unmethylated promoter 

regions can attract transcription factors and initiate gene transcription, while methylation of 

these regions silences the transcription (Figure 7) [46]. This DNA methylation-gene 

expression relationship is well-studied in promoters with CpG islands at their TSSs, but DNA 

methylation can also occur in non-CGI promoters [46]. Unfortunately, details on this 

methylation pattern are not known yet [46]. 
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Figure 7 DNA methylation is one of the mechanisms that regulates gene expression. (A) 
Transcription factors can bind gene promoter region with unmethylated CpG and initiate gene 
expression. (B) When CpGs in promoter are methylated, transcription factors are unable to bind, 
which results in gene silencing [49]. 

CpG-rich promoters are typically unmethylated in normal cells, which means that 

they are active and marked with active histone modifications, such as trimethylation of lysine 

4 on histone H3 (H3K4me3) [46, 50]. Relationship between DNA methylation, histone marks 

and micro RNA (miRNA) is known as epigenetic crosstalk, which is an important 

mechanism for gene regulation [43]. Genome-wide epigenetic profiling shows that highly 

methylated promoter regions have low levels of H3K4me3 active mark and H3K27ac in 

highly methylated distal regulatory regions [50]. It is known that H3K4me3 prevents DNMTs 

from binding and therefore prevents methylation, while H3K36me3 repressive modification 

stimulates DNMT3a activity [43]. 

Methylation of H3K27 and H3K9 and ubiquitination of histone H2A play an 

important role in gene suppression by compacting the chromatin. These reactions are 

mediated by Polycomb repressive complexes (PRCs) — PRC1 and PRC2 [51]. PRC2 di- or 

trimethylates Lys 27 of the H3 histone through complex’s subunits EZH1 and EZH2 with 

enzymatic properties, PRC1 uses the ubiquitin ligases RING1A and RING1B to 

monoubiquitylate Lys 119 of the H2A histone [51, 52]. PRC2, in particular its product 

H3K27me3, is shown to have a dependence with DNA methylation. PRC2 and DNA 

methylation shares a role of maintaining gene repression. DNA methylation is believed to 

attenuate PRC2 binding, while the lack of DNA methylation attracts and guides the complex, 

creating a negatively correlated relationship between two epigenetic mechanisms [52]. 

Furthermore, disturbance in these epigenetic mechanisms has an impact for different types of 

cancer [53]. It has been shown that genes with CGI promoters already silenced by PRC have 
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higher chances to become methylated in cancer [46]. One specific PRC, known as PRC4, has 

been observed uniquely in cancer or stem cells (adult and embryonic) and proposed to be a 

part of oxidative damage response in cancer leading to suppression of gene expression [54]. 

The classical understanding is that DNA methylation of promoter regions always 

leads to gene expression downregulation, but recently more studies argue with this paradigm. 

Interestingly, in some research projects, mostly related to cell differentiation, it was shown 

that certain genes with completely unmethylated CGI promoter regions are not able to 

produce fully functional transcripts, because RNA polymerase II cannot be recruited [48] or 

some TFs (with and without MBD) actually prefer sequences with methylated CpG [47, 55]. 

Although there are chances of false-positive results and gene regulation patterns in stem cells 

are known to be different than in differentiated cells. In case of TFs which bind methylated 

sequences, there is just a small number of such proteins recognized up to now [56]. On the 

other hand, ability of DNA methylation to silence gene expression, simply, might depend on 

a density of DNA methylation marks in the promoter region. Low density can be insufficient 

enough to suppress the expression, so methylated cytosine marks act more like a “traffic 

light” rather than a firewall [57, 58]. Furthermore, promoters with low CpG content (and thus 

most likely without CpG islands) are often methylated, but it was noted that transcription 

might remain to be active [57, 58]. 

Relationship and the causality between promoter DNA hypermethylation and 

upregulation of gene expression is still very unclear. Research projects usually show some 

correlation between promoter hypermethylation and increased gene expression, but in most 

cases the focus is put on the classical regulation pattern, since it is the most common and 

significant in many studies. However, scientists are motivated to re-evaluate and expand the 

picture of a classical regulation pattern [59]. Methylation of TF binding sites that leads to the 

prevention of TF binding cannot be considered as a universal mechanism of transcription 

regulation [58]. 

DNA methylation can also occur in gene bodies, which are poor in CpGs [46]. It is 

believed that heavily methylated gene bodies have increased expression in dividing cells, 

while in slowly or non-dividing (for example, brain cells) cells such relationship between 

expression and methylation is opposite [43, 55]. Others believe that gene body methylation 

may have a role in gene splicing [46]. The exact impact of DNA methylation in gene body is 

still unclear. 

Methylation patterns of distant regulatory elements, such as enhancers, are more 

tissue-specific, and also altered in cancer tissues, compared with normal [60]. Enhancers have 
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a strong connection with promoters and their methylation highly correlates with gene 

expression in cancer cells and can even predict the changes in the expression profiles of 

cancer genes [60]. However, it is challenging to associate enhancer methylation with an 

expression of a particular gene. 

Even though many studies have been conducted on DNA methylation and gene 

expression, relationships between the two processes are highly complex and not so 

straightforward. 

1.2.2. DNA methylation changes in cancer 
Cancer is more than a genetic disease, and epigenetic modifications, such as DNA 

methylation, get more and more attention. Epigenetic mechanisms (DNA methylation 

together with histone modifications, non-coding RNAs and nucleosome positioning) is an 

additional layer of regulation of gene expression in carcinogenesis. Altered DNA methylation 

can increase the risk to develop cancer, drive it or contribute to its progress. In general, global 

DNA hypomethylation and loci-specific hypermethylation is an epigenetic hallmark for all 

human cancers [59, 61]. 

Promoters of tumor suppressor genes (TSGs) are often the target for DNA 

hypermethylation in cancer [50]. Usually promoter and the region around are unmethylated in 

normal cell, while gene body together with intergenic region are known to be methylated. On 

the other hand, in a cancer cell, promoter is hypermethylated to suppress the expression of 

TSG, while gene bodies are hypomethylated (Figure 8). 

 
Figure 8 DNA methylation in normal and cancer cells. (A) In a normal cell, when gene 
transcription is active, methylation (red bubbles) occurs in gene body and intergenic region, while the 
shore of the CpG island and the promoter are unmethylated. (B) In a cancer cell, when gene 
transcription is suppressed, the shore and the promoter are methylated, while gene body and 
intergenic regions are left unmethylated. Adapted from [38]. 
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This is one of the examples how DNA methylation can affect cancer development 

(Figure 9B). p16INK4a is a TSG gene with one of the most commonly hypermethylated CGIs 

in a large number of human cancers [62]. p16INK4a encodes a cyclin-dependent kinase 

inhibitor, involved in cell cycle processes, which is a common feature for TSGs [63]. p16INK4a 

gene is overexpressed in different tumors in order to downregulate the expression of genes, 

causing cell proliferation by inhibiting the S phase [63]. Inhibition of cell proliferation is an 

opposite of what cancer cells aim to do, which leads to a methylation strategy. 

 
Figure 9 Three examples of how changes in methylation can affect cancer development. (A) 
Genomic hypomethylation of regulatory regions of oncogenes leads to their activation and increased 
gene expression. As well as loss of imprinting, genomic instability and reactivation of repetitive 
elements. (B) Promoter hypermethylation often leads to downregulation of TSG transcription. (C) 
Methylated cytosine residues are unstable and can be spontaneously converted to thymine. This can 
lead to the inactivation of TSGs. TSG – tumor suppressor gene. Adapted from [49]. 

Another important example of DNA methylation in cancer is hypomethylation of 

oncogenes (Figure 9A) [64]. Oncogenes encode proteins of oncogenic pathways, involved in 

cell proliferation, angiogenesis, immortality and metastasis. Other oncogenes encode 

inhibitors of TSGs and apoptosis [65]. Proliferation and survival processes are necessary for 

human organism, but just to ensure tissue homeostasis and development [65]. Regulatory 

sequences and promoters of oncogenes in normal cells are hypermethylated to prevent 
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unnecessary transcription. In cancer, expression of oncogenes is activated by removing DNA 

methylation marks [64]. This way, cancer cells avoid apoptosis and are able to divide 

indefinitely, grow new blood vessels and, eventually, invade adjacent tissues. 

Hypomethylation in cancer is also used to activate transposons, such as SINE and 

LINE (Figure 9A) [66]. In healthy cells, repetitive and transposable elements are heavily 

methylated and located in heterochromatin, but in tumor cells genome integrity is disturbed 

and these elements are able to induce additional mutations, for example, by frequent 

insertions into exons, introns, causing compromised transcription or generating antisense 

transcripts [64, 66]. 

Inactivating mutations is the third example of DNA methylation affecting cancer 

development (Figure 9C). As mentioned in previous section, methylated cytosine can 

spontaneously mutate to thymine by deamination [37]. If a mutation is not repaired by repair 

machinery, it can cause the termination of gene transcription, resulting in a truncated, 

inactive protein. Therefore, cell functions can be disturbed, contributing to the formation of 

cancer. 

Since aberrant DNA methylation is a hallmark for various cancer types, it is one of 

the most studied epigenetic change and, lately, genome-wide DNA methylation studies can 

be an opportunity to identify unexplored epigenetic changes [38, 59]. Using constantly 

improving high throughput methylation profiling technologies scientists are producing 

methylation maps (known as methylomes) for different cancers in order to determine how 

DNA methylation distributes throughout the whole genome [38, 48]. Methylomes can help to 

uniquify each type of cancer because methylation changes are usually cancer-specific, which 

could be helpful for early diagnosis or prognostics. Unfortunately, some cancer types, 

including prostate cancer, are exceptionally heterogenic, which complicates studies intending 

to generate a unique epigenetic landscape for PCa [7]. 

Example of a methylome for 10 different types of cancer can be seen in figure 10. 
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Figure 10 Example of DNA methylation map (methylome) for ten cancer cohorts from the 
Cancer Genome Atlas (TCGA). There is a distinguishable difference in methylation profiles in 
different cancer types. Homogeneity within the group is relatively high. Methylation patterns in 
different tissue of origin are distinct. Highest overall methylation can be observed in colorectal 
cancer, while lowest – in kidney cancer. 27k Illumina data represents 24,980 CpG sites tested in 2,224 
tumor samples. CpG sites, associated with single-nucleotide polymorphisms (SNPs) and located on 
chromosome X and Y, were removed. Beta values vary from -0.5 (dark blue) to 0.5 (yellow). Tumor 
types: OV – ovary, UCEC – uterus, BRCA – breast, LUAD and LUSC – lung, READ and COAD – 
colorectal, GBM – brain, KIRC – kidney, AML. No prostate cancer data. Some of the gene names are 
indicated on the right. Adapted from [38]. 

DNA methylation in prostate cancer 
DNA methylation changes can be cancer-specific, but prostate cancer has variable 

collection of genetic and epigenetic changes across different PCa cases. Scientists are 

working to find PCa-specific variations in DNA methylation patterns in order to produce a 

better picture of molecular changes in PCa. 

CpG islands are more likely to be hypermethylated in prostate cancer and silencing of 

the genes because of the promoter hypermethylation is more common than by DNA mutation 

[67]. In a study by Kirby and colleagues, more than a half of all significant CpG 

dinucleotides were methylated in prostate cancer samples [34]. More than 100 genes, by far, 

have been shown to be inactivated by DNA methylation in promoter regions in PCa [68]. It is 

suggested that aberrant methylation occurs as a result of dysregulation of DNMT3A2 and 
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DNMT3B DNA methyltransferases [34, 69]. Methylation in PCa usually leads to promoter 

inactivation and silencing of the genes, such as DNA repair or TSGs [11, 67]. Many 

pathways, such as DNA damage repair, hormonal responses, cell invasion and cell cycle 

control, are being disrupted, because of aberrant DNA methylation [11]. Such changes in 

normal prostate epithelium may result in cancer formation, since DNA methylation occurs in 

early stages of prostate carcinogenesis (Figure 11) [11, 67]. 

 
Figure 11 Epigenetic changes in prostate cell that contributes to cancer formation Various 
genetic factors, aging and probably diet all together with epigenetic changes can trigger cancer 
formation from normal prostate epithelium. Prostatic intraepithelial neoplasia (PIN) is pre-cancerous 
tissue, which later changes into prostatic adenocarcinoma after, for example, methylation of GSTP1 
and MGMT. If there are more genetic and epigenetic changes in cells, prostate tumor can progress into 
an advanced form of cancer (metastatic and androgen-independent). For such change methylation of 
APC, E-cadherin or AR might be responsible, but many changes leading to cancer formation are still 
unknown. Adapted from [11]. 

GSTP1 is a gene, well known to be hypermethylated in prostate cancer. Gene is 

responsible for protection of prostate cells from carcinogenesis and DNA adducts [67]. In 

about 90% of PCa cases the absence of GSTP1 is caused by DNA hypermethylation [12, 68]. 

Its methylation has been found already in PIN (over 50% of precursor lesions), which 
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describes GSTP1 as a biomarker for early diagnosis [11, 12, 68]. Normally, GSTP1 levels 

elevate in PIA because of the increased oxidative stress, but after methylation response to 

stress is suppressed in PIA and PIN [11, 70]. 

As described in previous paragraphs, specific DNA methylation patterns in pre-

malignant prostate tissue can be associated with deletions, tandem duplications or 

interchromosomal translocations following in cancerous tissue [15]. Highly methylated CpG 

sites are more susceptible for somatic base mutations during PCa development [15]. 

It also has been shown that DNA methylation is important for the development of 

aggressive prostate cancer [15]. For example, alterations in DNA methylation are more 

frequent than mutations or copy number changes in CRPC [71]. With disease progression 

global DNA hypomethylation increases, and overall 5mC content is lower in metastases. 

Furthermore, AR silencing by DNA hypermethylation is shown to be linked with progression 

to CRPC [68]. 

A big part of the research projects that investigate DNA methylation in prostate 

cancer focus on individual genes, their functions or even individual methylation sites [72], 

but genome-wide DNA methylation techniques are able to investigate many genes 

simultaneously. Such studies could help to cluster PCa into several groups, even though PCa 

is very different in each case. For instance, scientists from TCGA research network analyzed 

333 prostate carcinomas and managed to distinguish 7 subtypes of PCa [73], based on 

oncogenic drivers, such as fusions and mutations (Figure 12). Later they noted that DNA 

methylation changes in cancer samples are diverse, compared with normal samples. Most 

importantly, independent clustering by methylation changes, showed distinct and matching 

methylation patterns with several subtypes, such as ERG-positive tumors [73]. 

DNA methylation patterns are also being associated with various clinical parameters 

for diagnostic and prognostic reasons. For PCa Gleason score is an important example, since 

it is still the best predictor of aggressiveness [74]. Geybels et al. created an epigenetic 

signature of Gleason score, consisting of 52 differentially methylated CpG sites. The group 

used TCGA methylation data and proposed their epigenetic signature to improve the risk 

prediction for PCa (in particular Gleason score 7 tumors) outcomes [74]. 
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Figure 12 An attempt to group prostate cancer into several subtypes, according to molecular 
changes, and connect such subtypes to alterations in DNA methylation patterns. Even though 
PCa is very heterogenic, scientists were able to distinguish 7 subtypes, based on mutations or 
chromosome fusions (subtypes are indicated above the heatmap). They also showed that DNA 
methylation pattern in PCa is altered compared to normal prostate tissue (left). Independent clustering 
of methylation values showed some connections to distinguished subtypes, for example, ERG-positive 
tumors connects to a nearly unique methylation pattern (cluster 1). Adapted from [73]. 

De-methylating drugs 
One of the possible therapies to encounter harmful DNA hypermethylation are drugs 

that remove DNA methylation marks. For example, DNMT inhibitor (DNMTi) 5-azacytidine 

(5-Aza-CR), which has already been approved as an epigenetic chemotherapeutic agent. 5-

Aza-CR replaces cytosine in DNA and traps DNA methyltransferases, resulting in their 

degradation and loss of DNA methylation [68]. Unfortunately, de-repression of genes is not 

conclusive in different cases [50]. Blattler et al. in their research found that loss of DNA 

methylation after the treatment with de-methylating drugs does not result in an increase in 

active histone marks (such as H3K4me3 and H3K27ac) at promoters [50]. This can be one of 

the factors, why full recovery of gene expression is not achieved. 

1.2.3. Current methods for detection and analysis of DNA methylation 
Methods, that are used to detect DNA methylation, can be grouped into three 

categories, based on the main principle of the method: immunoprecipitation of methylated 
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cytosine with methyl-binding proteins or antibodies, cleavage of genomic DNA by 

methylation-sensitive restriction enzymes and distinction of methylated and unmethylated 

cytosine after conversion by bisulphite [39, 41, 75]. Methylation arrays and sequencing-based 

technologies, together called high-throughput technologies, provide genome-scale DNA 

methylation maps, which give a huge amount of information on aberrant methylation patterns 

in various diseases, including cancer [38]. One of the most popular and widely used DNA 

methylation detection techniques are DNA methylation arrays Illumina Infinium 

HumanMethylation450 BeadChip (HM450) and Infinium HumanMethylation27 BeadChip 

(27k). Methods, such as MeDIP-ChIP, MeDIP-Seq, bisulphite sequencing and many others 

are also widely used. Which method will be chosen depends on many aspects, such as cost, 

the amount and quality of the DNA sample, required sensitivity, robustness of the method 

and others [39]. 

Bisulphite sequencing is a method capable to detect differentially-methylated regions 

on a whole-genome scale. It is based on a sequencing of DNA sequence after bisulphite 

treatment. Unmethylated cytosine residues are converted into uracil by deamination, while 

methylated cytosine remains untouched and is recognized as cytosine during sequencing [39]. 

This method is good for detection of DNA methylation in repetitive sequences and 

assignment of methylation state to the specific alleles [76]. Unfortunately, bisulphite 

sequencing is expensive and sequencing data is challenging to process because of the 

reduction and complexity of genome sequence [39]. 

Therefore, DNA methylation microarrays can be a way to profile DNA methylation 

across human genome regions. This technique is based on hybridization of bisulphite-

converted DNA to the microarrays. For example, Infinium chemistry does not require 

methylated DNA to be captured by immunoprecipitation, which provides access to most 

target sites [41]. Such assays focus on specific regions in genome where DNA methylation 

occurs most frequently and has impact on gene expression. Regions include gene promoter 

regions, 3’ untranslated regions (3’UTRs) and enhancer regulatory elements [39]. The fact 

that regions of less importance can be excluded and there is a possibility to examine large 

number of samples simultaneously, give an advantage of saving money and time, while still 

providing biologically significant information about gene regulation [39, 76]. 

Infinium methylation arrays contain beads that have target-specific probes attached to 

them. These probes are designed to examine individual CpG sites [41]. Quantitative 

genotyping of bisulphite-converted DNA is a measure for DNA methylation [41]. 
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Infinium HumanMethylation27 BeadChip (27k) contains probes targeting 27,578 

CpG sites [75]. 27k technology focuses mainly on proximal promoter regions across human 

genome. Targeted sites are located 1 kb upstream and 500 bp downstream of TSS of 14,475 

genes with an average two probes for one gene [75]. 

Illumina Infinium HumanMethylation450 BeadChip (HM450), on the other hand, is a 

more recent method that targets not only promoter regions, but also many other sites, 

important for gene regulation. HM450 contains 485,577 probes targeting 21,231 (99%) of 

RefSeq genes, 26,658 (96%) of CpG island regions, 26,249 (92%) CpG island shores, 24,018 

(86%) CpG island shelves, 62,600 Hidden Markov Model-defined (HMM) CpG islands, 

11,754 FANTOM 4 promoters, 16,232 DMRs, 80,538 informatically-predicted enhancers 

and other biologically significant sites [41]. Targeted genes have multiple (average of 17.2) 

probes associated with them and one probe might target a region that belongs to several 

content categories [41]. 

Illumina Infinium HM450 array correlates with 27k showing an R2 of >0.95, since 

over 94% of regions present on 27k are included in the HM450 [41]. 
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2. DATA AND METHODS 

2.1. Research project design and workflow 
As a preparation for the project, available literature was studied in order to find 

available DNA methylation datasets and review whether there are similar research projects 

published (Figure 13). PubMed search engine, maintained by the United States National 

Library of Medicine (NLM) at the National Institutes of Health (NIH), was used [77]. 

Keywords “DNA methylation in prostate cancer”, “computational analysis of prostate 

cancer” were used in the searches. 

The final step in the foundation for the main analysis was finding three DNA 

methylation datasets. Data analysis then was divided into three main parts (Figure 13). The 

outcome from each part was used in the following parts, creating a workflow that leads to the 

conclusions of this research project. 

 
Figure 13 Workflow of the research project. Analysis is divided into three main parts. In 
preparation for the project, analysis of the literature and selection of DNA methylation datasets were 
done. 
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PART I of the project focused on the analysis of three DNA methylation datasets: 

Absher, Kirby and TCGA. First of all, data had to be processed and prepared for further 

analysis. Datasets were connected with each other by finding overlapping probes between all 

three. Information on these probes was filtered and statistical analysis, comparing DNA 

methylation in cancer and normal prostate tissue samples, was performed for each dataset. 

After that, DNA methylation data was combined with gene expression data in order to find 

the connections between them. In this study the connection between probes and gene 

expression was made based on the reference for the Illumina probes. Genes that have 

hypermethylated or hypomethylated probes associated with them, were divided into groups, 

according to DNA methylation and gene expression connection. Four such relationship 

patterns (gene regulation patterns) were distinguished: ‘Gain of methylation — upregulated 

expression’, ‘Gain of methylation — downregulated expression’, ‘Loss of methylation — 

upregulated expression’ and ‘Loss of methylation — downregulated expression’. Numbers of 

genes, following the same patterns in all three DNA methylation datasets, were found. The 

latter focus was put on two patterns with gain of methylation, followed by upregulated or 

downregulated expression. Sets of genes that follow these patterns were investigated using 

gene set enrichment analysis (GSEA). 

The goal of the PART II of the project was to compare DNA methylation and gene 

expression values in same samples (sample-to-sample comparison) and uncover whether the 

overcompensation of gene expression occurs for genes, following ‘Gain of methylation — 

upregulated expression’ pattern. TCGA DNA methylation and gene expression dataset 

(TCGA M+E) was used for this analysis. Probes with methylation gain and upregulated 

expression from PART I analysis were used to filter the data in TCGA dataset. Samples were 

sorted according to the methylation values and expression values then were matched for each 

sample. 

Going further, the main focus of the PART III has been put on ‘Gain of methylation 

— upregulated expression’ regulation pattern and later comparing the findings with classical 

and well established ‘Gain of methylation — upregulated expression’ regulation pattern. 

Significantly differentially methylated and expressed genes were found following each 

pattern. Those lists of genes later were narrowed down by keeping the genes that are 

associated with probes that have only the gain of methylation. These genes were then 

analyzed and compared using GSEA. UCSC genome browser (http://genome.ucsc.edu) was 

used to visualize the positions of the probes, associated with top 10 genes with most 

significant methylation changes in each pattern [78]. Besides the visualization of probes, 
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distances between transcription start sites (TSSs) and methylated positions were calculated 

and the overlap with CpG islands was evaluated. UCSC Table Browser 

(http://genome.ucsc.edu/cgi-bin/hgTables) was used to download TSSs for all the genes in 

both patterns [79]. In addition, visualization of TSSs was done using a DataBase of 

Transcriptional Start Sites (DBTSS) [80, 81]. 

2.2. Data selection 

2.2.1. DNA methylation data 
One of the main recourses of publicly available genome-wide methylation data along 

with gene expression data in various types of cancer is the Cancer Genome Atlas (TCGA). 

This recourse was considered directly, because it contains more than 500 PCa samples 

together with 50 benign tissue samples, which makes the dataset very promising [73]. TCGA 

cohort originated from a research project, published in 2016, that analyzed 333 primary 

prostate carcinomas [73]. Data on more PCa samples to a TCGA Network repository was 

added later. 

To find and download other DNA methylation in PCa datasets the Gene Expression 

Omnibus (GEO) database was used [82, 83]. GEO is an international repository, curated by a 

division of the National Library of Medicine of the National Center for Biotechnology 

Information (NCBI), that archives and distributes high-throughput functional genomic data, 

such as microarray and next-generation sequencing (NGS) data [82]. Keyword phrase 

“prostate cancer methylation” was used in searches. Potential datasets were selected to 

narrow down the possibilities, and later datasets for the project were chosen based on the 

number of samples (normal tissue and cancer), availability and the method data was produced 

with. 

2.2.2. Gene expression data 
As mentioned before, gene expression data in PCa and normal tissue samples from 

TCGA was used, since the data was generated from the same samples as DNA methylation 

data. This TCGA gene expression data was used in PART II (Figure 13) of the project and 

distinct as TCGA gene expression dataset. In order to better distinguish different TCGA 

datasets, TCGA DNA methylation and gene expression on the same samples dataset has been 

referred as TCGA M+E dataset. 

For other parts of the research gene expression in PCa and normal tissue samples 

combined data from five-study-cohort analysis (as referred in [84]) was used. Dataset consists 
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of five distinct sets of gene expression records: Bertilsson (116 PCa, 40 normal, 14,149 

unique genes, Illumina Human HT-12 WG-DASL microarray), Chen (65 PCa, 71 normal, 

12,497 unique genes, Affymetrix Human Genome U133A microarray), Taylor (131 PCa, 29 

normal, 18,294 unique genes, Affymetrix Human Exon 1.0 ST microarray), TCGA (497 PCa, 

52 normal, 20,504 unique genes, Illumina HiSeq2000/Genome Analyzer IIX) and Prensner 

(78 PCa, 38 normal, 23,712 unique genes, Illumina Genome Analyzer) [84]. 

2.3. Programming languages 

2.3.1. Python 
Python programming language was used throughout the research project. Particularly, 

an application for Python, called IPython (Interactive Python, http://ipython.org), was the 

main tool for data processing and analysis [85]. Python is a high-level language and is 

executed by an interpreter, which makes the language numerically not that efficient and 

slower than compiled, lower-level languages, such as C, C++ or Fortran [85, 86]. However, 

compiled languages are more complicated to work with and therefore Python is being used 

by many less-skilled bioinformaticians and scientists. Even if Python requires more time to 

run the code, it saves the time of the scientists, because the language is easier to learn and 

use. Python and other high-level languages are also known as scripting languages because 

they allow to combine modular tools in a script [86, 87]. 

Other advantages of Python programming language are free availability, active 

developer community and its many scientific libraries [86, 87]. Free availability is an obvious 

advantage, which creates a wide circle of people that choose Python as their programming 

language. This leads to an active community that is able to provide a fast, but informative 

answers to risen questions while working on a project. Scientific libraries allow to extend the 

capability of Python and solve more advanced tasks [86]. For example, write graphical 

applications or work with a specific scientific data [85]. 

IPython 
IPython is an interactive shell that allows an easy editing, parallel computing, 

recording of a work session and other features. Code written for IPython must be a valid 

Python code, but IPython supports projects with their own syntax [85]. Such projects includes 

Sage, the Pymerase project and others [85]. One of the most significant advantages of 

IPython compared to basic Python is that it stores inputs (In) and outputs (Out) of a session 

and they are available to use throughout a work session [85]. Furthermore, working 
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interactively allows to directly manipulate objects and code [85]. IPython is also a very good 

environment for learning, since it traces back mistakes in a code and provides information 

about such errors (and even suggests how to fix them) better than many other coding 

environments [85]. 

NumPy 
NumPy is a Python library, which is essential for matrix-related calculations and 

contains some of the statistical tools [86]. NumPy array (also known as ndarray or 

N-dimensional array) is a standard numerical data representation – “a multidimensional, 

uniform collection of elements” [88]. An array can be characterized by the type of elements 

and shape (MxN) [88]. 

Arrays is a useful way to manage big datasets, such as methylation or gene expression 

data. Elements in an array are grouped into vectors by a process, called vectorization-Iets, 

which allows to perform for loops more efficiently and faster than applying the loop for 

each element [88]. The output of operations, given in an array, is also more understandable. 

When two arrays are used, element-wise subtraction, for example, can be easily performed. 

In case of different array shape with a common shape dimension, NumPy can adjust one of 

the array to perform an operation — the operation is broadcast [88]. 

2.3.2. R 
R programming language was used for statistical tests throughout the project 

(https://www.r-project.org) [89]. R is a freely available programming language and software 

environment created by Ross Ihaka and Robert Gentleman with first version released in 1995 

[90]. R language was created based on another programming language for statistical analysis, 

called S [91]. R allows looping, branching and usage of functions, because the core of the 

language is an interpreted computer language [92]. Statistical procedures include parametric 

and nonparametric tests, clustering, time series analysis, nonlinear regression models, linear 

models and others [92]. 

The software has many libraries filled with different statistical packages that can 

solve different tasks as mentioned before [93]. The basic packages that provide main 

functions of R are base, compiler, datasets, grDevices, graphics, grid, methods, parallel, 

splines, stats, stats4, tcltk, tools and utils [92, 93]. Other 15 packages can be put in 

recommended packages group. These packages are: boot, class, cluster, cadetools, foreign, 

KernSmooth, lattice, MASS, Matrix, mgcv, nlme, nnet, rpart, spatial and survival [92, 93]. 

The last group of packages is contributed packages. As the name describes, contributed 
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packages are created by contributors, since R code is open to every user [93]. Packages from 

various contributors expand the capabilities and functions of R. For example, Bioconductor 

has almost 1500 packages for bioinformatics (DNA microarray, SNP, sequencing and other 

data) [94, 95]. 

Limma is a R Bioconductor package, created to analyze gene expression microarray 

data, for example, to assess differential expression [96]. The goal of Limma is to fit a linear 

model to the expression data for each gene (lmFit()) [96]. In this project cancer samples 

were compared with normal samples, so the contrast step was performed in order to compare 

the coefficients using contrasts.fit(). After applying the linear model, Limma 

summarizes the results, performs hypothesis tests and adjusts the p-value for multiple testing, 

using decideTests() and topTable() [96]. 

2.4. Gene set enrichment analysis 
Gene Set Enrichment Analysis (GSEA) is an analytical method for gene expression 

data interpretation based on evaluation of microarray data at the gene set level [97]. GSEA 

aim is to identify genes that are overrepresented and can be associated with a particular 

phenotype. Gene sets are defined using published information about biochemical pathways, 

co-expression and other prior biological knowledge [97]. In GSEA method, enrichment score 

(ES) is first calculated to reflect overrepresentation degree of the gene set in the entire ranked 

list (step 1). In step 2, statistical significance of enrichment score is estimated using empirical 

phenotype-based permutation test. Finally, for step 3, adjustment for multiple hypothesis 

testing is done, when the whole library of gene sets is evaluated. The outcome of this step is a 

normalized enrichment score (NES) and each of such score has a corresponding false 

discovery rate (FDR) [97]. 

There are many tools to perform GSEA and one of the web-based tools is Enrichr, 

first introduced in 2013 by Ma’ayan laboratory. Enrichr uses three methodologies for 

computation of enrichment: Fisher exact test (resulting in p-value), correction to the Fisher 

exact test (resulting in a z-score) and a combination of p-value and z-score, resulting in a 

combined score c [98]. Enrichr is able to visualize the GSEA results by clustering into a 

clustergram or a grid as well as creating a bar graph or a network, which makes the tool easy 

and enjoyable to use [98, 99]. Grids, created for each category, have an index of significance 

associated with them [98]. 

A tool provides enrichment scores for different categories with many libraries. There 

are 35 gene-set libraries in total. Transcription category includes ChEA (ChIP enrichment 
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analysis), Epigenomics Roadmap HM ChIP-seq, ENCODE TF ChIP-seq and Histone 

Modifications, Transcription factor PPIs (protein-protein interactions) and others. Pathways 

category contains KEGG, WikiPathways, Reactome, Kinase Perturbations from GEO and 

others. Enrichr also analyses ontologies, which includes GO Cellular Component, GO 

Biological Process, GO Molecular Function as well as Jensen tissues, compartments and 

diseases and a few others. There are also libraries that contain differentially expressed genes 

after disease, pathogen or drug perturbation, such as OMIM disease, Virus MINT, MSigDB 

Oncogenic Signatures and others [98, 99]. This category also includes Achilles fitness library, 

which represents context-specific genetic dependencies, by cataloging genes that affect the 

survival of certain cell lines. Such genes are identified, using RNAi knockout system and 

later CRISPR-Cas9 [100]. Differential expression is also analyzed in different cell types and 

Enrich calculates enrichment scores using Human Gene Atlas, Cancer Cell Line 

Encyclopedia, Tissue Protein Expression and other libraries. One more category, called 

miscellaneous, consists of Chromosome Location, HomoloGene, Pfam InterPro Domains and 

a few other libraries. Some of these libraries are derived from other tools, but some are 

available only in Enrichr [98, 99]. 

In a present project GSEA using Enrichr web-tool was applied two times: first time in 

PART I for overlapping genes, following each of two regulation patterns (‘Gain of 

methylation — upregulated expression’ and ‘Gain of methylation — downregulated 

expression’), and second time in PART III for genes, following only those two patterns. 

2.5. Genome browser 
UCSC (the University of California, Santa Cruz) Genome browser is a database and 

genome annotation display tool, first released in 2001 (http://genome.ucsc.edu) [78]. This 

web-based tool allows to visualize various tracks with specific annotations, such as gene 

sequences (for example, GENCODE v24 and NCBI RefSeq), CpG islands, GC percent, 

integrated regulation from ENCODE, DNase I hypersensitivity clusters from ENCODE, 

RepeatMasker, gene expression information (such as Genotype-Tissue Expression (GTEx)), 

single nucleotide polymorphisms (SNPs) and others [78, 101]. The browser also has a 

function to upload custom tracks (for example, using BED format), which was used in this 

project to display differentially methylated and non-differentially methylated positions for 

top 10 most significantly hypermethylated genes in each of two (‘Gain of methylation — 

upregulated expression’ and ‘Gain of methylation — downregulated expression’) regulation 

patterns. 
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UCSC Table browser is a tool that allows to download Genome browser graphical-

based data as a text [79]. The option is very beneficial when data is needed to perform 

additional calculations, which was used in this project to calculate the distances between 

TSSs and methylated positions. 

2.6. DBTSS 
DataBase of Transcriptional Start Sites (DBTSS) is a database, containing 

information about exact positions of TSSs in genomes of various human tissues and/or cell 

lines and other species (https://dbtss.hgc.jp) [80, 81]. TSS positions vary in different tissues, 

which plays a role in gene transcription regulation. DBTSS was used to visualize TSS for top 

10 most significantly hypermethylated genes in each of two regulation patterns: ‘Gain of 

methylation — upregulated expression’ and ‘Gain of methylation — downregulated 

expression’. 

The data in DBTSS is obtained using a technique developed by the authors of the 

database — TSS-seq. DBTSS contains 491 million TSS tag sequences for 20 human adult 

and embryonic tissues and 26 lung cancer cell lines in addition to 7 other different cell lines. 

Database also integrates RNA-seq, BS-seq, ChIP-seq data of histone modifications and the 

binding of RNA polymerase II, as well as binding of several TFs in cell lines and single 

nucleotide variation (SNV) data [81]. 
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3. RESULTS 

3.1. Datasets of DNA methylation in prostate cancer 
After analyzing literature and databases, 17 possible DNA methylation in prostate 

cancer datasets were chosen for further selection (Table 1). 

Three datasets (numbers 1, 2 and 11 in Table 1) were selected for this research project 

[34, 69, 73]. These datasets contain DNA methylation data on more than a hundred samples 

each, data is publicly available and collected using Illumina Infinium HumanMethylation450 

BeadChip (HM450) (datasets 1 and 2) or Infinium HumanMethylation27 BeadChip (27k) 

platforms (dataset 11). HM450 and 27k were chosen, because they share the part of the 

probes thus information from three datasets can be connected. 

Table 1 List of possible datasets. Information was collected by analyzing literature and databases. 
Datasets, used in the project, marked by *. 

Nr. Dataset 
Samples  

Platform Availability 
Cancer Benign 

1* 

The Cancer Genome 
Atlas (TCGA) 

The Cancer Genome 
Atlas Research 
Network, 2015 

503 50 

Illumina Infinium 
HumanMethylation450 

BeadChip array 
(HM450) 

TCGA Data 
Portal 
[73] 

2* Kirby MK et al., 
2017 73 63 Methylation HM450 GSE76938 

[34] 

3 Shiah Y et al., 2016 172 - Methylation HM450 GSE80685 
[102] 

4 Babikova EA and 
Generozov, 2015 12 12 Methylation HM450 GSE74013 

[103] 

5 

Internation Cancer 
Genome Consortium 

(ICGC) 
Bristow R et al., 2012 

102 - DNA methylation array 
ICGC Data 

Portal 
[104, 105] 

6 Ramalho-Carvalho J 
and Esteller M, 2017 25 5 DNA methylation array GSE52955 

[106] 

7 Kim SJ et al., 2010 12 12 
Infinium 

HumanMethylation27 
BeadChip (27k) 

GSE26319 
[107] 

8 Boutros PC, 2014 143 - Methylation HM450 GSE55479 
[108, 109] 

9 Hovens CM et al., 
2013 4 4 Methylation HM450 GSE47915 

[110] 

10 Kron K et al., 2009 20 - Agilent ChIP-on-ChIP 
methylation 

GSE15298 
[111] 

11* Absher DM et al., 
2010 95 86 Infinium 27k GSE26126 

[69] 



	36 

12 Jarrard D and Yang B 
et al., 2012 4 5 Human Encode 384K 

HG18 methylation array 
GSE38982 

[112] 

13 Börno ST et al., 2012 51 53 Methylation MeDIP-Seq GSE35342 
[113] 

14 
Aryee MJ and 

Yegnasubramanian S, 
2012 

8 4 Methylation HM450 GSE38240 
[114] 

15 
Aryee MJ and 

Yegnasubramanian S, 
2012 

18 21 

Agilent-014850 Whole 
Human Genome 

Microarray 4x44K 
G4112F 

GSE38241 
[114] 

16 Lin PC et al., 2012 13 7 Illumina HiSeq 2000 GSE41701 
[15] 

17 Goh LK and Sim HG, 
2012 87 24 

(BPH) 

Illumina GoldenGate 
Methylation Cancer Panel 

I 

GSE39603 
[115] 

 

Dataset number 1, shortly TCGA dataset, contains information about 503 PCa and 50 

benign tissue samples. What makes this dataset very informative is that DNA methylation 

analysis and gene expression data was collected on the same samples (497 PCa and 35 benign 

tissue) [73]. Frozen samples were evaluated by multiple pathologists to determine the ratio of 

tumor cells in a sample and detect if there is any significant RNA degradation [73]. 

Dataset number 2, shortly Kirby dataset, consists of 73 prostate cancer and 63 benign 

tissues. Samples were collected at Stanford University Medical Center between 1999 and 

2007 from patients undergoing radical prostatectomy. Each sample was evaluated by 

pathologists to determine the percentage of prostate cancer epithelial cells. DNA methylation 

data published by Kirby et al. [34]. 

Dataset number 11, shortly Absher dataset, consists of 95 primary prostate tumors and 

86 healthy prostate tissue samples [69]. Samples were collected at Stanford University 

Medical Center and flash-frozen and then evaluated by pathologists as usual to quantify 

cancerous cells in samples. Specimens with at least 90% of cancerous epithelium were used 

for DNA and RNA extraction. Samples with no tumor epithelium were labeled as normal 

[69]. 
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3.2. PART I: DNA methylation and gene expression patterns and their 
significance 

3.2.1. DNA methylation gain and loss in TCGA, Kirby and Absher DNA 
methylation datasets 
In order to investigate methylation patterns in prostate cancer, information about 

matching methylation probes in three datasets TCGA, Kirby and Absher was extracted. 

11,375 matching probes were found. 4,557 hypermethylated probes and 1,786 

hypomethylated probes in PCa, compared with normal tissue samples, are overlapping 

between three datasets. These overlapping probes are associated with 3,326 and 1,502 unique 

genes for DNA methylation gain and loss, respectively. In three datasets, number of probes 

correlates with the number of genes, associated with them (Figure 14). 

 
Figure 14 Number of probes (A) and number of genes (B) with methylation gain or loss in three 
DNA methylation dataset: Absher, Kirby and TCGA. Red indicates not overlapping probes (A) and 
genes (B), associated with probes, while yellow — overlapping. 
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In all three datasets there are more probes that gained methylation in PCa, compared 

with normal tissue, than probes with methylation loss (Figure 14). Although the number of 

probes and genes with methylation gain are similar, most methylation gain can be observed in 

Kirby dataset: 5,845 probes out of 11,375 (47,58%). These probes were associated with 4,205 

unique genes. Such genes, associated with top 5 most significantly hypermethylated probes, 

are RND2, SOSTDC1, TMLHE, MCF2 and SLC2A2. The TCGA dataset has the smallest 

number of hypermethylated probes (5,197). It is 45,69% of all probes and probes are 

associated with 3,765 genes. 5 most significantly hypermethylated probes in this dataset are 

associated with genes CYBA, SOSTDC1, FLT4, GSTP1 and TPM4. 

Even though Absher dataset lays in the middle according to the number of 

hypermethylated probes, but this dataset contains the smallest number of probes with 

methylation loss. It has 2,041 hypomethylated probes (17,94% of all probes), which are 

associated with 1,711 unique genes. Top 5 hypomethylated probes are associated with genes 

SCGB2A2, GPR160, URB, DARC and ZNF436. TCGA, on the other hand, has the largest 

number of probes with methylation loss: 3,328 probes (29,26% of all probes). They are 

associated with 2,749 unique genes, which is more than a thousand genes more, compared 

with Absher dataset. Top 5 genes with most significantly hypomethylated probes are DARC, 

ANAPC2, ATP4A, CFLAR and NLRP10.  

SOSTDC1 and FLT4 are among the genes, associated with top 5 most significantly 

hypermethylated positions in both Absher and Kirby datasets, while gene CYBA in Absher 

and TCGA. Considering genes, associated with top 5 most significantly hypomethylated 

probes, gene DARC reoccurs in all three datasets, while SCGB2A2 and GPR160 in Absher 

and Kirby and, finally, gene CFLAR in Kirby and TCGA datasets. 

The smallest number of non-differentially methylated probes has TCGA dataset: 

2,850 (25.05% of all probes). This dataset has the largest number of samples, which can 

affect the statistical significance of the results. 

The overlap, consisting of 4,557 hypermethylated probes, is a significant part of all 

hypermethylated probes in each dataset, as well as genes, associated with these probes. In 

TCGA overlapping probes make 87.69% of all 5,197 hypermethylated probes, while genes, 

associated with those probes are 88.34% of 3,765 unique genes. In Kirby dataset overlap is 

77.96% for probes and 79.10% for genes. In Absher dataset it is 84.20% for probes and 

84.87% for genes. Additionally, with the hypomethylated probes, 1,786 probes overlap 

makes 53.67% of all hypomethylated probes, while overlap of 1,502 unique genes is 54.64% 
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in TCGA dataset. In Kirby 77.96% is for probes and 78.56% for genes, while 87.51% for 

probes and 87.78% are in Absher dataset. 

3.2.2. DNA methylation and gene expression patterns in TCGA, Kirby and 

Absher datasets 

After combining DNA methylation data with gene expression data, it was found that 

1,058 genes are overlapping between three datasets for ‘Gain of methylation — upregulated 

expression’ DNA methylation and gene expression pattern, 1,858 genes overlap for ‘Gain of 

methylation — downregulated expression’ pattern. For ‘Loss of methylation — upregulated 

expression’ and ‘Loss of methylation — downregulated expression’ 721 and 544 genes are 

overlapping, respectively (Figure 15). In order to simplify the presentation of the results, 

abbreviations for each regulation pattern will be used: UPUP for ‘Gain of methylation — 

upregulated expression’, UPDOWN for ‘Gain of methylation — downregulated expression’, 

DOWNUP for ‘Loss of methylation — upregulated expression’ and, lastly, DOWNDOWN 

for ‘Loss of methylation — downregulated expression’. 

 
Figure 15 Number of genes, following ‘Gain of methylation — upregulated expression’ (UPUP), 
‘Gain of methylation — downregulated expression’ (UPDOWN), ‘Loss of methylation — 
upregulated expression’ (DOWNUP) and ‘Loss of methylation — downregulated expression’ 
(DOWNDOWN) regulation patterns in Absher, Kirby and TCGA DNA methylation datasets. 
Grey indicates number of not overlapping genes, while blue represents overlapping genes, between 
three datasets. 

The pattern with a biggest share of genes is UPDOWN for all three datasets (Figure 

15). Kirby dataset has most of the genes — 2,230 (Table S1). A little bit less genes are in 

UPUP pattern, where Kirby dataset, again, has the largest number of genes of all datasets — 

1,437 genes. DOWNUP pattern has less genes, compared with previous regulation patterns, 

except of TCGA dataset. For DOWNUP pattern TCGA has 1,304 genes, which is more than, 

for example, in UPUP pattern — 1,241 genes. DOWNDOWN pattern has least of the genes, 

but TCGA here also has an exceptionally large number of genes — 1,037. 
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Overlap is a big part for all patterns and datasets, with and exception of TCGA for 

DOWNUP and DOWNDOWN patterns, where overlap smallest — 55.29% and 52.46%, 

respectively. In other cases, the overlap varies from 73.63% for UPUP pattern in Kirby 

dataset to 91.03% for UPDOWN pattern in TCGA dataset (Table S1). 

3.2.3. Consistency of genes, associated with multiple probes 
Genes can have multiple probes, associated with them. Gene is named as inconsistent, 

when probes for the gene are both for gained and lost methylation. 1,243 genes in Absher, 

1,514 genes in Kirby and 1,319 genes in TCGA dataset are associated with multiple probes 

that are hypermethylated in PCa, while 232, 381 and 575 genes in Absher, Kirby and TCGA 

respectively are associated with hypomethylated probes in PCa. 7 genes in Absher dataset are 

associated with both hypermethylated and hypomethylated probes. In Kirby dataset it is 16 

genes and in TCGA — 21 genes (Table S2). This overlap represents inconsistent genes. 

Analysis of genes, associated with multiple probes, in four DNA methylation and 

gene expression patterns showed that the largest numbers of genes with multiple probes are 

for UPDOWN pattern (Table 2). Kirby dataset has most of those genes — 994. Smallest 

numbers of genes, associated with multiple probes are for DOWNDOWN regulation pattern, 

where Absher dataset has only 97 of those genes. Numbers of genes with multiple probes 

correlates with number of all genes for each of four regulation patterns in all three datasets. 

TCGA is a dataset with the biggest number of inconsistent genes — 12. However, 12 

genes are only 1.34% and 5.04% of all genes with multiple probes for UPDOWN and 

DOWNDOWN regulation pattern, respectively. The minimum number of inconsistent genes 

is 3 genes and they can be observed in Absher dataset for patterns with upregulated 

expression. Genes GNAS and OSBPL5 recur in all three datasets for UPUP and DOWNUP 

regulation patterns, which strongly supports their inconsistency. For patterns with 

downregulated expression, on the other hand, genes PEG10 and SNRPN are persistent in all 

three datasets. 

Inconsistency is not an issue in three selected DNA methylation datasets, since the 

number of inconsistent genes is very low. Inconsistent genes make up a small part of all 

genes, associated with multiple probes: less than 3% for UPUP and DOWNUP regulation 

patterns, less than 2% for UPDOWN and less than 7% for DOWNDOWN regulation pattern. 
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Table 2 Number of genes, associated with multiple probes, in Absher, Kirby and TCGA datasets 
for each of four DNA methylation and gene expression patterns, and inconsistent genes that are 
associated with probes that both, gained and lost methylation. Number in brackets indicates what 
part of all genes, associated with multiple probes, is inconsistent genes. 

 Absher Kirby TCGA 

Gain of 
methylation — 

upregulated 
expression 

(UPUP) 

Genes with 
multiple 
probes 

338 510 416 

Inconsistent 
genes 

3 genes (0.89% 
of all genes with 
multiple probes): 

GNAS, MGMT, 
OSBPL5 

6 genes (1.18%): 
ATP10A, CD96, 

GNAS, MEST, NTM, 
OSBPL5 

9 genes (2.16%): 
C22orf45, CHFR, 
GNAS, MED12L, 

MGMT, NTM, 
OSBPL5, PRH1, 

PRR4 

Gain of 
methylation — 
downregulated 

expression 
(UPDOWN) 

Genes with 
multiple 
probes 

748 994 893 

Inconsistent 
genes 

4 genes (0.53%): 
BCL2, CCND1, 
PEG10, SNRPN 

10 genes 
(1.01%): 

CCND1, IGF2, INS-
IGF2, PEG10, 

RAB32, RUNX3, 
SEMA3B, SGCE, 

SNRPN, ZIM2 

12 genes 
(1.34%): 

BCL2, C21orf29, 
GNASAS, IGF2, 

INS-IGF2, KCNQ1, 
MEG3, NTRK1, 
PEG10, RUNX3, 
SGCE, SNRPN 

Loss of 
methylation — 
upregulation of 

expression 
(DOWNUP) 

Genes with 
multiple 
probes 

133 216 330 

Inconsistent 
genes 

3 genes (2.26%): 
GNAS, MGMT, 

OSBPL5 

6 genes (2.78%): 
ATP10A, CD96, 

GNAS, MEST, NTM, 
OSBPL5 

9 genes (2.73%): 
C22orf45, CHFR, 
GNAS, MED12L, 

MGMT, NTM, 
OSBPL5, PRH1, 

PRR4 

Loss of 
methylation — 
downregulation 

of expression 
(DOWNDOWN) 

Genes with 
multiple 
probes 

97 161 238 

Inconsistent 
genes 

4 genes (4.12%): 
BCL2, CCND1, 
PEG10, SNRPN 

10 genes 
(6.21%): 

CCND1, IGF2, INS-
IGF2, PEG10, 

RAB32, RUNX3, 
SEMA3B, SGCE, 

SNRPN, ZIM2 

12 genes 
(5.04%): 

BCL2, C21orf29, 
GNASAS, IGF2, 

INS-IGF2, KCNQ1, 
MEG3, NTRK1, 
PEG10, RUNX3, 
SGCE, SNRPN 

 

3.2.4. Gene set enrichment analysis for overlapping genes 
Genes from UPUP and UPDOWN regulation patterns were selected for further 

analysis with a focus on UPUP pattern. 1,058 overlapping genes for UPUP were investigated 

using gene set enrichment analysis (GSEA) tool Enrichr. 
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Top 5 most significant GO Molecular Functions for this gene set included 

‘transcriptional activator activity, RNA polymerase II core promoter proximal region 

sequence-specific binding’ (adjusted p < 0.05, combined score c = 38.43), ‘RNA polymerase 

II core promoter proximal region sequence-specific DNA binding’ (p < 0.05, c = 32.70), 

‘RNA polymerase II transcriptional activity, metal ion regulated core promoter proximal 

region sequence-specific binding’ (p < 0.05, c = 27.52), ‘RNA polymerase II distal enhancer 

sequence-specific DNA binding’ (p < 0.05, c = 24.91) and ‘G-protein coupled peptide 

receptor activity’ (p < 0.05, c = 23.03). Less significant results have combined enrichment 

score lower than 23. Two clusters can be distinguished for GO Molecular Function category: 

one, related to transcriptional activity together with RNA polymerase activity, and second, 

related to G-protein coupled receptor activity (Figure 16). 

	
Figure 16 Clustergram of enriched terms from GO Molecular Function category with genes, 
following ‘Gain of methylation — upregulated expression’ (UPUP) pattern, as an input. Two 
clusters can be distinguished: transcription and RNA polymerase activity related, and G-protein 
coupled receptor activity related. 

ENCODE TF ChIP-seq and ChEA categories revealed gene set relationships with 

proteins SUZ12 and EZH2 (adjusted p < 0.001). In category ENCODE TF ChIP-seq category 
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combined enrichment scores are c = 116.01 and c = 61.79 for SUZ12 and EZH2, 

respectively. In ChEA SUZ12 in results appears four times among top 10 results with 

combined scores c = 139.68, c = 121.59, c = 90.88 and c = 86.05. EZH2 appears two times 

with c = 104.84 and c = 82.00. Both proteins are components of Polycomb group (PcG) 

complex, which is responsible for methylation of histones (H3K9me and H3K27me). Results 

from Epigenomic Roadmap HM ChIP-seq and ENCODE Histone Modification strengthened 

previous observations by significantly associating gene set with H3K27me3 histone 

modification (p < 0.05). 

Additionally, Enrichr analysis returned a result for Achilles fitness decrease 

specifically in prostate. However, combined score is only 17.39, but adjusted p-value is 

significant (p < 0.05). Furthermore, the most significant result for KEGG 2016 category was 

‘neuroactive ligand-receptor’ (adjusted p < 0.001, combined score 57.23). 

1,858 genes, recurring in all three datasets for the UPDOWN pattern, were used for 

GSEA as an input. Generally, the results were more statistically significant with higher 

combined scores than results from genes, following UPUP regulation pattern. 

Very differently than in UPUP analysis, most significant UPDOWN results from 

categories GO Molecular Function and GO Biological Process are associated with 

extracellular matrix or potassium and calcium ion channel activity. Top 5 most significant (p 

< 0.001) molecular functions are ‘Integrin binding involved in cell-matrix adhesion’ (c = 

45.88), ‘integrin binding’ (c = 43.72), ‘delayed rectifier potassium channel’ (c = 38.57), 

‘voltage-gated potassium channel activity’ (c = 37.78) and ‘calcium ion sensor activity’ (c = 

36.50), while ‘extracellular matrix disassembly’ (c = 147.65), ‘extracellular matrix assembly’ 

(c = 147.01), ‘collagen fibril organization’ (c = 141.77), ‘fibronectin fibril organization’ (c = 

141.21) and ‘basement membrane organization’ (c = 140.60) are top 5 most significant (p < 

0.001) biological processes. 

ENCODE TF ChIP-seq and ChEA, as in previous analysis with genes from UPUP 

regulation pattern, also revealed statistically significant (p < 0.001) gene set relationships 

with proteins EZH2 (five results of top 10 in ENCODE TF ChIP-seq category with combined 

scores c = 92.67, c = 75.93, c = 43.41, c = 40.56 and c = 38.59) and SUZ12 (two results out 

of top 10 in ENCODE TF ChIP-seq category with c = 75.41 and c = 37.62). Furthermore, 

categories ENCODE Histone Modification and Epigenomics Roadmap HM ChIP-seq also 

showed a strong and more statistically significant association with H3K27me3 histone 

modification (p < 0.001), compared with genes from UPUP regulation pattern. 
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However, differently than with the UPUP genes, KEGG 2016 category as a most 

significant result returned ‘Pathways in cancer’ (adjusted p < 0.001, c = 62.74), which is 

important, since input genes are the genes, that are differentially methylated and expressed in 

prostate cancer. Second result ‘neuroactive ligand-receptor interaction’ matched with the first 

result in analysis of UPUP gene set (p < 0.001, c = 62.61). The third hit ‘focal adhesion’ can 

be connected with previous results from GO Molecular Function and GO Biological Process 

categories (p < 0.001, c = 58.69). 

3.3. PART II: Sample-to-sample comparison of gene expression and DNA 
methylation of genes in ‘Gain of methylation — upregulated 

expression’ regulation pattern 
In order to confirm or deny the hypothesis that there is an overcompensation in 

expression of genes that follow the pattern ‘Gain of methylation — upregulated expression’ 

(UPUP), DNA methylation and gene expression data, retrieved from the same 532 samples 

(497 PCa and 35 normal tissue samples) from TCGA dataset, were used for analysis. 1,772 

probes with gained methylation and upregulated expression from PART I analysis are 

associated with 1,501 unique genes in TCGA M+E dataset. 1,013 gene names matched in 

both, methylation and expression, parts of TCGA M+E dataset and were used in further 

analysis. 

After sorting methylation values from lowest to highest and then matching the 

expression values, according to the samples, arrays of values were divided into two groups 

for normal tissue samples and PCa samples. 497 cancer samples were divided into 248 

samples with lower methylation and 249 samples with higher, while 35 normal samples were 

divided into 17 with lower methylation and 18 with higher. The average methylation and 

corresponding expression levels in groups of samples were then calculated and compared. 

For cancer samples, expression levels of 442 genes (43.63% out of all 1,013 analyzed 

genes) were corresponding to methylation levels fittingly to the UPUP regulation pattern — 

average expression was higher in the sample group with higher average methylation and 

lower in the sample group with lower DNA methylation. On the other hand, data from other 

571 genes (56.37%) correlated in an opposite manner — lower expression is observed in the 

higher methylation sample group and higher expression — in the group with lower 

methylation. For normal samples, expression of 511 genes (50.44%) was lower in the group 

of samples with higher average methylation, while expression of 495 genes (48.86%) is 

higher, when DNA methylation was correspondingly higher. 
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Additionally, after comparing two groups of PCa samples and two groups of normal 

tissue samples, it was found that expression of 275 genes (27.14% of all 1,013 genes) is 

higher in higher DNA methylation sample group both in PCa and normal tissue samples. Yet 

expression of 164 genes (16.19%) is higher when DNA methylation is higher only in cancer 

samples and the trend does not last in normal samples. However, it is important to consider 

that the number of normal tissue samples is significantly lower, compared with PCa samples. 

Overall, the findings show no clear sample-to-sample correlation of DNA methylation 

and gene expression. 

3.4. PART III: Analysis of ‘Gain of methylation — upregulated 
expression’ regulation pattern and comparison with ‘Gain of 

methylation — downregulated expression’ pattern 

3.4.1. Genes, following only UPUP and UPDOWN regulation patterns 
23,265 probes, associated with 1,058 unique genes, following ‘Gain of methylation — 

upregulated expression’ (UPUP), were investigated by distinguishing them according to their 

methylation status. 9,569 of 23,265 probes gained methylation, while 5,131 probes lost. 

These probes again can be associated with 1,014 and 864 unique genes, respectively. 856 

genes are shared, which means that they have probes with both methylation gain and loss 

associated with them. More importantly, 158 genes can be distinguished that are associated 

with probes (1,560), which are only hypermethylated or non-differentially methylated. This 

set of genes is taken as a representation of UPUP-only regulation pattern. 127 genes out of 

158 (80.38%). have more than a half of their probes significantly hypermethylated. Top 10 

genes, with the most significant methylation changes in this set, are (from most significant to 

least): TNFSF4, GDAP1L1, CD226, MGP, CPT1B, LTK, KLK13, GSC, TSPAN16 and ZAR1. 

On the other hand, for 1,858 genes from ‘Gain of methylation — downregulated 

expression’ (UPDOWN) pattern there are 18,399 probes of total 41,221 with methylation 

gain and 9,544 probes with methylation loss. These probes can be again associated with 

1,787 and 1,548 genes, respectively. 1,541 unique genes are associated with both 

upmethylated and downmethylated probes. For this pattern there are 246 genes that have 

probes only with gain of methylation (or non-differentially methylated) and this set of gene is 

representing UPDOWN-only regulation pattern. 205 genes out of 246 (83.33%) have more 

than half of the probes significantly upmethylated, similarly to the UPUP-only genes. Top 10 

most significantly methylated genes in UPDOWN-only set are (from most significant to 
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least): PLA2G3, WFDC2, SPARCL1, RGN, TMEM106A, COL3A1, KLF8, LTC4S, LTC4S, 

EFS and SCGB3A1. 

The average p-values of probes, associated with genes, representing each of two 

patterns, were compared. Figure 17 shows that top 10 genes from UPDOWN pattern have 

more significant methylation changes than genes, fitting only UPUP. The trend persists when 

visualizing the average p-values from all the genes, following each of the regulation pattern 

(Figure 18).  

	
Figure 17 The average p-values of probes, associated with top 10 genes, following only ‘Gain of 
methylation — upregulated expression’ (UPUP) (blue) and only ‘Gain of methylation — 
downregulated expression’ (UPDOWN) (red) regulation patterns. The names of top 10 genes 
from UPDOWN pattern are listed (from the least to the most significant) above the graph, each 
matching the data point below, while genes, following UPUP pattern are listed below, each matching 
the data point above. 

From 158 genes, following only UPUP regulation pattern, the highest average p-value 

(-log10) is 19.21 for a gene TNFSF4, while lowest is 2.06 for a gene PLA2R1. Comparing 

with 246 genes, following only UPDOWN pattern, the highest average p-value is 31.53 for a 

gene SCGB3A1, whereas the lowest is 1.80 for a gene ANP32E. It is worth to mention that 

only two genes from UPDOWN-only pattern have lower average p-values (1.80 and 1.92) 

than the lowest average p-value (2.06) in UPUP-only regulation pattern, and there are 13 

genes with a higher average p-value compared with the highest (19.21) in UPUP-only. The 
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average of all average p-values for genes in UPUP-only regulation pattern is equal to 7.44, 

while for genes in UPDOWN it is higher and equal to 8.94. 

	
Figure 18 The average p-values of probes, associated with 158 genes, following only ‘Gain of 
methylation — upregulated expression’ (UPUP) (blue) and 246 genes, following only ‘Gain of 
methylation — downregulated expression’ (UPDOWN) (red) regulation pattern. Average p-
values for genes, following each pattern are visualized from the most to the least significant. 

3.4.2. Visualization of differentially and non-differentially methylated 
positions in Genome Browser 
Differentially and non-differentially methylated probes were visualized using 

Genome Browser in order to see how they are distributed in the context of gene and other 

noteworthy features, such as CGIs. Top 10 genes, listed in a previous paragraph, with most 

significantly hypermethylated probes were visualized for UPUP-only and UPDOWN-only 

regulation patterns. 

The distribution of probes in UPDOWN-only pattern can be distinguished in two 

different groups. The first group includes genes with all significantly hypermethylated probes 

that are usually clustered together around TSS (genes WFDC2 and PLA2G3). Gene WFDC2 

has a methylated region that is overlapping with CGI and TSS (Figure 19). Least significant 

position Pos11 stands out from the cluster. 
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Figure 19 Visualized methylation probes for a gene WFDC2 from UPDOWN-only regulation 
pattern. Pos1-11 stand for differentially hypermethylated positions from most (Pos1) to least (Pos11) 
significantly methylated. 

The second group includes genes with mostly significantly hypermethylated probes 

clustered together around TSS also and just a few non-differentially methylated positions that 

are usually more scattered (genes SPARCL1, RGN, TMEM106A, COL3A1, KLF8, LTC4S, 

LTC4S, EFS and SCGB3A1). This group of genes usually have a cluster of hypermethylated 

positions overlapping with a CpG island. Example of such gene can be RGN, which is 

presented in Figure 20. Here all 6 differentially hypermethylated positions are clustered 

around TSS and overlapping with a CpG island. In addition, region overlaps with DNase I 

hypersensitivity cluster. GTEx RNA-seq data shows highest expression of RGN gene product 

in adrenal gland. Non-differentially methylated positions are scattered around methylated 

cluster. RGN can be a typical example of UPDOWN pattern. Distribution of probes for gene 

KLF8 is very similar to RGN and is shown in Figure S1. This gene has 15 hypermethylated 

position overlapping with a CpG island in TSS. 
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Figure 20 Visualized methylation probes for a gene RGN from UPDOWN-only regulation 
pattern. Pos1-6 stand for differentially hypermethylated positions from most (Pos1) to least (Pos6) 
significantly methylated. PosA, B and C are non-differentially methylated positions. 

The distribution of the probes for genes, following UPUP-only pattern, is much more 

complex. None of the top 10 genes have all probes significantly hypermethylated — all genes 

have at least one non-differentially methylated probe, associated with it. Nonetheless, one 

group of genes is similar to the UPDOWN, because they have a cluster of hypermethylated 

positions around TSS and a few non-differentially methylated positions scattered alongside 

the gene. This group includes genes, such as TNFSF4, GDAP1L1, CPT1B, LTK and ZAR1. A 

view of gene GDAP1L1 (as well as TNFSF4) is very similar to KLF8 from UPDOWN 

pattern, but GDAP1L1 TSS region lacks a CpG island, according to the Genome Browser 

(Figure S2). However, the region has a high GC percent. Gene LTK (CPT1B and ZAR1 as 

well), on the other hand, has a CpG island, overlapping with TSS and all methylated 

positions cluster around this region (Figure 21). These features could suggest the regulatory 

function of the region, as mentioned before. LTK also has a DNase I hypersensitivity cluster 

in TSS. 

Gene TNFSF4 is an interesting example. The gene has a very noticeable alternative 

TSS and hypermethylation cluster is clearly overlapping with only one of the start sites 

(Figure 22). 
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Figure 21 Visualized methylation probes for a gene LTK from UPUP-only regulation pattern. 
Pos1-16 stand for differentially hypermethylated positions from most (Pos1) to least (Pos16) 
significantly methylated. PosA, B and C are non-differentially methylated positions. 

	
Figure 22 Visualized methylation probes for a gene TNFSF4 from UPUP-only regulation 
pattern. Pos1-4 stand for differentially hypermethylated positions from most (Pos1) to least (Pos4) 
significantly methylated. PosA, B and C are non-differentially methylated positions. 

The second group of genes from UPUP-only pattern are genes more non-differentially 

methylated positions than significantly hypermethylated. Genes CD226 and TSPAN16 have 

only one, but very significantly methylated CpG position and five non-differentially 

methylated. 
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Genes MGP, KLK13 and GSC could make up a third group, which contains 

complicated distribution patterns for the methylation probes. For example, gene GSC have 

hypermethylated probes that could be grouped in two clusters with one cluster overlapping 

with one CGI and another cluster near the second CGI (Figure 23). These two 

hypermethylated clusters could be related to transcription regulation of the gene, but 7 non-

differentially methylated positions are found between two hypermethylation clusters and near 

TSS. 

	
Figure 23 Visualized methylation probes for a gene GSC from UPUP-only regulation pattern. 
Pos1-13 stand for differentially hypermethylated positions from most (Pos1) to least (Pos13) 
significantly methylated. PosA-G are non-differentially methylated positions. 

3.4.3. Connection between methylated positions and transcription start 
sites 
The number of transcription start sites for each gene in two patterns of interest varies 

from 1 to the maximum of 34 (Table S3). Both, UPUP-only and UPDOWN-only, regulation 

patterns include genes with one, two, three or four TSSs. Most of the genes have only one 

TSS (75.16% of all UPUP-only genes and 68.70% UPDOWN). Two TSSs have 19.11% and 

19.92% UPUP and UPDOWN-only genes, respectively. 

In order to calculate the distances between TSS and methylated positions, four closest 

TSS were picked, if a gene has four or more TSS. Results shows that methylated positions, 
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associated with genes from UPUP-only pattern, are closer to their TSS, compared with 

UPDOWN-only pattern (Figure 24). 

	
Figure 24 Part of all genes in ‘Gain of methylation — upregulated expression’ (UPUP) only and 
‘Gain of methylation — downregulated expression’ (UPDOWN) only patterns that have 
hypermethylated probes in a distance of 50 to 3000 bp upstream or downstream transcription 
start site (TSS). 

TSSs of top 10 most significantly hypermethylated genes from UPUP-only and 

UPDOWN-only were illustrated using DataBase of Transcriptional Start Sites (DBTSS). 

For genes, following UPDOWN-only regulation pattern, TSSs in prostate are usually 

the same as in other tissues. For example, gene WFDC2 has most frequently used TSSs at the 

beginning of the gene sequence and overlapping with a CGI (Figure 25). From Genome 

Browser analysis, it is known that the cluster of hypermethylated positions for this gene is in 

this particular region (Figure 19). Similar pattern can be observed with a gene KLF8 (Figure 

S3) as well as EFS, TMEM106A and SCGB3A1. For genes LTC4S, COL3A1 and SPARCL1 

only difference is the lack of a CpG island in TSS. 

With UPUP-only pattern genes TSS distribution is more complex, in comparison with 

other tissues, and interesting differences in normal prostate tissue can be observed. The view 

of TSSs of gene LTK, for example, is similar to previously explained for genes from 

UPDOWN pattern, although LTK is not expressed in all tissues (Figure S4). 
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Figure 25 Transcription start sites (TSSs) for a gene WFDC2 in various adult human tissues, 
including prostate. Upper part of the figure shows position of the gene in genome and CpG island, 
associated with the gene. Lower part illustrates different TSSs, where the height of the peak 
corresponds to the frequency of a particular TSS used in transcription. 

On the other hand, genes, like TNFSF4 and CD226, have alternative TSSs in prostate, 

which are not matching with the clusters of methylation probes and are located downstream 

the gene (Figure 26). In a case of GDAP1L1 gene, TSS is located downstream (in fact, before 
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the second exon) in prostate tissue and brain tissue, which means that transcription machinery 

skips the first exon of the common transcript form (Figure S5). 

	
Figure 26 Transcription start sites (TSSs) for a gene TNFSF4 in various adult human tissues, 
including prostate. Upper part of the figure shows position of the gene in genome. Lower part 
illustrates different TSSs, where the height of the peak corresponds to the frequency of a particular 
TSS used in transcription. 

3.4.4. Connection between hypermethylated positions and CpG islands 
Gene methylation status can also be considered according to where methylated 

position is located: CpG islands, shores or shelves. 110 out of 158 genes (69.62%), following 

UPUP-only pattern, all have significantly hypermethylated probes, associated with them and 

located in islands, shelve or shore. For UPDOWN-only pattern there are 132 out of 246 genes 

(53.66%) with probes in these regions. 

In the context of hypermethylated positions, 1,368 out of all 1,560 probes (88%), 

from UPUP-only pattern, are located in islands, shores or shelves together. 841 (54%) are in 

CGIs, 490 (31%) are in shores and 37 probes (2%) are in shelves. On the other hand, for 

UPDOWN-only pattern there are 1,883 out of all 2,373 probes (79%) in CGIs, shores or 

shelves together, whereas 1,086 (46%) are in islands, 714 (30%) — in shores and 83 (3%) 

probes are located in shelves. 
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There are 9.87 and 9.63 hypermethylated probes per gene on average for UPUP-only 

and UPDOWN-only patterns, respectively. 

3.4.5. Gene set enrichment analysis 
A set of 158 UPUP-only genes was used as an input for gene set enrichment analysis 

in Enrichr. 

Top 5 most significant results from GO Molecular Function for UPUP-only genes are 

‘transcriptional activator activity, RNA polymerase II core promoter proximal region 

sequence-specific binding’ (adjusted p < 0.001, combined score c = 36.82), ‘RNA 

polymerase II core promoter proximal region sequence-specific DNA binding’ (p < 0.05, c = 

33.13), ‘sequence-specific DNA binding’ (p < 0.05, c = 31.25), ‘transcriptional activator 

activity, RNA polymerase II distal enhancer sequence-specific DNA binding’ (p < 0.001, c = 

28.24) and ‘transcriptional activator activity, RNA polymerase II transcription regulatory 

region sequence-specific binding’ (p < 0.001, c = 27.47). Compared with a previous analysis 

with all UPUP genes, results with UPUP-only genes are similar — related to the activation of 

transcription, but with higher enrichment scores. All top 10 results from GO Biological 

Process category were found significant (adjusted p < 0.05 with combined score higher than 

54.72) and linked to the positive transcription regulation. 

For UPUP-only genes, proteins SUZ12 and EZH2 appeared as top results as they did 

in analysis of all UPUP genes. In ENCODE and ChEA consensus TFs from ChIP-X category 

SUZ12 is the first and the second result with adjusted p-value lower than 0.001, c = 55.32 

and c = 22.00, respectively. EZH2 is a third most significant result with p < 0.001 and c = 

21.82. In a distinct ChEA category Polycomb proteins EED and RNF2 are top results (p < 

0.001, c = 108.13 and c = 105.59, respectively), which supports relationship with 

transcription suppression by Polycomb complexes. Epigenomic Roadmap HM ChIP-seq and 

ENCODE Histone Modification results, again, showed associations with H3K27me, but 

significant only in ENCODE category (p < 0.001). 

The first result from Achilles fitness decrease is prostate, but for UPUP-only gene set 

not significantly. However, interestingly, for KEGG 2016 category the third most significant 

result is ‘Transcriptional misregulation in cancer’ (p < 0.05, c = 12.69). 

A set of 246 genes, following only UPDOWN regulation pattern, was used as an input 

for Enrichr.  

Results from GO Molecular Function category are more similar to the results from all 

UPUP and UPUP-only genes than to the results from analysis of all UPDOWN genes, mostly 
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related to the transcription activity. Top 5 most significant results include ‘RNA polymerase 

II core promoter proximal region sequence-specific DNA binding’ (adjusted p < 0.05, c = 

37.07), ‘transcriptional activator activity RNA polymerase II core promoter proximal region 

sequence-specific binding’ (p < 0.05, c = 29.51), ‘transcriptional activator activity, RNA 

polymerase II distal enhancer sequence-specific binding’ (p < 0.05, c = 25.48), ‘chemokine 

activity’ (p <0.05, c = 23.70) and ‘RNA polymerase II core promoter proximal region 

sequence-specific DNA binding, bending’ (p < 0.05, c = 21.55). Results, though, are less 

significant and with lower combined scores. Same tendency stands with GO Biological 

Process category, where all top 10 most significant (p < 0.05, combined scores higher than 

60.16) results are related to positive regulation of transcription, repeating UPUP-only results. 

ENCODE and ChEA Consensus returned protein SUZ12 as the most significant result 

(adjusted p < 0.001, c = 65.11). Other results are much less significant or not significant at 

all, for example, the second hit is protein NANOG with combined score 14.56. ChEA also 

returned the protein EED (p < 0.001, c = 55.44), which was previously seen in UPUP-only 

gene set analysis. Another Polycomb protein JARID2 also appeared as a significant result 

two times among top 10 results (p < 0.001, c = 55.20 and c = 51.77). Furthermore, 

H3K27me3 and H3K9me3 were again the results for Epigenomics Roadmap HM ChIP-seq 

category, but more significant, compared with UPUP-only genes (p < 0.05). 

However, for UPDOWN-only genes KEGG showed no significant results and no 

associations with prostate in Achilles fitness category. 
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4. DISCUSSION 
Majority of the research projects tend to use high throughput DNA methylation data 

to select gene candidates in order to test their ability to act as biomarkers in different types of 

cancer, including prostate cancer. Some research groups then compare methylation status of 

target genes with their gene expression to confirm or deny that DNA methylation changes are 

correlating with gene expression changes in cancer. For example, Kim et al. used genome-

wide DNA methylation and gene expression data to select new target genes and then 

validated them experimentally [116], while Geybels et al. applied an opposite strategy, 

validating target genes in TCGA dataset [117]. This study aims to investigate different DNA 

methylation patterns epigenome-wide in PCa and simultaneously link the changes in 

methylation with gene expression data. Then, using various computational approaches, genes 

that fall into groups of different regulation patterns are investigated in order to find an 

explanation behind the pattern — how can DNA methylation impact gene expression. This is 

not a common setup for a study of DNA methylation in cancer, which increases the value of 

the present project. 

Furthermore, DNA methylation is generally associated with suppression of gene 

expression by inhibition of promoter activity [48]. Combined methylome and expression 

profile studies show correlation between promoter of particular genes DNA methylation and 

expression suppression in PCa [74, 117, 118]. This was also proved in a present study — 

UPDOWN regulation pattern has highest number of genes. Although, surprisingly, there was 

a large number of genes with hypermethylated promoters, but upregulated expression, which 

disagrees with a classical statement. The study focuses on this non-classical UPUP regulation 

pattern, proving its robustness and significance in DNA methylation data analysis. 

4.1. Data selection 
Three DNA methylation datasets, TCGA, Kirby and Absher, were selected, because 

they have a large number of samples, both cancer and normal tissue [119]. Although TCGA 

dataset has a significantly smaller number of normal tissue samples, but dataset is particularly 

valuable, because not only it has data of DNA methylation, but also gene expression data, 

derived from the same samples. Furthermore, all three datasets are publicly available for 

downloading. More importantly, DNA methylation data was collected using Illumina DNA 

methylation arrays. 27k and HM450 correlates and share a big part of methylation probes 

(94% of the regions from 27k are included in HM450) and this allows to connect data more 

easily [41]. Another reason, why this particular Absher dataset was included, is that data from 
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27k helped to filter HM450 data. 27k probes target the promoter regions and changes in 

promoter DNA methylation status have been associated with changes in gene expression 

[46]. 

Lastly, only three out of total 17 datasets found were used in this study (Table 1). 

Other datasets, such as number 3, 5, 8, 13 and 17, could be used in the future to validate 

DNA methylation results from this project or conduct similar studies. For example, dataset 

number 13 is particularly interesting, because sequencing data could disclose the methylation 

status of those regions that are not covered by 27k or HM450 methylation arrays. 

4.2. PART I 
Generally, the fact that more than 65% of all matching probes between Absher, Kirby 

and TCGA datasets were statistically significantly differentially methylated in prostate 

cancer, compared with normal tissue samples, shows the importance and frequency of DNA 

methylation process in PCa. In this study, more methylation gain than loss was observed in 

PCa samples. These findings support previous studies, where stable hypermethylation of gene 

promoter regions in prostate cancer has been observed and particularly promoter 

hypermethylation more than hypomethylation has been associated with differences in gene 

expression [114]. It has been proposed that promoter CGI-specific DNA hypermethylation 

(one of the epigenetic hallmarks of human cancers [59, 61]) can occur because of the 

oxidative damage that forces to form specific silencing complexes, such as PRC4, found only 

in cancer and stem cells [54]. GSEA analysis could confirm the relationship between both 

UPUP and UPDOWN gene sets and PRCs, since connections with proteins EZH2 (part of the 

PRC4, PRC2 and is known to be highly expressed in metastatic PCa [54, 120]), SUZ12 (part 

of PRC2 complex and its overexpression is known to be involved in carcinogenesis [121]) 

and histone modification H3K27me3 were made. 

The numbers of significant probes and genes, associated with them, are similar in all 

three datasets (Figure 14 and Figure 15). The overlap of hypermethylated probes and genes is 

no less than 77%, while for DNA methylation and gene expression patterns the overlap is 

higher than 73% for patterns with hypermethylation. However, there is an exception with 

TCGA dataset for patterns with methylation loss (DOWNUP and DOWNDOWN), where 

number of probes and genes is higher, and overlap is smaller, compared with other datasets. 

Nonetheless, these results still demonstrate robust changes in DNA methylation in PCa, 

compared with normal tissue. 
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Genome-wide studies have shown that downregulation of gene expression in PCa is 

more common than upregulation, which this project has demonstrated as well with results 

from UPDOWN and DOWNDOWN regulation patterns (Figure 15) [114]. Despite that the 

number of genes in non-classical UPUP pattern is large enough in all three datasets to suspect 

that it can be important in PCa and definitely encourages to explore the pattern in additional 

analyses. Furthermore, GO from GSEA analysis disclosed substantial differences between 

molecular functions of UPUP and UPDOWN gene sets, which supports the robustness of 

UPUP regulation pattern. Thus, further focus was put on UPUP pattern and findings were 

compared with classical UPDOWN pattern in order to understand possible DNA methylation 

role in gene expression upregulation. 

The question of gene inconsistency in DNA methylation was raised, hypothesizing 

that a significant number of genes might have both hypermethylated and hypomethylated 

probes associated with them, resulting in an increased number of genes in UPUP regulation 

pattern. In this case, gene expression upregulation might have been caused by DNA 

hypomethylation instead of hypermethylation. Assumption proved to be wrong, when just a 

small number of genes was found carrying this feature. 12 genes as the maximum was found 

or no more than 6.21% of all genes with multiple probes in certain pattern were inconsistent 

(Table 2). 

4.3. PART II 
Since a surprisingly large number of genes with upregulated expression in UPUP 

pattern was observed, the question of overcompensation in gene expression data can be 

raised. The concept of the overcompensation in this study can be described as a possibility 

that some samples in gene expression dataset might have had an unusually high expression of 

hypermethylated genes, while in other samples expression of the same genes would be very 

low. This would lead to the overall upregulation of gene expression in a dataset, because a 

very high expression “compensates” the low expression. The gain of DNA methylation is 

then connected with unreasonably increased expression, resulting in UPUP pattern. If this 

proves to be true, the connections between gene expression and DNA methylation for UPUP 

pattern would not be robust enough to state that promoter hypermethylation affects the 

increase in gene expression. Unfortunately, such phenomenon is not discussed in a literature 

describing gene expression differences. To investigate the possibility of overcompensation 

DNA methylation and gene expression values from same samples, so called sample-to-

sample analysis, was necessary to be able to prove the authenticity of the regulation pattern. 
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The distribution of UPUP pattern genes between two groups of PCa samples was 44% 

and 56%, which indicates that almost half of all genes have higher DNA methylation 

followed by higher gene expression. However, a similar ratio was observed in normal 

prostate tissue samples (50% and 49%), which could indicate that overcompensation of gene 

expression does not occur in PCa. Additionally, PCa have unique genes (almost 20% of all 

investigated genes) with higher expression in the sample group with higher methylation, 

demonstrating the robustness of UPUP regulation pattern in PCa. DNA methylation is altered 

together with gene expression in PCa, compared with normal prostate. 

This analysis of DNA methylation and gene expression in same PCa and normal 

tissue samples could be more accurate if samples were divided into more groups, based on 

levels of methylation. Smaller groups would allow to see smaller differences in gene 

expression and if it actually correlates with DNA methylation. Furthermore, samples can also 

be grouped according to the expression levels which then could be compared, but it is 

difficult to do comparisons for genes with multiple methylation probes. Moreover, the higher 

number of normal tissue samples could give more robust information about DNA 

methylation and gene expression patterns in normal prostate. 

4.4. PART III 
PART III aims to investigate possible explanations behind UPUP pattern — how can 

DNA methylation be associated with expression upregulation in PCa. First of all, only TCGA 

methylation dataset was used to extend the list of probes, associated with UPUP and 

UPDOWN genes. This means that all the probes from HM450 DNA methylation array, 

excluded in PART I, were added and analyzed in PART III. The reason behind this decision 

was to better cover promoter regions in order to have a more robust image of methylation in 

promoter regions. In PART I the number of probes was limited, because 27k data was used 

and, since this array has only an average of two probes per gene (compared with an average 

of 17.2 in HM450) [41, 75], it could limit the information about methylation. For instance, a 

gene can have all probes hypermethylated in 27k data, leading to a conclusion that a gene is 

hypermethylated in PCa, while in HM450 data the same gene would be associated with 

hypermethylated, hypomethylated and non-differentially methylated probes, leading to an 

ambiguous methylation status. Furthermore, extended list of probes allows to understand 

whether there are other regions involved in regulation. Lastly, for the PART III analysis it 

was chosen to filter out and use genes only with probes that gained methylation (or have non-

differentially methylated probes) to avoid genes, with ambiguous methylation status, since 
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the list of probes was extended. However, the dissimilarities between methylation of UPUP-

only, UPDOWN-only and excluded UPUP, UPDOWN genes could be also explored in order 

to discover more differences between HM450 and 27k DNA methylation data. 

Top 10 genes from each pattern were chosen for further analysis, assuming that they 

represent the patterns best, because all probes are hypermethylated more significantly 

compared with all the other genes in the patterns. For example, gene EFS and SPARCL1 from 

UPDOWN-only pattern were shown to be suppressed in PCa [122, 123]. Moreover, in 

another epigenome-wide study promoter hypermethylation was demonstrated for genes 

TMEM106A and SCGB3A1, where hypermethylation in latter also correlated with lower 

expression [117]. ZAR1 from UPUP-only, on the other hand, was demonstrated to actually 

follow UPUP pattern in neuroblastoma [124] and MGP to have high expression in PCa [125]. 

Visualization of top 10 genes allowed to see instantly, how hypermethylated and non-

differentially methylated probes are distributed, if they form a hypermethylated cluster and, 

finally, how they can be associated with other features, such as CGIs. After seeing that the 

presence of CpG islands in the promoter region and their overlap with methylated positions 

are different for different top 10 genes in the images from Genome Browser, the overlap was 

investigated for all genes, and results were opposing. More UPUP-only genes have 

hypermethylated positions in CGIs, shores or shelves. However, this contradicts with the 

literature, where silencing protein complexes were shown to be recruited more to the CGI-

promoters, compared with promoters without [54]. 

CGIs are important for gene expression regulation, but when they are found in the 

promoter region near TSS, this CpG-rich region is usually a target for DNA methylation 

leading to the downregulation of gene expression [48]. This study again showed the opposite 

results, supplementing observation from analysis of the CpG overlaps. UPUP-only pattern 

actually has more genes, associated with probes that are closer to TSSs (Figure 24). This 

indicates that there are more reasons (or at least as many as for the classical UPDOWN 

pattern) to state that gene expression upregulation of genes from UPUP regulation pattern can 

be influenced by DNA hypermethylation in the promoter region. 

Unfortunately, the possible mechanisms behind such connections have not been 

shown as much as it is for UPDOWN pattern. One possible mechanism could be that the low 

density of DNA methylation marks in the promoter region is not be sufficient to silence gene 

expression [57, 58]. The results from this study prove to be opposite, as it is known that 

UPDOWN-only and UPUP-only both have approximately 10 hypermethylated probes per 

gene and, as mentioned previously, positions from UPUP pattern are close to TSS and 
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located in CpG-rich regions. Furthermore, the number of hypermethylated positions in 

hypermethylated cluster usually is not very different comparing UPUP and UPDOWN genes. 

On the other hand, gene KLF8 from UPDOWN pattern, for instance, has 15 hypermethylated 

positions very close to each other, while LTK form UPUP has 16 positions, but with lower 

density (Figure 21, Figure S1). 

In addition, DNase I hypersensitivity clusters are found in promoter regions for most 

of the top 10 genes for both patterns. It is known to contribute to the regulatory role of the 

promoter region and, consequently, have an impact for carcinogenesis [126, 127]. 

Unfortunately, since there are no obvious differences between the distribution of clusters in 

UPUP and UPDOWN genes, DNase I clusters are not able to explain the differences in gene 

expression. 

One of the most interesting findings from DBTSS analysis was alternative TSSs for 

genes TNFSF4, GDAP1L1 and CD226 (Figure 22 and Figure S5). Alternative TSSs could 

indicate different gene expression setting in prostate cancer. Probes of TNFSF4 overlapping 

only with one TSS suggested that upregulation of gene expression can occur as a 

consequence of switching TSS whilst methylation occurs in the insignificant region. Such 

phenomenon in PCa has been shown in several studies [128, 129] Later it was confirmed that 

alternative TSS downstream is indeed being used, but already in a normal prostate tissue 

(Figure 26), which also discloses the drawback of the HM450 methylation array— probes 

cover non-specific TSS in prostate and PCa. DNA methylation mechanism for some genes, 

apparently, might not be PCa-specific and expression of genes with alternative TSSs results 

in upregulation. Although, since none of the methylation probes are covering an alternative 

TSS, there is no way to tell if DNA hypermethylation occurs in this specific region in PCa, 

compared with a normal prostate tissue. The same TSSs of gene TNFSF4 and gene 

GDAP1L1 were also noticed in brain (and brain only), which promotes a hypothesis of an 

association between gene expression patterns in brain and prostate. For instance, androgen 

deprivation therapy was shown to have effects on brain function, meaning resemblances of 

molecular mechanisms [130] and the similarities between expression in brain and testis has 

been noticed before [131]. 

Differently than in previous enrichment analysis in PART I, associations between 

genes from both UPUP-only and UPDOWN-only regulation patterns and protein EED was 

found. This protein, together with EZH2, is known to be a part of cancer-specific PRC4 and 

plays a role in cell proliferation [54, 120]. This connection has been observed only here, 

because the as an input for GSEA pure sets of genes, only with hypermethylation, were used.  
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CONCLUSIONS 
While UPUP pattern is obscure, there is no solid evidence against it and results 

clearly indicate a potential, which encourages to continue the studies in order to understand 

the pattern and its mechanisms in prostate cancer. Moreover, it is important to take into 

account gene expression data alongside DNA methylation and do not make early assumptions 

about DNA hypermethylation always followed by gene silencing. 

Following conclusions for each goal of the project can be formulated: 

1. After analysis of the literature 17 promising DNA methylation datasets were found 

and 3 of them, TCGA, Absher and Kirby, were selected to be investigated in this 

study. 

2. Four DNA methylation and gene expression patterns were distinguished and genes, 

overlapping between three datasets, were found. ‘Gain of methylation — upregulated 

expression’ (overlapping 1,058 genes), ‘Gain of methylation — downregulated 

expression’ (1,858 genes), ‘Loss of methylation — upregulated expression’ (721 

genes) and ‘Loss of methylation — downregulated expression’ (544 genes). 

3. Gene expression overcompensation in a dataset as an explanation for ‘Gain of 

methylation — upregulated expression’ regulation pattern is unlikely. 

4. Analysis of genes, following only ‘Gain of methylation — upregulated expression’ 

revealed that methylated positions from this pattern are more likely to be in CpG 

islands, shores or shelves and closer to TSSs, compared with positions from ‘Gain of 

methylation — downregulated expression’. Alternative TSSs was proposed as a 

possible explanation of increased expression for genes TNFSF4, GDAP1L1 and 

CD226 or as a limitation of methylation detection systems. 
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SUPPLEMENTARY MATERIAL 

	
Supplementary Figure S1 Visualized methylation probes for a gene KLF8 from UPDOWN-only 
regulation pattern. Pos1-15 stand for differentially hypermethylated positions from most (Pos1) to 
least (Pos15) significantly methylated. PosA and B are non-differentially methylated positions. 

	
Supplementary Figure S2 Visualized methylation probes for a gene GDAP1L1 from UPUP-only 
regulation pattern. Pos1-10 stand for differentially hypermethylated positions from most (Pos1) to 
least (Pos10) significantly methylated. PosA and B are non-differentially methylated positions. 



	

	
Supplementary Figure S3 Transcription start sites (TSSs) for a gene KLF8 in various adult 
human tissues, including prostate. Upper part of the figure shows position of the gene in genome 
and CpG island, associated with the gene. Lower part illustrates different TSSs, where the height of 
the peak corresponds to the frequency of a particular TSS used in transcription. 



	

	
Supplementary Figure S4 Transcription start sites (TSSs) for a gene LTK in various adult 
human tissues, including prostate. Upper part of the figure shows position of the gene in genome 
and CpG island, associated with the gene. Lower part illustrates different TSSs, where the height of 
the peak corresponds to the frequency of a particular TSS used in transcription. 



	

	
Supplementary Figure S5 Transcription start sites (TSSs) for a gene GDAP1L1 in various adult 
human tissues, including prostate. Upper part of the figure shows position of the gene in genome. 
Lower part illustrates different TSSs, where the height of the peak corresponds to the frequency of a 
particular TSS used in transcription. 



	

Supplementary Table S1 Number of genes in each dataset, following four different DNA 
methylation and gene expression patterns, and number of genes, following each pattern, that 
are overlapping between datasets. Number in brackets shows what part of all genes for each pattern 
and in that datasets is an overlap. 

 Absher Kirby TCGA Overlap 
Gain of 

methylation — 
upregulated 
expression 

(UPUP) 

1320 (overlap is 
80.15%) 1437 (73.63%) 1241 (85.25%) 1058 

Gain of 
methylation — 
downregulated 

expression 
(UPDOWN) 

2110 (88.06%) 2230 (83.31%) 2041 (91.03%) 1858 

Loss of 
methylation — 

upregulated 
expression 

(DOWNUP) 

809 (89.12%) 916 (78.71%) 1304 (55.29%) 721 

Loss of 
methylation — 
downregulated 

expression 
(DOWNDOWN) 

638 (85.27%) 709 (76.72%) 1037 (52.46%) 544 

 

Supplementary Table S2 Number of genes in Absher, Kirby and TCGA datasets that are 
associated with multiple probes with methylation gain or loss and overlapping genes that are 
associated with both, hypermethylated and hypomethylated probes. 

 Absher Kirby TCGA 
Gain of 

methylation 1243 1514  1319 

Loss of methylation 232 381 575 

Overlap 
(gain and loss of 

methylation) 

7 genes: 
BCL2, CCND1, GNAS, 

MGMT, OSBPL5, 
PEG10, SNRPN 

16 genes: 
ATP10A, CCND1, 

CD96, GNAS, IGF2, 
INS-IGF2, MEST, NTM, 

OSBPL5, PEG10, 
RAB32, RUNX3, 
SEMA3B, SGCE, 

SNRPN, ZIM2 

21 genes: 
BCL2, C21orf29, 
C22orf45, CHFR, 

GNAS, GNASAS, IGF2, 
INS-IGF2, KCNQ1, 
MED12L, MEG3, 

MGMT, NTM, NTRK1, 
OSBPL5, PEG10, PRH1, 
PRR4, RUNX3, SGCE, 

SNRPN 
 

 

 

 

 



	

Supplementary Table S3 Number of genes in each regulation pattern with a certain number of 
transcription start sites (TSS). Number in brackets shows the part of all genes for each number of 
TSS. 

Number of TSS UPUP-only genes UPDOWN-only genes 
1 118 (75.16% of all genes) 169 (68.70% of all genes) 
2 30 (19.11%) 49 (19.92%) 
3 6 (3.82%) 17 (6.91%) 
4 2 (1.27%) 6 (2.44%) 
5 - 3 (1.22%) 
7 - 1 (0.41%) 

18 1 (0.64%) - 
34 - 1 (0.41%) 

Number of genes in total 157 246 
 


