
Empirical Mode Decomposition for
Improved Noise Filtering and
Classification of Two-Dimensional Data

Joachim Blaafjell Holwech

Master of Science in Cybernetics and Robotics

Supervisor: Marta Maria Cabrera Molinas, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

PROBLEM DESCRIPTION

This thesis will examine the use of Empirical Mode Decomposition (EMD) as a basis for fil-
tering noise from two dimensional data. The main goal is to improve the visual quality of
noisy images attained from professional and non-professional imaging devices. Additionally,
EMD will be used to improve the information quality contained in images with the objective of
improving object recognition and classification.

i

ii

ABSTRACT

This thesis studies the use of Empirical Mode Decomposition (EMD) applied to two dimen-
sional data and the application of this method to filter noise from images. Mode Mixing Sepa-
ration (MMS) is presented and implemented as a technique for reducing mode mixing, which is
a common problem that occurs with the usage of EMD. A new filter is also introduced, which
combines theory from both adaptive filters and EMD in an attempt to improve the noise filtering
even further. In total, three types of EMD based filters are presented in this thesis:

- A filter based on EMD.

- A filter based on EMD with MMS.

- An adaptive filter based on EMD with MMS.

The filters are tested on three specific use cases where noise filtering could be valuable. The
first test is based on a visual assessment, where the filtered images are compared to the filtered
images of conventional filters. This gives a better general understanding of how the filters
perform, and also indicates of how they measure up against established filtering methods. The
second test attempts to filter noisy satellite images of boats and icebergs, with the purpose of
improving the classification accuracy of the two categories in the dataset. By using a neural
network for classification, the accuracy values can be used as an objective measurement of how
well the filters work. The final test looks at the use of EMD for filtering medical ultrasound
images to improve the image quality. The purpose of this test is to see how the filters work on
a real-world problem.

The results for the first test, showed that the EMD based filters perform significantly worse
than the conventional filters. The EMD filters added artifacts that left the filtered images in
a worse condition than the input. The classification of the filtered satellite images resulted in
an accuracy of 52.87%. When combining the filtered set with the unfiltered set, an accuracy
of 89.28% was achieved, which is a 0.75 percentage point improvement over training only on
the unfiltered set. Applying the EMD based filter on medical ultrasound images had a minimal
effect, but left the quality of the images in a slightly worse condition.

iii

iv

SAMMENDRAG

Denne oppgaven undersøker bruk av Empirical Mode Decomposition (EMD) i to dimensjoner
og tar for seg hvordan denne methoden kan brukes til å fjerne støy fra bilder. En implementering
av Mode Mixing Separation (MMS) presenteres som en løsning på mode miksing-problemet,
et fenomen som vanligvis oppstår ved bruk av EMD. I et forsøk på å forbedre støyfjerningen
ytterligere, introduseres et nytt filter som kombinerer teori fra både adaptive filtre og EMD.
Totalt presenteres tre typer filtre i denne oppgaven som alle er basert på EMD:

- Et filter basert på EMD.

- Et filter basert på EMD med MMS.

- Et adaptivt filter basert på EMD med MMS.

Filtrene er testet på tre forskjellige bruksområder hvor støyfjerning kan være verdifullt. Den
første testen er basert på en visuell evaluering hvor de filtrerte bildene sammenlignes med fil-
trerte bilder fra konvensjonelle filtre. Denne testen gir en bedre forståelse av hvordan filtrene
fungerer og er en god indikator på hvordan de presterer i forhold til mer etablerte metoder. Den
andre testen gjør et forsøk på å fjerne støy fra satelittbilder av isfjell og båter med den hensikten
av å forbedre kvaliteten på bildene. Ved å bruke et nevralt nettverk til å klassifisere med, kan
nøyaktighetsverdiene brukes som et mål for en objektiv evaluering av hvor bra filtrene fungerer.
Den siste testen ser på bruk av EMD til filtrering av medisinske ultralydbilder hvor målet er å
forbedre bildekvaliteten. Hensikten med denne testen er å undersøke hvordan filtrene fungerer
på reelle bruksområder.

For den første testen, viser resultatene at de EMD-baserte filtrene presterer betydelig dårligere
enn de konvensjonelle filtrene. EMD-filtrene introduserer artefakter som fører til at de filtrerte
bildene er i en dårligere tilstand enn før de ble filtrert. Klassifiseringen av de filtrerte satelit-
tbildene resulterte i en klassifiseringsnøyaktighet på 52.87%. Ved å kombinere det filtrerte
datasettet med det ufiltrerte settet ble det oppnådd en nøyaktighet på 89.28%. Dette er 0.75
prosentpoeng høyere enn hvis man bare trente på det ufiltrerte settet. Anvendelse av det EMD-
baserte filteret på medisinske ultralydbilder hadde en minimal effekt, men reduserte kvaliteten
på bildene noe.

v

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Marta Molinas at the Department of Engineering
Cybernetics at NTNU. She has been a helpful and responsive advisor during my work and
development of my Master’s thesis. She introduced me to the interesting field of adaptive data
analysis, that has been the basis for all my work this last year here at NTNU. A big thanks to
Maximiliano Bueno Lopez for giving me feedback and inspiration for new and interesting ways
to solve the challenges presented in this thesis. I would also like to give my acknowledgements
to Henriette Fanebust, MD, at Vestfold Hospital Trust for helping me record the ultrasound
images used in this thesis, and thanks to Simen Trollvik for letting himself be recorded on.

There are so many people this last year who have had a direct or indirect impact on this thesis,
that they cannot all be named and thanked by name. Thanks to my family, friends, the people
at the office and everyone else for the help and support. It has been five challenging, inspiring
and fun years here at NTNU that I will always remember.

vii

viii

ACRONYMS

AI Artificial Intelligence.

BEMD Bidimensional Empirical Mode Decomposition.

CNN Convolutional Neural Network.

DEMD Directional Empirical Mode Decomposition.

EMD Empirical Mode Decomposition.

HH Horizontal/Horizontal.

HV Horizontal/Vertical.

IEMD Image Empirical Mode Decomposition.

IMF Instantaneous Mode Function.

MMS Mode Mixing Separation.

PDF Probabilistic Density Function.

RBF Radial Basis Function.

SNR Signal-to-noise ratio.

ix

x

CONTENTS

Problem Description . i
Abstract . iii
Sammendrag . v
Acknowledgements . vii

Acronyms ix

Contents xi

1 Introduction 3

2 Background Theory and Literature 5
2.1 Image Noise and Filters . 5

2.1.1 Types of noise . 5
2.1.2 Filter Types . 7
2.1.3 Convolutional Neural Networks . 10

2.2 Empirical Mode Decomposition . 15
2.2.1 Bidirectional Empirical Mode Decomposition 18
2.2.2 Directional Empirical Mode Decomposition 19
2.2.3 Image Empirical Mode Decomposition 20

2.3 Mode Mixing Separation . 22
2.4 Radial Basis Function . 24

3 Method and Implementation 27
3.1 Data and datasets . 27

3.1.1 Iceberg dataset . 27
3.1.2 Medical ultrasound dataset . 28

3.2 Implementation of IEMD . 29
3.2.1 Extrema detection . 30
3.2.2 Interpolation using ALGLIB . 30
3.2.3 Sifting . 33
3.2.4 Noise filtering . 35

3.3 Mode Mixing Separation for Images . 36
3.3.1 Setting masking signal properties . 37

xi

3.4 Adaptive noise filtering with IEMD . 39
3.5 Implementation of Convolutional Neural Network 40

4 Results and Discussion 43
4.1 Performance assessment and output analysis 43

4.1.1 Visualization of output and filtering 43
4.1.2 Parameter tuning . 45
4.1.3 Performance of individual IEMD solutions 48
4.1.4 Comparison to conventional methods 51
4.1.5 Speed and resource requirements . 53

4.2 Iceberg classification . 55
4.3 Medical ultrasound images . 57

5 Conclusion 61

References 63

A Images and charts 65

xii

PREFACE

I first learned about Empirical Mode Decomposition (EMD) in autumn 2017 through my super-
visor Professor Marta Molinas. At the time I was writing my project thesis, where I was working
on analyzing EEG-signals using the methods that I learned from Marta’s course in adaptive data
analysis. During the autumn semester of 2017, I joined the Statoil/C-CORE Iceberg Classifier
Challenge, and it brought me on to the idea of applying the new methods I learned on the ice-
berg dataset. Based on my experience working with EMD in one dimension, I knew that the
noise filtering capabilities of this method was very powerful. Getting to test the use of EMD on
images, both in the competition and also in Marta’s course, gave me the confidence to take it a
step further and research the topic of noise filtering in two dimensions more thoroughly through
my Master’s thesis. I believe this thesis is one of the most comprehensive reviews available on
the use of EMD for image noise filtering and I truly hope someone will find the theory presented
in this thesis useful.

All code used to produce the results presented in this thesis, are implemented solely by the
author. The neural network implementation as the only exception, is based on a submission
sent to the Statoil/C-CORE Iceberg Classifier Challenge [1]. The algorithms are written in the
Python programming language and run on a Dell desktop machine supplied by the university.
Some code libraries and functions are used to perform tasks that are outside the scope of the
thesis, namely:

ALGLIB - Performing 2D RBF interpolations.

imextendedmax / imextendedmin - MatLab functions for finding extrema points.

Numpy / Scipy - Python scientific libraries for performing mathematical operations.

Matplotlib - Python library used for plotting and visualization of the results.

Tensorflow / Keras - Library for modelling and training of neural networks.

The full source code can be found at github.com/holwech/image_emd under the MIT
license. The two MatLab based functions imextendedmax / imextendedmin are run
using the ”MatLab Engine API for Python”. All tests and visualizations were executed using
Jupyter running on the Windows 10 operating system. All external libraries and functions were
found and implemented into the code base solely by the author.

The Statoil/C-CORE Iceberg Classifier Challenge dataset was provided under a open research

1

CONTENTS

license and distributed through the Kaggle competition page. The medical ultrasound images
were recorded at Vestfold Hospital Trust using the GE Logiq P9.

Professor Marta Molinas at the Department of Engineering Cybernetics at NTNU held the role
as supervisor through the duration of the thesis work. She provided advice during the thesis
work and gave suggestions to articles and papers that could be of relevance. Associate Professor
Maxiliano Bueno Lopez held a minor advisory role and helped discuss alternative approaches
to the problem at hand. Henriette Fanebust, MD, provided support with the recording of the
medical ultrasound images.

Section 2.2 through 2.2.1 is reused from the author’s project thesis from autumn 2017.

This thesis looks at the use of EMD for filtering noise from two dimensional data, with the
intent to improve quality and classification accuracy of noisy images.

2

CHAPTER 1

INTRODUCTION

ALL photos captured with a digital camera or a smartphone contain some degree of noise.
The quality of the cameras and their ability to remove said noise, have become so good

that humans do not really notice the presence of noise anymore. This can mostly be attributed
to the fact that companies like Google, Apple and Canon for the last decade have put signifi-
cant amount of resources into creating better and more robust filtering methods that remove the
noise. Today, these small hand held devices apply advance state-of-the-art noise reduction algo-
rithms, to give us noise-free images that are crisp and clean. While digital photography is where
the effect of the noise reduction algorithms are most visible, they also affect our everyday lives
in other ways. Tools that are in widespread use like radios, 4G networks, medical ultrasound
images and radar systems heavily rely on being able to efficiently remove noise. In general,
one can assume that if there is some form of analog transmission involved, there is also noise
present, and therefore also some form of noise reduction method used to improve the quality
of the received signals. Furthermore, efficient noise reduction can also be useful in Artificial
Intelligence (AI) applications like object recognition and classification. Performing accurate
classification of objects in photos, is currently a very popular research topic in the AI commu-
nity. The accuracy of the predictions rely on the quality of the image features and efficient noise
filtering can aid in highlighting them. This is essential in helping the classifier learn the features
that matter and making it converge faster towards a solution. While this field in the last decade
has taken huge leaps in solving the noise problem, there is still much to be discovered.

This thesis will present some new methods from removing noise in 2D data that are based on
Empirical Mode Decomposition (EMD) [2] and Mode Mixing Separation (MMS) [3]. Applying
EMD in 2D is not unique and there have been attempts at using it both for classification and
noise reduction [4] [5], [6], [7]. On the other hand, using Mode Mixing Separation to improve
filtering of image noise has not been thoroughly tested and is an unexplored area where there
could be something to gain. This thesis will examine the use of these two techniques and assess
how well they remove noise in 2D data. We will formulate two research questions, one that is
of especial interest for the AI research community and one that looks more generally at how
EMD and MMS can improve image quality:

RQ1: Visual Enhancement - Can EMD and MMS be used on medium to large photos
to filter noise to a degree where the visual quality of the image has been significantly
improved?

3

RQ2: Classification - Can EMD and MMS be used to improve the feature extraction and
classification of noisy images?

It can be argued that RQ1 and RQ2, essentially are the same. Improving the image quality
would probably improve the classification, and similarly, improving the classification would
probably mean that the image quality would improve, right? In most situations, that is probably
the case. But while we for RQ1 mostly care about the visual quality, in RQ2 we want to make
the useful information more visible and highlight important features. This does not always
mean that the images are visually appealing and correct in terms of actual visual representation.

The filter methods will be assessed in such a way that the results can answer the questions
for us. For RQ1, these is a two step approach. First, a more comprehensive test based on
among other things, the filter performance, memory usage and processing time is done, which
will give an overall impression of how useful and viable the filters are for consumer devices
like smartphones and dedicated cameras. The second step looks at how the filters perform in
medical imagery, and more specifically how well it is able to remove noise from ultrasound
image. RQ2 will be answered by applying the developed filters on a real dataset of satellite
images of icebergs and boats, where a classifier will try to distinguish the classes based on the
unfiltered and unfiltered images. The accuracy will then be used as a measure to assess how
well the filters are able to highlight the important information in the images.

4

CHAPTER 2

BACKGROUND THEORY AND
LITERATURE

THIS chapter contains a literature study and presentation of relevant theory needed to answer
the research questions presented in the introduction. Conventional image filtering tech-

niques will also be presented as they will be used as a platform of comparison. The literature
study of relevant papers on 2D EMD describes the currently existing methods. Additionally, a
description of MMS is provided, including how this applies to images.

2.1 Image Noise and Filters

Noise is defined as an unwanted disturbance or error and is often randomly, or at least semi-
randomly, distributed. There exists multiple sources to the noise that normally is visible in
images. With regards to cameras, the source of noise will often be the electrical components
of the camera itself. But noise can also come from physical phenomenons, like air pollution or
uneven surfaces that create a random backscatter which the sensors will pick up. While physical
noise does not necessarily fit under the official definition of ”noise”, it can nevertheless be an
unwanted disturbance one would want to remove. Noise can appear in multiple different forms,
and so this chapter will limit itself to a few noise types that can appear in modern digital imaging
technology or that have some other relevant properties that are useful for assessing the filters.

2.1.1 Types of noise

Noise is most commonly introduced to some data by simply adding it to the measured data.
This category of noise is normally called additive noise and can be modelled by the following
equation:

g(x, y) = f(x, y) + n(x, y) (2.1)

where g(x, y) is the image with noise, f(x, y) is the image without noise and n(x, y) is the
measurement noise. The distribution and value of the noise n, depends on what type of noise

5

2.1. IMAGE NOISE AND FILTERS

it represents. In the following sections, 4 noise types will be presented. Some of these types of
noise can appear in recorded data, and thus are interesting cases for new filtering techniques.
The rest have some interesting properties that are relevant when performing the test.

Impulse (Salt-and-pepper) Noise

Impulse noise will appear in an image as evenly distributed black or white dots. The Probabilis-
tic Density Function (PDF) is given by:

p(z) =

Pa for z = a,

Pb for z = b,

0 otherwise

where z is the intensity, Pa and Pb are the probabilities of getting intensities a and b respectively
[8]. The values a and b specify the brightness of the two noise speckle types, where if b > a,
then b will be a bright spot and a will be darker. For non-zero probabilities Pa and Pb, the
noise appears as black and white speckles, hence the name ”salt-and-pepper”. Impulse noise
is normally assumed to be saturated, which for an 8-bit image means that the noise values are
either 0 or 255.

Impulse noise values are normally very large compared to the average brightness of the image
and appear as a result of fast transients during recording. These transient disturbances can be
caused by faulty switching, and result in saturated speckles in the data.

Uniform Noise

Uniform noise has a uniform probability to appear in the data within a certain intensity range.
The PDF of uniform noise can be written as:

p(z) =

{
1
b−a if a ≤ z ≥ b,

0 otherwise

The mean and variance of the PDF is given by:

z =
1

b− a
and σ2 =

(b− a)2

12
(2.2)

Uniform noise distribution does not specifically appear in any real-life scenarios, but is an in-
teresting case for applying EMD and MMS on, because of its uniform characteristics.

6

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

Gaussian Noise

The Gaussian noise PDF of a random Gaussian variable z, is given by:

p(z) =
1√
2πσ

e
−(z−z)2

2σ2 (2.3)

where z is the intensity, z is the mean of z and σ is the standard deviation. Gaussian noise
is highly prominent in digital imaging technology. The source is often electronic compo-
nents causing disturbances to neighbouring components because of electromagnetic interfer-
ence. Thus, Gaussian noise will always appear in measurements performed by devices running
on electricity. Gaussian noise can also occur in the image sensor when there is poor lighting
conditions or high temperatures.

Speckle Noise

Speckle noise is a multiplicative noise, that is, some uniformly distributed random noise is
multiplied with the pixel value of the image. Speckle noise can be modelled by the following
equation:

f = s+ s ·n (2.4)

where f is the image with noise, s is the input image and n is the uniformly distributed noise.

Speckle noise is commonly observed in active radars, medical ultrasound and other active sens-
ing devices.

2.1.2 Filter Types

There exists a variety of different filters that remove noise. Some filters perform better on some
types of noise than others. The filters can be divided into two categories, namely linear and
nonlinear, where a linear filter applies a linear operation to the image and a nonlinear filter
applies a nonlinear operation. A filter can also be applied spatially or in the frequency domain.
A spatial filter works by applying a predefined rectangular window (kernel) to the image. This
process of applying a window to a sub-field of an image is called convolution and is used in a
wide array of technical fields from computer vision to machine learning. A frequency domain
filter on the other hand, applies filters directly to the frequency spectrum of the image using
Fourier transform.

7

2.1. IMAGE NOISE AND FILTERS

Arithmetic Mean Filter

The arithmetic mean filter simply calculates the average mean value of all the pixels in the
window and sets the center pixel to this value. Say Sxy is the coordinates for them×n subimage
covered by the window, then the restored center pixel value at a position (x, y) is given by:

f̂(x, y) =
1

mn

∑
(s,t)∈Sxy

g(s, t) (2.5)

where f̂(x, y) is the replaced pixel value in position (x, y), Sxy is the area of the window and
g(s, t) is the noisy input.

Median Filter

The median filter is an order-statistic filter, which means that the filter has a response based
on the ordering of the pixel values in the window. The median filter is the most well known
order-statistic filter, and works by taking the median of the pixel values included in the window.
This can be presented mathematically as:

f̂(x, y) = median
(s,t)∈Sxy

{
g(s, t)

}
(2.6)

where f̂(x, y) is the replaced pixel value in position (x, y), Sxy is the area of the window and
g(s, t) is the noisy input. The median filter is a popular filtering method since it creates little
blurring compared to other linear filters. It works especially good on S&P noise, where the
extreme noise values mostly appear in the end spectrum of the median distribution and therefore
will often be filtered from the data.

Max and Min Filter

The max filter works similarly to the median filter, but instead of taking the median value as the
new pixel value, it instead uses the max value. This results in an excellent filter against pepper
noise, which will have a low brightness value. The max filter is simply given by:

f̂(x, y) = max
(s,t)∈Sxy

{
g(s, t)

}
(2.7)

where f̂(x, y) is the replaced pixel value in position (x, y), Sxy is the area of the window and
g(s, t) is the noisy input. Similarly, the min filter will find the dark spots in the image, thus
removing salt noise. The min filter is defined by:

8

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

f̂(x, y) = min
(s,t)∈Sxy

{
g(s, t)

}
(2.8)

Midpoint filter

The midpoint filter calculates the midpoint value between the max and the min value in a given
window. We write this as:

f̂(x, y) =
1

2

[
max

(s,t)∈Sxy

{
g(s, t)

}
+ min

(s,t)∈Sxy

{
g(s, t)

}]
(2.9)

Adaptive Filter

While the linear filters presented above work excellent for removing noise, they also have a
tendency to add significant blurring to the image. Adaptive filters try to solve this by taking into
consideration the pixel values in the window when filtering. Adaptive filters have the potential
to perform better than non-adaptive filters, but this comes at the cost of increased complexity.
The filter response for any given window position is based on the following properties:

1. Value of a given pixel (x, y) in the image g(x, y).

2. Variance σ2
η of the noise.

3. Local mean mL of the pixels values in a given window Sxy.

4. Local variance σ2
L of the pixel values in a given window Sxy.

From this an adaptive behavior can be defined that takes into regard the available properties.
Based on these properties the adaptive filter can be defined by the following:

1. If the variance of the noise σ2
η is zero, the value f̂(x, y) should simply be set to g(x, y)

since in this case there is zero noise.

2. A large local variance σ2
L compared to σ2

η , indicates that the window area Sxy contains an
edge or a corner. f̂(x, y) should in this case be set to a value close to g(x, y) so that the
details of the image is preserved.

3. If the two variances σ2
η and σ2

L are similar in value, the properties of the window is similar
to the properties of the image. The noise can then be reduced by doing the arithmetic
mean of the pixels in the area Sxy.

This definition for f̂(x, y) can be written as:

f̂(x, y) = g(x, y)−
σ2
η

σ2
L

[
g(x, y)−mL

]
(2.10)

9

2.1. IMAGE NOISE AND FILTERS

2.1.3 Convolutional Neural Networks

Classification of images is currently one of the most popular research topics in the AI field. It
is a highly complex problem, that requires advance nonlinear algorithms to solve. The algo-
rithm that has risen as the unchallenged leader in image recognition and classification, is the
Convolutional Neural Network (CNN). CNNs are supervised learning algorithms that train on
a dataset where the labels are known. After a completed training of the network, it can look at
new, unknown data and be able to perform the specific tasks that it trained for.

Neural Networks

CNNs are based on neural networks, which again are inspired from the biological processes that
occur in the brain. Neural networks are highly nonlinear and belong to a class of algorithms
called supervised learning algorithms. The analogy to supervised learning is the concept of the
”student” that tries to answer a question, and the ”teacher” that tells the ”student” whether it
was right or wrong. In a similar fashion, the neural network will train on a dataset where the
answers are already known. For example for object recognition, the network will try to guess
what object is contained in the image. This guess will then be compared to the correct answer,
and the network will then correct its own internal parameters to improve future guesses of
similar objects. By doing this to a large amount of images, the network will reach a generalized
understanding of what the different types of classes in the dataset look like.

The basic building blocks of the neural network is the perceptron, which by itself, is a binary
linear classifier [9]. The perceptron is shown in Figure 2.1, with three inputs x1, x2, x3 and a
corresponding weight for each input. While there are only three inputs in this example, there is
no limit to how many inputs a perceptron can have.

x1

x2

x3

Output

w1

w2

w3

Figure 2.1: Illustration of a single perceptron.

A perceptron can be modelled by the equation:

output =

{
0 if

∑
j wjxj ≤ t,

1 if
∑

j wjxj > t
(2.11)

10

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

where t is a preset threshold value, xj is a given input value, and wj is the corresponding
weight. We see from Equation (2.11), that each input xj gets multiplied by its corresponding
weight before they all get summed together. By adjusting the weights, what input values that
result in a 1 or a 0 can be finely tuned. If the sum of the input and weight values go above the
threshold t, the perceptron will output 1. Similarly, if the output is less than the threshold, the
output will be 0.

�� �� � � �
1

1+ e−z

���

���

���

���

���

���

�

����
����	���

Figure 2.2: The output value of the sigmoid function.

While the perceptron works great as a logical operator, in its current form, when combining
multiple of them into a neural network, will not work. This is because a small adjustment to a
weight can make the output of the perceptron flip completely from 0 to 1 and vice versa. This
makes it hard to do small incremental adjustments to the weights in a neural network, without
making multiple parts of the network change in unpredictable ways. The way around this, is to
use a activation function instead of a threshold to determine the output. If we also add a bias b
for linear shifts, we get the following output equation:

output = a

(∑
j

wjxj + b

)
(2.12)

where a(·) is the activation function. A popular activation function is the sigmoid-function,
which would give us the following output function:

output =
1

1 + exp(−
∑

j wjxj − b)
(2.13)

11

2.1. IMAGE NOISE AND FILTERS

The sigmoid neuron activation function is shown in Figure 2.2. We see that it has a smooth
output that does not result in a big change in output when there is a small change in input.

. . .
. . .

. . .

Input layer Hidden layer Output layer

. . .

Figure 2.3: A diagram of a neural network.

These neurons can be stacked to create layers, and the layers can be connected to each other
to create neural networks. This results in a structure that can learn highly nonlinear patterns in
very complex data. Basically, we now have a very advance optimization algorithm that we can
use to solve hard problems. Figure 2.3 shows an example of what a neural network can look
like. The network is divided into three parts: input layer, hidden layer and output layer. While
the input and output layer only have one row of neurons, the hidden layer can have multiple
rows of neurons. The number of neurons in each layer, and also the number of the layers, can
vary from architecture to architecture. Typically, a network is wider than it is long.

A neural network works by applying some input to the input layer, then in each neuron, some
calculations will be performed, before the output is propagated forward to the next layer. This
process is called forward propagation and is applied all the way from the input layer to the
output layer. The output prediction is then compared to the true label, and an error is calculated
based on the difference between the two answers. This error is then used to calculate updated
weight parameters for every weight in the network. This is called gradient descent, and the
process of moving backwards in the network updating weights is called backpropagation.

Convolutional Neural Networks

A CNN is a neural network that is modified to take images as input and analyze them in an
efficient manner. A neural network can become extremely complex with many thousands of

12

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

parameters, thus processing large input data like images could potentially make the complexity
of the network increase to extreme proportions. Because of this, some steps have to be taken to
optimize how the data is handled, so that the necessary parameters can be reduced.

Figure 2.4: Example structure of a CNN.

Figure 2.4 illustrates an example setup of a CNN. We see that there are three main parts in
this system: convolution layers, pooling layers and fully connected layers. Each part plays
a role in simplifying and generalizing the input data. If we start with the first step, we see
that a convolution is performed on the input image. This involves multiplying a square filter
across the whole image to create a new feature map. This filter, also called a kernel, can be
designed to extract specific features like corners or edges. The output of each convolutional
step is sent through the ReLU activation function before being stored as a feature map. The
ReLU activation function is shown in Figure 2.5 and is a piece wise linear function that is
described by output = max(0, input). The ReLU neuron has the major advantage that it does
not suffer from a phenomenon called vanishing gradients. Vanishing gradients means that the
learning rate will slow down and often result in the optimal solution not being found. This is a
typical problem for sigmoid neurons, when they reach saturation towards ±1 the gradient will
go towards zero. The feature map has multiple different parameters that are listed underneath:

Depth - Sets the number of feature maps.

Stride - Defines how many pixels the window skips for each convolutional step.

Zero-padding - Defines how many pixels wide the padding around the images should be.

After performing the convolution, a process called pooling is performed. The purpose of pool-
ing is to downsample the feature map while keeping the most important features. Pooling is
normally done by selecting a 2× 2 window and performing some selection based on the values
in this matrix. This could either involve taking the mean of the value, selecting the max value
or even taking the total sum. The most widespread method is illustrated in Figure 2.6, where
we see that max pooling is performed on a 4 × 4 matrix reducing it down to just 2 × 2 in size.
Max pooling has many advantages; it makes the data more manageable and smaller, it reduces
the number of parameters in the system which also reduces the chance of overfitting. It also
makes the network scale invariant and also partially invariant to transformations, distortions
and translations.

13

2.1. IMAGE NOISE AND FILTERS

�� �� � � �
������������

�

�

�

�

�

	

�

��
�

Figure 2.5: The output of the ReLU activation function.

The convolution and pooling step can be repeated multiple times depending the architecture.
Following this, is one or more fully connected layers of neurons. The purpose of the fully
connected layers are to learn nonlinear combinations of features in the feature maps, thus repre-
senting higher level features in the data. The last layer is connected to a fully connected output
layer that uses the softmax activation function. Softmax ensures that the sum of the outputs are
always equal to 1, so that they represent a probability distribution.

Figure 2.6: Example max pooling step for a 4× 4 window.

The process of training a CNN is very similar to that of a neural network, and the training step
can be summarized in the following steps:

1. Initialize all weights with small random values.

2. Input a training image and perform forward propagation.

14

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

3. Calculate the error between the output and the label.

4. Perform backpropagation based on the error gradients.

2.2 Empirical Mode Decomposition

This section (through Section 2.2.1) is taken from the authors project thesis ”Implementation of
a Brain-Computer-Interface Using the OpenBCI Ultracortex” [10]

Empirical Mode Decomposition assumes that the data consists of multiple intrinsic modes of
oscillations. Each of these intrinsic modes added together make up the original signal. These
modes are called Instantaneous Mode Function (IMF). An IMF is similar to a simple harmonic
function, in that it can represent a separate part of a more complex signal. An IMF is more
general than a harmonic function, as it does not necessarily need to have a constant amplitude
or frequency and can vary depending on time. For a mode to be an IMF it has to satisfy two
criteria:

1. The number of extrema and zero-crossings have to be equal or differ by at most one.

2. The mean of the envelope defined by the local maxima and the envelope defined by the
local minima is equal to zero at any point in the data.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Time [s]

40

50

60

70

80

Vo
lta

ge
 [V

]

+1.12e5 Sifting
Signal x(t)
Upper spline
Lower spline
Local mean m(t)

Figure 2.7: Illustration of a single sifting with the envelope around the signal shown as the
dotted lines.

With this definition, EMD can be used to decompose any signal into its respective IMFs. The
first step of EMD is to locate all the local extrema in the signal. The maxima are then connected

15

2.2. EMPIRICAL MODE DECOMPOSITION

with a cubic spline. Similarly, this is also done with the minima. This creates an upper and
lower envelope around the signal that can be used to calculate the mean of the envelope. This
mean is then subtracted from the original signal. This represents the first step of the EMD
process and is called sifting. Equation (2.14) shows the first step, where xinput(t) is the input
signal, h1 is the first mode and m1 is the envelope mean.

h1,1 = xinput(t)−m1,1 (2.14)

If the mode does not satisfy the criteria for an IMF, the process is repeated with the extracted
mode h1,1:

h1,2 = h1,1 −m1,2 (2.15)

This sifting process is repeated for k steps until the criteria for an IMF is satisfied:

h1,k = h1,k−1 −m1,k (2.16)

This last step is then defined as the first IMF:

c1 = h1,k (2.17)

The first IMF is then subtracted from the input x(t), removing one mode from the original
signal:

x1(t) = xinput − c1 (2.18)

The sifting process is then repeated but now with the new input with one mode removed:

h2,1 = x1(t)−m2,1 (2.19)

This sifting process is continued until the resulting mode hl,k is monotonic, that is, a function
that is only non-decreasing or non-increasing. More simply said in this situation; a function
without any extrema. This last monotonic mode is normally called the residue or trend, as it
describes the trend in the signal. The residue is the original signal with all the IMFs subtracted:

r1 = x(t)−
K∑
n=1

cn (2.20)

From this we also see that the original signal can be reconstructed by adding all the components:

16

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

400

600

Vo
lta

ge
 [V

]

Original signal

−0.01
0.00
0.01

c 1
(t)

IMF 1

−0.01
0.00
0.01

c 2
(t)

IMF 2

−0.01
0.00
0.01

c 3
(t)

IMF 3

−0.01

0.00

0.01

c 4
(t)

IMF 4

−0.01

0.00

0.01

c 5
(t)

IMF 5

0 1 2 3 4 5 6
Time [s]

0.4

0.6

r(t
)

Resid e

Figure 2.8: A 1D-signal with its corresponding IMFs

x(t) =
K∑
n=1

cn + r1

The number of IMFs that are extracted from the signal depends on a preset stopping criterion.
The original stopping criterion proposed by Huang [2] checks whether two successive sifting
operations have a normalized squared difference that is smaller than a give threshold:

17

2.2. EMPIRICAL MODE DECOMPOSITION

SDk =

∑T
t=0 |hk−1(t)− hk(t)|2∑T

t=0 h
2
k−1

< ε

This criterion has two fundamental weaknesses, the first is the task of deciding an appropriate
ε. Secondly, this criterion does not take into regard the IMFs and whether they have the same
number of zero-crossings and extrema. To tackle this issue, an alternative criterion was pro-
posed based on a S-number. This criterion will stop the process if the sifted signal satisfies the
criteria for an IMF and there has not been any changes to number of zero-crossings or extrema
for S consecutive siftings.

While this theory applies to 1D signals, much of the same theory can be applied to 2D signals
like images with a few modifications. In the following sections the methods currently available
that apply EMD in 2D, will be presented.

2.2.1 Bidirectional Empirical Mode Decomposition

The paper on Bidimensional Empirical Mode Decomposition (BEMD) was published by J.C.
Nunes in 2003 [11] and presented as an efficient way of applying EMD in 2D. BEMD laid the
foundation for use of EMD in 2D, as one of the first implementations to handle 2D signals. The
implementation is similar to the conventional 1D method and fairly straight forward. Given an
input image x(x, y), where x and y are the pixel locations along the x- and y-axis, the sifting
process is defined by the following steps:

1. Find all extrema in the image. These are selected through the use of morphological re-
construction based on geodesic operations.

2. Create an upper envelope e+(x, y) and a lower envelope e−(x, y) based on the found
extrema. The envelopes are constructed using the Radial Basis Function (RBF) for inter-
polation.

3. Find the local mean of the envelopes by calculating the average at each position (x, y)

ml(x, y) =
e+(x, y) + e−(x, y)

2
(2.21)

4. Subtract the mean from the input
hl = x−ml (2.22)

5. Stop sifting if the stopping criterion

SD =
∑
x,y

[
|hl+1(x, y)− hl(x, y)|2

h2l (x, y)

]
< ε

is satisfied. An IMF is found and so we can set

cl = hl (2.23)

18

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

6. Repeat from step 1, now with the new input

xl+1 = xl − cl (2.24)

Finally, the splines are created using RBF interpolation, which interpolates better than the cubic
spline, when near the edges. The RBF is given on the form:

s(x) = pm(x) +
N∑
i=1

λiΦ(||x− xi||) (2.25)

where pm is a low degree polynomial, λi are the RBF coefficients, Φ is the basis function and
xi are the RBF centres.

2.2.2 Directional Empirical Mode Decomposition

Directional Empirical Mode Decomposition (DEMD) was introduced by Z. Liu [12] in 2004
and takes a fundamentally different approach in its attempt at expanding EMD into 2D. Instead
of processing the entire image in one go, DEMD applies EMD to individual rows or columns in
the image. The original algorithm presented in the paper allows for a variable rotation θ, which
makes it possible to perform DEMD in any direction. In this thesis, a simplified version will
be presented where it is only possible to perform the EMD along the rows or columns of the
image. The rotational property is mostly interesting for texture analysis or other patterns that
do not necessarily follow the horizontal or vertical axis.

Firstly, we define the 2D IMF and also the DEMD of an image:

Definition 1 - A signal u(x, y) is defined as a 2D IMF, where we define:

vc(x) = u(x, c)

vr(x) = u(c, x)
(2.26)

if for any value c, vc(x) and vr(x) satisfy the requirements for a 1D IMF. vc(x) and vr(x)
are named 1D samplings of the IMF.

Definition 2 - The DEMD of an image f(x, y) is defined by:

f(x, y) =
N∑
i=1

IMFi(x, y) + rN(x, y) (2.27)

where IMFi are the 2D IMFs from the decomposition and rN is the residue. The residue
rN will have at least one monotonic 1D sampling for vc(x) or vr(x).

With these definitions, the sifting process with an input hl(x, y) can be described by the follow-
ing steps:

19

2.2. EMPIRICAL MODE DECOMPOSITION

1. For each row of the input hl(x, y), find the local extrema.

2. For each row, create an upper envelope e+(x, y) and a lower envelope e−(x, y) based on
the found extrema.

3. Calculate the mean of the envelopes:

m(x, y) =
e+(x, y) + e−(x, y)

2
(2.28)

4. Then, find the extrema along the columns of the just found mean m(x, y). Interpolate
based on the extrema, again along the column, and then find the mean of the envelope:

ml(x, y) =
e+m(x, y) + e−m(x, y)

2
(2.29)

5. Set:
hl+1(x, y) = hl(x, y)−ml(x, y) (2.30)

6. Check whether the stopping criterion is satisfied:

SD =
∑
x,y

[
|hl+1(x, y)− hl(x, y)|2

h2l (x, y)

]
< ε

if it is, set IMFi(x, y) = hl+1(x, y) and update the residue ri+1 = ri(x, y) − IMFi(x, y).
If not, repeat steps 1-6 with new input hl+1(x, y) until the stopping criterion is satisfied.

That completes the sifting step for one IMF. This sifting process is repeated for every IMF until
there exists a monotonic 1D sampling contained in one of the rows or columns of the residue
ri(x, y). With a monotonic row or column found, the signal is fully decomposed and the DEMD
algorithm can terminate.

2.2.3 Image Empirical Mode Decomposition

The Image Empirical Mode Decomposition (IEMD) was developed by Anna Linderhed and
published in her PhD thesis in 2004 [13]. IEMD bares many similarities to the 1D method,
with just a few minor modifications for make it suitable for 2D signals. BEMD and IEMD are
similar in their approach.

Given an input image x(x, y), where x and y are the pixel locations along the x- and y-axis
correspondingly, then one sifting of the IEMD is comprised of the following steps:

1. Find the amplitude and location of the local extrema contained in the input 2D signal
hlk(x, y).

20

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

2. Use thin-plate smoothing spline interpolation to create an upper envelope, e+(x, y), and
a lower envelope, e−(x, y) of the extrema found in step 1.

3. For every position (x, y) calculate the mean of the upper and lower envelope, given by

mk =
e+(x, y) + e−(x, y)

2
(2.31)

4. Remove the mean from the input g(x, y)

hl(k+1)(x, y) = hlk(x, y)−mlk(x, y) (2.32)

This concludes one sifting step.

5. Check with a predefined stopping criterion, and repeat from step 1 if it is not satisfied.

In the PhD thesis, Linderhed defined this stopping criterion as:

|mlk(x, y)| < ε ∀ (x, y) (2.33)

where ε is set to a small value. This stopping criterion is satisfied when the mean of the envelope
is close to zero. The goal of this stopping criterion is to ensure symmetry in the envelope so that
the number of zero crossings are correct and satisfy the requirement of an IMF. If ε is set too
large the sifting process will terminate too early, which results in the IMFs not getting extracted
correctly. Setting ε too small, will on the other hand result in the sifting process continuing for
a long time-period. Thus, the value of ε has to be tuned according to the input data. Given that
the stopping criterion is satisfied, the IMF can be defined by:

cl(x, y) = hlk(x, y) (2.34)

and the sifting process is repeated again now with the new input:

xl+1(x, y) = xl(x, y)− cl(x, y) (2.35)

The IEMD algorithm decides whether a pixel is an extrema based on either 4- or 8-connected
neighbours. This works by comparing the specific pixel value with its 4 or 8 surrounding neigh-
bouring pixel values. If the pixel value is greater (or equal) to its neighbours, the position is la-
belled as a minimum or maximum. Linderhed presents two ways to find these extrema; a simple
method and a morphological method. The simple method does an if-else comparison between
the center pixel and its neighbours to determine whether it is an extrema. The morphologi-
cal method uses the MatLab function imregionalmax, where the only thing differentiating
them is that the simple method must be greater than its neighbours, while the morphological
method must be greater or equal to its neighbours. This small difference in implementation
gives slightly different IMFs as output.

21

2.3. MODE MIXING SEPARATION

The number of found extrema can be very high, and so a simple filtering of the extrema points
to select the most significant extrema is performed. Extrema that have a small amplitude are
filtered out as insignificant according to the following rule:

b(x, y) =

{
0 if |b(x, y)| ≤ T,

b(x, y) otherwise

where T is the threshold and b(x, y) a given the extremum. This filtering of the extrema im-
proves the time performance of the algorithm with a minimal deterioration to the quality of the
output.

The spline used in the IEMD algorithm is the thin-plate smoothing spline (tpaps-function in
MatLab), which is a 2D equivalent to the cubic spline normally used in the 1D-EMD. The thin-
plate spine aims at selecting a function f(x) that interpolates the provided extrema values and
simultaneously minimizes the bending energy [14] according to the following equation:

E[f] =

∫
Rn
|D2f |2dX (2.36)

where D2f is the second-order partial derivatives matrix of f and |D2f |2 is the sum of squares
for all matrix entries.

2.3 Mode Mixing Separation

While EMD is a very powerful tools for analysis of nonlinear and nonstationary signals, the
output often suffers from a phenomenon called mode mixing. Mode mixing occurs when 2 or
more of the modes in a signal have frequencies that lie close to each other. In cases like these,
EMD will have issues distinguishing the modes, resulting in multiple frequencies appearing in
the same IMF. In the regards to noise filtering, mode mixing is undesirable since the highest
frequency IMF should only contain the noise and not other details that are unrelated to the
image details.

Mode mixing occurs when the frequency and/or amplitude ratio (f2/f1 and a2/a1) between two
components moves towards 1. The boundary map illustrating the ratios where a clean separation
is attained using EMD, was initially presented in the paper One or Two Frequencies? The
Empirical Mode Decomposition Answers [3]. A reconstruction of the boundary map for clean
separation of modes is shown in Figure 2.9 and gives an overview of what ratios mode mixing
will occur at. Not surprisingly, when the frequencies or amplitudes become more similar it will
become harder to distinguish the components and at some point we will have mode mixing. For
frequency, the boundary for mode mixing appears sharply at a ratio of f2/f1 ≈ 0.67.

22

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

Figure 2.9: The mode mixing boundary condition map based on the frequency and amplitude
ratios of two components [15]. A lower value indicates a better separation.

One solution to mode mixing, was published by Ryan Deering and James F. Kaiser [16], where
they suggest applying a masking signal to the input signal. This is a simple yet efficient tool for
separating frequencies into independent components. This method works by adding a masking
signal with a frequency that is higher than the highest frequency component in the signal. The
masking signal will then ”attract” the highest frequency component away from the lower fre-
quency component it was mixing with. Afterwards, the masking signal can be removed, leaving
only the clearly separated component. The mode mixing separation method using a masking
signal, can be described with the following steps:

1. Create a masking signal s(n) based on the frequencies of the input signal x(n).

2. Create two signals, the first by summing the masking signal with the input signal:

x+(n) = x(n) + s(n) (2.37)

and the second by subtracting the masking signal from the input:

x−(n) = x(n)− s(n) (2.38)

3. Perform EMD on x+(n) and x−(n), obtaining the IMFs c+(n) and c−(n).

4. Cancel out the masking signal by calculating the average

c(n) =
c+(n) + c−(n)

2
(2.39)

23

2.4. RADIAL BASIS FUNCTION

The signal x(n) contains two components with frequencies fa and fb, where the frequency of
the masking signal, fm, is set higher than fa. If fm is chosen correctly the modes fa and fm will
be contained in c− and c+. By calculating the average, the masking signals in c− and c+ will
cancel each other out because of their opposite sign. This leaves us with an IMF, c, which only
contains the highest frequency component.

2.4 Radial Basis Function

The Radial Basis Function (RBF) is widely used for interpolation in multidimensional space of
irregularly placed data points. RBF interpolation in 2D can be compared to trying to bend a
flexible metal sheet with the goal of making it pass through all the data points. The metal sheet
has different properties that affect its flexibility, and that need to be carefully selected so that it
can be formed accordingly. Similarly, when we want to perform RBF interpolation, we need to
carefully tune the model according to the data. The RBF is an exact method, which means that
the spline has to pass through every data point. This is in contrast to many other interpolation
methods, where the spline does not necessarily pass directly through the data points, but rather
do close approximations. While the RBF is a powerful method, it does not work optimally for
rapidly changing values and so the properties of the data have to be taken into consideration
when performing the interpolation.

� � � � � ��

	����������
����

Figure 2.10: RBF interpolation of 3 points. The red line is the interpolation, while the gray
lines are the RBF basis functions for each point.

RBF interpolation can most simply be described as multiple Gaussian distributions that summed
together create a surface connecting a set of data points. If we define (xn, yn) ∈ D, where

24

CHAPTER 2. BACKGROUND THEORY AND LITERATURE

(xn, yn) are data points in the dataset D, then the influence h(x) is defined by ‖x − xn‖ [17].
From this, the RBF can be defined as:

h(x) =
N∑
n=1

wnϕ(−γ‖x− xn‖2) (2.40)

where wn is a tunable weight parameter and ϕ is a basis function. There exists different basis
functions, for example the multiquadratic basis function or polyharmonic basis function. The
most widespread basis function is the Gaussian basis function which is defined as:

h(x) =
N∑
n=1

wnexp(−γ‖x− xn‖2) (2.41)

When fitting the spline to our input point, we want to find weightsw1, ..., wn so that a given error
is Ein = 0. To ensure that the error is zero, we must ensure that h(xn) = yn for n = 1, ..., N ,
which for a given point xn can be written as:

h(xn) =
N∑
m=1

wnexp(−γ‖xn − xm‖2) = yn (2.42)

Equation (2.42) calculates the sum influence of all the neighbouring Gaussian basis functions
on the point xn. We see that the sum value of the function for each point xn depends on the
distance to its neighbouring points xm and also the weight value wn. The total contribution of
all the points needs to be adjusted, so that the sum equals the target value yn. Solving this for
all N points results in a matrix with N equations and N unknowns that has to be solved. We set
this up on the following form:

 exp(−γ‖x1 − x1‖
2) · · · exp(−γ‖x1 − xN‖2)

...
exp(−γ‖xN − x1‖2) · · · exp(−γ‖xN − xN‖2)

w1

...
wN

 =

y1...
yn

 (2.43)

This can be rewritten on the form:

Φw = y (2.44)

where if Φ is invertible, then:

w = Φ−1y (2.45)

25

2.4. RADIAL BASIS FUNCTION

While this gives us an exact interpolation of our data points, the linear equation that needs
to be solved in (2.43) can quickly grow in complexity. This is means that implementing and
doing 2D EMD will often be limited by the run-time requirements needed to perform the RBF
interpolation.

26

CHAPTER 3

METHOD AND IMPLEMENTATION

THIS chapter will present the implementation and solution for noise filtering using EMD. It
introduces multiple new approaches to the process of noise reduction using EMD in 2D.

Most of the methods presented have been tried in one shape or form in 1D, but are unique
in terms of 2D implementation. Because the use case is new, the methods do not necessarily
improve the images, but are presented nonetheless to show both the limitations and possibilities
that lie within each respective method.

Applying EMD on images will in the remainder of this thesis be referred to as Image Empirical
Mode Decomposition (IEMD), to better separate between EMD when it is performed in 1D or
2D.

3.1 Data and datasets

Two datasets will be used to more thoroughly study the filtering capabilities of the IEMD based
filters. The first dataset is a set of labelled satellite images of icebergs and boats, while the
second is a small dataset of medical ultrasound images. These two sets will be presented in
the following subsections. Additionally, two images are used as ”consumer” type images to
give a better indication of how IEMD based filtering works for conventional images. These two
images are show in their original format in Figure 3.1.

3.1.1 Iceberg dataset

One of the main goals of this thesis, is to use IEMD on images is to improve classification
accuracy of noisy datasets. A particularly interesting dataset is the iceberg dataset published
in the Statoil/C-CORE Iceberg Classifier Challenge [18]. This dataset contains 1604 labelled
satellite images of either icebergs or boats. The resolution is 75 × 75 pixels which means that
the level of detail is very low, making the classification extremely challenging.

Figure 3.2 shows an example of the quality of the images in the dataset. As one can see, the
amount of noise in the images is significant. The images are attained by an active satellite
radar system that operates in the C-Band. The C-Band ranges between 4 and 8 GHz, making it

27

3.1. DATA AND DATASETS

Figure 3.1: Original images used in filter testing. The left image will in the following sections
be referred to as the ”Lena” image and similarly the right image will be referred to as the
”Ellipses” image.

possible to do remote sensing through visual obstructions like fog, rain and clouds. The radar
emits a signal and measures the backscatter from the objects that gets hit by the active source.
From this, it is possible to build up an image of the sea surface. A higher backscatter will result
in a brighter pixel value in the image, and similarly less backscatter will appear as darker pixels.
Solid objects have a higher reflection, thus we see that the boat and the iceberg appear as bright
objects in the image. More waves result in a brighter background because more of the energy
source is scattered back when waves are present.

The images are gathered using two different methods for transmission and reception. The first,
is Horizontal/Horizontal (HH) which is a horizontal transmission and reception. The second
is Horizontal/Vertical (HV) which is horizontal transmission and vertical reception. These two
bands will have slightly different characteristics because of how the signals bounces off sur-
faces. Additionally, there is a composite of the images which is simply the average of the two
bands.

3.1.2 Medical ultrasound dataset

The ultrasound dataset was created using the GE Logiq 9, a general usage ultrasound device for
medical imaging using a linear array transducer. The images were taken at Vestfold Hospital
Trust and were recorded specifically for this thesis. None of the images were used for any
medical purposes and are only used in this thesis for testing purposes. Most of the images are
recordings of the upper throat region and jaw.

28

CHAPTER 3. METHOD AND IMPLEMENTATION

Figure 3.2: Two samples taken from the iceberg dataset of respectively a boat and an iceberg.

Figure 3.3: The same boat as in Figure 3.2, is here shown together with the two bands and their
composite

3.2 Implementation of IEMD

The algorithmic steps of the IEMD method follows a procedure that is very similar to EMD. The
code implementation is unique, and contains modifications that improve the performance over
the BEMD and IEMD methods presented in Section 2.2.2 and 2.2.3 respectively. The following
section will present a thorough description of the steps involved in the IEMD method.

The method presented in the following section is not to be mixed with the IEMD method pre-
sented in Section 2.2.3 which carry the same name, but is a different method with its own
implementation.

29

3.2. IMPLEMENTATION OF IEMD

3.2.1 Extrema detection

The extrema detection is based on morphological reconstruction. More specifically, the MatLab
functions imextendedmax and imextendedmin were used to find the extrema. These
function do not only find the extrema points, but actually also extrema regions. This means that
if there is an extrema point with neighbouring points that have the same value, these also get
classified as extrema.

10 10 10 10 10 10
10 15 15 10 19 10
10 15 15 10 20 10
10 10 10 10 19 10
10 10 10 25 25 10
10 10 10 10 10 10

imextendedmax−−−−−−−−−→

0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 1 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0

(3.1)

A subset of the pixel values of an image is shown in (3.1), where we also can see the output
from imextendedmax. We see here that whole regions will be marked as extrema. This
gives us a binary map of all the extrema locations, that can be used to model the spline on.
While this binary map contains the extrema locations, it is missing the amplitude value for a
give extremum. An element-wise multiplication of the original image and the binary extrema
map as shown in (3.2) can be performed to extract the extrema values with their corresponding
positions. This leaves us with the point data needed to construct the splines required to perform
IEMD.

10 10 10 10 10 10
10 15 15 10 19 10
10 15 15 10 20 10
10 10 10 10 19 10
10 10 10 25 25 10
10 10 10 10 10 10

 ◦

0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 1 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0

 =

0 0 0 0 0 0
0 15 15 0 0 0
0 15 15 0 20 0
0 0 0 0 0 0
0 0 0 25 25 0
0 0 0 0 0 0

 (3.2)

If we apply this to the HH image in Figure 3.3, an image of the regional extrema can be con-
structed. Such visualization can be seen in Figure 3.4, where each individual white dot is an
extremum point.

3.2.2 Interpolation using ALGLIB

After finding the extrema positions and values, we can now start creating the splines. Creating a
good spline in 2D is the most computationally heavy and complex part of the IEMD process. It
is essential that the interpolation process can be terminated within a reasonable time for IEMD

30

CHAPTER 3. METHOD AND IMPLEMENTATION

Figure 3.4: Binary map of the extrema in the HH band taken from Figure 3.3.

to be a viable filtering tool. A unique solution to this complexity issue is presented in the
following section.

Performance has been a focus point while developing the algorithms used in the IEMD method.
The conventional interpolation libraries are not able to process images over any significant size
(> 100 × 100 pixels) when run on a normal computer. The most popular library in Python for
RBF interpolation is the interpolate.Rbf function in the SciPy library. This function is
not designed for interpolation of large and dense sets of data points. The time complexity of
this function is O(N3) and it has a space complexity of O(N2) [19]. This is extremely poor
performance [20] and it could take down even the most impressive computer rigs. With the goal
of improving the performance, ALGLIB was used to perform the interpolation. ALGLIB is a
library for numerical calculations, and contained in it is a significantly faster implementation
of the RBF interpolation method. In comparison to Scipy, ALGLIB has a time complexity
of O(N · logN) and a space complexity of O(N), an improvement by orders of magnitude.
ALGLIB enables IEMD to be used on images of medium to large sizes without significant
issues. Without ALGLIB, applying IEMD on images for filtering purposes would not be viable.

The ALGLIB interpolation function has some tunable parameters that directly affect the quality
of the splines. These variables are listed below:

RBase - Defines the width, or spread, of the Gaussian basis function.

NLayers - Defines the number of iterations the algorithm performs and sets a limit to
how small features are captured in the interpolation process.

LambdaV - Regularization coefficient which can reduce noise in the data.

Setting these variables correctly can be a challenge and depend strongly on the input data. Since
RBase defines the spread of the basis function, this variable has to be set relative to the distance
between the data points in the input. If it is too small, there will be an error introduced in the
splines for the areas covered between the data points. Figure 3.5 illustrates how the interpolation
fails to represent the data correctly when RBase is set too small. The result is that most of the

31

3.2. IMPLEMENTATION OF IEMD

spline appears flat for every area far from a point, because the spread of the Gaussian basis
function is too small. To avoid getting this error in the splines, there needs to be a way to ensure
that RBase is always set large enough. Doubling the value of RBase will quadruple the run
time of the interpolation, so it is important that this value is not set unnecessarily high. The
ALGLIB documentation recommends setting RBase based on the average distance between
the data points according to the following formula:

RBase = 4 · davg (3.3)

Figure 3.5: Interpolation with RBase = 1, a value that is too small for a correct interpolation.

where davg is the average distance between the data points. This formula by itself is not com-
plex, but finding davg is. Therefore we need a simple way to estimate davg without performing
calculations on every single point. To do this, we make an assumption that the extrema points
are to some degree uniformly distributed. This is a fair assumption for images that contain noise,
because the noise is often uniformly represented in the whole image, and thus the extrema will
also be present in the whole image. Based on this we can set up an equation for estimating davg:

davg =

√
A

Npeaks

(3.4)

32

CHAPTER 3. METHOD AND IMPLEMENTATION

where A is the area in pixels and Npeaks is the number of maxima or minima in the data. This
gives us the average distance between the points and is an efficient way of setting RBase.

Selection of the second variable NLayers can be set based on davg, where the documentation
recommends setting it based on the following formula:

NLayers = round

 ln
(

2 · RBase
davg

)
ln(2)

+ 2 (3.5)

Since davg is already known, setting NLayers is fairly straight forward. This is the method
used for the implementation presented in this thesis.

LambdaV can be set dynamically, but in this thesis it will be set as a constant value 1 · 10−3, as
recommended in the documentation.

3.2.3 Sifting

With the tools defined for finding the extrema points and constructing the spline, we are ready
to perform the actual sifting process. This process follows similar steps to the EMD method
with minor modifications to accommodate for the additional dimension.

As a first step for our sifting, we recover the minima and maxima that we need to model the
splines on. A 3D visualization is shown in Figure 3.6 to give a more intuitive understanding
of the steps involved. Using the extrema points, an upper and lower spline is constructed as
shown in Figure 3.7. We see that using correct parameters for the splines gives us a smoother
interpolation and a more correct representation of the image. Since the splines are only math-
ematical models representing the data and not actual images, it is necessary to reconstruct a
representation of the splines that is easier to work with. A pixel grid can be inputted into the
model function, giving us a 2D image reconstruction of the spline. This is done both for the
upper and lower spline, resulting in two images. The mean can then be found by taking the
average of each individual pixel pair in the upper and lower reconstruction image. Figure 3.8
show what these image reconstructions and their mean could look like. The mean image based
on the reconstructions is then subtracted from the input and the sifting is repeated all over again
until some stopping criterion is satisfied.

The siftings process can be summarized by the following steps:

1. Find all the maxima and minima points,m+
p andm−p , in the image by using morphological

reconstruction.

2. Create an upper 2D-spline based on the maxima and a lower 2D-spline based on the
minima.

33

3.2. IMPLEMENTATION OF IEMD

Figure 3.6: 3D map of the extrema in the HH band taken from Figure 3.3. Red points are the
minima values and blue are the maxima.

3. Reconstruct an upper image e+ based on the maxima spline and a lower image e+ based
on the minima spline

4. Calculate the average of the two images

m(x, y) =
e+(x, y) + e−(x, y)

2
(3.6)

5. Subtract the mean from the input

hl(x, y) = x(x, y)−m(x, y) (3.7)

6. If the stopping criterion is satisfied, set the IMF

cl = hl (3.8)

There exists different types of stopping criteria that are possible to use to terminate the sifting.
Many of them have limitations that make them less useful. Additionally, they add unnecessary
complexity to the process without improving the end result significantly. There are indications

34

CHAPTER 3. METHOD AND IMPLEMENTATION

Figure 3.7: 3D map of the splines and extrema in the HH band from Figure 3.3. The red surface
is the lower spline, while the blue surface is the upper spline.

that a fixed number of siftings is sufficient [21] enough as a stopping criterion. Thus, this is the
stopping criterion used in this thesis because of its simple, robust and predictable qualities. The
recommended number of siftings is suggested to be set between 4 and 10. A specific number is
not set in this section, but is further investigated in Section 4.1.2.

3.2.4 Noise filtering

With the IEMD method defined and implemented, filtering away noise from a signal using
IEMD is fairly simple. We know that the noise has a high frequency characteristic that should
be contained in the first IMFs, since they contain the highest frequency modes in the data. To
remove the noise from the input data we simply have to subtract the first, or even the second
IMF from the input data. How many IMFs that should be subtracted from the input, depends on
the input data and the characteristics of the noise. The filtering process can be defined by the
following:

If = I − cn (3.9)

35

3.3. MODE MIXING SEPARATION FOR IMAGES

Figure 3.8: Left & middle: Reconstructed images based on the upper and lower spline models.
Right: Mean of the upper and lower reconstructions.

where If is the filtered image, I is the input image and cn is the nth IMF obtained by IEMD.

3.3 Mode Mixing Separation for Images

Mode Mixing Separation (MMS) is a method for separating modes that lie close to each other
in the frequency domain, that failed to be separated using conventional EMD. This method has
been shown to work for 1D signals, and the following section will show that MMS also works
in 2D.

Similarly to the 1D implementation presented in Section 2.3, we have to create a masking
signal consisting of sine waves that can be included into the input image. We construct the
masking signal by combining a vertical and a horizontal sine wave, which together construct a
2D oscillating surface. In a similar manner, test data is constructed that will be used to assess
the performance of the MMS method in 2D. Figure 3.9 shows some test images with a given
spatial frequency (cycles per pixel) that are so close that mode mixing will occur, if attempted
separated with conventional EMD. The spatial frequency of mode 1 and mode 2 is f1 = 0.075
and f2 = 0.055, respectively. This gives us the ratio f2/f1 = 0.73 which is more that 0.67, thus
we lie in the area shown in Figure 2.9, where mode mixing occurs.

The properties of the masking signal have to be selected so that f1/fm > 0.67 and f2/fm <
0.67. We see that a masking signal with fm = 0.1 would give us a ratio of f1/fm = 0.75 and
f2/fm = 0.54, which means that it would only attract one mode. This masking signal is shown
in Figure 3.10, where we see visually that the spatial frequency is slightly higher than mode 1
and almost twice as high as mode 2.

The masking signal is then individually both added and subtracted from the image, so that we
get two output images with opposite oscillating masking signals. IEMD is then applied to the
images followed by an average calculation of the outputs, which cancels out the opposite mask-

36

CHAPTER 3. METHOD AND IMPLEMENTATION

Figure 3.9: Left: Mode 1 with a spatial frequency of f1 = 0.075 and the amplitude is a1 = 10.
Center: Mode 2 with a spatial frequency of f2 = 0.055 and amplitude of a2 = 8. Right: Mode
1 and 2 added together.

Figure 3.10: Masking signal with fm = 0.1 and am = 10.

ing signals. This leaves us with an IMF containing the first mode without any mode mixing.
In Figure 3.11 we see a comparison of the 1st and 2nd IMFs using IEMD with, and without,
a masking signal. We see that using a masking signal significantly improves the separation of
the synthetic test data so that that they closely resemble the original modes. Without a masking
signal on the other hand, both modes are captured in the first IMF.

3.3.1 Setting masking signal properties

Setting the properties for the masking signal is trivial for the test data because the characteristics
of the modes are already known. Optimally, this process should be automatic without the need
for any manual configuration. Since this method will be used to remove noise, we can assume
that we always want to remove the highest frequency component in the image. Thus, the fre-
quency of the noise has to be found so that a masking signal with slightly higher frequency than
the noise can be added to the image.

37

3.3. MODE MIXING SEPARATION FOR IMAGES

Figure 3.11: First column contains the original modes while the following two columns are
attempts at separating the modes using IEMD without and with a masking signal, respectively.

Defining frequency in 2D for a spatial signal may not be very intuitive, but we are for simplic-
ity’s sake going to define it here as ”peaks per pixels”. To find the frequency, we initially find
the number of peaks in the data by counting the number of maxima. The number of maxima is
divided on the pixel area before taking the square root, giving us the frequency along an axis.
The square root is required because the masking signal is created by combining a sine wave
in x-direction and a sine wave in y-direction. The formula for finding the frequency can be
expressed as

fm =

√
Npeaks

A
(3.10)

where f is the frequency in x- or y-direction, Npeaks is the number of peaks in the data and A is
the pixel area (x× y).

The amplitude is found by simply finding the difference between the median maxima and min-
ima values and dividing this difference by two. This can be expressed on the following form:

am =
(median{n0,...,i} −median{m0,...,j})

2
(3.11)

38

CHAPTER 3. METHOD AND IMPLEMENTATION

where a is the masking signal amplitude, n is the maximum value for a given maximum i and
m is the minimum value for a given minimum j.

Now, Equation (3.10) gives us the frequency of the high frequency component of the noise
in the data. This is because the noise dominates the extrema count, resulting in a frequency
estimate that is close to the noise. Meanwhile, the masking frequency needs to be set to a
higher frequency than the highest frequency component, and so we add a scaling value that will
ensure that the masking signal has this property:

f = Fm

√
Npeaks

A
, where K > 1 (3.12)

While a scaling value is not as important for the amplitude value of the masking signal, we can
still add it to our equation for future reference:

am = Am
(median{n0,...,i} −median{m0,...,j})

2
(3.13)

This approach is a simple way to automatically find the masking signal parameters. It is worth
noting that it does have the downside of not taking into regard local variations in the data, which
means that some information will be lost. This could result in poor separation in areas of the
image where the parameters do not represent the image accurately. There are no specific rules
for what Fm should be set to, but Section 4.1.2 further explores how tuning Fm affects the
filtering.

3.4 Adaptive noise filtering with IEMD

The adaptive IEMD noise filter is inspired by the the adaptive filter presented in Section 2.1.2.
The adaptive filter is better at preserving image details, because it adapts to local features in
the image. Edges and corners can be preserved by removing less noise in these areas, while
removing more noise where the image is uniform. Because of mode mixing that occurs when
performing IEMD, some of the image details will be contained in the first IMF, or IMFs, which
leads to loss of details when subtracting the them from the image. To reduce the amount of blur-
ring, the IMFs can be subtracted from the image in an adaptive fashion, potentially mitigating
the mode mixing problem.

The algorithm is very similar to the one described in Section 2.1.2, and can be described by the
following steps:

1. Initialize a window size S.

39

3.5. IMPLEMENTATION OF CONVOLUTIONAL NEURAL NETWORK

2. Pad the image with a symmetric padding with half the pixel size of the window. Pad size
P is given by

P = floor
(
S

2

)
(3.14)

3. Run a window over the image, where for each step, the variance of the pixels covered by
the window is calculated.

4. Compare the local variance to the noise variance and select one of the following actions:

a. V ar(w) > V ar(nnoise) - The window contains an edge or a corner, keep the original
value. Alternatively, set the pixel to the mean of a small window of neighbouring
pixels.

b. V ar(w) ≤ V ar(nnoise) - The window contains a uniform area, subtract one or more
IMFs from the given pixel.

In Figure 3.12 we see a comparison when filtering in the conventional way of removing the
first IMF and in an adaptive manner. We see that the adaptive filter preserves the edges of the
geometric figures better than if we only used IEMD.

Figure 3.12: Left: Synthetic image with Gaussian noise added. Center: An attempted filtering
of the input image by subtracting the first IMF from the image. Right: Image filtered with
adaptive filter implementation using IEMD.

3.5 Implementation of Convolutional Neural Network

The CNN is used to differentiate between boats and icebergs in the iceberg dataset. The imple-
mentation of the network is based on an implementation published publicly by a contestant [1]
in the Statoil/C-CORE Iceberg Classifier Challenge. It is based on Tensorflow and Keras, which
are two popular deep learning libraries for neural network. Tensorflow is a library containing
the fundamental building blocks for creating neural networks and is to date the most popular

40

CHAPTER 3. METHOD AND IMPLEMENTATION

deep learning library in use. Keras builds on top of Tensorflow and works as a simplified in-
terface making it easier and faster to construct a network without getting into the lower level
details.

MaxPool 2x2

Conv 3x3

MaxPool 2x2

Conv 3x3

MaxPool 2x2

Conv 3x3

MaxPool 2x2

Conv 3x3 Fully Conn.
1x512

Fully Conn.
1x256

Fully Conn.
1x1

ReLu ReLu ReLu ReLu ReLu ReLu

Input

Output

Sigmoid

Figure 3.13: Setup of CNN used for classification of icebergs and ships.

Figure 3.13 illustrates the design of the CNN used in this thesis. This model has four convolu-
tional and max pooling layers, with window size of 3×3 and 2×2 respectively. Following this,
are three fully connected layers that culminate into a single neuron with a sigmoid activation
function. Because of the sigmoid activation the output of this last neuron is always some value
between 0 and 1. This property can be used to create a confidence estimate for a given class
based on the output. This is useful because our output can then be represented as a probability
value which tells us how sure the network is that a given input belongs to a specific class.

The max pooling layers uses a stride of (2, 2), which is a full window jump for each pooling
step. Additionally, each layer has a dropout of 0.2, reducing the chance that the network will
overfit to the data. Dropout works by removing a random selection of neurons from the model
for every training pass. This forces the neurons to become less dependent on each other and
also reduces the probability that a single neuron specializes in specific features, thus limiting
how likely it is for a neuron to over fit to specific features. As for gradient decent method, a
method called Adam (Adaptive Moment Estimation) is used to calculate the gradient.

Because of the high number of convolutional and max pooling layers, the image size right
before the fully connected layer is actually only 2 × 2 pixels large. But because there are at a
minimum of at least 64 filters, the number of parameters are still high. In total this model has
560 193 trainable parameters, which illustrates how complex even a simple network like this
can become.

41

3.5. IMPLEMENTATION OF CONVOLUTIONAL NEURAL NETWORK

42

CHAPTER 4

RESULTS AND DISCUSSION

THIS chapter presents the results and related discussion in regards to noise filtering using
IEMD. It contains three main parts that focus on different types of applications and data.

The first section is an analysis of the performance of the filtering in regards to different parame-
ters like speed, memory usage, but also visual performance and quality of output. Additionally,
different parameter settings and how they affect the output is also assessed. The second section
focuses on the classification of the iceberg dataset and how IEMD can be used to improve the
classification accuracy. The last section looks at how the noise filters can be applied to medical
ultrasound images as a means to improve eligibility and image quality.

4.1 Performance assessment and output analysis

Before applying IEMD based filters it is important to get a more general understanding of how
the filter performs and also to what effect the parameters influence the output. This will help us
make better choices when applying the filters on real world problems and contribute to getting
better results.

4.1.1 Visualization of output and filtering

Firstly, we will look at the different IMFs we get when applying IEMD on an image. Ideally,
all noise should be contained in the first IMF so that the noise can be completely removed from
the image just by subtracting away the first IMF. This is not necessary always what happens
though, and so it is important to look at the IMFs to better understand what output we get.

In Figure 4.1 we see the decomposition of a satellite image of a boat. Most of the details are
retained in the first two IMFs, while the remaining IMFs are mostly just blur. In the first IMF
we see a good example of mode mixing, the outline of the boat is clearly visible and most of
the details that are important for classification are contained in this first IMF. The second IMF
has some weak traces of the boat, but largely contain only the lower frequency spectrum of
the surrounding noise. It is worth noting that all input images have a pixel intensity range set
between −128 and 128. Since this specific input image has a mean of −54 the residue will
converge towards this value, while the IMFs on the other hand will have zero mean.

43

4.1. PERFORMANCE ASSESSMENT AND OUTPUT ANALYSIS

Figure 4.1: First 5 IMFs and residue of the boat image shown in Figure 3.2.

Similarly, we can perform IEMD on the well known Lena image which is a conventional pho-
tography without any noise. This will give us IMFs that have different characteristics than in
the previous example. The decomposition of the Lena image can be seen in Figure 4.2, where
the image has been decomposed into 5 IMFs. The first IMF contains the outlines of the sharpest
image details, while the following IMFs have increasingly ”coarser” outlines containing the
underlying details in the image. The sharpest details are contained in the first IMF because
they have the most rapid changes in image intensity. Details that change rapidly can also be
interpreted as having a high frequency, which explains why we do not see sharp details in the
following IMFs. We see some degree of mode mixing in the first IMF at the right hat border,
that appear as a form of bleeding into the surrounding areas. This is even more apparent in the
second IMF, where there are bleeding effects at multiple places. It seems like these artifacts
are introduced into the IMFs at areas where there is a rapid change in contrast. For most of the
IMFs, this results in bleeding of the edges into the surrounding areas. Most likely, this is caused
by errors in the interpolation because of very sudden changes in image intensity. Rapid changes
in the data is mentioned in Section 2.10 as a cause of error and what we observe here fits well
with this claim.

We can easily perform a filtering of the high frequency components in our input by subtracting
the first IMF from the input image. In Figure A.1 we see an attempt of doing exactly that.

44

CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.2: First 5 IMFs and residue of the boat image shown in Figure 3.2.

The high frequency noise is successfully captured in the first IMF and most of it removed
in the filtered output, but because of the mode mixing we see significant blurring of the boat.
Similarly, we can do this to the Lena image by first adding Gaussian noise to the image and then
trying to filter away the noise. Also here, we see clear signs of mode mixing in the first IMF,
resulting in a blurry output. We see that much of the noise is not actually filtered away from the
image. Additionally, there is an introduction of artifacts in the output giving the filtered image
a ”wave” or ”bubble” pattern. The source of this pattern can probably be attributed to lower
frequency modes of the Gaussian noise that did not get included in the first IMF. Most likely, it
is a combination of this and that errors are added into the output as a result of inaccuracies in
the interpolation process. The lower frequency modes of the Gaussian noise are hard to remove,
because compared to the highest frequency modes, they have a frequency that is much closer to
the image details.

4.1.2 Parameter tuning

There is a large variety of parameters available that can, and should, be tuned for the filter to
perform optimally. To be better equipped to tune the parameters correctly, we first have to get
a better understanding of how they affect the output. Some of these tunable parameters are

45

4.1. PERFORMANCE ASSESSMENT AND OUTPUT ANALYSIS

related to the IEMD method itself, while others are parameters used in the interpolation library
ALGLIB. The following list contains an explanation of available parameters and their meaning:

Depth - Related to the morphological operation used for finding the minimum and maxi-
mum positions and values. A higher depth will increase the sensitivity for extrema in that
image.

Number of siftings - The number of sifting operations performed for each IMF.

RBase - ALGLIB variable mentioned in Section 3.2.2. Defines the radius of the Gaussian
basis function.

NLayers - ALGLIB variable mentioned in Section 3.2.2. Defines the number of layers
used to interpolate.

We will just look at the effect of the first two parameters, since the ALGLIB variables are
automatically set based on the image properties.

Changing the depth value will change the sensitivity of the maxima extraction. This variable is
more thoroughly described in Section 3.2. A larger depth value will make the extrema points
larger, so that each extrema do no longer consist of a single pixel value, but rather extrema
plateaus. Figure A.4 and A.3 shows the filtered output of the same Lena and boat image using
various depth values. As we can see, the depth value has a larger impact on the boat image
than on the Lena image. This is because the boat image is significantly smaller in size than
the Lena image (512 × 512 vs. 75 × 75). For Figure A.3, there are some visible changes that
occur when the depth value is changed. There are no obvious indications that the quality of the
filtering improves with a higher depth value, but because of the nature of the boat image, it is
not possible to conclude anything specifically. For the Lena image, it is obvious that the quality
deteriorates quite visibly as the depth increases. This is an indication that what we see for the
boat image, is also a deterioration of image quality.

It is a reasonable assumption that IEMD will perform worse on most images, as the depth value
increases. With large depth values the extrema points will become plateaus that will constrain
the interpolation process and add errors to the spline. These plateaus will act as clusters of
points that the splines are forced to follow, thus reducing the splines’ ability to estimate the
upper and lower envelope. Furthermore, the interpolation performs best when there is a more
even distribution of points, which would not be the case when the depth value is set very high.
Figure A.4 shows that this error is minuscule as long as the depth is fairly small, but will quickly
increase after a certain threshold.

A good stopping criteria limiting the number of siftings is still something left to be discovered
by researchers, but there are indications that a fixed number of siftings is sufficient [21]. More
specifically, between 4 and 10 siftings should be sufficient for enough for the IEMD method to
converge towards an adequate solution. Figure A.5 contains samples of the boat image that has
been filtered using different number of siftings. The difference between sifting once and sifting
10 times is not big. Some improvement in sharpness is visible between 1 and 5 siftings, but
from 5 to 10 siftings there is little to no improvement. Either way, it is hard to assess whether

46

CHAPTER 4. RESULTS AND DISCUSSION

one filtered image is better than the other, because the image is quite blurry regardless of what
the sifting number is set to.

For the Lena image it is more obvious how the sifting number affects the output. Figure A.6
contains filtered images of Lena for different sifting values and here we see that there is a very
small improvement in sharpness as the sifting number increases. After the 5th sifting, increasing
the number of siftings seems to have minimal effect on the output. Thus taking into regard the
computational time requirements for this algorithm, increasing from 5 to 10 siftings is arguably
not worth the minimal improvement in output.

We can subtract the filtered image created with 5 siftings, with the filtered image created with 10
siftings, to better see how small the difference is between these two images. This is visualized
in Figure 4.3, for the boat and Lena image. For the boat image, the difference is minimal with
just some small perturbations at various locations in the image. There is little to no difference
between the two images in regards to the actual boat object at the center. The characteristics for
the Lena image is similar, with small perturbations that are not directly related to the details in
the image. The perturbations look smaller in the Lena image, because the image is significantly
larger in pixel size than the boat image. This example does not give a definite answer, but is a
strong indication that going from 5 to 10 siftings has a minimal return on the end result.

Figure 4.3: Difference of two filtered images with different number of siftings, where the image
filtered using 5 siftings is subtracted from an image using 10 siftings.

There are two tunable parameters for the MMS masking signal that affect what frequency and
amplitude it will have. These parameters are scaling values that set the frequency and amplitude
of the masking signal relative to the average frequency and amplitude of the image. We defined
these two scaling values as the following:

Am - Amplitude modifier for the masking signal amplitude.

Fm - Frequency modifier for the masking signal frequency. Must be > 1.

47

4.1. PERFORMANCE ASSESSMENT AND OUTPUT ANALYSIS

The masking signal properties is then simply set as:

fm = Fm · favg am = Am · aavg (4.1)

where fm and am are the masking signal amplitude and frequency and favg and aavg is the
average frequency and amplitude of the input image.

We want the masking signal to have a frequency that is low enough to attract the noise, but high
enough to not attract image details. Similarly, we want the amplitude to be in a range where we
get the correct attraction of modes. Since we are attempting to filter out noise, it is important
that Fm is larger than 1 so that the frequency of the masking signal is higher than the frequency
of the noise in the image. The amplitude modifier Am should be set to a correct value according
to Figure 2.9. A comprehensive comparison chart showing the difference in parameter options
can be seen in Figure A.7. Here we can see how changing the masking signal modifiers affect
the filtered output. The differences are minimal, but there is a slight improvement in sharpness
as the frequency modifier increases. Changing the amplitude modifier on the other hand does
not seem to have any effect at all.

Figure 4.4: Left: Lena image with Gaussian noise. Right: Ellipses image with Gaussian noise.

4.1.3 Performance of individual IEMD solutions

This section will present the different IEMD based filters and investigate how they perform
compared to each other. Three filters will be assessed in this section, namely using only IEMD,

48

CHAPTER 4. RESULTS AND DISCUSSION

IEMD with MMS and an adaptive filter using IEMD. The Lena and Ellipses image with Gaus-
sian noise added to them will be used to test whether the filters can remove the noise. The test
images are shown in Figure 4.4.

Filtering using only IEMD is briefly presented in Section 4.1.1, where one could see that the
performance of the filter is indeed quite poor. Figure 4.5 shows a second attempt at filtering
away Gaussian noise using only IEMD, where only the first IMF is subtracted from the image.
As mentioned earlier, most of the high frequency noise is removed while the lower frequency
noise is still visible, resulting in the ”wave” pattern all over the image. This is especially visible
for the right most image, where for a optimal filtering, the the black and gray colors should be
completely uniform. From a visual standpoint, the filtered output is almost in worse condition
than the unfiltered input. This can be confirmed numerically by looking at the Signal-to-noise
ratio (SNR) of the images, given in Table 4.1. Here we see that the SNR for the images that
have been filtered using only IEMD, is just barely higher than for the unfiltered images.

Figure 4.5: The two test images after being filtered using only IEMD.

We perform the same filtering now with MMS to improve the separation of the noise and the
image details. The filtered output is shown in Figure 4.6 and we see a clear improvement over
just using IEMD without MMS. The edges are sharper and more details are preserved in the
output. We still have the residue of low frequency noise, but it is now more uniform and less
prominent than in the previous example. While this filter does not yield great results, it is proof
that using MMS can have a positive contribution to the overall results. The fact that the residue
noise is more uniform, is a sign that the masking signal contributes to not only attracting specific
modes, but also that it reduces local variations in the decomposition. The masking signal is able
to attract the highest frequency components away from the modes containing image details,
resulting an output that is of slightly better quality. While the output is more visually appealing,
Table 4.1 indicates that the filtered output actually has a worse SNR when using MMS. This

49

4.1. PERFORMANCE ASSESSMENT AND OUTPUT ANALYSIS

is because the MMS actually makes the filter remove less noise than it would if MMS was not
used. The filter removes a more narrow band of the upper part of the frequency spectrum, which
means that more noise will remain in the image, but only as low frequency noise.

Figure 4.6: The two test images after being filtered using IEMD with MMS.

While MMS does reduce the blurring somewhat, important details are still lost in the filtering
process. The third filter method tries to solve this problem by taking an adaptive approach to the
filtering task. The adaptive IEMD filter tries to retain more of the details, by only subtracting the
IMF from the image in areas where there are no edges or corners. The filtered output is shown
in Figure 4.7, where an attempt to filter out the noise is performed using the adaptive filter. The
difference between this example and the MMS based filter is not immediately obvious, but when
taking a closer look, we see that the output images from the adaptive filter have slightly sharper
details. This is especially visible for the ellipse image where the outlines of the geometric
objects are visibly sharper. Table 4.1 shows that for the Lena image, the adaptive approach
gives the highest SNR values of all three filters. It is the opposite case for the Ellipses image,
where the adaptive filter has the lowest SNR of all the filters.

Table 4.1: Signal-to-noise ratio

Name Unfiltered IEMD MMS Adaptive

Lena 13.97 dB 16.95 dB 16.43 dB 17.10 dB
Ellipses 16.82 dB 20.35 dB 19.78 dB 17.99 dB

Signal-to-noise ratio of the two test images using the original images without noise as a
reference. The ”Unfiltered” column contains the SNR of the original images with Gaussian

noise added. Similarly, IEMD column contains SNR after IEMD filtering, MMS is SNR after
filtering with MMS and ”Adaptive” contains SNR after filtering with adaptive IEMD.

50

CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.7: The two test images after being filtered with a adaptive IEMD filter.

Overall, these results already strongly indicate that the IEMD based filters performs inade-
quately when used to remove Gaussian noise. Looking at Table 4.1, we see that the improve-
ment in SNR is minimal, especially when taking into regard the number of computations re-
quired for these filters to work.

4.1.4 Comparison to conventional methods

This section will compare conventional filters with the IEMD based filters presented in the
previous section. The filters will be applied on images with different noise types added to them,
so that the performance can be assessed for different conditions. The following noise types will
be used to test the filters on:

- Gaussian noise

- Salt and Pepper noise (S&P)

- Speckle noise

- Uniform noise

These noise types appear in different situations depending on the technology and use case. Thus,
taking a closer look at how these filters remove the different noise types is important if we want
to determine the robustness of the filters. Gaussian noise is present in most analog processes

51

4.1. PERFORMANCE ASSESSMENT AND OUTPUT ANALYSIS

and it is the litmus test for any noise filter. S&P is less common in imaging application, but
differs strongly from the other noise types and is therefore useful for testing the robustness of
the filters. Speckle noise occurs in ultrasound imaging, and it is of high interest in the medical
field to be able to filter this noise in a efficient manner. Uniform noise is less common, but
given IEMD’s susceptibility to variations in frequency and amplitude, this is an interesting case
to study.

Five filters will be tested on the four noise types and the filtered output will be compared with
each other. The five filters that are to be tested, are listed below:

- Uniform filter

- Median filter

- Conventional adaptive filter

- IEMD filter using MMS

- Adaptive filter using IEMD

The first two are simple filters that look at local properties in the image to remove noise. The
conventional adaptive filter is based on the theory presented in Section 2.1.2, and is very similar
to the IEMD based adaptive filter. The last two filters are the IEMD based filters that were tested
in the previous section.

An extensive comparison chart is shown for the Ellipses image in Figure A.8. All images
filtered with the different filters are compared to each other, giving an overview of the filter
performance. The first column contains the input reference images with their corresponding
noise types. Going right, column for column, the first filter we see in the chart is the uniform
filter. It is probably the filter that is able to remove the most noise, but this comes at the price
of a significant blurring of the details. It handles the S&P noise adequately without adding
any strongly visible artifacts. The median filter arguably performs better though, and it mostly
removes all the noise while keeping the image details sharp. It removes the S&P noise almost
perfectly. The adaptive filter also performs well, and is able to conserve even more of the
sharpness than the median filter. That being said, it is not able to remove all of the Gaussian
noise and also fails to adequately remove the S&P noise. The first IEMD filter in the chart
does not filter the noise in any way as well that the conventional filters. The edges are sharp
but the introduction of the ”wave” pattern (or failure to remove the low frequency part of the
noise) completely diminishes the quality of the image. The filter works best on the uniform
and speckle noise, while completely failing to remove the S&P noise. The adaptive IEMD filter
behaves similarly, but with a marginally better output. There is slightly less wave pattern and
the edges are sharper. It is also more capable at removing the S&P noise than the MMS filter.

A similar comparison chart for the Lena image is shown in Figure A.9. The characteristics of
the output images are mostly similar to that of the filtered Ellipses image, with a rather poor
performance for the IEMD based filters. Both the adaptive IEMD filter and the MMS filter
perform best on the image with speckle noise. On all the other noise types, the output of the

52

CHAPTER 4. RESULTS AND DISCUSSION

IEMD based filters, are of low quality with a prominent wave pattern that diminishes the image.
Also here, we see that they fail to remove the S&P noise and instead end up introducing artifacts
that in large part destroy the data.

Table 4.2: Signal-to-noise ratio for Ellipses image

Name Gaussian S&P Speckle Uniform

Input 16.82 dB 15.01 dB 19.98 dB 18.06 dB
Uniform 25.60 dB 24.39 dB 26.35 dB 25.99 dB
Median 27.23 dB 36.85 dB 30.74 dB 26.52 dB

Adap. conv. 24.87 dB 20.40 dB 27.36 dB 26.77 dB
IEMD with MMS 19.78 dB 15.34 dB 22.42 dB 20.88 dB
Adaptive IEMD 19.83 dB 17.75 dB 22.07 dB 20.67 dB

The Tables 4.2 and 4.3 contain the SNR for both the Ellipses image and the Lena image respec-
tively, and do to a certain extent confirm the visual observations we have done. The median
filter has the highest SNR both for the Ellipses image and the Lena image. Mostly, the SNR for
the two IEMD based filters are significantly lower than any of the other filters. For the Ellipses
image, the IEMD based filters have a rather substandard SNR that is much lower than even the
uniform filter. This difference is not as big for the Lena image, where the difference is no more
than about 5 dB. In comparison, the Ellipse image have a difference that in many cases is more
than 7 dB

Table 4.3: Signal-to-noise ratio for Lena image

Name Gaussian S&P Speckle Uniform

Input 13.97 dB 12.28 dB 20.00 dB 15.32 dB
Uniform 21.29 dB 20.44 dB 22.04 dB 21.45 dB
Median 21.38 dB 23.85 dB 23.09 dB 21.06 dB

Adap. conv. 20.09 dB 17.47 dB 21.76 dB 21.12 dB
IEMD with MMS 16.43 dB 13.46 dB 21.20 dB 17.13 dB
Adaptive IEMD 17.10 dB 16.48 dB 20.78 dB 17.36 dB

4.1.5 Speed and resource requirements

The IEMD method is extremely resource heavy, and so looking at the performance of the meth-
ods involved in the filtering, is very relevant for assessing their feasibility in practice. Even for
smaller images of sizes less that 100× 100 pixels, the processing time can be significant. This
means that the filter cannot, with the current implementation, be used for filtering in real-time.

53

4.1. PERFORMANCE ASSESSMENT AND OUTPUT ANALYSIS

To get a better understanding of its limitations, this section will do a more thorough assessment
of the performance of the IEMD filter.

The processing time requirement for extracting 1 IMF, from the Ellipses image with added
Gaussian noise, for different pixel dimensions is shown in Figure 4.8. The processing time has
a quadratic growth in correspondence with the quadratic growth of pixel area. This is a problem,
since the time requirement will have such a steep increase, that it will render the filter useless
after a relatively small increase in image size. As one can see in the plot, already at 250× 250
pixels, the processing time has surpassed 1 minute. At 500× 500 pixels the processing time is
over 4 minutes. It is worth noting that the plot tests fairly small image sizes. Even at 500× 500
pixels the images can be categorized as very small, and taking into regard that photos from
smartphones can have dimensions of 3000× 3000, there is no doubt that this is an issue.

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

	�����������������������������

�

��

���

���

���

���

���

��
�
��
��

��������������

Figure 4.8: Processing time of different image sizes using IEMD to create 1 IMF, using 5
siftings.

The processing time relative to the number of IMFs extracted from the image, is plotted in Fig-
ure 4.9. This plot shows a weak semi-linear increase in processing time from 1 to 8 IMFs. This
trend flattens out as more of the image is decomposed. As the blue line indicates, the processing
time for each individual IMF decreases substantially after the first IMF, and for each following
IMF this decreases further. This happens because there is a decrease in extrema points in the
residue, as the higher frequency modes are removed from the image. Fewer extrema points

54

CHAPTER 4. RESULTS AND DISCUSSION

means that the linear equation for the spline construction becomes simpler and faster to solve.
Based on this plot, we know that at least the cost of extracting additional IMFs after the first or
second one, is not very high. Even though the IEMD algorithm is very slow, there is without
doubt, a potential for further improvements in performance. Although the implementation of
the ALGLIB library for spline creation is an optimization that greatly improves performance,
building a dedicated solution would probably shave of some additional processing time.

� � � � � � � 	
�"����������

�

��

��

��

	�

���

���

���

��
�
��
�
�

����� ����!���

"�"��!�#�
����#��"��

Figure 4.9: Processing time for additional IMFs extracted.

4.2 Iceberg classification

Most of the analysis done so far in this thesis has mostly been based on visual inspection of the
filtered output. While this is undoubtedly an useful and important way to assess the performance
of the filtering methods, it leaves some room for subjective interpretation in regards to whether
the filters truly work or not. The SNR does give us an objective number on how much signal-
to-noise there is in the image, but it does not say anything about how valuable the information
contained in the image really is. The iceberg dataset classification problem is a great way to
more objectively assess whether the IEMD based filters actually work or not. By using a neural
network for classification, human bias is left out of the process as much as possible. If the filters
manage to better highlight the useful data, then the classification accuracy will also improve.

55

4.2. ICEBERG CLASSIFICATION

That way, the classification accuracy can to some extent be used as a measure of performance
of the filter.

The classification results are shown in Table 4.4. The quality of the predictions are shown by
the test accuracy and test loss. The accuracy gives us the percentage of the dataset that the
classifier guessed correct. Since the test set is almost evenly split between the two classes (753
icebergs vs. 851 boats), accuracy is a suitable measure of performance in this specific case.
Additionally, the test loss is calculated, this value gives the total error of the predictions and can
give additional insight into how the classifier performs.

Figure 4.10: A comparison of a subset of the unfiltered and filtered dataset.

Looking at the table, we see that the classification accuracy of the filtered dataset is just barely
above 50%, which means that the network is not able to converge towards a solution. Combining
the unfiltered and the filtered set and training the network on both, does improve the accuracy
slightly. This could indicate that the filter is able to highlight some useful information that is
not clearly visible when training only with the original dataset. The difference in classification
accuracy with and without the filtered dataset, is so small that one cannot decisively conclude
one way or another when the dataset contains so few images. That being said, this improvement
in accuracy is interesting and is a sign that there could be more to it.

Table 4.4: Classification accuracy of iceberg dataset

Dataset Test accuracy Test loss

Unfiltered 88.53% 0.28
IEMD & MMS 52.87% 7.60

Unfiltered + IEMD & MMS 89.28% 0.26

56

CHAPTER 4. RESULTS AND DISCUSSION

It is not hard to understand why the network is having issues learning if one takes a look at
some of the filtered images from the data set. Figure 4.10 contains a small subset comparison of
the filtered images and their original unfiltered counterpart. As mentioned earlier, we see that
high frequency noise is removed, but also many important details disappear that are essential for
accurate classification. An example is the light rays reflected off the reflective surfaces of the
boats. These can be seen at the dotted lines radiating from the objects, and are important details
that indicate that the image contains a boat. These features are not visible in the filtered images
and this will have an impact on the classification accuracy. Furthermore, there is a significant
blurring which leads to a loss of edge details, making boats and icebergs look more similar.
By inspecting the filtered images visually, it is hard to distinguish the class of even the most
obvious examples. All filtering will to some degree remove useful information that otherwise
could be used by the classifier, and so, a filter is most useful as a complement to the original
dataset, highlighting features that would not be visible in its original format.

4.3 Medical ultrasound images

Ultrasound images are known to contain speckle noise, which can make it hard to distinguish
important features. In this section an attempt is made to remove speckle noise using IEMD with
MMS, with the goal to improve the quality and details of medical ultrasound images.

Figure 4.11: An attempted filtering of a medical ultrasound image using IEMD with MMS.

A decomposition of two sample ultrasound images are shown in Figure A.10 and A.11, where

57

4.3. MEDICAL ULTRASOUND IMAGES

we can see their corresponding IMFs and residue. Again, we see that the sharpest outlines are
included in the first IMFs, while the more underlying structures appear in the following IMFs.
Interestingly enough, the most important details seem to be contained in the second IMF. This
is especially the case for Figure A.10, where we see that the main outline of the blood vessel
(the dark circular area) is most clearly visible in the second IMF. This means that some high
frequency components are included in the first IMF that are not image details. By the looks of it,
these high frequency components are a combination of speckle noise and some of the sharpest
details in the image.

An attempt at filtering the images with IEMD and MMS is shown in Figure 4.11. We see that
there is very little difference between the original image and the filtered image. Looking at the
image, it is hard to say whether there is any real gain from the filter. The image is not that blurry
to start with and the little noise that is removed, comes at the cost of slightly diminished image
details. This can more specifically be observed in the region of muscular tissue, which can be
seen as a larger darker area in the upper part of the image. These areas contain details of white
”dots” or ”stripes” in the muscles which are not speckle noise. After the image is filtered, these
details are either completely removed or partially blurred out, something that is not ideal.

Similar procedure is performed in Figure 4.12 with similar results. We see some reduction in
noise, but not to any significant degree. Another side effect of the IEMD based filters, and it is
even more visible in this example, is that there is a loss of contrast. The light colors are darker
and the dark colors are lighter. This most likely contributes to diminishing the visibility of the
details and also the amount of information that is retained in the output.

Figure 4.12: An attempted filtering of a medical ultrasound image using IEMD with MMS.

All in all, applying IEMD with MMS on the ultrasound images did not really make that big
of a difference. Compared to the examples presented in earlier sections, the output for the

58

CHAPTER 4. RESULTS AND DISCUSSION

ultrasound image mostly did not change, pre- and post-filtering. It is hard to pinpoint exactly
why that is, there seems to be some forms of high frequency modes in the images that are placed
further away in the frequency spectrum than the overall image details. This could be seen in the
decompositions, where the first IMF contained surprisingly few image details, even when not
using MMS to separate the noise. Despite this, removing the high frequency components did
not really improve the quality of the images.

59

4.3. MEDICAL ULTRASOUND IMAGES

60

CHAPTER 5

CONCLUSION

REVISITING the research questions presented in the introduction, we will briefly discuss to
what degree we were able to answer them or not. If we take a look at RQ2 first, the

classification of the iceberg dataset was the selected way of assessing whether IEMD and MMS
can be used to improve the feature extraction and classification of noisy images. Trying to
train the neural network on only the filtered dataset, resulted in the network not being able to
learn the features needed to separate the classes. Combining the filtered and the unfiltered set
improved the accuracy slightly, indicating that the filter is able to highlight information that is
not clearly visible in the unfiltered images. Visual inspection of the filtered images showed that
many of the important details get filtered out by the IEMD process, resulting in a rather illegible
output. It is arguable, whether the small improvement in accuracy when combining the sets, is
substantial enough to say that the filter actually works. This does not necessarily mean that the
filter is useless for this task, but it is hard to make a confident claim about its performance when
the improvement in accuracy is so minuscule.

Research question RQ1 focused on whether IEMD can be used to remove noise from images.
IEMD by it self, proved to not work well enough to be useful as a noise filter. Implementing
MMS together with IEMD, did prove to have a positive impact on the IEMD filtering capabil-
ities. Similarly, the results showed that the adaptive filter also was a step up from only using
IEMD. The adaptive filter worked especially well for preserving the edge details, while re-
moving much of the high frequency noise. But while these methods improve the IEMD filter
significantly, it is not enough to make them good. The biggest weakness of the IEMD based
filters is that they either introduce, or fail to remove, the ”wave” pattern from the images, which
leaves the output in very poor condition. Finding a way to remove this ”wave” pattern with-
out diminishing the original image, would without a doubt, make the IEMD based filters much
more powerful. This should be a prioritized research topic for anyone who would want to con-
tinue this work, as this is where one can gain most in performance. This could be a challenge
though, since the residue ”wave” pattern seems to be an inherit problem of the EMD method
and it could mean that this is a limitation which cannot be overcome.

The source of the issue can be boiled down to the fact that in general, images contain regions
where the data is semi-monotonous. These areas of the image that contain little variance are
handled very poorly by IEMD. This problem is not unique for IEMD, and also occurs in 1D.
It is best demonstrated with an example, as shown in Figure 5.1. As we can see, the square
wave has multiple individual monotonous parts that will, after being filtered, still have large

61

variations in these monotonous areas. While the residue noise in is not extremely prominent in
1D, perturbations like these are very visible in images. It is also important to remember that the
errors introduced in the interpolation, probably amplifies this residue noise.

���
��� ������������������ ����	�������

Figure 5.1: Left: Square wave as original signal. Middle: Square wave with Gaussian noise
added. Right: Filtered noisy square wave by removing the first 3 IMFs.

Because of the computational resources needed to create the 2D splines, accuracy has to be
sacrificed in exchange for performance for the filter to be usable. This loss of accuracy prop-
agates into the following decompositions, resulting in an output where artifacts are introduced
as a bi-product of the interpolation. The computational requirements also limit how large the
images can be, for the images to be filtered using IEMD. Improving the interpolation process
for 2D data, could thus potentially improve the performance of the IEMD based filters both in
terms of speed and quality, and should be a focus area for future research.

IEMD as a filtering method is, with its current implementation, limited in its usefulness. It is
very simply not able to filter out image noise in an efficient manner. Not only does the filter
fail to remove noise, in most cases it also adds artifacts to the image that results in an output
that is in worse condition than the original input. That being said, it does not mean that the
research presented in this thesis does not have any value. This thesis contains one of the most
thorough reviews of the application and usage of EMD in 2D. It explores methods like MMS
and adaptive IEMD filters, and applies them in ways that have never been done in 2D before.
This thesis gives a better understanding of the limits, strengths and weaknesses of EMD when
applied to 2D data, and sets the foundation for those who wish to explore this topic further.

62

REFERENCES

[1] Devesh Maheshwari. Keras Model for Beginners (0.210 on LB)+EDA+R&D. URL: htt
ps://www.kaggle.com/devm2024/keras-model-for-beginners-0-
210-on-lb-eda-r-d.

[2] Norden E. Huang et al. “The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis”. In: Proceedings of the Royal So-
ciety of London A: Mathematical, Physical and Engineering Sciences 454.1971 (1998),
pp. 903–995. ISSN: 1364-5021. DOI: 10.1098/rspa.1998.0193. URL: http:
//rspa.royalsocietypublishing.org/content/454/1971/903.

[3] G. Rilling and P. Flandrin. “One or Two Frequencies? The Empirical Mode Decomposi-
tion Answers”. In: IEEE Transactions on Signal Processing 56.1 (Jan. 2008), pp. 85–95.
ISSN: 1053-587X. DOI: 10.1109/TSP.2007.906771.

[4] Anna Linderhed. “Image Empirical Mode Decomposition: A new tool for image pro-
cessing”. In: Advances in Adaptive Data Analysis 01.02 (2009), pp. 265–294. DOI: 10.
1142/S1793536909000138. URL: http://www.worldscientific.com/
doi/abs/10.1142/S1793536909000138.

[5] Srishti Sondele and Indu Saini. “Classification of Mammograms Using Bidimensional
Empirical Mode Decomposition Based Features and Artificial Neural Network”. In: In-
ternational Journal of Bio-Science and Bio-Technology 5.6 (2013), pp. 171–180. DOI:
10.14257/ijbsbt.2013.5.6.18.

[6] Zhuofu Liu and Zhongming Luo. “Bidimensional empirical mode decomposition for
noise reduction in sonar images”. In: International Forum on Strategic Technology 2010.
Oct. 2010, pp. 225–229. DOI: 10.1109/IFOST.2010.5668033.

[7] Y. Pei, Y. Wu, and D. Jia. “Image denoising based on Bidimensional Empirical Mode
Decomposition”. In: 2011 International Conference on Mechatronic Science, Electric
Engineering and Computer (MEC). Aug. 2011, pp. 1122–1125. DOI: 10.1109/MEC.
2011.6025664.

[8] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Dorling Kinders-
ley, 2014.

[9] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
[10] Joachim Blaafjell Holwech. “Implementation of a Brain-Computer-Interface Using the

OpenBCI Ultracortex”. In: (Dec. 2017).
[11] J.C Nunes et al. “Image analysis by bidimensional empirical mode decomposition”. In:

Image and Vision Computing 21.12 (2003), pp. 1019–1026. ISSN: 0262-8856. DOI: 10.

63

https://www.kaggle.com/devm2024/keras-model-for-beginners-0-210-on-lb-eda-r-d
https://www.kaggle.com/devm2024/keras-model-for-beginners-0-210-on-lb-eda-r-d
https://www.kaggle.com/devm2024/keras-model-for-beginners-0-210-on-lb-eda-r-d
https://doi.org/10.1098/rspa.1998.0193
http://rspa.royalsocietypublishing.org/content/454/1971/903
http://rspa.royalsocietypublishing.org/content/454/1971/903
https://doi.org/10.1109/TSP.2007.906771
https://doi.org/10.1142/S1793536909000138
https://doi.org/10.1142/S1793536909000138
http://www.worldscientific.com/doi/abs/10.1142/S1793536909000138
http://www.worldscientific.com/doi/abs/10.1142/S1793536909000138
https://doi.org/10.14257/ijbsbt.2013.5.6.18
https://doi.org/10.1109/IFOST.2010.5668033
https://doi.org/10.1109/MEC.2011.6025664
https://doi.org/10.1109/MEC.2011.6025664
https://doi.org/10.1016/S0262-8856(03)00094-5
https://doi.org/10.1016/S0262-8856(03)00094-5

REFERENCES

1016/S0262- 8856(03)00094- 5. URL: http://www.sciencedirect.
com/science/article/pii/S0262885603000945.

[12] Zhongxuan Liu, Hongjian Wang, and Silong Peng. “Texture segmentation using direc-
tional empirical mode decomposition”. In: Image Processing, 2004. ICIP ’04. 2004 In-
ternational Conference on. Vol. 1. Oct. 2004, 279–282 Vol. 1. DOI: 10.1109/ICIP.
2004.1418744.

[13] Anna Linderhed. Adaptive image compression with wavelet packets and empirical mode
decomposition. Department of Electrical Engineering, Linköing University, 2004.

[14] David Eberly. Thin-Plate Splines. Mar. 1996. URL: https://www.geometrictoo
ls.com/Documentation/ThinPlateSplines.pdf.

[15] O. B. Fosso and M. Molinas. “Method for Mode Mixing Separation in Empirical Mode
Decomposition”. In: ArXiv e-prints (Sept. 2017).

[16] Ryan Deering and James F. Kaiser. “The Use of a Masking Signal to Improve Empirical
Mode Decomposition”. In: Proceedings. (ICASSP 05). IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2005. (2005). DOI: 10.1109/icassp.
2005.1416051.

[17] Yaser Abu-Mostafa. Lecture 16 - Radial Basis Functions. May 2012. URL: https :
//www.youtube.com/watch?v=O8CfrnOPtLc&t.

[18] Statoil/C-CORE Iceberg Classifier Challenge. Oct. 2017. URL: https://www.kagg
le.com/c/statoil-iceberg-classifier-challenge.

[19] ALGLIB. Fast RBF interpolation/fitting. URL: http://www.alglib.net/inter
polation/fastrbf.php#header3.

[20] Eric Drowell. Know Thy Complexities! URL: http://bigocheatsheet.com/.
[21] Gabriel Rilling, Patrick Flandrin, and Paulo Gonçalves. “On empirical mode decompo-

sition and its algorithms”. In: Proceedings of IEEE-EURASIP Workshop on Nonlinear
Signal and Image Processing NSIP-03. June 2003. URL: https://hal.inria.fr/
inria-00570628.

64

https://doi.org/10.1016/S0262-8856(03)00094-5
https://doi.org/10.1016/S0262-8856(03)00094-5
http://www.sciencedirect.com/science/article/pii/S0262885603000945
http://www.sciencedirect.com/science/article/pii/S0262885603000945
https://doi.org/10.1109/ICIP.2004.1418744
https://doi.org/10.1109/ICIP.2004.1418744
https://www.geometrictools.com/Documentation/ThinPlateSplines.pdf
https://www.geometrictools.com/Documentation/ThinPlateSplines.pdf
https://doi.org/10.1109/icassp.2005.1416051
https://doi.org/10.1109/icassp.2005.1416051
https://www.youtube.com/watch?v=O8CfrnOPtLc&t
https://www.youtube.com/watch?v=O8CfrnOPtLc&t
https://www.kaggle.com/c/statoil-iceberg-classifier-challenge
https://www.kaggle.com/c/statoil-iceberg-classifier-challenge
http://www.alglib.net/interpolation/fastrbf.php#header3
http://www.alglib.net/interpolation/fastrbf.php#header3
http://bigocheatsheet.com/
https://hal.inria.fr/inria-00570628
https://hal.inria.fr/inria-00570628

APPENDIX A

IMAGES AND CHARTS

Figure A.1: Original input of a boat, its first IMF and the original with the first IMF subtracted
from the image.

65

Figure A.2: The Lena image with Gaussian noise added to it, its first IMF and the original with
the first IMF subtracted from the image. The images are all gray scale but presented with a
different color map for improved visibility of details.

66

APPENDIX A. IMAGES AND CHARTS

Figure A.3: Satellite image of a boat with IEMD filtering applied with different depth values.

67

Figure A.4: Lena image with IEMD filtering applied with different depth values.

68

APPENDIX A. IMAGES AND CHARTS

Figure A.5: Satellite image of a boat with IEMD filtering applied with different number of
siftings.

69

Figure A.6: Lena image with IEMD filtering applied with different number of siftings.

70

APPENDIX A. IMAGES AND CHARTS

Figure A.7: Comparison chart of the filtered Ellipses image with different modifiers for fre-
quency and amplitude of the masking signal.

71

Figure A.8: Comparison of the different filter types for various noise types for the Ellipse image.
The short side is noise type, while the long side is filter type.

Figure A.9: Comparison of the different filter types for various noise types for the Lena image.
The short side is noise type, while the long side is filter type.

Figure A.10: An ultrasound image and its corresponding IMFs and residue

74

APPENDIX A. IMAGES AND CHARTS

Figure A.11: An ultrasound image and its corresponding IMFs and residue

75

	Problem Description
	Abstract
	Sammendrag
	Acknowledgements
	Acronyms
	Contents
	Introduction
	Background Theory and Literature
	Image Noise and Filters
	Types of noise
	Filter Types
	Convolutional Neural Networks

	Empirical Mode Decomposition
	Bidirectional Empirical Mode Decomposition
	Directional Empirical Mode Decomposition
	Image Empirical Mode Decomposition

	Mode Mixing Separation
	Radial Basis Function

	Method and Implementation
	Data and datasets
	Iceberg dataset
	Medical ultrasound dataset

	Implementation of IEMD
	Extrema detection
	Interpolation using ALGLIB
	Sifting
	Noise filtering

	Mode Mixing Separation for Images
	Setting masking signal properties

	Adaptive noise filtering with IEMD
	Implementation of Convolutional Neural Network

	Results and Discussion
	Performance assessment and output analysis
	Visualization of output and filtering
	Parameter tuning
	Performance of individual IEMD solutions
	Comparison to conventional methods
	Speed and resource requirements

	Iceberg classification
	Medical ultrasound images

	Conclusion
	References
	Images and charts

